Lattice Platform and Power Management Devices Lattice Platform and Power Management Devices Voir d'autres produits électroniques ou électriques Revenir à l'accueil  

 

Branding

>>> POUR COMMANDER CES PRODUITS, Cliquez ici <<<

 

Voir la page :

http://www.latticesemi.com/products/powermanager/

 

VOIR EGALEMENT :

[TXT]

 Lattice-GAL20V8-Farn..> 05-May-2013 11:25  1.5M  

[TXT]

 Lattice-LatticeECP3-..> 05-May-2013 11:22  2.6M  

[TXT]

 Lattice-LatticeECP3-..> 05-May-2013 11:22  2.4M  

[TXT]

 Lattice-LatticeSC-Fa..> 05-May-2013 11:25  1.9M  

[TXT]

 Lattice-MachXO2-Fami..> 05-May-2013 11:23  2.2M  

[TXT]

 Lattice-PCN-05B-12-i..> 05-May-2013 11:24  2.0M  

[TXT]

 Lattice-Power-2-You ..> 05-May-2013 11:25  1.8M  

[TXT]

 Lattice-Product-Bull..> 05-May-2013 11:23  2.2M  

[TXT]

 Lattice-Registration..> 05-May-2013 11:24  2.0M  

[TXT]

 Lattice-Using-User-F..> 05-May-2013 11:23  2.3M

[TXT]

 Panneaux-Solaires-Fa..> 05-May-2013 11:24  1.4M  

[TXT]

 Raspberry-Farnell.htm   05-May-2013 11:21  1.4M  

[TXT]

 Technology-First-Jou..> 05-May-2013 11:21  1.4M  

[TXT]

 Piles-et-Batteries-F..> 05-May-2013 11:21  1.8M  

[TXT]

 OXFORD-SEMICONDUCTOR..> 05-May-2013 11:21  1.4M  

[TXT]

 DS10CP154A-1.5-Gbps-..> 05-May-2013 11:16  1.5M  

[TXT]

 IC06-74HC-HCT-HCU-HC..> 05-May-2013 11:16  1.5M  

[TXT]

 Lattice-Power-2-You ..> 05-May-2013 11:16  1.8M  

[TXT]

 Lattice-GAL20V8-Farn..> 05-May-2013 11:16  1.5M  

[TXT]

 Lattice-LatticeSC-Fa..> 05-May-2013 11:15  1.9M  

[TXT]

 Lattice-Registration..> 05-May-2013 11:15  2.0M  

[TXT]

 Lattice-MachXO2-Fami..> 05-May-2013 11:15  2.2M  

[TXT]

 Lattice-PCN-05B-12-i..> 05-May-2013 11:15  2.0M  

[TXT]

 Lattice-Product-Bull..> 05-May-2013 11:14  2.2M  

[TXT]

 Lattice-Using-User-F..> 05-May-2013 11:14  2.3M  

[TXT]

 Lattice-LatticeECP3-..> 05-May-2013 11:13  2.6M  

[TXT]

 Lattice-LatticeECP3-..> 05-May-2013 11:13  2.4M

[TXT]

 XLR-Farnell.htm         18-Apr-2013 08:10  2.2M  

[TXT]

 Transistor-Farnell.htm  18-Apr-2013 08:06  4.7M  

[TXT]

 Tension-2-Farnell.htm   18-Apr-2013 08:05  5.2M  

[TXT]

 Piece-Farnell.htm       18-Apr-2013 08:05  5.2M  

[TXT]

 Auto-Farnell.htm        18-Apr-2013 08:03  5.7M  

[TXT]

 Support-Farnell.htm     18-Apr-2013 08:03  5.5M  

[TXT]

 Sortie-Farnell.htm      18-Apr-2013 08:02  4.2M  

[TXT]

 Rouge-Farnell.htm       18-Apr-2013 08:01  3.8M  

[TXT]

 Cable-Farnell.htm       18-Apr-2013 08:00  4.0M  

[TXT]

 Ventilateur-Farnell.htm 18-Apr-2013 08:00  4.4M  

[TXT]

 Contact-Farnell.htm     18-Apr-2013 07:59  5.4M  

[TXT]

 XLR-2-Farnell.htm       18-Apr-2013 07:59  4.6M  

[TXT]

 Ecrou-Farnell.htm       18-Apr-2013 07:57  3.5M  

[TXT]

 Nylon-Farnell.htm       18-Apr-2013 07:57  3.6M  

[TXT]

 Action-Farnell.htm      18-Apr-2013 07:56  4.4M  

[TXT]

 Gaine-Farnell.htm       18-Apr-2013 07:56  4.1M  

[TXT]

 Manchon-Farnell.htm     18-Apr-2013 06:50  4.8M

 

[TXT]

 LED-Farnell.htm         17-Apr-2013 18:25  3.4M  

[TXT]

 Joint-Farnell.htm       17-Apr-2013 18:25  3.4M  

[TXT]

 Commutateurs-Farnell..> 17-Apr-2013 18:25  2.3M  

[TXT]

 Analogique-Farnell.htm  17-Apr-2013 18:24  1.2M  

[TXT]

 CMS-Farnell.htm         17-Apr-2013 18:24  6.6M  

[TXT]

 Logique-Farnell.htm     17-Apr-2013 18:23  2.1M  

[TXT]

 Circuit-Farnell.htm     17-Apr-2013 18:23  2.0M  

[TXT]

 Regulateur-Farnell.htm  17-Apr-2013 18:22  2.1M  

[TXT]

 Tension-Farnell.htm     17-Apr-2013 18:21  1.4M  

[TXT]

 Indicateur-Farnell.htm  17-Apr-2013 18:21  1.4M  

[TXT]

 Capot-Farnell.htm       17-Apr-2013 18:21  1.8M  

[TXT]

 Embase-Farnell.htm      17-Apr-2013 18:21  7.9M  

[TXT]

 Convertisseur-Farnel..> 17-Apr-2013 18:20  2.9M  

[TXT]

 Relais-Farnell.htm      17-Apr-2013 18:19  2.2M  

[TXT]

 Dominos-Farnell.htm     17-Apr-2013 18:19  3.0M  

[TXT]

 Coffret-Farnell.htm     17-Apr-2013 18:18  1.9M  

[TXT]

 Cordon-Farnell.htm      17-Apr-2013 18:18  4.1M  

[TXT]

 Diode-Farnell.htm       17-Apr-2013 18:17  3.5M  

[TXT]

 Test-Farnell.htm        17-Apr-2013 18:16  1.2M  

[TXT]

 Femelle-Farnell.htm     17-Apr-2013 18:16   15M  

[TXT]

 Cosse-Farnell.htm       17-Apr-2013 18:16  1.5M  

[TXT]

 Male-Farnell.htm        17-Apr-2013 18:15   17M  

[TXT]

 Fiche-Farnell.htm       17-Apr-2013 18:11  3.9M  

[TXT]

 Jeu-Farnell.htm         17-Apr-2013 18:09  1.1M  

[TXT]

 Suppression-Farnell.htm 17-Apr-2013 18:09  1.4M  

[TXT]

 Fusible-Farnell.htm     17-Apr-2013 18:09  2.7M  

[TXT]

 Foret-Farnell.htm       17-Apr-2013 18:09  1.5M  

[TXT]

 Microcontroleur-Farn..> 17-Apr-2013 18:08  2.5M  

[TXT]

 Thermo-Farnell.htm      17-Apr-2013 18:08  1.6M  

[TXT]

 Carte-Farnell.htm       17-Apr-2013 18:08  3.0M  

[TXT]

 Flash-Farnell.htm       17-Apr-2013 18:08  2.7M  

[TXT]

 Kit-Farnell.htm         17-Apr-2013 18:07  1.7M  

[TXT]

 Filtre-Farnell.htm      17-Apr-2013 18:07  2.0M  

[TXT]

 XLR-Farnell.htm         17-Apr-2013 18:06  2.2M  

[TXT]

 Module-Farnell.htm      17-Apr-2013 18:06  2.7M  

[TXT]

 Bague-Farnell.htm       17-Apr-2013 18:05  2.7M  

[TXT]

 Transistor-Farnell.htm  17-Apr-2013 18:05  4.7M  

[TXT]

 Prise-Farnell.htm       17-Apr-2013 18:04  2.8M  

[TXT]

 Radial-Farnell.htm      17-Apr-2013 07:33  1.9M  

[TXT]

 Capteurs-Farnell.htm    17-Apr-2013 07:26  3.4M  

[TXT]

 Aimants-Farnell.htm     17-Apr-2013 07:26  3.4M  

[TXT]

 Accessoires-Farnell.htm 17-Apr-2013 07:25  2.9M  

[TXT]

 Adaptateurs-Farnell.htm 17-Apr-2013 07:25  3.1M  

[TXT]

 Alimentation-Farnell..> 17-Apr-2013 07:24  3.7M  

[TXT]

 Afficheurs-Farnell.htm  17-Apr-2013 07:24  3.1M  

[TXT]

 Ampli-Farnell.htm       17-Apr-2013 07:23  4.7M  

[TXT]

 Ampoules-Farnell.htm    17-Apr-2013 07:23  4.7M  

[TXT]

 Coffrets-Farnell.htm    17-Apr-2013 07:22  5.7M  

[TXT]

 Transformateurs-Farn..> 17-Apr-2013 07:21  5.0M  

[TXT]

 Adhesifs-Farnell.htm    17-Apr-2013 07:20  5.4M  

[TXT]

 Condensateurs-Farnel..> 17-Apr-2013 07:20  7.0M

 [TXT]Capteurs-Farnell.htm 17-Apr-2013 07:26 3.4M  

[TXT]

Aimants-Farnell.htm 17-Apr-2013 07:26 3.4M

[TXT]

Accessoires-Farnell.htm 17-Apr-2013 07:25 2.9M

[TXT]

Adaptateurs-Farnell.htm 17-Apr-2013 07:25 3.1M

[TXT]

Alimentation-Farnell..> 17-Apr-2013 07:24 3.7M

[TXT]

Afficheurs-Farnell.htm 17-Apr-2013 07:24 3.1M

[TXT]

Ampli-Farnell.htm 17-Apr-2013 07:23 4.7M

[TXT]

Ampoules-Farnell.htm 17-Apr-2013 07:23 4.7M

[TXT]

Coffrets-Farnell.htm 17-Apr-2013 07:22 5.7M

[TXT]

Transformateurs-Farn..> 17-Apr-2013 07:21 5.0M

[TXT]

Adhesifs-Farnell.htm 17-Apr-2013 07:20 5.4M

[TXT]

Condensateurs-Farnel..> 17-Apr-2013 07:20 7.0M

[TXT]

Radial-Farnell.htm 17-Apr-2013 07:18 1.9M

[TXT]

AOP-Farnell.htm 16-Apr-2013 16:17 4.4M

[TXT]

Dykem-Farnell.htm 16-Apr-2013 12:03 2.9M

[TXT]

Duracell-Farnell.htm 16-Apr-2013 12:02 2.7M

[TXT]

Raspberry-pi-Farnell..> 16-Apr-2013 12:02 2.8M

[TXT]

Kemet-Farnell.htm 16-Apr-2013 11:43 2.7M

[TXT]

Oscillateurs-Farnell..> 16-Apr-2013 11:43 2.9M

[TXT]

Valeurs-Fixes-Divers..> 12-Apr-2013 19:37 3.2M

[TXT]

Produits-ROHM-Farnel..> 12-Apr-2013 19:23 2.7M

[TXT]

Lames-Farnell.htm 12-Apr-2013 19:23 2.8M

[TXT]

INTERSIL-Farnell.htm 12-Apr-2013 19:22 2.7M

[TXT]

RFID-Farnell.htm 12-Apr-2013 19:21 2.7M

[TXT]

intel-Farnell.htm 12-Apr-2013 19:06 2.9M

[TXT]

pressure_ic-Farnell.htm 12-Apr-2013 18:58 2.9M

[TXT]

Galettes-Farnell.htm 12-Apr-2013 18:58 1.3M

AMP

AMPLI

AMPLIFICATEUR

BATTERIE

BOITIER CIRCULAIRE

BORNIER

BOUTON

CAPACITOR

CABLE

CAPOT

CAPTEUR

CINCH-SD-LB-CONNECTOR-BACKSHELL

CINCH-12-140-BLOC-DE-TERMINAISON12VOIES

CAMDEN-BOSS-BIM2001-11-EMI-RFI-COFFRET-GRIS-BLIND

SIBA-160016-5A-FUSIBLE-5A-250V-RETARDE-4.5X8MM

SERVISOL-200002000-GREASE-SILICONE-50G

CINCH-DBM25S-CONNECTEUR-SUB-MINIATURE

CINCH-50GP1-CARD-EDGE-CONNECTOR

CINCH-JA7784800000L00-FICHE-MALE-12-VOIES

CINCH-581-01-18-920-EXTRACTOR

CINCH-5810130045-HEADER-ENCLOSURE-LE-30WAY

ADAPTATEURS

ALIMENATIONS

CORDON

CONVERTISSEUR

CIRCUIT

CHOKE

CARTE

FILTRE

FORET

FIL

EMBASE.2.54MM

CORDON

FUSIBLE

GAINE

INDUCTANCE

INDUCTOR

KIT

LED

LOGIC

MCU

MEMOIRE

MICROCONTROLEUR

ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45 2.9K

ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45 2.9K

ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45 2.9K

ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:47 2.8K

ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:47 2.8K

ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45 3.1K

ACCESSOIRE-PQ2-10751..> 14-Dec-2012 08:43 2.8K

ACCU.-NIMH-4AH-(2-CE..> 14-Dec-2012 08:50 3.0K

ACCU.-NIMH-4AH--3-CE..> 14-Dec-2012 08:53 3.0K

ACCU.-NIMH-4AH--3-CE..> 14-Dec-2012 08:52 133K

ADAPT-BNC-BHKD-ISOLE..> 14-Dec-2012 08:45 3.2K

ADAPTATEUR-12V-60W-1..> 14-Dec-2012 08:41 3.2K

ADAPTATEUR-24V-60W-1..> 14-Dec-2012 08:39 3.2K

ADAPTATEUR-ATX-20BRO..> 14-Dec-2012 08:47 3.0K

ADAPTATEUR-BNC-BKHD-..> 14-Dec-2012 08:47 3.2K

ADAPTATEUR-BNC-DROIT..> 14-Dec-2012 08:47 3.2K

ADAPTATEUR-BNC-EN-T-..> 14-Dec-2012 08:45 3.2K

ADAPTATEUR-BNC-TYPE-..> 14-Dec-2012 08:48 3.2K

ADAPTATEUR-BNC-VERS-..> 14-Dec-2012 08:41 3.2K

ADAPTATEUR-BNC-VERS-..> 14-Dec-2012 08:36 3.2K

ADAPTATEUR-BNC-VERS-..> 14-Dec-2012 08:41 3.2K

ADAPTATEUR-DE-VOYAGE..> 14-Dec-2012 08:45 2.9K

ADAPTATEUR-DROIT-BNC..> 14-Dec-2012 08:47 3.2K

ADAPTATEUR-DROIT-DOU..> 14-Dec-2012 08:44 3.2K

ADAPTATEUR-MONTAGE-P..> 14-Dec-2012 08:45 2.8K

ADAPTATEUR-PERIPH.-2..> 14-Dec-2012 08:37 3.2K

ADAPTATEUR-POUR-MEMO..> 14-Dec-2012 08:54 2.7K

ADAPTATEUR-POUR-MEMO..> 13-Dec-2012 19:02 2.7K

ADAPTATEUR-SERIE-100..> 14-Dec-2012 08:44 3.1K

ADAPTATEUR-U.FL-FEME..> 14-Dec-2012 08:43 3.2K

ADAPTATEUR-U.FL-MALE..> 14-Dec-2012 08:45 3.2K

ADAPTATEUR-USB-VERS-..> 14-Dec-2012 08:47 2.9K

ADAPTATEURS.htm 04-Jan-2013 18:16 2.9M

ADAPTOR,-MICROMOT-10..> 14-Dec-2012 08:46 3.2K

ADHESIF-DOUBLE-FACE-..> 14-Dec-2012 08:39 3.2K

ADHESIF-SILICONE-90M..> 14-Dec-2012 08:49 3.1K

ADHESIF-SILICONE-310..> 14-Dec-2012 08:48 3.1K

ADHESIVE,-EVOSTICK,-..> 14-Dec-2012 08:50 2.9K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-7.6..> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-10...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-10...> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-10...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-10...> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-20...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-20...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-20...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:56 3.2K

AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:02 3.2K

AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:03 3.2K

AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:57 3.2K

AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:03 3.2K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:42 2.9K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:41 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:41 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:41 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:44 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:37 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:44 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:44 2.8K

AIMANT-PERMANENT-107..> 14-Dec-2012 08:42 2.9K

ALESOIR-107232.html 14-Dec-2012 08:44 2.8K

ALIMENTATION-10W-MON..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-10W-MON..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-10W-MON..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-10W-MON..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-10W-MON..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-10W-MON..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-15W-MON..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-15W-MON..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-15W-MON..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-20W-CHA..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-20W-CHA..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-100W-9V..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-100W-9V..> 13-Dec-2012 19:03 3.2K

ALIMENTATION-100W-12..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-100W-12..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-100W-15..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-100W-15..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-100W-24..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-100W-24..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-100W-48..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-100W-48..> 13-Dec-2012 19:03 3.2K

ALIMENTATION-120W-EX..> 14-Dec-2012 08:57 3.2K

ALIMENTATION-120W-EX..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-120W-EX..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-120W-EX..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-120W-EX..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-120W-EX..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-500W-24..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-500W-24..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-500W-48..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-500W-48..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-600W-12..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-600W-12..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-600W-24..> 14-Dec-2012 08:56 3.2K

ALIMENTATION-600W-24..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-600W-48..> 14-Dec-2012 08:54 3.2K

ALIMENTATION-600W-48..> 13-Dec-2012 19:02 3.2K

ALIMENTATION-A-DECOU..> 14-Dec-2012 08:36 3.2K

ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:40 3.2K

ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:39 3.2K

ALIMENTATION-CA-CC-3..> 14-Dec-2012 08:37 3.2K

ALIMENTATION-CA-CC-3..> 14-Dec-2012 08:37 3.2K

ALIMENTATION-CA-CC-5..> 14-Dec-2012 08:41 3.2K

ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:41 3.2K

ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:39 3.2K

ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:37 3.2K

ALIMENTATION-POUR-MC..> 14-Dec-2012 08:40 2.9K

ALIMENTATIONS.htm 04-Jan-2013 18:32 3.3M

ALTERNISTOR-25A-1200..> 14-Dec-2012 08:44 3.2K

ALTERNISTOR-40A-600V..> 14-Dec-2012 08:44 3.2K

AMP.htm 05-Jan-2013 11:08 2.4M

AMPLI-AUDIO-CMS-1W-B..> 14-Dec-2012 08:55 3.2K

AMPLI-AUDIO-CMS-1W-B..> 13-Dec-2012 19:02 3.2K

AMPLI-AUDIO-CMS-1W-S..> 14-Dec-2012 08:55 3.2K

AMPLI-AUDIO-CMS-1W-S..> 13-Dec-2012 19:02 3.2K

AMPLI-AUDIO-CMS-DOUB..> 14-Dec-2012 08:49 3.2K

AMPLI-CMS-AUTO-ZERO-..> 14-Dec-2012 08:43 3.2K

AMPLI-CMS-AUTO-ZERO-..> 14-Dec-2012 08:43 3.2K

AMPLI-CMS-AVEC-FILTR..> 14-Dec-2012 08:42 3.2K

AMPLI-CMS-DIFFERENTI..> 14-Dec-2012 08:45 3.2K

AMPLI-CMS-DIFFERENTI..> 14-Dec-2012 08:42 3.2K

AMPLI-CMS-DIFFERENTI..> 14-Dec-2012 08:42 3.2K

AMPLI-D´INSTRUMEN..> 14-Dec-2012 08:37 3.2K

AMPLI-D´INSTRUMEN..> 14-Dec-2012 08:38 3.2K

AMPLI-DC-LOG-500MHZ-..> 14-Dec-2012 08:42 3.2K

AMPLI-DE-PUISSANCE-1..> 14-Dec-2012 08:38 3.2K

AMPLI-DIFFIRENTIEL-V..> 14-Dec-2012 08:44 3.2K

AMPLI-JFET-CMS-QUADR..> 14-Dec-2012 08:43 3.2K

AMPLI-JFET-CMS-R-R-1..> 14-Dec-2012 08:45 3.2K

AMPLI-JFET-CMS-R-R-1..> 14-Dec-2012 08:43 3.2K

AMPLI-OP-240MHZ-1079..> 14-Dec-2012 08:42 3.2K

AMPLI-OP-BASSE-PUISS..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-BIFET-10943..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMOS-7611-D..> 14-Dec-2012 08:44 3.2K

AMPLI-OP-CMOS-PROGRA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS--SORTIE..> 14-Dec-2012 08:46 3.2K

AMPLI-OP-CMS--SORTIE..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS--SORTIE..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-1.2-GHZ..> 14-Dec-2012 08:55 3.2K

AMPLI-OP-CMS-1.2-GHZ..> 13-Dec-2012 19:02 3.2K

AMPLI-OP-CMS-1018165..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-CMOS-PR..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-DIFFERE..> 14-Dec-2012 08:55 3.2K

AMPLI-OP-CMS-DIFFERE..> 14-Dec-2012 08:55 3.2K

AMPLI-OP-CMS-DIFFERE..> 14-Dec-2012 08:55 3.2K

AMPLI-OP-CMS-DIFFERE..> 13-Dec-2012 19:02 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:45 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:45 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:41 3.2K

AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-ECHANTI..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-CMS-ENTREE-..> 14-Dec-2012 08:49 3.2K

AMPLI-OP-CMS-HAUTE-T..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-HAUTE-T..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-MICROPO..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-QUAD-10..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-QUAD-CM..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:45 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:41 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:46 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:45 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-CMS-RAIL-TO..> 14-Dec-2012 08:55 3.2K

AMPLI-OP-CMS-RAIL-TO..> 14-Dec-2012 08:50 3.2K

AMPLI-OP-CMS-RAIL-TO..> 13-Dec-2012 19:02 3.2K

AMPLI-OP-CMS-RAPIDE-..> 14-Dec-2012 08:41 3.2K

AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:42 3.2K

AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:43 3.2K

AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:42 3.2K

AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:45 3.2K

AMPLI-OP-CMS-VOLT-FB..> 14-Dec-2012 08:45 3.2K

AMPLI-OP-COMPENSE-DI..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-DOUBLE-AUDI..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-DOUBLE-CMOS..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-DOUBLE-FAIB..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-DOUBLE-FAIB..> 14-Dec-2012 08:53 3.2K

AMPLI-OP-DOUBLE-FAIB..> 13-Dec-2012 19:01 3.2K

AMPLI-OP-DOUBLE-JFET..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-DOUBLE-LOW-..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-DOUBLE-RAIL..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-DOUBLE-RAPI..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-DOUBLE-RAPI..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-E-S-RAIL-RA..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-FAIBLE-DIST..> 14-Dec-2012 08:42 3.2K

AMPLI-OP-HAUTE-PRECI..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-HAUTE-PRECI..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-HAUTE-TENSI..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-HIGH-CURREN..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-IMPROVED-CA..> 14-Dec-2012 08:47 3.2K

AMPLI-OP-JFET-DIP8-1..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-JFET-FAIBLE..> 14-Dec-2012 08:40 3.2K

AMPLI-OP-MOS-IP-CMOS..> 14-Dec-2012 08:44 3.2K

AMPLI-OP-POUR-THERMO..> 14-Dec-2012 08:44 3.2K

AMPLI-OP-QUAD-HIGH-P..> 14-Dec-2012 08:38 3.2K

AMPLI-OP-RAPIDE-1079..> 14-Dec-2012 08:37 3.2K

AMPLI-OP-RAPIDE-1079..> 14-Dec-2012 08:44 3.2K

AMPLI-OP-RECEPTEUR-D..> 14-Dec-2012 08:38 3.2K

AMPLI-RF-FAIBLE-BRUI..> 14-Dec-2012 08:39 3.2K

AMPLI-RF-FAIBLE-BRUI..> 14-Dec-2012 08:36 3.2K

AMPLI-RF-FAIBLE-BRUI..> 14-Dec-2012 08:41 3.2K

AMPLI.htm 05-Jan-2013 11:13 3.8M

AMPLIFICATEUR-A-GAIN..> 14-Dec-2012 08:42 3.2K

AMPLIFICATEUR-AUDIO-..> 14-Dec-2012 08:40 3.2K

AMPLIFICATEUR-AUDIO-..> 14-Dec-2012 08:38 3.2K

AMPLIFICATEUR-AUDIO-..> 14-Dec-2012 08:38 3.2K

AMPLIFICATEUR-CONTRO..> 14-Dec-2012 08:42 3.2K

AMPLIFICATEUR-CONTRO..> 14-Dec-2012 08:42 3.2K

AMPLIFICATEUR-D´E..> 14-Dec-2012 08:39 3.2K

AMPLIFICATEUR-D´E..> 14-Dec-2012 08:39 3.2K

AMPLIFICATEUR-D´E..> 14-Dec-2012 08:41 3.2K

AMPLIFICATEUR-D´E..> 14-Dec-2012 08:41 3.2K

AMPLIFICATEUR-D´I..> 14-Dec-2012 08:42 3.2K

AMPLIFICATEUR-D´I..> 14-Dec-2012 08:40 3.2K

AMPLIFICATEUR-D´I..> 14-Dec-2012 08:40 3.2K

AMPLIFICATEUR-D´I..> 14-Dec-2012 08:41 3.2K

AMPLIFICATEUR-D´I..> 14-Dec-2012 08:37 3.2K

AMPLIFICATEUR-D´I..> 14-Dec-2012 08:40 3.2K

AMPLIFICATEUR-DOUBLE..> 14-Dec-2012 08:44 3.2K

AMPLIFICATEUR-MMIC-1..> 14-Dec-2012 08:36 3.2K

AMPLIFICATEUR-MMIC-1..> 14-Dec-2012 08:39 3.2K

AMPLIFICATEUR-VIDEO-..> 14-Dec-2012 08:37 3.2K

AMPLIFICATEUR.htm 05-Jan-2013 11:23 4.0M

AMPLIFICATEURFICATEU..> 14-Dec-2012 08:39 3.2K

AMPLIFIER,-UNIVERSAL..> 14-Dec-2012 08:42 2.7K

AMPOULE--50W-24V-CAP..> 14-Dec-2012 08:40 2.9K

AMPOULE-50W-12V-CAPS..> 14-Dec-2012 08:44 2.9K

ANALYSEUR-DE-SPECTRE..> 14-Dec-2012 08:43 3.0K

ANTENNE-1096142.html 14-Dec-2012 08:39 2.7K

ATOMISER-ULTRASONIC-..> 14-Dec-2012 08:56 3.1K

ATOMISER-ULTRASONIC-..> 13-Dec-2012 19:02 3.1K

ATTACHE-ADHEVISE-POU..> 14-Dec-2012 08:49 3.1K

ATTACHE-REGLABLE-DET..> 14-Dec-2012 08:50 3.1K

ATTACHE-REGLABLE-DET..> 14-Dec-2012 08:45 3.1K

ATTACHE-REGLABLE-DET..> 14-Dec-2012 08:49 3.1K

ATTACHES-ADHESIVES-P..> 14-Dec-2012 08:50 3.0K

ATTACHES-ADHESIVES-P..> 14-Dec-2012 08:45 3.0K

BAGUE-DE-COULEUR-BLA..> 14-Dec-2012 08:54 2.9K

BAGUE-DE-COULEUR-BLA..> 13-Dec-2012 19:02 2.9K

BAGUE-DE-COULEUR-BLE..> 14-Dec-2012 08:54 2.9K

BAGUE-DE-COULEUR-BLE..> 13-Dec-2012 19:02 2.9K

BAGUE-DE-COULEUR-GRI..> 14-Dec-2012 08:54 2.9K

BAGUE-DE-COULEUR-GRI..> 13-Dec-2012 19:02 2.9K

BAGUE-DE-COULEUR-MAR..> 14-Dec-2012 08:57 2.9K

BAGUE-DE-COULEUR-MAR..> 13-Dec-2012 19:03 2.9K

BAGUE-DE-COULEUR-ROU..> 14-Dec-2012 08:54 2.9K

BAGUE-DE-COULEUR-ROU..> 13-Dec-2012 19:02 2.9K

BAGUE-DE-COULEUR-VER..> 14-Dec-2012 08:56 2.9K

BAGUE-DE-COULEUR-VER..> 13-Dec-2012 19:02 2.9K

BAGUE-JAUNE-POUR-CON..> 14-Dec-2012 08:57 2.9K

BAGUE-JAUNE-POUR-CON..> 13-Dec-2012 19:03 2.9K

BAGUE-ORANGE-POUR-CO..> 14-Dec-2012 08:57 2.9K

BAGUE-ORANGE-POUR-CO..> 13-Dec-2012 19:03 2.9K

BALISE-8-TONS-JAUNE-..> 14-Dec-2012 08:45 3.2K

BALL-DRIVE,-EPICYCLI..> 14-Dec-2012 08:50 2.8K

BARETTE-MTA-2V-10563..> 14-Dec-2012 08:40 3.1K

BARETTES-SECABLES-RA..> 14-Dec-2012 08:38 3.2K

BARRETTE-DE-CONNEXIO..> 14-Dec-2012 08:49 2.9K

BARRETTE-DE-CONNEXIO..> 14-Dec-2012 08:48 2.9K

BARRETTE-DE-CONNEXIO..> 14-Dec-2012 08:49 2.9K

BARRETTE-SECABLE-105..> 14-Dec-2012 08:44 3.2K

BARRETTE-SECABLE-109..> 14-Dec-2012 08:38 3.2K

BARRETTE-SECABLE-DOU..> 14-Dec-2012 08:41 3.2K

BARRETTE-SECABLE-DOU..> 14-Dec-2012 08:38 3.2K

BATTERIE-NIMH-3-V600..> 14-Dec-2012 08:37 3.1K

BATTERIE-NIMH-3-V600..> 14-Dec-2012 08:40 3.1K

BATTERIE.htm 05-Jan-2013 11:23 4.0M

BELT-SANDER,-230V,-E..> 14-Dec-2012 08:39 3.0K

BENCH-DRILL,-EURO-PL..> 14-Dec-2012 08:46 3.1K

BEZEL,-WITH-20X4-LCD..> 14-Dec-2012 08:48 3.2K

BLOC-CONTACT-1N-O---..> 14-Dec-2012 08:39 3.1K

BLOC-CONTACT-1N-O-10..> 14-Dec-2012 08:39 3.2K

BLOC-CONTACT-2N-C-10..> 14-Dec-2012 08:39 3.2K

BLOC-CONTACT-2N-O-10..> 14-Dec-2012 08:41 3.2K

BLOC-D´ARRET-1017..> 14-Dec-2012 08:47 2.8K

BLOC-DE-COUPE-106572..> 14-Dec-2012 08:46 2.8K

BLOC-DE-COUPLAGE-PQ2..> 14-Dec-2012 08:43 2.8K

BLOC-DE-JONCTION-MKK..> 14-Dec-2012 08:41 2.8K

BLOC-DE-SECURITE-GRI..> 14-Dec-2012 08:41 3.0K

BLOCK-CONTACTS-10823..> 14-Dec-2012 08:41 3.2K

BLOCK-CONTACTS-10823..> 14-Dec-2012 08:41 3.2K

BLOW-TORCH,-BURNER,-..> 14-Dec-2012 08:39 2.9K

BOITE-DE-JONCTION-10..> 14-Dec-2012 08:42 2.9K

BOITE-DE-JONCTION-10..> 14-Dec-2012 08:38 2.9K

BOITE-DE-JONCTION-10..> 14-Dec-2012 08:45 2.9K

BOITE-DE-STOCKAGE-CM..> 14-Dec-2012 08:38 3.2K

BOITIER-22AWG.-12-VO..> 14-Dec-2012 08:38 3.2K

BOITIER-24AWG.-4-VOI..> 14-Dec-2012 08:37 3.2K

BOITIER-24AWG.-20-VO..> 14-Dec-2012 08:37 3.2K

BOITIER-70.5X50.5X35..> 14-Dec-2012 08:40 3.1K

BOITIER-90X60X20-109..> 14-Dec-2012 08:38 3.1K

BOITIER-100X50X25-10..> 14-Dec-2012 08:40 3.1K

BOITIER-100X100X35-C..> 14-Dec-2012 08:40 3.1K

BOITIER-100X100X35-C..> 14-Dec-2012 08:44 3.1K

BOITIER-100X100X50-C..> 14-Dec-2012 08:44 3.1K

BOITIER-100X100X50-C..> 14-Dec-2012 08:40 3.1K

BOITIER-100X100X60-C..> 14-Dec-2012 08:44 3.1K

BOITIER-100X100X60-C..> 14-Dec-2012 08:44 3.1K

BOITIER-100X100X75-C..> 14-Dec-2012 08:40 3.1K

BOITIER-ABS-GRIS-100..> 14-Dec-2012 08:48 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:50 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:48 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:50 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:48 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:48 3.2K

BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-NOIR.html 13-Dec-2012 19:02 3.2K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:50 3.2K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54 3.2K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:48 3.2K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:50 3.1K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54 3.0K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:48 3.0K

BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54 3.0K

BOITIER-ABS-RFI-NOIR..> 13-Dec-2012 19:02 3.0K

BOITIER-ABS-WATERTIG..> 14-Dec-2012 08:53 3.2K

BOITIER-ABS-WATERTIG..> 14-Dec-2012 08:48 3.1K

BOITIER-ABS-WATERTIG..> 14-Dec-2012 08:50 3.1K

BOITIER-ABS-WATERTIG..> 13-Dec-2012 19:02 3.2K

BOITIER-BASE-EG-45-G..> 14-Dec-2012 08:41 2.8K

BOITIER-BASE-ME-225-..> 14-Dec-2012 08:42 2.8K

BOITIER-CAP-KIT-ME-2..> 14-Dec-2012 08:41 2.8K

BOITIER-CARDMASTER-3..> 14-Dec-2012 08:46 3.2K

BOITIER-CARDMASTER-3..> 14-Dec-2012 08:40 3.1K

BOITIER-CIRCULAIRE.htm 05-Jan-2013 11:25 5.0M

BOITIER-DE-RANGEMENT..> 14-Dec-2012 08:41 2.9K

BOITIER-DVD-3X-NOIR-..> 14-Dec-2012 08:54 2.8K

BOITIER-DVD-3X-NOIR...> 13-Dec-2012 19:02 2.8K

BOITIER-DVD-8X-NOIR-..> 14-Dec-2012 08:56 2.8K

BOITIER-DVD-8X-NOIR...> 13-Dec-2012 19:03 2.8K

BOITIER-FEM.-CONTACT..> 14-Dec-2012 08:44 3.2K

BOITIER-FEMELLE-6-VO..> 14-Dec-2012 08:53 3.2K

BOITIER-FEMELLE-6-VO..> 13-Dec-2012 19:01 3.2K

BOITIER-FEMELLE-8-VO..> 14-Dec-2012 08:50 3.2K

BOITIER-KIT-EMG-45-B..> 14-Dec-2012 08:39 2.7K

BOITIER-MALE-CONTACT..> 14-Dec-2012 08:46 3.2K

BOITIER-MALE-CONTACT..> 14-Dec-2012 08:39 3.2K

BOITIER-ME-MAX-62-SC..> 14-Dec-2012 08:41 2.8K

BOITIER-ME-MAX-62-SP..> 14-Dec-2012 08:42 2.8K

BOITIER-ME-MAX-175-3..> 14-Dec-2012 08:39 2.8K

BOITIER-ME-MAX-225-2..> 14-Dec-2012 08:41 2.8K

BOITIER-ME-MAX-225-3..> 14-Dec-2012 08:41 2.8K

BOITIER-MOULE-IP54-5..> 14-Dec-2012 08:50 3.1K

BOITIER-MOULE-IP54-5..> 14-Dec-2012 08:54 3.1K

BOITIER-MOULE-IP54-5..> 13-Dec-2012 19:02 3.1K

BOITIER-MOULE-IP54-9..> 14-Dec-2012 08:54 3.1K

BOITIER-MOULE-IP54-9..> 14-Dec-2012 08:48 3.1K

BOITIER-MOULE-IP54-9..> 13-Dec-2012 19:02 3.1K

BOITIER-MOULE-IP54-1..> 14-Dec-2012 08:54 3.1K

BOITIER-MOULE-IP54-1..> 14-Dec-2012 08:53 3.1K

BOITIER-MOULE-IP54-1..> 13-Dec-2012 19:02 3.1K

BOITIER-MOULE-IP54-1..> 13-Dec-2012 19:02 3.1K

BOITIER-MOULE-IP54-1..> 14-Dec-2012 08:53 3.1K

BOITIER-MOULE-IP54-1..> 13-Dec-2012 19:02 3.1K

BOITIER-MOULE-IP65-9..> 14-Dec-2012 08:50 3.1K

BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37 3.2K

BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37 3.2K

BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37 3.2K

BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:49 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:49 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:49 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:48 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:45 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50 3.1K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56 3.2K

BOITIER-POLYCARBONAT..> 13-Dec-2012 19:02 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57 3.2K

BOITIER-POLYCARBONAT..> 13-Dec-2012 19:02 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:53 3.2K

BOITIER-POLYCARBONAT..> 14-Dec-2012 08:48 3.1K

BOITIER-POLYCARBONAT..> 13-Dec-2012 19:02 3.2K

BOITIER-UEGM-25-1082..> 14-Dec-2012 08:42 2.7K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:39 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:36 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:36 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:39 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:36 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:39 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41 3.2K

BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41 3.2K

BORNE-4MM-ISOLEE-BLA..> 14-Dec-2012 08:39 3.2K

BORNE-4MM-ISOLEE-BLE..> 14-Dec-2012 08:41 3.2K

BORNE-4MM-ISOLEE-BLE..> 14-Dec-2012 08:36 3.2K

BORNE-4MM-ISOLEE-JAU..> 14-Dec-2012 08:36 3.2K

BORNE-4MM-ISOLEE-NOI..> 14-Dec-2012 08:41 3.2K

BORNE-4MM-ISOLEE-ROU..> 14-Dec-2012 08:39 3.2K

BORNE-4MM-ISOLEE-ROU..> 14-Dec-2012 08:36 3.2K

BORNE-4MM-ISOLEE-VER..> 14-Dec-2012 08:41 3.2K

BORNE-4MM-MONTAGE-PA..> 14-Dec-2012 08:39 3.2K

BORNE-4MM-MONTAGE-PA..> 14-Dec-2012 08:41 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:48 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:48 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:49 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:48 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:50 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:45 3.2K

BORNE-D´ALIMENTAT..> 14-Dec-2012 08:50 3.2K

BORNE-DE-TERRE-2.5-4..> 14-Dec-2012 08:50 3.2K

BORNE-DE-TERRE-6-10M..> 14-Dec-2012 08:50 3.2K

BORNE-FUSIBLE-101540..> 14-Dec-2012 08:49 3.2K

BORNE-RAIL-DIN-3-NIV..> 14-Dec-2012 08:45 3.2K

BORNE-RAIL-DIN-D´..> 14-Dec-2012 08:49 3.2K

BORNIER-4-VOIES-5.00..> 14-Dec-2012 08:37 3.2K

BORNIER.htm 05-Jan-2013 11:33 5.0M

BOUCHON-CPC-ETANCHE-..> 14-Dec-2012 08:47 3.0K

BOUCHON-CPC-ETANCHE-..> 14-Dec-2012 08:45 3.0K

BOUCHON-FEMELLE-SERI..> 14-Dec-2012 08:44 3.1K

BOUCHON-FEMELLE-SERI..> 14-Dec-2012 08:48 3.1K

BOUCHON-MALE-SERIE-1..> 14-Dec-2012 08:48 3.1K

BOUCHON-PROTECTEUR-M..> 14-Dec-2012 08:47 2.9K

BOUCHON-SERINGUE-10M..> 14-Dec-2012 08:44 2.8K

BOUTON-COMPTE-TOURS-..> 14-Dec-2012 08:39 3.1K

BOUTON-POUSS.PLASTIQ..> 14-Dec-2012 08:39 3.2K

BOUTON-POUSS.PLASTIQ..> 14-Dec-2012 08:41 3.2K

BOUTON-POUSS.PLASTIQ..> 14-Dec-2012 08:41 3.2K

BOUTON-POUSSOIR-1072..> 14-Dec-2012 08:39 3.0K

BOUTON-POUSSOIR-EN-M..> 14-Dec-2012 08:39 3.2K

BOUTON-POUSSOIR-IP67..> 14-Dec-2012 08:41 3.2K

BOUTON-POUSSOIR-META..> 14-Dec-2012 08:39 3.2K

BOUTON-POUSSOIR-META..> 14-Dec-2012 08:41 3.2K

BOUTON-POUSSOIR-META..> 14-Dec-2012 08:39 3.2K

BOUTON-POUSSOIR-META..> 14-Dec-2012 08:41 3.2K

BOUTON-POUSSOIR-META..> 14-Dec-2012 08:41 3.2K

BOUTON-POUSSOIR-PLAS..> 14-Dec-2012 08:39 3.2K

BOUTON-POUSSOIR-ROND..> 14-Dec-2012 08:39 3.0K

BOUTON.htm 05-Jan-2013 11:49 4.8M

BOX,-POTTING,-25X25X..> 14-Dec-2012 08:38 3.1K

BOX,-POTTING,-40.5X1..> 14-Dec-2012 08:38 3.1K

BOX,-POTTING,-40X40X..> 14-Dec-2012 08:38 3.1K

BOX,-POTTING,-45X30X..> 14-Dec-2012 08:40 3.1K

BP-PLASTIQUE-MOMENTA..> 14-Dec-2012 08:43 3.0K

BP-VERROUILLABLE-MET..> 14-Dec-2012 08:43 3.0K

BP-VERROUILLABLE-PLA..> 14-Dec-2012 08:43 3.1K

BROCHE-AUTODENUDANTE..> 14-Dec-2012 08:40 3.0K

BT-PLUG-TO-PLUG-631A..> 14-Dec-2012 08:53 2.8K

BT-PLUG-TO-PLUG-631A..> 13-Dec-2012 19:01 2.8K

BUCK-REG-CMS-5970-SO..> 14-Dec-2012 08:43 3.2K

BUCK-REG-CMS-5973-HS..> 14-Dec-2012 08:45 3.2K

BUFFER-VIDEO-A-GAIN-..> 14-Dec-2012 08:55 3.2K

BUFFER-VIDEO-A-GAIN-..> 13-Dec-2012 19:02 3.2K

BUSE-18AWG-INOXIDABL..> 14-Dec-2012 08:44 2.9K

BUSE-19-AWG-INOXIDAB..> 14-Dec-2012 08:40 2.9K

BUSE-20AWG-PLASTIQUE..> 14-Dec-2012 08:38 2.8K

BUSE-21-AWG-INOXYDAB..> 14-Dec-2012 08:44 2.9K

BUSE-DE-SOUDAGE-POUR..> 14-Dec-2012 08:45 2.8K

BUSE-DE-SOUDAGE-POUR..> 14-Dec-2012 08:48 2.8K

BUSE-POUR-STATION-DE..> 14-Dec-2012 08:49 2.9K

BUSE.-ANTISTATIQUE.-..> 14-Dec-2012 08:40 2.8K

BUSE.-PISTOLET-A-DES..> 14-Dec-2012 08:54 2.8K

BUSE.-PISTOLET-A-DES..> 13-Dec-2012 19:02 2.8K

BUZZER,-ELECTROMECH,..> 14-Dec-2012 08:43 3.2K

BUZZER,-ELECTROMECH,..> 14-Dec-2012 08:46 3.2K

CABLE-ASSEMBLE-DE-PU..> 14-Dec-2012 08:42 3.2K

CABLE-D´ASSEMBLAG..> 14-Dec-2012 08:38 3.1K

CABLE-D´ASSEMBLAG..> 14-Dec-2012 08:43 3.1K

CABLE-D´ASSEMBLAG..> 14-Dec-2012 08:46 3.1K

CABLE-DE-DONNEE-SATA..> 14-Dec-2012 08:53 3.1K

CABLE-DE-DONNEE-SATA..> 13-Dec-2012 19:02 3.1K

CABLE-DE-MISE-A-LA-T..> 14-Dec-2012 08:41 3.0K

CABLE-DE-PUISSANCE-S..> 14-Dec-2012 08:42 3.1K

CABLE-DE-SIGNAL-SATA..> 14-Dec-2012 08:42 3.1K

CABLE-DE-SIGNAL-SATA..> 14-Dec-2012 08:42 3.1K

CABLE-EN-NAPPE-10-VO..> 14-Dec-2012 08:53 3.1K

CABLE-EN-NAPPE-10-VO..> 13-Dec-2012 19:02 3.1K

CABLE-ISP-POUR-KIT-8..> 14-Dec-2012 08:39 2.8K

CABLE-NAPPE-FFC-6-VO..> 14-Dec-2012 08:36 3.2K

CABLE-NAPPE-FFC-8-VO..> 14-Dec-2012 08:44 3.2K

CABLE-NAPPE-FFC-10-V..> 14-Dec-2012 08:40 3.2K

CABLE-NAPPE-FFC-12-V..> 14-Dec-2012 08:42 3.2K

CABLE-NAPPE-FFC-14-V..> 14-Dec-2012 08:44 3.2K

CABLE-NAPPE-FFC-16-V..> 14-Dec-2012 08:42 3.2K

CABLE-NAPPE-FFC-20-V..> 14-Dec-2012 08:40 3.2K

CABLE-NAPPE-FFC-26-V..> 14-Dec-2012 08:40 3.2K

CABLE-NAPPE-FFC-30-V..> 14-Dec-2012 08:36 3.2K

CABLE-POUR-CABLE-D6F..> 14-Dec-2012 08:49 2.9K

CABLE.htm 05-Jan-2013 11:48 4.2M

CABOCHON-105988.html 14-Dec-2012 08:40 2.8K

CACHE-ME-MAX-B-225-K..> 14-Dec-2012 08:39 2.7K

CAISSE-A-OUTILS-1059..> 14-Dec-2012 08:44 2.9K

CALCULATOR,-SCIENTIF..> 14-Dec-2012 08:48 2.8K

CALIBRATOR,-SOUND-LE..> 14-Dec-2012 08:41 2.9K

CALL-POINT,-RED,-470..> 14-Dec-2012 08:54 3.1K

CALL-POINT,-RED,-470..> 13-Dec-2012 19:02 3.1K

CAMDEN-BOSS-BIM2001-..> 04-Jan-2013 17:29 2.3M

CAN-8-BITS-CMS-2-CAN..> 14-Dec-2012 08:50 3.2K

CAN-8-BITS-CMS-4-CAN..> 14-Dec-2012 08:55 3.2K

CAN-8-BITS-CMS-4-CAN..> 13-Dec-2012 19:02 3.2K

CAN-8-BITS-CMS-10782..> 14-Dec-2012 08:42 3.2K

CAN-10-BITS-CMS-4-CA..> 14-Dec-2012 08:50 3.2K

CAN-10-BITS-CMS-4CH-..> 14-Dec-2012 08:45 3.2K

CAN-10-BITS-CMS-4CH-..> 14-Dec-2012 08:45 3.2K

CAN-10-BITS-CMS-8CH-..> 14-Dec-2012 08:42 3.2K

CAN-10-BITS-CMS-1078..> 14-Dec-2012 08:37 3.2K

CAN-12-BITS-3V-10794..> 14-Dec-2012 08:44 3.2K

CAN-12-BITS-1079289...> 14-Dec-2012 08:44 3.2K

CAN-12-BITS-1079356...> 14-Dec-2012 08:37 3.2K

CAN-12-BITS-1079357...> 14-Dec-2012 08:37 3.2K

CAN-12-BITS-1079358...> 14-Dec-2012 08:44 3.2K

CAN-12-BITS-1079424...> 14-Dec-2012 08:37 3.2K

CAN-12-BITS-CMS-1-CA..> 14-Dec-2012 08:55 3.2K

CAN-12-BITS-CMS-1-CA..> 13-Dec-2012 19:02 3.2K

CAN-12-BITS-CMS-1.2M..> 14-Dec-2012 08:44 3.2K

CAN-12-BITS-CMS-2-CA..> 14-Dec-2012 08:49 3.2K

CAN-12-BITS-CMS-2-CA..> 14-Dec-2012 08:49 3.2K

CAN-12-BITS-CMS-2.7V..> 14-Dec-2012 08:44 3.2K

CAN-12-BITS-CMS-2CH-..> 14-Dec-2012 08:37 3.2K

CAN-12-BITS-CMS-2CH-..> 14-Dec-2012 08:45 3.2K

CAN-12-BITS-CMS-4CH-..> 14-Dec-2012 08:42 3.2K

CAN-12-BITS-CMS-8CH-..> 14-Dec-2012 08:43 3.2K

CAN-12-BITS-CMS-8CH-..> 14-Dec-2012 08:45 3.2K

CAN-12-BITS-CMS-1078..> 14-Dec-2012 08:45 3.2K

CAN-12-BITS-CMS-1078..> 14-Dec-2012 08:37 3.2K

CAN-12-BITS-CMS-MULT..> 14-Dec-2012 08:45 3.2K

CAN-12-BITS-CMS-MULT..> 14-Dec-2012 08:43 3.2K

CAN-12-BITS-CMS-MULT..> 14-Dec-2012 08:45 3.2K

CAN-12-BITS-CMS-SAR-..> 14-Dec-2012 08:42 3.2K

CAN-14-BITS-CMS-1078..> 14-Dec-2012 08:37 3.2K

CAN-14-BITS-CMS-1078..> 14-Dec-2012 08:45 3.2K

CAN-16-BITS-CMS-2-CH..> 14-Dec-2012 08:42 3.2K

CAN-16-BITS-CMS-3-CH..> 14-Dec-2012 08:42 3.2K

CAN-16-BITS-CMS-100K..> 14-Dec-2012 08:37 3.2K

CAN-16-BITS-CMS-100K..> 14-Dec-2012 08:37 3.2K

CAN-16-BITS-CMS-250-..> 14-Dec-2012 08:45 3.2K

CAN-16-BITS-CMS-SAR-..> 14-Dec-2012 08:42 3.2K

CAN-16-BITS-CMS-SAR-..> 14-Dec-2012 08:45 3.2K

CAN-16-BITS-CMS-SAR-..> 14-Dec-2012 08:37 3.2K

CAN-22-BITS-CMS-DELT..> 14-Dec-2012 08:37 3.2K

CAN-22-BITS-CMS-DELT..> 14-Dec-2012 08:37 3.2K

CAN-24-BITS-CMS-3-VO..> 14-Dec-2012 08:45 3.2K

CAN-24-BITS-CMS-6-VO..> 14-Dec-2012 08:42 3.2K

CAPACITOR.htm 05-Jan-2013 11:48 3.7M

CAPOT-105432.html 14-Dec-2012 08:47 2.8K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:55 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:52 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:01 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:55 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:49 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:56 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:52 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:01 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:52 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:01 3.2K

CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:56 3.2K

CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02 3.2K

CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:49 3.1K

CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:55 3.1K

CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:02 3.1K

CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:52 3.1K

CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:01 3.1K

CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:56 3.1K

CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:02 3.1K

CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:52 3.1K

CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:01 3.1K

CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:52 3.1K

CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:01 3.1K

CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:47 3.1K

CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:40 3.1K

CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:45 3.1K

CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:47 3.1K

CAPOT-IP68-SZ12-1007..> 14-Dec-2012 08:49 3.2K

CAPOT-IP68-SZ14-1007..> 14-Dec-2012 08:49 3.2K

CAPOT-IP68-SZ16-1007..> 14-Dec-2012 08:49 3.2K

CAPOT-IP68-SZ18-1007..> 14-Dec-2012 08:56 3.1K

CAPOT-IP68-SZ18.html 13-Dec-2012 19:02 3.1K

CAPOT-IP68-SZ20-1007..> 14-Dec-2012 08:55 3.1K

CAPOT-IP68-SZ20.html 13-Dec-2012 19:02 3.1K

CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:55 3.1K

CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02 3.1K

CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:55 3.1K

CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02 3.1K

CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:52 3.1K

CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:01 3.1K

CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:56 3.1K

CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02 3.1K

CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:56 3.1K

CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02 3.1K

CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:49 3.0K

CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:52 3.0K

CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:49 3.0K

CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:55 3.0K

CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:52 3.0K

CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:49 3.0K

CAPOT-METAL-ANTIPOUS..> 13-Dec-2012 19:01 3.0K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:56 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:52 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:01 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:52 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:01 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:55 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:55 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:56 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:49 3.2K

CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:56 3.2K

CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02 3.2K

CAPOT-METALLISE-SUB-..> 14-Dec-2012 08:39 3.1K

CAPOT-METALOK-8V-105..> 14-Dec-2012 08:45 3.2K

CAPOT-NOIR-1082525.html 14-Dec-2012 08:39 2.8K

CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:57 3.0K

CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:54 2.9K

CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:56 3.0K

CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:54 2.9K

CAPOT-POUR-ALIMENTAT..> 13-Dec-2012 19:02 2.9K

CAPOT-POUR-HAN-10152..> 14-Dec-2012 08:49 3.1K

CAPOT-POUR-SUB-D-9P-..> 14-Dec-2012 08:44 3.1K

CAPOT-POUR-SUB-D-15P..> 14-Dec-2012 08:46 3.1K

CAPOT-POUR-SUB-D-15P..> 14-Dec-2012 08:37 3.1K

CAPOT-POUR-SUB-D-25P..> 14-Dec-2012 08:43 3.1K

CAPOT-POUR-SUB-D-37P..> 14-Dec-2012 08:43 3.1K

CAPOT-PROTECTION-108..> 14-Dec-2012 08:41 2.9K

CAPOT-PROTECTION-108..> 14-Dec-2012 08:39 2.9K

CAPOT-SUB-D-15-VOIES..> 14-Dec-2012 08:38 3.1K

CAPOT-SUB-D-25-VOIES..> 14-Dec-2012 08:47 3.0K

CAPOT-SUB-D-25VOIES-..> 14-Dec-2012 08:38 3.1K

CAPOT-SUB-D-37-VOIES..> 14-Dec-2012 08:38 3.1K

CAPOT-SUB-D-METALLIS..> 14-Dec-2012 08:39 3.1K

CAPOT-SUB-D-NOIR-9-V..> 14-Dec-2012 08:39 3.0K

CAPOT.htm 05-Jan-2013 11:51 2.7M

CAPTEUR-A-EFFET-HALL..> 14-Dec-2012 08:43 3.2K

CAPTEUR-A-EFFET-HALL..> 14-Dec-2012 08:43 3.2K

CAPTEUR-DE-DEBIT-NOR..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-DEBIT-NOR..> 13-Dec-2012 19:02 3.2K

CAPTEUR-DE-DEBIT-NOR..> 14-Dec-2012 08:54 3.2K

CAPTEUR-DE-DEBIT-NOR..> 13-Dec-2012 19:02 3.2K

CAPTEUR-DE-NIVEAU-90..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-NIVEAU-90..> 13-Dec-2012 19:02 3.2K

CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:54 3.2K

CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:54 3.2K

CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:52 3.2K

CAPTEUR-DE-NIVEAU-HO..> 13-Dec-2012 19:01 3.2K

CAPTEUR-DE-NIVEAU-RE..> 14-Dec-2012 08:41 3.2K

CAPTEUR-DE-NIVEAU-RE..> 14-Dec-2012 08:42 3.2K

CAPTEUR-DE-NIVEAU-RE..> 14-Dec-2012 08:44 3.2K

CAPTEUR-DE-NIVEAU-VE..> 14-Dec-2012 08:52 3.2K

CAPTEUR-DE-NIVEAU-VE..> 14-Dec-2012 08:55 3.2K

CAPTEUR-DE-NIVEAU-VE..> 13-Dec-2012 19:01 3.2K

CAPTEUR-DE-NIVEAU-XT..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-NIVEAU-XT..> 14-Dec-2012 08:54 3.2K

CAPTEUR-DE-NIVEAU-XT..> 13-Dec-2012 19:02 3.2K

CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:52 3.2K

CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:56 3.2K

CAPTEUR-DE-POSITION...> 13-Dec-2012 19:01 3.2K

CAPTEUR-DE-TEMPERATU..> 14-Dec-2012 08:44 3.2K

CAPTEUR-DE-TEMPERATU..> 14-Dec-2012 08:42 3.2K

CAPTEUR-DE-TEMPERATU..> 14-Dec-2012 08:40 3.2K

CAPTEUR-EFFET-HALL-1..> 14-Dec-2012 08:41 3.2K

CAPTEUR-PIEZO-FILM-1..> 14-Dec-2012 08:56 3.0K

CAPTEUR-PIEZO-FILM.html 13-Dec-2012 19:02 3.0K

CAPTEUR-REED-1079473..> 14-Dec-2012 08:44 3.2K

CAPTEUR-REED-1079474..> 14-Dec-2012 08:42 3.2K

CAPTEUR-REED-1079476..> 14-Dec-2012 08:44 3.2K

CAPTEUR-REED-1079477..> 14-Dec-2012 08:44 3.2K

CAPTEUR-REED-1079478..> 14-Dec-2012 08:42 3.2K

CAPTEUR-REED-1079479..> 14-Dec-2012 08:42 3.2K

CAPTEUR-REED-1079480..> 14-Dec-2012 08:41 3.2K

CAPTEUR-REED-1079481..> 14-Dec-2012 08:42 3.2K

CAPTEUR-REED-1079482..> 14-Dec-2012 08:37 3.2K

CAPTEUR-REED-1079483..> 14-Dec-2012 08:41 3.2K

CAPTEUR-REED-1079484..> 14-Dec-2012 08:37 3.2K

CAPTEUR-REED-1079485..> 14-Dec-2012 08:37 3.2K

CAPTEUR-REED-1079486..> 14-Dec-2012 08:41 3.2K

CAPTEUR-REED-1079488..> 14-Dec-2012 08:44 3.2K

CAPTEUR-TEMP.-ANALOG..> 14-Dec-2012 08:45 3.2K

CAPTEUR.htm 05-Jan-2013 12:03 3.3M

CAPUCHON-DE-SECURITE..> 14-Dec-2012 08:41 2.9K

CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:41 2.9K

CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:41 2.9K

CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:39 2.9K

CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:42 2.9K

CAPUCHON-NOIR-108252..> 14-Dec-2012 08:42 2.9K

CAPUCHON-ROUGE-10825..> 14-Dec-2012 08:41 2.9K

CAPUCHON-VERTICALE-1..> 14-Dec-2012 08:42 2.9K

CARTE-A-BORNES-10763..> 14-Dec-2012 08:39 2.7K

CARTE-PCI-1-PORT-RS2..> 14-Dec-2012 08:45 2.8K

CARTE.htm 05-Jan-2013 12:30 2.3M

CARTRIDGE,-LABEL,-WH..> 14-Dec-2012 08:46 2.8K

CASIER-104903.html 14-Dec-2012 08:46 3.0K

CASIER-104904.html 14-Dec-2012 08:46 3.0K

CASQUES-1004564.html 14-Dec-2012 08:54 3.0K

CASQUES.html 13-Dec-2012 19:02 3.0K

CAVALIER-2.54MM-ETAI..> 14-Dec-2012 08:38 3.2K

CAVALIER-CMS-1022336..> 14-Dec-2012 08:46 2.9K

CD-R--PQ-25--IMPRIMA..> 14-Dec-2012 08:54 2.7K

CD-R--PQ-25--IMPRIMA..> 13-Dec-2012 19:02 2.7K

CD-R--PQ-25--SPINDLE..> 14-Dec-2012 08:54 2.7K

CD-R--PQ-25--SPINDLE..> 13-Dec-2012 19:02 2.7K

CD-R--PQ-50--SPINDLE..> 14-Dec-2012 08:56 2.7K

CD-R--PQ-50--SPINDLE..> 13-Dec-2012 19:03 2.7K

CD-R--PQ-100--IMPRIM..> 14-Dec-2012 08:54 2.7K

CD-R--PQ-100--IMPRIM..> 13-Dec-2012 19:02 2.7K

CD-R--PQ-100--SPINDL..> 14-Dec-2012 08:57 2.7K

CD-R--PQ-100--SPINDL..> 13-Dec-2012 19:03 2.7K

CD-R-SIMPLE-1004622...> 14-Dec-2012 08:54 2.7K

CD-R-SIMPLE.html 13-Dec-2012 19:02 2.7K

CD-RW-SIMPLE-1004623..> 14-Dec-2012 08:54 2.7K

CD-RW-SIMPLE.html 13-Dec-2012 19:02 2.7K

CDR,-SUDOKU-MASTER-1..> 14-Dec-2012 08:48 2.7K

CELLULE-PHOTO-ELECTR..> 14-Dec-2012 08:39 2.8K

CF-HEADER-STD-2MM-ST..> 14-Dec-2012 08:46 3.2K

CF-TYPE-1-BAS-PROFIL..> 14-Dec-2012 08:46 3.2K

CHAIN,-6X600MM-10580..> 14-Dec-2012 08:44 2.9K

CHAIN,-10X800MM-1058..> 14-Dec-2012 08:40 2.9K

CHALUMINIUMMEAU-PANN..> 14-Dec-2012 08:44 2.9K

CHARGEUR-DE-BATTERIE..> 14-Dec-2012 08:38 3.2K

CHASSIS-HAN-10E-42DD..> 14-Dec-2012 08:57 3.1K

CHASSIS-HAN-10E-42DD..> 13-Dec-2012 19:03 3.1K

CHOKE.htm 05-Jan-2013 12:30 2.6M

CHUCK,-KEYLESS,-3-JA..> 14-Dec-2012 08:46 2.8K

CI-ME-LP-1082637.html 14-Dec-2012 08:41 2.7K

CI-P1-UEGM-1082601.html 14-Dec-2012 08:41 2.8K

CINCH-12-140-BLOC-DE..> 04-Jan-2013 17:56 2.3M

CINCH-50GP1-CARD-EDG..> 04-Jan-2013 17:44 2.3M

CINCH-581-01-18-920-..> 04-Jan-2013 18:03 2.3M

CINCH-5810130045-HEA..> 04-Jan-2013 18:07 2.3M

CINCH-DBM25S-CONNECT..> 04-Jan-2013 17:44 2.3M

CINCH-JA7784800000L0..> 04-Jan-2013 17:56 2.3M

CINCH-SD-LB-CONNECTO..> 04-Jan-2013 17:29 2.3M

CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:45 3.2K

CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:45 3.2K

CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:45 3.2K

CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:41 3.2K

CIRCUIT-CAPTEUR-DE-T..> 14-Dec-2012 08:55 3.2K

CIRCUIT-CAPTEUR-DE-T..> 13-Dec-2012 19:02 3.2K

CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:42 3.2K

CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:38 3.2K

CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:45 3.2K

CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:38 3.2K

CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:43 3.2K

CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:38 3.2K

CIRCUIT-D´INTERFA..> 14-Dec-2012 08:47 3.2K

CIRCUIT-D´INTERFA..> 14-Dec-2012 08:44 3.2K

CIRCUIT-DDM-3-3-4-DI..> 14-Dec-2012 08:48 3.2K

CIRCUIT-DE-CONTROL-D..> 14-Dec-2012 08:48 3.2K

CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:42 3.2K

CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:42 3.2K

CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE--74A..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE--74A..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE--74A..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:38 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:38 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:38 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47 3.2K

CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53 3.2K

CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01 3.2K

CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:47 3.2K

CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:47 3.2K

CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:47 3.2K

CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:49 3.2K

CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:48 3.2K

CIRCUIT-PFC-PWM-1013..> 14-Dec-2012 08:49 3.2K

CIRCUIT-SUPERVISEUR-..> 14-Dec-2012 08:42 3.2K

CIRCUIT.htm 05-Jan-2013 12:30 2.6M

CLAVIER-LUMINEUX-101..> 14-Dec-2012 08:48 3.2K

CLE-A-MOLETTE-105215..> 14-Dec-2012 08:41 2.9K

CLE-A-MOLETTE-105216..> 14-Dec-2012 08:47 2.9K

CLE-A-MOLETTE-105217..> 14-Dec-2012 08:46 2.9K

CLE-A-MOLETTE-105218..> 14-Dec-2012 08:45 2.8K

CLE-A-OEUIL-ISOLEE-8..> 14-Dec-2012 08:40 2.8K

CLE-A-OEUIL-ISOLEE-1..> 14-Dec-2012 08:42 2.8K

CLE-PLATE-11MM-10801..> 14-Dec-2012 08:36 2.8K

CLE-PLATE-JEU-104685..> 14-Dec-2012 08:41 2.9K

CLE-PLATE-JEU-METRIQ..> 14-Dec-2012 08:46 2.8K

CLE-POUR-ECROU-3.0-1..> 14-Dec-2012 08:41 2.8K

CLE-POUR-ECROU-3.2-1..> 14-Dec-2012 08:38 2.8K

CLE-POUR-ECROU-5.5-1..> 14-Dec-2012 08:38 2.8K

CLES-POLYGONALES-A-C..> 14-Dec-2012 08:38 2.9K

CLIP-ACIER-ETD-34-10..> 14-Dec-2012 08:46 2.8K

CLIP-ACIER-ETD-39-10..> 14-Dec-2012 08:46 2.8K

CLIP-ACIER-ETD-44-10..> 14-Dec-2012 08:44 2.8K

CLIP-ACIER-ETD-49-10..> 14-Dec-2012 08:44 2.8K

CLIP-CABLE-ADHESIF-T..> 14-Dec-2012 08:45 3.1K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45 3.2K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45 3.2K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45 3.2K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45 3.2K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:47 3.2K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:47 3.2K

CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:41 3.2K

CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:47 3.2K

CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:41 3.2K

CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:47 3.2K

CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:45 3.2K

CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:41 3.2K

CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:45 3.2K

CLIP-DE-CABLE-ADHESI..> 14-Dec-2012 08:49 3.1K

CLIP-DE-MAINTIEN-PQ2..> 14-Dec-2012 08:42 2.8K

CLIP-DE-POLARISATION..> 14-Dec-2012 08:38 2.9K

CLIP-MY-LY-RELAIS-2P..> 14-Dec-2012 08:46 2.8K

CLIP-POUR-SUPPORT-RE..> 14-Dec-2012 08:46 2.8K

CMS-SONAR-RANGING-CM..> 14-Dec-2012 08:56 3.2K

CMS-SONAR-RANGING-CM..> 13-Dec-2012 19:02 3.2K

CNA-12-BITS-CMS-SAR-..> 14-Dec-2012 08:42 3.2K

CODEC-24-BITS-AUDIO-..> 14-Dec-2012 08:37 3.2K

CODEC-24-BITS-AVEC-R..> 14-Dec-2012 08:46 3.2K

CODEUR-6-CYCLES-TR-1..> 14-Dec-2012 08:40 3.2K

COFFRET-A-MAIN-BLANC..> 14-Dec-2012 08:49 3.0K

COFFRET-A-MAIN-BLANC..> 14-Dec-2012 08:50 3.0K

COFFRET-A-MAIN-NOIR-..> 14-Dec-2012 08:50 3.0K

COFFRET-A-TIROIR-BLE..> 14-Dec-2012 08:39 3.0K

COFFRET-ABS-35X35X15..> 14-Dec-2012 08:54 3.1K

COFFRET-ABS-35X35X15..> 13-Dec-2012 19:02 3.1K

COFFRET-ABS-35X35X20..> 14-Dec-2012 08:50 3.1K

COFFRET-ABS-40X40X15..> 14-Dec-2012 08:53 3.1K

COFFRET-ABS-40X40X15..> 13-Dec-2012 19:02 3.1K

COFFRET-ABS-40X40X20..> 14-Dec-2012 08:53 3.1K

COFFRET-ABS-40X40X20..> 13-Dec-2012 19:02 3.0K

COFFRET-ABS-40X40X20..> 14-Dec-2012 08:48 3.1K

COFFRET-ABS-50X50X20..> 14-Dec-2012 08:53 3.1K

COFFRET-ABS-50X50X20..> 13-Dec-2012 19:02 3.1K

COFFRET-ABS-80X40X15..> 14-Dec-2012 08:50 3.1K

COFFRET-ABS-117X79X2..> 14-Dec-2012 08:54 3.2K

COFFRET-ABS-117X79X2..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-117X79X2..> 13-Dec-2012 19:02 3.2K

COFFRET-ABS-117X79X2..> 14-Dec-2012 08:54 3.2K

COFFRET-ABS-117X79X2..> 14-Dec-2012 08:54 3.2K

COFFRET-ABS-117X79X2..> 13-Dec-2012 19:02 3.2K

COFFRET-ABS-147X89X2..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-147X89X2..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-147X89X2..> 14-Dec-2012 08:48 3.2K

COFFRET-ABS-1094700...> 14-Dec-2012 08:40 3.1K

COFFRET-ABS-1094703...> 14-Dec-2012 08:38 3.1K

COFFRET-ABS-ETANCHE-..> 14-Dec-2012 08:38 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.1K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49 3.2K

COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45 3.2K

COFFRET-ACIER-AE-IP6..> 14-Dec-2012 08:43 3.1K

COFFRET-ACIER-AE-IP6..> 14-Dec-2012 08:43 3.1K

COFFRET-ACIER-AE-IP6..> 14-Dec-2012 08:49 3.1K

COFFRET-ALU-MOULE-12..> 14-Dec-2012 08:38 3.1K

COFFRET-ALU-MOULE-12..> 14-Dec-2012 08:40 3.1K

COFFRET-ALU-MOULE-15..> 14-Dec-2012 08:38 3.1K

COFFRET-ALUMINIUM-ET..> 14-Dec-2012 08:40 3.1K

COFFRET-ALUMINIUM-ET..> 14-Dec-2012 08:38 3.1K

COFFRET-ALUMINIUM-ET..> 14-Dec-2012 08:40 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:45 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:48 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:48 3.1K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49 3.0K

COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:50 3.0K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:45 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:48 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:50 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:48 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:45 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:50 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:48 3.1K

COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:50 3.1K

COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:45 3.1K

COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:50 3.1K

COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:48 3.1K

COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:49 3.1K

COFFRET-ALUMINUM-64X..> 14-Dec-2012 08:50 3.1K

COFFRET-DOUILLES-1-4..> 14-Dec-2012 08:37 2.9K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:48 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:45 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49 3.1K

COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:45 3.1K

COFFRET-H=150-L=300-..> 14-Dec-2012 08:43 3.2K

COFFRET-H=200-L=300-..> 14-Dec-2012 08:46 3.2K

COFFRET-H=200-L=300-..> 14-Dec-2012 08:43 3.2K

COFFRET-H=200-L=400-..> 14-Dec-2012 08:43 3.2K

COFFRET-H=200-L=400-..> 14-Dec-2012 08:43 3.2K

COFFRET-H=300-L=400-..> 14-Dec-2012 08:46 3.2K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:03 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:03 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:03 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:56 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:56 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:56 3.1K

COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:55 3.1K

COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:02 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:03 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:03 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:03 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:56 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:56 3.1K

COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:56 3.1K

COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:02 3.1K

COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57 3.2K

COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57 3.2K

COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:56 3.2K

COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57 3.2K

COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57 3.2K

COFFRET-IP67-GRIS-LI..> 13-Dec-2012 19:03 3.2K

COFFRET-IP67-TRANSP...> 14-Dec-2012 08:57 3.2K

COFFRET-IP67-TRANSP...> 14-Dec-2012 08:56 3.2K

COFFRET-IP67-TRANSP...> 14-Dec-2012 08:56 3.2K

COFFRET-IP67-TRANSP...> 13-Dec-2012 19:02 3.2K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:49 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:50 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:50 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:49 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:50 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:49 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:45 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:45 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.2K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:45 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49 3.1K

COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48 3.1K

COFFRET-NOIR-AVEC-FE..> 14-Dec-2012 08:49 3.1K

COFFRET-POLYCARBONAT..> 14-Dec-2012 08:40 3.2K

COFFRET-POLYCARBONAT..> 14-Dec-2012 08:38 3.2K

COFFRET-POLYCARBONAT..> 14-Dec-2012 08:38 3.2K

COFFRET-POLYPROPYLEN..> 14-Dec-2012 08:44 3.0K

COFFRET-POLYPROPYLEN..> 14-Dec-2012 08:40 3.1K

COFFRET-POLYPROPYLEN..> 14-Dec-2012 08:40 3.0K

COL-LUMINEUSE-METAL-..> 14-Dec-2012 08:49 3.2K

COLLE-D´ETANCHEIT..> 14-Dec-2012 08:49 3.1K

COLLE-D´ETANCHEIT..> 14-Dec-2012 08:49 3.1K

COLLE-D´ETANCHEIT..> 14-Dec-2012 08:45 3.1K

COLLE-D´ETANCHEIT..> 14-Dec-2012 08:45 3.1K

COLLET-SET,-STEEL,-1..> 14-Dec-2012 08:43 2.8K

COLLIER-D´INSTAL-..> 14-Dec-2012 08:50 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:48 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:48 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:48 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:48 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:45 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:49 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:50 3.2K

COLLIER-D´INSTALL..> 14-Dec-2012 08:48 3.2K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.1K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48 3.0K

COLLIER-DE-SERRAGE-1..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-1..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:49 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:49 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:50 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:50 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:50 3.2K

COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-N..> 14-Dec-2012 08:49 3.2K

COLLIER-DE-SERRAGE-N..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-N..> 14-Dec-2012 08:48 3.2K

COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:48 3.2K

COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:45 3.2K

COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:48 3.2K

COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:49 3.2K

COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:49 3.2K

COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:50 3.2K

COMMUT-ANALOG-1-OHM-..> 14-Dec-2012 08:47 3.2K

COMMUTATEUR-3PDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-3PDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-4PDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-4PDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-A-CLE-10..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-A-CLE-10..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-A-CLE-10..> 14-Dec-2012 08:39 3.1K

COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:40 3.2K

COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-A-PIED-D..> 14-Dec-2012 08:49 3.2K

COMMUTATEUR-A-PIED-D..> 14-Dec-2012 08:49 3.2K

COMMUTATEUR-A-PIED-D..> 14-Dec-2012 08:48 3.2K

COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:46 3.2K

COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-ARRET-DÃ..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-BACK-UP-..> 14-Dec-2012 08:48 3.2K

COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-CMS-BCD-..> 14-Dec-2012 08:39 3.2K

[   ]

COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:52 0

COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:43 3.2K

[   ]

COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:52 0

COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-CMS-SPDT..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-CMS-SPDT..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:42 3.2K

COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:44 3.2K

COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:38 3.2K

COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-DARLINGT..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DECIMAL-..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DIL-BCD-..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DIL-HEX-..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DOUBLE-S..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DOUBLE-S..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-12V..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-24V..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:40 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPDT-BIA..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-BIA..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-CTR..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-CTR..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-NOI..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPDT-ROU..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPST-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DPST-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-DPST-ILL..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-DPST-NOI..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-DPST-NOI..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:52 3.2K

COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:55 3.2K

COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:52 3.2K

COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:55 3.2K

COMMUTATEUR-FLOTTANT..> 13-Dec-2012 19:01 3.2K

COMMUTATEUR-HEX-1082..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-HEX-1082..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-HEX-1082..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-LAN-CMS-..> 14-Dec-2012 08:46 3.2K

COMMUTATEUR-LAN-CMS-..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:38 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:38 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:40 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:40 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:41 3.1K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:41 3.0K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:39 3.0K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:40 3.2K

COMMUTATEUR-QUAD-SPS..> 14-Dec-2012 08:47 3.2K

COMMUTATEUR-REED-5MM..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-REED-5MM..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-REED-20...> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-REED-SPS..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-ROTATIF-..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-ROTATIF-..> 14-Dec-2012 08:41 3.1K

COMMUTATEUR-SPDT-103..> 14-Dec-2012 08:46 3.1K

COMMUTATEUR-SPDT-107..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-SPDT-107..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-BIA..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-BIA..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-CAR..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPDT-CTR..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPNC-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPNO-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPNO-RON..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPNO-RON..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPNO-RON..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:44 3.2K

COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:44 3.2K

COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:40 3.2K

COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:46 3.2K

COMMUTATEUR-SPST-107..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-SPST-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPST-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPST-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPST-108..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPST-108..> 14-Dec-2012 08:41 3.2K

COMMUTATEUR-SPST-108..> 14-Dec-2012 08:39 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:38 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:38 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:38 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:43 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42 3.2K

COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:37 3.2K

COMMUTATEUR-VIDEO-SP..> 14-Dec-2012 08:45 3.2K

COMMUTATEUR-VIDEO-SP..> 14-Dec-2012 08:45 3.2K

COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:38 3.2K

COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:38 3.2K

COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:43 3.2K

COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:38 3.2K

COMMUTEUR-ECLAIRAGE-..> 14-Dec-2012 08:39 3.0K

COMPARATEUR-CMS-DOUB..> 14-Dec-2012 08:38 3.2K

COMPARATEUR-CMS-DOUB..> 14-Dec-2012 08:40 3.2K

COMPARATEUR-CMS-QUAD..> 14-Dec-2012 08:38 3.2K

COMPARATEUR-DOUBLE-1..> 14-Dec-2012 08:38 3.2K

COMPTEUR-12VCC-10732..> 14-Dec-2012 08:43 3.2K

COMPTEUR-PRESET-24VC..> 14-Dec-2012 08:46 3.2K

COMPTEUR-PRESET-220V..> 14-Dec-2012 08:46 3.2K

COMPTEUR-RESET-24VDC..> 14-Dec-2012 08:46 3.2K

COMPTEUR-RESET-110VA..> 14-Dec-2012 08:42 3.2K

COMPTEUR-RESET-220VA..> 14-Dec-2012 08:46 3.2K

CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.015UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.015UF..> 14-Dec-2012 08:53 3.2K

CONDENSATEUR-0.015UF..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.022UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.022UF..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-0.022UF..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-0.022UF..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.022UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.022UF..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-0.022UF..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.022UF..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.033UF..> 14-Dec-2012 08:53 3.2K

CONDENSATEUR-0.033UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.033UF..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.047UF..> 14-Dec-2012 08:53 3.2K

CONDENSATEUR-0.047UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.047UF..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.047UF..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.047UF..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.047UF..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.047UF..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.068UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.068UF..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.068UF..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.1UF-6..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.1UF-6..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.1UF-1..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-0.1UF-1..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.1UF-2..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.1UF-2..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.22UF-..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.22UF-..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-0.22UF-..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.33UF-..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-0.33UF-..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-0.33UF-..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.33UF-..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-0.47UF-..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.47UF-..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-0.47UF-..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-0.68UF-..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-0.68UF-..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-1.0NF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-1.0NF-1..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-1.5NF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-1.5NF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-1.5NF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-1UF-63V..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-1UF-63V..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-2.2NF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-2.2NF-1..> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-2.2NF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2.2UF-6..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-2.2UF-6..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-2.2UF-4..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-2.2UF-4..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-3.3NF-6..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-3.3NF-6..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-3.3NF-1..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-3.3NF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-3.3UF-6..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-3.3UF-6..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-4.7NF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-4.7NF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-4.7UF-6..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-4.7UF-6..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-6.8NF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-6.8NF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-6.8UF-6..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-6.8UF-6..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-10NF-63..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-10NF-63..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-10NF-10..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-10NF-10..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-150PF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-150PF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-220PF-1..> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-220PF-1..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-330PF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-330PF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-470PF-1..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-470PF-1..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-680PF-1..> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-680PF-1..> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-2220-0...> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-2220-0...> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-2220-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2220-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2220-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2220-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2220-0...> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-2220-0...> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-2220-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2220-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2220-0...> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-2220-0...> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-2824-0...> 14-Dec-2012 08:57 3.2K

CONDENSATEUR-2824-0...> 13-Dec-2012 19:03 3.2K

CONDENSATEUR-107422...> 14-Dec-2012 08:46 3.2K

CONDENSATEUR-107423...> 14-Dec-2012 08:46 3.2K

CONDENSATEUR-CLASS-X..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-CLASS-X..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-CLASS-X..> 14-Dec-2012 08:52 3.2K

CONDENSATEUR-CLASS-X..> 13-Dec-2012 19:01 3.2K

CONDENSATEUR-CLASS-Y..> 14-Dec-2012 08:56 3.2K

CONDENSATEUR-CLASS-Y..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-CLASS-Y..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-CLASS-Y..> 13-Dec-2012 19:02 3.2K

CONDENSATEUR-CLASS-Y..> 14-Dec-2012 08:54 3.2K

CONDENSATEUR-CLASS-Y..> 13-Dec-2012 19:02 3.2K

CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:49 3.2K

CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:48 3.2K

CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:48 3.2K

CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:49 3.2K

CONNCTEUR-JACK-SMA-1..> 14-Dec-2012 08:47 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53 3.2K

CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:02 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53 3.2K

CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:02 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:47 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53 3.2K

CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:01 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53 3.2K

CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:02 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:47 3.2K

CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:47 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:39 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-´D´..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-3-V-COUD...> 14-Dec-2012 08:41 3.2K

CONNECTEUR-3-VOIES-D..> 14-Dec-2012 08:47 3.2K

CONNECTEUR-4-VOIES-C..> 14-Dec-2012 08:47 3.2K

CONNECTEUR-4-VOIES-D..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-6-V-COUD...> 14-Dec-2012 08:45 3.2K

CONNECTEUR-6-V-COUD...> 14-Dec-2012 08:41 3.2K

CONNECTEUR-6-VOIES-D..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-6-VOIES-D..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-8-V-COUD...> 14-Dec-2012 08:45 3.2K

CONNECTEUR-8-VOIES-C..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-8-VOIES-D..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-10-V-COUD..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-10-VOIES-..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-10-VOIES-..> 14-Dec-2012 08:41 3.2K

CONNECTEUR-12-VOIES-..> 14-Dec-2012 08:41 3.2K

CONNECTEUR-12-VOIES-..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-16-VOIES-..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-40-VOIES-..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-60-VOIES-..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-60-VOIES-..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-80-VOIES-..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-1096841.html 14-Dec-2012 08:39 3.2K

CONNECTEUR-1096843.html 14-Dec-2012 08:39 3.2K

CONNECTEUR-1096846.html 14-Dec-2012 08:37 3.2K

CONNECTEUR-1098485.html 14-Dec-2012 08:38 3.2K

CONNECTEUR-A-ECROU-1..> 14-Dec-2012 08:44 3.0K

CONNECTEUR-AVEC-COLL..> 14-Dec-2012 08:53 3.2K

CONNECTEUR-AVEC-COLL..> 14-Dec-2012 08:47 3.2K

CONNECTEUR-AVEC-COLL..> 13-Dec-2012 19:01 3.2K

CONNECTEUR-BUS-225-1..> 14-Dec-2012 08:41 2.8K

CONNECTEUR-CARTE-A-P..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-CENTRONIC..> 14-Dec-2012 08:37 2.8K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:44 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:41 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:41 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:44 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42 3.2K

CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:44 3.2K

CONNECTEUR-D-FEM.-CO..> 14-Dec-2012 08:39 3.2K

CONNECTEUR-D-FEM.-CO..> 14-Dec-2012 08:39 3.2K

CONNECTEUR-DIL-16-VO..> 14-Dec-2012 08:46 3.2K

CONNECTEUR-DIP14-103..> 14-Dec-2012 08:46 3.2K

CONNECTEUR-DROIT-SER..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-FEM-DIN41..> 14-Dec-2012 08:37 3.1K

CONNECTEUR-FEM-DIN41..> 14-Dec-2012 08:39 3.1K

CONNECTEUR-FEMELLE-2..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-FEMELLE-2..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-FEMELLE-4..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-FEMELLE-5..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-FEMELLE-C..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-FIBRE-ST-..> 14-Dec-2012 08:40 3.0K

CONNECTEUR-FOND-DE-P..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-JACK-SMA-..> 14-Dec-2012 08:48 3.2K

CONNECTEUR-KIT-PSU-1..> 14-Dec-2012 08:57 2.8K

CONNECTEUR-KIT-PSU.html 13-Dec-2012 19:03 2.8K

CONNECTEUR-MALE-CMS-..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-MALE-SCSI..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-MINI-DIP-..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-MSTBT-25-..> 14-Dec-2012 08:41 2.8K

CONNECTEUR-PRESSFIT-..> 14-Dec-2012 08:38 3.1K

CONNECTEUR-SCSI2-FEM..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-SCSI2-FEM..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-SERIE-MMC..> 14-Dec-2012 08:45 3.2K

CONNECTEUR-SERIE-MMC..> 14-Dec-2012 08:40 3.2K

CONNECTEUR-SUB-D-BOI..> 14-Dec-2012 08:38 3.2K

CONNECTEUR-SUB-D-FEM..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-SUB-D-FEM..> 14-Dec-2012 08:37 3.2K

CONNECTEUR-USB-COUDE..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-USB-COUDE..> 14-Dec-2012 08:43 3.2K

CONNECTEUR-USB-VERTI..> 14-Dec-2012 08:46 3.2K

CONNECTEUR-Z-PACK-10..> 14-Dec-2012 08:38 3.2K

CONNECTION-BOX,-4GAN..> 14-Dec-2012 08:37 2.8K

CONTACT-A--SERTIR-18..> 14-Dec-2012 08:47 3.2K

CONTACT-A--SERTIR-26..> 14-Dec-2012 08:56 3.2K

CONTACT-A--SERTIR-26..> 13-Dec-2012 19:02 3.2K

CONTACT-A-SERTIR-18-..> 14-Dec-2012 08:41 3.2K

CONTACT-A-SERTIR-22-..> 14-Dec-2012 08:53 3.2K

CONTACT-A-SERTIR-22-..> 13-Dec-2012 19:01 3.2K

CONTACT-A-SERTIR-24-..> 14-Dec-2012 08:41 3.2K

CONTACT-A-SERTIR-MAL..> 14-Dec-2012 08:53 3.2K

CONTACT-A-SERTIR-MAL..> 13-Dec-2012 19:02 3.2K

CONTACT-A-SERTIR-PQ1..> 14-Dec-2012 08:50 2.8K

CONTACT-COAX-FEMELLE..> 14-Dec-2012 08:40 2.9K

CONTACT-COAX-MALE-10..> 14-Dec-2012 08:44 2.9K

CONTACT-FEMELLE-18-2..> 14-Dec-2012 08:44 3.2K

CONTACT-FEMELLE-22-2..> 14-Dec-2012 08:55 3.2K

CONTACT-FEMELLE-22-2..> 13-Dec-2012 19:02 3.2K

CONTACT-FEMELLE-24-2..> 14-Dec-2012 08:37 3.2K

CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:49 3.2K

CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:44 3.2K

CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:49 3.2K

CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:56 3.2K

CONTACT-FEMELLE-A-SE..> 13-Dec-2012 19:02 3.2K

CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:46 3.2K

CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:37 3.2K

CONTACT-FEMELLE-ETAM..> 14-Dec-2012 08:37 3.2K

CONTACT-FEMELLE-PQ10..> 14-Dec-2012 08:43 3.2K

CONTACT-FEMELLE-PQ10..> 14-Dec-2012 08:46 3.2K

CONTACT-MAGNETIQUE-1..> 14-Dec-2012 08:49 3.0K

CONTACT-MAGNETIQUE-1..> 14-Dec-2012 08:48 3.0K

CONTACT-MAGNETIQUE-1..> 14-Dec-2012 08:48 3.0K

CONTACT-MALE-18-16AW..> 14-Dec-2012 08:37 3.2K

CONTACT-MALE-22-20-A..> 14-Dec-2012 08:52 3.2K

CONTACT-MALE-22-20-A..> 13-Dec-2012 19:01 3.2K

CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:44 3.2K

CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:47 3.2K

CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:44 3.2K

CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:38 3.2K

CONTACT-MALE-PQ100-1..> 14-Dec-2012 08:45 3.2K

CONTACT-MALE-PQ100-1..> 14-Dec-2012 08:39 3.2K

CONTACT-MALE-PQ100-1..> 14-Dec-2012 08:43 3.2K

CONTACT-MICROFIT.-20..> 14-Dec-2012 08:47 3.2K

CONTACT-MINI-FIT.-PQ..> 14-Dec-2012 08:53 3.2K

CONTACT-MINI-FIT.-PQ..> 13-Dec-2012 19:02 3.2K

CONTACT-PQ100-109694..> 14-Dec-2012 08:39 3.2K

CONTACT-SUB-D-FEMELL..> 14-Dec-2012 08:38 3.2K

CONTENEUR-UNIVERSEL-..> 14-Dec-2012 08:44 2.8K

CONTRACT-A-SERTIR-36..> 14-Dec-2012 08:43 3.2K

CONTRACT-A-SERTIR-ET..> 14-Dec-2012 08:46 3.2K

CONTRACT-A-SERTIR-OR..> 14-Dec-2012 08:46 3.2K

CONTROLEUR-1077127.html 14-Dec-2012 08:43 3.2K

CONTROLEUR-DE-BALLAS..> 14-Dec-2012 08:42 3.2K

CONTROLEUR-DE-CHARGE..> 14-Dec-2012 08:37 3.2K

CONTROLEUR-DE-TEMPER..> 14-Dec-2012 08:44 3.2K

CONTROLEUR-ETHERNET-..> 14-Dec-2012 08:43 3.2K

CONTROLEUR-HOT-SWAP-..> 14-Dec-2012 08:55 3.2K

CONTROLEUR-HOT-SWAP-..> 13-Dec-2012 19:02 3.2K

CONTROLEUR-IRDA-1084..> 14-Dec-2012 08:42 3.2K

CONTROLEUR-POUR-MOTE..> 14-Dec-2012 08:53 3.1K

CONTROLEUR-POUR-MOTE..> 13-Dec-2012 19:02 3.0K

CONTROLEUR-POUR-MOTE..> 14-Dec-2012 08:53 3.2K

CONTROLEUR-POUR-MOTE..> 13-Dec-2012 19:02 3.2K

CONTROLEUR-PWM--DRIV..> 14-Dec-2012 08:55 3.2K

CONTROLEUR-PWM--DRIV..> 13-Dec-2012 19:02 3.2K

CONTROLEUR-PWM-10138..> 14-Dec-2012 08:46 3.2K

CONTROLEUR-PWM-CMS-1..> 14-Dec-2012 08:43 3.2K

CONTROLEUR-SYNC.-CMS..> 14-Dec-2012 08:55 3.2K

CONTROLEUR-SYNC.-CMS..> 13-Dec-2012 19:02 3.2K

CONTROLEUR-X-PHASE-C..> 14-Dec-2012 08:46 3.2K

CONVERT-DE-TENSION-7..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-A-N-8-..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-8-..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-10..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-10..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:40 3.2K

CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-16..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-A-N-16..> 14-Dec-2012 08:37 3.2K

CONVERTISSEUR-A-N-AU..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-A-N-AU..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-A-N-N-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-BOOST-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-BOOST-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-BUCK-C..> 14-Dec-2012 08:40 3.2K

CONVERTISSEUR-CAPACI..> 14-Dec-2012 08:43 3.2K

CONVERTISSEUR-CAPACI..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-CMS-ST..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 170K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:41 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:36 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:53 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:38 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:38 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:38 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:45 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55 3.2K

CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:37 3.2K

CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:37 3.2K

CONVERTISSEUR-DC-DC...> 13-Dec-2012 19:01 3.2K

CONVERTISSEUR-DC-DC5..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC1..> 14-Dec-2012 08:50 3.2K

CONVERTISSEUR-DC-DC1..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DC1..> 14-Dec-2012 08:49 3.2K

CONVERTISSEUR-DC-DCD..> 14-Dec-2012 08:47 3.2K

CONVERTISSEUR-DC-DCS..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-DE-DOU..> 14-Dec-2012 08:46 2.9K

CONVERTISSEUR-DE-DOU..> 14-Dec-2012 08:41 2.9K

CONVERTISSEUR-DE-DOU..> 14-Dec-2012 08:41 2.9K

CONVERTISSEUR-F-V-V-..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:43 3.2K

CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:48 3.2K

CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:48 3.2K

CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:43 3.2K

CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:37 3.2K

CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-N-A-12..> 14-Dec-2012 08:37 3.2K

CONVERTISSEUR-N-A-12..> 14-Dec-2012 08:46 3.2K

CONVERTISSEUR-N-A-14..> 14-Dec-2012 08:46 3.2K

CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:46 3.2K

CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:46 3.2K

CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:38 3.2K

CONVERTISSEUR-RMS-DC..> 14-Dec-2012 08:44 3.2K

CONVERTISSEUR-TENSIO..> 14-Dec-2012 08:42 3.2K

CONVERTISSEUR-USB---..> 14-Dec-2012 08:56 2.9K

CONVERTISSEUR-USB---..> 13-Dec-2012 19:03 2.9K

CONVERTISSEUR.htm 05-Jan-2013 12:29 4.3M

CORDON-ASSEMBLE-TYPE..> 14-Dec-2012 08:53 3.0K

CORDON-ASSEMBLE-TYPE..> 13-Dec-2012 19:02 3.0K

CORDON-BNC-M-F-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-F-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-BNC-M-F-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:41 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:41 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:40 3.2K

CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:47 3.2K

CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:45 3.2K

CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:47 3.2K

CORDON-CAT-5E-FTP-GR..> 14-Dec-2012 08:38 3.2K

CORDON-DE-TEST-AVEC-..> 14-Dec-2012 08:57 3.1K

CORDON-DE-TEST-AVEC-..> 14-Dec-2012 08:56 3.1K

CORDON-DE-TEST-AVEC-..> 13-Dec-2012 19:02 3.1K

CORDON-DE-TEST-BLEU-..> 14-Dec-2012 08:54 2.9K

CORDON-DE-TEST-BLEU-..> 13-Dec-2012 19:02 2.9K

CORDON-DE-TEST-BNC-V..> 14-Dec-2012 08:56 3.0K

CORDON-DE-TEST-BNC-V..> 13-Dec-2012 19:03 2.9K

CORDON-DE-TEST-NOIR-..> 14-Dec-2012 08:47 2.9K

CORDON-DE-TEST-ROUGE..> 14-Dec-2012 08:53 3.0K

CORDON-DE-TEST-ROUGE..> 13-Dec-2012 19:02 3.0K

CORDON-DE-TEST-ROUGE..> 14-Dec-2012 08:50 2.9K

CORDON-FTP.0.5M-CAT6..> 14-Dec-2012 08:38 3.2K

CORDON-FTP.1.5M-CAT6..> 14-Dec-2012 08:41 3.2K

CORDON-FTP.2M-CAT6-1..> 14-Dec-2012 08:38 3.2K

CORDON-FTP.3.5M-CAT6..> 14-Dec-2012 08:38 3.2K

CORDON-FTP.4M-CAT6-1..> 14-Dec-2012 08:41 3.2K

CORDON-FTP.5M-CAT6-1..> 14-Dec-2012 08:42 3.2K

CORDON-MCXM-M-50-OHM..> 14-Dec-2012 08:45 3.2K

CORDON-MCXM-M-50-OHM..> 14-Dec-2012 08:44 3.2K

CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:44 3.2K

CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:44 3.2K

CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:45 3.2K

CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:47 3.2K

CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:40 3.2K

CORDON-SERIAL-ATA-DA..> 14-Dec-2012 08:49 2.9K

CORDON-SERIAL-ATA-PO..> 14-Dec-2012 08:47 3.0K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:44 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:45 3.2K

CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SMC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-SPIRALE-4P-NO..> 14-Dec-2012 08:39 3.0K

CORDON-SPIRALE-4P-NO..> 14-Dec-2012 08:39 3.0K

CORDON-SPIRALE-6P-NO..> 14-Dec-2012 08:39 3.0K

CORDON-SPIRALE-8P-NO..> 14-Dec-2012 08:39 3.0K

CORDON-TNC-M-M-50-OH..> 14-Dec-2012 08:47 3.2K

CORDON-USB-2.0-A-MAL..> 14-Dec-2012 08:49 3.0K

CORDON-USB-2.0-A-MAL..> 14-Dec-2012 08:47 3.0K

CORDON.htm 05-Jan-2013 15:12 3.3M

CORDONS-DE-TEST-A-FU..> 14-Dec-2012 08:39 2.9K

CORDONS-DE-TEST-STAN..> 14-Dec-2012 08:36 2.9K

CORPS-DE-CONNECTEUR-..> 14-Dec-2012 08:38 3.2K

CORPS-DIN41612-FEMEL..> 14-Dec-2012 08:39 3.2K

CORPS-POUR-FICHE-BAN..> 14-Dec-2012 08:41 3.2K

CORPS-POUR-FICHE-BAN..> 14-Dec-2012 08:41 3.2K

CORRECTEUR-DE-FACTEU..> 14-Dec-2012 08:38 3.2K

CORUNDUM-DISC,-22MM,..> 14-Dec-2012 08:43 2.9K

CORUNDUM-DISC,-22MM,..> 14-Dec-2012 08:43 2.8K

CORUNDUM-DISC,-38MM,..> 14-Dec-2012 08:43 2.9K

COSSE-A-FOURCHE-3MM-..> 14-Dec-2012 08:44 3.2K

COSSE-A-OEILLET-12MM..> 14-Dec-2012 08:45 3.2K

COSSE-A-SERTIR-2.5MM..> 14-Dec-2012 08:44 3.2K

COSSE-A-SERTIR-3MM-J..> 14-Dec-2012 08:44 3.2K

COSSE-A-SERTIR-6MM-B..> 14-Dec-2012 08:40 3.2K

COSSE-A-SERTIR-BLEUE..> 14-Dec-2012 08:40 3.2K

COSSE-A-SERTIR-JAUNE..> 14-Dec-2012 08:44 3.2K

COSSE-A-SERTIR-ROUGE..> 14-Dec-2012 08:47 3.2K

COSSE-FASTON-ROUGE-1..> 14-Dec-2012 08:44 3.2K

COSSE-FOURCHE-M6-BLE..> 14-Dec-2012 08:45 3.2K

COSSE-FOURCHE-SOLIST..> 14-Dec-2012 08:45 3.2K

COSSE-OEILLET-M5-PQ1..> 14-Dec-2012 08:40 3.2K

COSSE-OEILLET-M6-PQ5..> 14-Dec-2012 08:47 3.2K

COSSE-PIDG-FOURCHE-M..> 14-Dec-2012 08:47 3.2K

COUPE-CIRCUIT-0.5A-1..> 14-Dec-2012 08:57 3.2K

COUPE-CIRCUIT-0.5A.html 13-Dec-2012 19:03 3.2K

COUPE-CIRCUIT-1-POLE..> 14-Dec-2012 08:39 3.1K

COUPE-CIRCUIT-1.0A-1..> 14-Dec-2012 08:57 3.2K

COUPE-CIRCUIT-1.0A.html 13-Dec-2012 19:03 3.2K

COUPE-CIRCUIT-2-POLE..> 14-Dec-2012 08:36 3.1K

COUPE-CIRCUIT-2.0A-1..> 14-Dec-2012 08:56 3.2K

COUPE-CIRCUIT-2.0A.html 13-Dec-2012 19:03 3.2K

COUPE-CIRCUIT-3.0A-1..> 14-Dec-2012 08:56 3.2K

COUPE-CIRCUIT-3.0A.html 13-Dec-2012 19:03 3.2K

COUPE-CIRCUIT-5.0A-1..> 14-Dec-2012 08:56 3.2K

COUPE-CIRCUIT-5.0A.html 13-Dec-2012 19:03 3.2K

COUPE-CIRCUIT-10A-10..> 14-Dec-2012 08:56 3.2K

COUPE-CIRCUIT-10A.html 13-Dec-2012 19:02 3.2K

COUPE-CIRCUIT-16A-10..> 14-Dec-2012 08:56 3.2K

COUPE-CIRCUIT-16A.html 13-Dec-2012 19:03 3.2K

COUPLEUR-110V-2P+TER..> 14-Dec-2012 08:50 3.0K

COUPLEUR-110V-2P-+TE..> 14-Dec-2012 08:48 3.0K

COUPLEUR-240V-2P+TER..> 14-Dec-2012 08:45 3.0K

COUPLEUR-240V-2P-+TE..> 14-Dec-2012 08:45 3.0K

COUPLEUR-415V-3P+TER..> 14-Dec-2012 08:48 3.0K

COUPLEUR-415V-3P-+TE..> 14-Dec-2012 08:49 3.0K

COUPLEUR-415V-3P-+TE..> 14-Dec-2012 08:50 3.0K

COUPLEUR-415V-3P-N+T..> 14-Dec-2012 08:49 3.0K

COUTEAU-ISOLE-1000V-..> 14-Dec-2012 08:40 2.8K

COUVERCLE-105430.html 14-Dec-2012 08:45 2.9K

COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:38 3.0K

COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:38 3.0K

COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:40 3.0K

COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:40 3.0K

COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:38 3.0K

COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:40 3.0K

COVER,-HINGED,-FOR-C..> 14-Dec-2012 08:54 2.8K

COVER,-HINGED,-FOR-C..> 13-Dec-2012 19:02 2.8K

CRIMP-HOUSING-1.25MM..> 14-Dec-2012 08:47 3.2K

CRIMP-PIN-10AWG-1012..> 14-Dec-2012 08:50 3.2K

CRIMP-PIN-22-28AWG-P..> 14-Dec-2012 08:53 3.2K

CRIMP-PIN-22-28AWG-P..> 13-Dec-2012 19:01 3.2K

CRIMP-SOCKET-8AWG-10..> 14-Dec-2012 08:47 3.2K

CUTTING-DISC,-FOR-DI..> 14-Dec-2012 08:43 2.8K

CUTTING-DISC,-FOR-DI..> 14-Dec-2012 08:39 2.8K

CUTTING-DISC,-FOR-ME..> 14-Dec-2012 08:43 2.8K

DATALOGGER,-4CH-1056..> 14-Dec-2012 08:47 2.7K

DATALOGGER,-HI-RES-1..> 14-Dec-2012 08:43 2.9K

DATALOGGER,-HI-RES-1..> 14-Dec-2012 08:43 2.9K

DATALOGGER-USB-CO-10..> 14-Dec-2012 08:54 3.0K

DATALOGGER-USB-CO.html 13-Dec-2012 19:02 3.0K

DC-DC-CONTROLEUR-340..> 14-Dec-2012 08:42 3.2K

DEMI-PONT+OSC+DDTIM-..> 14-Dec-2012 08:38 3.2K

DETECTEUR-5-MB-TTL--..> 14-Dec-2012 08:43 2.9K

DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:50 3.2K

DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:55 3.2K

DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:49 3.2K

DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:50 3.2K

DETECTEUR-DE-DEBIT-D..> 13-Dec-2012 19:02 3.2K

DETECTEUR-DE-NIVEAU-..> 14-Dec-2012 08:48 3.2K

DETECTEUR-DE-PROXIMI..> 14-Dec-2012 08:52 3.2K

DETECTEUR-DE-PROXIMI..> 13-Dec-2012 19:01 3.2K

DETECTEUR-DE-TENSION..> 14-Dec-2012 08:46 3.2K

DETECTEUR-DE-TENSION..> 14-Dec-2012 08:40 3.2K

DETECTEUR-DE-TENSION..> 14-Dec-2012 08:40 3.2K

DETECTEUR-DE-TENSION..> 14-Dec-2012 08:49 3.2K

DETECTEUR-DE-TENSION..> 14-Dec-2012 08:49 2.9K

DETECTEUR-INFRA-ROUG..> 14-Dec-2012 08:48 3.0K

DETECTEUR-INFRAROUGE..> 14-Dec-2012 08:56 3.0K

DETECTEUR-INFRAROUGE..> 14-Dec-2012 08:44 3.2K

DETECTEUR-INFRAROUGE..> 14-Dec-2012 08:44 3.2K

DETECTEUR-INFRAROUGE..> 13-Dec-2012 19:02 3.0K

DIN-41612-MALE-DROIT..> 14-Dec-2012 08:39 3.2K

DIN41612-FEMELLE-B64..> 14-Dec-2012 08:39 3.2K

DIN41612-FEMELLE-C-2..> 14-Dec-2012 08:37 3.2K

DIN41612-FEMELLE-C32..> 14-Dec-2012 08:37 3.2K

DIN41612-FEMELLE-C64..> 14-Dec-2012 08:39 3.2K

DIN41612-FEMELLE-C96..> 14-Dec-2012 08:39 3.2K

DIN41612-FEMELLE-H15..> 14-Dec-2012 08:39 3.2K

DIN41612-FEMELLE-MH3..> 14-Dec-2012 08:37 3.2K

DIN41612-FEMELLE-R96..> 14-Dec-2012 08:39 3.2K

DIN41612-MALE-B64-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-B64-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-C-2-32..> 14-Dec-2012 08:39 3.2K

DIN41612-MALE-C-2-48..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-C32-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-C32-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-C32-CL..> 14-Dec-2012 08:38 3.2K

DIN41612-MALE-C96-10..> 14-Dec-2012 08:39 3.2K

DIN41612-MALE-F48-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-H15-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-H15-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-MH15-1..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-R64-10..> 14-Dec-2012 08:37 3.2K

DIN41612-MALE-R96-10..> 14-Dec-2012 08:39 3.2K

DIN41612-TYPE-B-64-V..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPE-B-64-V..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPE-C-96-V..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPE-F-48-V..> 14-Dec-2012 08:45 3.2K

DIN41612-TYPE-M-24+8..> 14-Dec-2012 08:47 3.2K

DIN41612-TYPE-R-48-V..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPE-R-96-V..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPEC-96-VO..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPEC-96-VO..> 14-Dec-2012 08:37 3.2K

DIN41612-TYPEM60+4-V..> 14-Dec-2012 08:47 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:44 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:45 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:45 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:45 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:44 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48 3.2K

DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48 3.2K

DIODE-2X56A-1200V-10..> 14-Dec-2012 08:42 3.2K

DIODE-4A-1075757.html 14-Dec-2012 08:46 3.1K

DIODE-AVALANCHE-2A-1..> 14-Dec-2012 08:43 3.2K

DIODE-CMS-1.0A-600V-..> 14-Dec-2012 08:48 3.2K

DIODE-CMS-3A-50V-101..> 14-Dec-2012 08:47 3.2K

DIODE-CMS-3A-200V-10..> 14-Dec-2012 08:49 3.2K

DIODE-DE-COMMUTATION..> 14-Dec-2012 08:44 3.2K

DIODE-DE-COMMUTATION..> 14-Dec-2012 08:42 3.2K

DIODE-DE-REDRESSEMEN..> 14-Dec-2012 08:43 3.2K

DIODE-DE-REDRESSEMEN..> 14-Dec-2012 08:43 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49 3.2K

DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47 3.2K

DIODE-DOUBLE-SOT-23-..> 14-Dec-2012 08:44 3.2K

DIODE-DOUBLE-SOT-23-..> 14-Dec-2012 08:44 3.2K

DIODE-DOUBLE-SOT-143..> 14-Dec-2012 08:44 3.2K

DIODE-DOUBLE-SOT-143..> 14-Dec-2012 08:36 3.2K

DIODE-DOUBLE-SOT-323..> 14-Dec-2012 08:42 3.2K

DIODE-DOUBLE-SOT-323..> 14-Dec-2012 08:40 3.2K

DIODE-HAUTE-TENSION-..> 14-Dec-2012 08:39 3.2K

DIODE-HAUTE-TENSION-..> 14-Dec-2012 08:40 3.2K

DIODE-PETIT-SIGNAL-D..> 14-Dec-2012 08:47 3.2K

DIODE-PETITS-SIGNAUX..> 14-Dec-2012 08:43 3.1K

DIODE-RAPIDE-BOITIER..> 14-Dec-2012 08:36 3.2K

DIODE-RAPIDE-BOITIER..> 14-Dec-2012 08:38 3.2K

DIODE-RAPIDE-DOUBLE-..> 14-Dec-2012 08:42 3.2K

DIODE-RAPIDE-SOD-80C..> 14-Dec-2012 08:39 3.2K

DIODE-RAPIDE-SOD-80C..> 14-Dec-2012 08:38 3.1K

DIODE-REDRESSEMENT-D..> 14-Dec-2012 08:47 3.2K

DIODE-REDRESSEMENT-D..> 14-Dec-2012 08:48 3.2K

DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:50 3.2K

DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:49 3.2K

DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:48 3.2K

DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:49 3.2K

DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:47 3.2K

DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:47 3.2K

DIODE-RF-BOITIER-SOT..> 14-Dec-2012 08:44 3.2K

DIODE-RF-COMMUTATION..> 14-Dec-2012 08:44 3.1K

DIODE-RF-COMMUTATION..> 14-Dec-2012 08:44 3.2K

DIODE-RF-COMMUTATION..> 14-Dec-2012 08:40 3.2K

DIODE-RF-DOUBLE-ATTE..> 14-Dec-2012 08:44 3.2K

DIODE-RF-SC-79-10956..> 14-Dec-2012 08:37 3.0K

DIODE-RF-SOT-23-1095..> 14-Dec-2012 08:40 3.0K

DIODE-RF-SOT-23-1095..> 14-Dec-2012 08:37 3.0K

DIODE-RF-SOT-343-109..> 14-Dec-2012 08:40 3.0K

DIODE-SCHOTTKY-1A-30..> 14-Dec-2012 08:45 3.1K

DIODE-SCHOTTKY-1A-40..> 14-Dec-2012 08:48 3.2K

DIODE-SCHOTTKY-2.0A-..> 14-Dec-2012 08:49 3.2K

DIODE-SCHOTTKY-2.0A-..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-2X5A-..> 14-Dec-2012 08:40 3.1K

DIODE-SCHOTTKY-2X10A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X15A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X20A..> 14-Dec-2012 08:40 3.1K

DIODE-SCHOTTKY-2X20A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X25A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X30A..> 14-Dec-2012 08:42 3.1K

DIODE-SCHOTTKY-2X30A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X35A..> 14-Dec-2012 08:44 3.1K

DIODE-SCHOTTKY-2X40A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X40A..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-2X40A..> 14-Dec-2012 08:44 3.1K

DIODE-SCHOTTKY-2X60A..> 14-Dec-2012 08:40 3.1K

DIODE-SCHOTTKY-2X60A..> 14-Dec-2012 08:44 3.1K

DIODE-SCHOTTKY-2X100..> 14-Dec-2012 08:40 3.1K

DIODE-SCHOTTKY-2X120..> 14-Dec-2012 08:42 3.1K

DIODE-SCHOTTKY-3A-20..> 14-Dec-2012 08:48 3.2K

DIODE-SCHOTTKY-3A-30..> 14-Dec-2012 08:48 3.2K

DIODE-SCHOTTKY-3A-10..> 14-Dec-2012 08:43 3.2K

DIODE-SCHOTTKY-25A-1..> 14-Dec-2012 08:44 3.1K

DIODE-SCHOTTKY-25A-1..> 14-Dec-2012 08:42 3.1K

DIODE-SCHOTTKY-60A-1..> 14-Dec-2012 08:40 3.0K

DIODE-SCHOTTKY-10811..> 14-Dec-2012 08:36 3.0K

DIODE-SCHOTTKY-10811..> 14-Dec-2012 08:40 3.2K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:43 3.1K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:43 3.1K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:42 3.1K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:36 3.1K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:43 3.1K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:47 3.2K

DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-MICRO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:47 3.2K

DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:47 3.2K

DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:40 3.2K

DIODE-SCHOTTKY-SOD-3..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-SOT-2..> 14-Dec-2012 08:44 3.2K

DIODE-SCHOTTKY-SOT-2..> 14-Dec-2012 08:40 3.2K

DIODE-SCHOTTKY-TO-22..> 14-Dec-2012 08:47 3.1K

DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:50 3.2K

DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:53 3.2K

DIODE-SCHOTTKY-TO-24..> 13-Dec-2012 19:02 3.2K

DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:47 3.2K

DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:47 3.2K

DIODE-SCHOTTKY-TO220..> 14-Dec-2012 08:44 3.1K

DIODE-TO220AB-30A-80..> 14-Dec-2012 08:44 3.1K

DIODE-TO220AB-30A-12..> 14-Dec-2012 08:40 3.1K

DIODE-TO220AC-2X11A-..> 14-Dec-2012 08:40 3.1K

DIODE-TO247AD-2X28A-..> 14-Dec-2012 08:42 3.1K

DIODE-TO247AD-2X28A-..> 14-Dec-2012 08:36 3.1K

DIODE-TO247AD-2X45A-..> 14-Dec-2012 08:36 3.2K

DIODE-TO247AD-2X45A-..> 14-Dec-2012 08:40 3.1K

DIODE-TO247AD-48A-80..> 14-Dec-2012 08:42 3.1K

DIODE-TO247AD-48A-12..> 14-Dec-2012 08:36 3.1K

DIODE-TO247AD-48A-16..> 14-Dec-2012 08:44 3.1K

DIODE-ULTRA-FAST-2X1..> 14-Dec-2012 08:40 3.2K

DIODE-ULTRA-FAST-2X1..> 14-Dec-2012 08:40 3.2K

DIODE-ULTRA-FAST-2X1..> 14-Dec-2012 08:42 3.2K

DIODE-ULTRA-FAST-8A-..> 14-Dec-2012 08:43 3.1K

DIODE-ULTRA-FAST-9A-..> 14-Dec-2012 08:40 3.2K

DIODE-ULTRA-FAST-15A..> 14-Dec-2012 08:40 3.2K

DIODE-ULTRA-RAPIDE-1..> 14-Dec-2012 08:47 3.2K

DIODE-ULTRA-RAPIDE-1..> 14-Dec-2012 08:43 3.2K

DIODE-ULTRA-RAPIDE-1..> 14-Dec-2012 08:46 3.2K

DIODE-ULTRA-RAPIDE-2..> 14-Dec-2012 08:43 3.2K

DIODE-ULTRA-RAPIDE-2..> 14-Dec-2012 08:43 3.2K

DIODE-ULTRA-RAPIDE-2..> 14-Dec-2012 08:42 3.2K

DIODE-ULTRA-RAPIDE-3..> 14-Dec-2012 08:39 3.2K

DIODE-ULTRA-RAPIDE-C..> 14-Dec-2012 08:47 3.2K

DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53 3.2K

DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:01 3.1K

DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53 3.2K

DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:01 3.2K

DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53 3.2K

DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:01 3.1K

DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53 3.2K

DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:02 3.2K

DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:47 3.2K

DIODE-VARI-CAP-SOT-2..> 14-Dec-2012 08:42 3.2K

DIODE-ZENER-1.3W-5.6..> 14-Dec-2012 08:38 3.1K

DIODE-ZENER-1.3W-10V..> 14-Dec-2012 08:39 3.1K

DIODE-ZENER-1.3W-18V..> 14-Dec-2012 08:39 3.1K

DIODE-ZENER-1.3W-30V..> 14-Dec-2012 08:39 3.1K

DIODE-ZENER-1.3W-47V..> 14-Dec-2012 08:38 3.1K

DIODE-ZENER-1.3W-51V..> 14-Dec-2012 08:43 3.1K

DIODE-ZENER-1.3W-56V..> 14-Dec-2012 08:38 3.1K

DIODE-ZENER-1.3W-75V..> 14-Dec-2012 08:38 3.1K

DIODE-ZENER-1.5W-5.1..> 14-Dec-2012 08:43 3.1K

DIODE-ZENER-1.5W-6.2..> 14-Dec-2012 08:40 3.1K

DIODE-ZENER-1.5W-8.2..> 14-Dec-2012 08:42 3.1K

DIODE-ZENER-1.5W-15V..> 14-Dec-2012 08:42 3.1K

DIODE-ZENER-1.5W-27V..> 14-Dec-2012 08:42 3.1K

DIODE-ZENER-500MW-2...> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-3...> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-4...> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-4...> 14-Dec-2012 08:38 3.2K

DIODE-ZENER-500MW-5...> 14-Dec-2012 08:38 3.2K

DIODE-ZENER-500MW-6...> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-6...> 14-Dec-2012 08:39 3.1K

DIODE-ZENER-500MW-9...> 14-Dec-2012 08:39 3.1K

DIODE-ZENER-500MW-10..> 14-Dec-2012 08:42 3.1K

DIODE-ZENER-500MW-11..> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-12..> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-12..> 14-Dec-2012 08:38 3.2K

DIODE-ZENER-500MW-18..> 14-Dec-2012 08:39 3.2K

DIODE-ZENER-500MW-22..> 14-Dec-2012 08:39 3.1K

DIODE-ZENER-500MW-30..> 14-Dec-2012 08:40 3.1K

DIODE-ZENER-500MW-43..> 14-Dec-2012 08:39 3.2K

DIP-SWITCH-2V-108246..> 14-Dec-2012 08:43 3.2K

DIP-SWITCH-4V-108246..> 14-Dec-2012 08:41 3.2K

DIP-SWITCH-8V-108246..> 14-Dec-2012 08:43 3.2K

DIP-SWITCH-10V-10824..> 14-Dec-2012 08:43 3.2K

DIP-SWITCH-ROTATIF-1..> 14-Dec-2012 08:39 3.2K

DIP-SWITCH-ROTATIF-1..> 14-Dec-2012 08:39 3.2K

DISTRIBUTION-D´HO..> 14-Dec-2012 08:42 3.2K

DISTRIBUTION-D´HO..> 14-Dec-2012 08:42 3.2K

DISTRIBUTION-D´HO..> 14-Dec-2012 08:42 3.2K

DOUBLE-TRANSCEIVER-D..> 14-Dec-2012 08:47 3.2K

DOUILLE-ROUGE-4MM-PQ..> 14-Dec-2012 08:36 3.2K

DOWNLIGHT,-MAINS,-SI..> 14-Dec-2012 08:41 3.1K

DPM-THERMOMETRE-1074..> 14-Dec-2012 08:46 3.2K

DRILL-GRINDER,-EURO-..> 14-Dec-2012 08:46 3.0K

DRILL-GRINDER,-EURO-..> 14-Dec-2012 08:46 3.0K

DRILL-STAND-1075595...> 14-Dec-2012 08:46 2.8K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:47 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:46 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:46 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:45 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:47 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:46 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:41 3.2K

DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:45 3.2K

DRIVER-CMS-3PH-HI-&-..> 14-Dec-2012 08:44 3.2K

DRIVER-CMS-AUDIO-HI-..> 14-Dec-2012 08:44 3.2K

DRIVER-CMS-DEMI-PONT..> 14-Dec-2012 08:42 3.2K

DRIVER-CMS-DOUBLE-LO..> 14-Dec-2012 08:44 3.2K

DRIVER-CMS-HI-&-LO-S..> 14-Dec-2012 08:36 3.2K

DRIVER-CMS-HI-SIDE-O..> 14-Dec-2012 08:38 3.2K

DRIVER-CMS-HI-SIDE-Q..> 14-Dec-2012 08:38 3.2K

DRIVER-CMS-SIMPLE-HI..> 14-Dec-2012 08:44 3.2K

DRIVER-DE-LIGNE-1079..> 14-Dec-2012 08:42 3.2K

DRIVER-DE-MOSFET-3PH..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-3PH..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-3PH..> 14-Dec-2012 08:48 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:37 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:48 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:48 3.2K

DRIVER-DE-MOSFET-DOU..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-DOU..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:48 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:48 3.2K

DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46 3.2K

DRIVER-DE-MOSFET-SIM..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-MOSFET-SIM..> 14-Dec-2012 08:43 3.2K

DRIVER-DE-PWM-109742..> 14-Dec-2012 08:38 3.2K

DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:50 3.2K

DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:55 3.2K

DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:55 3.2K

DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:55 3.2K

DRIVER-DEMI-PONT-CMS..> 13-Dec-2012 19:02 3.2K

DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:49 3.2K

DRIVER-DEMI-PONT-SIM..> 14-Dec-2012 08:42 3.2K

DRIVER-HI-&-LO-SIDE-..> 14-Dec-2012 08:44 3.2K

DVI-I-R-A-RCPT-FORKL..> 14-Dec-2012 08:53 3.2K

DVI-I-R-A-RCPT-FORKL..> 13-Dec-2012 19:02 3.2K

ECHELLE-DIN72-0-1MA-..> 14-Dec-2012 08:50 3.1K

ECHELLE-DIN72-1A-101..> 14-Dec-2012 08:50 3.2K

ECHELLE-DIN72-5A-101..> 14-Dec-2012 08:45 3.2K

ECHELLE-DIN72-60MV-1..> 14-Dec-2012 08:50 3.1K

ECHELLE-DIN96-0-1MA-..> 14-Dec-2012 08:48 3.1K

ECHELLE-DIN96-4-20MA..> 14-Dec-2012 08:48 3.0K

ECHELLE-DIN96-60MV-1..> 14-Dec-2012 08:48 3.0K

ECLAIRAGE-MURAL-BLAN..> 14-Dec-2012 08:41 3.0K

ECLAIRAGE-TRIPLE-SPO..> 14-Dec-2012 08:41 3.1K

ECROU-BNC-TNC-102096..> 14-Dec-2012 08:44 2.8K

ECROU-LAITON-PLAQUE-..> 14-Dec-2012 08:53 3.0K

ECROU-LAITON-PLAQUE-..> 13-Dec-2012 19:02 3.0K

ELASTOMER,-BLACK,-17..> 14-Dec-2012 08:48 3.2K

ELASTOMER,-CLEAR,-18..> 14-Dec-2012 08:48 3.2K

ELECTROMECH-TRANSDUC..> 14-Dec-2012 08:43 3.2K

EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:46 3.2K

EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:46 3.2K

EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:43 3.2K

EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:48 3.2K

EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:43 3.2K

EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:48 3.2K

EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:46 3.2K

EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:48 3.2K

EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:48 3.2K

EMBASE-1-RANGEE-2-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-3-VO..> 14-Dec-2012 08:43 3.2K

EMBASE-1-RANGEE-3-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-4-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-4-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-5-VO..> 14-Dec-2012 08:49 3.2K

EMBASE-1-RANGEE-5-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-6-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-6-VO..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-8-VO..> 14-Dec-2012 08:49 3.2K

EMBASE-1-RANGEE-8-VO..> 14-Dec-2012 08:49 3.2K

EMBASE-1-RANGEE-10-V..> 14-Dec-2012 08:43 3.2K

EMBASE-1-RANGEE-10-V..> 14-Dec-2012 08:43 3.2K

EMBASE-1-RANGEE-20-V..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-36-V..> 14-Dec-2012 08:46 3.2K

EMBASE-1-RANGEE-36-V..> 14-Dec-2012 08:49 3.2K

EMBASE-2-RANGEES-3-V..> 14-Dec-2012 08:49 3.2K

EMBASE-2-RANGEES-3-V..> 14-Dec-2012 08:49 3.2K

EMBASE-2-RANGEES-4-V..> 14-Dec-2012 08:47 3.2K

EMBASE-2-RANGEES-4-V..> 14-Dec-2012 08:47 3.2K

EMBASE-2-RANGEES-5-V..> 14-Dec-2012 08:46 3.2K

EMBASE-2-RANGEES-5-V..> 14-Dec-2012 08:43 3.2K

EMBASE-2-RANGEES-6-V..> 14-Dec-2012 08:47 3.2K

EMBASE-2-RANGEES-6-V..> 14-Dec-2012 08:43 3.2K

EMBASE-2-RANGEES-8-V..> 14-Dec-2012 08:47 3.2K

EMBASE-2-RANGEES-8-V..> 14-Dec-2012 08:46 3.2K

EMBASE-2-RANGEES-10-..> 14-Dec-2012 08:43 3.2K

EMBASE-2-RANGEES-10-..> 14-Dec-2012 08:47 3.2K

EMBASE-2-RANGEES-36+..> 14-Dec-2012 08:43 3.2K

EMBASE-2-RANGEES-36+..> 14-Dec-2012 08:47 3.2K

EMBASE-3-POLES-10774..> 14-Dec-2012 08:43 3.2K

EMBASE-3.96MM-12-VOI..> 14-Dec-2012 08:50 3.2K

EMBASE-4-POLES-10774..> 14-Dec-2012 08:43 3.2K

EMBASE-4-RANGEES-4-P..> 14-Dec-2012 08:42 3.2K

EMBASE-5-POLES-10774..> 14-Dec-2012 08:38 3.2K

EMBASE-8-POLES-10774..> 14-Dec-2012 08:43 3.2K

EMBASE-A-4-ENTREES-S..> 14-Dec-2012 08:45 3.1K

EMBASE-A-PROFIL-SURB..> 14-Dec-2012 08:49 3.1K

EMBASE-A-PROFIL-SURB..> 14-Dec-2012 08:49 3.2K

EMBASE-A-RIVET-10148..> 14-Dec-2012 08:45 3.1K

EMBASE-A-RIVET-10148..> 14-Dec-2012 08:50 3.2K

EMBASE-BANANE-4MM-IS..> 14-Dec-2012 08:39 3.2K

EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:39 3.2K

EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:43 3.2K

EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:39 3.2K

EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:43 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:41 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:36 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:41 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39 3.2K

EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39 3.2K

EMBASE-BNC-ISOLEE-PA..> 14-Dec-2012 08:49 3.2K

EMBASE-BNC-PANNEAU-5..> 14-Dec-2012 08:44 3.2K

EMBASE-CI-4-VOIES-90..> 14-Dec-2012 08:41 3.1K

EMBASE-CI-COUDE.-20-..> 14-Dec-2012 08:46 3.2K

EMBASE-CI-COUDE.-26-..> 14-Dec-2012 08:43 3.2K

EMBASE-CI-COUDE.-34-..> 14-Dec-2012 08:48 3.2K

EMBASE-CI-COUDE.-50-..> 14-Dec-2012 08:46 3.2K

EMBASE-CMS-COMPACT-F..> 14-Dec-2012 08:46 3.2K

EMBASE-CMS-VERTICALE..> 14-Dec-2012 08:47 3.2K

EMBASE-CMS-VERTICALE..> 14-Dec-2012 08:50 3.2K

EMBASE-CMS-VERTICALE..> 14-Dec-2012 08:50 3.2K

EMBASE-CMS.-6-VOIES-..> 14-Dec-2012 08:44 3.2K

EMBASE-COUDEE-2-VOIE..> 14-Dec-2012 08:53 3.2K

EMBASE-COUDEE-2-VOIE..> 13-Dec-2012 19:02 3.2K

EMBASE-COUDEE-3.96MM..> 14-Dec-2012 08:53 3.2K

EMBASE-COUDEE-3.96MM..> 14-Dec-2012 08:47 3.2K

EMBASE-COUDEE-3.96MM..> 13-Dec-2012 19:01 3.2K

EMBASE-COUDEE-3.96MM..> 14-Dec-2012 08:53 3.2K

EMBASE-COUDEE-3.96MM..> 13-Dec-2012 19:02 3.2K

EMBASE-COUDEE-6-VOIE..> 14-Dec-2012 08:53 3.2K

EMBASE-COUDEE-6-VOIE..> 13-Dec-2012 19:02 3.2K

EMBASE-COUDEE-9-VOIE..> 14-Dec-2012 08:53 3.2K

EMBASE-COUDEE-9-VOIE..> 13-Dec-2012 19:02 3.2K

EMBASE-COUDEE-10-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-COUDEE-14-VOI..> 14-Dec-2012 08:37 3.2K

EMBASE-COUDEE-16-VOI..> 14-Dec-2012 08:37 3.2K

EMBASE-COUDEE-20-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-COUDEE-26-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-COUDEE-34-VOI..> 14-Dec-2012 08:37 3.2K

EMBASE-COUDEE-50-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-COUDEE-VERROU..> 14-Dec-2012 08:37 3.2K

EMBASE-COUDEE-VERROU..> 14-Dec-2012 08:37 3.2K

EMBASE-COUDEE-VERROU..> 14-Dec-2012 08:37 3.2K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50 3.1K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45 3.2K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:48 3.2K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50 3.2K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50 3.2K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45 3.1K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45 3.2K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50 3.1K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:49 3.1K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45 3.1K

EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50 3.2K

EMBASE-DE-FAISCEAU-3..> 14-Dec-2012 08:49 3.1K

EMBASE-DF17-2MM-40-V..> 14-Dec-2012 08:45 3.2K

EMBASE-DF17-2MM-80-V..> 14-Dec-2012 08:43 3.2K

EMBASE-DF17-3MM-80-V..> 14-Dec-2012 08:45 3.2K

EMBASE-DF17-4MM-40-V..> 14-Dec-2012 08:43 3.2K

EMBASE-DF17-4MM-80-V..> 14-Dec-2012 08:42 3.2K

EMBASE-DOUBLE-RANGEE..> 14-Dec-2012 08:47 3.2K

EMBASE-DOUBLE-RANGEE..> 14-Dec-2012 08:43 3.2K

EMBASE-DROITE-6-VOIE..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-8-VOIE..> 14-Dec-2012 08:50 3.2K

EMBASE-DROITE-10-VOI..> 14-Dec-2012 08:53 3.2K

EMBASE-DROITE-10-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-10-VOI..> 13-Dec-2012 19:02 3.2K

EMBASE-DROITE-13-VOI..> 14-Dec-2012 08:50 3.2K

EMBASE-DROITE-14-VOI..> 14-Dec-2012 08:47 3.2K

EMBASE-DROITE-14-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-16-VOI..> 14-Dec-2012 08:50 3.2K

EMBASE-DROITE-16-VOI..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-20-VOI..> 14-Dec-2012 08:50 3.2K

EMBASE-DROITE-26-VOI..> 14-Dec-2012 08:53 3.2K

EMBASE-DROITE-26-VOI..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-26-VOI..> 13-Dec-2012 19:01 3.2K

EMBASE-DROITE-30-VOI..> 14-Dec-2012 08:50 3.2K

EMBASE-DROITE-34-VOI..> 14-Dec-2012 08:53 3.2K

EMBASE-DROITE-34-VOI..> 13-Dec-2012 19:02 3.2K

EMBASE-DROITE-40-VOI..> 14-Dec-2012 08:53 3.2K

EMBASE-DROITE-40-VOI..> 13-Dec-2012 19:02 3.2K

EMBASE-DROITE-50-VOI..> 14-Dec-2012 08:53 3.2K

EMBASE-DROITE-50-VOI..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-50-VOI..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-50-VOI..> 13-Dec-2012 19:01 3.2K

EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:48 3.2K

EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:43 3.2K

EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:48 3.2K

EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:46 3.2K

EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:48 3.2K

EMBASE-DROITE-STD-50..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:37 3.2K

EMBASE-DROITE-VERROU..> 14-Dec-2012 08:37 3.2K

EMBASE-F-HE10-DROIT-..> 14-Dec-2012 08:37 3.2K

EMBASE-F-HE10-DROIT-..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-4V-10..> 14-Dec-2012 08:42 3.2K

EMBASE-FEMELLE-6P-10..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-6P-10..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-6V-10..> 14-Dec-2012 08:38 3.2K

EMBASE-FEMELLE-6V-10..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-7P-10..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-8-VOI..> 14-Dec-2012 08:43 3.2K

EMBASE-FEMELLE-8P-10..> 14-Dec-2012 08:44 3.2K

EMBASE-FEMELLE-10P-1..> 14-Dec-2012 08:44 3.2K

EMBASE-FEMELLE-19P-1..> 14-Dec-2012 08:42 3.2K

EMBASE-FEMELLE-26P-1..> 14-Dec-2012 08:44 3.2K

EMBASE-FEMELLE-32P-1..> 14-Dec-2012 08:42 3.2K

EMBASE-FEMELLE-CI-90..> 14-Dec-2012 08:38 3.2K

EMBASE-FEMELLE-CI-90..> 14-Dec-2012 08:38 3.2K

EMBASE-FEMELLE-CI-90..> 14-Dec-2012 08:38 3.2K

EMBASE-FEMELLE-CI-VE..> 14-Dec-2012 08:38 3.2K

EMBASE-FEMELLE-CMS-S..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-DROIT..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-R-A-2..> 14-Dec-2012 08:37 3.2K

EMBASE-FEMELLE-VERTI..> 14-Dec-2012 08:45 3.2K

EMBASE-HE10-10P-1099..> 14-Dec-2012 08:37 3.2K

EMBASE-IDC--6-VOIES-..> 14-Dec-2012 08:39 3.2K

EMBASE-IDC--10-VOIES..> 14-Dec-2012 08:39 3.2K

EMBASE-IDC--14-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC--16-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC--20-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC--20-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC--26-VOIES..> 14-Dec-2012 08:39 3.2K

EMBASE-IDC--34-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC--34-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC--50-VOIES..> 14-Dec-2012 08:39 3.2K

EMBASE-IDC--60-VOIES..> 14-Dec-2012 08:36 3.2K

EMBASE-IDC-D.-FILETE..> 14-Dec-2012 08:37 3.2K

EMBASE-IDC-D.-FILETE..> 14-Dec-2012 08:37 3.2K

EMBASE-IDC-D.-NON-FI..> 14-Dec-2012 08:37 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:45 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:38 3.2K

EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43 3.2K

EMBASE-ISOLE-BNC-FEM..> 14-Dec-2012 08:39 3.2K

EMBASE-ISOLE-BNC-FEM..> 14-Dec-2012 08:43 3.2K

EMBASE-ISOLE-COUDEE-..> 14-Dec-2012 08:39 3.2K

EMBASE-ISOLEE-BNC-FE..> 14-Dec-2012 08:39 3.2K

EMBASE-JACK.6-POSITI..> 14-Dec-2012 08:38 3.2K

EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-DROIT-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-DROIT-..> 14-Dec-2012 08:37 3.2K

EMBASE-M-HE10-DROIT-..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-3-POLES-..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-3V-10777..> 14-Dec-2012 08:45 3.2K

EMBASE-MALE-4V-10777..> 14-Dec-2012 08:45 3.2K

EMBASE-MALE-6P-10791..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-6V-10777..> 14-Dec-2012 08:42 3.2K

EMBASE-MALE-6V-10777..> 14-Dec-2012 08:45 3.2K

EMBASE-MALE-6V-10777..> 14-Dec-2012 08:43 3.2K

EMBASE-MALE-10-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-10-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-16-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-16V-1097..> 14-Dec-2012 08:38 3.2K

EMBASE-MALE-20-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-20-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-26-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-26P-1079..> 14-Dec-2012 08:42 3.2K

EMBASE-MALE-26V-1097..> 14-Dec-2012 08:38 3.2K

EMBASE-MALE-26V-1097..> 14-Dec-2012 08:38 3.2K

EMBASE-MALE-26V-1097..> 14-Dec-2012 08:38 3.2K

EMBASE-MALE-34-VOIES..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-90DEG-20..> 14-Dec-2012 08:38 3.2K

EMBASE-MALE-90DG-1RG..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-90DG-1RG..> 14-Dec-2012 08:44 3.2K

EMBASE-MALE-90DG-2RG..> 14-Dec-2012 08:44 3.2K

EMBASE-MALE-90DG-2RG..> 14-Dec-2012 08:40 3.2K

EMBASE-MALE-DIL-90DG..> 14-Dec-2012 08:44 3.2K

EMBASE-MALE-DROITE-D..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-DROITE-D..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-DROITE-D..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-DROITE-U..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-DROITE-U..> 14-Dec-2012 08:37 3.2K

EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:45 3.2K

EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:41 3.2K

EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:45 3.2K

EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:41 3.2K

EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:45 3.2K

EMBASE-MALE-SIL-90DG..> 14-Dec-2012 08:44 3.2K

EMBASE-MALE-VERTICAL..> 14-Dec-2012 08:47 3.2K

EMBASE-MALE-VERTICAL..> 14-Dec-2012 08:47 3.2K

EMBASE-MINI-FIT-COUD..> 14-Dec-2012 08:53 3.1K

EMBASE-MINI-FIT-COUD..> 13-Dec-2012 19:01 3.1K

EMBASE-MINI-FIT-COUD..> 14-Dec-2012 08:53 3.1K

EMBASE-MINI-FIT-COUD..> 13-Dec-2012 19:01 3.1K

EMBASE-MODULAIRE-RJ4..> 14-Dec-2012 08:38 3.2K

EMBASE-MONTEE-SUR-GO..> 14-Dec-2012 08:45 3.1K

EMBASE-MSTBO-25--3-G..> 14-Dec-2012 08:39 2.8K

EMBASE-MSTBO-25--3-G..> 14-Dec-2012 08:39 2.8K

EMBASE-MSTBO-25--4-G..> 14-Dec-2012 08:42 2.8K

EMBASE-MSTBO-25--4-G..> 14-Dec-2012 08:39 2.8K

EMBASE-PANNEAU-POAG-..> 14-Dec-2012 08:41 2.9K

EMBASE-POUR-COLLIER-..> 14-Dec-2012 08:50 3.1K

EMBASE-POUR-COLLIER-..> 14-Dec-2012 08:50 3.1K

EMBASE-POUR-COLLIER-..> 14-Dec-2012 08:45 3.1K

EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:43 3.2K

EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:46 3.2K

EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:46 3.2K

EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:43 3.2K

EMBASE-RELAIS-(PQ5)-..> 14-Dec-2012 08:47 3.0K

EMBASE-RELAIS-RAIL-D..> 14-Dec-2012 08:53 3.2K

EMBASE-RELAIS-RAIL-D..> 13-Dec-2012 19:01 3.2K

EMBASE-RELAIS-RAIL-D..> 14-Dec-2012 08:53 3.2K

EMBASE-RELAIS-RAIL-D..> 13-Dec-2012 19:01 3.2K

EMBASE-RJ45-CAT.-6-P..> 14-Dec-2012 08:43 3.2K

EMBASE-SMA-A-ECROU-1..> 14-Dec-2012 08:44 3.2K

EMBASE-SMA-CI-DROITE..> 14-Dec-2012 08:44 3.2K

EMBASE-SMA-PANNEAU-1..> 14-Dec-2012 08:47 3.2K

EMBASE-SUB-D-COUDEE-..> 14-Dec-2012 08:45 3.2K

EMBASE-SUB-D-COUDEE-..> 14-Dec-2012 08:41 3.2K

EMBASE-SUB-D-HD-FEME..> 14-Dec-2012 08:43 3.2K

EMBASE-SUB-D-HD-FEME..> 14-Dec-2012 08:39 3.2K

EMBASE-SUB-D-HD-FEME..> 14-Dec-2012 08:39 3.2K

EMBASE-UNE-RANGEE-36..> 14-Dec-2012 08:49 3.2K

EMBASE-UNE-RANGEE-36..> 14-Dec-2012 08:46 3.2K

EMBASE-VERTICALE-DOU..> 14-Dec-2012 08:44 3.2K

EMBASE.-COUDE.-2-VOI..> 14-Dec-2012 08:53 3.2K

EMBASE.-COUDE.-2-VOI..> 13-Dec-2012 19:02 3.2K

EMBASE.-COUDE.-6-VOI..> 14-Dec-2012 08:50 3.2K

EMBASE.-COUDE.-8-VOI..> 14-Dec-2012 08:47 3.2K

EMBASE.-COUDE.-10-VO..> 14-Dec-2012 08:50 3.2K

EMBASE.-COUDE.-24-VO..> 14-Dec-2012 08:47 3.1K

EMBASE.-MICROFIT.-CO..> 14-Dec-2012 08:47 3.2K

EMBASE.-MICROFIT.-CO..> 14-Dec-2012 08:47 3.2K

EMBASE.-VERTICAL.-4-..> 14-Dec-2012 08:47 3.1K

EMBASE.-VERTICAL.-6-..> 14-Dec-2012 08:50 3.2K

EMBASE.-VERTICAL.-8-..> 14-Dec-2012 08:50 3.2K

EMBASE.-VERTICAL.-10..> 14-Dec-2012 08:47 3.2K

EMBASE.-VERTICAL.-20..> 14-Dec-2012 08:53 3.1K

EMBASE.-VERTICAL.-20..> 13-Dec-2012 19:02 3.1K

EMBASE.-VERTICAL.-24..> 14-Dec-2012 08:53 3.2K

EMBASE.-VERTICAL.-24..> 13-Dec-2012 19:01 3.1K

EMBASE.2.54MM.htm 05-Jan-2013 15:12 4.4M

EMBOUT-22AWG-PLASTIQ..> 14-Dec-2012 08:44 2.8K

EMBOUT-38MM-BLANC-10..> 14-Dec-2012 08:44 2.8K

EMBOUT-38MM-BRUN-106..> 14-Dec-2012 08:44 2.8K

EMBOUT-DE-PIED-10664..> 14-Dec-2012 08:39 3.0K

EMBOUT-NYLON-1.3-4-1..> 14-Dec-2012 08:44 2.8K

EMBOUT-POUR-MAILLET-..> 14-Dec-2012 08:39 2.8K

EMBOUT-POUR-VIS-A-FE..> 14-Dec-2012 08:42 2.8K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:46 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:48 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:46 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:41 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:48 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:41 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:48 3.2K

EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:41 3.2K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:52 3.1K

EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:01 3.1K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:49 3.1K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:52 3.2K

EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:01 3.1K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:56 3.2K

EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:02 3.2K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:56 3.2K

EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:02 3.1K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:49 3.1K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:52 3.2K

EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:01 3.2K

EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:55 3.2K

EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:02 3.1K

ENCODEUR-OPTIQUE-100..> 14-Dec-2012 08:57 3.2K

ENCODEUR-OPTIQUE-100..> 14-Dec-2012 08:56 3.2K

ENCODEUR-OPTIQUE.html 13-Dec-2012 19:02 3.2K

ENGRAVER-BIT,-SOLID-..> 14-Dec-2012 08:45 2.9K

ENROULEUR-IP44-15M-1..> 14-Dec-2012 08:36 3.2K

ENTRETOISE-SUB-D-CI-..> 14-Dec-2012 08:39 2.8K

EQUERRE-108345.html 14-Dec-2012 08:42 2.8K

ETIQUETTE-19-X-76.2-..> 14-Dec-2012 08:39 3.0K

ETIQUETTE-STOP-10823..> 14-Dec-2012 08:39 2.9K

ETIQUETTES-´LEAD-..> 14-Dec-2012 08:49 3.0K

ETUI-DE-TRANSPORT-10..> 14-Dec-2012 08:42 2.8K

EXTRACTEUR-105498.html 14-Dec-2012 08:45 2.8K

FAISCEAU-DE-CABLES-1..> 14-Dec-2012 08:54 3.1K

FAISCEAU-DE-CABLES.html 13-Dec-2012 19:02 3.1K

FASQUE-D´EXTREMIT..> 14-Dec-2012 08:48 3.1K

FAX-ROLL,-210MMX15M-..> 14-Dec-2012 08:50 2.7K

FAX-ROLL,-210MMX30MX..> 14-Dec-2012 08:47 2.7K

FAX-ROLL,-210MMX100M..> 14-Dec-2012 08:50 2.7K

FEMELLE-BNC-DROITE-R..> 14-Dec-2012 08:45 3.2K

FER-A-SOUDER-1018758..> 14-Dec-2012 08:47 2.8K

FEUILLE-ADHESIVE-101..> 14-Dec-2012 08:48 3.1K

FIBRE-CUT-DISC,-22MM..> 14-Dec-2012 08:43 2.9K

FIBRE-CUT-DISC,-22MM..> 14-Dec-2012 08:39 2.9K

FIBRE-CUT-DISC,-38MM..> 14-Dec-2012 08:39 2.8K

FICHE-2MM-BLEU-PQ5-1..> 14-Dec-2012 08:39 3.2K

FICHE-2MM-EMPILABLE-..> 14-Dec-2012 08:39 3.2K

FICHE-2MM-EMPILABLE-..> 14-Dec-2012 08:41 3.2K

FICHE-2MM-EMPILABLE-..> 14-Dec-2012 08:39 3.2K

FICHE-2MM-JAUNE-PQ5-..> 14-Dec-2012 08:39 3.2K

FICHE-2MM-NOIR-PQ5-1..> 14-Dec-2012 08:39 3.2K

FICHE-2MM-ROUGE-PQ5-..> 14-Dec-2012 08:36 3.2K

FICHE-2MM-VERT-PQ5-1..> 14-Dec-2012 08:39 3.2K

FICHE-4-POLES-FEMELL..> 14-Dec-2012 08:45 3.2K

FICHE-4MM-BLANC-PQ5-..> 14-Dec-2012 08:39 3.2K

FICHE-4MM-BLEU-PQ5-1..> 14-Dec-2012 08:39 3.2K

FICHE-4MM-EMPILABLE-..> 14-Dec-2012 08:36 3.2K

FICHE-4MM-EMPILABLE-..> 14-Dec-2012 08:41 3.2K

FICHE-4MM-JAUNE-PQ5-..> 14-Dec-2012 08:41 3.2K

FICHE-4MM-NOIRE-PROT..> 14-Dec-2012 08:39 3.2K

FICHE-4MM-ROUGE-PQ5-..> 14-Dec-2012 08:39 3.2K

FICHE-4MM-ROUGE-PQ5-..> 14-Dec-2012 08:39 3.2K

FICHE-6-POLES-FEMELL..> 14-Dec-2012 08:45 3.2K

FICHE-6-POLES-MALE-1..> 14-Dec-2012 08:38 3.2K

FICHE-BANANE-EMPILAB..> 14-Dec-2012 08:39 3.2K

FICHE-BANANE-EMPILAB..> 14-Dec-2012 08:36 3.2K

FICHE-BANANE-EMPILAB..> 14-Dec-2012 08:41 3.2K

FICHE-BNC-50-OHM-RG5..> 14-Dec-2012 08:45 3.2K

FICHE-BNC-50-OHM-RG2..> 14-Dec-2012 08:45 3.2K

FICHE-BNC-MALE-ISOLE..> 14-Dec-2012 08:39 3.2K

FICHE-BNC-MALE-ISOLE..> 14-Dec-2012 08:36 3.2K

FICHE-D-IDC-FILETE-9..> 14-Dec-2012 08:37 3.2K

FICHE-D-IDC-NON-FILE..> 14-Dec-2012 08:37 3.2K

FICHE-D-IDC-NON-FILE..> 14-Dec-2012 08:37 3.2K

FICHE-DE-SECURITE-1...> 14-Dec-2012 08:39 3.2K

FICHE-DE-SECURITE-2M..> 14-Dec-2012 08:36 3.2K

FICHE-DE-SECURITE-A-..> 14-Dec-2012 08:41 3.1K

FICHE-DE-SECURITE-A-..> 14-Dec-2012 08:39 3.2K

FICHE-DE-SECURITE-FE..> 14-Dec-2012 08:39 3.2K

FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:47 3.0K

FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:54 3.1K

FICHE-DE-TEST-MALE-4..> 13-Dec-2012 19:02 3.1K

FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:47 3.0K

FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:53 3.0K

FICHE-DE-TEST-MALE-4..> 13-Dec-2012 19:02 3.0K

FICHE-DE-TEST-MALE-N..> 14-Dec-2012 08:50 3.0K

FICHE-DE-TEST-MALE-R..> 14-Dec-2012 08:54 3.0K

FICHE-DE-TEST-MALE-R..> 13-Dec-2012 19:02 3.0K

FICHE-DIN-41612-C64-..> 14-Dec-2012 08:37 3.2K

FICHE-FEM.-CMS-64-VO..> 14-Dec-2012 08:53 3.2K

FICHE-FEM.-CMS-64-VO..> 13-Dec-2012 19:02 3.2K

FICHE-FEM.-CMS-64-VO..> 14-Dec-2012 08:53 3.2K

FICHE-FEM.-CMS-64-VO..> 13-Dec-2012 19:02 3.2K

FICHE-FEMELLE-2P-107..> 14-Dec-2012 08:41 3.2K

FICHE-FEMELLE-3-POLE..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-3-POLE..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-3P-107..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-3V-107..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-4-POLE..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-4-POLE..> 14-Dec-2012 08:43 3.2K

FICHE-FEMELLE-4-POLE..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-4V-107..> 14-Dec-2012 08:43 3.2K

FICHE-FEMELLE-6-VOIE..> 14-Dec-2012 08:36 3.2K

FICHE-FEMELLE-6P-107..> 14-Dec-2012 08:45 3.2K

FICHE-FEMELLE-6V-107..> 14-Dec-2012 08:45 3.2K

FICHE-FEMELLE-6V-107..> 14-Dec-2012 08:45 3.2K

FICHE-FEMELLE-6V-107..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-8P-107..> 14-Dec-2012 08:37 3.2K

FICHE-FEMELLE-19P-10..> 14-Dec-2012 08:37 3.2K

FICHE-FEMELLE-22-18-..> 14-Dec-2012 08:47 3.2K

FICHE-FEMELLE-26P-10..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-32P-10..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-90DEG-..> 14-Dec-2012 08:40 3.2K

FICHE-FEMELLE-90DEG-..> 14-Dec-2012 08:37 3.2K

FICHE-FEMELLE-90DEG-..> 14-Dec-2012 08:40 3.2K

FICHE-FEMELLE-A-SERT..> 14-Dec-2012 08:45 3.2K

FICHE-FEMELLE-BNC-BL..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-BU..> 14-Dec-2012 08:45 3.2K

FICHE-FEMELLE-BNC-BU..> 14-Dec-2012 08:47 3.2K

FICHE-FEMELLE-BNC-BU..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-CO..> 14-Dec-2012 08:40 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:47 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:49 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:47 3.2K

FICHE-FEMELLE-BNC-ST..> 14-Dec-2012 08:44 3.2K

FICHE-FEMELLE-BNC-ST..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:43 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46 3.2K

FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:43 3.2K

FICHE-FEMELLE-CMS-SA..> 14-Dec-2012 08:37 3.2K

FICHE-FEMELLE-COUDEE..> 14-Dec-2012 08:45 3.1K

FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:42 3.2K

FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48 3.2K

FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:46 3.2K

FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:50 3.1K

FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:45 3.0K

FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:45 3.0K

FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:48 3.1K

FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:49 3.0K

FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:45 3.0K

FICHE-FEMELLE-PANNEA..> 14-Dec-2012 08:40 3.2K

FICHE-FEMELLE-PG7-10..> 14-Dec-2012 08:47 3.2K

FICHE-FEMELLE-PG8-10..> 14-Dec-2012 08:54 3.2K

FICHE-FEMELLE-PG8.html 13-Dec-2012 19:02 3.2K

FICHE-FEMELLE-SCSI2-..> 14-Dec-2012 08:38 3.2K

FICHE-FEMELLE-SUB-D-..> 14-Dec-2012 08:37 3.2K

FICHE-FEMELLE-USB-CO..> 14-Dec-2012 08:43 3.2K

FICHE-FEMELLE-USB-CO..> 14-Dec-2012 08:38 3.2K

FICHE-FEMELLE-VERTIC..> 14-Dec-2012 08:38 3.2K

FICHE-IDC-D-METAL-15..> 14-Dec-2012 08:38 3.2K

FICHE-IDC-D-METAL-37..> 14-Dec-2012 08:38 3.2K

FICHE-JACK-BNC-BULKH..> 14-Dec-2012 08:40 3.2K

FICHE-JACK-BNC-BULKH..> 14-Dec-2012 08:49 3.2K

FICHE-JACK-BNC-BULKH..> 14-Dec-2012 08:47 3.2K

FICHE-JACK-BNC-DROIT..> 14-Dec-2012 08:44 3.2K

FICHE-JACK-DROITE-50..> 14-Dec-2012 08:48 3.2K

FICHE-JACK-DROITE-75..> 14-Dec-2012 08:49 3.2K

FICHE-JACK-TNC-DROIT..> 14-Dec-2012 08:47 3.2K

FICHE-LIBRE-MALE-8-V..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-2P-107942..> 14-Dec-2012 08:44 3.2K

FICHE-MALE-2P-107956..> 14-Dec-2012 08:41 3.2K

FICHE-MALE-3-POLES-B..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-3-POLES-V..> 14-Dec-2012 08:38 3.2K

FICHE-MALE-3V-107771..> 14-Dec-2012 08:43 3.2K

FICHE-MALE-4-POLES-R..> 14-Dec-2012 08:38 3.2K

FICHE-MALE-4MM-EMPIL..> 14-Dec-2012 08:41 3.2K

FICHE-MALE-4MM-EMPIL..> 14-Dec-2012 08:41 3.2K

FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:37 3.0K

FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:42 3.0K

FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:37 3.0K

FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:37 3.0K

FICHE-MALE-4V-107770..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-6P-107894..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-6V-107770..> 14-Dec-2012 08:38 3.2K

FICHE-MALE-6V-107771..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-7P-107895..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-8-POLES-J..> 14-Dec-2012 08:38 3.2K

FICHE-MALE-8P-107896..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-10P-10789..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-10P-10795..> 14-Dec-2012 08:41 3.2K

FICHE-MALE-12P-10789..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:45 3.1K

FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:45 3.1K

FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:49 3.0K

FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:50 3.0K

FICHE-MALE-19P-10789..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-19P-10794..> 14-Dec-2012 08:41 3.2K

FICHE-MALE-32A-IP44-..> 14-Dec-2012 08:48 3.0K

FICHE-MALE-32A-IP44-..> 14-Dec-2012 08:50 3.0K

FICHE-MALE-32A-IP44-..> 14-Dec-2012 08:49 3.0K

FICHE-MALE-32P-10790..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-90DEG-9-V..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-90DEG-9-V..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-90DEG-15-..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-90DEG-25-..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-90DEG-37-..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:40 3.2K

FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-BNC-DROIT..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-BNC-DROIT..> 14-Dec-2012 08:40 3.2K

FICHE-MALE-CHASSIS-2..> 14-Dec-2012 08:41 3.1K

FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:43 3.2K

FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:49 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:49 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:49 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:43 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:43 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48 3.2K

FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48 3.2K

FICHE-MALE-CMS-SATA-..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-COUDE-SAT..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-COUDEE-TY..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-DROITE-15..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-DROITE-25..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-DROITE-38..> 14-Dec-2012 08:46 3.2K

FICHE-MALE-DROITE-38..> 14-Dec-2012 08:43 3.2K

FICHE-MALE-DROITE-50..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:44 3.2K

FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:49 3.2K

FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:49 3.2K

FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:49 3.2K

FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:48 3.2K

FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:44 3.2K

FICHE-MALE-DROITE-SA..> 14-Dec-2012 08:42 3.2K

FICHE-MALE-FOURCHE-4..> 14-Dec-2012 08:50 2.9K

FICHE-MALE-FOURCHE-4..> 14-Dec-2012 08:53 2.9K

FICHE-MALE-FOURCHE-4..> 13-Dec-2012 19:02 2.9K

FICHE-MALE-LIBRE-32A..> 14-Dec-2012 08:48 3.0K

FICHE-MALE-LIBRE-BLE..> 14-Dec-2012 08:50 3.0K

FICHE-MALE-LIBRE-ROU..> 14-Dec-2012 08:48 3.0K

FICHE-MALE-LIBRE-ROU..> 14-Dec-2012 08:45 3.0K

FICHE-MALE-PANNEAU-B..> 14-Dec-2012 08:44 3.2K

FICHE-MALE-SMA-COUDE..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:47 3.2K

FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:40 3.2K

FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:45 3.2K

FICHE-MALE-SMB-COUDE..> 14-Dec-2012 08:40 3.2K

FICHE-MALE-SUB-D-25-..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-SUB-D-37-..> 14-Dec-2012 08:37 3.2K

FICHE-MALE-UHF-DROIT..> 14-Dec-2012 08:44 3.2K

FICHE-N-DROITE-50-OH..> 14-Dec-2012 08:47 3.2K

FICHE-N-DROITE-50-OH..> 14-Dec-2012 08:40 3.2K

FICHE-N-DROITE-50-OH..> 14-Dec-2012 08:44 3.2K

FICHE-NOIR-4MM-(PQ5)..> 14-Dec-2012 08:39 3.2K

FICHE-ROUGE-4MM-(PQ5..> 14-Dec-2012 08:39 3.2K

FICHE-SECU-FEMELLE-1..> 14-Dec-2012 08:36 3.2K

FICHE-SECU-FEMELLE-2..> 14-Dec-2012 08:36 3.1K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:47 3.1K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50 3.2K

FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:53 3.1K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54 3.2K

FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:53 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54 3.1K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50 3.2K

FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50 3.1K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54 3.2K

FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02 3.2K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50 3.0K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50 3.1K

FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54 3.2K

FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02 3.2K

FICHE-SECURITE-1.5MM..> 14-Dec-2012 08:41 3.2K

FICHE-SECURITE-A-SER..> 14-Dec-2012 08:41 3.1K

FICHE-TNC-DROITE-50-..> 14-Dec-2012 08:47 3.2K

FIL.htm 05-Jan-2013 15:12 3.9M

FILTRE-EXTRACTION-DE..> 14-Dec-2012 08:48 3.0K

FILTRE-VIDEO-CMS-AVE..> 14-Dec-2012 08:43 3.2K

FILTRE.htm 05-Jan-2013 15:10 3.4M

FIN-DE-COURSE-103469..> 14-Dec-2012 08:43 3.2K

FIN-DE-COURSE-103470..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103471..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103473..> 14-Dec-2012 08:48 3.2K

FIN-DE-COURSE-103474..> 14-Dec-2012 08:43 3.2K

FIN-DE-COURSE-103487..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103488..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103489..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103490..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103491..> 14-Dec-2012 08:46 3.2K

FIN-DE-COURSE-103492..> 14-Dec-2012 08:42 3.2K

FIN-DE-COURSE-103493..> 14-Dec-2012 08:42 3.2K

FIXATION-1004149.html 14-Dec-2012 08:57 2.8K

FIXATION-ADHESIVE-10..> 14-Dec-2012 08:49 3.0K

FIXATION-ADHESIVE-10..> 14-Dec-2012 08:49 3.0K

FIXATION-ADHESIVE-DO..> 14-Dec-2012 08:45 3.0K

FIXATION-COFFRET-H=2..> 14-Dec-2012 08:46 2.9K

FIXATION-MURALE--PQ-..> 14-Dec-2012 08:57 2.7K

FIXATION-MURALE--PQ-..> 13-Dec-2012 19:03 2.7K

FIXATION-MURALE-1022..> 14-Dec-2012 08:46 2.8K

FIXATION-POUR-CAPOT-..> 14-Dec-2012 08:39 2.9K

FIXATION.html 13-Dec-2012 19:03 2.8K

FLAP-WHEEL,-20X10MM-..> 14-Dec-2012 08:46 2.8K

FLAP-WHEEL,-30X10MM-..> 14-Dec-2012 08:43 2.8K

FLASQUE-D´EXTREMI..> 14-Dec-2012 08:50 3.0K

FLIPCHART,-TRIPOD-10..> 14-Dec-2012 08:43 2.7K

FLIPCHART-PADS,-80GS..> 14-Dec-2012 08:45 2.7K

FLOAT-COMMUT-HORIZ-1..> 14-Dec-2012 08:52 3.2K

FLOAT-COMMUT-HORIZ.html 13-Dec-2012 19:01 3.2K

FLOW-COMMUTATEUR-15M..> 14-Dec-2012 08:54 3.2K

FLOW-COMMUTATEUR-15M..> 13-Dec-2012 19:02 3.2K

FLOW-COMMUTATEUR-BRA..> 14-Dec-2012 08:52 3.2K

FLOW-COMMUTATEUR-BRA..> 13-Dec-2012 19:01 3.2K

FLOW-COMMUTATEUR-BRA..> 14-Dec-2012 08:56 3.2K

FLOW-COMMUTATEUR-BRA..> 13-Dec-2012 19:03 3.2K

FOND-DE-LEGENDE-VERT..> 14-Dec-2012 08:43 2.8K

FORET-1-4-HSS-100579..> 14-Dec-2012 08:56 2.9K

FORET-1-4-HSS.html 13-Dec-2012 19:02 2.9K

FORET-1-8-HSS-100571..> 14-Dec-2012 08:56 2.9K

FORET-1-8-HSS.html 13-Dec-2012 19:02 2.9K

FORET-1-16HSS-100567..> 14-Dec-2012 08:54 2.9K

FORET-1-16HSS.html 13-Dec-2012 19:02 2.9K

FORET-3-8-HSS-100587..> 14-Dec-2012 08:57 2.9K

FORET-3-8-HSS.html 13-Dec-2012 19:03 2.9K

FORET-3-16HSS-100575..> 14-Dec-2012 08:57 2.9K

FORET-3-16HSS.html 13-Dec-2012 19:03 2.9K

FORET-3-32-HSS-10056..> 14-Dec-2012 08:54 2.9K

FORET-3-32-HSS.html 13-Dec-2012 19:02 2.9K

FORET-5-16HSS-100583..> 14-Dec-2012 08:54 2.9K

FORET-5-16HSS.html 13-Dec-2012 19:02 2.9K

FORET-5-32-HSS-10057..> 14-Dec-2012 08:54 2.9K

FORET-5-32-HSS.html 13-Dec-2012 19:02 2.9K

FORET-5-64-HSS-10056..> 14-Dec-2012 08:54 2.9K

FORET-5-64-HSS.html 13-Dec-2012 19:02 2.9K

FORET-7-16HSS-100591..> 14-Dec-2012 08:54 2.9K

FORET-7-16HSS.html 13-Dec-2012 19:02 2.9K

FORET-7-64-HSS-10057..> 14-Dec-2012 08:57 2.9K

FORET-7-64-HSS.html 13-Dec-2012 19:03 2.9K

FORET-9-64-HSS-10057..> 14-Dec-2012 08:57 2.9K

FORET-9-64-HSS.html 13-Dec-2012 19:03 2.9K

FORET-11-32-HSS-1005..> 14-Dec-2012 08:54 2.9K

FORET-11-32-HSS.html 13-Dec-2012 19:02 2.9K

FORET-11-64-HSS-1005..> 14-Dec-2012 08:56 2.9K

FORET-11-64-HSS.html 13-Dec-2012 19:02 2.9K

FORET-A-ETAGES-4-20M..> 14-Dec-2012 08:39 2.9K

FORET-A-ETAGES-6-18M..> 14-Dec-2012 08:44 2.9K

FORET-A-ETAGES-20-30..> 14-Dec-2012 08:44 2.9K

FORET-BRADRAD-8-38MM..> 14-Dec-2012 08:44 2.9K

FORET-BRADRAD-10-20M..> 14-Dec-2012 08:46 2.9K

FORET-CONIQUE-3MM-TI..> 14-Dec-2012 08:52 2.9K

FORET-CONIQUE-3MM-TI..> 13-Dec-2012 19:01 2.9K

FORET-DE-MACONNERIE-..> 14-Dec-2012 08:46 2.9K

FORET-DE-MACONNERIE-..> 14-Dec-2012 08:45 2.9K

FORET-DE-MACONNERIE-..> 14-Dec-2012 08:41 2.9K

FORET-DE-MACONNERIE-..> 14-Dec-2012 08:40 2.9K

FORET-HSS-0.8MM-1042..> 14-Dec-2012 08:42 2.9K

FORET-HSS-1.5MM-1007..> 14-Dec-2012 08:49 2.9K

FORET-HSS-1.6MM-1007..> 14-Dec-2012 08:56 2.9K

FORET-HSS-1.6MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-1.8MM-1007..> 14-Dec-2012 08:52 2.9K

FORET-HSS-1.8MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-1MM-100716..> 14-Dec-2012 08:49 2.9K

FORET-HSS-2.0MM-1007..> 14-Dec-2012 08:52 2.9K

FORET-HSS-2.0MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-2.05MM-100..> 14-Dec-2012 08:49 2.9K

FORET-HSS-2.3MM-1007..> 14-Dec-2012 08:52 2.9K

FORET-HSS-2.3MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-2.9MM-1007..> 14-Dec-2012 08:52 2.9K

FORET-HSS-2.9MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-3.3MM-1007..> 14-Dec-2012 08:55 2.9K

FORET-HSS-3.3MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-3.5MM-1007..> 14-Dec-2012 08:56 2.9K

FORET-HSS-3.5MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-3MM-100725..> 14-Dec-2012 08:49 2.9K

FORET-HSS-4.2MM-1007..> 14-Dec-2012 08:52 2.9K

FORET-HSS-4.2MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-4.5MM-1007..> 14-Dec-2012 08:49 2.9K

FORET-HSS-5.1MM-1007..> 14-Dec-2012 08:49 2.9K

FORET-HSS-5MM-100731..> 14-Dec-2012 08:56 2.9K

FORET-HSS-5MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-6.5MM-1007..> 14-Dec-2012 08:49 2.9K

FORET-HSS-6.8MM-1007..> 14-Dec-2012 08:55 2.9K

FORET-HSS-6.8MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-6MM-100733..> 14-Dec-2012 08:52 2.9K

FORET-HSS-6MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-7.5MM-1007..> 14-Dec-2012 08:56 2.9K

FORET-HSS-7.5MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-7MM-100736..> 14-Dec-2012 08:55 2.9K

FORET-HSS-7MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-8.5MM-1007..> 14-Dec-2012 08:56 2.9K

FORET-HSS-8.5MM.html 13-Dec-2012 19:02 2.9K

FORET-HSS-8MM-100739..> 14-Dec-2012 08:52 2.9K

FORET-HSS-8MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-9.5MM-1007..> 14-Dec-2012 08:49 2.9K

FORET-HSS-9MM-100741..> 14-Dec-2012 08:49 2.9K

FORET-HSS-10.2MM-100..> 14-Dec-2012 08:52 2.9K

FORET-HSS-10.2MM.html 13-Dec-2012 19:01 2.9K

FORET-HSS-10.5MM-105..> 14-Dec-2012 08:41 2.9K

FORET-HSS-10M-100743..> 14-Dec-2012 08:56 2.9K

FORET-HSS-10M.html 13-Dec-2012 19:02 2.9K

FORET-HSS-11.0MM-105..> 14-Dec-2012 08:45 2.9K

FORET-HSS-11.5MM-105..> 14-Dec-2012 08:47 2.9K

FORET-HSS-12.0MM-105..> 14-Dec-2012 08:41 2.9K

FORET-HSS-12.5MM-105..> 14-Dec-2012 08:41 2.9K

FORET-HSS-13.0MM-105..> 14-Dec-2012 08:41 2.9K

FORET-HSS-JEU-DE-13-..> 14-Dec-2012 08:52 2.8K

FORET-HSS-JEU-DE-13-..> 13-Dec-2012 19:01 2.8K

FORET-HSS-JEU-DE-19-..> 14-Dec-2012 08:52 2.9K

FORET-HSS-JEU-DE-19...> 13-Dec-2012 19:01 2.9K

FORET-HSS-JEU-DE-25-..> 14-Dec-2012 08:52 2.9K

FORET-HSS-JEU-DE-25...> 13-Dec-2012 19:01 2.8K

FORET.htm 05-Jan-2013 15:10 3.6M

FOURCHE-TEST-45-DEG-..> 14-Dec-2012 08:41 3.2K

FRAISE-CONIQUE-10067..> 14-Dec-2012 08:54 2.8K

FRAISE-CONIQUE-10067..> 14-Dec-2012 08:52 2.8K

FRAISE-CONIQUE-10421..> 14-Dec-2012 08:46 2.8K

FRAISE-CONIQUE-MALE-..> 14-Dec-2012 08:45 2.8K

FRAISE-CONIQUE.html 13-Dec-2012 19:01 2.8K

FREIN-D´ECROU-BNC..> 14-Dec-2012 08:44 2.8K

FRESNEL-LENTILLE-POU..> 14-Dec-2012 08:56 3.0K

FRESNEL-LENTILLE-POU..> 13-Dec-2012 19:02 3.0K

FUSIBLE-1A-FLUKE-106..> 14-Dec-2012 08:44 2.8K

FUSIBLE-630MA-FLUKE-..> 14-Dec-2012 08:45 2.8K

FUSIBLE.htm 05-Jan-2013 15:15 3.8M

GAINE-ISOLANTE-1MM-N..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-1MM-R..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-2MM-B..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-2MM-N..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-2MM-R..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-3MM-B..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-3MM-G..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-3MM-M..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-3MM-N..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-3MM-R..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-4MM-B..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-4MM-G..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-4MM-G..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-4MM-N..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-4MM-R..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-6MM-B..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-6MM-G..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-6MM-G..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-6MM-N..> 14-Dec-2012 08:46 3.0K

GAINE-ISOLANTE-7MM-N..> 14-Dec-2012 08:44 3.0K

GAINE-ISOLANTE-8MM-N..> 14-Dec-2012 08:44 3.0K

[   ]

GAINE-THERMO-NOIRE-3 14-Dec-2012 08:52 0

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:45 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:45 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:45 3.2K

[   ]

GAINE-THERMO.-2 14-Dec-2012 08:52 0

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:49 3.2K

GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:48 3.2K

GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50 3.2K

GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50 3.2K

[   ]

GAINE-THERMO.-VERT-J..> 14-Dec-2012 08:52 0

GAINE-THERMO.-VERT-J..> 14-Dec-2012 08:50 3.2K

[   ]

GAINE-THERMO.E-2 14-Dec-2012 08:55 0

GAINE.htm 05-Jan-2013 15:19 3.3M

GEAR-KNOB,-FLASHING,..> 14-Dec-2012 08:45 2.7K

GLUE-GUN,-EURO-PLUG,..> 14-Dec-2012 08:46 2.9K

GLUE-STICK,-SPARE,-7..> 14-Dec-2012 08:43 2.8K

GUIDE-DE-SERTISSAGE-..> 14-Dec-2012 08:44 2.8K

GUIDE-DE-SERTISSAGE-..> 14-Dec-2012 08:44 2.8K

GUIDE-POUR-BROCHE-AU..> 14-Dec-2012 08:40 2.9K

Galettes-Farnell.htm 12-Apr-2013 18:42 1.3M

HASP,-89MM-1058002.html 14-Dec-2012 08:40 2.7K

HASP,-153MM-1058004...> 14-Dec-2012 08:46 2.7K

HASP,-FOR-ROUND-PADL..> 14-Dec-2012 08:44 2.8K

HASP,-WITH-HINGE,-20..> 14-Dec-2012 08:40 2.7K

HAUT-PARLEUR-50MM-8-..> 14-Dec-2012 08:43 3.1K

HAUT-PARLEUR-66MM-8-..> 14-Dec-2012 08:46 3.1K

HAUT-PARLEUR-85MM-8-..> 14-Dec-2012 08:43 3.1K

HAUT-PARLEUR-ANTI-VA..> 14-Dec-2012 08:46 2.8K

HAUT-PARLEUR-BLANC-1..> 14-Dec-2012 08:46 3.0K

HEAD-TORCH,-RECHARGE..> 14-Dec-2012 08:53 2.8K

HEAD-TORCH,-RECHARGE..> 13-Dec-2012 19:01 2.8K

HEADSET,-Y-TRAINING-..> 14-Dec-2012 08:40 2.7K

HORLOGE-TEMPS-REEL-1..> 14-Dec-2012 08:44 3.2K

HYGROMETER,-THERMO,-..> 14-Dec-2012 08:56 3.0K

HYGROMETER,-THERMO,-..> 13-Dec-2012 19:03 3.0K

IC,-8BIT-FLASH-MCU,-..> 14-Dec-2012 08:42 3.2K

IC,-8BIT-FLASH-MCU,-..> 14-Dec-2012 08:37 3.2K

IC,-8BIT-FLASH-MCU,-..> 14-Dec-2012 08:42 3.2K

IC-8-BIT-CMOS-MCU-10..> 14-Dec-2012 08:40 3.2K

IC-8-BIT-EEPROM-MCU-..> 14-Dec-2012 08:40 3.2K

IC-8-BIT-MCU-OTP-108..> 14-Dec-2012 08:40 3.2K

IC-8-BIT-MCU-OTP-108..> 14-Dec-2012 08:43 3.2K

IC-CMOS-OP-AMP-10842..> 14-Dec-2012 08:37 3.2K

IC-CMOS-SCC-8MHZ-108..> 14-Dec-2012 08:41 3.2K

IC-CMS-8-BIT-CMOS-MC..> 14-Dec-2012 08:42 3.2K

IC-CMS-8-BIT-MCU-108..> 14-Dec-2012 08:42 3.2K

IC-CMS-8-BIT-MCU-108..> 14-Dec-2012 08:40 3.2K

IC-CMS-CMOS-SCC-8MHZ..> 14-Dec-2012 08:41 3.2K

IC-CMS-COUNTER-TIMER..> 14-Dec-2012 08:43 3.2K

IC-COMMS-CONTROLLER-..> 14-Dec-2012 08:40 3.2K

IC-CPU-(Z80B)-108187..> 14-Dec-2012 08:43 3.2K

IC-DART-Z80B-1081863..> 14-Dec-2012 08:41 3.2K

IC-PIO-Z80---8MHZ-10..> 14-Dec-2012 08:41 3.2K

IC-SIO-O-Z80-6MHZ-10..> 14-Dec-2012 08:43 3.2K

IC-SM-SMPS-20W-SMART..> 14-Dec-2012 08:45 3.2K

IDENTI-TAIL-TPE-BRN-..> 14-Dec-2012 08:45 2.8K

IDENTI-TAIL-TPE-GRY-..> 14-Dec-2012 08:45 2.8K

INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:45 3.0K

INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:45 3.0K

INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:49 3.0K

INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:49 3.0K

INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:48 3.0K

INDICATEUR-CORPS-CAR..> 14-Dec-2012 08:41 3.2K

INDICATEUR-CORPS-RON..> 14-Dec-2012 08:39 3.2K

INDICATEUR-DE-TENSIO..> 14-Dec-2012 08:45 3.0K

INDICATEUR-DE-TENSIO..> 14-Dec-2012 08:48 3.0K

INDICATEUR-DIN48-10A..> 14-Dec-2012 08:49 3.1K

INDICATEUR-DIN48-25A..> 14-Dec-2012 08:45 3.2K

INDICATEUR-DIN48-300..> 14-Dec-2012 08:48 3.2K

INDICATEUR-DIN72-5A-..> 14-Dec-2012 08:49 3.1K

INDICATEUR-DIN72-5A-..> 14-Dec-2012 08:45 3.1K

INDICATEUR-DIN72-10A..> 14-Dec-2012 08:50 3.1K

INDICATEUR-DIN72-10A..> 14-Dec-2012 08:45 3.1K

INDICATEUR-DIN72-10V..> 14-Dec-2012 08:50 3.1K

INDICATEUR-DIN72-30A..> 14-Dec-2012 08:49 3.1K

INDICATEUR-DIN72-40V..> 14-Dec-2012 08:48 3.1K

INDICATEUR-DIN72-45-..> 14-Dec-2012 08:48 3.1K

INDICATEUR-DIN72-50A..> 14-Dec-2012 08:50 3.1K

INDICATEUR-DIN72-50A..> 14-Dec-2012 08:49 3.1K

INDICATEUR-DIN72-60V..> 14-Dec-2012 08:50 3.1K

INDICATEUR-DIN72-150..> 14-Dec-2012 08:49 3.1K

INDICATEUR-DIN72-150..> 14-Dec-2012 08:49 3.1K

INDICATEUR-DIN72-300..> 14-Dec-2012 08:49 3.2K

INDICATEUR-DIN72-500..> 14-Dec-2012 08:49 3.2K

INDICATEUR-DIN72-SUR..> 14-Dec-2012 08:48 3.1K

INDICATEUR-DIN72-SUR..> 14-Dec-2012 08:50 3.1K

INDICATEUR-DIN72-SUR..> 14-Dec-2012 08:45 3.1K

INDICATEUR-METAL-DIA..> 14-Dec-2012 08:39 3.0K

INDICATEUR-PRO-DIN72..> 14-Dec-2012 08:50 3.1K

INDICATEUR-PRO-DIN72..> 14-Dec-2012 08:49 3.1K

INDUCTANCE-0.01MH-10..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-0.015MH-1..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-0.022MH-1..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-0.033MH-1..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-0.047MH-1..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-0.068MH-1..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-0.1MH-107..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-0.15MH-10..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-0.33MH-10..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-0.47MH-10..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-0.68MH-10..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-1.0MH-1.6..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-1.0MH-107..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-4.7MH-107..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-10MH-1077..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-15MH-1077..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-22MH-1077..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-22UH-11A-..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-33MH-1077..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-47MH-1077..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-47UH-8.5A..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-68MH-1077..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-68UH-6.2A..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-100UH-5.4..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-100UH-7.8..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-150UH-4.0..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-220UH-3.5..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-220UH-5.5..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-300H-3.0A..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-330UH-2.8..> 14-Dec-2012 08:38 3.2K

INDUCTANCE-330UH-4.5..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-470UH-2.3..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-470UH-4.0..> 14-Dec-2012 08:45 3.2K

INDUCTANCE-680UH-2.0..> 14-Dec-2012 08:43 3.2K

INDUCTANCE-2200UH-0...> 14-Dec-2012 08:38 3.2K

INDUCTANCE.htm 05-Jan-2013 15:30 4.2M

INDUCTOR.htm 05-Jan-2013 16:07 3.6M

INLET,-240V,-WALL-MO..> 14-Dec-2012 08:49 2.9K

INLET,-415V,-WALL-MO..> 14-Dec-2012 08:49 2.9K

INLET,-415V,-WALL-MO..> 14-Dec-2012 08:48 2.9K

INS-TAPE-50MM-X-33M-..> 14-Dec-2012 08:49 2.9K

INTERFACE-BUS-CAN-CM..> 14-Dec-2012 08:45 3.2K

INTERFACE-DE-LIGNE-P..> 14-Dec-2012 08:48 3.2K

INTERRUPTEUR-A-PEDAL..> 14-Dec-2012 08:46 2.9K

INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:39 3.2K

INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:39 3.2K

INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:39 3.2K

INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:43 3.2K

INTERRUPTEUR-POUSSOI..> 14-Dec-2012 08:39 3.2K

INTERRUPTEUR-REED-10..> 14-Dec-2012 08:42 3.2K

INTERRUPTEUR-REED-10..> 14-Dec-2012 08:42 3.2K

INTERRUPTEUR-REED-10..> 14-Dec-2012 08:42 3.2K

INTERRUPTEUR-REED-10..> 14-Dec-2012 08:37 3.2K

INTERRUPTEUR-REED-20..> 14-Dec-2012 08:44 3.2K

INTERRUPTEUR-REED-20..> 14-Dec-2012 08:41 3.2K

INTERRUPTEUR-SELECTE..> 14-Dec-2012 08:44 3.2K

INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:41 3.2K

INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:41 3.2K

INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:43 3.2K

INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:40 3.2K

INTERRUPTEUR-SPNO-10..> 14-Dec-2012 08:39 3.2K

INTERRUPTEUR-SPNO-10..> 14-Dec-2012 08:39 3.2K

INTERRUPTEUR-SPNO-CH..> 14-Dec-2012 08:43 3.2K

INTERRUPTEUR-SPNO-RO..> 14-Dec-2012 08:41 3.2K

INTERRUPTEUR-SPNO-VE..> 14-Dec-2012 08:43 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:55 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:02 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:56 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:02 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:56 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:02 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52 3.2K

INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01 3.2K

ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:37 3.2K

ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:43 3.2K

ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:42 3.2K

ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:42 3.2K

ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:37 3.2K

ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:37 3.2K

ISOPROPANOL-1LTR-106..> 14-Dec-2012 08:39 2.8K

JEU-DE-CALES-1.5-A-2..> 14-Dec-2012 08:42 2.9K

JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:46 3.0K

JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:46 3.0K

JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:43 3.0K

JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:43 3.0K

JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:43 3.0K

JEU-DE-PINCES-105412..> 14-Dec-2012 08:41 2.8K

KEY-CHAIN-RECORDER-1..> 14-Dec-2012 08:47 2.7K

KEYBOARD,-COMPACT,-C..> 14-Dec-2012 08:43 2.9K

KIT-ADAPTATEUR-DE-FE..> 14-Dec-2012 08:50 2.9K

KIT-COSSES-PLASTI-GR..> 14-Dec-2012 08:47 2.8K

KIT-CPC5-SERRE-CABLE..> 14-Dec-2012 08:38 3.1K

KIT-CPC6-LARGE-ENTRE..> 14-Dec-2012 08:45 3.1K

KIT-D´EVALUATION-..> 14-Dec-2012 08:37 3.2K

KIT-DE-BUSES-NZKT-1-..> 14-Dec-2012 08:48 2.8K

KIT-DE-BUSES-NZKT-2-..> 14-Dec-2012 08:45 2.8K

KIT-DE-CONDENSATEUR-..> 14-Dec-2012 08:52 2.9K

KIT-DE-CONDENSATEUR-..> 13-Dec-2012 19:01 2.9K

KIT-DE-CONNECTEURS-P..> 14-Dec-2012 08:54 2.8K

KIT-DE-CONNECTEURS-P..> 14-Dec-2012 08:56 2.8K

KIT-DE-CONNECTEURS-P..> 14-Dec-2012 08:56 2.8K

KIT-DE-CONNECTEURS-P..> 13-Dec-2012 19:02 2.8K

KIT-DE-DEVELOPPEMENT..> 14-Dec-2012 08:37 3.2K

KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:48 2.8K

KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:45 2.8K

KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:48 2.8K

KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:50 2.8K

KIT-DE-RADCCORDEMENT..> 14-Dec-2012 08:56 3.1K

KIT-DE-RADCCORDEMENT..> 14-Dec-2012 08:54 3.0K

KIT-DE-RADCCORDEMENT..> 13-Dec-2012 19:02 3.0K

KIT-DE-TEST-2MM-1011..> 14-Dec-2012 08:53 3.0K

KIT-DE-TEST-2MM.html 13-Dec-2012 19:02 3.0K

KIT-DE-TEST-DE-SECUR..> 14-Dec-2012 08:47 3.1K

KIT-DE-TEST-DE-SECUR..> 14-Dec-2012 08:54 3.0K

KIT-DE-TEST-DE-SECUR..> 13-Dec-2012 19:02 3.0K

KIT-DE-TEST-MICRO-10..> 14-Dec-2012 08:47 3.0K

KIT-EPOXY-1015688.html 14-Dec-2012 08:49 2.8K

KIT-MOTEUR-3-PH-24V-..> 14-Dec-2012 08:42 3.0K

KIT-SOUDAGE-106601.html 14-Dec-2012 08:46 2.8K

KIT.htm 05-Jan-2013 16:07 3.0M

LAME-DE-SCIE-105788...> 14-Dec-2012 08:44 2.9K

LAME-DE-SCIE-PQ10-10..> 14-Dec-2012 08:56 2.9K

LAME-DE-SCIE-PQ10.html 13-Dec-2012 19:03 2.9K

LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:41 3.0K

LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:45 3.0K

LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:41 3.0K

LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:47 3.0K

LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:45 3.0K

LAME-POUR-SCIE-A-MET..> 14-Dec-2012 08:52 3.0K

LAME-POUR-SCIE-A-MET..> 13-Dec-2012 19:01 3.0K

LAME-REVERSIBLE-2.0N..> 14-Dec-2012 08:41 2.9K

LAME-REVERSIBLE-4.0H..> 14-Dec-2012 08:39 2.9K

LAMPE-LOUPE-+-LENTIL..> 14-Dec-2012 08:41 2.9K

LAMPE-LOUPE-9W-ESD-S..> 14-Dec-2012 08:46 2.9K

LAMPE-TUBE-18W-AWDCE..> 14-Dec-2012 08:45 3.0K

LAMPE-TUBE-ETANCHE-R..> 14-Dec-2012 08:46 2.9K

LAMPE-UNIVERSELLE-36..> 14-Dec-2012 08:46 2.9K

LAMPHOLDER,-BC,-PERP..> 14-Dec-2012 08:42 3.0K

LAMPHOLDER,-PENDANT,..> 14-Dec-2012 08:42 2.9K

LAMPHOLDER,-PENDANT-..> 14-Dec-2012 08:42 2.9K

LEAD,-EXTENSION,-6-4..> 14-Dec-2012 08:39 3.0K

LED--5MM-ROUGE-HE-10..> 14-Dec-2012 08:46 3.2K

LED--5MM-YELL.-10455..> 14-Dec-2012 08:46 3.2K

LED-1.8MM-JAUNE-1045..> 14-Dec-2012 08:42 3.2K

LED-1.8MM-ROUGE-1045..> 14-Dec-2012 08:42 3.2K

LED-1.8MM-ROUGE-HE-1..> 14-Dec-2012 08:42 3.2K

LED-1.8MM-VERT-10454..> 14-Dec-2012 08:42 3.2K

LED-3MM-12V-ROUGE-HE..> 14-Dec-2012 08:46 3.2K

LED-3MM-AMBRE-100313..> 14-Dec-2012 08:56 3.2K

LED-3MM-AMBRE.html 13-Dec-2012 19:03 3.2K

LED-3MM-BLEU-1003308..> 14-Dec-2012 08:57 3.2K

LED-3MM-BLEU.html 13-Dec-2012 19:03 3.2K

LED-3MM-JAUNE-50-DEG..> 14-Dec-2012 08:57 3.2K

LED-3MM-JAUNE-50-DEG..> 13-Dec-2012 19:03 3.2K

LED-3MM-JAUNE-100319..> 14-Dec-2012 08:56 3.2K

LED-3MM-JAUNE-100320..> 14-Dec-2012 08:57 3.2K

LED-3MM-JAUNE-100320..> 14-Dec-2012 08:57 3.2K

LED-3MM-JAUNE-104546..> 14-Dec-2012 08:48 3.2K

LED-3MM-JAUNE-104547..> 14-Dec-2012 08:48 3.2K

LED-3MM-JAUNE-104550..> 14-Dec-2012 08:42 3.2K

LED-3MM-JAUNE.html 13-Dec-2012 19:03 3.2K

LED-3MM-ORANGE-10033..> 14-Dec-2012 08:57 3.2K

LED-3MM-ORANGE-10454..> 14-Dec-2012 08:46 3.2K

LED-3MM-ORANGE.html 13-Dec-2012 19:03 3.2K

LED-3MM-R-BLANC-25DE..> 14-Dec-2012 08:47 3.2K

LED-3MM-R-BLANC-60DE..> 14-Dec-2012 08:44 3.2K

LED-3MM-R-BLEU-15DEG..> 14-Dec-2012 08:44 3.2K

LED-3MM-R-ROUGE-34DE..> 14-Dec-2012 08:44 3.2K

LED-3MM-R-UV-30DEG-1..> 14-Dec-2012 08:44 3.2K

LED-3MM-ROUGE-50DEG-..> 14-Dec-2012 08:56 3.2K

LED-3MM-ROUGE-50DEG...> 13-Dec-2012 19:02 3.2K

LED-3MM-ROUGE-100313..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-100320..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-100320..> 14-Dec-2012 08:56 3.2K

LED-3MM-ROUGE-100320..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-100321..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-104537..> 14-Dec-2012 08:42 3.2K

LED-3MM-ROUGE-104547..> 14-Dec-2012 08:46 3.2K

LED-3MM-ROUGE-104547..> 14-Dec-2012 08:46 3.2K

LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:56 3.2K

LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:42 3.2K

LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:46 3.2K

LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:48 3.2K

LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:42 3.2K

LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:42 3.2K

LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:46 3.2K

LED-3MM-ROUGE-HE.html 13-Dec-2012 19:02 3.2K

LED-3MM-ROUGE.html 13-Dec-2012 19:03 3.2K

LED-3MM-VERT-2-10032..> 14-Dec-2012 08:57 3.2K

LED-3MM-VERT-2.html 13-Dec-2012 19:03 3.2K

LED-3MM-VERT-50-DEG-..> 14-Dec-2012 08:57 3.2K

LED-3MM-VERT-50-DEG...> 13-Dec-2012 19:03 3.2K

LED-3MM-VERT-1003199..> 14-Dec-2012 08:56 3.2K

LED-3MM-VERT-1003204..> 14-Dec-2012 08:57 3.2K

LED-3MM-VERT-1003375..> 14-Dec-2012 08:57 3.2K

LED-3MM-VERT-1003391..> 14-Dec-2012 08:57 3.2K

LED-3MM-VERT-1045459..> 14-Dec-2012 08:48 3.2K

LED-3MM-VERT-1045460..> 14-Dec-2012 08:46 3.2K

LED-3MM-VERT-1045466..> 14-Dec-2012 08:46 3.2K

LED-3MM-VERT-1045469..> 14-Dec-2012 08:46 3.2K

LED-3MM-VERT-1045505..> 14-Dec-2012 08:48 3.2K

LED-3MM-VERT.html 13-Dec-2012 19:03 3.2K

LED-5MM-AMBRE-100313..> 14-Dec-2012 08:57 3.2K

LED-5MM-AMBRE-100314..> 14-Dec-2012 08:57 3.2K

LED-5MM-AMBRE-100314..> 14-Dec-2012 08:57 3.2K

LED-5MM-AMBRE-100314..> 14-Dec-2012 08:56 3.2K

LED-5MM-AMBRE-100316..> 14-Dec-2012 08:57 3.2K

LED-5MM-AMBRE-100316..> 14-Dec-2012 08:57 3.2K

LED-5MM-AMBRE.html 13-Dec-2012 19:03 3.2K

LED-5MM-BLEU-1003309..> 14-Dec-2012 08:57 3.2K

LED-5MM-BLEU.html 13-Dec-2012 19:03 3.2K

LED-5MM-BLUE-1045418..> 14-Dec-2012 08:48 3.2K

LED-5MM-JAUNE-5V-100..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-5V.html 13-Dec-2012 19:03 3.2K

LED-5MM-JAUNE-50DEG-..> 14-Dec-2012 08:56 3.2K

LED-5MM-JAUNE-50DEG...> 13-Dec-2012 19:02 3.2K

LED-5MM-JAUNE-90DEG-..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-90DEG...> 13-Dec-2012 19:03 3.2K

LED-5MM-JAUNE-100321..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-100321..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-100322..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-100323..> 14-Dec-2012 08:56 3.2K

LED-5MM-JAUNE-100341..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-100342..> 14-Dec-2012 08:57 3.2K

LED-5MM-JAUNE-104547..> 14-Dec-2012 08:46 3.2K

LED-5MM-JAUNE-104548..> 14-Dec-2012 08:42 3.2K

LED-5MM-JAUNE-104551..> 14-Dec-2012 08:42 3.2K

LED-5MM-JAUNE.html 13-Dec-2012 19:02 3.2K

LED-5MM-ORANGE-10032..> 14-Dec-2012 08:56 3.2K

LED-5MM-ORANGE-10034..> 14-Dec-2012 08:56 3.2K

LED-5MM-ORANGE-10034..> 14-Dec-2012 08:57 3.2K

LED-5MM-ORANGE.html 13-Dec-2012 19:02 3.2K

LED-5MM-OVALE-AMBRE-..> 14-Dec-2012 08:57 3.2K

LED-5MM-OVALE-AMBRE...> 13-Dec-2012 19:03 3.2K

LED-5MM-OVALE-ROUGE-..> 14-Dec-2012 08:57 3.2K

LED-5MM-OVALE-ROUGE...> 13-Dec-2012 19:03 3.2K

LED-5MM-R-BLANC-50DE..> 14-Dec-2012 08:44 3.2K

LED-5MM-R-BLEU-45DEG..> 14-Dec-2012 08:47 3.2K

LED-5MM-R-ROUGE-20DE..> 14-Dec-2012 08:44 3.2K

LED-5MM-R-UV-30DEG-1..> 14-Dec-2012 08:40 3.2K

LED-5MM-ROUGE-50DEG-..> 14-Dec-2012 08:56 3.2K

LED-5MM-ROUGE-50DEG...> 13-Dec-2012 19:02 3.2K

LED-5MM-ROUGE-90DEG-..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-90DEG...> 13-Dec-2012 19:03 3.2K

LED-5MM-ROUGE-100313..> 14-Dec-2012 08:56 3.2K

LED-5MM-ROUGE-100315..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100315..> 14-Dec-2012 08:56 3.2K

LED-5MM-ROUGE-100317..> 14-Dec-2012 08:56 3.2K

LED-5MM-ROUGE-100317..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100322..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100322..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100322..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100323..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100323..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100323..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100331..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100332..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-100332..> 14-Dec-2012 08:56 3.2K

LED-5MM-ROUGE-100332..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-104537..> 14-Dec-2012 08:46 3.2K

LED-5MM-ROUGE-104548..> 14-Dec-2012 08:46 3.2K

LED-5MM-ROUGE-104548..> 14-Dec-2012 08:42 3.2K

LED-5MM-ROUGE-HE-2-1..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-2.html 13-Dec-2012 19:03 3.2K

LED-5MM-ROUGE-HE-5V-..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-5V...> 13-Dec-2012 19:03 3.2K

LED-5MM-ROUGE-HE-12V..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-12V..> 13-Dec-2012 19:03 3.2K

LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:56 3.2K

LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:46 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:46 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48 3.2K

LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:46 3.2K

LED-5MM-ROUGE-HE-VER..> 14-Dec-2012 08:57 3.2K

LED-5MM-ROUGE-HE-VER..> 13-Dec-2012 19:03 3.2K

LED-5MM-ROUGE-HE.html 13-Dec-2012 19:02 3.2K

LED-5MM-ROUGE.html 13-Dec-2012 19:02 3.2K

LED-5MM-TRICOLOR-104..> 14-Dec-2012 08:46 3.2K

LED-5MM-VERT-5V-1003..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-5V.html 13-Dec-2012 19:03 3.2K

LED-5MM-VERT-50DEG-1..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-50DEG.html 13-Dec-2012 19:03 3.2K

LED-5MM-VERT-90DEG-1..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-90DEG.html 13-Dec-2012 19:03 3.2K

LED-5MM-VERT-1003214..> 14-Dec-2012 08:56 3.2K

LED-5MM-VERT-1003218..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-1003226..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-1003234..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-1003420..> 14-Dec-2012 08:56 3.2K

LED-5MM-VERT-1003421..> 14-Dec-2012 08:57 3.2K

LED-5MM-VERT-1045476..> 14-Dec-2012 08:48 3.2K

LED-5MM-VERT-1045482..> 14-Dec-2012 08:46 3.2K

LED-5MM-VERT-1045483..> 14-Dec-2012 08:48 3.2K

LED-5MM-VERT-1045509..> 14-Dec-2012 08:42 3.2K

LED-5MM-VERT.html 13-Dec-2012 19:02 3.2K

LED-CMS-BLANC-105837..> 14-Dec-2012 08:46 3.2K

LED-CMS-BLEU-120DEG-..> 14-Dec-2012 08:47 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-0603..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44 3.2K

LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40 3.2K

LED-CMS-JAUNE-100335..> 14-Dec-2012 08:57 3.2K

LED-CMS-JAUNE.html 13-Dec-2012 19:03 3.2K

LED-CMS-ORANGE-10583..> 14-Dec-2012 08:44 3.2K

LED-CMS-ROUGE-100335..> 14-Dec-2012 08:57 3.2K

LED-CMS-ROUGE-HE-100..> 14-Dec-2012 08:56 3.2K

LED-CMS-ROUGE-HE-105..> 14-Dec-2012 08:44 3.2K

LED-CMS-ROUGE-HE.html 13-Dec-2012 19:02 3.2K

LED-CMS-ROUGE-JAUNE-..> 14-Dec-2012 08:44 3.2K

LED-CMS-ROUGE-JAUNE-..> 14-Dec-2012 08:44 3.2K

LED-CMS-ROUGE.html 13-Dec-2012 19:03 3.2K

LED-CMS-VERT-1003359..> 14-Dec-2012 08:57 3.2K

LED-CMS-VERT.html 13-Dec-2012 19:03 3.2K

LED-RECTANGULAIRE-H...> 14-Dec-2012 08:57 3.2K

LED-RECTANGULAIRE-H...> 13-Dec-2012 19:03 3.2K

LED-RECTANGULAIRE-JA..> 14-Dec-2012 08:57 3.2K

LED-RECTANGULAIRE-JA..> 14-Dec-2012 08:57 3.2K

LED-RECTANGULAIRE-JA..> 13-Dec-2012 19:03 3.2K

LED-RECTANGULAIRE-RO..> 14-Dec-2012 08:56 3.2K

LED-RECTANGULAIRE-RO..> 14-Dec-2012 08:56 3.2K

LED-RECTANGULAIRE-RO..> 14-Dec-2012 08:48 3.2K

LED-RECTANGULAIRE-RO..> 13-Dec-2012 19:03 3.2K

LED-RECTANGULAIRE-RO..> 13-Dec-2012 19:03 3.2K

LED-RECTANGULAIRE-VE..> 14-Dec-2012 08:44 3.2K

LED-RECTANGULAIRE-VE..> 14-Dec-2012 08:56 3.2K

LED-RECTANGULAIRE-VE..> 14-Dec-2012 08:57 3.2K

LED-RECTANGULAIRE-VE..> 13-Dec-2012 19:02 3.2K

LED-SUBMINIATURE--RO..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE--RO..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE--RO..> 13-Dec-2012 19:03 3.2K

LED-SUBMINIATURE-AMB..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-AMB..> 13-Dec-2012 19:03 3.2K

LED-SUBMINIATURE-JAU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-JAU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-JAU..> 14-Dec-2012 08:56 3.2K

LED-SUBMINIATURE-JAU..> 13-Dec-2012 19:02 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:56 3.2K

LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:56 3.2K

LED-SUBMINIATURE-ROU..> 13-Dec-2012 19:02 3.2K

LED-SUBMINIATURE-ROU..> 13-Dec-2012 19:03 3.2K

LED-SUBMINIATURE-VER..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-VER..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE-VER..> 13-Dec-2012 19:03 3.2K

LED-SUBMINIATURE.VER..> 14-Dec-2012 08:57 3.2K

LED-SUBMINIATURE.VER..> 13-Dec-2012 19:03 3.2K

LED-TO-46-UV-100DEG-..> 14-Dec-2012 08:44 3.2K

LED.htm 05-Jan-2013 16:07 3.6M

LEGENDE-JEU-B-102830..> 14-Dec-2012 08:46 2.8K

LENTILLE-AMBRE-10823..> 14-Dec-2012 08:39 2.9K

LENTILLE-BLEUE-10823..> 14-Dec-2012 08:41 2.9K

LENTILLE-CARREE-AMBR..> 14-Dec-2012 08:43 2.9K

LENTILLE-ROUGE-10823..> 14-Dec-2012 08:41 2.9K

LENTILLE-ROUGE-10823..> 14-Dec-2012 08:41 2.9K

LENTILLE-ROUGE-DIA.-..> 14-Dec-2012 08:43 2.9K

LENTILLE-TRANSPARENT..> 14-Dec-2012 08:41 2.9K

LENTILLE-TRANSPARENT..> 14-Dec-2012 08:43 2.9K

LENTILLE-TRANSPARENT..> 14-Dec-2012 08:41 2.9K

LENTILLE-VERTE-10823..> 14-Dec-2012 08:43 2.9K

LENTILLE-VERTE-10823..> 14-Dec-2012 08:43 2.9K

LENTILLE-VERTE-10823..> 14-Dec-2012 08:39 2.9K

LEVIER-DE-COMMUTATEU..> 14-Dec-2012 08:48 2.8K

LIMIT-SWITCH,-EX-PRO..> 14-Dec-2012 08:41 3.2K

LINE-CORD,-6-4WAY,-B..> 14-Dec-2012 08:46 3.0K

LINE-CORD,-6-6WAY,-B..> 14-Dec-2012 08:46 3.0K

LINE-CORD,-8-8WAY,-B..> 14-Dec-2012 08:44 3.0K

LOADED-DISPENSER,-CO..> 14-Dec-2012 08:37 3.0K

LOCALISATEUR-DE-CABL..> 14-Dec-2012 08:47 3.0K

LOGIC.htm 05-Jan-2013 16:06 4.4M

LUMINAIRE,-3-ARM,-IP..> 14-Dec-2012 08:36 2.9K

Liste-farnell.html 14-Dec-2012 08:58 842K

MACHINE-VICE,-MULTI-..> 14-Dec-2012 08:39 2.9K

MACHINE-VICE,-MULTI-..> 14-Dec-2012 08:43 2.9K

MACHINE-VICE,-STEEL,..> 14-Dec-2012 08:46 2.9K

MACHINE-VICE-1075579..> 14-Dec-2012 08:46 2.9K

MACHOIRE-D´ETAU-1..> 14-Dec-2012 08:46 2.9K

MAGNETISEUR-DE-TOURN..> 14-Dec-2012 08:41 2.9K

MAGNIFIER,-LUMINAIRE..> 14-Dec-2012 08:41 2.9K

MAGNIFIER,-LUMINAIRE..> 14-Dec-2012 08:46 2.9K

MAILLET-NYLON-106554..> 14-Dec-2012 08:39 2.8K

MAILLET-NYLON-106555..> 14-Dec-2012 08:39 2.8K

MAINS-DISTRIBUTION,-..> 14-Dec-2012 08:36 3.2K

MAINS-LEAD,-25M,-IP4..> 14-Dec-2012 08:39 3.1K

MAINS-SOCKET,-1GANG-..> 14-Dec-2012 08:38 3.0K

MAINS-SOCKET,-CIRCUL..> 14-Dec-2012 08:42 2.9K

MAINS-SOCKET-&-MOUNT..> 14-Dec-2012 08:42 3.0K

MANCHON-AUTO-SOUDANT..> 14-Dec-2012 08:41 2.8K

MANCHON-POUR-CONNECT..> 14-Dec-2012 08:45 2.9K

MANCHON-POUR-CONNECT..> 14-Dec-2012 08:47 2.9K

MANCHON-POUR-CONNECT..> 14-Dec-2012 08:45 2.9K

MANCHON-SCELLEMENT-1..> 14-Dec-2012 08:41 2.8K

MANCHONS-EN-PLASTIQU..> 14-Dec-2012 08:41 2.8K

MANCHONS-EN-PLASTIQU..> 14-Dec-2012 08:39 2.8K

MATRICE-M2.5-HSS-105..> 14-Dec-2012 08:44 2.8K

MATRICE-M5-HSS-10566..> 14-Dec-2012 08:47 2.8K

MCU.htm 05-Jan-2013 16:06 3.7M

MEMOIRE-FLASH-CMS-BO..> 14-Dec-2012 08:37 3.2K

MEMOIRE-FLASH-CMS-TO..> 14-Dec-2012 08:37 3.2K

MEMOIRE-FLASH-SERIE-..> 14-Dec-2012 08:37 3.2K

MEMOIRE-SRAM-4MB-512..> 14-Dec-2012 08:43 3.2K

MEMOIRE.htm 05-Jan-2013 16:04 4.1M

METRAL-FEMELLE-30V-1..> 14-Dec-2012 08:38 3.2K

MICRO-8-BITS-32K-FLA..> 14-Dec-2012 08:37 3.2K

MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:37 3.2K

MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:39 3.2K

MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:37 3.2K

MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:39 3.2K

MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:39 3.2K

MICRO-8-BITS-FLASH-8..> 14-Dec-2012 08:39 3.2K

MICRO-COMPOUND-TABLE..> 14-Dec-2012 08:39 2.8K

MICRO-MILLER,-EURO-P..> 14-Dec-2012 08:46 2.9K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:44 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:38 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:38 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:39 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:38 3.2K

MICROCONTROLEUR-8BIT..> 14-Dec-2012 08:44 3.2K

MICROCONTROLEUR-32BI..> 14-Dec-2012 08:38 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:37 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42 3.2K

MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46 3.2K

MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46 3.2K

MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46 3.2K

MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46 3.2K

MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46 3.2K

MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:48 3.2K

MICROCONTROLEUR-FLAS..> 14-Dec-2012 08:50 3.2K

MICROCONTROLEUR-FLAS..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-Z80-..> 14-Dec-2012 08:40 3.2K

MICROCONTROLEUR-Z80-..> 14-Dec-2012 08:41 3.2K

MICROCONTROLEUR.htm 05-Jan-2013 16:35 4.1M

MICROMATCH.-4-VOIES...> 14-Dec-2012 08:44 3.2K

MICROMATCH.-4-VOIES...> 14-Dec-2012 08:40 3.2K

MICROMATCH.-6-VOIES...> 14-Dec-2012 08:45 3.2K

MICROMATCH.-6-VOIES...> 14-Dec-2012 08:40 3.2K

MICROMATCH.-8-VOIES...> 14-Dec-2012 08:44 3.2K

MICROMATCH.-8-VOIES...> 14-Dec-2012 08:44 3.2K

MICROMATCH.-10-VOIES..> 14-Dec-2012 08:47 3.2K

MICROMATCH.-10-VOIES..> 14-Dec-2012 08:44 3.2K

MICROMATCH.-10-VOIES..> 14-Dec-2012 08:45 3.2K

MICROMATCH.-12-VOIES..> 14-Dec-2012 08:40 3.2K

MICROMATCH.-14-VOIES..> 14-Dec-2012 08:47 3.2K

MICROMATCH.-14-VOIES..> 14-Dec-2012 08:40 3.2K

MICROMATCH.-16-VOIES..> 14-Dec-2012 08:45 3.2K

MICROMATCH.-16-VOIES..> 14-Dec-2012 08:40 3.2K

MICROMATCH.-16-VOIES..> 14-Dec-2012 08:40 3.2K

MICROMATCH.-18-VOIES..> 14-Dec-2012 08:45 3.2K

MICROMATCH.-18-VOIES..> 14-Dec-2012 08:45 3.2K

MICROMATCH.-20-VOIES..> 14-Dec-2012 08:47 3.2K

MICROMETRE-106718.html 14-Dec-2012 08:39 3.0K

MICROPHONE,-DISCRETE..> 14-Dec-2012 08:48 3.1K

MICRORUPTEUR-103368...> 14-Dec-2012 08:46 3.2K

MICRORUPTEUR-103443...> 14-Dec-2012 08:46 3.2K

MICRORUPTEUR-103444...> 14-Dec-2012 08:43 3.2K

MICRORUPTEUR-103445...> 14-Dec-2012 08:46 3.2K

MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:39 3.0K

MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:39 3.0K

MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:39 3.0K

MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:46 2.9K

MILLING-BIT-SET,-TUN..> 14-Dec-2012 08:46 2.9K

MILLING-BIT-SET,-TUN..> 14-Dec-2012 08:43 2.9K

MILLING-DRILL-SET,-T..> 14-Dec-2012 08:43 3.0K

MILLING-DRILL-SET,-T..> 14-Dec-2012 08:39 3.0K

MILLING-DRILLING-MAC..> 14-Dec-2012 08:43 3.1K

MILLING-SET,-TUNGSTE..> 14-Dec-2012 08:39 2.9K

MILLING-SET,-TUNGSTE..> 14-Dec-2012 08:43 2.9K

MODEL-BUILDING-ENGRA..> 14-Dec-2012 08:43 3.1K

MODELLERS-SET,-13PC-..> 14-Dec-2012 08:39 3.0K

MODULE-A-LED-1003245..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-1003255..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:56 3.2K

MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-JAUNE.html 13-Dec-2012 19:02 3.2K

MODULE-A-LED-ROUGE-H..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-ROUGE-H..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-ROUGE-H..> 14-Dec-2012 08:56 3.2K

MODULE-A-LED-ROUGE-H..> 13-Dec-2012 19:02 3.2K

MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57 3.2K

MODULE-A-LED-VERT-10..> 14-Dec-2012 08:56 3.2K

MODULE-A-LED-VERT.html 13-Dec-2012 19:02 3.2K

MODULE-A-LED.html 13-Dec-2012 19:03 3.2K

MODULE-DE-PUISSANCE-..> 14-Dec-2012 08:36 3.2K

MODULE-DE-PUISSANCE-..> 14-Dec-2012 08:40 3.2K

MODULE-DE-PUISSANCE-..> 14-Dec-2012 08:40 3.2K

MODULE-DRIVER-DE-PUI..> 14-Dec-2012 08:46 3.2K

MODULE-DRIVER-DE-PUI..> 14-Dec-2012 08:43 3.2K

MODULE-HORLOGE-0.4-3..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-0.4-3..> 13-Dec-2012 19:03 3.2K

MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03 3.2K

MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03 3.2K

MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03 3.2K

MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03 3.2K

MODULE-HORLOGE-14-SE..> 14-Dec-2012 08:56 3.2K

MODULE-HORLOGE-14-SE..> 13-Dec-2012 19:02 3.2K

MODULE-HORLOGE-14-SE..> 14-Dec-2012 08:57 3.2K

MODULE-HORLOGE-14-SE..> 13-Dec-2012 19:03 3.2K

MODULE-LCD-COULEUR-T..> 14-Dec-2012 08:43 3.2K

MODULE-LCD-MONO-STN-..> 14-Dec-2012 08:43 3.2K

MODULE-MULTIMODE-AVE..> 14-Dec-2012 08:46 2.8K

MODULE-RELAIS-12VCC-..> 14-Dec-2012 08:46 3.2K

MODULE-RELAIS-24VCC-..> 14-Dec-2012 08:43 3.2K

MODULE-RELAIS-24VCC-..> 14-Dec-2012 08:48 3.2K

MODULE-SCR-DIODE-38A..> 14-Dec-2012 08:44 3.1K

MODULE-SMART-POWER-1..> 14-Dec-2012 08:40 3.2K

MODULE-THYRISTOR-58A..> 14-Dec-2012 08:36 3.2K

MODULE-THYRISTOR-58A..> 14-Dec-2012 08:44 3.2K

MODULE-THYRISTOR-82A..> 14-Dec-2012 08:42 3.2K

MODULE-THYRISTOR-95A..> 14-Dec-2012 08:36 3.2K

MODULE-TIMER-MULTIFO..> 14-Dec-2012 08:46 2.9K

MOLETTE-FENDUE-BLEU-..> 14-Dec-2012 08:41 2.8K

MOLETTE-FENDUE-NOIR-..> 14-Dec-2012 08:39 2.8K

MOLETTE-FENDUE-ROUGE..> 14-Dec-2012 08:42 2.8K

MOLETTE-FENDUE-VERTE..> 14-Dec-2012 08:42 2.8K

MOTEUR-PAS-A-PAS-1.8..> 14-Dec-2012 08:53 3.0K

MOTEUR-PAS-A-PAS-1.8..> 13-Dec-2012 19:02 3.0K

MOTEUR-PAS-A-PAS-1.8..> 14-Dec-2012 08:53 3.1K

MOTEUR-PAS-A-PAS-1.8..> 13-Dec-2012 19:02 3.1K

MOTEUR-PAS-A-PAS-57M..> 14-Dec-2012 08:53 3.0K

MOTEUR-PAS-A-PAS-57M..> 13-Dec-2012 19:02 3.0K

MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:53 3.0K

MOTEUR-PAS-A-PAS-PAN..> 13-Dec-2012 19:02 3.0K

MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:47 3.0K

MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:54 3.0K

MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:54 3.0K

MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:53 3.0K

MOTEUR-PAS-A-PAS-PAN..> 13-Dec-2012 19:02 3.0K

MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:50 3.0K

MOUNTING-BOX,-16MM,-..> 14-Dec-2012 08:43 3.0K

MOUNTING-BOX,-25MM,-..> 14-Dec-2012 08:43 3.1K

MOUNTING-BOX,-25MM,-..> 14-Dec-2012 08:45 3.0K

MOUNTING-BOX,-35MM,-..> 14-Dec-2012 08:45 3.1K

MOUNTING-BOX,-35MM,-..> 14-Dec-2012 08:43 3.1K

MOUNTING-BOX,-47MM,-..> 14-Dec-2012 08:43 3.1K

MOUNTING-BOX,-DRY-LI..> 14-Dec-2012 08:40 3.2K

MP3-PLAYER,-128MB,-R..> 14-Dec-2012 08:48 3.0K

[   ]

MULITPLEXEUR-CMS-RAP..> 14-Dec-2012 08:52 0

MULITPLEXEUR-CMS-RAP..> 14-Dec-2012 08:49 3.2K

MULTIMETRE-NUMERIQUE..> 14-Dec-2012 08:43 3.2K

MULTIMETRE-NUMERIQUE..> 14-Dec-2012 08:36 3.2K

MULTIPLEXEUR-2-CANAU..> 14-Dec-2012 08:37 3.2K

MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:38 3.2K

MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:44 3.2K

MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:45 3.2K

MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:44 3.2K

MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:37 3.2K

MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:42 3.2K

MULTIPLEXEUR-16-CANA..> 14-Dec-2012 08:37 3.2K

MULTIPLEXEUR-CMS-4-C..> 14-Dec-2012 08:42 3.2K

MULTIPLEXEUR-CMS-4-C..> 14-Dec-2012 08:45 3.2K

MULTIPLEXEUR-CMS-4-C..> 14-Dec-2012 08:43 3.2K

MULTIPLEXEUR-CMS-8-C..> 14-Dec-2012 08:38 3.2K

MULTIPLEXEUR-CMS-DOU..> 14-Dec-2012 08:37 3.2K

MULTIPRISE-EURO-X2-1..> 14-Dec-2012 08:41 3.1K

MULTIPRISE-EURO-X2-1..> 14-Dec-2012 08:41 3.1K

MUX-8CH-SP-CMS-SOIC1..> 14-Dec-2012 08:43 3.2K

N-CHANNEL-MOSFET,-60..> 14-Dec-2012 08:40 3.2K

NIPPER,-DIAGONAL-CUT..> 14-Dec-2012 08:43 3.0K

NIPPER,-DIAGONAL-CUT..> 14-Dec-2012 08:48 3.0K

NIPPER,-DIAGONAL-CUT..> 14-Dec-2012 08:46 3.0K

NIPPER,-H-L-DIAGONAL..> 14-Dec-2012 08:46 3.1K

NIPPER,-H-L-DIAGONAL..> 14-Dec-2012 08:46 3.1K

OPTOCOUPLER,-LOGIC-G..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-CMS-2.0..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-CMS-2.0..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-20M..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-102..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-CMS-102..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-CMS-102..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-CMS-104..> 14-Dec-2012 08:46 3.1K

OPTOCOUPLEUR-CMS-104..> 14-Dec-2012 08:46 3.1K

OPTOCOUPLEUR-CMS-104..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-CMS-AC-..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:40 3.2K

OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:40 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:40 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:40 3.2K

OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-CMS-TRI..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-CMS-TRI..> 14-Dec-2012 08:40 3.2K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:49 3.2K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:47 3.1K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:49 3.2K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:44 3.1K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:44 3.1K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:41 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:39 3.2K

OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:39 3.2K

OPTOCOUPLEUR-ENTREE-..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-H-V-SOR..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-QUAD-10..> 14-Dec-2012 08:46 3.1K

OPTOCOUPLEUR-QUAD-SO..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:37 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47 3.0K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49 3.0K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47 3.0K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47 3.0K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.0K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.1K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:49 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:49 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:48 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:44 3.1K

OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:42 3.2K

OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:47 3.2K

OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:48 3.2K

OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:44 3.2K

OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:46 3.2K

OSCILLOSCOPE-TYPE-ST..> 14-Dec-2012 08:46 3.2K

OSCILLOSCOPE-TYPE-ST..> 14-Dec-2012 08:43 3.2K

OUTIL-D´EXTRACTIO..> 14-Dec-2012 08:36 2.8K

OUTIL-D´INSERTION..> 14-Dec-2012 08:36 2.7K

OUTIL-INSTALLATION-S..> 14-Dec-2012 08:45 2.8K

PADLOCK,-BRASS,-40MM..> 14-Dec-2012 08:40 2.9K

PADLOCK,-BRASS,-60MM..> 14-Dec-2012 08:44 2.9K

PADLOCK,-BRASS,-70MM..> 14-Dec-2012 08:40 2.9K

PADLOCK,-BRASS-L-SHA..> 14-Dec-2012 08:46 2.9K

PADLOCK,-COMBINATION..> 14-Dec-2012 08:46 2.9K

PADLOCK,-HIGH-SECURI..> 14-Dec-2012 08:44 3.0K

PADLOCK,-HIGH-SECURI..> 14-Dec-2012 08:44 2.9K

PANNE-106602.html 14-Dec-2012 08:39 2.9K

PANNE-106603.html 14-Dec-2012 08:46 2.9K

PANNE-106604.html 14-Dec-2012 08:44 2.9K

PANNE-107793.html 14-Dec-2012 08:45 2.9K

PANNE-107794.html 14-Dec-2012 08:42 2.9K

PANNE-107795.html 14-Dec-2012 08:43 2.9K

PANNE-109155.html 14-Dec-2012 08:38 2.9K

PANNE-DE-FER-108518...> 14-Dec-2012 08:39 3.0K

PAPER-ROLL,-1PLY,-37..> 14-Dec-2012 08:50 2.7K

PAPER-ROLL,-1PLY,-44..> 14-Dec-2012 08:53 2.7K

PAPER-ROLL,-1PLY,-44..> 13-Dec-2012 19:01 2.7K

PAPER-ROLL,-THERMAL,..> 14-Dec-2012 08:47 2.7K

PAPER-ROLL,-THERMAL,..> 14-Dec-2012 08:47 2.7K

PATE-DE-REFROIDISSEM..> 14-Dec-2012 08:45 3.0K

PATTE-SUPPORT-PQ50-1..> 14-Dec-2012 08:46 2.8K

PAVE-NUMERIQUE-12-TO..> 14-Dec-2012 08:56 3.2K

PAVE-NUMERIQUE-12-TO..> 13-Dec-2012 19:02 3.2K

PHOTODIODE-1045425.html 14-Dec-2012 08:42 3.2K

PHOTODIODE-1045427.html 14-Dec-2012 08:42 3.2K

PHOTODIODE-FILTRE-IR..> 14-Dec-2012 08:46 3.2K

PHOTOTRANSISTOR-T1-1..> 14-Dec-2012 08:48 3.2K

PHOTOTRANSISTOR-T1-1..> 14-Dec-2012 08:46 3.2K

PHOTOTRANSISTOR-T1-1..> 14-Dec-2012 08:46 3.2K

PHOTOTRANSISTOR-T1.3..> 14-Dec-2012 08:48 3.2K

PHOTOTRANSISTOR-T1.3..> 14-Dec-2012 08:46 3.2K

PHOTOTRANSISTOR-T3-4..> 14-Dec-2012 08:48 3.2K

PICOT-DE-POLARISATIO..> 14-Dec-2012 08:47 2.8K

PIED-MAGNETIQUE-1051..> 14-Dec-2012 08:41 2.8K

PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:48 3.2K

PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:43 3.2K

PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:48 3.2K

PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:43 3.2K

PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:48 3.2K

PIEZO-TRANSDUCER,-5V..> 14-Dec-2012 08:46 3.2K

PIEZO-TRANSDUCER,-9V..> 14-Dec-2012 08:48 3.2K

PIEZO-TRANSDUCER,-15..> 14-Dec-2012 08:46 3.2K

PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57 3.1K

PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03 3.1K

PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57 3.1K

PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03 3.1K

PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57 3.1K

PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03 3.1K

PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57 3.1K

PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03 3.1K

PILES-CARBONE-ZINC-3..> 14-Dec-2012 08:48 3.1K

PILES-CARBONE-ZINC-9..> 14-Dec-2012 08:49 3.1K

PILES-CARBONE-ZINC-A..> 14-Dec-2012 08:49 3.1K

PILES-CARBONE-ZINC-A..> 14-Dec-2012 08:49 3.1K

PILES-CARBONE-ZINC-C..> 14-Dec-2012 08:44 3.1K

PILES-CARBONE-ZINC-D..> 14-Dec-2012 08:49 3.1K

PINCE-120MM-1014382...> 14-Dec-2012 08:45 2.9K

PINCE-140MM-1014381...> 14-Dec-2012 08:50 2.9K

PINCE-A-DENUDER-16MM..> 14-Dec-2012 08:40 2.9K

PINCE-A-DENUDER-1072..> 14-Dec-2012 08:46 2.8K

PINCE-A-SERTIR-10583..> 14-Dec-2012 08:44 2.8K

PINCE-A-SERTIR-10599..> 14-Dec-2012 08:44 2.7K

PINCE-A-SERTIR-10632..> 14-Dec-2012 08:46 2.7K

PINCE-A-SERTIR-10632..> 14-Dec-2012 08:44 2.7K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:45 3.0K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:45 2.9K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:49 3.0K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:49 3.0K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:50 3.0K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:49 2.9K

PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:50 3.0K

PINCE-BRUCELLE-110MM..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:45 2.9K

PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:49 2.9K

PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:45 2.9K

PINCE-BRUCELLE-125MM..> 14-Dec-2012 08:45 2.9K

PINCE-BRUCELLE-125MM..> 14-Dec-2012 08:49 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:45 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-PTFE-..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-REVER..> 14-Dec-2012 08:50 2.9K

PINCE-BRUCELLE-REVER..> 14-Dec-2012 08:49 2.9K

PINCE-COUPANTE-10871..> 14-Dec-2012 08:38 3.1K

PINCE-CROCODILE-4MM-..> 14-Dec-2012 08:39 3.2K

PINCE-DE-TEST-2MM-NO..> 14-Dec-2012 08:50 3.0K

PINCE-DE-TEST-2MM-RE..> 14-Dec-2012 08:47 3.0K

PINCE-DE-TEST-4MM-10..> 14-Dec-2012 08:54 3.1K

PINCE-DE-TEST-4MM.html 13-Dec-2012 19:02 3.1K

PINCE-MULTIPRISE-105..> 14-Dec-2012 08:46 2.9K

PINCE-MULTIPRISE-105..> 14-Dec-2012 08:44 2.9K

PINCE-MULTIPRISE-108..> 14-Dec-2012 08:42 2.8K

PINCE-PLATE-165MM-IS..> 14-Dec-2012 08:40 2.9K

PINCEAU-109150.html 14-Dec-2012 08:38 2.8K

PIR-AUTODIALER-&-ALA..> 14-Dec-2012 08:47 2.7K

PIR-HAUTE-LIGHT-IMMU..> 14-Dec-2012 08:54 3.1K

PIR-HAUTE-LIGHT-IMMU..> 13-Dec-2012 19:02 3.1K

PISTOLET-A-DESSOUDER..> 14-Dec-2012 08:54 2.8K

PISTOLET-A-DESSOUDER..> 14-Dec-2012 08:57 2.8K

PISTOLET-A-DESSOUDER..> 13-Dec-2012 19:02 2.8K

PISTOLET-APPLICATEUR..> 14-Dec-2012 08:38 2.7K

PLAQUETTE-DE-FIXATIO..> 14-Dec-2012 08:49 3.2K

PLAQUETTE-DE-FIXATIO..> 14-Dec-2012 08:45 3.1K

PLATINE-CHASSIS-1004..> 14-Dec-2012 08:57 2.9K

PLATINE-CHASSIS-1004..> 14-Dec-2012 08:57 2.9K

PLATINE-CHASSIS-1004..> 14-Dec-2012 08:56 2.9K

PLATINE-CHASSIS-1004..> 14-Dec-2012 08:56 2.9K

PLATINE-CHASSIS.html 13-Dec-2012 19:02 2.9K

PLIER,-WATER-PUMP,-1..> 14-Dec-2012 08:48 2.9K

PLUG,-6MM,-PANEL-108..> 14-Dec-2012 08:41 3.2K

PLUG,-SAFETY,-13A,-W..> 14-Dec-2012 08:38 3.1K

PLUG,-TOUGHPLUG,-13A..> 14-Dec-2012 08:45 3.2K

PLUG,-TOUGHPLUG,-13A..> 14-Dec-2012 08:38 3.2K

PLUG-MAINS,-SWITCHED..> 14-Dec-2012 08:39 3.1K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49 2.8K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:45 2.8K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:50 2.9K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49 2.9K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49 2.9K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:45 2.9K

POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49 2.9K

POIGNEE-BI-MATIERE-U..> 14-Dec-2012 08:55 3.0K

POIGNEE-BI-MATIERE-U..> 13-Dec-2012 19:02 3.0K

POIGNEE-DE-CABLE-101..> 14-Dec-2012 08:48 3.0K

POIGNEE-DE-LIME-75MM..> 14-Dec-2012 08:41 3.0K

POIGNEE-DE-LIME-100M..> 14-Dec-2012 08:45 3.0K

POIGNEE-DE-LIME-125M..> 14-Dec-2012 08:41 3.0K

POIGNEES-(PAIRE),-PE..> 14-Dec-2012 08:49 2.9K

POIGNEES-(PAIRE),-PE..> 14-Dec-2012 08:50 2.9K

POIGNEES-(PAIRE),-PE..> 14-Dec-2012 08:50 2.9K

POLISHING-SET,-10PC-..> 14-Dec-2012 08:43 2.9K

POMPE-A-DESSOUDER-10..> 14-Dec-2012 08:40 2.8K

PONT-REDRESSEUR-4A-4..> 14-Dec-2012 08:43 3.2K

PONT-REDRESSEUR-8A-1..> 14-Dec-2012 08:48 3.2K

PONT-REDRESSEUR-8A-2..> 14-Dec-2012 08:45 3.2K

PONT-REDRESSEUR-8A-6..> 14-Dec-2012 08:48 3.2K

PONT-REDRESSEUR-8A-8..> 14-Dec-2012 08:45 3.2K

PONT-REDRESSEUR-25A-..> 14-Dec-2012 08:48 3.2K

PONT-REDRESSEUR-25A-..> 14-Dec-2012 08:48 3.2K

PONT-REDRESSSEUR-40A..> 14-Dec-2012 08:44 3.2K

PONT-REDRESSSEUR-40A..> 14-Dec-2012 08:40 3.2K

PORTE-FUSIBLE-5X20MM..> 14-Dec-2012 08:41 3.2K

PORTE-FUSIBLE-FPG1-I..> 14-Dec-2012 08:41 3.2K

POWER-FACTOR-CORRECT..> 14-Dec-2012 08:45 3.2K

PRECISION-REFERENCE-..> 14-Dec-2012 08:42 3.2K

PRISE-DE-MISE-A-LA-T..> 14-Dec-2012 08:36 2.9K

PRISE-DE-MISE-A-LA-T..> 14-Dec-2012 08:39 2.9K

PRISE-FEMELLE-SMA-DR..> 14-Dec-2012 08:40 3.2K

PRISE-MURALE-16A-240..> 14-Dec-2012 08:45 3.0K

PRISE-MURALE-ROUGE-4..> 14-Dec-2012 08:45 3.0K

PRISE-MURALE-ROUGE-4..> 14-Dec-2012 08:48 2.9K

PROBE,-OSCILLOSCOPE-..> 14-Dec-2012 08:47 2.8K

PROCESSEUR-UNIVERSEL..> 14-Dec-2012 08:43 3.2K

PROFILE-ALUMINIUM-10..> 14-Dec-2012 08:56 3.1K

PROFILE-ALUMINIUM.html 13-Dec-2012 19:03 3.1K

PROLONGATEUR-650DEG-..> 14-Dec-2012 08:44 3.2K

PROLONGATEUR-LIBRE-3..> 14-Dec-2012 08:45 3.0K

PROLONGATEUR-LIBRE-B..> 14-Dec-2012 08:49 3.0K

PROLONGATEUR-LIBRE-B..> 14-Dec-2012 08:45 2.9K

PROLONGATEUR-LIBRE-R..> 14-Dec-2012 08:50 3.0K

PROLONGATEUR-LIBRE-R..> 14-Dec-2012 08:48 3.0K

PROLONGATEUR-SOLISTR..> 14-Dec-2012 08:45 3.2K

PSU,-30W,-5V-1085163..> 14-Dec-2012 08:39 3.2K

PSU,-100W,-5V-108517..> 14-Dec-2012 08:39 3.2K

PSU,-SW-MODE,-5V,-30..> 14-Dec-2012 08:36 3.2K

PSU,-SW-MODE,-24V,-6..> 14-Dec-2012 08:39 3.2K

PUSHPINS,-QTY200-107..> 14-Dec-2012 08:37 2.7K

QUAD-AMPLI-OP-LARGE-..> 14-Dec-2012 08:38 3.2K

QUARTZ-MINIATURE-40K..> 14-Dec-2012 08:56 3.2K

QUARTZ-MINIATURE-40K..> 13-Dec-2012 19:02 3.2K

RACCORD-2-BRAS-10663..> 14-Dec-2012 08:39 2.8K

RACCORD-3-BRAS-ANGLE..> 14-Dec-2012 08:39 2.8K

RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:41 3.2K

RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:45 3.2K

RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:41 3.2K

RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:45 3.2K

RACCORDS-TELSPLICE-3..> 14-Dec-2012 08:47 3.2K

RAIL-DE-SOUTIEN-150W..> 14-Dec-2012 08:46 2.9K

RAIL-DE-SOUTIEN-300W..> 14-Dec-2012 08:43 2.9K

RAIL-DIN-103727.html 14-Dec-2012 08:48 2.9K

RECEPTEUR-AUDIO-NUME..> 14-Dec-2012 08:46 3.2K

RECEPTEUR-DE-LIGNE-1..> 14-Dec-2012 08:42 3.2K

RECEPTEUR-DE-LIGNE-1..> 14-Dec-2012 08:44 3.2K

RECEPTEUR-DE-LIGNE-D..> 14-Dec-2012 08:37 3.2K

RECEPTEUR-ULTRASONIC..> 14-Dec-2012 08:52 3.1K

RECEPTEUR-ULTRASONIC..> 13-Dec-2012 19:01 3.1K

RECEPTEUR-ULTRASONIC..> 14-Dec-2012 08:49 3.1K

RECEPTEUR-ULTRASONIC..> 14-Dec-2012 08:55 3.1K

RECEPTEUR-ULTRASONIC..> 13-Dec-2012 19:02 3.1K

RECHARGE-REPERE-DE-C..> 14-Dec-2012 08:39 3.0K

REF-DE-TENSION-CMS-P..> 14-Dec-2012 08:37 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:49 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:42 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:42 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:51 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:41 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:51 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:41 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:51 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:41 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:46 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:51 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:47 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:41 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:47 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:52 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:45 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:47 3.2K

REFERENCE-DE-TENSION..> 14-Dec-2012 08:47 3.2K

REG-TENSION-AJUS-+2-..> 14-Dec-2012 08:41 3.2K

REG-TENSION-LDO-1.5A..> 14-Dec-2012 08:38 3.2K

REGLET-ACIER-109164...> 14-Dec-2012 08:40 2.9K

REGULATEUR-+3.3V-CMS..> 14-Dec-2012 08:38 3.2K

REGULATEUR-+5.0V-78L..> 14-Dec-2012 08:49 3.2K

REGULATEUR-+5.0V-78M..> 14-Dec-2012 08:50 3.2K

REGULATEUR-+5.0V-CMS..> 14-Dec-2012 08:41 3.2K

REGULATEUR-+12V-7812..> 14-Dec-2012 08:41 3.2K

REGULATEUR-+15V-7815..> 14-Dec-2012 08:38 3.2K

REGULATEUR-+15V-7815..> 14-Dec-2012 08:38 3.2K

REGULATEUR--6.0V-790..> 14-Dec-2012 08:46 3.2K

REGULATEUR--8.0V-790..> 14-Dec-2012 08:46 3.2K

REGULATEUR--15V-7915..> 14-Dec-2012 08:38 3.2K

REGULATEUR-0.8A-LDO-..> 14-Dec-2012 08:55 3.2K

REGULATEUR-0.8A-LDO-..> 14-Dec-2012 08:55 3.2K

REGULATEUR-0.8A-LDO...> 13-Dec-2012 19:02 3.2K

REGULATEUR-1A-POSITI..> 14-Dec-2012 08:38 3.2K

REGULATEUR-1A-POSITI..> 14-Dec-2012 08:38 3.2K

REGULATEUR-500MA-108..> 14-Dec-2012 08:38 3.2K

REGULATEUR-500MA-108..> 14-Dec-2012 08:38 3.2K

REGULATEUR-500MA-108..> 14-Dec-2012 08:38 3.2K

REGULATEUR-500MA-IPA..> 14-Dec-2012 08:45 3.2K

REGULATEUR-1077136.html 14-Dec-2012 08:45 3.2K

REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:38 3.2K

REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:40 3.2K

REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:38 3.2K

REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:40 3.2K

REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:49 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:53 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38 3.2K

REGULATEUR-AJUSTABLE..> 13-Dec-2012 19:01 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:49 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:49 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45 3.2K

REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45 3.2K

REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:46 3.2K

REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:45 3.2K

REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:47 3.2K

REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:46 3.1K

REGULATEUR-BUCK-80V-..> 14-Dec-2012 08:55 3.2K

REGULATEUR-BUCK-80V-..> 13-Dec-2012 19:02 3.2K

REGULATEUR-BUCK-1077..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-0.8A-..> 14-Dec-2012 08:42 3.2K

REGULATEUR-CMS-1.5A-..> 14-Dec-2012 08:49 3.2K

REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:55 3.2K

REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:42 3.2K

REGULATEUR-CMS-1A-LD..> 13-Dec-2012 19:02 3.2K

REGULATEUR-CMS-3A-LD..> 14-Dec-2012 08:55 3.2K

REGULATEUR-CMS-3A-LD..> 13-Dec-2012 19:02 3.2K

REGULATEUR-CMS-150MA..> 14-Dec-2012 08:55 3.2K

REGULATEUR-CMS-150MA..> 14-Dec-2012 08:55 3.2K

REGULATEUR-CMS-150MA..> 14-Dec-2012 08:55 3.2K

REGULATEUR-CMS-150MA..> 13-Dec-2012 19:02 3.2K

REGULATEUR-CMS-500MA..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-500MA..> 14-Dec-2012 08:49 3.2K

REGULATEUR-CMS-10082..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-10871..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-10871..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-10871..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-10871..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-10871..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-AJUST..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-AJUST..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-AJUST..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-BOOST..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-BOOST..> 14-Dec-2012 08:47 3.2K

REGULATEUR-CMS-BUCK-..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-BUCK-..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-LDO-+..> 14-Dec-2012 08:37 3.2K

REGULATEUR-CMS-LDO-+..> 14-Dec-2012 08:37 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:51 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:51 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:47 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:47 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:45 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:50 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:55 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-LDO-A..> 14-Dec-2012 08:38 3.2K

REGULATEUR-CMS-LDO.html 13-Dec-2012 19:02 3.2K

REGULATEUR-CMS-POSIT..> 14-Dec-2012 08:43 3.2K

REGULATEUR-CMS-PWR-S..> 14-Dec-2012 08:38 3.2K

REGULATEUR-LDO+8.5V-..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-+1.8V..> 14-Dec-2012 08:52 3.2K

REGULATEUR-LDO-+1.8V..> 14-Dec-2012 08:45 3.2K

REGULATEUR-LDO-+3.3V..> 14-Dec-2012 08:47 3.2K

REGULATEUR-LDO-+3.3V..> 14-Dec-2012 08:38 3.2K

REGULATEUR-LDO-+3.3V..> 14-Dec-2012 08:41 3.2K

REGULATEUR-LDO-10871..> 14-Dec-2012 08:41 3.2K

REGULATEUR-LDO-10871..> 14-Dec-2012 08:38 3.2K

REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:44 3.2K

REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:44 3.2K

REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:46 3.2K

REGULATEUR-LDO-CMS-2..> 14-Dec-2012 08:46 3.2K

REGULATEUR-LDO-CMS-2..> 14-Dec-2012 08:44 3.2K

REGULATEUR-LDO-CMS-2..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-CMS-3..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-CMS-3..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-CMS-3..> 14-Dec-2012 08:46 3.2K

REGULATEUR-LDO-CMS-5..> 14-Dec-2012 08:40 3.2K

REGULATEUR-LDO-CMS-5..> 14-Dec-2012 08:40 3.2K

REGULATEUR-NEGATIF-1..> 14-Dec-2012 08:41 3.2K

REGULATEUR-NEGATIF-1..> 14-Dec-2012 08:38 3.2K

RELAIS-4PCO-12VCA-10..> 14-Dec-2012 08:38 3.2K

RELAIS-4PCO-24VCC-10..> 14-Dec-2012 08:38 3.2K

RELAIS-4PCO-110VCA-1..> 14-Dec-2012 08:40 3.2K

RELAIS-4PCO-230VCA-1..> 14-Dec-2012 08:38 3.2K

RELAIS-8B.-DPCO-24V-..> 14-Dec-2012 08:39 3.2K

RELAIS-8B.-DPCO-230V..> 14-Dec-2012 08:41 3.2K

RELAIS-8B.-DPCO-1086..> 14-Dec-2012 08:39 3.2K

RELAIS-8B.-DPCO-1086..> 14-Dec-2012 08:39 3.2K

RELAIS-11-BROCHES-3P..> 14-Dec-2012 08:38 3.2K

RELAIS-11-BROCHES-3P..> 14-Dec-2012 08:41 3.2K

RELAIS-11-BROCHES-3P..> 14-Dec-2012 08:41 3.2K

RELAIS-11-BROCHES-10..> 14-Dec-2012 08:39 3.2K

RELAIS-14-BROCHES-4P..> 14-Dec-2012 08:39 3.2K

RELAIS-14-BROCHES-4P..> 14-Dec-2012 08:41 3.2K

RELAIS-14-BROCHES-4P..> 14-Dec-2012 08:41 3.2K

RELAIS-BATTERY-VOLTA..> 14-Dec-2012 08:57 3.2K

RELAIS-BATTERY-VOLTA..> 13-Dec-2012 19:03 3.2K

RELAIS-DPCO-12VCC-10..> 14-Dec-2012 08:53 3.2K

RELAIS-DPCO-12VCC.html 13-Dec-2012 19:01 3.2K

RELAIS-DPCO-24VCA-CC..> 14-Dec-2012 08:47 3.2K

RELAIS-DPCO-24VCC-10..> 14-Dec-2012 08:47 3.2K

RELAIS-DPCO-24VCC-10..> 14-Dec-2012 08:38 3.2K

RELAIS-DPCO-230VCA-1..> 14-Dec-2012 08:47 3.2K

RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:53 3.2K

RELAIS-DPCO-LATCHING..> 13-Dec-2012 19:02 3.2K

RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:50 3.2K

RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:53 3.2K

RELAIS-DPCO-LATCHING..> 13-Dec-2012 19:02 3.2K

RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:53 3.2K

RELAIS-DPCO-LATCHING..> 13-Dec-2012 19:01 3.2K

RELAIS-DPNO-12VCC-10..> 14-Dec-2012 08:38 3.2K

RELAIS-DPNO-24VCC-10..> 14-Dec-2012 08:38 3.2K

RELAIS-MONTAGE-A-BRI..> 14-Dec-2012 08:50 3.2K

RELAIS-MONTAGE-A-BRI..> 14-Dec-2012 08:48 3.2K

RELAIS-MONTAGE-A-BRI..> 14-Dec-2012 08:48 3.2K

RELAIS-MULTIFUNCTION..> 14-Dec-2012 08:56 3.2K

RELAIS-MULTIFUNCTION..> 13-Dec-2012 19:03 3.2K

RELAIS-MULTIFUNCTION..> 14-Dec-2012 08:57 3.2K

RELAIS-MULTIFUNCTION..> 13-Dec-2012 19:03 3.2K

RELAIS-REED-HAUTE-TE..> 14-Dec-2012 08:37 3.2K

RELAIS-REED-HAUTE-TE..> 14-Dec-2012 08:42 3.2K

RELAIS-REED-HAUTE-TE..> 14-Dec-2012 08:44 3.2K

RELAIS-REED-MONTAGE-..> 14-Dec-2012 08:40 3.2K

RELAIS-REED-MONTAGE-..> 14-Dec-2012 08:43 3.2K

RELAIS-SPCO-12VCC-10..> 14-Dec-2012 08:53 3.2K

RELAIS-SPCO-12VCC.html 13-Dec-2012 19:02 3.2K

RELAIS-SPCO-24VCA-CC..> 14-Dec-2012 08:53 3.2K

RELAIS-SPCO-24VCA-CC..> 13-Dec-2012 19:02 3.2K

RELAIS-SPCO-24VCC-10..> 14-Dec-2012 08:53 3.2K

RELAIS-SPCO-24VCC-10..> 14-Dec-2012 08:50 3.2K

RELAIS-SPCO-24VCC.html 13-Dec-2012 19:01 3.2K

RELAIS-SPCO-230VCA-1..> 14-Dec-2012 08:50 3.2K

RELAIS-SPNO-12VCC-10..> 14-Dec-2012 08:38 3.2K

RELAIS-SPNO-24VCA-10..> 14-Dec-2012 08:38 3.2K

RELAIS-SPNO-24VCC-10..> 14-Dec-2012 08:38 3.2K

RELAIS-SPNO-230VCA-1..> 14-Dec-2012 08:40 3.2K

RELAIS-STATIQUE-1045..> 14-Dec-2012 08:41 3.2K

RELAIS-STATIQUE-1045..> 14-Dec-2012 08:46 3.1K

RELAIS-STATIQUE-CMS-..> 14-Dec-2012 08:38 3.2K

RELAIS-STATIQUE-CMS-..> 14-Dec-2012 08:45 3.2K

REPASSEUR-DE-FILETAG..> 14-Dec-2012 08:46 2.8K

REPASSEUR-DE-FILETAG..> 14-Dec-2012 08:44 2.8K

REPERE-POUR-BORNE-10..> 14-Dec-2012 08:45 3.1K

REPERE-POUR-BORNE-PQ..> 14-Dec-2012 08:49 3.1K

RESEAU-DE-DARLINGTON..> 14-Dec-2012 08:46 3.2K

RESEAU-DE-DARLINGTON..> 14-Dec-2012 08:41 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39 3.2K

RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:38 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:45 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:45 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:38 3.2K

RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40 3.2K

RESEAUX-DE-DARLINGTO..> 14-Dec-2012 08:43 3.2K

RESEAUX-DE-LED-10032..> 14-Dec-2012 08:57 3.2K

RESEAUX-DE-LED-JAUNE..> 14-Dec-2012 08:57 3.2K

RESEAUX-DE-LED-JAUNE..> 13-Dec-2012 19:03 3.2K

RESEAUX-DE-LED-MULTI..> 14-Dec-2012 08:57 3.2K

RESEAUX-DE-LED-MULTI..> 14-Dec-2012 08:57 3.2K

RESEAUX-DE-LED-MULTI..> 13-Dec-2012 19:03 3.2K

RESEAUX-DE-LED-ROUGE..> 14-Dec-2012 08:56 3.2K

RESEAUX-DE-LED-ROUGE..> 13-Dec-2012 19:02 3.2K

RESEAUX-DE-LED-VERT-..> 14-Dec-2012 08:57 3.2K

RESEAUX-DE-LED-VERT...> 13-Dec-2012 19:03 3.2K

RESEAUX-DE-LED.html 13-Dec-2012 19:03 3.2K

RESINE-D´ENCAPSUL..> 14-Dec-2012 08:38 3.1K

RESINE-D´ENCAPSUL..> 14-Dec-2012 08:40 3.1K

RESINE-D´ENCAPSUL..> 14-Dec-2012 08:38 3.2K

RESINE-D´ENCAPSUL..> 14-Dec-2012 08:40 3.1K

RESINE-D´ENCAPSUL..> 14-Dec-2012 08:40 3.2K

RESINE-EPOXY-HT-TEMP..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1%-1K02-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K07-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K1-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K3-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K4-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K13-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K18-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K21-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K27-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K37-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K43-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K47-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K54-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K62-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K65-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K69-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K74-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K82-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1K96-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-1M0-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K0-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K05-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K1-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K21-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K37-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K43-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K49-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K67-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-2K87-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K01-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K4-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K16-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K32-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K57-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K65-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K74-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K83-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-3K92-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-4K02-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-4K22-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-4K42-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-4K53-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-4K75-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-4K99-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-5K9-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-5K11-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-5K23-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-5K62-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-6K04-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-6K49-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-6K81-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-7K15-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-7K32-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-7K68-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-7K87-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-8K06-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-8K25-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-8K45-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-9K31-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-9K53-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-10K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-10K2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-10K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-10R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-10R2-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-10R5-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-11K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-11K3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-11K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-11R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-12K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-12K7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-12R1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-13K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-13K3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-13K7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-13R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-13R3-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-14K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-14K3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-14R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-15K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-15K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-15R-108..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-16K2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-16K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-16K9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-16R2-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-17K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-19K1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-19K6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-19R1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-20K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-20K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-21K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-21K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-22R1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-23K7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-23R7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-24K9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-26K1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-27K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-27R4-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-28K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-28R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-28R7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-29R4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-30K1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-30K9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-30R1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-30R9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-31K6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-31R6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-32K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-33R2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-34K8-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-34R-108..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-35K7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-36K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-37K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-38K3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-38R3-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-39K2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-39R2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-40R2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-42K2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-42R2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-44K2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-45K3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-45R3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-46K4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-47K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-49K9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-49R9-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-51K1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-51R1-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-52K3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-52R3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-53K6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-53R6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-57K6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-59R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-60R4-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-61K9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-61R9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-63R4-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-64R9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-66K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-66R5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-71K5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-71R5-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-73K2-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-75K-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-75R-108..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-76R8-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-78K7-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-78R7-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-80K6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-80R6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-82R5-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-86K6-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-88R7-10..> 14-Dec-2012 08:52 3.1K

RESIST.-0.1%-90K9-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-93R1-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-95R3-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-100K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-102K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-102R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-105K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-107K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-110K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-110R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-113R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-115K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-115R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-118R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-121K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-121R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-127K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-130K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-130R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-137K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-137R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-143R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-147K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-150K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-154R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-162K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-162R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-165K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-169K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-174K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-182K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-182R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-191R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-196K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-196R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-200K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-200R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-210R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-215R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-221K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-221R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-226K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-226R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-232R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-237K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-243K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-243R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-249K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-261K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-267R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-274K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-280K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-280R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-301K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-309K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-309R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-332R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-340K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-340R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-348K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-357R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-374K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-383R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-402K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-422R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-432K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-464K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-499R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-511K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-562K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-562R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-576K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-576R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-590K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-604R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-619K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-619R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-634R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-649K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-649R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-665K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-665R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-681R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-698R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-715R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-787R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-806R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-825K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-825R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-887K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-909K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-953K-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1%-976R-10..> 14-Dec-2012 08:51 3.1K

RESIST.-0.1--1K02-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--1K07-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--1K1-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--1K3-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--1K4-108..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--1K13-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--1K18-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--1K21-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1K27-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--1K37-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--1K43-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1K47-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1K54-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1K62-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1K65-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--1K69-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1K74-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--1K82-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--1K96-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--1M0-108..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--2K0-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--2K05-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--2K1-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--2K21-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--2K37-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--2K43-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--2K49-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--2K67-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--2K87-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--3K01-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--3K4-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--3K16-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--3K32-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--3K57-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--3K65-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--3K74-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--3K83-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--3K92-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--4K02-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--4K22-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--4K42-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--4K53-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--4K75-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--4K99-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--5K9-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--5K11-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--5K23-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--5K62-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--6K04-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--6K49-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--6K81-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--7K15-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--7K32-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--7K68-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--7K87-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--8K06-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--8K25-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--8K45-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--9K31-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--9K53-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--10K-108..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--10K2-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--10K5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--10R-108..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--10R2-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--10R5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--11K-108..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--11K3-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--11K5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--11R-108..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--12K4-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--12K7-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--12R1-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--13K-108..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--13K3-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--13K7-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--13R-108..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--13R3-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--14K-108..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--14K3-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--14R-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--15K-108..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--15K4-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--15R-108..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--16K2-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--16K5-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--16K9-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--16R2-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--17K4-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--19K1-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--19K6-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--19R1-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--20K-108..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--20K5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--21K-108..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--21K5-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--22R1-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--23K7-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--23R7-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--24K9-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--26K1-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--27K4-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--27R4-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--28K-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--28R-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--28R7-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--29R4-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--30K1-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--30K9-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--30R1-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--30R9-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--31K6-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--31R6-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--32K4-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--33R2-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--34K8-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--34R-108..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--35K7-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--36K5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--37K4-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--38K3-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--38R3-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--39K2-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--39R2-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--40R2-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--42K2-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--42R2-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--44K2-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--45K3-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--45R3-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--46K4-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--47K5-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--49K9-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--49R9-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--51K1-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--51R1-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--52K3-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--52R3-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--53K6-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--53R6-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--57K6-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--59R-108..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--60R4-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--61K9-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--61R9-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--63R4-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--64R9-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--66K5-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--66R5-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--71K5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--71R5-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--73K2-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--75K-108..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--75R-108..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--76R8-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--78K7-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--78R7-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--80K6-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--80R6-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--82R5-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--86K6-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--88R7-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--90K9-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--93R1-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--95R3-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--100K-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--102K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--102R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--105K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--107K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--110K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--110R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--113R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--115K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--115R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--118R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--121K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--121R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--127K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--130K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--130R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--137K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--137R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--143R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--147K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--150K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--154R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--162K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--162R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--165K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--169K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--174K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--182K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--182R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--191R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--196K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--196R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--200K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--200R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--210R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--215R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--221K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--221R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--226K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--226R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--232R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--237K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--243K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--243R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--249K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--261K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--267R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--274K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--280K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--280R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--301K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--309K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--309R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--332R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--340K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--340R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--348K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--357R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--374K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--383R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--402K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--422R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--432K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--464K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--499R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--511K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--562K-10..> 14-Dec-2012 08:37 3.1K

RESIST.-0.1--562R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--576K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--576R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--590K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--604R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--619K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--619R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--634R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--649K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--649R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--665K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--665R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--681R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--698R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--715R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--787R-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--806R-10..> 14-Dec-2012 08:41 3.1K

RESIST.-0.1--825K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--825R-10..> 14-Dec-2012 08:38 3.1K

RESIST.-0.1--887K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--909K-10..> 14-Dec-2012 08:42 3.1K

RESIST.-0.1--953K-10..> 14-Dec-2012 08:40 3.1K

RESIST.-0.1--976R-10..> 14-Dec-2012 08:41 3.1K

RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-4..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-5..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-8..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-4..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-5..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-7..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-8..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51 3.2K

RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--4..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--5..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--8..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--4..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--5..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--7..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--8..> 14-Dec-2012 08:36 3.2K

RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:36 3.2K

RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:36 3.2K

RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:36 3.2K

RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:36 3.2K

RESISTANCE-0805-1K-1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-1M-1..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-3K3-..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-6K8-..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-47R-..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-220K..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-470K..> 14-Dec-2012 08:37 3.2K

RESISTANCE-0805-470R..> 14-Dec-2012 08:37 3.2K

RESISTANCE-2W-5%-1K2..> 14-Dec-2012 08:50 3.2K

RESISTANCE-2W-5%-1K5..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-1R0..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-2K2..> 14-Dec-2012 08:50 3.2K

RESISTANCE-2W-5%-2R2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-2R7..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-3K9..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-3R3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-3R9..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-4K7..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-5R6..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-6R8..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-8K2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-8R2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-10K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-10R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-12K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-12R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-15R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-18K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-18R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-22K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-22R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-27K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-27R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-33R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-47R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-68K..> 14-Dec-2012 08:50 3.2K

RESISTANCE-2W-5%-68R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-82R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-100..> 14-Dec-2012 08:50 3.2K

RESISTANCE-2W-5%-100..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-120..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-180..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-220..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-470..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-820..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R12..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R18..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R33..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R39..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R56..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R68..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5%-R82..> 14-Dec-2012 08:51 3.2K

RESISTANCE-2W-5--1K2..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--1K5..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--1R0..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--2K2..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--2R2..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--2R7..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--3K9..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--3R3..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--3R9..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--4K7..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--5R6..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--6R8..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--8K2..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--8R2..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--10K..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--10R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--12K..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--12R..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--15R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--18K..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--18R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--22K..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--22R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--27K..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--27R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--33R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--47R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--68K..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--68R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--82R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--100..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--100..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--120..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--180..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--220..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--470..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--820..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--R12..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--R18..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--R33..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--R39..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2W-5--R56..> 14-Dec-2012 08:39 3.2K

RESISTANCE-2W-5--R68..> 14-Dec-2012 08:41 3.2K

RESISTANCE-2W-5--R82..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5%-1K0..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-1R0..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-1R5..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-1R8..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-2K2..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-2R7..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-3K3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-3R3..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-3R9..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-4R7..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-8R2..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-10K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-10R..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-12K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-15K..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-15R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-18R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-22R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-33R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-56K..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-56R..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-100..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-100..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-120..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-150..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-150..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-180..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-270..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-390..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-680..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-820..> 14-Dec-2012 08:50 3.2K

RESISTANCE-3W-5%-R18..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-R27..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-R39..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-R47..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-R68..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5%-R82..> 14-Dec-2012 08:51 3.2K

RESISTANCE-3W-5--1K0..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--1R0..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--1R5..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--1R8..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--2K2..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--2R7..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--3K3..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--3R3..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--3R9..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--4R7..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--8R2..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--10K..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--10R..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--12K..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--15K..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--15R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--18R..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--22R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--33R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--56K..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--56R..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--100..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--100..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--120..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--150..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--150..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--180..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--270..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--390..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--680..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--820..> 14-Dec-2012 08:36 3.2K

RESISTANCE-3W-5--R18..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--R27..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--R39..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--R47..> 14-Dec-2012 08:39 3.2K

RESISTANCE-3W-5--R68..> 14-Dec-2012 08:41 3.2K

RESISTANCE-3W-5--R82..> 14-Dec-2012 08:39 3.2K

RESISTANCE-1206-0R00..> 14-Dec-2012 08:37 3.2K

RESISTANCE-1206-0R01..> 14-Dec-2012 08:37 3.2K

RESISTANCE-1206-0R02..> 14-Dec-2012 08:37 3.2K

RESISTANCE-2010-0R01..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2010-0R07..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2010-0R5-..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2512-0R00..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2512-0R01..> 14-Dec-2012 08:36 3.2K

RESISTANCE-2512-0R02..> 14-Dec-2012 08:36 3.2K

RHEOSTAT-BOUTON-1050..> 14-Dec-2012 08:47 2.9K

RHEOSTAT-PLAQUE-NUME..> 14-Dec-2012 08:47 2.8K

RONDELLE-LAITON-N-P-..> 14-Dec-2012 08:47 3.0K

RONDELLE.-NEOPRENE.-..> 14-Dec-2012 08:54 2.8K

RONDELLE.-NEOPRENE.-..> 13-Dec-2012 19:02 2.8K

RONDELLE.-NYLON.-PIS..> 14-Dec-2012 08:56 2.8K

RONDELLE.-NYLON.-PIS..> 13-Dec-2012 19:02 2.8K

ROULEAU-PAPIER-57X44..> 14-Dec-2012 08:53 2.7K

ROULEAU-PAPIER-57X44..> 13-Dec-2012 19:01 2.7K

SANDING-CAP,-8MM,-10..> 14-Dec-2012 08:39 2.9K

SANDING-CAP,-8MM,-SH..> 14-Dec-2012 08:43 2.9K

SANDING-DISC,-18MM,-..> 14-Dec-2012 08:43 2.8K

SANDING-DISC,-SHAFT,..> 14-Dec-2012 08:46 2.8K

SANDING-DRUM,-10MM,-..> 14-Dec-2012 08:46 2.9K

SANDING-DRUM,-10MM,-..> 14-Dec-2012 08:43 2.9K

SCIE-ISOLEE-1000V-10..> 14-Dec-2012 08:36 2.8K

SCREW,-ROUND,-2BAX3-..> 14-Dec-2012 08:47 3.0K

SCREW,-ROUND,-2BAX3-..> 14-Dec-2012 08:53 3.0K

SCREW,-ROUND,-2BAX3-..> 13-Dec-2012 19:02 3.0K

SCREW,-ROUND,-4BAX1-..> 14-Dec-2012 08:47 3.0K

SCREW,-ROUND,-4BAX3-..> 14-Dec-2012 08:47 3.0K

SCREW,-ROUND,-4BAX3-..> 14-Dec-2012 08:53 3.0K

SCREW,-ROUND,-4BAX3-..> 13-Dec-2012 19:02 3.0K

SCSI-2-50VOIES-CAPOT..> 14-Dec-2012 08:37 3.1K

SCSI-2-68VOIES-CAPOT..> 14-Dec-2012 08:37 3.1K

SEAL,-HINGED-COVER,-..> 14-Dec-2012 08:56 2.8K

SEAL,-HINGED-COVER,-..> 13-Dec-2012 19:03 2.8K

SELLE-POUR-FILS-1014..> 14-Dec-2012 08:49 3.1K

SELLE-POUR-FILS-1014..> 14-Dec-2012 08:49 3.1K

SELLE-POUR-RESEAU-DE..> 14-Dec-2012 08:45 3.2K

SEPARATEUR-PQ48-1007..> 14-Dec-2012 08:50 2.8K

SERINGUE-10ML-105979..> 14-Dec-2012 08:46 2.8K

SERINGUE-35ML-105980..> 14-Dec-2012 08:46 2.8K

SERRE-CABLE-CPC2-TAI..> 14-Dec-2012 08:41 3.2K

SERRE-CABLE-TAILLE-1..> 14-Dec-2012 08:45 3.1K

SERRE-CABLE-TAILLE-2..> 14-Dec-2012 08:41 3.2K

SERRE-CABLE-USAGE-EX..> 14-Dec-2012 08:45 3.2K

SERRE-CABLE-USAGE-EX..> 14-Dec-2012 08:50 3.2K

SERVICE-CONNECTOR-BO..> 14-Dec-2012 08:45 2.8K

SERVISOL-200002000-G..> 04-Jan-2013 17:29 2.3M

SHAFT,-FLEXIBLE-1075..> 14-Dec-2012 08:43 2.9K

SHIELDED-GANG-JACK-4..> 14-Dec-2012 08:38 3.2K

SHUNT-60MV-60A-10159..> 14-Dec-2012 08:45 3.1K

SHUNT-60MV-100A-1015..> 14-Dec-2012 08:45 3.1K

SHUNT-60MV-200A-1015..> 14-Dec-2012 08:49 3.1K

SHUNT-60MV-600A-1015..> 14-Dec-2012 08:49 3.1K

SIBA-160016-5A-FUSIB..> 04-Jan-2013 17:29 2.3M

SILICONE-310ML-10890..> 14-Dec-2012 08:40 3.1K

SLEEVES,-6MM-PLUG,-P..> 14-Dec-2012 08:41 2.9K

SMB-PRISE-DROITE-A-E..> 14-Dec-2012 08:40 3.2K

SMB-PRISE-MONTAGE-AV..> 14-Dec-2012 08:45 3.0K

SOCKET,-4MM,-PRESS-F..> 14-Dec-2012 08:39 3.2K

SOCKET,-4MM,-PRESS-F..> 14-Dec-2012 08:41 3.2K

SOCKET,-4MM,-SHROUDE..> 14-Dec-2012 08:41 3.2K

SOCKET,-4MM,-TEST,-B..> 14-Dec-2012 08:53 3.2K

SOCKET,-4MM,-TEST,-B..> 13-Dec-2012 19:02 3.2K

SOCKET,-4MM,-TEST,-Y..> 14-Dec-2012 08:54 3.2K

SOCKET,-4MM,-TEST,-Y..> 13-Dec-2012 19:02 3.2K

SOCKET,-10MM,-IN-LIN..> 14-Dec-2012 08:36 3.1K

SOCKET,-16MM,-IN-LIN..> 14-Dec-2012 08:39 3.1K

SOCKET,-110V,-WALL-M..> 14-Dec-2012 08:49 3.0K

SOCKET,-240V,-WALL-M..> 14-Dec-2012 08:48 2.9K

SOCKET,-240V,-WALL-M..> 14-Dec-2012 08:50 2.9K

SOCKET,-415V,-WALL-M..> 14-Dec-2012 08:49 3.0K

SOCKET,-415V,-WALL-M..> 14-Dec-2012 08:50 2.9K

SOCKET,-415V,-WALL-M..> 14-Dec-2012 08:50 2.9K

SOCKET,-EXTENSION,-I..> 14-Dec-2012 08:53 2.8K

SOCKET,-EXTENSION,-I..> 13-Dec-2012 19:01 2.8K

SOCKET,-INTERLOCKED,..> 14-Dec-2012 08:48 2.9K

SOCKET,-INTERLOCKED,..> 14-Dec-2012 08:48 2.9K

SOCKET,-INTERLOCKED-..> 14-Dec-2012 08:49 2.9K

SOCKET,-INTERLOCKED-..> 14-Dec-2012 08:48 2.9K

SOCKET,-INTERLOCKED-..> 14-Dec-2012 08:50 2.9K

SOCKET,-MIXED,-PK5-1..> 14-Dec-2012 08:39 3.2K

SOCKET,-T-C-K-STD-PA..> 14-Dec-2012 08:54 2.9K

SOCKET,-T-C-K-STD-PA..> 13-Dec-2012 19:02 2.9K

SOCKET,-T-C-MINI-CU-..> 14-Dec-2012 08:48 2.9K

SOCKET,-T-C-T-STANDA..> 14-Dec-2012 08:54 2.9K

SOCKET,-T-C-T-STANDA..> 13-Dec-2012 19:02 2.9K

SOCKET,-WEATHERPROOF..> 14-Dec-2012 08:39 2.8K

SOCLE-DE-TABLE-10510..> 14-Dec-2012 08:45 2.8K

SONAR-RANGING-MODULE..> 14-Dec-2012 08:56 3.2K

SONAR-RANGING-MODULE..> 13-Dec-2012 19:02 3.2K

SONDE-D´IMMERSION..> 14-Dec-2012 08:42 2.9K

SONDE-DE-SURFACE-NTC..> 14-Dec-2012 08:42 2.9K

SONDE-DE-TEST-NOIR-1..> 14-Dec-2012 08:53 3.0K

SONDE-DE-TEST-NOIR-1..> 14-Dec-2012 08:50 3.0K

SONDE-DE-TEST-NOIR.html 13-Dec-2012 19:02 3.0K

SONDE-DE-TESTROUGE-1..> 14-Dec-2012 08:47 3.0K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:45 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:45 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:45 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:50 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:50 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:50 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:48 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49 3.1K

SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45 3.1K

SOUND-LEVEL-METER-10..> 14-Dec-2012 08:56 3.0K

SOUND-LEVEL-METER.html 13-Dec-2012 19:03 3.0K

SPARE-SANDING-BELT,-..> 14-Dec-2012 08:46 2.8K

SPARE-TOOL-ARBORS,-2..> 14-Dec-2012 08:39 2.9K

SPEAKER,-BLACK,-(PAI..> 14-Dec-2012 08:48 3.0K

SPEAKER,-PIEZO-DRIVE..> 14-Dec-2012 08:54 3.0K

SPEAKER,-PIEZO-DRIVE..> 13-Dec-2012 19:02 3.0K

STARTER-TUBE-FLUO-70..> 14-Dec-2012 08:44 3.0K

STARTER-TUBE-FLUO-JU..> 14-Dec-2012 08:44 3.0K

STARTER-TUBE-FLUO-JU..> 14-Dec-2012 08:41 3.1K

STATION-DE-SOUDAGE-2..> 14-Dec-2012 08:44 3.1K

STATION-DE-SOUDAGE-2..> 14-Dec-2012 08:49 3.1K

SUB-D-90-DEGRES-COUD..> 14-Dec-2012 08:38 3.2K

SUB-D-AMPLIMITE-1098..> 14-Dec-2012 08:38 3.2K

SUB-D-AMPLIMITE-1098..> 14-Dec-2012 08:38 3.2K

SUB-D-AMPLIMITE-1098..> 14-Dec-2012 08:38 3.2K

SUB-D-BOITIER-FEMELL..> 14-Dec-2012 08:41 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:44 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-9P-109..> 14-Dec-2012 08:37 3.2K

SUB-D-FEMELLE-9P-CI-..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-9P-PQ5..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-9V-107..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:44 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:44 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-15P-PQ..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-15V-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:37 3.2K

SUB-D-FEMELLE-25P-PQ..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-25V-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:47 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-37V-10..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-68P-SC..> 14-Dec-2012 08:37 3.2K

SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:40 3.2K

SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:37 3.2K

SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:42 3.2K

SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:37 3.2K

SUB-D-FEMELLE-AUTODE..> 14-Dec-2012 08:36 3.2K

SUB-D-FEMELLE-AUTODE..> 14-Dec-2012 08:36 3.2K

SUB-D-FEMELLE-CI-9-P..> 14-Dec-2012 08:46 3.2K

SUB-D-FEMELLE-CI-15-..> 14-Dec-2012 08:43 3.2K

SUB-D-FEMELLE-CI-90D..> 14-Dec-2012 08:39 3.2K

SUB-D-FEMELLE-CI-90D..> 14-Dec-2012 08:44 3.2K

SUB-D-FEMELLE-DE-PUI..> 14-Dec-2012 08:38 3.2K

SUB-D-FEMELLE-DE-PUI..> 14-Dec-2012 08:38 3.2K

SUB-D-FEMELLE-PUISSA..> 14-Dec-2012 08:38 3.2K

SUB-D-HD-FEMELLE-15P..> 14-Dec-2012 08:44 3.2K

SUB-D-HD-FEMELLE-15P..> 14-Dec-2012 08:39 3.2K

SUB-D-HD-FEMELLE-26P..> 14-Dec-2012 08:43 3.2K

SUB-D-HD-FEMELLE-26P..> 14-Dec-2012 08:39 3.2K

SUB-D-HD-FEMELLE-44P..> 14-Dec-2012 08:46 3.2K

SUB-D-HD-MALE-15P-10..> 14-Dec-2012 08:44 3.2K

SUB-D-HD-MALE-15P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-HD-MALE-15P-10..> 14-Dec-2012 08:39 3.2K

SUB-D-HD-MALE-26P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-HD-MALE-26P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-HD-MALE-26P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-HD-MALE-44P-10..> 14-Dec-2012 08:44 3.2K

SUB-D-MALE-9P-107179..> 14-Dec-2012 08:44 3.2K

SUB-D-MALE-9P-107180..> 14-Dec-2012 08:44 3.2K

SUB-D-MALE-9P-107523..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-9P-107524..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-9P-107525..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-9P-107526..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-9P-107528..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-9P-109685..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-9P-PQ5-10..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-9V-107527..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-15P-10718..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-15P-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-15P-PQ5-1..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-15V-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-25P-10718..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-25P-10751..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-25P-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-25P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-25P-10752..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-25P-10752..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-25P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-25P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-25P-10753..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-25P-10968..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-25P-CI-90..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-25P-PQ5-1..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-25V-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-37P-10718..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-37P-10752..> 14-Dec-2012 08:44 3.2K

SUB-D-MALE-37P-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-37P-10752..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-37P-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-37P-10968..> 14-Dec-2012 08:37 3.2K

SUB-D-MALE-37P-CI-90..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-37V-10752..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-50P-10751..> 14-Dec-2012 08:46 3.2K

SUB-D-MALE-A-SOUDER-..> 14-Dec-2012 08:37 3.2K

SUB-D-MALE-AUTODENUD..> 14-Dec-2012 08:36 3.2K

SUB-D-MALE-AUTODENUD..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-CI-9-P-10..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-CI-15-P-1..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-CI-25-P-1..> 14-Dec-2012 08:39 3.2K

SUB-D-MALE-CI-R-A-15..> 14-Dec-2012 08:43 3.2K

SUB-D-MALE-DE-PUISSA..> 14-Dec-2012 08:38 3.2K

SUPPORT-108613.html 14-Dec-2012 08:41 2.8K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:49 3.1K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:48 3.1K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:45 3.1K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:49 3.1K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:48 3.1K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:50 3.1K

SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:48 3.1K

SUPPORT-CI-DIL-6-VOI..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-6VOIE..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-8-VOI..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-8-VOI..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-8VOIE..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-10.16..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-14-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-14-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-14-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-14VOI..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-16-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-16-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-16-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-16VOI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-DIL-18-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-18-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-18-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-18VOI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-DIL-20-VO..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-20-VO..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIL-22-VO..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-22VOI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-DIL-22VOI..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-24-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-24-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-24-VO..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-24VOI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-DIL-24VOI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-DIL-28-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-28-VO..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-28-VO..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-28VOI..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-28VOI..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-32-VO..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-32-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-32-VO..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-32VOI..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-40-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-40-VO..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-DIL-40-VO..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-40VOI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-DIL-48-VO..> 14-Dec-2012 08:42 3.2K

SUPPORT-CI-DIL-10230..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-10230..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-DIL-CMS-7..> 14-Dec-2012 08:45 3.2K

SUPPORT-CI-DIL-CMS-1..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-DIMM-144-..> 14-Dec-2012 08:37 3.2K

SUPPORT-CI-DIMM-144-..> 14-Dec-2012 08:39 3.2K

SUPPORT-CI-PLCC-20-V..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-PLCC-32-V..> 14-Dec-2012 08:38 3.2K

SUPPORT-CI-QIL-64-VO..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-SANS-SOUD..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-SANS-SOUD..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-SANS-SOUD..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-SHRINK-DI..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46 3.1K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:48 3.2K

SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:43 3.2K

SUPPORT-CI-ZIF-TSSOP..> 14-Dec-2012 08:37 3.1K

SUPPORT-D´ESPACEM..> 14-Dec-2012 08:45 3.1K

SUPPORT-DE-PILE-2X9V..> 14-Dec-2012 08:50 2.9K

SUPPORT-DE-PILE-4XAA..> 14-Dec-2012 08:50 2.9K

SUPPORT-PLCC-68-VOIE..> 14-Dec-2012 08:46 3.1K

SUPPORT-PLCC-84-VOIE..> 14-Dec-2012 08:43 3.1K

SUPPORT-PLCC-CMS-44V..> 14-Dec-2012 08:46 3.2K

SUPPORT-PLCC-ZIF-44-..> 14-Dec-2012 08:47 3.2K

SUPPORT-PLCC-ZIF-68-..> 14-Dec-2012 08:47 3.2K

SUPPORT-PLCC-ZIF-84-..> 14-Dec-2012 08:43 3.2K

SUPPORT-POUR-RELAIS-..> 14-Dec-2012 08:39 3.2K

SUPPORT-POUR-TUBE-FL..> 14-Dec-2012 08:41 3.0K

SUPPORT-RELAIS-14B-1..> 14-Dec-2012 08:41 3.2K

SUPPORT-RELAIS-DPCO-..> 14-Dec-2012 08:38 3.2K

SUPPORT-SIL-1-RANGE-..> 14-Dec-2012 08:47 3.2K

SUPPORT-SIL-1-RANGE-..> 14-Dec-2012 08:46 3.2K

SUPPORT-SIL-20-VOIES..> 14-Dec-2012 08:46 3.2K

SUPPORT-SIL-20-VOIES..> 14-Dec-2012 08:48 3.2K

SUPPORT-SIL-32-VOIES..> 14-Dec-2012 08:46 3.2K

SUPPORT-SIL-32-VOIES..> 14-Dec-2012 08:43 3.2K

SUPPORT-TRANSISTOR-T..> 14-Dec-2012 08:39 3.2K

SWITCH,-PULL-CORD,-I..> 14-Dec-2012 08:43 3.1K

SYNTHETISEUR-CMS-AGI..> 14-Dec-2012 08:37 3.2K

SYSTEME-DE-RETENUE-D..> 14-Dec-2012 08:49 3.0K

T-NUT-SET,-FOR-VICES..> 14-Dec-2012 08:39 2.8K

TAPE,-2-SIDED,-50MMX..> 14-Dec-2012 08:45 3.0K

TAPE,-INSUL,-50MMX33..> 14-Dec-2012 08:50 3.0K

TAPE,-INSUL,-50MMX33..> 14-Dec-2012 08:50 3.0K

TARAUD-2BA-HSS-10564..> 14-Dec-2012 08:44 2.9K

TARAUD-105623.html 14-Dec-2012 08:45 3.0K

TARAUD-105624.html 14-Dec-2012 08:44 3.0K

TARAUD-105625.html 14-Dec-2012 08:40 3.0K

TARAUD-105626.html 14-Dec-2012 08:45 3.0K

TARAUD-105627.html 14-Dec-2012 08:47 3.0K

TARAUD-105628.html 14-Dec-2012 08:40 3.0K

TARAUD-105629.html 14-Dec-2012 08:40 3.0K

TARAUD-FINISSEUR-4BA..> 14-Dec-2012 08:47 3.0K

TARAUD-M2-HSS-105634..> 14-Dec-2012 08:47 3.0K

TARAUD-M2.5-HSS-1056..> 14-Dec-2012 08:44 3.0K

TARAUD-M3-105967.html 14-Dec-2012 08:44 2.8K

TARAUD-M3-HSS-105636..> 14-Dec-2012 08:40 3.0K

TARAUD-M3.5-HSS-1056..> 14-Dec-2012 08:40 3.0K

TARAUD-M4-HSS-105638..> 14-Dec-2012 08:47 3.0K

TARAUD-M5-HSS-105639..> 14-Dec-2012 08:40 3.0K

TARAUD-M6-HSS-105640..> 14-Dec-2012 08:45 3.0K

TARAUD-M8-HSS-105642..> 14-Dec-2012 08:45 3.0K

TEL-EXTENSION-SKT-SC..> 14-Dec-2012 08:53 2.8K

TEL-EXTENSION-SKT-SC..> 13-Dec-2012 19:01 2.8K

TEL-EXTENSION-SKT-SC..> 14-Dec-2012 08:53 2.8K

TEL-EXTENSION-SKT-SC..> 13-Dec-2012 19:02 2.8K

TELEPHONE-EXT-LEAD-W..> 14-Dec-2012 08:53 2.8K

TELEPHONE-EXT-LEAD-W..> 13-Dec-2012 19:02 2.8K

TEMPERATURE-CONTROLE..> 14-Dec-2012 08:42 3.2K

TEMPERATURE-CONTROLE..> 14-Dec-2012 08:42 3.2K

TEMPORISATEUR-104026..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104036..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104037..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104038..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104039..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104042..> 14-Dec-2012 08:48 3.2K

TEMPORISATEUR-104044..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104049..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104630..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104631..> 14-Dec-2012 08:41 3.2K

TEMPORISATEUR-104632..> 14-Dec-2012 08:45 3.2K

TEMPORISATEUR-104633..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-104662..> 14-Dec-2012 08:48 3.2K

TEMPORISATEUR-104664..> 14-Dec-2012 08:47 3.2K

TEMPORISATEUR-104666..> 14-Dec-2012 08:41 3.2K

TEMPORISATEUR-104674..> 14-Dec-2012 08:45 3.2K

TEMPORISATEUR-104677..> 14-Dec-2012 08:46 3.2K

TEMPORISATEUR-105976..> 14-Dec-2012 08:40 3.2K

TERMINAISON-FIBRE-OP..> 14-Dec-2012 08:45 3.1K

TEST-High-Tech-Commu..> 14-Dec-2012 08:50 630

TEST2.html 14-Dec-2012 08:50 2.0K

TEST3.html 14-Dec-2012 08:50 8.0K

TESTEUR-D´ISOLATI..> 14-Dec-2012 08:48 3.2K

TESTEUR-D´ISOLATI..> 14-Dec-2012 08:49 3.2K

TESTEUR-DE-ROTATION-..> 14-Dec-2012 08:49 3.0K

TESTEUR-DE-TENSION-1..> 14-Dec-2012 08:57 2.9K

TESTEUR-DE-TENSION-1..> 14-Dec-2012 08:47 3.2K

TESTEUR-DE-TENSION.html 13-Dec-2012 19:03 2.9K

TESTEUR-ELECTRIQUE-1..> 14-Dec-2012 08:39 3.0K

TESTEUR-ELECTRIQUE-1..> 14-Dec-2012 08:39 3.0K

TETINE-CAOUTCHOUC-10..> 14-Dec-2012 08:45 3.0K

THERMISTANCE-LINEAIR..> 14-Dec-2012 08:37 3.2K

THERMISTANCE-LINEAIR..> 14-Dec-2012 08:42 3.2K

THERMOMETRE-1082992...> 14-Dec-2012 08:42 3.2K

THERMOMETRE-1083012...> 14-Dec-2012 08:38 3.2K

THERMOMETRE-NUMERIQU..> 14-Dec-2012 08:38 3.2K

THERMOSTAT-30C---15C..> 14-Dec-2012 08:40 3.2K

THERMOSTAT-35C-50C-1..> 14-Dec-2012 08:43 3.2K

THERMOSTAT-40C---25C..> 14-Dec-2012 08:40 3.2K

THERMOSTAT-45C--60C-..> 14-Dec-2012 08:43 3.2K

THERMOSTAT-65C-80C-1..> 14-Dec-2012 08:40 3.2K

THERMOSTAT-70C---55C..> 14-Dec-2012 08:41 3.2K

THERMOSTAT-80C---65C..> 14-Dec-2012 08:43 3.2K

THERMOSTAT-80C-100C-..> 14-Dec-2012 08:43 3.2K

THERMOSTAT-100C-120C..> 14-Dec-2012 08:43 3.2K

THERMOSTAT-110C--90C..> 14-Dec-2012 08:40 3.2K

THERMOSTAT-115C-140C..> 14-Dec-2012 08:41 3.2K

THERMOSTAT-120C-98C-..> 14-Dec-2012 08:40 3.2K

THERMOSTAT-130C-110C..> 14-Dec-2012 08:41 3.2K

THYRISTOR-0.8A-400V-..> 14-Dec-2012 08:36 3.1K

THYRISTOR-0.8A-600V-..> 14-Dec-2012 08:38 3.1K

THYRISTOR-7.5A-500V-..> 14-Dec-2012 08:43 3.2K

THYRISTOR-7.5A-800V-..> 14-Dec-2012 08:43 3.2K

THYRISTOR-13A-400V-T..> 14-Dec-2012 08:42 3.1K

THYRISTOR-13A-600V-T..> 14-Dec-2012 08:40 3.1K

THYRISTOR-13A-800V-T..> 14-Dec-2012 08:42 3.2K

THYRISTOR-19A-800V-1..> 14-Dec-2012 08:44 3.1K

THYRISTOR-19A-1200V-..> 14-Dec-2012 08:40 3.1K

THYRISTOR-19A-1200V-..> 14-Dec-2012 08:44 3.1K

THYRISTOR-26A-1200V-..> 14-Dec-2012 08:42 3.1K

THYRISTOR-31A-1200V-..> 14-Dec-2012 08:42 3.1K

THYRISTOR-32A-800V-T..> 14-Dec-2012 08:44 3.1K

THYRISTOR-32A-1200V-..> 14-Dec-2012 08:44 3.2K

THYRISTOR-48A-1200V-..> 14-Dec-2012 08:42 3.2K

THYRISTOR-48A-1600V-..> 14-Dec-2012 08:36 3.1K

THYRISTOR-50A-1600V-..> 14-Dec-2012 08:36 3.1K

THYRISTOR-100A-1200V..> 14-Dec-2012 08:42 3.0K

THYRISTOR-MODULE-3-P..> 14-Dec-2012 08:37 3.2K

TIMER-COMPTEUR-10181..> 14-Dec-2012 08:48 3.2K

TIMER-DOUBLE-1094320..> 14-Dec-2012 08:38 3.2K

TIP,-DESOLDER-1.0MM-..> 14-Dec-2012 08:43 2.8K

TIP,-DESOLDERING,-1...> 14-Dec-2012 08:45 2.8K

TIP,-SOLDERING,-PB-F..> 14-Dec-2012 08:47 2.8K

TIROIR-ROUGE-POUR-BO..> 14-Dec-2012 08:39 3.1K

TONECALLER-106861.html 14-Dec-2012 08:39 3.0K

TOOL-KIT-1082291.html 14-Dec-2012 08:41 2.7K

TORQUE-DRIVER-DIAL-S..> 14-Dec-2012 08:42 3.0K

TOURNEVIS-75XN01-100..> 14-Dec-2012 08:38 3.0K

TOURNEVIS-100X3MM-10..> 14-Dec-2012 08:40 3.0K

TOURNEVIS-152X5MM-10..> 14-Dec-2012 08:36 3.0K

TOURNEVIS-203X5MM-10..> 14-Dec-2012 08:42 3.0K

TOURNEVIS-108702.html 14-Dec-2012 08:38 3.0K

TOURNEVIS-108703.html 14-Dec-2012 08:41 3.0K

TOURNEVIS-108705.html 14-Dec-2012 08:41 2.9K

TOURNEVIS-A-CLE-EMMA..> 14-Dec-2012 08:37 2.9K

TOURNEVIS-A-CLE-EMMA..> 14-Dec-2012 08:37 2.9K

TOURNEVIS-A-CLE-EMMA..> 14-Dec-2012 08:37 2.9K

TOURNEVIS-DE-TEST-VD..> 14-Dec-2012 08:37 3.0K

TOURNEVIS-LONGUE-POR..> 14-Dec-2012 08:41 3.0K

TOURNEVIS-LONGUE-POR..> 14-Dec-2012 08:38 3.0K

TOURNEVIS-TORX-T8-10..> 14-Dec-2012 08:40 2.8K

TOURNEVIS-TORX-T10-1..> 14-Dec-2012 08:42 2.8K

TOURNEVIS-TORX-T15-1..> 14-Dec-2012 08:42 2.8K

TOURNEVIS-TORX-T20-1..> 14-Dec-2012 08:37 2.8K

TRACKLIGHT,-COUPLER-..> 14-Dec-2012 08:41 2.8K

TRACKLIGHT,-FLEXIBLE..> 14-Dec-2012 08:39 2.8K

TRACKLIGHT,-LIVE-END..> 14-Dec-2012 08:41 2.8K

TRACKLIGHT,-TRACK-12..> 14-Dec-2012 08:41 2.8K

TRANCEIVER-DE-BUS-4-..> 14-Dec-2012 08:45 3.2K

TRANCEIVER-RS232-101..> 14-Dec-2012 08:47 3.2K

TRANCEIVER-RS232-107..> 14-Dec-2012 08:38 3.2K

TRANSCEIVER-CMS-1079..> 14-Dec-2012 08:44 3.2K

TRANSCEIVER-CMS-RS-4..> 14-Dec-2012 08:45 3.2K

TRANSCEIVER-DE-BUS-4..> 14-Dec-2012 08:47 3.2K

TRANSCEIVER-DE-BUS-8..> 14-Dec-2012 08:41 3.2K

TRANSCEIVER-DE-BUS-C..> 14-Dec-2012 08:42 3.2K

TRANSCEIVER-DE-BUS-D..> 14-Dec-2012 08:41 3.2K

TRANSCEIVER-DE-BUS-S..> 14-Dec-2012 08:47 3.2K

TRANSCEIVER-DE-BUS-S..> 14-Dec-2012 08:47 3.2K

TRANSCEIVER-DOUBLE-R..> 14-Dec-2012 08:37 3.2K

TRANSCEIVER-RS-485-4..> 14-Dec-2012 08:43 3.2K

TRANSCEIVER-RS-485-4..> 14-Dec-2012 08:42 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:56 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:56 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57 3.2K

TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03 3.2K

TRANSDUCTEUR-CMS-107..> 14-Dec-2012 08:42 3.2K

TRANSFORMATEUR-240V-..> 14-Dec-2012 08:36 2.9K

TRANSFORMATEUR-415V-..> 14-Dec-2012 08:42 2.9K

TRANSFORMATEUR-D´..> 14-Dec-2012 08:38 3.2K

TRANSFORMATEUR-D´..> 14-Dec-2012 08:38 3.2K

TRANSFORMATEUR-D´..> 14-Dec-2012 08:38 3.2K

TRANSFORMATEUR-D´..> 14-Dec-2012 08:38 3.2K

[   ]

TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:52 0

TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:49 3.2K

[   ]

TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:52 0

TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:48 3.2K

TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:40 3.2K

TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:40 3.1K

TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:38 3.2K

TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:38 3.2K

TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41 3.2K

TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41 3.2K

TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41 3.2K

TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41 3.2K

TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:49 3.2K

TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-DOUBLE-NP..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-DOUBLE-SO..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-FAST-IGBT..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-IGBT-1057..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:46 3.2K

TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:46 3.2K

TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-IGBT-D2-P..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-IGBT-D2-P..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-IGBT-NPT-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-IGBT-NPT-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-IGBT-TO-2..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-JFET-CANA..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-JFET-CANA..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-JFET-N-SO..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-JFET-N-SO..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-MOSFET-DI..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-DO..> 13-Dec-2012 19:02 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-DO..> 13-Dec-2012 19:02 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-DO..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-DR..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-MOSFET-DR..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-MOSFET-DR..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-MOSFET-MO..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:49 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-P-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:53 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-P-..> 13-Dec-2012 19:01 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-MOSFET-RF..> 14-Dec-2012 08:40 3.1K

TRANSISTOR-MOSFET-RF..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-RF..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-SM..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-MOSFET-SM..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-N-IGBT-TO..> 14-Dec-2012 08:38 3.2K

TRANSISTOR-NPN-80V-1..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-100V-..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-400V-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-400V-..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-450V-..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-700V-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-1500V..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:49 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:50 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-DARLI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-DARLI..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-DOUBL..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-PNP-S..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-RF-SO..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-NPN-RF-SO..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-NPN-RF-SO..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:44 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-SOT-3..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-SOT-3..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-TO-92..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-NPN-TO-92..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-NPN-TO-92..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-NPN-TO-12..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-NPN-TO-21..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:42 3.1K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40 3.1K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37 3.1K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37 3.1K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-NPN-TO-24..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-PNP-45V-8..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-PNP-60V-3..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-60V-5..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-PNP-80V-1..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-400V-..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:47 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:48 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:45 3.2K

TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:49 3.2K

TRANSISTOR-PNP-D-PAK..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-DARLI..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-PNP-DOUBL..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-PNP-SOT-3..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:43 3.2K

TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:42 3.2K

TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:40 3.2K

TRANSISTOR-RF-SOT-32..> 14-Dec-2012 08:37 3.2K

TRANSISTOR-RF-SOT-32..> 14-Dec-2012 08:39 3.2K

TRANSISTOR-RF-TSFP3-..> 14-Dec-2012 08:39 3.2K

TRANSLATEUR-DE-TENSI..> 14-Dec-2012 08:45 3.2K

TRANSLATEUR-DE-TENSI..> 14-Dec-2012 08:41 3.2K

TRANSLATEUR-I2C-&-SM..> 14-Dec-2012 08:41 3.2K

TRANSLATOR-4CH-BI-DI..> 14-Dec-2012 08:45 3.2K

TRANSLATOR-8CH-BI-DI..> 14-Dec-2012 08:42 3.2K

TRANSMETEUR-DE-COURA..> 14-Dec-2012 08:38 3.2K

TRANSMETTEUR-CMS-4-2..> 14-Dec-2012 08:38 3.2K

TRESSE-DE-MASSE-250M..> 14-Dec-2012 08:41 3.1K

TRESSE-DE-MASSE-400M..> 14-Dec-2012 08:40 3.1K

TRIAC-1A-600V-SOT-22..> 14-Dec-2012 08:42 3.2K

TRIAC-4A-600V-TO-220..> 14-Dec-2012 08:42 3.2K

TRIAC-6A-600V-BOITIE..> 14-Dec-2012 08:44 3.2K

TRIAC-6A-600V-BOITIE..> 14-Dec-2012 08:44 3.2K

TRIAC-6A-600V-BOITIE..> 14-Dec-2012 08:44 3.2K

TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:46 3.2K

TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:44 3.2K

TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:40 3.2K

TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:44 3.2K

TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:44 3.2K

TRIAC-8A-600V-TO-220..> 14-Dec-2012 08:42 3.2K

TRIAC-10A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-10A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:46 3.2K

TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:40 3.2K

TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-12A-600V-TO-22..> 14-Dec-2012 08:40 3.2K

TRIAC-12A-700V-BOITI..> 14-Dec-2012 08:40 3.2K

TRIAC-12A-700V-BOITI..> 14-Dec-2012 08:46 3.2K

TRIAC-12A-800V-TO-22..> 14-Dec-2012 08:42 3.2K

TRIAC-16A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-16A-600V-TO-22..> 14-Dec-2012 08:42 3.2K

TRIAC-16A-800V-BOITI..> 14-Dec-2012 08:40 3.2K

TRIAC-16A-800V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-16A-800V-TO-22..> 14-Dec-2012 08:40 3.2K

TRIAC-20A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-24A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-24A-600V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-25A-600V-BOITI..> 14-Dec-2012 08:40 3.2K

TRIAC-25A-600V-BOITI..> 14-Dec-2012 08:40 3.2K

TRIAC-25A-600V-TO-22..> 14-Dec-2012 08:42 3.2K

TRIAC-25A-700V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-40A-600V-BOITI..> 14-Dec-2012 08:46 3.2K

TRIAC-40A-700V-BOITI..> 14-Dec-2012 08:44 3.2K

TRIAC-40A-800V-BOITI..> 14-Dec-2012 08:46 3.2K

TRIMMER-1K-108236.html 14-Dec-2012 08:39 3.2K

TRIMMER-2K-108237.html 14-Dec-2012 08:39 3.2K

TRIMMER-5K-108249.html 14-Dec-2012 08:43 3.2K

TRIMMER-10K-108250.html 14-Dec-2012 08:41 3.2K

TRIMMER-20K-108251.html 14-Dec-2012 08:41 3.2K

TRIMMER-50K-108252.html 14-Dec-2012 08:41 3.2K

TRIMMER-100K-108242...> 14-Dec-2012 08:43 3.2K

TRIMMER-500K-108243...> 14-Dec-2012 08:43 3.2K

TRIMMER-500R-108235...> 14-Dec-2012 08:39 3.2K

TRIMMER-CMS-1K-10713..> 14-Dec-2012 08:44 3.2K

TRIMMER-CMS-2K-10713..> 14-Dec-2012 08:46 3.2K

TRIMMER-CMS-5K-10713..> 14-Dec-2012 08:44 3.2K

TRIMMER-CMS-10K-1071..> 14-Dec-2012 08:46 3.2K

TRIMMER-CMS-20K-1071..> 14-Dec-2012 08:46 3.2K

TRIMMER-CMS-50K-1071..> 14-Dec-2012 08:46 3.2K

TROUSSE-A-OUTILS-105..> 14-Dec-2012 08:46 2.8K

TROUSSE-A-OUTILS-105..> 14-Dec-2012 08:45 2.8K

TROUSSE-A-OUTILS-105..> 14-Dec-2012 08:41 2.8K

TUBE-10CM-106650.html 14-Dec-2012 08:46 2.8K

TUBE-30CM-106653.html 14-Dec-2012 08:39 2.8K

TUBE-100CM-106658.html 14-Dec-2012 08:46 2.8K

TUBE-150CM-106659.html 14-Dec-2012 08:46 2.8K

TUBE-200CM-106660.html 14-Dec-2012 08:39 2.8K

TUBE-A-BRIDES-400MM-..> 14-Dec-2012 08:39 2.9K

TUBE-A-BRIDES-2000MM..> 14-Dec-2012 08:39 2.9K

TUBE-FILTRE-DXV-80-(..> 14-Dec-2012 08:44 2.8K

TUBE-PVC-NOIR-107279..> 14-Dec-2012 08:43 3.0K

TUBULAR-LIGHT,-CFL,-..> 14-Dec-2012 08:36 3.0K

TUBULAR-LIGHT,-T8,-I..> 14-Dec-2012 08:44 3.0K

TWEETER-PIEZO-100459..> 14-Dec-2012 08:56 3.1K

TWEETER-PIEZO.html 13-Dec-2012 19:03 3.1K

TWIST-DRILL-SET,-HSS..> 14-Dec-2012 08:43 2.8K

UART-AVEC-FIFO-16-OC..> 14-Dec-2012 08:39 3.2K

UART-QUADRUPLE-AVEC-..> 14-Dec-2012 08:39 3.2K

ULTRASONIC-RXR-25KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-RXR-25KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-RXR-32.8K..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-RXR-32.8K..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-TX-RX-MOD..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-TXR-25KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-TXR-25KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-TXR-32.8K..> 14-Dec-2012 08:52 3.1K

ULTRASONIC-TXR-32.8K..> 13-Dec-2012 19:01 3.1K

ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:49 3.1K

ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-TXR-40KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:56 3.1K

ULTRASONIC-TXR-40KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-TXR-77KHZ..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-TXR-77KHZ..> 13-Dec-2012 19:02 3.1K

ULTRASONIC-TXR-235KH..> 14-Dec-2012 08:55 3.1K

ULTRASONIC-TXR-235KH..> 13-Dec-2012 19:02 3.1K

UNIVERSAL-HOLDER,-FO..> 14-Dec-2012 08:39 2.8K

VACUUM,-CLEANER,-MIN..> 14-Dec-2012 08:47 2.8K

VALISE-A-OUTILS-1054..> 14-Dec-2012 08:41 3.0K

VALISE-A-OUTILS-1092..> 14-Dec-2012 08:40 3.0K

VARISTANCE-0.3J-11VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-0.3J-11VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-0.4J-4VAC..> 14-Dec-2012 08:44 3.2K

VARISTANCE-0.4J-14VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-0.4J-14VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-0.5J-17VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-0.5J-17VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-0.6J-20VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-0.6J-20VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-0.7J-25VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-0.7J-25VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-0.8J-4VAC..> 14-Dec-2012 08:40 3.2K

VARISTANCE-0.8J-10VA..> 14-Dec-2012 08:47 3.2K

VARISTANCE-0.8J-11VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-0.8J-11VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-0.9J-14VA..> 14-Dec-2012 08:54 3.2K

VARISTANCE-0.9J-14VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-0.9J-14VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-0.9J-30VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-0.9J-30VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-1.0J-17VA..> 14-Dec-2012 08:47 3.2K

VARISTANCE-1.1J-17VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-1.1J-17VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-1.1J-35VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-1.1J-35VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-1.2J-20VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-1.3J-20VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-1.3J-20VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-1.3J-40VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-1.3J-40VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-1.5J-25VA..> 14-Dec-2012 08:47 3.2K

VARISTANCE-1.6J-25VA..> 14-Dec-2012 08:54 3.2K

VARISTANCE-1.6J-25VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-1.7J-11VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-1.7J-11VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-1.8J-30VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-1.8J-50VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-1.8J-50VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-2.0J-14VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-2.0J-14VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-2.0J-30VA..> 14-Dec-2012 08:54 3.2K

VARISTANCE-2.0J-30VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-2.3J-35VA..> 14-Dec-2012 08:46 3.2K

VARISTANCE-2.5J-17VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-2.5J-17VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-2.5J-35VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-2.5J-35VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-2.5J-75VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-2.5J-75VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-3.0J-40VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-3.0J-40VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-3.0J-40VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-3.1J-20VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-3.1J-20VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-3.2J-11VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-3.2J-11VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-3.4J-95VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-3.4J-95VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-3.4J-115V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-3.4J-115V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-3.5J-10VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-3.7J-25VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-3.7J-25VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-4.0J-14VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-4.0J-14VA..> 14-Dec-2012 08:47 3.2K

VARISTANCE-4.0J-14VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-4.0J-50VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-4.2J-50VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-4.2J-50VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-4.2J-130V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-4.2J-130V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-4.4J-30VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-4.4J-30VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-4.8J-60VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-4.8J-60VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-4.9J-150V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-4.9J-150V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-5.0J-17VA..> 14-Dec-2012 08:40 3.2K

VARISTANCE-5.0J-60VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-5.4J-35VA..> 14-Dec-2012 08:57 3.2K

VARISTANCE-5.4J-35VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-5.6J-175V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-5.6J-175V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-5.9J-75VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-5.9J-75VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-6.0J-20VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-6.0J-20VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-6.0J-20VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-6.0J-75VA..> 14-Dec-2012 08:40 3.2K

VARISTANCE-7.0J-25VA..> 14-Dec-2012 08:56 3.2K

VARISTANCE-7.0J-25VA..> 13-Dec-2012 19:03 3.2K

VARISTANCE-7.2J-25VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-7.2J-230V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-7.2J-230V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-8.2J-250V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-8.2J-250V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-8.4J-50VA..> 14-Dec-2012 08:55 3.2K

VARISTANCE-8.4J-50VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-8.4J-115V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-8.4J-115V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-8.6J-275V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-8.6J-275V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-9.0J-30VA..> 14-Dec-2012 08:54 3.2K

VARISTANCE-9.0J-30VA..> 13-Dec-2012 19:02 3.2K

VARISTANCE-9.5J-130V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-9.5J-130V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-9.6J-300V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-9.6J-300V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-10.0J-11V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-10.0J-11V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-10.0J-35V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-10.0J-35V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-10.0J-35V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-10.0J-115..> 14-Dec-2012 08:44 3.2K

VARISTANCE-11.0J-130..> 14-Dec-2012 08:44 3.2K

VARISTANCE-12.0J-14V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-12.0J-14V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-13.0J-40V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-13.0J-40V..> 14-Dec-2012 08:40 3.2K

VARISTANCE-13.0J-40V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-13.0J-150..> 14-Dec-2012 08:44 3.2K

VARISTANCE-13.0J-175..> 14-Dec-2012 08:57 3.2K

VARISTANCE-13.0J-175..> 13-Dec-2012 19:03 3.2K

VARISTANCE-13.5J-385..> 14-Dec-2012 08:57 3.2K

VARISTANCE-13.5J-385..> 13-Dec-2012 19:03 3.2K

VARISTANCE-14.0J-17V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-14.0J-17V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-14.0J-420..> 14-Dec-2012 08:55 3.2K

VARISTANCE-14.0J-420..> 13-Dec-2012 19:02 3.2K

VARISTANCE-15.0J-50V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-15.0J-50V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-15.0J-95V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-15.0J-95V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-17.0J-60V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-17.0J-60V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-17.0J-230..> 14-Dec-2012 08:56 3.2K

VARISTANCE-17.0J-230..> 13-Dec-2012 19:03 3.2K

VARISTANCE-18.0J-20V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-18.0J-20V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-18.0J-115..> 14-Dec-2012 08:56 3.2K

VARISTANCE-18.0J-115..> 13-Dec-2012 19:03 3.2K

VARISTANCE-18.0J-460..> 14-Dec-2012 08:54 3.2K

VARISTANCE-18.0J-460..> 13-Dec-2012 19:02 3.2K

VARISTANCE-19.0J-130..> 14-Dec-2012 08:57 3.2K

VARISTANCE-19.0J-130..> 13-Dec-2012 19:03 3.2K

VARISTANCE-19.0J-250..> 14-Dec-2012 08:56 3.2K

VARISTANCE-19.0J-250..> 13-Dec-2012 19:03 3.2K

VARISTANCE-20.0J-60V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-20.0J-75V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-20.0J-75V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-20.0J-130..> 14-Dec-2012 08:46 3.2K

VARISTANCE-20.0J-230..> 14-Dec-2012 08:40 3.2K

VARISTANCE-21.0J-250..> 14-Dec-2012 08:44 3.2K

VARISTANCE-21.0J-250..> 14-Dec-2012 08:44 3.2K

VARISTANCE-21.0J-275..> 14-Dec-2012 08:54 3.2K

VARISTANCE-21.0J-275..> 13-Dec-2012 19:02 3.2K

VARISTANCE-22.0J-75V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-22.0J-140..> 14-Dec-2012 08:56 3.2K

VARISTANCE-22.0J-140..> 13-Dec-2012 19:03 3.2K

VARISTANCE-23.0J-275..> 14-Dec-2012 08:44 3.2K

VARISTANCE-23.0J-275..> 14-Dec-2012 08:46 3.2K

VARISTANCE-23.0J-300..> 14-Dec-2012 08:57 3.2K

VARISTANCE-23.0J-300..> 13-Dec-2012 19:03 3.2K

VARISTANCE-24.0J-150..> 14-Dec-2012 08:57 3.2K

VARISTANCE-24.0J-150..> 13-Dec-2012 19:03 3.2K

VARISTANCE-25.0J-95V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-25.0J-95V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-25.0J-150..> 14-Dec-2012 08:44 3.2K

VARISTANCE-26.0J-25V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-26.0J-25V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-26.0J-30V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-26.0J-30V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-27.0J-50V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-27.0J-50V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-28.0J-175..> 14-Dec-2012 08:55 3.2K

VARISTANCE-28.0J-175..> 13-Dec-2012 19:02 3.2K

VARISTANCE-30.0J-95V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-30.0J-115..> 14-Dec-2012 08:54 3.2K

VARISTANCE-30.0J-115..> 13-Dec-2012 19:02 3.2K

VARISTANCE-32.0J-420..> 14-Dec-2012 08:55 3.2K

VARISTANCE-32.0J-420..> 13-Dec-2012 19:02 3.2K

VARISTANCE-32.0J-460..> 14-Dec-2012 08:56 3.2K

VARISTANCE-32.0J-460..> 13-Dec-2012 19:03 3.2K

VARISTANCE-33.0J-35V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-33.0J-35V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-33.0J-60V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-33.0J-60V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-34.0J-130..> 14-Dec-2012 08:57 3.2K

VARISTANCE-34.0J-130..> 13-Dec-2012 19:03 3.2K

VARISTANCE-35.0J-115..> 14-Dec-2012 08:40 3.2K

VARISTANCE-36.0J-140..> 14-Dec-2012 08:57 3.2K

VARISTANCE-36.0J-140..> 13-Dec-2012 19:03 3.2K

VARISTANCE-36.0J-230..> 14-Dec-2012 08:57 3.2K

VARISTANCE-36.0J-230..> 13-Dec-2012 19:03 3.2K

VARISTANCE-37.0J-40V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-37.0J-40V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-38.0J-130..> 14-Dec-2012 08:46 3.2K

VARISTANCE-38.0J-250..> 14-Dec-2012 08:57 3.2K

VARISTANCE-38.0J-250..> 13-Dec-2012 19:03 3.2K

VARISTANCE-40.0J-75V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-40.0J-75V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-40.0J-250..> 14-Dec-2012 08:44 3.2K

VARISTANCE-40.0J-385..> 14-Dec-2012 08:54 3.2K

VARISTANCE-40.0J-385..> 13-Dec-2012 19:02 3.2K

VARISTANCE-43.0J-275..> 14-Dec-2012 08:57 3.2K

VARISTANCE-43.0J-275..> 13-Dec-2012 19:03 3.2K

VARISTANCE-45.0J-150..> 14-Dec-2012 08:44 3.2K

VARISTANCE-45.0J-275..> 14-Dec-2012 08:46 3.2K

VARISTANCE-45.0J-420..> 14-Dec-2012 08:56 3.2K

VARISTANCE-45.0J-420..> 14-Dec-2012 08:46 3.2K

VARISTANCE-45.0J-420..> 13-Dec-2012 19:03 3.2K

VARISTANCE-46.0J-175..> 14-Dec-2012 08:56 3.2K

VARISTANCE-46.0J-175..> 13-Dec-2012 19:03 3.2K

VARISTANCE-47.0J-300..> 14-Dec-2012 08:56 3.2K

VARISTANCE-47.0J-300..> 13-Dec-2012 19:03 3.2K

VARISTANCE-50.0J-95V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-50.0J-95V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-50.0J-320..> 14-Dec-2012 08:55 3.2K

VARISTANCE-50.0J-320..> 13-Dec-2012 19:02 3.2K

VARISTANCE-50.0J-460..> 14-Dec-2012 08:57 3.2K

VARISTANCE-50.0J-460..> 13-Dec-2012 19:03 3.2K

VARISTANCE-55.0J-175..> 14-Dec-2012 08:47 3.2K

VARISTANCE-60.0J-115..> 14-Dec-2012 08:54 3.2K

VARISTANCE-60.0J-115..> 13-Dec-2012 19:02 3.2K

VARISTANCE-60.0J-230..> 14-Dec-2012 08:57 3.2K

VARISTANCE-60.0J-230..> 13-Dec-2012 19:03 3.2K

VARISTANCE-65.0J-250..> 14-Dec-2012 08:56 3.2K

VARISTANCE-65.0J-250..> 13-Dec-2012 19:03 3.2K

VARISTANCE-70.0J-130..> 14-Dec-2012 08:44 3.2K

VARISTANCE-70.0J-130..> 14-Dec-2012 08:40 3.2K

VARISTANCE-70.0J-230..> 14-Dec-2012 08:40 3.2K

VARISTANCE-71.0J-275..> 14-Dec-2012 08:55 3.2K

VARISTANCE-71.0J-275..> 13-Dec-2012 19:02 3.2K

VARISTANCE-72.0J-250..> 14-Dec-2012 08:46 3.2K

VARISTANCE-74.0J-130..> 14-Dec-2012 08:56 3.2K

VARISTANCE-74.0J-130..> 13-Dec-2012 19:03 3.2K

VARISTANCE-75.0J-275..> 14-Dec-2012 08:46 3.2K

VARISTANCE-76.0J-300..> 14-Dec-2012 08:54 3.2K

VARISTANCE-76.0J-300..> 13-Dec-2012 19:02 3.2K

VARISTANCE-78.0J-140..> 14-Dec-2012 08:57 3.2K

VARISTANCE-78.0J-140..> 13-Dec-2012 19:03 3.2K

VARISTANCE-80.0J-150..> 14-Dec-2012 08:40 3.2K

VARISTANCE-80.0J-385..> 14-Dec-2012 08:54 3.2K

VARISTANCE-80.0J-385..> 13-Dec-2012 19:02 3.2K

VARISTANCE-84.0J-320..> 14-Dec-2012 08:55 3.2K

VARISTANCE-84.0J-320..> 13-Dec-2012 19:02 3.2K

VARISTANCE-85.0J-150..> 14-Dec-2012 08:55 3.2K

VARISTANCE-85.0J-150..> 13-Dec-2012 19:02 3.2K

VARISTANCE-90.0J-320..> 14-Dec-2012 08:46 3.2K

VARISTANCE-90.0J-420..> 14-Dec-2012 08:54 3.2K

VARISTANCE-90.0J-420..> 14-Dec-2012 08:44 3.2K

VARISTANCE-90.0J-420..> 13-Dec-2012 19:02 3.2K

VARISTANCE-98.0J-175..> 14-Dec-2012 08:55 3.2K

VARISTANCE-98.0J-175..> 13-Dec-2012 19:02 3.2K

VARISTANCE-100J-14VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-100J-460V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-100J-460V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-105J-480V..> 14-Dec-2012 08:46 3.2K

VARISTANCE-110J-510V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-120J-575V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-130J-230V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-130J-230V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-130J-250V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-130J-250V..> 14-Dec-2012 08:46 3.2K

VARISTANCE-140J-250V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-140J-250V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-140J-275V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-140J-275V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-140J-660V..> 14-Dec-2012 08:46 3.2K

VARISTANCE-150J-21VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-150J-275V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-150J-275V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-150J-385V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-150J-385V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-151J-275V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-151J-275V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-160J-320V..> 14-Dec-2012 08:47 3.2K

VARISTANCE-160J-420V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-173J-300V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-173J-300V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-175J-420V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-175J-420V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-180J-480V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-184J-320V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-184J-320V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-185J-320V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-185J-320V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-190J-510V..> 14-Dec-2012 08:57 3.2K

VARISTANCE-190J-510V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-195J-460V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-195J-460V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-215J-275V..> 14-Dec-2012 08:56 3.2K

VARISTANCE-215J-275V..> 13-Dec-2012 19:03 3.2K

VARISTANCE-220J-575V..> 14-Dec-2012 08:44 3.2K

VARISTANCE-230J-625V..> 14-Dec-2012 08:54 3.2K

VARISTANCE-230J-625V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-235J-300V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-235J-300V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-255J-320V..> 14-Dec-2012 08:55 3.2K

VARISTANCE-255J-320V..> 13-Dec-2012 19:02 3.2K

VARISTANCE-360J-1000..> 14-Dec-2012 08:44 3.2K

VARISTANCE-808J-30VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-1210-18VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-1210-26VA..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:40 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:40 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:46 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-0..> 14-Dec-2012 08:40 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:40 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:40 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:46 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44 3.2K

VARISTANCE-BOITIER-1..> 14-Dec-2012 08:40 3.2K

VELCRO-BOB5M-107424...> 14-Dec-2012 08:46 3.0K

VELCRO-BOB5M-107425...> 14-Dec-2012 08:46 3.0K

VENTILATEUR-40MM-5VC..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-40MM-5VC..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-40MM-12V..> 14-Dec-2012 08:47 3.2K

VENTILATEUR-40MM-24V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-40MM-24V..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-45MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-45MM-12V..> 13-Dec-2012 19:02 3.2K

VENTILATEUR-50MM-5VC..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-50MM-5VC..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-50MM-12V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-51MM-12V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-51MM-12V..> 14-Dec-2012 08:47 3.2K

VENTILATEUR-60MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-60MM-12V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-60MM-12V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-60MM-12V..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-60MM-24V..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-60MM-115..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-60MM-115..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-75MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-75MM-12V..> 13-Dec-2012 19:02 3.2K

VENTILATEUR-80MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-80MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-80MM-12V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-80MM-12V..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-80MM-24V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-80MM-24V..> 14-Dec-2012 08:47 3.2K

VENTILATEUR-92MM-12V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-92MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-92MM-12V..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-92MM-24V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-95MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-95MM-12V..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-95MM-12V..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-95MM-24V..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-119MM-12..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-119MM-12..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-119MM-24..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-120MM-24..> 14-Dec-2012 08:47 3.2K

VENTILATEUR-150MM-23..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-150MM-23..> 13-Dec-2012 19:02 3.1K

VENTILATEUR-AIR-CHAU..> 14-Dec-2012 08:53 3.0K

VENTILATEUR-AIR-CHAU..> 13-Dec-2012 19:01 3.0K

VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:47 3.1K

VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:50 3.1K

VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:50 3.1K

VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:53 3.1K

VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:50 3.1K

VENTILATEUR-AXIAL.html 13-Dec-2012 19:02 3.1K

VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-DBLE-ASP..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-DBLE-ASP..> 13-Dec-2012 19:02 3.2K

VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:47 3.2K

VENTILATEUR-FILTRE-I..> 14-Dec-2012 08:41 3.2K

VENTILATEUR-POUR-CPU..> 14-Dec-2012 08:52 3.2K

VENTILATEUR-POUR-CPU..> 13-Dec-2012 19:01 3.2K

VENTILATEUR-RADIAL-1..> 14-Dec-2012 08:53 3.1K

VENTILATEUR-RADIAL.html 13-Dec-2012 19:02 3.1K

VENTILATEUR-SIMPLE-A..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-SIMPLE-A..> 14-Dec-2012 08:50 3.2K

VENTILATEUR-SIMPLE-A..> 14-Dec-2012 08:53 3.2K

VENTILATEUR-SIMPLE-A..> 13-Dec-2012 19:02 3.2K

 

 

 

NEW ACCOUNT SIGN IN HOME PRODUCTS SOLUTIONS SUPPORT DOCUMENTS DOWNLOADS SALES STORE ABOUT US Home > Products > Platform & Power Manager Platform and Power Management Devices Next Steps Platform Manager Video Platform Manager Brochure Power Manager II Brochure Power & Platform Manager Selection Tool Download Software Contact Sales In Detail Platform Manager Power Manager II Platform and Power Manager Evaluation Boards and Kits Device Selection Guides Documents & Downloads Application Notes BSDL Models Data Sheets Downloadable Software Handbooks IBIS Models Installation Guides Product Brochures Product Change Notification Reference Designs User Manuals White Papers View All See Also Power Manager Forum Clickable Platform and Power Manager Functional Block Diagram Click on the colored blocks for more information on that function Download the Power 2 You eBook: A Guide to Power Supply Management and Control The block diagram above shows all the major power and digital functions contained a given Power or Platform Manager device. Position the mouse pointer over any of the IC blocks below and click to open a page with complete information on that item. To learn more about Power or Platform Management itself, scroll down below the functional diagram and find more device specifics there. The Power and Platform Management families of devices integrate common board power and digital management functions into a single chip. Key Benefits Costs less than the solution based on single function ICs and saves board space Increases reliability of operation Reduces risk through programmability Board Power and Digital Mangement Functions The two major areas of board management functions are power and digital support. Lattice offers integrated solutions for power management functions with its Power Manager II product family. Further integration is achieved by the Platform Manager, devices which contain both power and digital management functionality. The PAC-Designer software tool, is available to implement all Power Manager II and Platform Manager functions in easy to use design software. See PAC-Designer software tool. Legal | Privacy Policy | Press | Careers | Investor Relations | Contact Us | Site Map | Feedback | Follow us © Lattice Semiconductor Corporation 2013 New Account Sign In Home Products Solutions Support Documents Downloads Sales Store About Us Home > Products > Intellectual Property > Lattice IP Cores > LatticeMico8 LatticeMico8 Open, Free 8-bit Soft Microcontroller Documents & Downloads Annual Reports Data Sheets Downloadable Software Product Brochures Reference Designs Tutorials User Manuals View All See Also Lattice Diamond Mico32 Development Tools LatticeMico32 IP and Reference Design Forum The LatticeMico8 is an 8-bit microcontroller optimized for Field Programmable Gate Arrays (FPGAs) and Crossover Programmable Logic Device architectures from Lattice. Combining a full 18-bit wide instruction set with 32 General Purpose registers, the LatticeMico8 is a flexible reference design written in Verilog and VHDL suitable for a wide variety of markets, including communications, consumer, computer, medical, industrial, and automotive. The core consumes minimal device resources, less than 200 Look Up Tables (LUTs) in the smallest configuration, while maintaining a broad feature set. The LatticeMico8 is licensed under a new open intellectual property (IP) core license, the first such license offered by any FPGA supplier. The main benefits of using open source IP are greater flexibility, improved portability, and no cost. This new agreement provides all the benefits of standard open source and allows users to mix proprietary designs with the open source core. Additionally, it allows for the distribution of designs in bitstream or FPGA format without accompanying it with a copy of the license. Contribute to the LatticeMico8! Do you have designs you would like to share with us? Have you come across a bug? Is there a new feature you would like to see? Let us know! Send an email to Technical Support at techsupport@latticesemi.com. Features 8-bit Data Path 18-bit Wide Instructions Configurable 16 or 32 General Purpose Registers Input/Output is Performed Using "Ports" (256 Ports/page, up to 65536 pages) Optional upto 4 giga bytes of External Scratch Pad RAM Two Cycles Per Instruction Three cycles per Input/Output cycle (extendable using READY strobe) UART, SPI, I2C and many other peripherals available as free Lattice Reference Designs Evaluation Configurations The following table shows a few of the many possible configurations. The v3.0 or higher of the LatticeMico8 core can be targeted to any Lattice FPGA. Config. Number Description* Device LUTs Registers SLICEs f MAX (MHz) 1 16 - Regs, 32 byte Ext SP, 512 PROM, 8-bit Ext Address LCMXO2-1200HC-5 259 62 131 53.4 (LCMXO2-1200HC-5) LFXP3C-4, LFEC3E-4 250 61 144 65.7 (LFXP3C-4) 78.8 (LFEC3E-4) LFXP2-6 281 61 168 87.3 (LFXP2-6) LCMX01200C-4 239 61 120 74.0 (LCMXO1200C-4) LFE2-50E-5 265 61 155 103.5 (LFE2-50E-5) 2 32 - Regs, 32 byte Ext SP, 512 PROM, 8-bit Ext Address LCMXO2-1200HC-5 305 62 154 50.8 (LCMXO2-1200HC-5) LFXP3C-4, LFEC3E-4 299 61 169 63.9 (LFXP3C-4) 71.7 (LFEC3E-4) LFXP2-6 326 61 186 88.3 (LFXP2-6) LCMXO1200C-4 290 61 145 77.0 (LCMXO1200C-4) LFE2-50E-5 308 61 177 98.8 (LFE2-50E-5) 3 16 - Regs, 32 byte Ext SP, 512 PROM, 16-bit Ext Address LCMXO2-1200HC-5 262 70 132 52.3 (LCMXO2-1200HC-5) LFXP3C-4, LFEC3E-4 255 69 145 66.7 (LFXP3C-4) 76.8 (LFEC3E-4) LFXP2-6 283 61 168 93.6 (LFXP2-6) LCMXO1200C-4 242 69 121 81.3 (LCMXO1200C-4) LFE2-50E-5 274 70 157 102.6 (LFE2-50E-5) 4 32 - Regs, 32 byte Ext SP, 512 PROM, 16-bit Ext Address LCMXO2-1200HC-5 313 70 158 51.7 (LCMXO2-1200HC-5) LFXP3C-4, LFEC3E-4 303 69 168 62.2 (LFXP3C-4) 66.5 (LFEC3E-4) LFXP2-6 322 61 185 88.6 (LFXP2-6) LCMXO1200C-4 296 69 148 72.5 (LCMXO1200C-4) LFE2-50E-5 323 69 181 99.2 (LFE2-50E-5) * SP = Scratch Pad LatticeMico8 Documentation LatticeMico8 User Guide Core Code Version 3.15 of the LatticeMico8 increases addressable code space, has configurable address range and improved stack operations for support of high-level compilers, while keeping a very small footprint. The code will run on ispLever 5.1 and later. The predefined ispLever project (i.e. .syn) files are valid for 8.0 and later. LatticeMico8 Core Source Code Revision 3.15 Verilog Only- NEW Development Kit Demonstrations Mini System-on-Chip Demo for MachXO Mini Development Kit, EB41 MachXO Mini Development Kit User's Guide Control System-on-Chip Demo for MachXO Control Development Kit, EB46 MachXO Control Development Kit User's Guide Brevia System-on-Chip Demo for LatticeXP2 Brevia Development Kit, EB53 LatticeXP2 Brevia Development Kit User's Guide Technote 1095 - Using the LatticeMico8 Microcontroller with the LatticeXP Evaluation Board LatticeMico8 Development Tools The LatticeMico8 development tools consist of a LatticeMico8 port of version 4.4.3 of the GNU Compiler Collection (GCC) and version 2.18 of GNU Binary Utilities (binutils - assembler, linker and more). These tools are a collection of command line executables hosted on a Linux/Unix or Cygwin (Linux/Unix terminal emulation for Windows) environment. The toolchain outputs an executable in the ELF format. A deployment tool converts the ELF format executable into a memory output file (.MEM file) which can be used for simulation or as input into Lattice Diamond or ispLever development tools. LatticeMico8 Development Tools Documentation LatticeMico8 Development Tools Usage Guide Writing Efficient C Code for the LatticeMico8 Microcontroller Tool Code NEW - LatticeMico8 Development Tools Installer for Windows - LatticeMico8 Core Revision 3.15 NEW - LatticeMico8 Development Tools Installer for Linux - LatticeMico8 Core Revision 3.15 NEW - LatticeMico8 Development Tools Source Code - LatticeMico8 Core Revision 3.15 Demo LatticeMico8 Demo Useful External Links AS Assembler maintained by Alfred Arnold Another assembler that supports the LatticeMico8 Archived Code LatticeMico8 Core Source Code Revision 3.1 Verilog The above source code is the Verilog source code for ispLEVER version 8.0 and above LatticeMico8 Core Source Code Revision 3.1 VHDL - NEW The above source code is the VHDL source code for ispLEVER version 8.0 and above LatticeMico8 Core Source Code Revision 3.0 Verilog The above source code is the Verilog source code for ispLEVER version 7.0 and above. LatticeMico8 Core Source Code Revision 3.0 VHDL The above source code is the VHDL source code for ispLEVER version 7.0 and above. LatticeMico8 Core Source Code Revision 2.4 Verilog The above source code is the Verilog source code for ispLEVER version 6.0 and above. LatticeMico8 Core Source Code Revision 2.4 VHDL The above source code is the VHDL source code for ispLEVER version 6.0 and above. LatticeMico8 Core Source Code Revision 2.3 Verilog The above Verilog source code supports the LatticeECP2, the LatticeECP/EC, LatticeXP, and MachXO devices. Additionally, this version handles a larger number of instructions (1024 for LatticeECP2) and supports a bigger jump/branch (2048). For new designs, it is recommended to use Revision 2.4. LatticeMico8 Core Source Code Revision 2.3 VHDL The above VHDL source code supports the LatticeECP2, the LatticeECP/EC, LatticeXP, and MachXO devices. Additionally, this version handles a larger number of instructions (1024 for LatticeECP2) and supports a bigger jump/branch (2048). For new designs, it is recommended to use Revision 2.4. LatticeMico8 Core Source Code Revision 2.2 Verilog Only The above source code has a couple of bug fixes and has been fully tested for the MachXO family of Crossover Programmable Logic devices. LatticeMico8 Core Source Code Revision 1.0 Verilog Only LatticeMico8 Tools Code for Core Revision 3.1 and above The above tools package contains both the source code and the executable files for the LatticeMico8 LatticeMico8 Tools Code for Core Revision 3.0 The above tools package contains both the source code and the executable files for the LatticeMico8 LatticeMico8 Tools Code for Core Revision 2.3 LatticeMico8 Tools Code Revision 1.0 Legal | Privacy Policy | Press | Careers | Investor Relations | Contact Us | Site Map | Feedback | Follow us © Lattice Semiconductor Corporation 2011 www.latticesemi.com 12-1 tn1180_02.3 April 2013 Technical Note TN1180 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Introduction LatticeECP3™ devices support high-speed I/O interfaces, including Double Data Rate (DDR) and Single Data Rate (SDR) interfaces, using the logic built into the Programmable I/O (PIO). SDR applications capture data on one edge of a clock while DDR interfaces capture data on both the rising and falling edges of the clock, thus doubling the performance. LatticeECP3 I/Os also have dedicated circuitry that is used along with the DDR I/O to support DDR, DDR2 and DDR3 SDRAM memory interfaces. Refer to the LatticeECP3 Family Data Sheet for a detailed description of the I/O logic architecture. This document discusses how to utilize the capabilities of the LatticeECP3 “E” and “EA” devices to implement both the high-speed generic DDR interface and the DDR and DDR2 memory interfaces. Refer to the Implementing DDR/DDR2/DDR3 Memory Interfaces section of this document for more information. There are some differences in high-speed interface architecture between the LatticeECP3 “EA” and “E” devices. The implementation differences between the two devices are indicated in the appropriate sections of this document. This document assumes that version 8.0 of the ispLEVER® software is used for all interfaces. Please see exceptions under each section if you are using the ispLEVER 7.2 SP2. Steps to Design a High-Speed DDR Interface: The following steps must be followed to successfully design a high-speed DDR interface using this document. • Step 1: Determine the type of interface to implement. Based on the external interface determine the type of high-speed interface to be built. See the Types of HighSpeed DDR Interfaces section for details. • Step 2: Use the ispLEVER IPexpress™ tool to build the interface. Once you have determined the type of interface to be built, use IPexpress to build the interface. See the section Using IPexpress to Build High-Speed DDR Interfaces. • Step 3: Understand design rules, clocking requirements for each interface. Understand the architecture, interface rules and clocking requirements for each of the interfaces. See the HighSpeed DDR Interface Details section for a detailed description of each interface. If multiple interfaces are used in one device, it is critical to follow these design rules to avoid resource conflicts between interfaces. • Step 4: Review pinout requirements for clock and data pins for each interface before making pin assignments. It is critical that the interface clock and data pins follow the placement recommendations listed in the section Placement Guidelines for High-Speed DDR Interfaces. If using interfaces requiring DQ-DQS grouping, follow the rules described in the section DQ-DQS Grouping Rules. • Step 5: Assign timing preferences and clock preferences. Follow the guidelines in the section Timing Analysis for High-Speed DDR Interfaces to assign timing preferences for the interfaces. • Step 6: Run software Place and Route without DRC and Trace. It is important that the software Place and Route tool pass without any DRC errors. If it runs into DRC errors review the sections described above to make sure you are not violating any of the design/pinout rules for the interface. Run Trace to look at the static timing analysis results for all the timing preferences added to the design. Make design changes as necessary to assure that you are meeting your timing requirements. LatticeECP3 High-Speed I/O Interface12-2 LatticeECP3 High-Speed I/O Interface Steps to Generate a Valid Pinout for a High-Speed DDR Interface: Due to the various design rules and pinout requirements for each interface, it is critical that the interfaces be created as described above and run through the software before designing the PCB. If it is necessary to determine pinouts for a PCB design before the complete design is in place, the user must follow the steps listed below to create the pinouts. • Step 1: Determine the type of interface to implement. Based on the external interface, determine the type of high-speed interface to be built. See the section Types of High-Speed DDR Interfaces for details. • Step 2: Use the ispLEVER IPexpress Tool to build the interface. Once you have determined the type of interface to be built, IPexpress should be used to build the interface. See the section Using IPexpress to Build High-Speed DDR Interfaces. • Step 3: Build the complete I/O ring and clocking structure. Some dummy logic may be required to assure that the data out of the DDR elements are not optimized out by the software. For example, if you are building an input and a corresponding output interface you may connect them using dummy register between the two interfaces. If you are building receive-only interfaces, the signals out of the receive interface will need to be used in dummy logic or assigned to outputs. Similarly, if building a transmitonly interface you must provide input signals that are used in the transmit interface. • Step 3: Understand the design rules and clocking requirements for each interface. Understand the architecture, interface rules and clocking requirements for each of the interfaces. See the HighSpeed DDR Interface Details section for a detailed description of each interface. If multiple interfaces are used in one device, it is critical to follow these design rules to avoid resource conflicts between interfaces. • Step 4: Make pin assignments for clock and data pins for each interface following the design and pinout rules. Assign the input and output pins to specific sites, banks or DQS groups. Review the pinout requirements for the clock and data pins for each interface before making pin assignments. It is critical that the interface clock and data pins follow the placement recommendations listed in the section Placement Guidelines for High-Speed DDR Interfaces. If using interfaces requiring a DQ-DQS grouping, you must follow the rules described in the section DQ-DQS Grouping Rules. • Step 5: Run the design through ispLEVER Place and Route and pass without any DRC errors. If you run into errors, change pin assignments as required to pass all the DRC checks. When the design passes Place and Route, the pin assignments listed in the PAD report can be used on the board. External Interface Description This technical note uses two types of external interface definitions, centered and aligned. In a centered external interface, at the device pins, the clock is centered in the data opening. In an aligned external interface, at the device pins, the clock and data transition are aligned. This is also sometimes called “edge-on-edge”. Figure 12-1 shows the external interface waveform for SDR and DDR.12-3 LatticeECP3 High-Speed I/O Interface Figure 12-1. External Interface Definition The interfaces described are referenced as centered or aligned interfaces. An aligned interface is needed to adjust the clock location to satisfy the capture flip-flop setup and hold times. A centered interface is needed to balance the clock and data delay to the first flip-flop to maintain the setup and hold already provided. High-Speed I/O Interface Building Blocks The LatticeECP3 device contains dedicated functions for building high-speed interfaces. This section describes when and how to use these functions. A complete description of the library elements including descriptions and attributes is provided at the end of this document. Figure 12-2 shows a high-level diagram of the clocking resources available in the “E” and “EA” devices for building high-speed I/O interfaces. DDR Aligned DDR Centered SDR Aligned SDR Centered Data at Pin Clock at Pin Clock at Pin Data at Pin12-4 LatticeECP3 High-Speed I/O Interface Figure 12-2. LatticeECP3 Clocking Diagram (LatticeECP3-35 Shown) A complete description and of the LatticeECP3 clocking resources and clocking routing restrictions is available in TN1178, LatticeECP3 sysCLOCK™ PLL/DLL Design and Usage Guide. Below is a brief description for each of the major elements used for building various high-speed interfaces. The DDR Software Primitives and Attributes section describes the library elements for these components. ECLK Edge clocks are high-speed, low-skew I/O dedicated clocks. They are arranged in groups of two on the left, right, and top sides of the device. SCLK SCLK refers to the system clock of the design. SCLK can use either primary or secondary clocks. DQS Lane A DQS Lane borrows its name from memory interfaces, but can be used for general-purpose high-speed interfaces. Each DQS Lane provides a clock (DQS) and up to 10 data bits on that clock. The number of DQS Lanes on the device is different for each device size. LatticeECP3 devices support DQS signals on the top, left and right sides of the device. Bank 0 Bank 1 Bank 7 Bank 2 DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane DQ Lane ECLK1 ECLK1 ECLK2 DQSDLL ECLK2 DLL CLKDIV DLLDEL SERDES Quad PLL PLL CLKDIV ECLK1 ECLK2 DQSDLL DLLDEL DLL PLL PLL Primary Clocks QUADRANT_TL QUADRANT_TR QUADRANT_BL QUADRANT_BR Bank 6 Bank 3 Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region Secondary Region12-5 LatticeECP3 High-Speed I/O Interface PLL The PLL provides frequency synthesis as well as static and dynamic phase adjustment. Three output ports are provided: CLKOP, CLKOS and CLKOK. CLKOK provides a dedicated divide-by-2 function for use with the I/O logic gearing. The number of PLLs available on the device varies by device size from 2 to 10 PLLs per device. DLL The general-purpose DLL provides clock injection delay removal as well as 90° delay compensation when used with the DLLDEL element. There are two DLLs, one on each side of all LatticeECP3 devices. DQSDLL The DQSDLL is a dedicated DLL for creating a 90° clock delay. There are two DQSDLLs provided on all LatticeECP3 devices. There is one DQSDLL on each side of the device. Input DDR (IDDR) The input DDR function can be used in either x1 or x2 gearing modes. The x1 mode is supported by the IDDRXD element. This library element inputs a single DDR data input and clock (DQS, ECLK or SCLK) and provides a 2-bit wide data synchronized to the SCLK (system clock) to the FPGA fabric. In the x2 mode, the IDDRX2D element is used. This element is useful for interfaces with greater than a 200MHz clock. It supports a 4-bit wide interface to the FPGA fabric. The clock input to the IDDRX2D is the high-speed ECLK. The SCLK clock is divided down to half of the ECLK input clock. Output DDR (ODDR) The output DDR function can also be supported in either x1 or x2 gearing modes. The output x1 DDR function is supported by the ODDRXD element. This library element provides a single DDR output and clock (SCLK) and accepts 2-bit wide data from the FPGA fabric. The ODDR2XD element is used in the x2 mode and supports a 4-bit wide interface to the FPGA fabric. This element is useful for interfaces with greater than a 200MHz clock. The SCLK clock is divided down to half of the ECLK. CLKDIV The CLKDIV element is used to divide the high-speed ECLK by 2 to generate the SCLK when using x2 input or output gearing modes. DELAY There are three types of input data available. DELAYC provides a fixed value of delay to compensate for clock injection delay. DELAYC is used by default when configuring the interface in the software. Software will configure the DELAYC with delay values based on the interface used. DELAYB provides dynamic or user-defined delay. DELAYC is also used for SDR interfaces where it provides clock injection delay. ECLK/SCLK vs. DQS Lanes ECLK and SCLK span the entire side of the device and is useful for creating wide input bus interfaces. The DQS Lanes cover only 10 bits of data width and work well for narrow input bus interfaces. Each DQS Lane is serviced by a DQSBUF to control clock access and delay. The DQS Lane is supported by the DQSDLL for 90° clock delay. There is only one DQSDLL per side of the device, but this DQSDLL can be used for all of the DQS Lanes on the side. If several narrow input bus interfaces are required it is best to use the DQS Lanes instead of the ECLK or SCLK. Due to architectural difference between “E” and “EA” devices, wider buses are supported using ECLK in “E” devices and SCLK in “EA” devices in x1 mode.12-6 LatticeECP3 High-Speed I/O Interface Building Generic High-Speed Interfaces This section explains in detail how to build high-speed interfaces using the building blocks described above. The ispLEVER IPexpress tool builds these interfaces based on external interface requirements. Types of High-Speed DDR Interfaces This section describes the different types of high-speed DDR interfaces available in the LatticeECP3 device. Table 12-1 lists these interfaces. A description of each interface in the table is provided below the table. Table 12-1. Generic High-Speed I/O DDR Interfaces Mode Interface Name Description LatticeECP3 Device Support RX SDR GIREG_RX.SCLK SDR Input register using SCLK E, EA RX DDRX1 Aligned GDDRX1_RX.SCLK.Aligned/ GDDRX1_RX.SCLK.PLL.Aligned DDR x1 Input using SCLK. Data is edge-to-edge with incoming clock. EA RX DDRX1 Aligned GDDRX1_RX.DQS.Aligned DDR x1 Input using DQS. Data is edge-to-edge with incoming clock. E, EA RX DDRX1 Aligned GDDRX1_RX.ECLK.Aligned DDR x1 Input using ECLK. Data is edge-to-edge with incoming clock. E RX DDRX2 Aligned GDDRX2_RX.ECLK.Aligned/ GDDRX2_RX.ECLK.Aligned (no CLKDIV) DDR x2 Input using ECLK. Data is edge-to-edge with incoming clock. E, EA RX DDRX2 Aligned GDDRX2_RX.DQS.Aligned DDR x2 Input using DQS. Data is edge-to-edge with incoming clock. E, EA RX DDRX1 Centered GDDRX1_RX.DQS.Centered DDR x1 Input using DQS. Clock is already centered in data window. E, EA RX DDRX1 Centered GDDRX1_RX.ECLK.Centered DDR x1 Input using ECLK. Clock is already centered in data window. E RX DDRX2 Centered GDDRX2_RX.ECLK.Centered DDR x2 Input using ECLK. Clock is already centered in data window. E, EA RX DDRX2 Centered GDDRX2_RX.DQS.Centered DDR x2 Input using DQS. Clock is already centered in data window. E, EA RX DDRX2 Dynamic GDDRX2_RX.ECLK.Dynamic DDR x2 Input with Dynamic Alignment using ECLK. EA RX DDRX2 Dynamic GDDRX2_RX.DQS.Dynamic DDR x2 Input with Dynamic Alignment using DQS. EA RX DDRX2 Dynamic GDDRX2_RX.PLL.Dynamic DDR x2 Input with Dynamic Alignment using ECLK. EA TX SDR GOREG_TX.SCLK SDR Output using SCLK. Clock is forwarded through ODDR. E, EA TX DDRX1 Centered GDDRX1_TX.SCLK.Centered DDR x1 Output using SCLK. Clock is centered using PLL with different SCLK. E, EA TX DDRX1 Centered GDDRX1_TX.DQS.Centered DDR x1 Output using DQS. Clock is centered using DQSDLL and ODDRDQS. E, EA TX DDRX1 Aligned GDDRX1_TX.SCLK.Aligned DDR x1 Output using SCLK. Data is edge-onedge using same clock through ODDR. E, EA TX DDRX2 Aligned GDDRX2_TX.Aligned DDR x2 Output that is edge-on-edge. EA TX DDRX2 Centered GDDRX2_TX.DQSDLL.Centered DDR x2 Output that is pre-centered using DQSDLL EA TX DDRX2 Centered GDDRX2_TX.PLL.Centered DDR x2 Output that is pre-centered using PLL EA12-7 LatticeECP3 High-Speed I/O Interface The following describes the naming conventions used for each of the interfaces listed in Table 12-1. • G – Generic • IREG – SDR input I/O register • OREG – SDR output I/O register • DDRX1 – DDR x1 I/O register • DDRX2 – DDR x2 I/O register • _RX – Receive interface • _TX – Transmit interface • .ECLK – Uses ECLK (edge clock) clocking resource • .SCLK – Uses SCLK (primary clock) clocking resource • .DQS – Uses DQS clocking resource • .Centered – Clock is centered to the data when coming into the device • .Aligned– Clock is aligned edge-on-edge to the data when coming into the device Receive Interfaces This section lists the receive interfaces can be implemented. 1. Single Date Rate Interface (GIREG_RX.SCLK) This interface is used when a simple input register is required for the design. The clock input to the input register can be optionally inverted if required. These interfaces always use SCLK. 2. Input DDR 1x Interfaces Input DDR 1x interfaces are used for DDR interfaces running at or below 200MHz. The 1x interfaces can be further split into aligned and centered interfaces depending on the incoming clock-to-data relationship. In addition, for each of these interfaces the incoming data is delayed using the DELAYC element to compensate for the clock injection time. a. Aligned Interfaces These interfaces are used when the data and clock are aligned edge-on-edge when input to the device. The clock on the aligned interfaces is phase-shifted 90° using the on-chip DLL or DQSLL on each side of the device. These interfaces are further split into the following interfaces. i. Input DDR 1x Aligned Interface using SCLK (GDDRX1_RX.SCLK.Aligned/ GDDRX1_RX.SCLK.PLL.Aligned) This interface is used on “EA” devices when the clock and data are aligned edge-on-edge. The clock is shifted 90° using a DLL or PLL before it is used in the IDDRX1 element. The SCLK is used in this case to clock the IDDRX1 element on the “EA” device. ii. Input DDR 1x Aligned Interface using ECLK (GDDRX1_RX.ECLK.Aligned) This interface is used on “E” devices when the clock and data are aligned edge-on-edge when coming into the device. ECLK is used to clock the IDDRX1 element on the “E” device. This clock is shifted 90° using DLL before it is routed to the ECLK. iii. Input DDR 1x Aligned Interface using DQS (GDDRX1_RX.DQS.Aligned) This interface is used when the interface bus is narrow (<10 bits) and the clock and data are aligned edge-on-edge. In this case, the DQS Lanes are used for each interface and the DQS pin is used for the clock input. The 90° shift for the clock is generated using the DQSDLL and the clock is delayed in the DQSBUF element. This delayed clock is used to clock the IDDRX1 element. This interface then uses SCLK to clock the data from the interface to the FPGA logic.12-8 LatticeECP3 High-Speed I/O Interface b. Centered Interfaces These interfaces are used when the data and clock are centered when input to the device. Since the clock is centered to the data, it is not required to be phase-shifted for these interfaces. These interfaces are further split into the following interfaces. i. Input DDR 1x Centered Interface Using ECLK (GDDRX1_RX.ECLK.Centered) This interface is used on “E” devices when the clock and data are centered coming into the device. The ECLK is used to clock the input DDR element on the “E” device. ii. Input DDR 1x Centered Interface Using SCLK (GDDRX1_RX.SCLK.Centered) This interface is used on “EA” devices when the clock and data are centered coming into the device. The SCLK is used to clock the input DDR element on the “EA” device. iii. Input DDR 1x Centered Interface using DQS (GDDRX1_RX.DQS.Centered) This interface is used when the interface bus is narrow (<10 bits) and the clock and data are centered. In this case, the DQS Lanes are used for each interface and the DQS pin is used for the clock input. DQSDLL is held in reset for this case as no clock shift is required. This interface then uses SCLK to clock the data from the interface to the FPGA logic. 3. Input DDR 2x Interfaces Input DDR 2x interfaces are used for DDR interfaces running higher than 200MHz. The 2x interfaces can be further split into aligned and centered interfaces depending on the incoming clock-to-data relationship. In addition, for each of these interfaces the incoming data is delayed using DELAYC element to compensate for the clock injection time. a. Aligned Interfaces These interfaces are used when the data and clock are aligned edge-on-edge when input to the device. The clock on the aligned interfaces is phase shifted 90° using the on-chip DLL or DQSLL on each side of the device. These interfaces are further split into the following interfaces. i. Input DDR 2x Aligned Interface using ECLK (GDDRX2_RX.ECLK.Aligned/ GDDRX2_RX.ECLK.Aligned (No CLKDIV)) This interface is used when the clock and data are aligned edge-on-edge. The incoming clock is shifted 90° using the DLL. The output of the DLL is routed to the ECLK which is used to clock the IDDRX2 element.The SCLK required for this interface is generated by dividing the ECLK by two in the CLKDIV module or in the DLL module. ii. Input DDR 2x Aligned Interface using DQS (GDDRX2_RX.DQS.Aligned) This interface is used when the interface bus is narrow (<10 bits) and the clock and data are aligned edge-on-edge. In this case, the DQS Lanes are used for each interface and DQS pin is used for the clock input. The 90° shift for clock is generated using the DQSDLL and the clock is delayed in the DQSBUF element. This delayed clock is used to clock the IDDRX2 element. The SCLK required for this interface is generated by dividing the ECLK by two in the CLKDIV module. b. Centered Interfaces These interfaces are used when the data and clock are centered when input to the device. Since the clock is centered to the data, it does not required to be phase-shifted for these interfaces. These interfaces are further split into the following interfaces. i. Input DDR 2x Centered Interface using ECLK (GDDRX2_RX.ECLK.Centered) This interface is used when clock and data are centered coming into the device. The clock is connected directly to the ECLK which is used to clock the IDDRX2 element. The SCLK required for this interface is generated by dividing the ECLK by two in the CLKDIV module.12-9 LatticeECP3 High-Speed I/O Interface ii. Input DDR 1x Centered Interface using DQS (GDDRX2_RX.DQS.Centered) This interface is used when the interface bus is narrow (<10 bits) and the clock and data are centered. In this case, the DQS Lanes are used for each interface and the DQS pin is used for the clock input going to the DQSBUF module. DQSDLL is held in reset for this case as no clock shift is required. The clock output of the DQSBUF is used to clock the IDDRX2 element. A PLL is used to generate the SCLK for this interface. c. Dynamic Interfaces (“EA” Devices Only) The data delay input on the data input of the input DDR 2x centered interfaces can optionally be controlled dynamically by the user logic using the DELAYB element. For dynamic control of the clock or data delay, one of following dynamic interfaces can be used. The dynamic interfaces are only available on “EA” devices. i. Input DDR 2x Centered Interface Using ECLK and Dynamic Delay  (GDDRX2_RX.ECLK.Dynamic) This interface is similar to the GDDRX2_RX.ECLK.Centered interface described above but the input data delay is controlled by the user with the DELAYB element. ii. Input DDR 2x Centered Interface Using DQS and Dynamic Delay  (GDDRX2_RX.DQS.Dynamic) This interface is similar to the GDDRX2_RX.DQS.Centered interface described above but the input data delay is controlled by the user with the DELAYB element. iii. Input DDR 2x Centered Interface Using PLL and Dynamic Delay  (GDDRX2_RX.PLL.Dynamic) In this interface the PLL is used to dynamically shift the clock to adjust to the correct position to the data. This interface will generate a bus-based delay for the interface. d. 7:1 LVDS Interface This interface should be used when implementing a 7:1 LVDS interface. The 7:1 LVDS interface requires that the input clock is multiplied 3.5x before input to the IDDRX2 element to demux the data. Refer to RD1030, 7:1 LVDS Video Interface Reference Design for further information. Transmit Interfaces This section lists the transmit interfaces can be implemented. 1. Single Date Rate Interface (GOREG_TX.SCLK) This interface is used for a SDR data output implementation with tight specifications on clock out to data out skew. This interface uses a simple output flip-flop for the data but forwards the clock using an ODDRX register. The same clock is used for both data and clock generation. 2. Output DDR 1x Interfaces Output DDR 1x interfaces are used for DDR interfaces running at or below 200MHz. The 1x interfaces can further be spilt into aligned and centered interfaces depending on the relationship between the forwarded clock and data. The following are the different 1x interfaces. a. Aligned Interfaces These interfaces are used to provide data and clocks that are aligned edge-on-edge when leaving the device. These interfaces are further split into the following. i. Output DDR 1x Aligned Interface Using SCLK (GDDRX1_TX.SCLK.Aligned) This interface uses SCLK to generate clock and data that are aligned edge on edge b. Centered Interfaces These interfaces are used to provide data and clocks that are centered when leaving the device. The clock output is phase-shifted 90° using the on-chip PLL so that it can be centered to the data. These interfaces are further split as follows.12-10 LatticeECP3 High-Speed I/O Interface i. Output DDR 1x Centered Interface Using SCLK (GDDRX1_TX.SCLK.Centered) In this case, the SCLK is used to generate the data and clock output. SCLK used to generate the clock is shifted 90° using a PLL so that it can be pre-centered to the data output. ii. Output DDR 1x Centered Interface Using DQS (GDDRX1_TX.DQS.Centered) This interface is used when implementing interfaces that are <10 bits wide. The DQS Lanes are for data and clock assignments. The clock is pre-centered to the data using the DQSLL and the ODDRDQSA blocks. 3. Output DDR 2x Interfaces Output DDR 2x interfaces are used for DDR interfaces running higher than 200MHz. The 2x interfaces can further be spilt into aligned and centered interfaces depending on the relationship between the forwarded clock and data. Output DDR 2x interfaces are supported only on “EA” devices. The following are the different 2x interfaces. a. Aligned Interfaces These interfaces are used to provide data and clocks that are aligned edge-on-edge when leaving the device. These interfaces are further split into the following. i. Output DDR 2x Aligned Interface (GDDRX2_TX.Aligned) ODDRX2 is used generate the clock and data that are aligned in phase. b. Centered Interfaces These interfaces are used to provide data and clocks that are centered when leaving the device. The clock output is phase shifted 90° so that it can be centered to the data. These interfaces are further split into the following. i. Output DDR 2x Centered Interface using DQSDLL (GDDRX2_TX.DQSDLL.Centered) This interface is primarily used for interfaces that are <10 bits wide. In this case, a DQSDLL is used to generate the 90° shift required to pre-center the clock to the data output. ii Output DDR 2x Centered Interface using PLL (GDDRX2_TX.PLL.Centered) This interface is primarily used for wider interfaces. Here, a PLL is used to generate the 90° shift required to pre-center the clock to the data output. c. 7:1 LVDS Interface This interface is used when implementing a 7:1 LVDS interface. The 7:1 LVDS interface requires that the clock output be multiplied 3.5x before going to the ODDRX2 module. Refer to RD1030, 7:1 LVDS Video Interface Reference Design for further information. Using IPexpress to Build High-Speed DDR Interfaces The IPexpress tool is used to configure and generate all the high-speed interfaces described above. IPexpress generates a complete HDL module including clocking requirements for each of the interfaces. This section assumes that ispLEVER 8.0 is used for generation of the interfaces. If you are using ispLEVER 7.2 SP2, see Appendix A. Building DDR Interfaces Using IPexpress in ispLEVER 7.2 SP2. If you are using Lattice Diamond® design software, see Appendix B. Building SDR/DDR Interfaces Using IPexpress in Diamond. For a detailed block diagram of each interface generated by IPexpress, see the High-Speed DDR Interface Details section. IPexpress can be opened from the Tools menu in Project Navigator. All DDR modules are located under Architecture Modules -> IO. This section will cover SDR and DDR_GENERIC. DDR_MEM is discussed in the Implementing DDR/DDR2/DDR3 Memory Interfaces section.12-11 LatticeECP3 High-Speed I/O Interface Figure 12-3. IPexpress Main Window Select the type of interface you would like to build and enter the name of the module. Figure 12-3 shows the type of interface selected as “SDR” and module name entered. Each module can then be configured by clicking the Customize button. Building SDR Modules Choose interface type SDR, enter module name and click Customize to open the configuration tab. Figure 12-4 shows the Configuration Tab for the SDR module in IPexpress. Table 12-2 lists the various configurations options available for SDR modules.12-12 LatticeECP3 High-Speed I/O Interface Figure 12-4. SDR Configuration Tab Table 12-2. SDR Configuration Parameters GUI Option Description Values Default Interface Type Type of interface (transmit or receive) Transmit, Receive Receive I/O Standard for this Interface I/O standard to be used for the interface. Transmit and Receive: LVCMOS25, LVCMOS18, LVCMOS15, LVCMOS12, LVCMOS33, LVCMOS33D, LVDS25, BLVDS25, MLVDS, LVPECL33, HSTL18_I, HSTL18_II, HSTL18D_I, HSTL18D_II, HSTL15_I, HSTL15D_I, SSTL33_I, SSTL33_II, SSTL33D_I, SSTL33D_II, SSTL25_I, SSTL25_II, SSTL25D_I, SSTL25D_II, SSTL18_I, SSTL18_II, SSTL18D_I, SSTL18D_II, SSTL15, SSTL15D, PCI33, LVTTL33 Transmit only: RSDS, MINILVDS, PPLVDS, LVDS25E, RSDSE LVCMOS25 Bus Width for this Interface Bus size for the interface. 1 - 256 16 Clock Frequency for this Interface Speed at which the interface will run. 1 - 200 200 Bandwidth (Calculated) Calculated from the clock frequency entered. (Calculated) (Calculated) Interface Interface selected based on previous entries. Transmit: GOREG_TX.SCLK Receive: GIREG_RX.SCLK (default) GIREG_RX.S CLK Clock Inversion Option to invert the clock input to the I/O register. DISABLED, ENABLED DISABLED Data Path Delay Data input can be optionally delayed using the DELAY block. Bypass, Dynamic1 , User Defined Bypass12-13 LatticeECP3 High-Speed I/O Interface Building DDR Generic Modules Choose interface type DDR_GENERIC, enter module name and click Customize to open the configuration tab. Figure 12-5. “DDR_Generic” Selected in Main IPexpress Window When clicking Customize, DDR modules have a Pre-Configuration Tab and a Configuration” Tab. The Pre-Configuration Tab allows users to enter information about the type of interface to be built. Based on the entries in the Preconfiguration Tab, the Configuration Tab will be populated with the best interface selection. The user can also, if necessary, override the selection made for the interface in the Configuration Tab and customize the interface based on design requirements. Figure 12-6 shows the Pre-Configuration Tab for DDR generic interfaces. Table 12-3 lists the various parameters in the tab. FDEL for User Defined If Delay type selected above is user defined, delay values can be entered with this parameter. 0 to 152 0 1. When Delay type Dynamic is selected, the 16-step delay values must be controlled from the user’s design. 2. A FDEL is a fine-delay value that is additive. The delay value for a FDEL can be found in the LatticeECP3 Family Data Sheet. Table 12-2. SDR Configuration Parameters (Continued) GUI Option Description Values Default12-14 LatticeECP3 High-Speed I/O Interface Figure 12-6. DDR Generic Pre-Configuration Tab . Table 12-3. Pre-Configuration Tab Settings GUI Option Description Values Interface Type (Transmit or Receive) Type of interface (Receive or Transmit) Transmit, Receive I/O Standard for this Interface I/O Standard used for the interface Transmit and Receive: LVCMOS25,LVCMOS18, LVCMOS15, LVCMOS12, LVCMOS33, LVCMOS33D, LVDS25, BLVDS25, MLVDS, LVPECL33, HSTL18_I, HSTL18_II, HSTL18D_I, HSTL18D_II, HSTL15_I, HSTL15D_I, SSTL33_I, SSTL33_II, SSTL33D_I, SSTL33D_II, SSTL25_I, SSTL25_II, SSTL25D_I, SSTL25D_II, SSTL18_I, SSTL18_II, SSTL18D_I, SSTL18D_II, SSTL15, SSTL15D, PCI33, LVTTL33 Transmit only: RSDS, MINILVDS, PPLVDS, LVDS25E, RSDSE Number of interfaces on a side of a device Number of interfaces to be implemented per side. This is used primarily for narrow bus width interfaces (<10). Otherwise it is recommended to leave this at 1. 1 to 8 Bus Width for this Interface Bus width for each interface. If the number of interfaces per side is >1 then the bus width per interface is limited to 10. If number of interfaces per side is >1 and if using differential I/O standards then bus width is limited to 5. 1-256 Clock Frequency for this Interface Interface speed 2 - 500 MHz12-15 LatticeECP3 High-Speed I/O Interface Based on the selections made in the Pre-Configuration Tab, the Configuration Tab is populated with the selections. Figure 12-7 shows the Configuration Tab for the selections made in the Pre-Configuration Tab. Figure 12-7. DDR Generic Configuration Tab The checkbox at the top of this tab indicates that the interface is selected based on entries in the Pre-Configuration Tab. The user can choose to change these values by disabling this entry. Note that IPexpress chooses the most suitable interface based on selections made in the Pre-Configuration Tab. Table 12-4 lists the various parameters in the Configuration Tab. Interface Bandwidth (Calculated) Bandwidth is calculated from the clock frequency. Calculated Clock to Data Relationship at the Pins Relationship between clock and data. Edge-to-Edge, Centered, Dynamic Data Phase Alignment Required1 ,Dynamic Clock Phase Alignment Required 1. Dynamic Phase Alignment is only available for x2 interfaces (i.e, when the clock frequency is higher than 200 MHz). Table 12-3. Pre-Configuration Tab Settings (Continued) GUI Option Description Values12-16 LatticeECP3 High-Speed I/O Interface Table 12-4. Configuration Tab Settings GUI Option Description Values Default Value Interface Selection Based on Pre-configuration Indicates interface is selected based on selection made in the Pre-configuration tab. Disabling this checkbox allows users to make changes if needed. ENABLED, DISABLED ENABLED Interface Type Type of interface (receive or transmit) Transmit, Receive Receive I/O Standard I/O standard used for the interface All the ones listed in the Pre-configuration tab LVCMOS25 Clock Frequency Speed of the interface 2 to 500 MHz 200 MHz Gearing Ratio DDR register gearing ratio (1x or 2x) 1x, 2x 1x Alignment Clock to data alignment Edge-to-Edge, Centered, Dynamic Data Phase Alignment Required, Dynamic Clock Phase Alignment Required Edge-to-Edge Number of Interfaces Number of interfaces to be implemented per side. This is primarily used for narrow bus width interfaces (<10), otherwise it is recommended to leave this at 1. 1 to 8 1 Bus Width Bus width for each interface. If the number of interfaces per side is >1 then the bus width per interface is limited to 10. If the number of interfaces per side is >1 and if using differential I/O standards then the bus width is limited to 5. 1 to 256 10 Phase Adjust Module used for phase shifting input clock. TRDLLB/DLLDELB, PLL1 TRDLLB/DLLDELB Clock Divider Module used for generation of SCLK from ECLK. CLKDIVB, TRDLLB2 CLKDIVB Interface Shows list of all valid high-speed interfaces for a given configuration. See Table 12-5 for interfaces available for a given configuration. GDDRX1_RX.SCLK. Aligned (EA devices); GDDRX1_RX.ECLK. Aligned (E devices) Data Path Delay Data input can be optionally delayed using the DELAY block. Value is selected based on Interface Type. Bypass, Fixed, Dynamic3 Fixed Number of DQS Groups Enabled when a DQS interface is selected in the Interface selection. 1 to 8 Number of DQ: DQS Group1 to DQS Group8 This option can be used to change the number of DQ assigned to each DQS lane. Each DQS lane can support up to 10 DQ. 1 to 10 1. Only available when using GDDRX2_RX.ECLK.Aligned interface. 2. Only available when using GDDRX2_RX.SCLK Aligned interface. 3. When Dynamic Delay is selected, the 16-step delay values must be controlled from the user’s design.12-17 LatticeECP3 High-Speed I/O Interface Table 12-5 shows how the interfaces are selected by IPexpress based on the selections made in the Pre-Configuration Tab. The implementation for several of the interfaces described above differs between the “E” and “EA” devices. Refer to the High-Speed DDR Interface Details section to see implementation details for “E” and “EA” devices. The Data Delay setting for each interface is predetermined and cannot be changed by the user. User can only control Data Delay values when using a dynamic interface. Note: Some modules generated by IPexpress have a SCLK and ECLK output port. If present, this port must be used to drive logic outside the interface driven by the same signal. In these modules, the input buffer for the clock is inside the IPexpress module and therefore cannot be used to drive other logic in the top level. High-Speed DDR Interface Details This section describes each of the generic high-speed interfaces in detail including the clocking to be used for each interface. For detailed information about the LatticeECP3 clocking structure, refer to TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. The various interface rules and preferences listed under each interface should be followed to build these interfaces successfully. Each of the interfaces for the “EA” devices has an ID label associated with the interface. The interface ID will be set when generating the interface using IPexpress. This ID is entered using an attribute called IDDRAPPS or ODDRAPPS. The software uses this ID to set appropriate the data delay for the DELAYC element used in each of the interfaces. It is required that every interface on the “EA” devices use this attribute to achieve the correct timing results in the software Trace report. Refer to the Timing Analysis for High-Speed DDR Interfaces section for more information about the timing analysis on these interfaces. It is also necessary to follow the interface rules and preferences listed for each of the interface descriptions below for the interfaces to work as described. Table 12-5. IPexpress Interface Selection Device Selected Interface Type Gearing Ratio1 Alignment Number of Interfaces Interface EA Receive 1x Edge-to-Edge 1 GDDRX1_RX.SCLK.Aligned EA Receive 1x Centered 1 GDDRX1_RX.SCLK.Centered E Receive 1x Edge-to-Edge 1 GDDRX1_RX.ECLK.Aligned E Receive 1x Centered 1 GDDRX1_RX.ECLK.Centered E, EA Receive 1x Edge-to-Edge >1 GDDRX1_RX.DQS.Aligned E, EA Receive 1x Centered >1 GDDRX1_RX.DQS.Centered E, EA Receive 2x Edge-to-Edge 1 GDDRX2_RX.ECLK.Aligned E, EA Receive 2x Centered 1 GDDRX2_RX.ECLK.Centered E, EA Receive 2x Edge-to-Edge >1 GDDRX2_RX.DQS.Aligned E, EA Receive 2x Centered >1 GDDRX2_RX.DQS.Centered EA Receive 2x Dynamic 1 GDDRX2_RX.ECLK.Dynamic (Default) EA GDDRX2_RX.DQS.Dynamic2 EA GDDRX2_RX.PLL.Dynamic2 E, EA Transmit 1x Centered 1 GDDRX1_TX.SCLK.Centered E, EA Transmit 1x Edge-to-Edge 1 GDDRX1_TX.SCLK.Aligned E, EA Transmit 1x Centered >1 GDDRX1_TX.DQS.Centered EA Transmit 2x Edge-to-Edge 1 GDDRX2_TX.Aligned EA Transmit 2x Centered >1 GDDRX2_TX.DQSDLL.Centered EA Transmit 2x Centered 1 GDDRX2_TX.PLL.Centered 1. Gearing Ratio of 1x is selected for clock frequencies less than 200MHz. Gearing ratio of 2x is selected for frequencies above 200 MHz. 2. These interfaces can only be selected in the Configuration Tab.12-18 LatticeECP3 High-Speed I/O Interface In order to achieve higher speeds, the guidelines described in the Placement Guidelines for High-Speed DDR Interfaces section should be strictly followed. All the interfaces described below are supported using ispLEVER 8.0 software. Some of these interfaces will not work in versions of ispLEVER prior to version 8.0. Refer to the Generic DDR Design Guidelines section to see all other design guidelines. GIREG_RX.SCLK Generic SDR Receive Interface using SCLK. Device Support: “E” and “EA” devices Description This is a generic interface for single data rate (SDR) data. An optional inverter can be used to center the clock for aligned inputs. A PLL or DLL can be used to remove the clock injection delay or adjust the setup and hold times. There are a limited number of DLLs in the architecture and these should be saved for high-speed interfaces when necessary. This interface can either be built using IPexpress or inferred during synthesis. Figure 12-8. GIREG_RX Interface (“E” and “EA” Devices) This interface also supports data delay on the data input. This delay value is set using a DELAYB or a DELAYC element. A DELAYC element provides a fixed delay to match the SCLK injection time. DELAYB is used when user chooses to update the delay dynamically or use user-defined static values. Figure 12- 9 shows the DELAYB element connected to this interface. Figure 12-9. GIREG_RX.SCLK with Delay Interface (“E” and “EA” Devices) Interface Rules • The input clock must use a dedicated clock (PCLK) input pin. Clk IREG Sclk Din IREG Sclk Din Clk Clk IREG Sclk Din Clk Din IREG Sclk DELAYB DELAYB12-19 LatticeECP3 High-Speed I/O Interface GDDRX1_RX.ECLK.Aligned Generic DDR Receive Interface using ECLK with Aligned External Interface Device Support: “E” devices only Description This DDR interface uses the ECLK and the TRDLLB to provide a 90° clock shift to center the clock at the IDDRXD. DLLDELB is used to delay the incoming clock by 90°. CLKDIV is used to generate a divide-by-1 clock that is connected to the SCLK. Since this interface uses the ECLK it can be extended to support large data bus sizes for the entire side of the device. Figure 12-10. GDDRX1_RX.ECLK.Aligned Interface (“E” Devices Only) Interface Rules • The input clock must use a GPLLT_IN or GDLLT_IN pin. All data for the interface must all be on the same ECLK (same side). • Since there is only one DLLDELB and one CLKDIVB per left and right sides of the device, users can implement only one such interface per side, or two total on the device. • The clock net connected to SCLK should be on a primary clock net. The user must assign the “USE PRIMARY NET” preference to assign the SCLK clock net to a primary clock. • The pin assignments for data and clocks will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. GDDRX1_RX.ECLK.Centered Generic DDR Receive Interface using ECLK with Centered External Interface. Device Support: “E” devices only Description This DDR interface uses the ECLK and DELAYC to match clock and data delay at the IDDRXD. Since this interface uses the ECLK it can be extended to support large data bus sizes for the entire side of the device. DLLDELB ECLK clk TRDLLB IDDRXD DQSBUFG DDRCLKPOL ECLKDQSR SCLK D datain DELAYC CDIV1 CLKDIVB 2 q12-20 LatticeECP3 High-Speed I/O Interface Figure 12-11. GDDRX1_RX.ECLK.Centered Interface (“E” Devices Only) Interface Rules • The input clock port must use a dedicated clock (PCLK) input pin. All data for the interface must be on the same ECLK (same side). • The clock net connected to SCLK must be routed on a primary clock net. It is the user’s responsibility to assign the SCLK clock net to a primary clock tree using the “USE PRIMARY NET” preference. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. GDDRX1_RX.SCLK.Aligned Generic DDR Receive Interface using SCLK with Aligned External Interface Device Support: “EA” devices only Description This DDR interface uses the SCLK and the TRDLLB to provide a 90° clock shift to center the clock at the IDDRXD1. This interface is useful for large data buses (>10 bits). A DELAYC is used to adjust data delay for the SCLK clock injection time. CLKDIV in divide-by-1 setting is used to generate the SCLK. Figure 12-12. GDDRX1_RX.SCLK.Aligned Interface (“EA” Devices Only) ECLK clk IDDRXD DQSBUFG DDRCLKPOL ECLKDQSR SCLK D datain DELAYC 2 q clk TRDLLB IDDRXD1 IDDRAPPS=SCLK_ALIGNED SCLK D datain DELAYC CDIV1 CLKDIVB DLLDELB 2 q12-21 LatticeECP3 High-Speed I/O Interface Interface Rules • The clock input must use a dedicated GPLLT_IN or GDLLT_IN clock input pin (two pins per side). A dedicated PCLK pin on the top side can connect directly to the TRDLLB as well. • There is only one DLLDELB per side of the device (left and right sides) which limits this interface to one clock rate per side or two per device. • CLKDIV is required to generate SCLK. • The clock net connected to SCLK should be on a primary clock net. The user must assign the “USE PRIMARY NET” preference to assign the SCLK clock net to a primary clock. GDDRX1_RX.SCLK.PLL.Aligned Generic DDR Receive Interface using SCLK with Aligned External Interface Device Support: “EA” devices only Description This DDR interface uses the SCLK and a PLL to provide a 90° clock shift to center the clock at the IDDRXD1. This interface is useful for large data buses (>10 bits). A DELAYC is used to adjust data delay for the SCLK clock injection time. CLKDIV in divide by 1 setting is used to generate the SCLK. Figure 12-13. GDDRX1_RX.SCLK.PLL.Aligned Interface (“EA” Devices Only) Interface Rules The clock input must use a dedicated GPLLT_IN clock input pin (two pins per side). CLKDIV is required to generate SCLK. The clock net connected to SCLK should be on a primary clock net. The user must assign the “USE PRIMARY NET” preference to assign the SCLK clock net to a primary clock. clk IDDRXD1 IDDRAPPS=SCLK_PLLALIGNED SCLK D datain DELAYC PLL CLKOS 2 q12-22 LatticeECP3 High-Speed I/O Interface GDDRX1_RX.SCLK.Centered Generic DDR Receive Interface using SCLK with Centered External Interface Device Support: “EA” devices only Description This DDR interface uses the SCLK and DELAYC to match clock and data delay at the IDDRXD. This interface is useful for large data buses (>10 bits). Figure 12-14. GDDRX1_RX.SCLK.Centered Interface (“EA” Devices Only) Interface Rules • The clock input must use a dedicated clock (PCLK) input pin. The output of a PLL clock in bypass mode can be connected to the SCLK as well. • The clock connected to SCLK should be on a primary clock net. The user must assign the “USE PRIMARY NET” preference to assign the SCLK clock net to a primary clock. GDDRX1_RX.DQS.Aligned Generic DDR Receive Interface using DQS Lane with Aligned External Interface Device Support: “E” and “EA” devices Description This DDR interface uses the DQS and the DQSDLL to provide a 90° clock shift to center the clock at the IDDRXD. This interface is uses a DQS lane and is useful for small data buses (< 11 bits). DQSDLL provide the 90° delay to the DQSBUFF which is used to delay the incoming clock. A reference clock input “dqsdll_clk” running at the same frequency as DQS clock is required to be input to the DQSDLL to generate the delay. clk IDDRXD1 SCLK D datain DELAYC IDDRAPPS = SCLK_CENTERED 2 q12-23 LatticeECP3 High-Speed I/O Interface Figure 12-15. GDDRX1_RX.DQS.Aligned Interface (“E” and “EA” Devices) Any frequency-locked clock or the local clock from the input pin can be used for SCLK. The timing transfer between the ECLKDQSR and SCLK is handled in the hardware through the DDRCLKPOL. Interface Rules • The input clock must use a DQS input pin and all data inputs must be in the same DQS lane. • The VREF1 for the selected DQS lane must be powered on the board. • There is only one DQSDLL per side of the device which limits sharing of this interface on a side unless all are running at the same rate. • The following sequence must be followed when resetting the interface: – Assert DQSDLL_RESET to DQSDLL and RESET to the modules – Deassert DQSDLL_RESET to DQSDLL first – Wait for DQSDLL lock to go high – Assert DQSDLL_UDDCNTLN input of DQSDLL for at least four SCLK cycles. See the section “DQSDLLB” on page 89 for the detailed requirements for the DQSDLL_UDDCNTLN input of DQSDLLB – Deassert DQSDLL_UDDCNTLN – Wait for four SCLK cycles, then deassert RESET to the other modules • “dqsdll_clk” and clock net connected to SCLK must use the primary clock tree. It is the user’s responsibility to assign the “USE PRIMARY NET” preference on these nets to assign it to the primary clock. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. GDDRX1_RX.DQS.Centered Generic DDR Receive Interface using DQS Lane with Centered External Interface Device Support: “E” and “EA” devices Description This DDR interface uses the DQS and DELAYC to match clock and data delay at the IDDRXD. This interface is useful for small data buses (<11 bits). Since a 90° shift is not required, the DQSDLL is held in reset for this interface. DQSBUFF ECLKDQSR clk_0 DQSDLL IDDRXD IDDRAPPS=DQS_ALIGNED* DDRCLKPOL ECLKDOSR SCLK datain_0 D DQSI SCLK RESET READ reset_0 dqsdll_clk dqsdll_reset dqsdll_uddcntln * IDDRAPPS required for “EA” devices only. 2 q_012-24 LatticeECP3 High-Speed I/O Interface The user can use any frequency-locked clock for SCLK or the local clock from the input pin. The timing transfer between the ECLKDQSR and SCLK is handled in the hardware through the DDRCLKPOL Figure 12-16. GDDRX1_RX.DQS.Centered Interface (“E” and “EA” Devices) Notes: 1. The DELAYC is only applicable for “EA” devices. For “E” devices, change the DELAYC to DELAYB with a delay value of 7. 2. When retargeting from “E” to “EA” devices, manually update DELYAB to DELAYC, otherwise the software will error out. Interface Rules • The input clock must use a DQS input pin and all data inputs must be in the same DQS lane. • The VREF1 for the selected DQS lane must be powered on the board. • There is only one DQSDLL per side of the device which limits sharing of this interface on a side unless all are running at the same rate. • The clock net connected to SCLK must use the primary clock tree. It is the user’s responsibility to assign “USE PRIMARY NET” preference on this SCLK clock net to assign it to the primary clock. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. GDDRX2_RX.ECLK.Aligned Generic DDR Receive Interface with x2 Gearing using ECLK with Aligned External Interface Device Support: “E” and “EA” devices Description This DDR x2 interface uses the ECLK and the TRDLLB to provide a 90° clock shift to center the clock at the IDDRX2D. DELAYC is used to delay data to match the ECLK injection delay. Since this interface uses the ECLK it can be extended to support large data bus sizes for the entire side of the device. This interface uses x2 gearing with the IDDRX2D element. This requires the use of a CLKDIVB to provide the SCLK which is half the frequency of the ECLK and ECLKDQSR. DQSBUFF ECLKDQSR clk_0 dqsdll_clk DQSDLL IDDRXD IDDRAPPS=DQS_CENTERED* DDRCLKPOL ECLKDOSR SCLK datain_0 D DQSI SCLK reset_0 READ RST ‘1’ DELAYC *IDDRAPPS required for “EA” devices only. 2 q12-25 LatticeECP3 High-Speed I/O Interface Note the difference in interface implementation between the “E” and “EA” devices. “E” devices require the use of a DQSBUFE which is not required on the “EA” devices. Figure 12-17. GDDRX2_RX.ECLK.Aligned Interface (“EA” Devices) Figure 12-18. GDDRX2_RX.ECLK.Aligned Interface (“E” Devices) DLLDELB ECLK clk TRDLLB IDDRX2D1 ECLK SCLK datain DELAYC D CDIV2 CLKDIVB IDDRAPPS = ECLK_ALIGNED 4 q DLLDELB ECLK clk TRDLLB IDDRX2D ECLK SCLK datain DELAYC D CDIV2 CLKDIVB 4 q DQSBUFE DDRLAT DDRCLKPOL ECLKDQSR12-26 LatticeECP3 High-Speed I/O Interface Interface Rules • It is recommended that a dedicated GDLL T_IN is used for the clock input. In “EA” devices, a GPLLT_IN or PCLK from the top side can also be used for the clock input. • The clock net output of the CLKDIVB module is connected to SCLK and it must be routed on a primary clock. The “USE PRIMARY NET” preference must be used on this clock net as well. • There is only one DLLDELB and one CLKDIV per side of the device (left and right sides) which limits this interface to one clock rate per side or two per device. • The data/clock pin assignments for “E” devices require following the DQ-DQS group pinout guidelines. See the Generic DDR Design Guidelines section for details. This is not required for “EA” devices. GDDRX2_RX.ECLK.Aligned (No CLKDIV) Generic DDR Receive Interface with x2 Gearing using ECLK with Aligned External Interface Device Support: “EA” devices Description This DDR x2 interface uses the ECLK and the TRDLLB to provide a 90° clock shift to center the clock at the IDDRX2D. DELAYC is used to delay data to match the ECLK injection delay. Since this interface uses the ECLK it can be extended to support large data bus sizes for the entire side of the device. This interface uses x2 gearing with the IDDRX2D element. The CLKOS output of the TRDLLB can be set up to divide ECLK by 2 to generate the SCLK. Figure 12-19. GDDRX2_RX.ECLK.Aligned (No CLKDIV) Interface (“EA” Devices) Interface Rules It is recommended that a dedicated TGDLL_IN pin be used for the clock input. In an “EA” device a GPLLT_IN or PCLK from the top side can also be used for the clock input. The clock CLKOS output of the TRDLLB module is connected to SCLK of IDDRX2D1 and it must be routed on a primary clock. The “USE PRIMARY NET” preference must be used on this clock net as well. There is only one DLLDELB per side of the device (left and right sides) which limits this interface to one clock rate per side or two per device. DLLDELB ECLK clk IDDRX2D1 IDDRAPPS = ECLK_ALIGNEDNOCLKDIV ECLK SCLK data DELAYC TRDLLB CLKOS (divby2/ 90deg) 4 q12-27 LatticeECP3 High-Speed I/O Interface GDDRX2_RX.ECLK.Centered Generic DDR Receive Interface with x2 Gearing using ECLK with Centered External Interface Device Support: “E” and “EA” devices Description This DDR x2 interface uses the ECLK and DELAYC to match clock and data delay at the IDDRX2D. Since this interface uses the ECLK it can be extended to support large data bus sizes for the entire side of the device. This interface uses x2 gearing with the IDDRX2D element. This requires the use of a CLKDIVB to provide the SCLK which is half the frequency of the ECLK and ECLKDQSR. Note the difference in interface implementation between the “E” and “EA” devices. “E” devices require the use of a DQSBUFE which is not required on the “EA” devices. Figure 12-20. GDDRX2_RX.ECLK.Centered Interface (“EA” Devices) Figure 12-21. GDDRX2_RX.ECLK.Centered Interface (“E” Devices) Interface Rules • Input clock port must use a dedicated clock (PCLK) input pin. All the data for the interface must be on the same ECLK tree (same side of the device). In “EA” devices, PLL output in Bypass mode can be connected to the ECLK ECLK clk IDDRX2D1 ECLK SCLK D datain CDIV2 CLKDIVB DELAYC IDDRAPPS=ECLK_CENTERED q 4 ECLK clk IDDRX2D ECLK SCLK datain D CDIV2 CLKDIVB DELAYC q 4 DQSBUFE ECLKDQSR DDRLAT DDRCLKPOL12-28 LatticeECP3 High-Speed I/O Interface as well. • The clock net connected to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. • There is only one CLKDIVB per side of the device, so the interface is limited to one per side. • The data/clock pin assignments for “E” devices require following the DQ-DQS group pinout guidelines. See the Generic DDR Design Guidelines section for details. This is not required for “EA” devices. GDDRX2_RX.DQS.Aligned Generic DDR Receive Interface with x2 Gearing using a DQS lane with Aligned External Interface Device Support: “E” and “EA” devices Description This DDR x2 interface uses the DQS and the DQSDLL to provide a 90° clock shift to center the clock at the IDDRXD. This interface uses a DQS lane and is useful for small data buses (<11 bits). There is only one DQSDLL per side of the device which limits sharing of this interface on a side unless all are running at the same rate. This interface uses x2 gearing with the IDDRX2D element. This requires the use of a CLKDIVB to provide the SCLK which is half the frequency of the ECLK and ECLKDQSR. This interface requires the use of a secondary input pll_clk for the PLL input. The PLL output must run at the same rate as the DQSI clk input, but can be arbitrary phase. Figure 12-22. GDDRX2_RX.DQS.Aligned Interface (“E” and “EA” Devices) Interface Rules • The input clock must use a DQS input pin and all data inputs must be in the same DQS lane. DQSBUFD ECLKDQSR dqsdll_uddcntln dqsdll_reset DQSDLL IDDRX2D IDDRAPPS=DQS_ALIGNED* DDRCLKPOL ECLKDQSR SCLK datain_0 D ECLK pll_clk DDRLAT DQSI ECLKDQSR ECLK SCLK DDRLAT RESET DDRCLKPOL READ reset_0 PLL CLKOS CLKOK *IDDRAPPS is only required for “EA” devices. 4 q_012-29 LatticeECP3 High-Speed I/O Interface • The input pll_clk must use a GPLLT_IN or GDLLT_IN input pin or from a primary clock tree. • The clock net connected to SCLK must also be routed on a primary routing resource using the “USE PRIMARY NET” preference. • There is only one DQSDLL per side of the device which limits sharing of this interface on a side unless all are running at the same rate. • The following sequence must be followed when resetting the interface: – Assert DQSDLL_RESET to DQSDLL and RESET to the modules – Deassert DQSDLL_RESET to DQSDLL first – Wait for DQSDLL lock to go high – Assert DQSDLL_UDDCNTLN input of DQSDLL for at least four SCLK cycles. See the section “DQSDLLB” on page 89 for the detailed requirements for the DQSDLL_UDDCNTLN input of DQSDLLB – Deassert DQSDLL_UDDCNTLN – Wait for four SCLK cycles, then deassert RESET to the other modules • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. • The VREF1 for the selected DQS lane must be powered on the board. GDDRX2_RX.DQS.Centered Generic DDR Receive Interface with x2 Gearing using a DQS lane with Centered External Interface Device Support: “E” and “EA” devices Description This DDR x2 interface uses the DQS and DELAYC to match clock and data delay at the IDDRX2D. This interface is useful for small data buses (<11 bits). Since a 90° shift is not required, the DQSDLL is held in reset for this interface. An additional refclk input running at the same as the clk input to DQSI is provided to the DQSDLL, ECLK input of the IDDRX2D. It is also used in the CLKDIV module to generate the SCLK which is half the frequency as the input clock.12-30 LatticeECP3 High-Speed I/O Interface Figure 12-23. GDDRX2_RX.DQS.Centered Interface (“E” and “EA” Devices) Notes: 1. The DELAYC is only applicable for “EA” devices. For “E” devices, change DELAYC to DELAYB and set the value to 7. 2. When retargeting from “E” to “EA”, manually update DELYAB to DELAYC, otherwise the software will error out. Interface Rules • The input clock must use a DQS input pin and all data inputs must be in the same DQS lane. • The ECLK clock input must use a dedicated GPLLT_IN input or PCLK input pin or from a primary clock tree. This second synchronous clock input is used for the DQSDLL, ECLK, and CLKDIV. • There is only one DLLDELB and one CLKDIV per side of the device (left and right sides) which limits this interface to one clock rate per side or two per device. • The clock net connected to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. • The VREF1 for the selected DQS lane must be powered on the board. GDDRX2_RX.ECLK.Dynamic Generic DDR Receive Interface with x2 Gearing using ECLK with Centered External Interface and Dynamic Data Delay Control Device Support: “EA” devices Description This interface uses a DELAYB and ECLK for bit-level control of the alignment. User logic will control the inputs of the DELAYB delay module. The CLKDIV module is used to generate the SCLK which is half the frequency of DQSBUFD ECLKDQSR clk_0 DQSDLL IDDRX2D IDDRAPPS =DQS_CENTERED * DDRCLKPOL ECLKDQSR SCLK datain_0 D CLKDIVB ECLK eclk DDRLAT DQSI ECLKDQSR ECLK SCLK DDRLAT DDRCLKPOL 1 RST DELAYC reset_0 READ *IDDRAPPS is only required for “EA” devices. 4 q_012-31 LatticeECP3 High-Speed I/O Interface ECLK. This interface should only be used when the input clock is centered to the data as this interface does not have phase-shift capability on the clock. This interface is similar to the GDDRX2_RX.ECLK.Centered, but in this version the data delay is controlled dynamically by the user. Figure 12-24. GDDRX2_RX.ECLK.Dynamic (“EA” Devices) Interface Rules • Input clock port must use a dedicated clock (PCLK) input pin. All the data for the interface must be on the same ECLK tree (same side of the device). • The clock net connected to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. • There is only one CLKDIVB per side of the device, so the interface is limited to one per side. GDDRX2_RX.DQS.Dynamic Generic DDR Receive Interface with x2 Gearing using a DQS lane with Centered External Interface and Dynamic Data Delay Control Device Support: “EA” devices Description This interface uses a DELAYB and DQS lane for bit-level control of the alignment. User logic will control the inputs of the DELAYB delay module. CLKDIV module is used to generate the SCLK which is half the frequency of ECLK. This interface should only be used when the input clock is centered to the data as this interface does not have phase-shift capability on the clock. This interface is similar to the GDDRX2_RX.DQS.Centered, but in this version the data delay is controlled dynamically by the user. clk IDDRX2D1 ECLK SCLK datain DELAYB D CDIV2 CLKDIVB IDDRAPPS = ECLK_DYNAMIC 4 q 412-32 LatticeECP3 High-Speed I/O Interface Figure 12-25. GDDRX2_RX.DQS.Dynamic (“EA” Devices) Interface Rules • The input clock must use a DQS input pin and all data inputs must be in the same DQS lane. • The eclk clock input must use a dedicated GPLLT_IN input or PCLK input pin. This second synchronous “eclk” input is used for the DQSDLL, ECLK, and CLKDIV. • The clock net connected to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. • There is only one DLLDELB and one CLKDIV per side of the device (left and right sides) which limits this interface to one clock rate per side or two per device. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. GDDRX2_RX.PLL.Dynamic Generic DDR Receive Interface with x2 Gearing using ECLK with Dynamic control on ECLK phase using PLL Device Support: EA devices Description This interface uses a PLL to delay the ECLK for bus-level control of the alignment. The benefit of the PLL is that an entire period of delay is provided. User logic will control the DPHASE input to the PLL. DQSBUFD ECLKDQSR clk_0 DQSDLL IDDRX2D IDDRAPPS=DQS_DYNAMIC DDRCLKPOL ECLKDQSR SCLK datain_0 D CLKDIVB ECLK eclk DDRLAT DQSI ECLKDQSR ECLK SCLK DDRLAT DDRCLKPOL 1 RST DELAYB reset_0 READ q_0 4 412-33 LatticeECP3 High-Speed I/O Interface Figure 12-26. GDDRX2_RX.PLL.Dynamic (“EA” Devices) Interface Rules • The input clock must use a dedicated GPLLT_IN clock input pin. The clock net connected to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. GOREG_TX.SCLK Generic SDR Transmit Interface using SCLK Device Support: “E” and “EA” devices Description This is a generic interface for SDR data and a forwarded clock. The ODDR used for the clock balances the clock path to match the data path. A PLL can also be used to clock the ODDRXD to phase shift the clock to provide a precise clock-to-data output. On “E” devices, the sides (left and right) need to pass through a DQSBUFG before going to the ODDRXD element. The top does not require the DQSBUFG and can take SCLK directly. The “EA” device does not require a DQSBUFG block. Figure 12-27. GOREG_TX.SCLK Interface (“EA” Devices) clkin IDDRX2D1 ECLK SCLK datain D DPHASE[3:0] CLKOS CLKOK PLL IDDRAPPS = PLL_DYNAMIC 4 q OREG clk dout Clkout ODDRXD1 0 1 SCLK ODDRAPPS = SCLK_ALIGNED d12-34 LatticeECP3 High-Speed I/O Interface Figure 12-28. GOREG_TX.SCLK Interface (“E” Devices, Top) Figure 12-29. GOREG_TX.SCLK Interface (“E” Devices, Left/Right) Interface Rules • SCLK must be routed on either primary or secondary clock resources using the USE PRIMARY NET or USE SECONDARY preferences. GDDRX1_TX.SCLK.Centered Generic DDR Transmit Interface using SCLK with Centered External Interface Device Support: “E” and “EA” devices OREG clk dout clkout ODDRXD 0 1 DQCLK1 SCLK d OREG clk dout DQSBUFG clkout ODDRXD 0 1 DQCLK1 SCLK d12-35 LatticeECP3 High-Speed I/O Interface Description This output DDR interface provides clock and data that are pre-centered using a PLL and two SCLKs. On “E” devices, the left and right sides need to pass through a DQSBUFG before going to the ODDRXD element. The top side of the “E” device does not require the DQSBUFG and can take SCLK directly. When using the DQSBUFG the clock output will need to be in a different DQS lane than the data since there is only one DQSBUFG per lane. The “EA” device does not require the DQSBUFG. Figure 12-30. GDDRX1_TX.SCLK.Centered Interface (“EA” Devices) Figure 12-31. GDDRX1_TX.SCLK.Centered Interface (“E” Devices, Top) PLL 90° da[0] clk clkout ODDRXD1 1 0 q ODDRXD1 SCLK DA SCLK ODDRAPPS = SCLK_CENTERED ODDRAPPS = SCLK_ALIGNED db[0] DB DA DB PLL 90° da[0] clk clkout ODDRXD 1 0 DQCLK1 q ODDRXD DQCLK1 SCLK SCLK DA DB DA DB db[0]12-36 LatticeECP3 High-Speed I/O Interface Figure 12-32. GDDRX1_TX.SCLK.Centered Interface (“E” Devices, Left/Right) Interface Rules • On “E” devices, the clock and data outputs need to be in different DQS lanes on the left and right sides since there is only one DQSBUFG per lane. Clock and data outputs can use the same DQS lane on top. Clock and data outputs cannot use the DQS site. They must use the DQ site. • SCLK and 90° shifted SCLK should be assigned to a primary clock pin using the “USE PRIMARY NET” preference. • The pin assignments for data and clock will require following the DQ-DQS lane assignments for the “E” device. Refer to the Generic DDR Design Guidelines section for details. “EA” devices do not have this requirement. The clock pin to the PLL path must be routed on a dedicated clock route. A dedicated GPLLT_IN pin must be used for input of this clock. GDDRX1_TX.SCLK.Aligned Generic DDR Transmit Interface using SCLK with Aligned External Interface Device Support: “E” and “EA” devices Description This output DDR interface provides clock and data that are aligned using a single SCLK. PLL 90° da[0] clk DQSBUFG DQSBUFG clkout ODDRXD 1 0 DQCLK1 SCLK q ODDRXD DQCLK1 SCLK DA DA DB db[0] DB12-37 LatticeECP3 High-Speed I/O Interface Figure 12-33. GDDRX1_TX.SCLK.Aligned Interface (“EA” Devices) “E” devices require the use of DQSBUFG on the left and right sides of the device. If the clock and data bus can fit in the same DQS lane then a single DQSBUFG is all that is needed (<10 bits). For a wider data bus (>0 bits) it is required to use a DQSBUFG for clock and data and assign the clock to a different DQS lane. Figure 12-34. GDDRX1_TX.SCLK.Aligned Interface (“E” Devices, Top Side) clk clkout ODDRXD1 1 0 q ODDRXD1 SCLK DA SCLK DA DB db[0] DB da[0] ODDRAPPS = SCLK_CENTERED ODDRAPPS = SCLK_ALIGNED clk clkout ODDRXD 1 0 DQCLK1 q ODDRXD DQCLK1 SCLK SCLK DA DA DB db[0] DB da[0]12-38 LatticeECP3 High-Speed I/O Interface Figure 12-35. GDDRX1_TX.SCLK.Aligned Interface (“E” Devices, Left/Right Sides) < 10 Bits Figure 12-36. GDDRX1_TX.SCLK.Aligned Interface (“E” Devices, Left/Right Sides) > 10 Bits Interface Rules • On “E” devices, the clock and data outputs need to be in different DQS lanes on the left and right sides since there is only one DQSBUFG per lane. Clock and data outputs can use the same DQS lane on top. Clock and data outputs cannot use the DQS site. They must use the DQ site. • The clock to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. • The pin assignments for data and clock will require following the DQ-DQS lane assignments for “E” devices. Refer to the Generic DDR Design Guidelines section for details. “EA” devices do not have this requirement. clk ODDRXD clkout 1 0 DQCLK1 q ODDRXD DQCLK1 SCLK SCLK DQSBUFG DA DA DB db[0] DB da[0] da[0] clk clkout ODDRXD 1 0 DQCLK1 q ODDRXD DQCLK1 SCLK SCLK DQSBUFG DQSBUFG DA DA DB db[0] DB12-39 LatticeECP3 High-Speed I/O Interface GDDRX1_TX.DQS.Centered Generic DDR Transmit Interface using DQS Lane with Centered External Interface Device Support: “E” and “EA” devices Description This output DDR x1 interface provides clock and data that is pre-centered using a DQSDLL and ODDRXDQSA. This is the same as the GDDRX1_TX.SCLK.Centered, but does not require a PLL. This interface can also be used multiple times using the same DQSDLL. This interface should be used for narrow data buses (<11 bits wide) Figure 12-37. GDDRX1_TX.DQS.Centered Interface (“E” and “EA” Devices) Interface Rules • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. • There is only one DQSDLL per side of the device. One of these interfaces can be placed in each DQS group, but they all need to run at the same rate for that side. • The following sequence must be followed when resetting the interface: – Assert DQSDLL_RESET to DQSDLL and RESET to the modules – Deassert DQSDLL_RESET to DQSDLL first – Wait for DQSDLL lock to go high – Assert DQSDLL_UDDCNTLN input of DQSDLL for at least four SCLK cycles. See the section “DQSDLLB” on page 89 for the detailed requirements for the DQSDLL_UDDCNTLN input of DQSDLLB DQSBUFF DQCLK1 clk_0 reset dqsdll_uddcntln dqsdll_reset DQSDLL ODDRXDQSA DQCLK1 SCLK da_0[0] D ODDRXD q_0 clkout_0 DQCLK1 SCLK DQSW SCLK READ ODDRAPPS = DQS_CENTERED* ODDRAPPS = DQS_ALIGNED* DA db_0[0] DB 1 DA *ODDRAPPS required only for “EA” devices.12-40 LatticeECP3 High-Speed I/O Interface – Deassert DQSDLL_UDDCNTLN – Wait for four SCLK cycles, then deassert RESET to the other modules • “clk_0” must use the primary clock tree. It is the user’s responsibility to assign “USE PRIMARY NET” preference on this net to assign it to the primary clock. • This interface cannot use the LVDS25 IO_TYPE for the clkout from the DQSI. GDDRX2_TX.Aligned Generic DDR x2 Transmit Interface with Aligned External Interface Device Support: “EA” devices only Description This output DDR x2 interface provides clock and data that are aligned. A PLL is used to generate ECLK. A CLKDIV is use to generate the SCLK which is half the frequency of the ECLK. The PLL CLKOK can also be used to generate the SCLK. Additional soft logic is required for this interface to work as expected. This logic is used to control the ECLKSYNCA to create the proper relationship between ECLK and SCLK. Figure 12-38. GDDRX2_TX.Aligned Interface (“EA” Devices) Interface Rules • Clock input must use a dedicated GPLLT_IN input pin or from a primary clock tree. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. • The additional soft logic required for this interface is included in the module generated using IPexpress. • Clock to the reset flops should be at least half the speed or slower than the ECLK. • The clock to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. GDDRX2_TX.DQSDLL.Centered Generic DDR x2 Transmit Interface with Centered External Interface using DQSDLL da[0] Reset clk ODDRX2D SCLK DQCLK1 DQCLK0 DQSBUFE1 RESET ECLKW Eclk ECLKSYNCA ODDRX2D SCLK DQCLK1 DQCLK0 clkout q PLL CLKDIV Set Set ODDRAPPS=ECLK_ALIGNED ODDRAPPS=ECLK_ALIGNED DA0 DB0 DA1 DB1 DA0 DB0 DA1 DB1 db[0] da[0] db[0] 0 1 0 1 CLKOK CLKOP12-41 LatticeECP3 High-Speed I/O Interface Device Support: “EA” devices Description This output DDR x2 interface provides a clock and data that are centered. This interface uses a DQSDLL along with the DQSBUFD to generate the 90° delayed clock used to generate the clock output. ODDRDQSA module is used for clock generation. A CLKDIV is use to generate SCLK which is half the frequency of the ECLK. Additional logic is needed to control the ECLKSYNCA to create the proper relationship between ECLK and SCLK. Figure 12-39. GDDRX2_TX.DQSDLL.Centered Interface (“EA” Devices) Interface Rules • Clock inputs must come in from a primary clock tree. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. • The additional logic required for this interface is included in the module generated using IPexpress. • Clock to the reset flops should be at least half the speed or slower than the ECLK. • There is only one DQSDLL per side of the device. One of these interfaces can be placed in each DQS group, but they all need to run at the same rate for that side. • The following sequence must be followed when resetting the interface: – Assert DQSDLL_RESET to DQSDLL and RESET to the modules – Deassert DQSDLL_RESET to DQSDLL first – Wait for DQSDLL lock to go high – Assert DQSDLL_UDDCNTLN input of DQSDLL for at least four SCLK cycles. See the section “DQSDLLB” on page 89 for the detailed requirements for the DQSDLL_UDDCNTLN input of DQSDLLB – Deassert DQSDLL_UDDCNTLN – Wait for four SCLK cycles, then deassert RESET to the other modules ODDRX2D SCLK DQCLK1 DQCLK0 DQSBUFD SCLK RESET ECLK/ECLKW dqsdll_uddcntln dqsdll_reset reset ODDRX2DQSA SCLK DQCLK1 DQSW DQCLK0 clkout_0 q_0 DQSDLL ECLKSYNCA CLKDIV Set Set clk clk_s ODDRAPPS = DQS_CENTERED ODDRAPPS = DQS_ALIGNED da_0[0] DB0 DB1 DA0 DB0 DA1 DB1 db_0[0] da_1[0] db_1[0] 1 112-42 LatticeECP3 High-Speed I/O Interface • The clock to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET” preference. • CLKOUT must be assigned to a DQS pin. The DQS pins do not support True LVDS outputs, hence CLKOUT cannot use LVDS IO_TYPE. GDDRX2_TX.PLL.Centered Generic DDR x2 Transmit Interface with Centered External Interface using PLL Device Support: “EA” devices only Description This output DDR x2 interface provides a clock and data that are centered. This interface uses a PLL to generate the 90° phase shift required for the clock. A CLKDIV is used to generate SCLK which is half the frequency of the ECLK. Additional logic is required to control the ECLKSYNCA to create the proper relationship between ECLK and SCLK. Figure 12-40. GDDRX2_TX.PLL.Centered (“EA” Devices) Interface Rules • Clock input must use a dedicated GPLLT_IN input pin or from a primary clock tree. • The pin assignments for data and clock will require following the DQ-DQS lane assignments. Refer to the Generic DDR Design Guidelines section for details. reset clk ODDRX2D SCLK DQCLK1 DQCLK0 DQSBUFE1 RESET ECLKW Eclk ECLKSYNCA q PLL CLKDIV Set Set ODDRX2D SCLK DQCLK1 DQCLK0 clkout DQSBUFE1 RESET ECLKW Eclk 90° ODDRAPPS=ECLK_CENTERED ODDRAPPS=ECLK_ALIGNED DA0 DB0 DA1 DB1 0 1 0 1 da[0] DA0 DB0 DA1 DB1 db[0] da[0] db[0] CLKOK CLKOP CLKOS12-43 LatticeECP3 High-Speed I/O Interface • The clock to SCLK must be routed on a primary routing resource using the “USE PRIMARY NET“preference. • The additional soft logic required for this interface is included in the module generated using IPexpress. • Clock to the reset flops should be at least half the speed or slower than the ECLK. 7:1 LVDS Implementation It is recommended that the 7:1 LVDS Video Interface Reference Design provided on the lattice web site be used to implement all 7:1 LVDS designs. Generic DDR Design Guidelines This section describes the various design guidelines used for building generic high-speed DDR interfaces in LatticeECP3 FPGAs. In additional to these guidelines, it is also necessary to follow the interface rules for each interface type as described above. Placement Guidelines for High-Speed DDR Interfaces The following clock and data placement guidelines should be followed for high-speed design requirements. The software will place the clock and data as specified by the user, but in order to achieve higher speeds the user must follow the placement rules listed in Table 12-6 for each interface type. It is required that all clocks used to clock the DDR Interfaces use a dedicated clock path. No general routing should be used to route the clock pin. General routing used for a clock path will cause duty cycle distortion as well as limit the operational frequency of the interface. It is the responsibility of the user to assign clock inputs to dedicated clock pins and use preferences such as “USE PRIMARY NET” to route clock nets on dedicated clock paths. Table 12-6 lists the various high-speed interfaces and the placement required for the clock and data. Table 12-6. Pin Placement Guidelines for High-Speed Interfaces DDR Interface LatticeECP3 “EA” Devices LatticeECP3 “E” Devices DATA CLK CLK PIN DATA CLK CLK PIN GDDRX1_RX.SCLK.Aligned L/R/T L/R GDLLT_IN N/A N/A N/A L/R/T L/R GPLLT_IN N/A N/A N/A L/R/T T PCLK N/A N/A N/A GDDRX1_RX.SCLK.Centered L/R/T L/R/T PCLK N/A N/A N/A L/R/T L/R/T GPLLT_IN N/A N/A N/A GDDRX1_RX.ECLK.Aligned N/A N/A N/A L/R L/R GDLLT_IN GDDRX1_RX.ECLK.Centered N/A N/A N/A L/R L/R PCLK GDDRX1_RX.DQS.Aligned L/R/T L/R/T DQS L/R L/R DQS GDDRX1_RX.DQS.Centered L/R/T L/R/T DQS L/R L/R DQS GDDRX2_RX.ECLK.Aligned L/R/T L/R GDLLT_IN L/R L/R GDLLT_IN L/R/T L/R GPLLT_IN N/A N/A N/A L/R/T T PCLK N/A N/A N/A GDDRX2_RX.ECLK.Centered L/R L/R PCLK L/R L/R PCLK L/R/T L/R GPLLT_IN N/A N/A N/A GDDRX2_RX.DQS.Aligned L/R L/R DQS L/R L/R DQS GDDRX2_RX.DQS.Centered L/R L/R DQS L/R L/R DQS GDDRX2_RX.ECLK.Dynamic L/R L/R PCLK N/A N/A N/A GDDRX2_RX.DQS.Dynamic L/R L/R DQS N/A N/A N/A12-44 LatticeECP3 High-Speed I/O Interface High-Speed Clock Bridge (“EA” Devices) The high-speed clock bridge is available only on “EA” devices on the GDDRX2.RX.PLL_Dynamic interface. The bridge enables a clock to route to a single edge clock or multiple edge clocks on the device using a three-way (left/right/top) bridge. It can only be used on clocks coming in from the left side dedicated GPLLT pin or PLL output. The software preference EDGE2EDGE is used to enable this route. For example, USE EDGE2EDGE ; where “pllin_c” is the clock net coming from the dedicated GPLLT pin. When this preference is placed on the clock coming in on the left side GPLLT pin, this clock will be connected to the one of the ECLK on the left, right and top sides using a dedicated route. This ECLK on all three sides cannot be used for any other ECLK function. User will have to make the following changes to the GDDRX2.RX.PLL_Dynamic module generated by IPExpress to incorporate the ECLKBRIDGE. • A CLKDIV should be used to generate SCLK instead of using PLL CLKOK. The CLKOS output of the PLL should be connected to the input of the CLKDIV module. Output of CLKDIV is used as SCLK. • User will have to instantiate 2 ECLKSYNC modules to be used on either side of the device. Both of them should be connected to the CLKOS of the PLL used as ECLK. • An EDGE2EDGE preference should be assigned to the CLKOS output of the PLL to be used as ECLKBRIDGE. DQ-DQS Grouping Rules Due to differences in architecture between the LatticeECP3 “E” and “EA” devices, the DQ-DQS grouping that is required for some interfaces in “E” devices is not required for “EA” devices. It is necessary to use the DQS grouping structure to group pins when either of the DQSBUFE/DQSBUFF/DQSBUFG modules is used in an interface. Refer to the section High-Speed DDR Interface Details to see the requirements for each device. Below are some of the rules to be followed when locking DQS groups. ispLEVER will check for these rules during MAP and Place and Route. • Each DQS pin has a DQSBUF block which spans across 12 pins including the DQS and DQS# pins. Each DQSBUF sends out control logic to these pins. • The DQS# I/O logic registers cannot be used to implement DDR registers. DQS pins can be used for IDDR implementation only. ODDR cannot be assigned to a DQS pin. GDDRX2_RX.PLL.Dynamic L/R L/R GPLLT_IN N/A N/A N/A L/R/T L High Speed Bridge2,3 N/A N/A N/A GDDRX2_RX.ECLK.DR L/R L/R GPLLT_IN N/A N/A N/A GDDRX1_TX.SCLK.Centered L/R/T L/R/T ANY L/R L/R ANY GDDRX1_TX.SCLK.Aligned L/R/T L/R/T ANY L/R L/R ANY GDDRX1_TX.DQS.Centered L/R/T L/R/T DQS L/R L/R DQS GDDRX2_TX.ECLK.Aligned L/R L/R ANY L/R L/R ANY GDDRX2_TX.Centered (DQS) L/R L/R DQS L/R L/R DQS GDDRX2_TX.Centered (PLL) L/R L/R ANY L/R L/R ANY 1. L, R and T refer to “Left”, “Right” and “Top” sides of the device. 2. The high-speed clock bridge can be accessed by using the “USE EDGE2EDGE < clk> “software preference. For preference details please see “ispLEVER Help” in the software. 3. High-speed bridge is only available on “EA” devices. 4. Top-side DDR is not supported on “E” devices. Table 12-6. Pin Placement Guidelines for High-Speed Interfaces (Continued) DDR Interface LatticeECP3 “EA” Devices LatticeECP3 “E” Devices DATA CLK CLK PIN DATA CLK CLK PIN 12-45 LatticeECP3 High-Speed I/O Interface • The DQS and DQS# I/O logic registers can be used to implement SDR input and output registers. If the DQSBUF of that DQS group is used then it cannot be used for SDR functions unless the same clock going to the DQSBUF is used to clock the SDR register at the DQS/DQS# site. • An IDDRX element used for a generic DDR interface cannot be mixed in a DQS group with an ODDRX element used for implementing a DDR memory interface. • Similarly, an ODDRX element used for a generic DDR interface cannot be mixed in a DQS group with an IDDRX element used for a DDR memory interface. • The ODDRXD and ODDRX2D elements in a given DQS group cannot share the same DQSBUF and therefore cannot be placed together within the same DQS group. • The upper left corner of the LatticeECP3 device has a DQS group without a DQS pin. This group of I/Os does not have a DQS function. It is recommended to use this group for pins in non-DQS interfaces. • See Table 12-13 to see the availability on each side. I/O Logic (IOL) Site Types/Names Based on the functions they support, I/O logic blocks are divided into the following site types. • IOLOGIC – This site supports IREG, OREG, IDDRX, IDDRX2, ODDRX and ODDRX2 functions. These are the IOLs on the left and right sides of the device. • SIOLOGIC – This site supports IREG, OREG, IDDRX, IDDRX2 and ODDRX functions. There is no ODDRX2 support in this site. These are mainly the IOLs on the top side of the device. • XSIOLOGIC – This site supports IREG and OREG only. These are primarily the bottom side IOLs and DQS# IOLs. • DQSIOL – These are the DQS IOLs. They support IREG, OREG, IDDRXD, IDDRX2, ODDRXDQSA and ODDRX2DQSA (left and right sides only) functions • SDQSIOL – These are DQS IOLs with support for IREG, OREG and DQS ODDRXDQSA functions. Compared to DQSIOL, there is no ODDRX2DQSA support in this site. These are mostly the DQS IOLs on the top side of the device. The software will issue an error message using these site names when an unsupported function is placed on one of these sites.12-46 LatticeECP3 High-Speed I/O Interface Figure 12-41. IOLOGIC Site Types DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane DQS Lane PCS PCS DQS Lane SIOLOGIC S OI LOG CI S OI LOGIC SIOLOGIC .. .. SDQSIOL DQSBUF IOLOGIC IOLOGIC IOLOGIC IOLOGIC .. .. DQSIOL DQSBUF XSIOLOGIC IOLOGIC IOLOGIC IOLOGIC IOLOGIC .. .. DQSIOL DQSBUF12-47 LatticeECP3 High-Speed I/O Interface Design Rules for Fitting Multiple Interfaces into One Device Rx Interfaces Running at High Speeds (>250 MHz) Receive interfaces running at speeds higher than 250 MHz must use the x2 mode gearing DDR elements. • To achieve high speeds these interfaces must be placed on the left and right sides of the device. • If implementing a centered interface then the clock input must be locked to a primary clock (PCLK) input pin • If implementing an aligned interface then the clock input must be locked to a dedicated GPLLT if interface is using a PLL GDLLT input pin if interface is using a DLL. • Interfaces using the x2 gearing will need to use the edge clock resource. A single edge clock covers only one side of the device, hence all the data bits in the data bus should be assigned to one side of the device. • There are two edge clocks per side. Two interfaces can be implemented per side of the device as long as they both do not require the DLL or CLKDIV module. See below: – There is only one CLKDIV and one DLL module available per side, hence two interfaces that use the CLKDIV and/or the DLL module cannot be on the same side. – When implementing an aligned interface using the DLL module (GDDRX2_RX.ECLK.Aligned) only one interface can be implemented per side as there is only one DLL and one CLKDIV per side of the device. – When implementing an aligned interface using a PLL (GDDRX2_RX.PLL.Dynamic), up to two of these interfaces can be implemented per side. It is recommended to allow the software to choose the best clock pins after locking the data inputs to the desired banks. – You can mix an aligned interface using a PLL (GDDRX2_RX.PLL.Dynamic) and a centered interface (GDDRX2_RX.ECLK.Centered) on the same side of the device. It is recommended to allow the software to choose the best clock pins after locking the data inputs to the desired banks. – You can mix an aligned interface using a DLL (GDDRX2_RX.ECLK.Aligned) and a centered interface (GDDRX2_RX.ECLK.Centered) on the same side of the device. It is recommended to allow the software to choose the best clock pins after locking the data inputs to the desired banks. – A GDDRX2_RX.ECLK.Aligned and GDDRX2_RX.PLL.Dynamic can be implemented on the same side of the device. In this case, the clock going to the PLL must be locked to a dedicated PLL clock input pin in the center of the device close to the DLL pin. For example, if the DLL pin is placed on the LUM0_GDLLT_IN_A pin then the clock input to the PLL must be placed on the LUM0_GPLLT_IN_A pin. It is recommended to allow the software to pick the best clock pins after locking the data inputs to the desired banks – For all interfaces using PLLs, refer to TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide to see which two dedicated PLL clock outputs can feed the ECLK tree • When multiple receive interfaces with multiple input clocks are required, and if the data widths for each of these interfaces is <10 bits wide, then the DQS clock can be used to implement these interfaces (GDDRX2_RX.DQS.Aligned and GDDRX2_RX.DQS.Centered) – For these interfaces it is required to connect the input clock to the DQS input pin – Data bits of the bus must be locked to the corresponding data pins – See the section “DQ-DQS Grouping Rules” for pin assignment rules. Rx Interfaces Running at Low Speeds (<250 MHz) • Receive interfaces running at speeds lower than 250 MHz can use the x1 mode gearing DDR elements. • If implementing a centered interface then the clock input must be locked to a primary clock (PCLK) input pin • If implementing an aligned interface then the clock input must be locked to a dedicated “GPLLT” if interface is using a PLL “GDLLT” input pin if interface is using a DLL. • Interfaces using the x1 gearing will use the primary clock resource. You can use as many interfaces as the number of primary clocks supported in the device. – If all interfaces are aligned and using a GDDRX1_RX.SCLK.Aligned interface that uses a DLL, then the number of interfaces is limited to two as there are two DLLs supported per device. – If using a GDDRX1_RX.SCLK.PLL.Aligned interface then the number of interfaces per device is limited by the number of PLLs available in that device.12-48 LatticeECP3 High-Speed I/O Interface Tx Interface Running at High Speeds (> 250 MHz) • Transmit Interfaces running at speeds higher than 250 MHz must use the x2 mode gearing DDR elements. • To achieve high speeds these interfaces must be placed on the left and right sides of the device. • Both edge clock and DQS clocks are used to implement the transmit side interfaces • Data pins must be grouped into the DQS groups on these interfaces • For interfaces requiring True LVDS outputs, the number of available True LVDS pins per DQS group must be calculated from the data sheet pinout tables since only a limited number of pins support True LVDS outputs. It may be required to modify the HDL generated from IPexpress to reduce the number of pins assigned to each DQS group • All transmit interfaces using the x2 gearing mode use the CLKDIV module, hence only one TX interface can be implemented per side of the device. • Inputs to the PLL used in the interface should be on primary clock routing or come in from a dedicated GPLLT input pin Tx Interface Running at High Speeds (<250 MHz) • Transmit interfaces running at speeds lower than 250 MHz can use the x1 mode gearing DDR elements • Interfaces using the x1 gearing will use the primary clock resource. You can as many interfaces as the number of primary clocks supported in the device. • If all interfaces are centered, then the number of interfaces will depend on the number of available PLLs on the device. Clocking Guidelines for Generic DDR Interfaces • Edge clock and primary clock resources are used when implementing a x2 receive or transmit interface • Only the primary clock (PCLK) resources are used when implementing x1 receive or transmit interfaces • Each edge clock can only span one side of the device, hence all the data bits of the in the x2 interface must be locked to one side of the device • When implementing x1 interfaces, the bus can span any two sides as primary clocks can access DDR registers on all sides • There are two edge clocks on each left, right of top side of the device. The bottom side does not support DDR registers and does not have any edge clocks. There are up to eight primary clocks available on a LatticeECP3 device. • For high-speed interfaces it is recommended to use the edge clocks on the left and right sides of the device instead of the top side • See Design Rules for Fitting Multiple Interfaces into One Device for details on implementing multiple interfaces on one side of a device • The ECLK to DDR registers can be accessed through dedicated PCLK pins, GPLL outputs, DLL outputs, and GPLL input pins. See “LatticeECP3 sysCLOCK PLL/DLL Design & Usage Guide” for details • Primary clock to DDR registers can be accessed through dedicated PCLK pins, GPLL outputs, DLL outputs & CLKDIV outputs. See “LatticeECP3 sysCLOCK PLL/DLL Design & Usage Guide” for details • None of the clocks going to the DDR registers can come from internal general routing. • DQS clocking is mainly used for DDR memory interface implementation. • The DQS clock spans every 12 I/O’s include the DQS pins, but only 10 of these can be used for generic DDR implementation12-49 LatticeECP3 High-Speed I/O Interface • DQS clocking can also be used for Generic DDR Receive interfaces when the bus size is 10 or less • DQS clocking is also used when implementing all Generic DDR x2 Transmit interfaces • Refer to the “DQ-DQS Grouping Rule” section for pinout assignment rules when using DQS clocking Common Software Errors and Solutions • Placement error when implementing Transmit high speed True LVDS interface: “ERROR - par: DDR assignment finished unsuccessfully.” DQS grouping is used when implementing 2x gearing on the transmit side. This error occurs then there aren’t enough true LVDS buffers in one DQS group. IPexpress generates DQS groups correctly for emulated buffers. Since the number of true LVDS pins vary per device and package, users need to update the module generated by IPexpress to correct the number of pins per DQS group. • PAR Routing error when not using dedicated clock routing: “ERROR - par: netsanitycheck: the clock buf_clk on comp Inst4_DLLDELB port CLKI is driven by general routing through comp clk” This error usually occurs when general routing is used on any of clocks routed to any of the DDR modules. Check the following: – If using a DLL or PLL, the clock input to the DLL or PLL should be on a dedicated GDLLT or GPLLT pin. A PCLK pin can be used but a USE PRIMARY preference must be assigned on this clock route from the PCLK pin to a DLL or PLL. – If an interface requires the clock to be routed directly to the ECLK or PCLK tree, the PCLK pin should be used to input the clock. GPLLT or GDLLT pins do not have access to the PCLK or ECLK tree and cannot be used here. – If the clocks going to any of the DDR registers are not used in any logic inside the FPGA (like a mux function) this will cause it to get on general route. – Refer to High-Speed DDR Interface Details to see the clock placement requirements for each type of interface. • PAR error when assigning a DDR function to a non-DDR I/O pin: ERROR - par: Cannot place PIO comp "datain_2" on the proposed PIO site "PB11A / AE4" because the types of their IOLOGICs are incompatible: the associated IOLOGIC comp "datain_2_MGIOL" has been set to "IDDR_OREG" mode (of type IDDRIOL), while the IOLOGIC site is of type XSIOLOGIC and supports FF only. In this case an IDDRX2D1 function is placed on the bottom side pin which does not support this function, hence the error. See section I/O Logic (IOL) Site Types/Names to see the functions supported on each site type. • Map Error on IDDRAPPS/ODDRAPPS function: ERROR - map: The 'IDDRAPPS' property is missing on IDDR instance 'Inst_IDDRX2D1_1_2'. Each IDDR component targeted for this device needs the 'IDDRAPPS' property identifying the interface being implemented. Refer to DDR usage documentation for details. All LatticeECP3 “EA” designs require an IDDRAPPS attribute assigned to the input DDR module and an ODDRAPPS attribute assigned to the output DDR module. If these attributes are not assigned then MAP will error out with the error message above. To fix the error, regenerate the module in IPexpress. IPexpress will generate the module with all the required input and output DDR attributes. 12-50 LatticeECP3 High-Speed I/O Interface Timing Analysis for High-Speed DDR Interfaces It is recommended that the user run Static Timing Analysis in the software for each of the high-speed interfaces. This section describes the timing preferences to use for each type of interface and the expected Trace results. The preferences can either be entered directly in the .lpf file or through the Design Planner graphical user interface. The External Switching Characteristics section of the LatticeECP3 Family Data Sheet should be used along with this section. The data sheet specifies the actual values for these constraints for each of the interfaces. Frequency Constraints Users must explicitly specify FREQUENCY (or PERIOD) PORT preferences to all input clocks in the design. This preference may not be required if the clock is generated out of a PLL or DLL or is input to a PLL or DLL. DDR Input Setup and Hold Time Constraints All of the receive (RX) interfaces, both x1 and x2, can be constrained with setup and hold preferences. 1. Receive Centered Interface Figure 12-42 shows the data and clock relationship for a Receive Centered Interface. The clock is centered to the data, so it comes into the devices with a setup and hold time. Figure 12-42. RX Centered Interface Timing Note: tSUGDDR = Setup Time, tHOGDDR = Hold Time In this case the user must specify in the software preference the amount of setup and hold time available. These parameters are listed in the figure as tSUGDDR and tHGDDR. These can be directly provided using the INPUT_SETUP and HOLD preference as: INPUT_SETUP PORT “Data” ns HOLD ns CLKPORT “Clock”; where: Data = Input Data Port Clock = Input Clock Port The External Switching Characteristics section of the LatticeECP3 Family Data Sheet specifies the minimum setup and hold times required for each of the high-speed interfaces running at maximum speed. These values can be picked up from the data sheet if the interface is running at maximum speed. Example: For a GDDRX2_RX.ECLK.Centered interface on the left or right sides using a PCLK pin on the LatticeECP3-150EA-8 device when running at the maximum speed of 405MHz, the preference would be: INPUT_SETUP PORT "Data" 0.321 ns HOLD 0.321 ns CLKPORT "Clock”; Note: Please check the LatticeECP3 Family Data Sheet for the latest tSUDDR and tHOGDDR numbers. t t t HOGDDR t HOGDDR SUGDDR SUGDDR Clock Data12-51 LatticeECP3 High-Speed I/O Interface 2. Receive Aligned Interface Figure 12-43 shows the data and clock relationship for a Receive Aligned Interface. The clock is aligned edge-to-edge with the data. Figure 12-43. RX Aligned Interface Timing Note: tDVACLKGDDR = Data Valid after CLK, tDVECLKGDDR = Data Hold After CLK In this case, worst case data may occur after the clock edge resulting in a negative setup time when entering the device. The worst case setup is specified by the tDVACLKGDDR after the clock edge and the worst case hold time is specified as tDVECLKGDDR. The setup and hold time can be specified as: INPUT_SETUP PORT “Data” <-tDVACLKGDDR > ns HOLD < tDVECLKGDDR> ns CLKPORT “Clock”; where: Data = Input Data Port Clock = Input Clock Port Note: A negative number is used for SETUP time as the data occurs after the clock edge in this case. The External Switching Characteristics section of the LatticeECP3 Family Data Sheet specifies the minimum tDVACLKGDDR and tDVECLKGDDR values required for each of the high-speed interfaces running at maximum speed. These values can be picked up from the data sheet if the interface is running at maximum speed. The data sheet numbers for this preference are listed in UI (Unit Interface). 1UI is equal to one-half the clock period. Therefore, these numbers will need to be calculated from the clock period used. Preference Example: For a GDDRX2_RX.ECLK.Aligned (no CLKDIV) interface on the left or right side using DLLCLKPIN for clock input on a LatticeECP3-150EA-8 device running at the maximum speed of 460MHz (UI = 1.09ns), the preference would be: t DVACLKGDDR = 0.225UI = 0.25ns, tDVECLKGDDR = 0.775UI = 0.84ns The preference for this case is: INPUT_SETUP PORT "Data" -0.250000 ns HOLD 0.840000 ns CLKPORT "Clock”; Note: Please check the LatticeECP3 Family Data Sheet for the latest tDVACLKGDDR and tDVECLKGDDR numbers. 3. Receive Dynamic Interfaces Static Timing Analysis will not show timing for all the dynamic interface cases as the either the clock or data delay will be dynamically updated at run time. t t t t Clock Data DVACLKGDDR DVACLKGDDR DVECLKGDDR DVECLKGDDR12-52 LatticeECP3 High-Speed I/O Interface DDR Clock to Out Constraints for Transmit Interfaces All of the transmit (TX) interfaces, both x1 and x2, can be constrained with clock-to-out constraints to detect the relationship between the clock and data when leaving the device. Figure 12-44 shows how the clock-to-out is constrained in the software. Minimum tCO is the minimum time after the clock edge transition that the data will not transition. So any data transition must occur between the tCO minimum and maximum values. Figure 12-44. tCO Minimum and Maximum Timing Analysis 1. Transmit Centered Interfaces In this case, the transmit clock is expected to be centered with the data when leaving the device. Figure 12- 45 shows the timing for a centered transmit interface. Figure 12-45. Transmit Centered Interface Timing Figure 12-45 shows that the maximum value after which the data cannot transition is -tDVBCKGDDR. The minimum value before which the data cannot transition is -(tU + tVBCKGDDR). A negative sign is used because in this particular case where clock is forwarded centered-aligned to the data, these two conditions occur before the clock edge. The LatticeECP3 Family Data Sheet specifies the tDVBCKGDDR and tDVACKGDDR values at maximum speed. But we do not know the tU value, so the minimum tCO can be calculated using the following equation. t CO Min. = -(tDVBGDDR + tU) ½T = tDVAGDDR + tDVBGDDR + tU t CO Min. = Data cannot transition BEFORE Min. t CO Max. = Data cannot transition AFTER Max. t COMin. t CO Max. Clock Data t U t DVBGDDR t DVAGDDR t DVAGDDR t DVBGDDR ½ T Target Edge Clock Data t DVBGDDR = Data valid before clock t DVAGDDR = Data valid after clock t U = Data transition12-53 LatticeECP3 High-Speed I/O Interface -(tDVBGDDR + tU) = tDVAGDDR - ½T t CO Min. = tDVAGDDR - ½T The clock-to-out time in the software can be specified as: CLOCK_TO_OUT PORT “Data” MAX <-tDVBGDDR> MIN CLKPORT “clk” CLKOUT PORT “Clock”; where: Data = Data Output Port Clock = Forwarded Clock Output Port clk = Input Clock Port The values for tDVBCKGDDR and tDVACKGDDR can be found in the External Switching Characteristics section of the LatticeECP3 Family Data Sheet for the maximum speed. Preference Example: For a GDDRX1_TX.SCLK.Centered interface running on the LatticeECP3-150EA-8 device at 250MHz, t DVBGDDR = tDVAGDDR = 0.670ns, the preference would be: CLOCK_TO_OUT PORT "Data" MAX -0.670000 ns MIN -1.330000 ns CLKPORT "clk" CLKOUT PORT "Clock”; Note: Please check the LatticeECP3 Family Data Sheet for the latest tDVAGDDR and tDVBGDDR numbers. 2. Transmit Aligned Interfaces In this case, the clock and data are aligned when leaving the device. Figure 12-46 shows the timing diagram for this interface. Figure 12-46. Transmit Aligned Interface Timing Figure 12-46 shows that maximum value after which the data cannot transition is tDIAGDDR. The minimum value before which the data cannot transition is -tDIBGDDR. A negative sign is used for the minimum value because the minimum condition occurs before the clock edge. The clock to out time in the software can be specified as: t t t t Clock Data DIBGDDR DIBGDDR DIAGDDR DIAGDDR t DIAGDDR = Data valid after clock. t DIBGDDR = Data valid before clock.12-54 LatticeECP3 High-Speed I/O Interface CLOCK_TO_OUT PORT “Data” MAX MIN <-tDIBGDDR> CLKPORT “clk” CLKOUT PORT “Clock”; where: Data = Data Output Port Clock = Forwarded Clock Output Port clk = Input Clock Port The tDIAGDDR and tDIBGDDR values are available in the External Switching Characteristics section of the LatticeECP3 Family Data Sheet for maximum speed. Preference Example: For a GDDRX2_TX.Aligned interface on the LatticeECP3-150EA-8 device running on the left or right sides at 500MHz, tDIAGDDR = tDIBGDDR = 0.200ns. The preference would be: CLOCK_TO_OUT PORT "Data" MAX 0.200000 ns MIN -0.200000 ns CLKPORT "clk" CLKOUT PORT "Clock”; Note: Please check the LatticeECP3 Family Data Sheet for the latest tDIAGDDR and tDIBGDDR numbers. Timing Rule Check for Clock Domain Transfers Clock Domain Transfers within the IDDR and ODDR modules are checked by Trace automatically when these elements are used in a design. Most clock domain transfers occur in the IDDRX2 and ODDRX2 modules where there are fast-speed and slow-speed clock inputs. For IDDRX2, there is a transfer from the fast-speed ECLK to the slowspeed SCLK. On the ODDRX2, the transfer happens from the slow-speed SCLK to the fast-speed ECLK. For ispLEVER 8.0, no special preferences are needed to run this check. The clock domain transfer checks are automatically done by the software and reported in the Trace report under section called “Timing Rule Check”. The report lists the timing for the both the input and output DDR blocks where a clock domain transfer is done. Figure 12-47 shows the transfer of data between the ECLK and SCLK for the IDDRX2 block. A cause of concern is the phase relationship between the ECLK and SCLK. As in the waveforms below, these two clocks have to maintain a certain amount of skew to transfer data successfully between the two clocks.12-55 LatticeECP3 High-Speed I/O Interface Figure 12-47. IDDRX2 ECLK to SCLK Transfer The skew between the two clocks is specified in terms of “min.” skew and “max.” skew. Figure 12-48 shows how the “min.” and “max.” skew is measured for the IDDRX2 block. It is required that the “min.” and “max.” skew be within the specified “min.” and “max.” specs. Figure 12-48. IDDRX2 ECLK to SCLK Skew Calculation The following equations are used to check for valid skew between the ECLK and SCLK for an IDDRX2 block. Max. Skew < - (0 + Internal ECLK to SCLK Setup Time) Min. Skew > - (ECLK cycle + Internal ECLK to SCLK Hold Time) D Q D Q D Q D Q D Q D Q L L SCLK D Q D Q A B J I ECLK L K C D Max. Skew Min. Skew ECLK SCLK12-56 LatticeECP3 High-Speed I/O Interface The Trace report below shows an example IDDRX2 ECLK to SCLK Timing rule check. Internal Preference: Timing Rule Check 32 items scored, 0 timing errors detected. -------------------------------------------------------------------------------- This section of the Trace report will identify any inherent timing rule violations in the design. These rules may be independent of preferences. Passed: din_i_13_MGIOL meets ECLK to CLK skew range from -2.489ns to 0.006ns Max skew of -1.367ns meets timing requirement of 0.006ns by 1.373ns Max ECLK: Name Fanout Delay (ns) Site Resource PADI_DEL --- 0.369 M4.PAD to M4.PADDI clk_i ROUTE 33 0.509 M4.PADDI to IOL_L43EA.ECLK iddr_inst/buf_clk (to sclk_o_c) -------- 0.878 (42.0% logic, 58.0% route), 1 logic levels. Min CLK: Name Fanout Delay (ns) Site Resource PADI_DEL --- 0.369 M4.PAD to M4.PADDI clk_i ROUTE 33 0.476 M4.PADDI to *V_R61C15.CLKI iddr_inst/buf_clk CLKOUT_DEL --- 0.353 *V_R61C15.CLKI to *_R61C15.CDIV2 iddr_inst/Inst3_CLKDIVB ROUTE 33 1.047 *_R61C15.CDIV2 to IOL_L43EA.CLK sclk_o_c -------- 2.245 (32.2% logic, 67.8% route), 2 logic levels. Min skew of -1.537ns meets timing requirement of -2.489ns by 0.952ns Min ECLK: Name Fanout Delay (ns) Site Resource PADI_DEL --- 0.423 M4.PAD to M4.PADDI clk_i ROUTE 33 0.476 M4.PADDI to IOL_L43EA.ECLK iddr_inst/buf_clk (to sclk_o_c) -------- 0.899 (47.1% logic, 52.9% route), 1 logic levels. Max CLK: Name Fanout Delay (ns) Site Resource PADI_DEL --- 0.423 M4.PAD to M4.PADDI clk_i ROUTE 33 0.509 M4.PADDI to *V_R61C15.CLKI iddr_inst/buf_clk CLKOUT_DEL --- 0.353 *V_R61C15.CLKI to *_R61C15.CDIV2 iddr_inst/Inst3_CLKDIVB ROUTE 33 1.151 *_R61C15.CDIV2 to IOL_L43EA.CLK sclk_o_c -------- 2.436 (31.9% logic, 68.1% route), 2 logic levels Note: For paths that are common between the ECLK and CLK, the same delay will be used. For example, since PADI_DEL is the shared path between the Max. ECLK and Min. CLK for “Max skew calculation” and between Min. ECLK and Max. CLK for “Min skew calculation” the value is the same in both cases. The “ECLK to CLK skew range from -2.510 ns to -0.019 ns” for this case is an allowable skew range between the two clocks.The skew between the two clocks must fall within this range or the Trace will fail on this preference. The allowable skew range is determined by the frequency at which the fast ECLK clock is running.12-57 LatticeECP3 High-Speed I/O Interface Similarly for the ODDRX2D, there is an internal transfer from SCLK to DQCLK0/1 which will be listed in the Timing Rule Check section as well. This internal rule check is required for normal data pins but is not required for the forwarded clock output itself where data inputs to the ODDRX2D are constants. There is no internal data transfer in this case. Users can ignore Trace reported errors on this Internal Rule Check only for forwarded clocks. These errors may be blocked by a preference like: BLOCK NET "sclk_c" COMP "clkout_MGIOL"; Where sclk_c is the net on the CLK pin of the IOLOGIC component clkout_MGIOL, where clkout is the forwarded clock. Trace violations of this rule check on corresponding data outputs need to be understood and resolved. Preferences for Specific Elements 1. DLLDELB – This element is used in to generate a 90° delay in all receive aligned interfaces. The 90° delay is calculated based on the input clock to the TRDLLB element. A frequency preference must be provided on the CLKI of the TRDLLB to allow trace to produce the 90° delay. 2. DQSBUFx – The DQSBUF element used in all the DQS interfaces will delay the DQSI input by 90°. The 90° delay is calculated from the input clock to the DQSDLL element connected via the DQSDEL signal. A frequency preference must be provided on the CLK input of the DQSDLL to allow trace to produce the 90° delay. The DDR Software Primitives and Attributes section provides a detailed description of the DQSBUF elements. Note: Some device I/O pin names end with an “E_A”, “E_B”, “E_C” or “E_D” (for example, PR43E_B). These pins are “Input Only” pins. These pins can be used only to implement receive interfaces. The clock delay to these pins is ~50ps longer than the other pins, so you will see some difference in timing between these and other I/O pins. Valid Window Calculation Users can calculate the available valid window using the transmitter device specifications to determine if it will be possible to meet the receiver timing requirements at the LatticeECP3 device. The data sheet numbers can be used to estimate the required valid window at the LatticeECP3 DDR inputs depending on the interface type. For an Rx centered interface the total data valid window required = tSUGDDR + tHGDDR For an Rx aligned interface the total data valid window required = tDVECLKGDDR - tDVACLKGDDR For example, in the following case the data at the receiver looks like Figure 12-49. Figure 12-49. Data at Receiver (Tx Data) In this case, the data at the LatticeECP3 input is an aligned interface, with the following timing:12-58 LatticeECP3 High-Speed I/O Interface Data Rate = 594 Mbps f MAX = 297 MHz Uncertainty around clock edges = 0.350ns UI = 1.684ns Since this is an aligned interface, we can calculate tDVECLKGDDR and tDVACLKGDDR to determine the available Data Valid Window. t DVECLKGDDR = 0.350 ns t DVACLKGDDR = 1.684 ns – 0.350 ns = 1.334 ns Data Valid Window = tDVECLKGDDR - tDVACLKGDDR = 0.984 ns On the LatticeECP3 receive side, we must use the GDDRX2_RX.ECLK.Aligned interface given the frequency and data to clock alignment of this interface. For the GDDRX2_RX.ECLK.Aligned for the -6 speed grade, here are the requirements from the data sheet at 297 MHz. t DVECLKGDDR = 0.225 UI = 0.379ns t DVACLKGDDR = 0.775 UI = 1.305ns Data Valid Window = tDVECLKGDDR - tDVACLKGDDR = 0.926ns Note: Please refer to the LatticeECP3 Family Data Sheet for the latest timing numbers. The required data valid window for this example at the LatticeECP3 DDR input is 0.926 ns and the data valid window available on the interface is 0.984ns. This interface will just meet the timing requirements at the LatticeECP3 device. To calculate the worst corner case, the software I/O Timing Analysis should be run to see if the worst case required timing will be met. I/O Timing Analysis will run the timing through all the speed grades of the device family and show the worst case results. The Trace Report will provide the worst case timing on the same speed grade. DDR/DDR2/DDR3 SDRAM Interfaces Overview The DDR SDRAM interface transfers data at both the rising and falling edges of the clock. The DDR2 is the second generation of the DDR SRDRAM memory, whereas DDR3 is the third generation. The DDR, DDR2 and DDR3 SDRAM interfaces rely on the use of a data strobe signal, called DQS, for high-speed operation. The DDR SDRAM interface uses a single-ended DQS strobe signal and the DDR2 and DDR3 interfaces use a differential DQS strobe. The figures below show typical DDR and DDR2/DDR3 SDRAM interface signals. SDRAM interfaces are typically implemented with eight DQ data bits per DQS. So, a x16 interface will use two DQS signals, and each DQS is associated with eight DQ bits. Both the DQ and DQS are bi-directional ports and are used to read and write to the memory. When reading data from the external memory device, data coming into the device is edge-aligned with respect to the DQS signal. This DQS strobe signal needs to be phase shifted 90° before the FPGA logic can sample the read data. When writing to a DDR/DDR2/DDR3 SDRAM, the memory controller (FPGA) must shift the DQS by 90° to center-align with the data signals (DQ). A clock signal is also provided to the memory. This clock is provided as a differential clock (CLKP and CLKN) to minimize duty cycle variations. The memory also uses these clock signals to generate the DQS signal during a read via a DLL inside the memory. The figures below show DQ and DQS timing relationships for read and write cycles.12-59 LatticeECP3 High-Speed I/O Interface During read, the DQS signal is low for some duration after it comes out of tristate. This state is called Preamble. The state when the DQS is low before it goes into tristate is the Postamble state. This is the state after the last valid data transition. DDR SDRAM also requires a Data Mask (DM) signal to mask data bits during write cycles. Note that the ratio of DQS to data bits is independent of the overall width of the memory. An 8-bit interface will have one strobe signal. DDR SDRAM interfaces use the SSTL25 Class I/II I/O standards, DDR2 SDRAM interface uses the SSTL18 Class I/II and DDR3 SDRAM interface uses the SSTL15 I/O standards. Both the DDR2 and DDR3 SDRAM interfaces require differential DQS (DQS and DQS#). DDR2 has an option to use either single-ended or differential DQS. In addition, the DDR3 memory module uses fly-by architecture for the data and strobe signals. This requires the memory controller to support read and write leveling to adjust for leveled delay on read and write data transfers. Table 12-7. DDR DDR2 and DDR3 Summary Figure 12-50. Typical DDR SDRAM Interface DDR DDR2 DDR3 Data Rate 200 to 400Mbps 250Mbps to 532Mbps 600 to 800Mbps DQS Single-Ended Single-Ended /Differential Differential Interface SSTL25 SSTL18 SSTL15 Leveling No No Yes DDR Memory FPGA (DDR Memory Controller) DQ<7:0> 8 DM DQ<7:0> DQS ADDRESS CONTROL COMMAND CLK/CLKN ADDRESS CONTROL COMMAND CLKP/CLKN X ADDRESS CONTROL COMMAND DQ<7:0> DQS CLK/CLKN Y Z DQS DM DM12-60 LatticeECP3 High-Speed I/O Interface Figure 12-51. Typical DDR2 and DDR3 SDRAM Interface Figures 12-52 and 12-53 show the DQ and DQS relationship for memory read and write interfaces. Figure 12-52. DQ-DQS During Read Figure 12-53. DQ-DQS During Write Implementing DDR/DDR2/DDR3 Memory Interfaces As described in the DDR/DDR2/DDR3 SDRAM Interfaces Overview section, all the DDR SDRAM interfaces rely on the use of a data strobe signal, called DQS, for high-speed operation. When reading data from the external memory device, data coming into the LatticeECP3 device is edge-aligned with respect to the DQS signal. Therefore, the LatticeECP3 device needs to shift the DQS (90° phase shift) before using it to sample the read data. When writing FPGA DDR Memory (DDR Memory Controller) DQ<7:0> 8 DM DQ<7:0> DQS, DQS# ADDRESS CONTROL COMMAND CLK/CLKN ADDRESS CONTROL COMMAND CLKP/CLKN X ADDRESS CONTROL COMMAND DQ<7:0> DQS, DQS# CLK/CLKN Y Z DQS, DQS# DM DM DQS (at PIN) Preamble Postamble DQS PIN to REG and 90 Degree Phase Shift DQ (at PIN) DQS (at REG) DQ (at REG) DQS (at PIN) DQ (at PIN)12-61 LatticeECP3 High-Speed I/O Interface to a DDR SDRAM from the memory controller, the LatticeECP3 device must generate a DQS signal that is centeraligned with the DQ, the data signals. This is accomplished by ensuring a DQS strobe is 90° shifted relative to the DQ data. For DDR3 memory, the memory controller also needs to handle the read and write leveling required by the interface due to the newer fly-by topology. LatticeECP3 devices have dedicated DQS support circuitry for generating appropriate phase-shifting for DQS. The DQS phase shift circuit uses a frequency reference DLL to generate delay control signals associated with each of the dedicated DQS pins, and is designed to compensate for process, voltage and temperature (PVT) variations. The frequency reference is provided through one of the global clock pins. The dedicated DDR support circuit is also designed to provide comfortable and consistent margins for the data sampling window. This section describes how to implement the read and write sections of a DDR memory interface. It also provides details of the DQ and DQS grouping rules associated with the LatticeECP3 devices. Both the LatticeECP3 “E” and “EA” devices can be used to implement DDR and DDR2 memory interfaces. DDR3 memory interface can only be implemented on the “EA” devices. There are some differences in the DDR memory implementation between the “EA” and “E” devices. These differences between the devices are indicated in the appropriate sections below. See the LatticeECP3 DDR3 Memory Controller IP to see how the DDR3 memory interface can be implemented on LatticeECP3 “EA” devices. DDR and DDR2 memory interface implementations are described in the sections below. DQS Grouping Each DQS group generally consists of at least 10 I/Os (one DQS, eight DQ and one DM) for an 8-bit DDR/DDR2 memory interface or 11 I/Os (two DQS, eight DQ, one DM) to implement a complete 8-bit DDR3 memory interface. LatticeECP3 devices support DQS signals on the top, left and right sides of the device. Each DQS signal spans across 12 I/Os. Any 10 (for DDR/DDR2) or 11 (for DDR2/DDR3) of these 12 I/Os spanned by the DQS can be used to implement an 8-bit DDR memory interface. In addition to the DQS grouping, the user must also assign one reference voltage VREF1 for a given I/O bank. Figure 12-54. DQ-DQS Grouping Figure 12-54 shows a typical DQ-DQS group for LatticeECP3 devices. The seventh I/O of this group of 12 I/Os is the dedicated DQS pin. All six pads before of the DQS and five pads after the DQS are covered by this DQS bus span. If using DDR2 or DDR3 memory then the DQS is differential and the eighth pad is used by the DQS# signal. The user can assign any eight of the other I/O pads to be DQ data pins. Therefore, to implement a 32-bit wide memory interface you would need to use four such DQ-DQS groups. When not interfacing with the memory, the dedicated DQS pin can be used as a general-purpose I/O. Note that the DQS/DQS# pads cannot be used for other DDR functions like DQ, DM or generic DDR. Each of the dedicated DQS pins is internally connected to the DQS phase shift circuitry. The pinout information contained in the LatticeECP3 Family Data Sheet shows pin locations for the DQS pads and the corresponding DQ pads. DQS PAD n* I/O PADS (7th I/O Pad) DQ, DM or VREF1 DQ, DM or VREF1 *n=1212-62 LatticeECP3 High-Speed I/O Interface Some I/Os on the left, right and top sides will not support DQS grouping. See the DDR Memory DQ/DQS Design Rules and Guidelines section of this document for further information. Memory Read Implementation The LatticeECP3 devices contain a variety of features to simplify implementation of the read portion of a DDR interface: • DLL-compensated DQS delay elements • DDR input registers • Automatic DQS to system/edge clock domain transfer circuitry • Data Valid Module DLL-Compensated DQS Delay Elements The DQS from the memory is connected to the DQS Delay element. The DQS delay block receives a 7-bit delay control from the on-chip DQSDLL. LatticeECP3 devices support two DQSDLL, one on the left and the other on the right side of the device. The DQSDEL generated by the DQSDLL on the left side of the device is routed to all the DQS blocks on the left and top halves of the device. The delay generated by the DQSDLL on the right side of the device is distributed to all the DQS delay blocks on the right side and the top half of the device. There are no DQS pins on the bottom banks of the device. These digital delay control signals are used to delay the DQS from the memory by 90°. The DQS received from the memory is delayed in each of the DQS delay blocks and this delay DQS is used to clock the first set stage DDR input registers. Automatic DQS to System/Edge Clock Domain Transfer Circuitry In a typical DDR memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system clock (during the read cycle) is unknown. Prior to the read operation in DDR memories DQS is in tristate. Coming out of tristate, the DDR memory device drives DQS low in the preamble state. The DQS Transition Detect block detects this transition and generates a signal indicating the required polarity for the FPGA system clock (DDRCLKPOL). This signal is used to control the polarity of the clock to the synchronizing registers. For the DDR3 memory interface, this block generates two signals, DDRCLKPOL and DDRLAT. DDRCLKPOL is used to transfer data from the DDR registers to the synchronization registers clocked by ECLK and the DDRLAT signal is used to transfer data from the synchronization registers to the clock transfer registers. Data Valid Module The data valid module generates a DATAVALID signal. This signal indicates to the FPGA that valid data is transmitted out the input DDR registers to the FPGA core. Note that the DATAVALID signal indicates only the start of valid read data. It is the memory controller’s responsibility to make the proper width of the read data valid signal. DDR I/O Register Implementation The first set of DDR registers is used to de-mux the DDR data at the positive and negative edges of the phaseshifted DQS signal. The latch that captures the positive-edge data is followed by a negative-edge triggered register. This register transfers the positive edge data from the first register to the negative edge of DQS so that both the positive and negative portions of the data are now aligned to the negative edge of DQS. For DDR and DDR2 memory interfaces, the second stage synchronization registers are clocked by the FPGA clock. The polarity of this clock is selected by the DDR Clock Polarity (DDRCLKPOL) signal generated by the DQS Transition Detect Block. The FPGA clock clocks an additional set of clock transfer registers at the end before the data enters the FPGA core. The DDR3 memory interface uses the gearing feature of the input registers. The synchronization registers are clocked by the fast edge clock (ECLK) input and are then transferred to the clock transfer registers clocked by the slower FPGA clock. The polarity of the ECLK is set by the DDRCLKPOL signal and the FPGA clock (SCLK) polarity is set by the DDRLAT signal.12-63 LatticeECP3 High-Speed I/O Interface The LatticeECP3 Family Data Sheet describes each of these circuit elements in more depth. DDR/DDR2 Memory Read Implementation The following sections explain the DDR/DDR2 read-ide implementation. LatticeECP3 devices support the DDR/DDR2 memory interface function using the DDR memory mode module generated through the IPexpress tool. Using IPexpress, a designer can generate the different modules required to read the data coming from the DDR/DDR2 memory. See the section DDR Memory Interface Generation Using IPexpress for details on the IPexpress interface. This section explains the read side module generated by IPexpress. The DDR/DDR2 read side is implemented using the following three software elements. The DQSDLL represents the DLL used for calibration. The IDDRXD implements the input DDR registers. The DQSBUFF represents the DQS delay block, the clock polarity control logic and the Data Valid module. Figure 12-55 shows the read side implementation for both the “E” and “EA” devices. IPexpress should be used to generate this interface. See the section DDR Memory Interface Generation Using IPexpress for details.12-64 LatticeECP3 High-Speed I/O Interface Figure 12-55. DDR/DDR2 Read Side Implementation for “E” and “EA” Devices DDR3 Memory Read Implementation The following sections explain the DDR3 read side implementation. LatticeECP3 devices support the DDR3 memory interface function using the DDR memory mode module generated through the IPexpress tool. Using IPexpress, a designer can generate the different modules required to read the data coming from the DDR3 memory. See the section DDR Memory Interface Generation Using IPexpress for details on the IPexpress interface. This section explains the read side module generated by IPexpress. The DDR3 memory interface generated in IPexpress also includes a Clock Synchronization Module (CSM) that provides the clock synchronization and alignment among the required clocks for successful DDR3 functionality. The DDR3 read side is implemented using three software elements. The DQSDLL represents the DLL used for calibration. The IDDRX2D implements the input DDR registers in x2 gearing mode required for DDR3 memory. The DQSBUFD represents the DQS delay block, the clock polarity control logic and the Data Valid module. DQSI DQSW DQSBUFF SCLK READ DDRCLKPOL PRMBDET DQSDEL DATAVALID ECLKDQSR DQCLK1 CLK RST UDDCNTLN LOCK DQSDEL DQSDLLB dq uddcntln lock prmbdet dqclk1 datavalid datain_p(0) datain_n(0) dqsw IDDRXD ECLKDQSR D QA SCLK DDRCLKPOL QB dqs clk read clk DDRCLKPO L E CLKDQ SR DQSDEL rst dq IDDRXD ECLKDQSR D SCLK DDRCLKPOL . . . clk clk datain_p(7) datain_n(7) QA QB12-65 LatticeECP3 High-Speed I/O Interface The ECLK, SCLK2X and SCLK are generated in a clock synchronization module (CSM) that provides the clock synchronization and alignment among the required clocks for successful DDR3 functionality. See the DDR3 Clock Synchronization Module section for details on the Clock Synchronization Module and internal clock generation Figure 12-56 shows the read side implementation. IPexpress should be used to generate this interface. Figure 12-56. DDR3 Read Side Implementation for “EA” Devices Memory Write Implementation To implement the write portion of a DDR memory interface, two streams of single data rate data must be multiplexed together with data transitioning on both edges of the clock. In addition, during a write cycle, DQS must arrive at the memory pins center-aligned with data, DQ. Along with the DQS strobe and DQ, CLKP, CLKN, Address/Command and Data Mask (DM) signals also need to be generated. IPexpress should be used to generate this interface. See the section DDR Memory Interface Generation Using IPexpress for details. CLK RST UDDCNTLN LOCK DQSDEL DQSDLLB dq(0) uddcntln lock datain_p0(0) datain_p1(1) IDDRX2D ECLKDQSR D QA0 SCLK QA1 DDRLAT ECLK QB0 QB1 DDRCLKPOL datain_n1(1) datain_n0(0) DDRLAT DDRCLKPO L E CLKDQS R DQSDEL rst datain_p0(7) datain_p1(7) IDDRX2D ECLKDQSR D QA0 SCLK QA1 DDRLAT ECLK QB0 QB1 DDRCLKPOL datain_n1(7) datain_n0(7) . . . DQSI DQSW DQSBUFD SCLK READ DDRCLKPOL PRMBDET DQSDEL ECLK DATAVALID DYNDELPOL DDRLAT ECLKDQSR DQCLK0 DQCLK1 prmbdet dqclk0 dqclk1 datavalid dqsw ECLKW RST DYNDELAY[6:0] dqs read dyndelay[7:0] rst dyndelpol dq(7) ECLK SCLK S CLK2X Generated in the “Clock Synchronization Module”12-66 LatticeECP3 High-Speed I/O Interface Challenges encountered during memory write: • Differential CLK signals (CLKP and CLKN) need to be generated. • Generate ADDR/CMD signal edge-aligned to CLKP falling edge. • DQS needs to be edge-aligned to CLKP. In DDR3 interfaces where fly-by routing is used, write leveling should be used to compensate for skews between CLKP and DQS. • DQ/DM needs to be center-aligned to DQS and therefore center-aligned to CLKP as well. • The controller must meet the DDR interface specification for the tDSS and tDSH parameters, defined as DQS falling edge setup and hold time to/from CLKP rising edge, respectively. The skews, if caused by the fly-by topology, are compensated by write-leveling. • The DDR output data must be muxed from two SDR streams into a single outgoing DDR data stream. For the DDR3 memory interface, this DDR output data is generated from four SDR streams. The DDR/DDR2 memory write interface is implemented using the following modules: • IDDRXD, ODDRXD, OFD1S3AX – Used for DDR2 DQ input, output and tri-state control. DDR2 DM uses ODDRXD and OFD1S3AX only. • ODDRXDQSA, ODDRTDQSA – Used for DDR2 DQS output and tri-state control. • DQSBUFF – Dedicated for DDR2 memory interface application. • DQSBUFG – Generic ODDRXD support for clocks on “E” devices. • ODDRXD – Generic DDR mode for clocks on “E” devices. • ODDRXD1 – Generic DDR mode for clocks on “EA” devices. DDR/DDR2 Internal Clock Generation LatticeECP3 devices require two clocks to implement a DDR/DDR2 memory interface. SCLK (k_clk) is used to generate the data and data strobe signals while a 270° shifted clock, SCLK1 (k1_clk), is needed to generate the memory clock and address/command signals. Figure 12-57 shows the generation of these clocks using a PLL. SCLK is also used for the read side implementation as described in Figure 12-55. Figure 12-57. DDR/DDR2 Internal Clock Generation DDR/DDR2 Memory Write Implementation The following sections explain the DDR/DDR2 write side implementation. LatticeECP3 devices support the DDR/DDR2 memory interface function using the DDR memory mode module generated through the IPexpress tool.Using IPexpress, a designer may generate the Data (DQ), Strobe (DQS), Data Mask, Clock (CLKP/CLKN), Address/Command (ADDR/CMD) signals required when writing to the DDR memory. See the section DDR Memory Interface Generation Using IPexpress for details on the IPexpress Interface. This section explains the different Write Side modules generated by IPexpress. DDR/DDR2 Write Side Data (DQ) and Strobe (DQS) Generation Figure 12-58 shows the DDR2 write side for data and strobe generation. The DQCLK1 and DQSW are signals generated in the DQSBUFF module. DQCLK0 is not used for the DDR2 memory interface. For details on each element, refer to the DDR Software Primitives and Attributes section. The DDR2 memory interface does not require CLKOP CLK PLL CLKOS SCLK SCLK1 (270° Shift)12-67 LatticeECP3 High-Speed I/O Interface write leveling, therefore the DYNDELAY [6:0] and DYNDELPOL are not used here. The DDR write side will use the same implementation except that the DQS signal in this case is single-ended. Figure 12-58. DDR/DDR2 Memory Write DQ and DQS Generation (“E” and “EA” Devices) DDR/DDR2 Write Side Clock (CLKP/CLKN) Generation The figures below show the DDR clock output (CLKP/CLKN) generation. The 270° shifted SCLK1 is used to generate the DDR clock outputs. See the section DDR/DDR2 Internal Clock Generation for details. On the LatticeECP3 dqsoa dqstri_p ODDRTDQSA TA SCLK Q DB DQSTCLK DQSW SCLK Q DA DQCLK1 ODDRXDQSA DQSW DQSTCLK dqs dqs dataout_p(0) dq OFD1S3AX SCLK Q dataout_n(0) ta DQCLK1 DQSW SCLK dqstri_n SCLK Q DA DB ODDRXD DQCLK1 D CK dataout_p(n) dq OFD1S3AX Q dataout_n(n) ta SCLK Q DA DB ODDRXD DQCLK1 D CK . . . . DQSI DQSW DQSBUFF SCLK READ DDRCLKPOL PRMBDET DQSDEL DATAVALID ECLKDQSR DQCLK1 CLK RST UDDCNTLN LOCK DQSDEL DQSDLLB uddcntln lock clk rst12-68 LatticeECP3 High-Speed I/O Interface “E” devices the ODDRXD primitive is used to generate the clocks. The left and right sides of the “E” devices also require the DQSBUFG which is used to generate the DQCLK1 required in the ODDRXD module. The top side of the “E” device does not require the use of DQSBUFG and the DQCLK1 input of the ODDRXD can be tied to SCLK. The “EA” device uses the ODDRXD1 element instead. “EA” devices do not require the use of the DQSBUFG element. The inputs to the ODDRXD/ODDRXD1 are tied to constant values to generate a clock out of the ODDRXD/ODDRXD1. When interfacing to the DDR SDRAM memory, CLKP should be connected to the SSTL25D I/O Standard and when interfacing to DDR2 memory it should be connected to SSTL18D I/O Standard to generate the differential clock outputs. Generating the CLKN in this manner will prevent skew between the two signals. Figure 12-59. DDR/DDR2 Write Clock Generation (“E” Devices, Left/Right/Top Sides) Note: (SCLK1=SCLK+270, DA0=0, DB0=1) ODDRXD DQSBUFG ODDRXD SCLK SCLK1 DA da0 db0 CLK0 CLK0N da0 db0 CLK1 CLK1N da0 db0 CLK3 CLK3N DB Q DA DB Q DA DB Q ODDRXD . . DCLK1 DQCLK1 SCLK DQCLK1 SCLK DQCLK1 SCLK DQCLK112-69 LatticeECP3 High-Speed I/O Interface Figure 12-60. DDR/DDR2 Write Clock Generation (“E” Devices, Top Side) Note: (SCLK1=SCLK+270, DA0=0, DB0=1) ODDRXD ODDRXD SCLK SCLK1 DA da0 db0 CLK0 CLK0N da0 db0 CLK1 CLK1N da0 db0 CLK3 CLK3N DB Q DA DB Q DA DB Q ODDRXD . . DQCLK1 SCLK DQCLK1 SCLK DQCLK112-70 LatticeECP3 High-Speed I/O Interface Figure 12-61. DDR/DDR2 Write Clock Generation (“EA” Devices) DDR/DDR2 Address/Command Generation Figure 12-62 shows the address and command generation for the LatticeECP3 “E” and “EA” devices. The 270° shifted SCLK is used for address and command generation. See the section DDR/DDR2 Internal Clock Generation for details. SDR registers are used to generate the address and command signals. Figure 12-62. DDR/DDR2 Address / Command Implementation (“E” and “EA” Devices) Note: (SCLK1=SCLK+270, DA0=0, DB0=1) ODDRXD1 ODDRXD1 SCLK SCLK1 SCLK SCLK DA da0 db0 CLK0 CLK0N da0 db0 CLK1 CLK1N da0 db0 CLK3 CLK3N DB Q DA DB Q DA DB Q ODDRXD1 . . Note: A: Address; BA: Bank Address; RASN: RAS; CASN: CAS; WEN: Write Enable; CSN: Chip Select; CKE: Clock Enable; ODT: On-Die Termination. OREG D D Address Din Command Din Control Din SCLK1 (K1_CLK) A, BA RASN, CASN, WEN D Q CSN, CKE, ODT Q Q OREG OREG12-71 LatticeECP3 High-Speed I/O Interface DDR3 Memory Write Implementation The following sections explain the DDR3 write side implementation. LatticeECP3 devices support the DDR3 memory interface function using the DDR memory mode module generated through the IPexpress tool. Using IPexpress, a designer may generate the Data (DQ), Strobe (DQS), Data Mask, Clock (CLKP/CLKN) and Address/Command (ADDR/CMD) signals required when writing to the DDR3 memory. See the section DDR Memory Interface Generation Using IPexpress for details on the IPexpress Interface. This section explains the different write side modules generated by IPexpress. The DDR3 memory interface generated in IPexpress also includes a Clock Synchronization Module (CSM) that provides the clock synchronization and alignment among the required clocks for successful DDR3 functionality. DDR3 Data (DQ) and Strobe (DQS) Generation Figure 12-63 shows the DDR3 write side implementation for data (DQ) and strobe (DQS) generation. The DQCLK0, DQCLK1 and DQSW are signals generated in the DQSBUFD module. ODDRX2D implements the output DDR registers in x2 gearing mode required for DDR3 DQ generation. The ODDRX2DQSA module is used to generate the DQS strobe output. For details on each element, refer to the DDR Software Primitives and Attributes section. The DDR3 memory interface requires write leveling which is supported with the DYNDELAY [6:0] and DYNDELPOL inputs of DQSBUFD. Users can provide the delays for each DQS group using these ports. They are available to the user as ports in the top-level module generated by IPexpress. The ECLK, SCLK2X and SCLK are generated in a clock synchronization module (CSM) that provides the clock synchronization and alignment among the required clocks for successful DDR3 functionality. See the DDR3 Clock Synchronization Module section for details on the Clock Synchronization Module. IPexpress is used to generate these signals. Figure 12-63 shows the module generated by IPexpress data (DQ) and strobe (DQS) generation.12-72 LatticeECP3 High-Speed I/O Interface Figure 12-63. DDR3 Write Side Implementation for DQ and DQS Generation DDR3 Write Side Clock (CLKP/CLKN) Generation The SCLK2X out of the Clock Synchronization Module is used to generate the DDR clock outputs. See the section DDR3 Clock Synchronization Module for details. The ODDRXD1 element is used to generate the clock. The inputs to the ODDRXD1 are tied to constant values to generate a clock out of the ODDRXD1. When interfacing to the DDR3 SDRAM memory, CLKP (ddrclkP) should be connected to the SSTL15D I/O standard to generate the differential clock outputs. Generating the CLKN (ddrclkN) in this manner will prevent skew between the two signals dqsob dqstri_p ODDRTDQSA TA SCLK Q DB DQSTCLK DQSW SCLK Q DB0 DB1 DQCLK0 ODDRX2DQSA DQSW DQSTCLK DQCLK1 dqsoa dqs dqs ODDRX2D SCLK DA0 DB0 Q DQCLK1 dataout_p0(n) dq DQCLK0 DA1 DB1 ODDRTDQA TA SCLK Q DQCLK1 DQCLK0 dataout_p1(n) dataout_n0(n) dataout_n1(n) datatri(1) DQ CLK0 DQ CLK1 DQSW SCLK dqstri_n ODDRX2D SCLK DA0 DB0 Q DQCLK1 dataout_p0(0) dq DQCLK0 DA1 DB1 ODDRTDQA TA SCLK Q DQCLK1 DQCLK0 dataout_p1(0) dataout_n0(0) dataout_n1(0) datatri(0) . . . . DQSW DQSBUFD SCLK DQSDEL ECLK DYNDELPOL DQCLK0 DQCLK1 ECLKW RST CLK RST UDDCNTLN LOCK DQSDEL DQSDLLB uddcntln lock reset ECLK Generated in the “Clock Synchronization Module” reset_datapath_out SCLK2X DYNDELAY[6:0]12-73 LatticeECP3 High-Speed I/O Interface IPexpress is used to generate these signals. Figure 12-64 shows the module generated by IPexpress for DDR clock outputs (CLKP/CLKN). Figure 12-64. DDR3 Write Side Clock Generation DDR3 Write Side Address/Command (ADDR/CMD) Generation The SCLK output of the Clock Synchronization Module, along with the ODDRXD1 element, is used for address and command generation. See the section DDR3 Clock Synchronization Module for details on how the SCLK is generated. IPexpress is used to generate these signals. Figure 12-65 shows the module generated by IPexpress for address and command signals. ODDRXD1 SCLK DA DB Q . . . . SCLK2X ddrclk(0)P ODDRXD1 SCLK DA DB Q ODDRXD1 SCLK DA DB Q ddrclk(0)N ddrclk(1)P ddrclk(1)N ddrclk(n)P ddrclk(n)N “0” “1” “0” “1” “1” “0”12-74 LatticeECP3 High-Speed I/O Interface Figure 12-65. DDR3 Write Side Address/Command Generation DDR3 Clock Synchronization Module The DDR3 memory interface generated in IPexpress includes a clock synchronization module (CSM) that provides the clock synchronization and alignment among the required clocks for successful DDR3 functionality. A DDR3 memory interface that is implemented in LatticeECP3 must use the CSM block for correct read data transfer from the ECLK to SCLK domain. It is also used to provide the proper clock relationship between SCLK and DQCLK0/1 used for write data generation. The CSM block generates the ECLK, SCLK2X and SCLK clocks to be used in the read and write side implementations. It generates a clocking_good output to indicate that all the clocks for DDR3 operation have been synchronized and the device is ready to serve the DDR3 operation. The DDR3 memory interface and controller should wait until the clocking_good signal is detected as high. The DDR3 mode supports the write leveling feature by providing the dynamic delay control ports inputs (DYNDELAY) of DQSBUFD to users. In order for the CSM block to support write leveling, the reset_datapath input port should be asserted high for at least one PLL input clock cycle (pll_clk) to reset the DQSBUFD blocks through the reset_datapath_out signal after a write leveling operation is finished. The reset_datapath_out signal is directly connected to the reset (RST) port of all DQSBUFD. Figure 12-66 shows the block diagram of the CSM block. ODDRXD1 SCLK DA DB Q . . . . SCLK ADDR, BA ODDRXD1 SCLK DA DB Q ODDRXD1 SCLK DA DB Q RASN, CASN, WEN CSN, CKE, ODT addr_p_din, ba_p_din addr_n_din, ba_n_din rasn_p_din, casn_p_din, wen_p_din rasn_n_din, casn_n_din, wen_n_din csn_p_din, cke_p_din, odt_p_din csn_n_din, cke_n_din, odt_n_din12-75 LatticeECP3 High-Speed I/O Interface Figure 12-66. DDR3 Clock Synchronization Module PLL Settings for Clock Synchronization Module: LatticeECP3 devices allow two dedicated PLL blocks per side to support the DDR3 memory interface applications. One of the four available PLLs (two PLLs in the left side and two PLLs in the right side) must be used to implement the CSM block. Since the PLL input clock is also used to control the synchronization logic, the use of a PLL input clock that is too fast may cause failures in PAR timing results. Therefore, it is recommended to use the 1:2:4 clock multiplication ratios for high-speed DDR3 memory interface applications as shown in the example of a 400MHz/800Mbps DDR3 memory interface below. A dedicated PLL input clock pad or a PCLK pad can be used to drive the selected PLL. Table 12-8. PLL Settings for 400 MHz DDR3 Operation Timing Preferences for Clock Synchronization Module: Since the CSM block includes a few timing-sensitive nets that affect the performance of DDR3 I/O functions, the route delays on these nets should be tightly controlled. To consistently guarantee successful routing results, these nets should be constrained by the MAXDDELAY preferences. The nets shown in Table 12-9 include the net delay preferences to force the software Place and Route (PAR) tool to meet the required net delays. Table 12-9. MAXDELAY NET Preferences for Clock Synchronization Module The preferences for the constrained PAR targets are located in the HDL module generated by IPexpress. It is automatically transferred to the project preference file (.prf) to achieve the optimum timing results. The example shown below includes the target preferences with the following conditions: PLL Pin Name Clock Output Speed (400MHz) Speed (300MHz) Input Clock CLKI pll_clk 100 MHz 75 MHz Output Clocks CLKOP sclk2x 400 MHz 300 MHz CLKOS eclk 400 MHz 300 MHz CLKOK sclk 200 MHz 150 MHz PLL Divider Setting CLKOK_DIV=2, CLKOP_DIV=2, CLKFB_DIV=4, CLKI_DIV=1 Preference Net Name -8 Device -7 Device -6 Device MAXDELAY NET eclk 1.2 ns 1.3 ns 1.45 ns MAXDELAY NET stop 0.8 ns 0.85 ns 0.9 ns MAXDELAY NET clkos (PLL 1) 1.1 ns 1.2 ns 1.35 ns MAXDELAY NET clkos (PLL 2) 0.65 ns 0.75 ns 0.8 ns MAXDELAY NET dqclk1bar_ff 0.65 ns 0.7 ns 0.75 ns Clock Synchronization and Alignment PLL CLKOS CLKOP CLKOK pll_clk CLKI eclk (400 MHz) sclk2x (400 MHz) sclk (200 MHz) reset_datapath reset_datapath_out clocking_good12-76 LatticeECP3 High-Speed I/O Interface • DDR3 module's instance name is "u_ddr3" • Speed grade -8 device is targeted • PLL location 1 is selected MAXDELAY NET "[path]/eclk" 1.200000 nS; MAXDELAY NET "[path]/u_ddr3/stop" 0.800000 nS; MAXDELAY NET "[path]/u_ddr3/clkos" 1.100000 nS; MAXDELAY NET "[path]/u_ddr3/Inst8_clk_phase/dqclk1bar_ff" 0.650000 nS; Locate Preferences for Clock Synchronization Module: The CSM block also requires several manual locations for the clock resources in the module like PLL, ECLKSYNC etc. These modules are all generated by IPexpress and include an UGROUP attribute added to the modules. The corresponding PGROUP (physical grouping) should be locked to the specific sites as shown in Table 12-10. Table 12-10. DDR3 Clock and PGROUP Locations for CSM Support LatticeECP3-150EA 1156 LatticeECP3-150EA 672 Left 1 Left 2 Right 1 Right 2 Left 1 Left 2 Right 1 Right 2 PLL input clock pad U6 Y9 V34 Y28 M3 U4 T21 V20 PLL R61C5 R79C5 R61C178 R79C178 R61C5 R79C5 R61C178 R79C178 ECLKSYNC L2 L1 R2 R1 L2 L1 R2 R1 PGROUP clk_phase0 R50C5D R78C5D R50C178D R78C178D R50C5D R78C5D R50C178D R78C178D PGROUP clk_phase1a R60C2D R60C2D R60C181D R60C181D R60C2D R60C2D R60C181D R60C181D PGROUP clk_phase1b R60C2D R60C2D R60C181D R60C181D R60C2D R60C2D R60C181D R60C181D PGROUP clk_stop R60C2D R60C2D R60C180D R60C180D R60C2D R60C2D R60C180D R60C180D LatticeECP3-95/70EA 1156 LatticeECP3-95/70EA 672 Left 1 Left 2 Right 1 Right 2 Left 1 Left 2 Right 1 Right 2 PLL input clock pad U6 Y9 V34 Y28 M3 U4 T21 V20 PLL R43C5 R61C5 R43C142 R61C142 R43C5 R61C5 R43C142 R61C142 ECLKSYNC L2 L1 R2 R1 L2 L1 R2 R1 PGROUP clk_phase0 R32C5D R60C5D R32C142D R60C142D R32C5D R60C5D R32C142D R60C142D PGROUP clk_phase1a R42C2D R42C2D R42C145D R42C145D R42C2D R42C2D R42C145D R42C145D PGROUP clk_phase1b R42C2D R42C2D R42C145D R42C145D R42C2D R42C2D R42C145D R42C145D PGROUP clk_stop R42C2D R42C2D R42C144D R42C144D R42C2D R42C2D R42C144D R42C144D LatticeECP3-95/70EA 484 LatticeECP3-35EA 672 Left 1 Left 2 Right 1 Right 2 Left 1 Left 2 Right 1 Right 2 PLL input clock pad L5 T3 M18 R17 M3 U4 T21 V20 PLL R43C5 R61C5 R43C142 R61C142 R35C5 R53C5 R35C70 R53C70 ECLKSYNC L2 L1 R2 R1 L2 L1 R2 R1 PGROUP clk_phase0 R32C5D R60C5D R32C142D R60C142D R24C5D R52C5D R24C70D R52C70D PGROUP clk_phase1a R42C2D R42C2D R42C145D R42C145D R34C2D R34C2D R34C73D R34C73D PGROUP clk_phase1b R42C2D R42C2D R42C145D R42C145D R34C2D R34C2D R34C73D R34C73D PGROUP clk_stop R42C2D R42C2D R42C144D R42C144D R34C2D R34C2D R34C72D R34C72D LatticeECP3-35EA 484 LatticeECP3-35EA 256 Left 1 Left 2 Right 1 Right 2 Left 1 Left 2 Right 1 Right 2 PLL input clock pad L5 T3 M18 R17 K3 P2 K14 T15 PLL R35C5 R53C5 R35C70 R53C70 R35C5 R53C5 R35C70 R53C70 ECLKSYNC L2 L1 R2 R1 L2 L1 R2 R1 PGROUP clk_phase0 R24C5D R52C5D R24C70D R52C70D R24C5D R52C5D R24C70D R52C70D12-77 LatticeECP3 High-Speed I/O Interface The PLL input pad, the corresponding PLL site and the legal ECLKSYNC site for the selected PLL are constrained in the user preference file (.lpf) as shown in the example below: LOCATE COMP "clk_in” SITE "U6"; LOCATE COMP "[path]/u_ddr3/Inst1_EHXPLLF" SITE "PLL_R61C5"; LOCATE COMP "[path]/u_ddr3/Inst6_ECLKSYNCA" SITE "LECLKSYNC2"; Locating the defined PGROUPs is crucial for successful DDR3 operation. The PGROUPs should be manually located according to the table as shown below: LOCATE PGROUP "clk_phase0" SITE "R59C3D"; LOCATE PGROUP "clk_phase1" SITE "R59C2D"; LOCATE PGROUP "clk_stop" SITE "R60C2D"; LOCATE PGROUP "rst_dp_out" SITE "R60C4D"; The following block paths should also be included to help avoid unnecessary domain crossing nets being reported in the trace report as false alarms. [False paths for PAR and TRACE] BLOCK PATH FROM CLKNET "pll_clk" TO CLKNET "sclk" ; BLOCK PATH FROM CLKNET "pll_clk" TO CLKNET "*/clkos" ; BLOCK PATH FROM CLKNET "sclk" TO CLKNET "pll_clk" ; BLOCK PATH FROM CLKNET "*sclk2x" TO CLKNET "pll_clk" ; BLOCK PATH FROM CLKNET "pll_clk" TO CLKNET "*eclk" ; BLOCK PATH FROM CLKNET "*/clkos" TO CLKNET "*eclk" ; BLOCK PATH FROM CLKNET "*/clkos" TO CLKNET "sclk" ; BLOCK PATH FROM CLKNET "*sclk2x" TO CLKNET "*/clkos" ; Note: The clock net names and hierarchy path names may be changed after synthesis. If this happens, updates on the preferences to follow the changed names are required. DDR Memory Interface Generation Using IPexpress The IPexpress tool is used to configure and generate the DDR, DDR2 and DDR3 memory interfaces. This section assumes that ispLEVER 8.0 SP1 is used for generation of the interfaces. If you are using ispLEVER 7.2 SP2, see Appendix A. Building DDR Interfaces Using IPexpress in ispLEVER 7.2 SP2. If you are using Lattice Diamond design software, see Appendix B. Building SDR/DDR Interfaces Using IPexpress in Diamond. To see the detailed block diagram for each interface generated by IPexpress see the Memory Read Implementation and Memory Write Implementation sections. PGROUP clk_phase1a R34C2D R34C2D R34C73D R34C73D R34C2D R34C2D R34C73D R34C73D PGROUP clk_phase1b R34C2D R34C2D R34C73D R34C73D R34C2D R34C2D R34C73D R34C73D PGROUP clk_stop R34C2D R34C2D R34C72D R34C72D R34C2D R34C2D R34C72D R34C72D LatticeECP3-17EA 484 LatticeECP3-17EA 256 Left 1 Left 2 Right 1 Right 2 Left 1 Left 2 Right 1 Right 2 PLL input clock pad L5 NA M18 NA K3 NA K14 NA PLL R26C5 NA R26C52 NA R26C5 NA R26C52 NA ECLKSYNC L2 NA R2 NA L2 NA R2 NA PGROUP clk_phase0 R15C5D NA R15C52D NA R15C5D NA R15C52D NA PGROUP clk_phase1a R25C2D NA R25C55D NA R25C2D NA R25C55D NA PGROUP clk_phase1b R25C2D NA R25C55D NA R25C2D NA R25C55D NA PGROUP clk_stop R25C2D NA R25C54D NA R25C2D NA R25C54D NA Table 12-10. DDR3 Clock and PGROUP Locations for CSM Support (Continued)12-78 LatticeECP3 High-Speed I/O Interface IPexpress can be opened from the Tools menu in Project Navigator. All the DDR modules are located under Architecture Modules > IO. DDR_MEM is used to generate DDR memory interfaces. Figure 12-67. IPexpress Main Window Figure 12-67 shows the IPexpress Main Window. To generate a DDR memory interface, select DDR_MEM, assign a module name and click on Customize to see the Configuration Tab. Figure 12-68 shows the Configuration Tab for the DDR_MEM interface. You can choose to implement the DDR1_MEM, DDR2_MEM or DDR3_MEM interface.12-79 LatticeECP3 High-Speed I/O Interface Figure 12-68. Configuration Tab for DDR_MEM Table 12-11 describes the various settings shown in the Configuration Tab above. Table 12-11. Configuration Tab Settings for DDR_MEM GUI Option Description Range Default Value Interface DDR memory interface type DDR, DDR2, DDR3 DDR2 I/O Buffer Configuration I/O type configuration for DDR pins SSTL25_I, SSTL25_II SSTL18_I, SSTL18_II, SSTL15 DDR – SSTL25_I DDR2 – SSTL18_I DDR3 – SSTL15 Number of DQS Interface width (1 DQS per 8 bits of data) 1 to 9 4 DQS Group1 to DQS Group8 Number of DQ per DQS pin 1 to 8 8 DQS Buffer Configuration DQS buffer type DDR: Single-ended DDR2: Single-ended, Differential DDR3: Differential DDR – Single-ended DDR2 – Single-ended DDR3 – Differential Clock/Address/Command Clock/address/command interface will be generated when this option is checked ENABLED, DISABLED DISABLED Data Mask Data mask signal will be generated when this option is checked ENABLED, DISABLED DISABLED Lock/Jitter Sensitivity Lock Sensitivity attribute for DQSDLL1 HIGH, LOW HIGH12-80 LatticeECP3 High-Speed I/O Interface If the user selects to generate the Clock/Address/Command signals using IPexpress, then the settings in the Clock/Address/Command Tab are active and can be set up as required. Figure 12-69 shows the Clock/Address/Command Tab in the IPexpress for DDR2 Memory. Figure 12-69. Clock/Address/Command Tab in the IPexpress for DDR_MEM Table 12-12 lists the values that can be used for the Clock/Address/Command settings. DDR Memory Frequency DDR Memory Interface Frequency DDR – 87.5 MHz, 100 MHz, 133.33 MHz, 166.67 MHz, 200 MHz DDR2 – 125 MHz, 200 MHz, 266.67 MHz DDR3 – 300 MHz, 400 MHz DDR – 200 MHz DDR2 – 200 MHz DDR3 – 400 MHz ISI Calibration ISI calibration is available for the DDR3 interface to adjust for inter-symbol inference adjustment per DQS group BYPASS, DEL1, DEL2, DEL3, DEL4, DEL5, DEL6, DEL7 BYPASS 1. It is recommended to set Lock Sensitivity to HIGH for DDR Memory Frequency higher than 133 MHz. Table 12-11. Configuration Tab Settings for DDR_MEM (Continued) GUI Option Description Range Default Value12-81 LatticeECP3 High-Speed I/O Interface Table 12-12. Clock/Address/Command Settings for DDR_MEM DDR Memory DQ/DQS Design Rules and Guidelines Listed below are some rules and guidelines to keep in mind when implementing DDR memory interfaces in LatticeECP3 devices. • LatticeECP3 devices have dedicated DQ-DQS banks. Please refer to the Logical Signal Connections tables in the LatticeECP3 Family Data Sheet before locking these pins. • There are two DQSDLLs on the device, one for the left half and one for the right half of the device. Only one DQSDLL primitive should be instantiated for each half of the device. Since there is only one DQSDLL on each half, all the DDR memory interfaces on that half should run at the same frequency. • Each DQSDLL will generate 90° digital delay bits for all the DQS delay blocks on that half of the device based on the reference clock input to the DLL. • The clock to the PLL used in the write implementation to generate the clocks for the outputs must be locked to the correct dedicated PLL pin input. • When implementing a DDR SDRAM interface, all interface signals should be connected to the SSTL25 I/O standard. • For the DDR2 SDRAM interface, the interface signal should be connected to the SSTL18 I/O standard. • For the DDR3 SDRAM interface, these signals should be connected to the SSTL15 standard. • The DDR, DDR2 and DDR3 require a differential clock signal. For these standards, the differential clock signals should be connected to SSTL25D (DDR), SSTL18D (DDR2) or SSTL15D (DDR3). • DDR3 also requires differential DQS signal. The use of differential DQS is optional for DDR2. If differential DQS is used it should be connected to SSTL18D for DDR2 and SSTL15D for DDR3. • When implementing the DDR interface, the VREF1 of the bank is used to provide the reference voltage for the interface pins. VREF1 should not be connected with VREF2 of the bank when implementing DDR memory interfaces. • There is no DQS strobe support on the bottom of the device, so memory interfaces cannot be implemented on this side. • Within a DQS-12 group, the IOLOGIC in the group’s DQS/DQS# pads cannot be used for DDR registers. • If the register is implemented inside the FPGA fabric instead of the IOLOGIC, there is no restriction on using the DQS pad. GUI Option Range Default Value Number of Clocks 1, 2, 4 1 Number of Clock Enables 1, 2, 4 1 Address Width DDR: 12-14 DDR2: 13-16 DDR3: 13-16 DDR: 13 DDR2: 13 DDR3: 14 Bank Address Width DDR: 2 DDR2: 2, 3 DDR3: 3 DDR: 2 DDR2: 2 DDR3: 3 Number of ODT DDR: N/A DDR2: 1, 2, 4 DDR3: 1, 2, 4 DDR: N/A DDR2: 1 DDR3: 1 Number of Chip Selects DDR: 1, 2, 4, 8 DDR2: 1, 2, 4 DDR3: 1, 2, 4 DDR: 1 DDR2: 1 DDR3: 112-82 LatticeECP3 High-Speed I/O Interface • The upper left corner of the LatticeECP3 device has a non-DQS DDR group. This group of I/Os does not have a DQS function. This group of I/Os can only be used for generic DDR implementations. • IDDRX memory cannot be mixed in the same DQS group as an ODDRX generic implementation. Similarly, ODDRX memory cannot be mixed in the same DQS group with an IDDRX generic implementation. • Generic DDR interfaces are not available on the top side of the LatticeECP3 “E” device only. The generic DDR required for DDR clock and control generation needs to be implemented on the left and right sides of the device. Generic DDR interfaces can be implemented on the top side of the “EA” devices, therefore this issue does not exist for “EA” devices. • Table 12-13 summarizes what is available on each side of the LatticeECP3-70E, LatticeECP3-95E and LatticeECP3-150EA devices. Note that DDR registers are not available on the bottom of the device. Table 12-13. DDR Pin Limitations DDR/DDR2 Pinout Guidelines • The DQS-DQ association rule must be followed. – All associated DQs (8 or 4) to a DQS must be in the same DQS-12 group. • The data mask (DM) must be part of the corresponding DQS-12 group. – Example: DM[0] must be in the DQS-12 group that has DQ[7:0], DQS[0]. • DQS pad must be allocated to a dedicated DQS pad. – DQS# pad is used when differential DQS is selected. • Do not assign any signal to the DQS# pad if SSTL18D is applied to the DQS pad. – The software automatically places DQS# when SSTL18D is applied. • DQS/DQS# pads cannot be used for other DDR functions. – The DQS IOLOGIC structure is not compatible with non-DQS DDR IOLOGIC. • The clock to the PLL used to generate the outputs must be assigned to use dedicated clock routing. • Data group signals (DQ, DQS, DM) can use either the left, right or top edge of LatticeECP3. • Locating memory clock signals: – For the LatticeECP3 “E” device, it is highly recommended to have all clock pads within a memory controller be in one DQS-12 group to minimize pinout restrictions. • The bottom-side pads in Bank 6 and Bank 3 are also good candidates for address/command/control signals. Save pins on the left and right sides for DDR. • VREF1 of the bank where DQs are located must not be taken by any signal. Left Right Top DQS12 group available DQS12 available DQS 12 with some restrictions Input x1 DDR Generic Output x1DDR Generic Input x2 DDR Generic Output x2 DDR Generic DDR Memory DDR2 Memory DDR3 Memory (“EA” only) Input x1 DDR Generic Output x1DDR Generic Input x2 DDR Generic Output x2 DDR Generic DDR Memory DDR2 Memory DDR3 Memory (“EA” only) Input x1 DDR Generic (“EA” only) Output x1DDR Generic (“EA” only) Input x2 DDR Generic (“EA” only) DDR Memory (“E” and “EA”) DDR2 Memory (“E” and “EA”) Upper left side has DDR function without DQS. Upper right side I/Os shared with sysCONFIG pins in bank 8. No DDR functions are available on these pins Right part of top side has eight I/Os shared with the sysCONFIG pins. No DDR functions are available. Note: See the LatticeECP3 Family Data Sheet Pinout tables to find DQS group assignments.12-83 LatticeECP3 High-Speed I/O Interface – VREF2 is OK to use. – Do not connect VREF1 and VREF2 together. • External termination to VTT is required for DDR and DDR2 interfaces. All DQ and DQS pins must be terminated to VTT using an external termination resistor. VTT = ½ VCCIO (0.9V for DDR2 and 1.25V for DDR). It is recommended that SI Simulation be run to determine the best termination value. If signal integrity simulation is not available, parallel termination of 75ohms to VTT should be used. • It is required to provide a PCB connect resistor to the XRES pins. These pins cannot be used for other functions. See TN1189, LatticeECP3 Hardware Checklist, for detailed requirements on the XRES pin. DDR3 Termination Guidelines Proper termination of a DDR3 interface is an important part of implementation that ensures reliable data transactions at high speed. Below is the general termination guideline for the LatticeECP3 DDR3 interface. Termination for DQ, DQS and DM • Do not locate any termination on the memory side. The memory side termination on DQ, DQS and DM is dynamically controlled by the DDR3 SDRAM's ODT function. • External termination to VTT is required for DDR3 interfaces at the FPGA side. Each DQ and DQS pin should be terminated to VTT using an external termination resistor. The termination resistor location is important. See the Layout Considerations for DDR3 section for the requirements. • It is recommended that signal integrity (SI) simulation be run to determine the best termination value. If SI simulation is not available, parallel termination of 100 ohms to 120 ohms to VTT is recommended. • Use of series termination resistors at the FPGA side is not recommended. Termination for CK DDR3 memory clocks require differential termination because they use a differential signaling, SSTL15D, in DDR3 SDRAM applications. You can locate an effective 100-ohm termination resistance on the memory side to achieve the differential termination using the following guideline: • Locate a 100-ohm resistor between the positive and negative clock signal, or • Connect one end of an Rtt resistor to the positive pin and one end of another Rtt to the negative pin of a CK pair, then connect the other ends of two Rtt resistors together and return to VDD through a Ctt capacitance. This is a JEDEC CK termination scheme defined in the DIMM specifications. JEDEC uses 36-ohm for Rtt with 0.1uF Ctt for DIMM. 50-ohm Rtt can also be used for non-DIMM applications. • Use of series termination resistors at the FPGA side is not recommended. • When fly-by wiring is used, the CK termination resistor should be located after the last DDR3 SDRAM device. Termination for Address, Commands and Controls Parallel termination to VTT on address, command and control lines is typically required. • Locate a 50-ohm parallel-to-VTT resistor (or a best known resistance obtained from your SI simulation) to each address, command and control line on the memory side. • When fly-by wiring is used, the address, command and control termination resistors should be located after the last DDR3 SDRAM device. • Series termination resistors can be optionally used on the address, command and control signals to suppress overshoot/undershoot and to help decrease overall SSO noise level. 22-ohm or 15-ohm series termination is recommended when used. 12-84 LatticeECP3 High-Speed I/O Interface Termination for DDR3 DIMM The DDR3 SDRAM DIMMs incorporate internal termination following the requirements defined by the JEDEC DIMM specification. For this reason, the user termination requirement for the DDR3 DIMM is slightly different from that of DDR3 SDRAM devices. • Do not locate any termination on the memory side. The memory side termination on DQ, DQS and DM is dynamically controlled by the DDR3 SDRAM’s ODT function. • Do not locate differential termination on CK at the memory side. • Do not locate parallel termination to VTT on address, command and control signals at the memory side. • Follow the termination for DQ, DQS and DM guideline above for the FPGA side termination. DDR3 Interface without Termination When a wide DDR3 data bus is implemented and requires most of the pin resources in the assigned banks to be used as data lines, SSO impact usually becomes a designer’s concern. While proper use of termination resistors provides optimized signal integrity results, removing them may also provide improved noise margin in some cases due to increased eye height. DQ, DQS and DM without Parallel VTT Termination Although the external parallel VTT termination is typically required for read operations at the FPGA side, it can be removed if the following conditions are met: a. Point-to-point connection between FPGA and DDR3 SDRAM device b. PCB trace length is maintained shorter than 3.0" c. SI simulation confirms that there is no significant reflection or ringing noise due to unmatched line impedance Either or both of the following considerations are suggested when you implement a DDR3 interface without external VTT termination: • You can still keep the external VTT termination in your PCB layout without population if the board space allows. It will give you an opportunity to return to the external termination scheme without board re-spin work. • You can connect the VTT input pads in the banks where the DDR3 interface’s data bus is implemented to the external VTT source. This will allow you to use the LatticeECP3's internal on-chip termination on selective signals in case only a few have bad signal integrity results. This approach also allows you to use internal VTT termination only on DQS signals, which can be a useful termination option in some cases. Address, Command and Control Signals without Parallel VTT Termination As described, parallel termination to VTT on address, command and control lines is typically required. However, the parallel VTT termination on them can also be optionally removed to increase the noise margin or to avoid layout difficulties at the memory side. When they are removed, use of series termination resistors at the driver side (FPGA) is recommended to suppress overshoot and undershoot noise. The same condition as specified above for DQ, DQS and DM is applied to remove the parallel termination. Layout Considerations for DDR3 • Placement of external discrete resistors or resistor packs (RPACKS) for parallel VTT termination is critical and must be placed within 0.6 inches (600-mil) of the FPGA ball. – 120 ohm BGA RPACKS (CTS RT2432B7 type) are recommended for the 64- and 32-bit interfaces due to better routing and density issues. Each RPACK contains 18 resistors in a very small BGA footprint. Note that only 120, 75 and 50 ohm values are available in this package type. – 4x1 RPACKS (CTS 741X083101JP type) can also be used in cases where a 100 ohm value is needed with-12-85 LatticeECP3 High-Speed I/O Interface out routing/density issues. • The termination resistor stubs should be kept minimal. • All traces should be matched to 50 ohms. • For SODIMM and UDIMM designs, write leveling should be used and all traces from the FPGA to the DIMM should be matched in length on the PC board similar to DDR2. • If using a discrete DDR3 device, fly-by routing can be used for traces. If fly-by routing is used, the Write Leveling option must be enabled. If not using fly-by routing, the Write Leveling option must be disabled. • Refer to TN1189, LatticeECP3 Hardware Checklist, DDR3 Interface Requirements section for complete DDR3 layout guidelines. DDR3 Pinout Guidelines The LatticeECP3 device contains dedicated I/O functions for supporting DDR3 memory interfaces. The following pinout rules must be followed to properly use the dedicated I/O functions. • The DQS-DQ association rule must be followed. – All associated DQs (8 or 4) to a DQS must be in the same DQS-12 group. • A data mask (DM) must be part of the corresponding DQS-12 group. – Example: DM[0] must be in the DQS-12 group that has DQ[7:0], DQS[0]. • A DQS pad must be allocated to a dedicated DQS True (+) pad. – A DQS# pad is auto-placed when a differential SSTL type (SSTL15D) is selected. • Do not assign any signal to a DQS# pad if SSTL15D is applied to the DQS pad. – The software automatically places DQS# when SSTL15D is applied. • DQS/DQS# pads cannot be used for other DDR functions. – The DQS IOLOGIC structure is not compatible with non-DQS DDR IOLOGIC. – Do not use DQS pads for any DDR3 signals except DQS and RST#. They can be used for other user logic signals if a DDR function is not required. • Data group signals (DQ, DQS, DM) must use the left and right sides of the LatticeECP3 device. – Top-side pads do not have 2x gearing. • Address, command, control and CK signals must be located on generic DDR-capable pads (ODDRXD). – Place the CK/CK# outputs on the same side where the DQ and DQS pads are located. The top side is not recommended for the high-speed DDR CK function. – Place the address, command and control signals either on the same side as where the DQ and DQS pads are located or on the top side. The bottom side cannot be used. • RST# can be located anywhere an output is available as long as LVCMOS15 is applicable. – All DDR3 signals except RST# use DDR functions. • The DDR3 input reference clock to the PLL must be assigned to use dedicated clock routing. – The dedicated PLL input pads are recommended while PCLK inputs can also be used. – Two PLLs that have a direct connection to ECLK in each side can be used for a DDR3 function. (Note that LatticeECP3-17EA devices have one PLL that supports DDR3 in each side.) • Do not use the bottom-side pads in Bank 6 and Bank 3 for address, command and control signals. – No generic DDR support on the bottom side of the device. • VREF1 of the bank where the DQ, DQS and DM pads are located must not be taken by any signal. – Do not PROHIBIT VREF1 in the preference file. – VREF2 can be used for a general purpose I/O signal. – Do not connect VREF1 and VREF2 together. • Leave VTT pins unconnected when external VTT termination is implemented.12-86 LatticeECP3 High-Speed I/O Interface – VTT pins can be optionally connected to the external VTT source when a DDR3 interface is implemented without external VTT termination. See the DDR3 Interface without Termination section for details. – VTT pins can be connected in series with a capacitor (around .01uf) to ground when the bank has LVDS internal termination to suppress externally generated common mode noise. Internal VTT termination cannot be used in this case. • It is required to provide a PCB connect resistor to the XRES pins. These pins cannot be used for other functions. See TN1189, LatticeECP3 Hardware Checklist, for detailed requirements on the XRES pin. Pin Placement Considerations for Improved Noise Immunity In addition to the general pinout guidelines, there are additional pinout considerations for minimizing simultaneous switching noise (SSN) impact. The following considerations are necessary to control SSN within the required level: 1. Properly terminated interface 2. SSN optimized PCB layout 3. SSN considered I/O pad assignment 4. Use of pseudo power pads The guidelines listed below address the I/O pad assignment and pseudo power pad usage. Unlike the pinout guidelines, they are not absolute requirements. However, it is recommended that the pin placement follow the guidelines as much as possible to increase the SSO/SSI noise immunity. • Place the DQS groups for data implementation starting from the middle of the (right or left) edge of the LatticeECP3. Allow a corner DQS group to be used as a data group only when necessary to implement the required width. • Locate a spacer DQS group between the data DQS groups if possible. A DQS group becomes a spacer DQS group if the I/O pads inside the group are not used as data pads (DQ, DQS or DM). – The pads in a spacer group can be used for address, command, control or CK pads as well as for user logic or the pseudo power pads. – No more than two consecutive-data DQS group placements is recommended in the middle of the edge. When a corner-side DQS group is used for data, locate a spacer DQS group right next to it. – If there is an incomplete DQS group (not the size of DQS-12) or enough space for more than 10 pads between two DQS groups, the following DQS group can be located next to the previous complete DQS group, both as data groups. The incomplete DQS groups, or the space between them, can be used as a spacer. • It is recommended that you locate a few pseudo VCCIO/ground (GND) pads inside a spacer DQS group. An I/O pad becomes a pseudo power pad when it is configured to OUTPUT with its maximum driving strength (i.e., SSTL15, 10mA for DDR3) and connected to the external VCCIO or ground power source on the PCB. – Your design needs to drive the pseudo power I/O pads according to the external connection. (i.e., you assign them as OUTPUT and let your design drive ‘1’ for pseudo VCCIO pads and ‘0’ for pseudo GND pads in your RTL coding.) – Locating four pseudo power pads in a spacer DQS group should be sufficient to efficiently suppress the SSN impact. At least two pseudo pads should be implemented in a spacer DQS group if more pins are needed for a user design. – Good candidate pads are two pads in both ends (the first and the last ones in the group) and/or two DQS (positive and negative) pads in the middle. • You may have one (DDR2/DDR3) or two (DDR/DDR2) remaining pads in a data DQS group which are not assigned as a data pad in a DDR memory interface. Assign them to pseudo VCCIO or pseudo GND. The preferred location is in the middle of the group (right next to a DQS pad pair). Note that you may not have this extra pad in DDR2/DDR3 if the DQS group includes a VREF pad for the bank. • Avoid fast switching signals located close to the XRES pad of a LatticeECP3 device. XRES requires an external resistor which is used to create the bias currents for the I/O. Since this resistor is used for a calibration reference 12-87 LatticeECP3 High-Speed I/O Interface for sensitive on-chip circuitry, careful pin assignment around the XRES pad is also necessary to produce less jittery PLL outputs for DDR memory interface operations. The guidelines below are not as effective as the ones listed above. However, following them is still recommended to improve the SSN immunity further: • Assign the DM (data mask) pad in a data DQS group close to the other side of DQS pads where a pseudo power pad is located. If the data DQS group includes VREF, locate DM to the other side of VREF with respect to DQS. It can be used as an isolator due to its almost static nature in most applications. • Other DQS groups (neither data nor spacer group) can be used for accommodating DDR3 address, command, control and clock pads. It is recommended that you still assign all or most DQS pads (both positive and negative) in these groups to pseudo power. Since LatticeECP3 DQS pads have a dedicated DDR function that cannot be shared with other DDR3 signals, they are good pseudo power pad candidates. • You can assign more unused I/O pads to pseudo power if you want to increase the SSN immunity. Note that the SSN immunity does not get increased at the same rate as the increased number of pseudo power pads. The first few pseudo power pad placements described above are more crucial. Keep the total pseudo power pad ratio (VCCIO vs. GND) between 2:1 to 3:1. • Although not necessary, it is slightly more effective to locate a pseudo VCCIO to a positive pad (A) and GND to a negative pad (B) of a PIO pair if possible. • If a bank includes unused input-only pads such as dedicated PLL input pads, you can also connect them to VCCIO on your PCB. They are not as efficient as the pseudo power pads but can still be used as isolators, and the connections on the board would provide good shielding. No extra consideration is necessary for these pins in your design. • It is a good idea to shield the VREF1 pad by locating pseudo power pads around it if the VREF1 pad is not located in a data DQS group. Table 12-14 shows the recommended examples of DQS group allocations following the guidelines. If you have enough pin resources, following the best examples would provide you with maximized SSN immunity results. It is more practical in most applications to follow the examples in the “Allowed” columns. It is expected that the SSN and ground bounce impacts are considerably less than those cases where you do not include any consideration. Table 12-14. Recommended Examples of DQS Group Allocation LatticeECP3-150EA DQS 150-1156 Left 150-1156 Right 150-672 Left 150-672 Right Best Allowed Best Allowed Best Allowed Best Allowed 1 D D D D* 2 D D D* D D D 3D D 4D DDDDDD 5 D D D* D* 6DDD DD 7 D D* D* 8DDDD 9 D 10 D D D 11 D 12 D D 13 Bus Size 48 64 40 56 32 40 24 32 LatticeECP3-95/70EA DQS 95/70-1156 Left 95/70-1156 Right 95/70-672 Left 95/70-672 Right 95/70-484 Left 95/70-484 Right Best Allowed Best Allowed Best Allowed Best Allowed Best Allowed Best Allowed 1 D D D D* D 2D D D DDDDD12-88 LatticeECP3 High-Speed I/O Interface DDR Software Primitives and Attributes This section describes the software primitives that can be used to implement all the DDR interfaces. These primitives are divided into ones that are used to implement the DDR data and ones for DDR Strobe signal or the Source Synchronous clock. The DQSBUF primitives are used to generate the signals required to correctly capture the data from the DDR memory. 3DDD DD 4DDDDDDDDD DD 5 D* D* D 6 D D D D D D D* 7 D D* D* D* D* 8 D D* 9 DDR3 Bus 32 48 32 40 32 40 24 32 16 32 16 24 LatticeECP3-35EA DQS 35-672 Left 35-672 Right 35-484 Left 35-484 Right 35-256 Left 35-256 Right Best Allowed Best Allowed Best Allowed Best Allowed Best Allowed Best Allowed 1 D D D D* D* D* D* 2 D D D D D D* 3 DDDD 4 DDDDD DD 5 D 6 D D D D* 7 DDR3 Bus 24 32 16 32 16 32 16 24 8 16 8 8 LatticeECP3-17EA DQS 17-484 Left 17-484 Right 17-256 Left 17-256 Right Best Allowed Best Allowed Best Allowed Best Allowed 1 D D* D* D* 2 D D D D* D* 3 D D 4 D D 5 DDR3 Bus 16 24 8 16 8 16 8 8 Notes: DQS groups with a ‘D’ indicate the data DQS groups while the blank ones indicate the spacer DQS groups. Data DQS groups with an asterisk indicate that they have an incomplete DQS group or enough isolation in front. Shaded cells are not-applicable to the selected device. Table 12-15. DDR Software Primitives List Type Primitive Usage Data Input IDDRXD E and EA Generic DDRX1 E and EA DDR/DDR2 Memory IDDRX1D EA Generic DDRX1 IDDRX2D E Data Input Generic DDRX2 E and EA DDR3 Memory IDDRX2D1 EA Generic DDRX2 Data Output ODDRXD E and EA Generic DDRX1 E and EA DDR/DDR2/DDR3 Memory ODDRXD1 EA Generic DDRX1 ODDRX2D E and EA Generic DDRX2 E and EA DDR3 Memory Table 12-14. Recommended Examples of DQS Group Allocation (Continued)12-89 LatticeECP3 High-Speed I/O Interface DQSDLLB The DQSDLLB will generate the 90° phase shift required for the DQS signal. This primitive will implement the onchip DQSDLL. Only one DQSDLL should be instantiated for all the DDR implementations on one-half of the device. The clock input to this DLL should be at the same frequency as the DDR interface. The DLL will generate the delay based on this clock frequency and the update control input to this block. The DLL will update the dynamic delay control to the DQS delay block when this update control (UDDCNTLN) input is asserted. Figure 12-70 shows the primitive symbol. The active low signal on UDDCNTLN updates the DQS phase alignment. Figure 12-70. DQSDLL Symbol Table 12-16 provides a description of the ports. Table 12-16. DQSDLLB Ports Data Tristate ODDRTDQA E and EA Generic DDRX2 E and EA DDR3 Memory OFD1S3AX E and EA Generic DDRX1 E and EA DDR/DDR2 Memory DQS Output ODDRXDQSA E and EA DDR/DDR2 Memory ODDRX2DQSA E and EA DDR3 Memory DQS Tristate ODDRTDQSA E and EA DDR/DDR2 Memory E and EA DDR3 Memory DQSBUF Logic DQSBUFD E and EA DDR3 Memory, E and EA Generic DDRX2 (for bus widths <10 bits) DQSBUFF E and EA DDR/DDR2 Memory, E and EA Generic DDRX1 (for bus widths <10 bits) DQSBUFE E Generic DDRX2 DQSBUFE1 EA Generic DDRX2 DQSBUFG E Generic DDRX1 DQSDLL DQSDLL DLL for Generic DDRX1/DDRX2 (for bus width <10 bits and multiple interfaces per side of the device) and DDR/DDR2/DD3 Memory Input Delay DELAYB Delay block for Generic DDRX2 with Dynamic Control DELAYC Delay block for Generic DDRX1/X2 with clock injection removal. The amount of Fixed Delay will vary by interface. ECLK Stop ECLKSYNCA EA Generic DDRX2 Output EA ECLK Synchronization for DDR3 Memory Port Name I/O Definition CLK I CLK should be at the frequency of the DDR interface. RST I Resets the DQSDLLB. UDDCNTLN I Provides update signal to the DLL that will update the dynamic delay. LOCK O Indicates when the DLL is in phase. DQSDEL O The digital delay generated by the DLL, should be connected to the DQSBUF primitive. Table 12-15. DDR Software Primitives List (Continued) Type Primitive Usage CLK RST UDDCNTLN LOCK DQSDEL DQSDLLB12-90 LatticeECP3 High-Speed I/O Interface DQSDLL Update Control The DQS delay can be updated for PVT variation using the UDDCNTLN input. The DQSDEL is updated when the UDDCNTLN is held low. The DDR memory controller or user logic can update DQSDEL when variations are expected. It can be updated anytime except during a memory READ or WRITE operation. It is important to understand that the UDDCNTLN signal is a synchronous input to the DQSDLL CLK domain. When using DDR in 2x gearing, it is required to use clock domain transfer logic first to transfer UDDCNTLN from slow clock domain to fast clock domain before it is input to DQSDLL. You can use two- or three-stage pipeline registers to safely transfer the DQSDEL update control input to the DQSDLL block. The first stage register uses the local domain clock while the second and third registers use the DQSDLL CLK domain clock. The second to third stage pipelining is desirable because it can eliminate the placement and routing issue due to the increased clock rate (2x) for the net and also avoids any meta-stability issues. DQSDLL Configuration By default this DLL will generate a 90° phase shift for the DQS strobe based on the frequency of the input reference clock to the DLL. DQSBUF Logic Primitives for Generic DDR The DQSBUF primitives (DQSBUFE and DQSBUFG for “E” devices) are used to generate the strobe logic and delay used in the input DDR modules to correctly demux the DDR data. The DQSBUFE is used for x2 interfaces and the DQSBUFG is used for x1 interfaces. The DQSBUFE1 is used only for output x2 interfaces in LatticeECP3 devices. Figure 12-71 shows DQSBUF Generic DDR functions for the “E” and “EA” devices. Figure 12-71. DQSBUFE Function for Generic Input/Output DDR x2 Interfaces (“E” Devices) DQS TRANSITION DETECT LOGIC DDR WRITE CLOCK ECLK SCLK ECLKW RST DYNDELPOL DYNDELAY[6:0] DQCLK0 DQCLK1 DDRCLKPOL DDRLAT12-91 LatticeECP3 High-Speed I/O Interface Figure 12-72. DQSBUFG Function for Generic Input/Output DDR x 1 Interface (“E” Devices) Figure 12-73. DQSBUFE1 Function for Generic Output DDR x2 Interfaces (“EA” Devices) DQS Transition Detect The DQS Transition Detect block inputs the fast ECLK and the slower SCLK (=1/2 ECLK) inputs and generates the DDRCLKPOL and the DDRLAT signals. These signals are generated based on the phase of the FPGA SCLK at the first ECLK transition. The DDRLAT signal is used in generic DDRX2 mode to transfer data from the ECLK to SCLK domain. These are only required to implement generic DDR on the LatticeECP3 “E” devices. LatticeECP3 “EA” devices do not require these signals. DDR Write Clock This block inputs the fast edge clock used for the write side and generates two control signals, DQCLK0 and DQCLK1. For Generic DDRX2 gearing, both DQCLK0 and DQCLK1 are generated. These control clocks run at a rate of one-half the fast edge clock, and DQCLK1 is offset delayed by 90° relative to DQCLK0. DQCLK1 output matches the phase of the SCLK input to the block. These two clocks toggle between different legs of a 4:1 mux in the output logic, which allows 4:1 gearing of data at twice the edge clock rate. When using generic DDRX1, instead of DDRX2 gearing, only the DQCLK1 is output, which toggles at the rate of FPGA clock provided by SCLK and matches the phase of the SCLK input. The DDR write clock block also inputs DYNDELPOL and DYNDELAY [6:0] delay inputs. These inputs support the DDR3 memory interface to adjust delay among the various DQS groups. They can also be used for the generic DDR for the same purpose. The DYNDELAY [6:0] can input 128 possible delay step settings with each step generating approximately 25ps nominal delay. In addition, the DYNDELPOL can be used to invert the clock for a 180° DQS TRANSITION DETECT LOGIC DDR WRITE CLOCK SCLK DQCLK1 DDRCLKPOL DDR WRITE CLOCK ECLKW RST DYNDELPOL DYNDELAY[6:0] DQCLK0 DQCLK112-92 LatticeECP3 High-Speed I/O Interface shift of the incoming clock. Each of the source synchronous clock outputs can be adjusted to account for the data skew using this delay. The DYNDELAY [6:0] and DYNDELPOL inputs should be generated using the FPGA core. DQSBUFE This primitive provides the control logic for Generic DDRX2 interface in the LatticeECP3 “E” devices. Figure 12-74 shows the primitive symbol. Figure 12-74. DQSBUFE Symbol Table 12-17 provides a description of all the I/O ports associated with the DQSBUFE primitive. Table 12-17. DQSBUFE Primitive Ports DQSBUFG This primitive implements the strobe logic for Generic DDRX1 interface for LatticeECP3 “E” devices. Figure 12-75 shows the primitive symbol. Figure 12-75. DQSBUFG Symbol Table 12-18 provides a description of all the I/O ports associated with the DQSBUFG primitive. Port Name I/O Definition ECLK I Edge CLK SCLK I System CLK ECLKW I Edge CLK used the DDR write side RST I Reset input DYNDELPOL I Input from user logic used to invert the clock polarity DYNDELAY [6:0] I Input from user logic used to delay the ECLK DQCLK0 O Clock output at frequency of SCLK used for output side gearing DQCLK1 O Clock output at frequency of SCLK and matches the phase of SCLK using for output side gearing. DQCLK1 is 90° shifted from DQCLK0. DDRCLKPOL O DDR clock polarity signal DDRLAT O DDR latch control signal ECLK DQCLK0 DQSBUFE SCLK DYNDELPOL DQCLK1 ECLKW DDRCLKPOL DDRLAT DYNDELAY[6:0] RST DQSBUFG SCLK DQCLK1 DDRCLKPOL12-93 LatticeECP3 High-Speed I/O Interface Table 12-18. DQSBUFG primitive Ports DQSBUFE1 This primitive implements the strobe logic for Generic DDRX2 Output interfaces on the LatticeECP3 “EA” devices. Figure 12-76 shows the primitive symbol. Figure 12-76. DQSBUFE1 Symbol Table 12-19 provides a description of all the I/O ports associated with the DQSBUFE1 primitive. Table 12-19. DQSBUFE1 Primitive Ports DQSBUF Logic Primitives for DDR Memory Interfaces The DQSBUF primitives (DQSBUFD and DQSBUFF) are used to generate the DQS strobe logic and delay used in the input DDR modules to correctly demux the DDR data. The DQSBUF module used for the DDR memory interface is composed of DQS Delay, DQS Transition Detect, Data Valid Generation and the DDR Write Clock block, as shown in Figure 12-77. Port Name I/O Definition SCLK I System CLK DQCLK1 O Clock output at frequency of SCLK, matches the phase of SCLK used for output gearing DDRCLKPOL O DDR clock polarity signal Port Name I/O Definition ECLKW I Edge CLK used the DDR write side RST I Reset input DYNDELPOL I Input from user logic used to invert the clock polarity DYNDELAY [6:0] I Input from user logic used to delay the ECLK DQCLK0 O Clock output at frequency of SCLK used for output side gearing DQCLK1 O Clock output at frequency of SCLK, matches the phase of SCLK using for output side gearing. DQCLK1 is 90° shifted from DQCLK0. DQSBUFE1 DYNDELPOL DYNDELAY[6:0] ECLKW RST DQCLK0 DQCLK112-94 LatticeECP3 High-Speed I/O Interface Figure 12-77. DQSBUF Block for DDR Memory Interfaces DQS Delay Block The DQS Delay block receives the digital control delay line (DQSDEL) coming from one of the two DQSDLL blocks. These control signals are used to delay the DQSI by 90°. ECLKDQSR is the delayed DQS and is connected to the clock input of the first set of input DDR registers. DQS Transition Detect The DQS Transition Detect block generates the DDR Clock Polarity (DDRCLKPOL) and DDR Latch Control (DDRLAT) signal based on the phase of the FPGA clock (SCLK) and edge clock signal (ECLK) at the first DQS transition. The DDR READ control signal and FPGA CLK inputs to this block come from the FPGA core. The DDRLAT signal is used when implementing DDRX2 output gearing to transfer data from the ECLK to SCLK domain. Data Valid Module The data valid module generates a DATAVALID signal. This signal indicates to the FPGA that valid data is transmitted out of the input DDR registers to the FPGA core. DDR Write Clock This block inputs the fast edge clock used for the write side and generates two control signals, DQCLK0 and DQCLK1, and the clock used to generate the DQS clock (DQSW). DQSW is generated by applying the DQSDEL from the DQSDLL to delay the ECLK (DDR3) or SCLK (DDR and DDR2) inputs. For the DDR3 memory interface both DQCLK0 and DQCLK1 are generated. These control clocks run at a rate of one-half the edge clock, and DQS DELAY PRMBDET DQSI ECLKDQSR + - + Vref- DV* - *DV ~ 170mV for DDR1 (SSTL25 signaling) *DV ~ 120mV for DDR2 (SSTL18 signaling) *DV ~ 100mV for DDR3 (SSTL15 signaling) DQSDEL Vref DDRCLKPOL PRMBDET DATA VALID MODULE DATAVALID DDR WRITE CLOCK DQS TRANSITION DETECT LOGIC DDRLAT ECLKW RST DYNDELPOL DYNDELAY[6:0] ECLK READ SCLK DQCLK0 DQCLK1 DQSW12-95 LatticeECP3 High-Speed I/O Interface DQCLK1 is offset delayed by 90° relative to DQCLK0. These two clocks toggle between different legs of a 4:1 mux allowing 4:1 gearing of data at twice the edge clock rate. When using output DDRX1 instead of DDRX2 gearing, only the DQCLK1 is output, which is the same as the FPGA clock. The DDR write clock block also inputs DYNDELPOL and DYNDELAY [6:0] delay inputs. These are used to support the write leveling required for DDR3 memory interface. This delay can be used to adjust the delays among the DQS groups to account for any skew that may be introduced due to the DDR3 fly-by topology. The DYNDELAY [6:0] can input 128 possible delay step settings with each step generating approximately 26ps nominal delay. In addition, the DYNDELPOL can be used to invert the clock for a 180° shift of the incoming clock. The DYNDELAY [6:0] and DYNDELPOL inputs should be generated in the memory controller. DQSBUFD This primitive implements the strobe logic for DDR3 memory interface. Figure 12-78 shows the primitive symbol. Figure 12-78. DQSBUFD Symbol Figure 12-20 provides a description of all the I/O ports associated with the DQSBUFD primitive. Table 12-20. DQSBUFD Primitive Ports Port Name I/O Definition DQSI I DQS strobe input from the memory Read I Read signal generated from the FPGA core ECLK I Edge CLK SCLK I System CLK DQSDEL I DQS delay signal from the DQSDLL module ECLKW I Edge CLK used the DDR write side RST I Reset input DYNDELPOL I Input from user logic used to invert the clock polarity DYNDELAY [6:0] I Input from user logic used to delay the ECLK ECLKDQSR O Delay DQS used to capture the data PRMBDET O Preamble detect signal, going to the FPGA core logic DATAVALID O Signal indicating transmission of Valid data to the FPGA core DDRCLKPOL O DDR Clock polarity signal DDRLAT O DDR latch control signal DQSW O Clock used to generate DQS on the write side DQCLK0 O Clock Output at frequency SCLK used for output gearing DQCLK1 O Clock output at frequency and phase of SCLK used for output gearing DQSI DQSW DQSBUFD SCLK READ DDRCLKPOL PRMBDET DQSDEL ECLK DATAVALID DYNDELPOL DDRLAT ECLKDQSR DQCLK0 DQCLK1 ECLKW RST DYNDELAY[6:0]12-96 LatticeECP3 High-Speed I/O Interface DQSBUFF This primitive implements the strobe logic for DDR and DDR2 memory interface. Figure 12-79 shows the primitive symbol. Figure 12-79. DQSBUFF Symbol Table 12-21 provides a description of all the I/O ports associated with the DQSBUFF primitive. Table 12-21. DQSBUFF Primitive Ports READ Pulse Generation The READ signal to the DQSBUFF block is internally generated in the FPGA core. The READ signal will go high after the READ command to control the DDR-SDRAM is initially asserted. This should normally precede the DQS preamble by one cycle yet may overlap the trailing bits of a prior read cycle. The DQS Detect circuitry requires the falling edge of the READ signal to be placed within the preamble stage. Figure 12-80 shows a READ pulse timing example with respect to the PRMBDET signal. Port Name I/O Definition DQSI I DQS strobe input from the memory READ I Read signal generated from the FPGA core SCLK I System CLK DQSDEL I DQS delay signal from the DQSDLL module ECLKDQSR O Delay DQS used to capture the data PRMBDET O Preamble detect signal, going to the FPGA core logic DATAVALID O Signal indicating transmission of valid data to the FPGA core DDRCLKPOL O DDR Clock polarity signal DQSW O Clock used to generate DQS on the write side DQCLK1 O Clock output at frequency and phase of SCLK used for output gearing DQSI DQSW DQSBUFF SCLK READ DDRCLKPOL PRMBDET DQSDEL DATAVALID ECLKDQSR DQCLK112-97 LatticeECP3 High-Speed I/O Interface Figure 12-80. READ Pulse Generation DQSBUF Attributes Table 12-22 shows the attributes can be used with the DQSBUF primitives described above. Table 12-22. DQSBUF Attributes Input DDR Primitives The input DDR primitives represent the input DDR module used to capture both the generic DDR data and the DDR data coming from a memory interface. There are two available modes for the DDR input registers, one is used to implement DDRX1 gearing and the other is for DDRX2 gearing. The signals connected to the inputs of the IDDR are different for the DDR memory interface. IDDRXD This primitive implements the input register block in x1 gearing mode. This mode is used to implement DDR/DDR2 memory interfaces in the LatticeECP3 “E” and “EA” devices. It is also used to capture the generic DDRX1 data on the LatticeECP3 “E” device. DDR registers are designed to use edge clock routing on the I/O side and the primary clock on the FPGA side. The ECLK input is used to connect to the DQS strobe coming from the DQS delay block (DQSBUFF) when implementAttribute Description Values Software Default Used in DQSBUF DYNDEL_TYPE Type of Static Delay input to the write control block Normal: 0° phase shifted Shifted: 180° phase shifted using clock inversion NORMAL, SHIFTED NORMAL DQSBUFD, DQSBUFE DYNDEL_VAL Value of Static Delay to the write control block 0-127 0 DQSBUFD, DQSBUFE DYNDEL_CNTL Attribute to enable Static or Dynamic DYNDEL STATIC, DYNAMIC DYNAMIC DQSBUFD, DQSBUFE NRZMODE1 Attribute used to select NRZMODE for DDR3 Memory DISABLED ENABLED DISABLED DQSBUFD 1. NRZMODE is only used with the DDR3 memory interface. This attribute affects the read data valid signal. When enabled, the read data valid signal will toggle to indicate valid data. READ DQS PRMBDET FIRST DQS TRANSITION PREAMBLE PRIOR READ CYCLE POSTAMBLE POSTAMBLE OK FAIL READ FAIL READ VTH OK READ12-98 LatticeECP3 High-Speed I/O Interface ing a DDR or DDR2 memory interface. For generic source synchronous DDR applications, this signal should connect to the edge clock input. The SCLK input should be connected to the system (FPGA) clock. DDRCLKPOL is an input from the DQS clock polarity tree. This signal is generated by the DQS Transition detect circuit in the corresponding DQSBUF block. The DDRCLKPOL signal is used to choose the polarity of the SCLK to the synchronization registers. Figure 12-81 shows the primitive symbol and all the I/O ports. Figure 12-81. IDDRXD Symbol Table 12-23 provides a description of all I/O ports associated with the IDDRXD primitive. Table 12-23. IDDRXD Ports Figure 12-82 shows the Input Register Block configured in the IDDRXD mode. Port Name I/O Definition D I DDR data ECLKDQSR I Phase-shifted DQS for DDR memory interfaces. ECLK for generic DDR interfaces. SCLK I System clock DDRCLKPOL I DDR clock polarity signal QA O Data at positive edge of the clock QB O Data at the negative edge of the clock Note: The DDRCLKPOL input to IDDRXD should be connected to the DDRCLKPOL output of the DQSBUFF or DQFBUFG modules. IDDRXD SCLK QA QB D ECLKDQSR DDRCLKPOL12-99 LatticeECP3 High-Speed I/O Interface Figure 12-82. Input Register Block in IDDRXD Mode D D Q D Q D Q D Q DDRCLKPOL D Q L SCLK D Q L D Q L D Q L D Q D Q DDR Registers A B D F E H C G ECLK CLKP Synch Registers DQS ECLKDQSR Clock Transfer Registers 1 0 DDR mem Note: Simplified diagram does not show CE, SET and RST details. All latches are transparent when low. 1 0 IDDRXD Mode QB QA12-100 LatticeECP3 High-Speed I/O Interface Figure 12-83. IDDRXD Waveform DDRCLKPOL=0 DQS at I/O DDR DATA at I/O ECLKDQSR DDR DATA at IDDRXD A E CLKP DDRCLKPOL F C XX P0 P1 XX N0 N1 G H QA QB XX N0 N1 XX P0 P1 XX N0 N1 XX P0 P1 P0 P1 N1 D XX N0 N1 B N0 P0 N0 P1 N1 P0 N0 P1 N1 XX P0 P1 SCLK DDR2 Read Waveforms using IDDRXD, DDRCLKPOL = 012-101 LatticeECP3 High-Speed I/O Interface Figure 12-84. IDDRXD Waveform DDRCLKPOL=1 IDDRXD1 This primitive is a simplified version of IDDRXD without the DDRCLKPOL and ECLKDQSR signal for the “EA” devices. This will also implement the input register block in x1 gearing mode for generic DDRX1 interfaces. On “EA” devices, the DDR registers use the primary clock (SCLK) only. The SCLK input should be connected to the system (FPGA) clock. “EA” devices do not require the control signals from the DQSBUF module in the IDDRXD1 element, making it more flexible for placement than the “E” device. Figure 12-85 shows the primitive symbol and all the I/O ports. Figure 12-85. IDDRXD1 Symbol (“EA” Devices) Table 12-24 provides a description of all I/O ports associated with the IDDRXD1 primitive. DQS at I/O DDR DATA at I/O ECLKDQSR DDR DATA at IDDRXD A E CLKP DDRCLKPOL F C XX P0 P1 XX N0 N1 G H QA QB XX N0 N1 XX P0 P1 XX N0 N1 XX P0 P1 P0 P1 N1 D XX N0 N1 B N0 P0 N0 P1 N1 P0 N0 P1 N1 XX P0 P1 SCLK DDR2 Read Waveforms using IDDRXD, DDRCLKPOL = 1 IDDRXD1 D SCLK QA QB12-102 LatticeECP3 High-Speed I/O Interface Table 12-24. IDDRXD1 Ports Figure 12-86 shows the Input Register Block configured in the IDDRXD1 mode. Figure 12-86. Input Register Block in IDDRXD1 Mode (“EA” Devices) Figure 12-87. IDDRXD1 Waveform Port Name I/O Definition D I DDR data SCLK I System clock QA O Data at the positive edge of the clock QB O Data at the negative edge of the clock Note: Simplified version does not show CE/SET/RST details. All latches are transparent when LOW. D D Q D Q D Q D Q SCLK D Q L D Q L D Q L D Q D Q DDR Registers Synch Registers Clock Transfer Registers A B D F E H C G QB QA Data SCLK E F C XX P0 P1 XX N0 N1 G H QA QB XX N0 N1 XX P0 P1 XX N0 N1 XX P0 P1 D XX N0 N1 B P0 N0 P1 N1 P0 N0 P1 N1 XX P0 P1 P2 N2 P3 N3 P1 P2 P2 N1 P3 P3 N3 N2 N3 P2 N2 P2 N212-103 LatticeECP3 High-Speed I/O Interface IDDRX2D This primitive will implement the input register block in x2 gearing mode. This mode is used to implement DDR3 memory interface on the LatticeECP3 “E” and “EA” devices. It is also used on “E” devices to capture the generic DDRX2 Input data. Figure 12-88 shows the IDDRX2D primitive symbol and all the I/O ports. Figure 12-88. IDDRX2D Symbol Table 12-25 provides a description of all I/O ports associated with the IDDRX2D primitive. Table 12-25. IDDRX2D Ports Figure 12-89 shows the LatticeECP3 Input Register Block configured to function in the IDDRX2D mode. The ECLKDQSR input is used to connect to the DQS strobe coming from the DQS delay block (DQSBUFD) when implementing a DDR3 memory interface. For generic source synchronous DDR applications, this signal should be connected to the high-speed source synchronous edge clock input. The ECLK input is connected to the edge clock. The SCLK input should be connected to the system (FPGA) clock. The SCLK should run at half the frequency of ECLK. The DDRCLKPOL and DDRLAT inputs are generated by the DQS transition detect circuit in the corresponding DQSBUF block. The DDRCLKPOL signal is used to choose the polarity of the ECLK to the synchronization registers.DDRLAT is used to transfer data from the ECLK to the SCLK in the Clock Transfer Register block. Port Name I/O Definition D I DDR Data ECLKDQSR I Phase-shifted DQS for DDR memory interfaces. Edge clock for generic DDR interfaces. ECLK I Edge Clock. Should be connected to DQS strobe for DDR3 memory interfaces. SCLK I System clock running at one-half the ECLK or DQS signal. DDRCLKPOL I DDR clock polarity signal DDRLAT I DDR latch control signal QA0, QA1 O Data at the positive edge of the clock. QB0, QB1 O Data at the negative edge of the clock. Notes: 1. The DDRCLKPOL input to IDDRX2D should be connected to the DDRCLKPOL output of the DQSBUFD for DDR3 memory interfaces or the DDRCLKPOL output of the DQSBUFE for generic DDRX2 interfaces. 2. The DDRLAT input to the IDDRX2D should be connected to the DDRLAT output of the DQSBUFD for DDR3 memory interfaces or the DDRLAT output of the DQSBUFE for generic DDRX2 interfaces. SCLK QA0 QA1 D ECLKDQSR QB0 QB1 ECLK DDRCLKPOL DDRLAT IDDRX2D12-104 LatticeECP3 High-Speed I/O Interface Figure 12-89. Input Register Block in IDDRX2D Mode D D Q D Q DDRCLKPOL D Q L SCLK QB0 QB1 QA1 QA0 L D Q D Q D Q D Q L D Q L D Q L D Q D Q D Q D Q L D Q D Q L DDRLAT X0 01 11 D Q CE R DDR Registers A B D F E H C G L K J I CLKP 01 11 ECLK Synch Registers ECLKDQSR Clock Transfer and Gearing Registers Notes: 1. Simplified version does not show CE/SET/RST details. All latches are transparent when LOW. 2. ECLKDQSR is connected to the DQS signal when in DDR memory mode. In DDR generic mode ECLKDQSR should be connected to the ECLK signal. 1 012-105 LatticeECP3 High-Speed I/O Interface Figure 12-90. IDDRX2D Waveform DDRLAT=0 DQS at I/O DDR DATA at I/O ECLKDQSR DDR DATA at IDDRXDA E CLKP DDRCLKPOL F C XX P0 P1 XX N0 N1 G H QA1 QB1 XX N0 N1 XX P0 P1 P0 P1 N1 D XX N0 N1 B N0 P0 N0 P1 N1 P0 N0 P1 N1 XX P0 P1 ECLK I J K L XX N0 XX P0 XX N1 XX P1 QA0 QB0 XX P0 P1 XX N0 N1 XX P0 XX N0 SCLK SCLK12-106 LatticeECP3 High-Speed I/O Interface Figure 12-91. IDDRX2D Waveform DDRLAT=1 IDDRX2D1 This primitive is a simplified version of IDDRX2D without the DDRLAT, DDCLKPOL and the ECLKDQSR signals for the LatticeECP3 “EA” devices. It is used for input generic DDRX2 input data in “EA” devices. In this case, the first stage of registers is clocked by the ECLK signal and the second stage is clocked by the SCLK signal. The “EA” device does not require the control signals from the DQSBUF module in the IDDRX2D1 element. This makes the “EA” device more flexible for placement than the “E” device. Figure 12-92 shows the IDDRX2D1 primitive symbol and all the I/O ports. Figure 12-92. IDDRX2D1 Symbol (“EA” Devices) Table 12-26 provides a description of all I/O ports associated with the IDDRX2D1 primitive. G H QA1 QB1 XX N0 N1 XX P0 P1 ECLK I J K L XX N0 XX P0 XX N1 XX P1 QA0 QB0 XX P0 P1 XX N0 N1 XX P0 XX N0 SCLK SCLK IDDRX2D1 D SCLK ECLK QA0 QA1 QB0 QB112-107 LatticeECP3 High-Speed I/O Interface Table 12-26. IDDRX2D1 Ports Figure 12-93 shows the LatticeECP3 Input Register Block configured to function in IDDRX2D1 mode. The ECLK input is connected to the edge clock. The SCLK input should be connected to the system (FPGA) clock. The SCLK should run at half the frequency of ECLK. Figure 12-93. Input Register Block in IDDRX2D1 Mode (“EA” Devices) Port Name I/O Definition D I DDR data ECLK I Edge clock. Should be connected to DQS strobe for DDR3 memory interfaces. SCLK I System clock running at one-half ECLK QA0, QA1 O Data at the positive edge of the clock. QB0, QB1 O Data at the negative edge of the clock. D D Q D Q D Q SCLK D Q D Q D Q L D Q L QB0 QB1 QA1 QA0 D Q D Q D Q L D Q L D Q L D Q CE R DDR Registers A B D F C E L K J I ECLK Synch Registers Clock Transfer and Gearing Registers Note: Simplified version does not show CE/SET/RST details. All latches are transparent when LOW.12-108 LatticeECP3 High-Speed I/O Interface Figure 12-94. IDDRX2D1 Waveform ECLKSYNCA ECLKSYNCA is used in x2 gearing Tx interfaces to synchronize the signals generated from the ECLK after RESET. These signals include the SCLK, DQCLK0/DQCLK1 and DQSW for DDR memory interfaces. This module will STOP the ECLK to the CLKDIV and DQSBUF modules until the RESET is released. Asserting the STOP input of the ECLKSYNC will stop the ECLK output. When the STOP signal is released, every clock toggling from the second rising edge of the ECLK input will be output from this block. This block resides after the muxes for edge clock sources and before driving onto the actual edge clock. Figure 12-95 shows the ECLKSYNCA primitive symbol. Figure 12-95. ECLKSYNCA Symbol Table 12-27 lists the port descriptions of the ECLKSYNCA primitive. Data ECLK E F C QA1 QB1 D B P0 N0 P1 N1 I J L XX N0 XX P0 XX N1 XX P1 QA0 QB0 XX P0 P1 XX N0 N1 P0 N0 N1 P1 XX P0 P1 XX N0 N1 XX P0 P1 XX N0 N1 K XX P0 XX N0 SCLK P2 N2 P3 N3 ECLKSYNCA STOP ECLKO ECLK eclk12-109 LatticeECP3 High-Speed I/O Interface Table 12-27. ECLKSYNCA Port Descriptions Figure 12-96 is a waveform that shows this operation. Figure 12-96. ECLKSYNC Operation This will stop the ECLK to the CLKDIV and DQSBUF until after these blocks are out if reset. By doing this, the user can synchronize the ECLK, SCLK and the DQCLKs used in the ODDR module. It is required that there is at least two clock cycles between the release of RESET and the release of the STOP input to ECLKSYNC. In the IPexpress-generated module, a soft IP consisting of two flip-flops is used to generate this delayed STOP signal to ECLKSYNC. The reset input to the CLKDIV and DQSBUF is used as an input to these two flip-flops. The clock input to these flip-flops must be slower than the ECLK. Refer to the GDDRX2_TX.Aligned, GDDRX2_TX.DQSDLL.Centered and GDDRX2_TX.PLL.Centered interface descriptions in the High-Speed DDR Interface Details section. DELAYC Data going to the DDR registers can be optionally delayed using the delay block. The DELAYC block is used to compensate for clock injection delay times. The amount of the delay is determined by the software based on the type of interface implemented using the Interface ID attribute IDDRAPPS. Refer to Interface ID Attribute section for details. If an incorrect Interface ID is used for a given interface, then the DELAYC setting will be incorrect. It is important that the correct Interface ID attribute be assigned for each interface to allow the software to set the correct value for DELAYC. Figure 12-97. DELAYC Symbol Table 12-28. DELAYC Port Names DELAYB Data going to the DDR registers can also be delayed the DELAYB block. Unlike the DELAYC block where the software will control the amount of data delay, DELAYB block will allow user to control the amount of data delay. This block receives 4-bit delay control. The 4-bit delay can be set by using static delay values or can be dynamically Port Name I/O Definition ECLK I Edge clock input STOP I Signal used to stop the edge clock ECLKO O Edge clock output Port Name I/O Description A I DDR input from sysIO™ buffer Z O Delayed output A Z DELAYC12-110 LatticeECP3 High-Speed I/O Interface controlled by the user logic. DELAYB can only be used when the interface type is dynamic. See the Building Generic High-Speed Interfaces section for details. The delay can be adjusted in 35ps steps. The user can choose from two types of delay values: 1. Dynamic – The delay value is controlled by the user logic using the inputs DEL[3:0] of the DELAYB block. 2. User-Defined – In this mode, the user chooses a static delay value from one of the 16 delay values. This will tie the inputs DEL[3:0] of the DELAYB block to a fixed value depending on the value chosen. Figure 12-98 shows the primitive symbol for the DELAYB mode. Figure 12-98. DELAYB Symbol Table 12-29 lists the port names and descriptions for the DELAYB primitive. Table 12-29. DELAYB Port Names Output DDR Primitives The output DDR primitives represent the output DDR module used to generate both the generic DDR output data and the DDR memory interface data. There are two available modes for DDR output registers. One is used to implement DDRX1 gearing and the other for DDRX2 gearing. ODDRXD This primitive will implement the output register block in x1 gearing mode. This mode is used to implement DDR/DDR2 memory interfaces on the “E” and “EA” devices. It is also used to generate the generic DDRX1 data on “E” devices. Figure 12-99 shows the ODDRXD primitive symbol and its I/O ports. Figure 12-99. ODDRXD Symbol Table 12-30 provides a description of all I/O ports associated with the ODDRXD primitive. Port Name I/O Definition A I DDR input from the sysIO buffer DEL (0:3) I Delay inputs Z O Delay DDR data A DEL[3:0] Z DELAYB Q SCLK Q DA DB DQCLK1 ODDRXD12-111 LatticeECP3 High-Speed I/O Interface Table 12-30. ODDRXD Ports Figure 12-100 shows the LatticeECP3 Output Register Block configured in the ODDRXD mode. Figure 12-100. Output Register Block in ODDRXD Mode Note: Tristate control for ODDRXD can only be implemented using the OFD1S3AX module. If this module is not implemented in the user’s design then software will infer this module. The clock used in the OFD1SAX should be the same as the one used in the ODDRXD module. This module will not support tristate inversion. Figure 12-101 shows the ODDRXD timing waveform. Port Name I/O Definition SCLK I System CLK or ECLK DA I Data at the positive edge of the clock DB I Data at the negative edge of the clock DQCLK1 I Clock output at frequency of SCLK used for output gearing Q O DDR data output D Q CE R Q DB D Q DA D Q L 1 0 SCLK DQCLK1 Note: All latches are transparent when LOW. D Q CE R D A D Q (tristate) Clock Transfer Registers DDR Gearing and ISI Correction ODDRXD OFD1S3AX Data Output12-112 LatticeECP3 High-Speed I/O Interface Figure 12-101. ODDRXD Waveform ODDRXD1 This element is used to generate the generic DDRX1 data on “EA” devices. The ODDRXD1 in the “EA” device does not require the DQCLK1 control signal from the DQSBUF block. This makes the “EA” device more flexible for placement than “E” devices. Figure 12-102 shows the ODDRXD1 primitive symbol and its I/O ports. Figure 12-102. ODDRXD1 Symbol (“EA” Devices) Table 12-31 provides a description of all I/O ports associated with the ODDRXD1 primitive. Table 12-31. ODDRXD1 Ports Figure 12-103 shows the LatticeECP3 Output Register Block configured in the ODDRXD1 mode. Port Name I/O Definition SCLK I System CLK or ECLK DA I Data at the positive edge of the clock DB I Data at the negative edge of the clock Q O DDR data output SCLK P0 P0 N0 P1 P2 P2 N2 P3 N3 P3 P4 N0 N0 N1 N2 N3 N4 N1 N2 N3 N4 P0 P1 P2 P3 P4 Q (tristate) DA DB Q (data) DQCLK1 A D ODDRXD1 SCLK DA DB Q12-113 LatticeECP3 High-Speed I/O Interface Figure 12-103. Output Register Block in ODDRXD1 Mode (“EA” Devices) Note: Tristate control for ODDRXD1 can only be implemented using the OFD1S3AX module. If this module is not implemented in the user’s design then software will infer this module. The clock used in the OFD1SAX should be the same as the one used in the ODDRXD1 module. This module will not support tristate inversion. Figure 12-104. ODDRXD1 Waveform ODDRX2D The ODDRX2D primitive implements the output register for DDR3 memory and generic DDRX2 write functions. Figure 12-105 shows the ODDRX2D primitive symbol and its I/O ports. D Q CE R Q DB D Q DA D Q 1 0 SCLK D Q CE R D A D Q (tristate) Clock Transfer Registers DDR Gearing and ISI Correction ODDRXD1 OFD1S3AX Data Output Note: All latches are transparent when LOW. SCLK Q (tristate) DA DB D (tristate) Q (data)12-114 LatticeECP3 High-Speed I/O Interface Figure 12-105. ODDRX2D Symbol Table 12-32 provides a description of all I/O ports associated with the ODDRX2D primitive. Table 12-32. ODDRX2D Ports ODDRTDQA The ODDRTDQA primitive implements the tristate register block for DDR3 memory and generic x2 DDR write functions. Figure 12-106 shows the ODDRTDQA primitive symbol and its I/O ports. Figure 12-106. ODDRTDQA Symbol Figure 12-33 provides a description of all I/O ports associated with the ODDRTDQA primitive. Port Name I/O Definition SCLK I System CLK or ECLK DA0 I First data at the positive edge of the clock DB0 I First data at the negative edge of the clock DA1 I Second data at the positive edge of the clock DB1 I Second data at the negative edge of the clock DQCLK0 I Clock Output at frequency of SCLK used for output gearing DQCLK1 I Clock output at frequency of SCLK used for output gearing (90° shifted from DQCLK0) Q O DDR data output Q SCLK Q DQCLK0 DA1 DA0 DB0 DB1 DQCLK1 ODDRX2D ODDRTDQA TA SCLK Q DQCLK1 DQCLK012-115 LatticeECP3 High-Speed I/O Interface Table 12-33. ODDRTDQA Ports Figure 12-107. Output Register Block in ODDRX2D/ODDRTDQA Mode Figure 12-107 shows the LatticeECP3 Output Register Block configured in the ODDRX2D and ODDRTDQA tristate modes. Note: Tristate control for ODDRX2D can only be implemented using the ODDRTDQA module. The clock used in the ODDRTDQA should be the same as the one used in the ODDRX2D module. This module will not support tristate inversion. Port Name I/O Definition SCLK I System CLK or ECLK TA I Tristate input DQCLK0 I Clock output at frequency of SCLK used for output gearing DQCLK1 I Clock output at frequency of SCLK used for output gearing (90° shifted from DQCLK0) Q O DDR tristate output D Q D Q Q Q D Q DB1 D Q DA0 DA1 DB0 D Q L L SCLK DQCLK1 DQCLK0 Note: All latches are transparent when LOW. ISI D Q CE R TA D Q A B C D C1 D1 (tristate) Clock Transfer Registers DDR Gearing and ISI Correction ODDRX2D ODDRTDQA Data Output SCLK DQCLK1 DQCLK0 11 10 00 01 D Q CE R12-116 LatticeECP3 High-Speed I/O Interface On the ODDRX2, it is required that the SCLK be in correct phase with DQCLK1 for the data to be captured correctly inside the ODDRX2. The figure below explains the correct relationship between the SCLK and DQCLK1. SCLK edge must be delayed to occur after the DQCLK1 edge for the data to be captured without any glitches. Figure 12-108. Correct DQCLK1 Polarity Figure 12-109. Incorrect DQCLK1 Polarity The soft IP, ECLKSYNCA, CLKDIVB, DQSBUFE1 and the SCLK routing delay will ensure the correct phase relationship between SCLK and DQCLK inside the ODDRX2 module. The user must generate the interface using IPexpress to guarantee this delay is achieved. ODDRXDQSA The ODDRXDQSA primitive implements the output register for generating the DQS strobe signal for DDR and DDR2 memory Figure 12-110 shows the ODDRXDQSA primitive symbol and its I/O ports. ECLK A/B C/D DQCLK1 DQCLK0 SCLK DQCLK1 DQCLK0 P0/N0 P2/N2 P1/N1 P3/N3 N0 P0 N1 P1 N2 P2 N3 P3 A/B C/D DQCLK1 DQCLK0 SCLK DQCLK1 DQCLK0 P0/N0 P2/N2 P1/N1 P3/N3 N0 P0 N1 P1 N2 P2 N3 P312-117 LatticeECP3 High-Speed I/O Interface Figure 12-110. ODDRXDQSA Symbol Table 12-34 provides a description of all I/O ports associated with the ODDRXDQSA primitive. Table 12-34. ODDRXDQSA Ports ODDRTDQSA The ODDRTDQSA primitive implements the tristate register block for DDR/DDR2 and DDR3 memory DQS output clock generation. Figure 12-111 shows the ODDRTDQSA primitive symbol and its I/O ports. Figure 12-111. ODDRTDQSA Symbol Table 12-35 provides a description of all I/O ports associated with the ODDRTDQSA primitive. Table 12-35. ODDRTDQSA Ports Figure 12-112 shows the LatticeECP3 Output Register Block configured in the ODDRXDQSA and ODDRTDQSA tristate modes. Port Name I/O Definition SCLK I System CLK or ECLK DA I Data input DQSW I DQS write clock DQCLK1 I Clock output at frequency of SCLK used for output gearing DQSTCLK O DQS tristate clock Q O DQS data output Port Name I/O Definition SCLK I System CLK or ECLK DB I Data input DQSW I DQS write clock DQSTCLK I DQS tristate Clock TA I Tristate input Q O DQS tristate output ODDRXDQSA SCLK Q DA DQCLK1 DQSW DQSTCLK ODDRTDQSA TA SCLK Q DB DQSTCLK DQSW12-118 LatticeECP3 High-Speed I/O Interface Figure 12-112. Output Register Block in ODDRXDQSA/ODDRTDQSA Mode Note: Tristate control for ODDRXDQSA can only be implemented using the ODDRTDQSA module. The clock used in the ODDRTDQSA should be the same as the one used in the ODDRXDQSA module. This module will not support tristate inversion. Figure 12-113 shows the ODDRXDQSA and ODDRTDQSA timing waveform. Figure 12-113. ODDRXDQSA/ODDRTDQSA Waveform D Q CE R Q DB0 1 0 SCLK DQCLK1 D Q CE R TA D Q A D Q (tristate) Clock Transfer Registers DDR Gearing & ISI Correction ODDRXDQSA ODDRTDQSA D Q L 1 0 D Q 2E D Q 2E DQSW 0 DB DQSTCLK DQS Output DQSW DQSTCLK DQCLK1 DQSW Q E A D SCLK DQS TRI DB0 0 TA DB P0 P0 P1 P1 P2 P2 P3 P3 P4 P4 P0 P2 P312-119 LatticeECP3 High-Speed I/O Interface ODDRX2DQSA The ODDRX2DQSA primitive implements the output register for generating the DQS strobe signal for DDR3 memory interfaces. Figure 12-114 shows the ODDRX2DQSA primitive symbol and its I/O ports. Figure 12-114. ODDRX2DQSA Symbol Table 12-36 provides a description of all I/O ports associated with the ODDRX2DQSA primitive. Table 12-36. Table 33 ODDRX2DQSA Ports Table 12-115 shows the LatticeECP3 Output Register Block configured in the ODDRX2DQSA and ODDRTDQSA tristate mode. Port Name I/O Definition SCLK I System CLK or ECLK DB0 I Data input DB1 I Data input DQSW I DQS write clock DQCLK0 I Clock output at frequency of SCLK used for output gearing DQCLK1 I Clock output at frequency of SCLK and shifted 90°, used for output gearing DQSTCLK O DQS tristate clock Q O DDR data output SCLK Q DB0 DB1 DQCLK1 ODDRX2DQSA DQSW DQSTCLK DQCLK012-120 LatticeECP3 High-Speed I/O Interface Figure 12-115. Output Register Block in ODDRX2DQSA/ODDRTDQSA Mode Note: Tristate control for ODDRX2DQSA can only be implemented using the ODDRTDQSA module. The clock used in the ODDRTDQSA should be the same as the one used in the ODDRX2DQSA module. This module will not support tristate inversion. Figure 12-116 shows the ODDRX2DQSA timing waveform. D Q D Q CE R Q D Q L 11 10 00 01 ISI D Q CE R D Q A B C D C1 Q (tristate) Clock Transfer Registers DDR Gearing & ISI Correction Ouput Register Block for DQS Tristate Register Block for DQS DQS Output D Q L 1 0 D Q 2E D Q 2E 0 0 DQSTCLK SCLK DQCLK1 DQCLK0 Note: All latches are transparent when LOW. TA DQSW DB DQSW DQSTCLK DB0 DB112-121 LatticeECP3 High-Speed I/O Interface Figure 12-116. ODDRX2DQSA/ODDRTDQSA Waveform Interface ID Attribute This attribute provides an ID setting for each of the high-speed interfaces in the LatticeECP3 “EA” device. IDDRAPPS attribute is used for input interfaces and ODDRAPPS attribute is used for output interfaces. The value for these is pre-determined for each high-speed DDR interfaces. These attributes will be set to the correct values when the interfaces are generated by IPexpress. If an IDDRAPPS or ODDRAPPS attribute is not set for a given interface, the software will error out. If an attribute value is not set correctly for a given interface, then the wrong data delay is used in the DELAYC element for that interface. The IDDRAPPS and ODDRAPPS attributes are strings. They are only generated for “EA” devices. Table 12-37. Interface ID (IDDRAPPS/ODDRAPPS) Attribute Values Interfaces Name Interface ID (Primitive: ATTRIBUTE = Value)1, 2 Generic Interfaces GIREG_RX.SCLK N/A GDDRX1_RX.SCLK.Aligned IDDRXD1: IDDRAPPS = SCLK_ALIGNED GDDRX1_RX.SCLK.Centered IDDRXD1: IDDRAPPS = SCLK_CENTERED GDDRX1_RX.DQS.Aligned IDDRXD: IDDRAPPS = DQS_ALIGNED GDDRX1_RX.DQS.Centered IDDRXD: IDDRAPPS = DQS_CENTERED GDDRX2_RX.ECLK.Aligned IDDRX2D1: IDDRAPPS = ECLK_ALIGNED GDDRX2_RX.ECLK.Centered IDDRX2D1: IDDRAPPS = ECLK_CENTERED GDDRX2_RX.DQS.Aligned IDDRX2D: IDDRAPPS = DQS_ALIGNED GDDRX2_RX.DQS.Centered IDDRX2D: IDDRAPPS = DQS_CENTERED GDDRX2_RX.ECLK.Dynamic IDDRX2D1: IDDRAPPS = ECLK_DYNAMIC GDDRX2_RX.DQS.Dynamic IDDRX2D: IDDRAPPS = DQS_DYNAMIC GDDRX2_RX.PLL.Dynamic IDDRX2D1: IDDRAPPS = PLL_DYNAMIC DQCLK1 DQCLK0 DQSW Q (DQS) E SCLK DQS TRI DB –> TSB TA –> TSA 0 –> D DB1 –> C 0 –> B DB0 –> A P0 N0 P1 P2 P3 P4 N1 N2 N3 N4 P0 N0 P2 P0 N0 N1 P1 N1 P3 P2 N2 P3 N312-122 LatticeECP3 High-Speed I/O Interface ISI Calibration ISI correction is only available in the ODDRX2D or ODDRX2DQSA modes on the left and right sides of the device. ISI calibration settings exist once per output, so each I/O in a DQS-12 group may have a different ISI calibration setting. The ISI Calibration is set using the ISI_CAL attribute. Table 12-38 shows the values that can be set for this attribute. Table 12-38. ISI Calibration Attribute The ISI block extends output signals at certain times, as a function of recent signal history, so it can be read at the output signal’s destination. If the output pattern consists of long strings of 0s to long strings of 1s, there are no delays on output signals. However, if there are quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0s will cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the block will stretch out the binary 0. This block is controlled by a 3-bit delay “stretching” control, set in the DQS logic section. There are eight settings in the range from “BYPASS” to “DEL7”. GOREG_TX.SCLK ODDRXD1: ODDRAPPS = SCLK_ALIGNED GDDRX1_TX.SCLK.Centered ODDRXD1: ODDRAPPS = SCLK_CENTERED (CLOCK) ODDRXD1: ODDRAPPS = SCLK_ALIGNED (DATA) GDDRX1_TX.SCLK.Aligned ODDRXD1: ODDRAPPS = SCLK_ALIGNED (CLOCK) ODDRXD1: ODDRAPPS = SCLK_ALIGNED (DATA) GDDRX1_TX.DQS.Centered ODDRXDQSA: ODDRAPPS = DQS_CENTERED (CLOCK) ODDRXD: ODDRAPPS = DQS_ALIGNED (DATA) GDDRX2_TX.Aligned ODDRX2D: ODDRAPPS = ECLK_ALIGNED (CLOCK) ODDRX2D: ODDRAPPS = ECLK_ALIGNED (DATA) GDDRX2_TX.DQSDLL.Centered ODDRX2DQSA: ODDRAPPS = DQS_CENTERED (CLOCK) ODDRX2D: ODDRAPPS = DQS_ALIGNED (DATA) GDDRX2_TX.PLL.Centered ODDRX2D: ODDRAPPS = ECLK_CENTERED (CLOCK) ODDRX2D: ODDRAPPS = ECLK_ALIGNED (DATA) GDDRX1_RX.ECLK.Aligned N/A: not a LatticeECP3 “EA” configuration. GDDRX1_RX.ECLK.Centered N/A: not a LatticeECP3 “EA” configuration. DDR Memory Interfaces DDR MEM ODDRXDQSA: ODDRAPPS = DDR_MEM_DQS IDDRXD: IDDRAPPS = DDR_MEM_DQ ODDRXD: ODDRAPPS = DDR_MEM_DQ DDR2 MEM ODDRXDQSA: ODDRAPPS = DDR2_MEM_DQS IDDRXD: IDDRAPPS = DDR2_MEM_DQ ODDRXD: ODDRAPPS = DDR2_MEM_DQ 1. Attribute should be assigned on the corresponding IDDRX/ODDRX primitives. 2. Interface IDs are only valid for LatticeECP3 “EA” devices. Attribute Description Values Software Default ISI_CAL Used to set the ISI Correction values BYPASS, DEL1, DEL2, DEL3, DEL4, DEL5, DEL6, DEL7 BYPASS Table 12-37. Interface ID (IDDRAPPS/ODDRAPPS) Attribute Values (Continued) Interfaces Name Interface ID (Primitive: ATTRIBUTE = Value)1, 212-123 LatticeECP3 High-Speed I/O Interface Migrating Designs from LatticeECP3 “E” to “EA” This section lists the changes in design required when moving from LatticECP3 “E” device to an “EA” device. The LatticeECP3-150EA device was designed as an “E” device in ispLEVER 7.2 SP2. So these changes will also be required if moving a LatticeECP3-150EA design from ispLEVER 7.2 SP2 to ispLEVER 8.0 or later versions. It is required that all LatticeECP3-150EA designs be implemented in ispLEVER 8.0 or newer software. Refer to the section Migrating Designs from ispLEVER 7.2 SP2 to ispLEVER 8.0 to see other changes required when you are moving designs from ispLEVER 7.2 SP2 to ispLEVER 8.0 or later versions of the software. The same changes will apply if moving from ispLEVER 7.2 to the Lattice Diamond design software as well. A summary of the differences between the “E” and “EA” devices are listed below: • DDR x1 interfaces on “E” devices use ECLK (edge clock) as the clock input limiting the number of interfaces to 1 per side. DDR x1 interfaces on “EA” devices use the SCLK clock input, so you can have more than one interface per side of the device. • “E” device requires that DQSBUF be used to implement both x1 and x2 input and output DDR functions. “EA” devices do not require the DQSBUF to implement the input and x1 output DDR functions. X2 output DDR functions will require the use of DQSBUF. • The “E” devices require the data pins to be grouped into DQS groups so that every 10 data bits are locked to a DQS group. This grouping is not required on the “EA” devices for inputs and 1x output interfaces. 2x output interfaces on “EA” would require DQS grouping. • The primitives used for Generic DDR input and output functions are different between “E” and “EA”. • All “EA” designs require that the IDDRAPPS/ODDRAPPS be assigned to each interface which is not required on the “E” device. Refer to the section Interface ID Attribute for a description of this attribute. IPexpress-generated modules will contain this attribute. • In DDR and DDR2 memory, the implementation will mostly be same between “E” and “EA” devices. But since DDR and DDR2 use generic DDR to generate the output CLKP/CLKN signal, these must use new primitives on the “EA” device. In addition, all the primitives require the IDDRAPPS/ODDRAPPS attributes to be added for the “EA” device. Refer to the section DDR Software Primitives and Attributes for a detailed description of the primitives. Table 12-39 lists the clocking differences between “E” and “EA” devices for each interface. Table 12-40 lists the differences in library elements used for each interfaces. Refer to the High-Speed DDR Interface Details section for block diagrams of each of the interfaces in the tables below. Table 12-39. “E” to “EA” Clocking Differences “E” Interface Clocking Resource DQS Grouping for Pins Equivalent “EA” Interface Clocking Resource DQS Grouping for Pins GIREG_RX.SCLK SCLK No GIREG_RX.SCLK SCLK No GDDRX1_RX.ECLK.Aligned ECLK Yes GDDRX1_RX.SCLK.Aligned SCLK No GDDRX1_RX.ECLK.Centered ECLK Yes GDDRX1_RX.SCLK.Centered SCLK No GDDRX1_RX.DQS.Aligned DQS Tree Yes GDDRX1_RX.DQS.Aligned DQS Tree Yes GDDRX1_RX.DQS.Centered DQS Tree Yes GDDRX1_RX.DQS.Centered DQS Tree Yes GDDRX2_RX.ECLK.Aligned ECLK Yes GDDRX2_RX.ECLK.Aligned ECLK No12-124 LatticeECP3 High-Speed I/O Interface Table 12-40. “E” to “EA” Primitive Changes Due to the differences described above, some of the “E” interfaces must be regenerated in the software as an “EA” device. Table 12-41 can be used as a guide to determine which interfaces need to be regenerated. When necessary, interfaces should be regenerated using the IPexpress software tool. “E” Interface Primitives Required Equivalent “EA” Interface Primitives Used GIREG_RX.SCLK IFS1P3DX GIREG_RX.SCLK IFS1P3DX GDDRX1_RX.ECLK.Aligned IDDRXD DQSBUFG TRDLLB DLLDELB CLKDIVB GDDRX1_RX.SCLK.Aligned IDDRX1D TRDLLB DLLDELB CLKDIVB GDDRX1_RX.ECLK.Centered IDDRXD DQSBUFG GDDRX1_RX.SCLK.Centered IDDRX1D GDDRX1_RX.DQS.Aligned IDDRXD DQSBUFF DQSDLL GDDRX1_RX.DQS.Aligned IDDRXD DQSBUFF DQSDLL GDDRX1_RX.DQS.Centered IDDRXD DQSBUFF DQSDLL GDDRX1_RX.DQS.Centered IDDRXD DQSBUFF DQSDLL GDDRX2_RX.ECLK.Aligned IDDRX2D DQSBUFE TRDLLB DLLDELB CLKDIV GDDRX2_RX.ECLK.Aligned IDDRX2D1 TRDLLB DLLDELB CLKDIVB GDDRX2_RX.ECLK.Centered IDDRX2D DQSBUFE CLKDIVB GDDRX2_RX.ECLK.Centered IDDRX2D1 CLKDIVB GDDRX2_RX.DQS.Aligned IDDRX2D DQSBUFD DQSDLL PLL GDDRX2_RX.DQS.Aligned IDDRX2D DQSBUFD DQSDLL PLL GDDRX2_RX.DQS.Centered IDDRX2D DQSBUFD DQSDLL CLKDIVB GDDRX2_RX.DQS.Centered IDDRX2D DQSBUFD DQSDLL CLKDIVB GOREG_TX.SCLK OFS1P3DX (data) ODDRXD (clock) DQSBUFG (left/right sides only) GOREG_TX.SCLK OFS1P3DX (data) ODDRXD1 GDDRX1_TX.SCLK.Centered ODDRXD DQSBUFG (left/right sides only) PLL GDDRX1_TX.SCLK.Centered ODDRXD1 PLL GDDRX1_TX.SCLK.Aligned ODDRXD DQSBUFG GDDRX1_TX.SCLK.Aligned ODDRX1D GDDRX1_TX.DQS.Centered ODDRXD (data) ODDRDQSA (clock) DQSBUFF DQSDLL GDDRX1_TX.DQS.Centered ODDRXD (data) ODDRDQSA (clock) DQSBUFF DQSDLL12-125 LatticeECP3 High-Speed I/O Interface Table 12-41. “E” to “EA” Design Conversion Table Migrating Designs from ispLEVER 7.2 SP2 to ispLEVER 8.0 This section lists changes that need to be made to existing designs when migrating from ispLEVER 7.2 SP2 to ispLEVER 8.0 and later versions of the software. The same changes will apply if moving from ispLEVER 7.2 to the Lattice Diamond design software as well. LatticeECP3-70E and LatticeECP3-90E designs: • No HDL changes are required to move the LatticeECP3 “E” generic designs from ispLEVER 7.2 SP2 to ispLEVER 8.0 • It is required to re-run the designs through the software Map, Place and Route. ispLEVER 8.0 has an added Design Rule Check that will flag any general non-dedicated routed used on clock paths to DDR interfaces. • If any of these errors occur, they must be fixed by either changing the clock pin assignment to a dedicated pin or by adding preferences to route the clock on dedicated clock routes. • All the interface rules and placement guidelines specified for the interface must be followed. LatticeECP3-150EA designs: • All “EA” designs were implemented as “E” designs in ispLEVER 7.2 SP2. All “EA” generic DDR designs will have to be regenerated when moving over to ispLEVER 8.0 except for the designs using DQS interfaces. • The requirements listed in the section Migrating Designs from LatticeECP3 “E” to “EA” should be followed when moving “EA” designs from ispLEVER 7.2 SP2 to ispLEVER 8.0. • All modules should be regenerated using IPexpress. • “EA” designs require that an Interface ID attribute, IDDRAPPS or ODDRAPPS, be added to all the IDDR and ODDR elements to indicate the interface topology being used. The software will error out if it does not see this attribute on the DDR elements. These attributes are added automatically when IPexpress is used to generate the interface. Other important migration rules: • All DDR designs must only use one of the pre-defined topologies listed in this technical note. • All DDR interfaces must be generated using the IPexpress software tool. “E” Interface Equivalent “EA” Interface Regeneration Required1 GIREG_RX.SCLK GIREG_RX.SCLK No GDDRX1_RX.ECLK.Aligned GDDRX1_RX.SCLK.Aligned Yes GDDRX1_RX.ECLK.Centered GDDRX1_RX.SCLK.Centered Yes GDDRX1_RX.DQS.Aligned GDDRX1_RX.DQS.Aligned No GDDRX1_RX.DQS.Centered GDDRX1_RX.DQS.Centered No GDDRX2_RX.ECLK.Aligned GDDRX2_RX.ECLK.Aligned Yes GDDRX2_RX.ECLK.Centered GDDRX2_RX.ECLK.Centered Yes GDDRX2_RX.DQS.Aligned GDDRX2_RX.DQS.Aligned No GDDRX2_RX.DQS.Centered GDDRX2_RX.DQS.Centered No GOREG_TX.SCLK GOREG_TX.SCLK Yes GDDRX1_TX.SCLK.Centered GDDRX1_TX.SCLK.Centered Yes GDDRX1_TX.SCLK.Aligned GDDRX1_TX.SCLK.Aligned Yes GDDRX1_TX.DQS.Centered GDDRX1_TX.DQS.Centered No 1. All designs should be regenerated using IPexpress.12-126 LatticeECP3 High-Speed I/O Interface • This technical note must be strictly followed to understand the interface rules, placement guidelines and timing analysis for all interfaces. • ispLEVER 7.2 SP2 allows the use of either the DELAYB or DELAYC element to delay the incoming data. In ispLEVER 8.0, all non-dynamic interfaces must only use the DELAYC element to delay the data input. DELAYB can only be used only for dynamic interfaces. • A new Interface ID attribute IDDRAPPS and ODDRAPPS is required for “EA” devices. The software uses this attribute to determine the delay settings to be programmed into the DELAYC element. Refer to the DDR Software Primitives and Attributes section for the values to be used for this attribute. In ispLEVER 8.0 the software will error out if this attribute is not assigned for “EA” devices. “E” devices do not require this attribute. • It is required that clocks connected to the DDR registers only use dedicated clock resources. No general routing should be used on these clocks. A new DRC check was added to ispLEVER 8.0 Place and Route that will generate an error message if the clocks to any of the DDR elements are not using a dedicated clock route. This check will also generate an error message if the clock going to the PLL/DLL that is generating the DDR clocks is not using a dedicated route. As a result, you may see designs passing all DRC checks in ispLEVER 7.2 SP2 fail in ispLEVER 8.0. It is recommended that this problem be fixed by changing either clock location or adding preferences to reroute the clock using a dedicated clock route. Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: techsupport@latticesemi.com Internet: www.latticesemi.com12-127 LatticeECP3 High-Speed I/O Interface Revision History Date Version Change Summary February 2009 01.0 Initial release. June 2009 01.1 Updated for ispLEVER 7.2 SP2. Some of the implementation listed here may not be valid if using ispLEVER 7.2 SP1. November 2009 01.2 Updated for the LatticeECP3 “EA” device and for ispLEVER 8.0 software support. Includes new methodology to implement DDR interfaces in LatticeECP3 devices. November 2009 01.3 Updated DDR3 termination and pin assignments. March 2010 01.4 Updated the termination scheme for DDR3 to external VTT termination. April 2010 01.5 Updated to reflect all the Generic DDR and DDR memory enhancements made in ispLEVER 8.0 Service Pack 1. June 2010 01.6 Added Appendix B. Building SDR/DDR Interfaces Using IPexpress in Diamond. April 2011 01.7 Updated to include additional clarification in the Generic Timing Analysis, DDR Primitive and Attribute and DDR3 Clock Synchronization modules. September 2011 01.8 Updated the DDR3 Pinout Guidelines. Added the DDR3 Termination Guidelines and Layout Considerations. Updated the DQSDLL Update Control section. December 2011 01.9 Updated Generic DDR Design Guidelines with new sections on Design guidelines, Clocking guidelines, Common software errors and valid window calculation. Updated DDR3 Clock Synchronization Module with new table for DDR3 clock and PGROUP locations. Updated DDR3 Pinout Guidelines with a new sections on DDR3 pin placements for Improved Noise Immunity and table for DQS Group Allocation. Updated ECLKSYNCA & ODDRX2D in the DDR Software Primitives and Attributes section. Updated GDDRX2_TX.DQSDLL.Centered Interface with the requirement that CLKOUT must be assigned to DQS pin and this pin cannot support LVDS IO Standard. Updated DQSDLLB with domain transfer consideration on the UDDCNTLN input. February 2012 02.0 Updated document with new corporate logo. November 2012 02.2 Updated GDDRX1_RX.DQS.Centered Interface (“E” and “EA” Devices) diagram. Updated DQSDLL Configuration text section and removed DQSDLL Attributes table. Updated IDDRXD1 Waveform diagram. Updated ODDRXD Waveform diagram. April 2013 02.3 Updated GDDRX2_RX.DQS.Aligned Interface (“E” and “EA” Devices) figure. Updated Interface Rules for GDDRX1_RX.DQS.Centered, GDDRX1_RX.DQS.Aligned, GDDRX2_RX.DQS.Aligned, GDDRX2_RX.DQS.Centered, GDDRX2_TX.DQSDLL.Centered, and GDDRX2_TX.PLL.Centered. Update the Pin Placement Guidelines for High-Speed Interfaces table. Added information to the High-Speed Clock Bridge (“EA” Devices) section.12-128 LatticeECP3 High-Speed I/O Interface Appendix A. Building DDR Interfaces Using IPexpress in ispLEVER 7.2 SP2 This appendix describes the interface generation for DDR Generic and DDR Memory using IPexpress in ispLEVER 7.2 SP2. It is highly recommended to update your software to the latest version. This appendix is only for reference. IPexpress can be used to configure and generate the DDR Memory Interface and Generic DDR Module. The tool will generate an HDL module that will contain the DDR primitives. This module can be used in the top-level design. To implement the correct clocking structures to be used for high-speed source synchronous interfaces, see the High-Speed DDR Interface Details section. Figure 12-117 shows the main window of IPexpress. The DDR_Generic and DDR_MEM options are under Architecture. Figure 12-117. IPexpress Main Window12-129 LatticeECP3 High-Speed I/O Interface DDR Generic Figure 12-117 shows the main window when DDR_GENERIC is selected. The only entry required in this window is the module name. Other entries are set to the project settings. The user may change these entries if desired. After entering the module name, click on Customize to open the Configuration Tab window as shown in Figure 12-118. Figure 12-118. IPexpress Main Window for DDR_Generic12-130 LatticeECP3 High-Speed I/O Interface Configuration Tab The Configuration Tab lists all user-accessible attributes with default values set. Upon completion, click Generate to generate source and constraint files. The user may choose to use the .lpc file to load parameters. Figure 12-119. Configuration Tab for DDR_Generic The user can change the Mode parameter to choose either Input or Output Tristate DDR module. The other configuration parameters will change according to the mode selected. The delay and parameter are only available for Input modes. Table 12-42 describes all user parameters in the IPexpress GUI and their usage. Table 12-42. User Parameters in the IPexpress GUI User Parameter Description Values/Range Default Mode Mode selection for the DDR block Input, Output, Tristate Input Data Width Width of the data bus 1-64 8 Gearing Ratio Gearing ratio selection 1x, 2x 1x Delay Input delay configuration Dynamic, User Defined, Fixed User Defined FDEL User-defined delay values. Available only when Delay is configured to User Defined. 0-15 012-131 LatticeECP3 High-Speed I/O Interface DDR_MEM Figure 12-120 shows the main window when DDR_MEM is selected. Similar to the DDR_Generic, the only entry required here is the module name. Other entries are set to the project settings. The user may change these entries if desired. After entering the module name, click on Customize to open the Configuration Tab window as shown in Figure 12-120. Although the user can generate the DDR3_MEM using IPexpress in ispLEVER 7.2 SP2, it is recommended that the LatticeECP3 DDR3 Memory Controller IP Core be referred to prior to building any DDR3 memory controllers with LatticeECP3 devices. Figure 12-120. IPexpress Main Window for DDR_MEM12-132 LatticeECP3 High-Speed I/O Interface Configuration Tab The Configuration Tab lists all user-accessible attributes with default values set. Upon completion, click Generate to generate source and constraint files. The user may choose to use the .lpc file to load parameters. Figure 12-121. Configuration Tab for DDR_MEM The user can change the Mode parameter to the DDR, DDR2 or DDR3 interface. The other configuration parameters will change according to the mode selected. The Number of DQS parameter determines the number of DDR Interfaces. The software will assume there are eight data bits for every DQS. The user can also choose the frequency of operation; the DDRDLL will be configured to this frequency. It is recommended that the Lock/Jitter be enabled if the DDR interface is running at 133 MHz or higher. ISI Calibration is only allowed for DDR3 configuration. The parameters available depend on the mode selected. Tables 35, 36 and 37 describe all user parameters in the IPexpress GUI and their usage for modes DDR, DDR2 and DDR3.12-133 LatticeECP3 High-Speed I/O Interface Table 12-43. User Parameters in the IPexpress GUI when in DDR Mode Table 12-44. User Parameters in the IPexpress GUI when in DDR2 Mode Table 12-45. User Parameters in the IPexpress GUI when in DDR3 Mode User Parameter Description Values/Range Default I/O Buffer Configuration I/O standard used for the interface. This also depends on the mode selected. SSTL25_I, SSTL25_II SSTL25_I Data Width Width of the data bus. 8-64 8 Number of DQS Number of DQS will determine the number of DQS groups 1, 2, 4, 8 1 Frequency of DQS DDR Interface Frequency. This is also input to the DDR DLL. The values will depend on the mode selected. 100 MHz, 133MHz, 166MHz, 200MHz 200 MHz Lock/Jitter Sensitivity DLL sensitivity to jitter. High, Low High User Parameter Description Values/Range Default I/O Buffer Configuration I/O standard used for the interface. This also depends on the mode selected. SSTL18_I, SSTL18_II SSTL18_I Data Width Width of the data bus. 8-64 8 Number of DQS Number of DQS will determine the number of DQS groups 1, 2, 4, 8 1 Frequency of DQS DDR Interface Frequency. This is also input to the DDR DLL. The values will depend on the mode selected. 166 MHz, 200 MHz, 266 MHz 200 MHz Lock/Jitter Sensitivity DLL sensitivity to jitter. High, Low High DQS Buffer Configuration for DDR2 DQS buffer can be optionally configured as Differential for DDR2. On/Off Off User Parameter Description Values/Range Default I/O Buffer Configuration I/O standard used for the interface. This also depends on the mode selected. SSTL15_I, SSTL15_II SSTL15_I Data Width Width of the data bus. 8-64 8 Number of DQS Number of DQS will determine the number of DQS groups 1, 2, 4, 8 1 Frequency of DQS DDR Interface Frequency. This is also input to the DDR DLL. The values will depend on the mode selected. 400 MHz 400 MHz Lock/Jitter Sensitivity DLL sensitivity to jitter. High, Low High ISI Calibration ISI calibration setting for DDR3 output. BYPASS, DEL1, DEL2, DEL3, DEL4, DEL5, DEL6, DEL7 BYPASS12-134 LatticeECP3 High-Speed I/O Interface Appendix B. Building SDR/DDR Interfaces Using IPexpress in Diamond This appendix describes the interface generation for DDR Generic and DDR Memory using IPexpress in Lattice Diamond design software. The IPexpress tool is used to configure and generate all the high-speed interfaces described in this document. IPexpress generates a complete HDL module including clocking requirements for each of the interfaces. For a detailed block diagram of each interface generated by IPexpress, see the section High-Speed DDR Interface Details. IPexpress can be opened from the Tools menu in Project Navigator. All DDR modules are located under Architecture Modules > IO. This section will cover SDR and DDR_GENERIC. DDR_MEM as discussed in the Implementing DDR/DDR2/DDR3 Memory Interfaces section. Figure 12-122. IPexpress Main Window Select the type of interface you would like to build and enter the name of the module. Figure 12-122 shows the type of interface selected as “SDR” and the module name entered. Each module can then be configured by clicking the Customize button. Building SDR Modules Choose the interface type SDR, enter the module name and click the Customize to open the configuration tab. Figure 12-123 shows the Configuration Tab for the SDR module in IPexpress. Table 12-46 lists the various configurations options available for SDR modules.12-135 LatticeECP3 High-Speed I/O Interface Figure 12-123. SDR Configuration Tab Table 12-46. SDR Configuration Parameters GUI Option Description Values Default Interface Type Type of interface (transmit or receive) Transmit, Receive Receive I/O Standard for this Interface I/O standard to be used for the interface. Transmit and Receive: LVCMOS25, LVCMOS18, LVCMOS15, LVCMOS12, LVCMOS33, LVCMOS33D, LVDS25, BLVDS25, MLVDS, LVPECL33, HSTL18_I, HSTL18_II, HSTL18D_I, HSTL18D_II, HSTL15_I, HSTL15D_I, SSTL33_I, SSTL33_II, SSTL33D_I, SSTL33D_II, SSTL25_I, SSTL25_II, SSTL25D_I, SSTL25D_II, SSTL18_I, SSTL18_II, SSTL18D_I, SSTL18D_II, SSTL15, SSTL15D, PCI33, LVTTL33 Transmit only: RSDS, MINILVDS, PPLVDS, LVDS25E, RSDSE LVCMOS25 Bus Width for this Interface Bus size for the interface. 1 - 256 16 Clock Frequency for this Interface Speed at which the interface will run. 1 - 200 200 Bandwidth (Calculated) Calculated from the clock frequency entered. (Calculated) (Calculated) Interface Interface selected based on previous entries. Transmit: GOREG_TX.SCLK Receive: GIREG_RX.SCLK (default) GIREG_RX.S CLK Clock Inversion Option to invert the clock input to the I/O register. DISABLED, ENABLED DISABLED12-136 LatticeECP3 High-Speed I/O Interface Building DDR Generic Modules Choose interface type DDR_GENERIC, enter the module name and click Customize to open the configuration tab. Figure 12-124. “DDR_Generic” Selected in Main IPexpress Window When you click Customize, DDR modules have a Pre-Configuration tab and a Configuration tab. The Pre-Configuration tab allows users to enter information about the type of interface to be built. Based on the entries in the Preconfiguration tab, the Configuration tab will be populated with the best interface selection. The user can also, if necessary, override the selection made for the interface in the Configuration tab and customize the interface based on design requirements. Figure 12-22 shows the Pre-Configuration tab for DDR generic interfaces. Table 12-47 lists the various parameters in the tab. Data Path Delay Data input can be optionally delayed using the DELAY block. Bypass, Dynamic1 , User Defined Bypass FDEL for User Defined If Delay type selected above is user defined, delay values can be entered with this parameter. 0 to 152 0 1. When Delay type Dynamic is selected, the 16-step delay values must be controlled from the user’s design. 2. A FDEL is a fine-delay value that is additive. The delay value for a FDEL can be found in the LatticeECP3 Family Data Sheet. Table 12-46. SDR Configuration Parameters (Continued) GUI Option Description Values Default12-137 LatticeECP3 High-Speed I/O Interface Figure 12-125. DDR Generic Pre-Configuration Tab Table 12-47. Pre-Configuration Tab Settings GUI Option Description Values Interface Type (Transmit or Receive) Type of interface (Receive or Transmit) Transmit, Receive I/O Standard for this Interface I/O Standard used for the interface Transmit and Receive: LVCMOS25,LVCMOS18, LVCMOS15, LVCMOS12, LVCMOS33, LVCMOS33D, LVDS25, BLVDS25, MLVDS, LVPECL33, HSTL18_I, HSTL18_II, HSTL18D_I, HSTL18D_II, HSTL15_I, HSTL15D_I, SSTL33_I, SSTL33_II, SSTL33D_I, SSTL33D_II, SSTL25_I, SSTL25_II, SSTL25D_I, SSTL25D_II, SSTL18_I, SSTL18_II, SSTL18D_I, SSTL18D_II, SSTL15, SSTL15D, PCI33, LVTTL33 Transmit only: RSDS, MINILVDS, PPLVDS, LVDS25E, RSDSE Number of interfaces on a side of a device Number of interfaces to be implemented per side. This is used primarily for narrow bus width interfaces (<10). Otherwise it is recommended to leave this at 1. 1 to 8 Bus Width for this Interface Bus width for each interface. If the number of interfaces per side is >1 then the bus width per interface is limited to 10. If number of interfaces per side is >1 and if using differential I/O standards then bus width is limited to 5. 1-256 Clock Frequency for this Interface Interface speed 2 - 500 MHz Interface Bandwidth (Calculated) Bandwidth is calculated from the clock frequency. Calculated12-138 LatticeECP3 High-Speed I/O Interface Based on the selections made in the Pre-Configuration Tab, the Configuration Tab is populated with the selections. Figure 12-126 shows the Configuration Tab for the selections made in the Pre-Configuration Tab. Figure 12-126. DDR Generic Configuration Tab The checkbox at the top of this tab indicates that the interface is selected based on entries in the Pre-Configuration tab. The user can choose to change these values by disabling this entry. Note that IPexpress chooses the most suitable interface based on selections made in the Pre-Configuration tab. Table 12-48 lists the various parameters in the Configuration tab. Clock to Data Relationship at the Pins Relationship between clock and data. Edge-to-Edge, Centered, Dynamic Data Phase Alignment Required1 ,Dynamic Clock Phase Alignment Required 1. Dynamic Phase Alignment is only available for x2 interfaces (i.e, when the clock frequency is higher than 200 MHz). Table 12-47. Pre-Configuration Tab Settings (Continued) GUI Option Description Values12-139 LatticeECP3 High-Speed I/O Interface Table 12-48. Configuration Tab Settings GUI Option Description Values Default Value Interface Selection Based on Pre-configuration Indicates interface is selected based on selection made in the Pre-configuration tab. Disabling this checkbox allows users to make changes if needed. ENABLED, DISABLED ENABLED Interface Type Type of interface (receive or transmit) Transmit, Receive Receive I/O Standard I/O standard used for the interface All the ones listed in the Pre-configuration tab LVCMOS25 Clock Frequency Speed of the interface 2 to 500 MHz 200 MHz Gearing Ratio DDR register gearing ratio (1x or 2x) 1x, 2x 1x Alignment Clock to data alignment Edge-to-Edge, Centered, Dynamic Data Phase Alignment Required, Dynamic Clock Phase Alignment Required Edge-to-Edge Number of Interfaces Number of interfaces to be implemented per side. This is primarily used for narrow bus width interfaces (<10), otherwise it is recommended to leave this at 1. 1 to 8 1 Bus Width Bus width for each interface. If the number of interfaces per side is >1 then the bus width per interface is limited to 10. If the number of interfaces per side is >1 and if using differential I/O standards then the bus width is limited to 5. 1 to 256 10 Phase Adjust Module used for phase shifting input clock. TRDLLB/DLLDELB, PLL1 TRDLLB/DLLDELB Clock Divider Module used for generation of SCLK from ECLK. CLKDIVB, TRDLLB2 CLKDIVB Interface Shows list of all valid high-speed interfaces for a given configuration. See Table 12-5 for interfaces available for a given configuration. GDDRX1_RX.SCLK. Aligned (EA devices); GDDRX1_RX.ECLK. Aligned (E devices) Data Path Delay Data input can be optionally delayed using the DELAY block. Value is selected based on Interface Type. Bypass, Fixed, Dynamic3 Fixed Number of DQS Groups Enabled when a DQS interface is selected in the Interface selection. 1 to 8 Number of DQ: DQS Group1 to DQS Group8 This option can be used to change the number of DQ assigned to each DQS lane. Each DQS lane can support up to 10 DQ. 1 to 10 1. Only available when using GDDRX2_RX.ECLK.Aligned interface. 2. Only available when using GDDRX2_RX.SCLK Aligned interface. 3. When Dynamic Delay is selected, the 16-step delay values must be controlled from the user’s design.12-140 LatticeECP3 High-Speed I/O Interface Table 12-49 shows how the interfaces are selected by IPexpress based on the selections made in the Pre-Configuration tab. Table 12-49. IPexpress Interface Selection The implementation for several of the interfaces described above differs between the “E” and “EA” devices. Refer to the High-Speed DDR Interface Details section to see implementation details for “E” and “EA” devices. The Data Delay setting for each interface is predetermined and cannot be changed by the user. User can only control Data Delay values when using a dynamic interface. Note: Some modules generated by IPexpress have a SCLK and ECLK output port. If present, this port must be used to drive logic outside the interface driven by the same signal. In these modules, the input buffer for the clock is inside the IPexpress module and therefore cannot be used to drive other logic in the top level. Building DDR Memory Interfaces The IPexpress tool is used to configure and generate the DDR, DDR2 and DDR3 memory interfaces. To see the detailed block diagram for each interface generated by IPexpress see the Memory Read Implementation and Memory Write Implementation sections. IPexpress can be opened from the Tools menu in Project Navigator. All the DDR modules are located under Architecture Modules > IO. DDR_MEM is used to generate DDR memory interfaces. Device Selected Interface Type Gearing Ratio1 Alignment Number of Interfaces Interface EA Receive 1x Edge-to-Edge 1 GDDRX1_RX.SCLK.Aligned EA Receive 1x Centered 1 GDDRX1_RX.SCLK.Centered E Receive 1x Edge-to-Edge 1 GDDRX1_RX.ECLK.Aligned E Receive 1x Centered 1 GDDRX1_RX.ECLK.Centered E, EA Receive 1x Edge-to-Edge >1 GDDRX1_RX.DQS.Aligned E, EA Receive 1x Centered >1 GDDRX1_RX.DQS.Centered E, EA Receive 2x Edge-to-Edge 1 GDDRX2_RX.ECLK.Aligned E, EA Receive 2x Centered 1 GDDRX2_RX.ECLK.Centered E, EA Receive 2x Edge-to-Edge >1 GDDRX2_RX.DQS.Aligned E, EA Receive 2x Centered >1 GDDRX2_RX.DQS.Centered EA Receive 2x Dynamic 1 GDDRX2_RX.ECLK.Dynamic (Default) EA GDDRX2_RX.DQS.Dynamic2 EA GDDRX2_RX.PLL.Dynamic2 E, EA Transmit 1x Centered 1 GDDRX1_TX.SCLK.Centered E, EA Transmit 1x Edge-to-Edge 1 GDDRX1_TX.SCLK.Aligned E, EA Transmit 1x Centered >1 GDDRX1_TX.DQS.Centered EA Transmit 2x Edge-to-Edge 1 GDDRX2_TX.Aligned EA Transmit 2x Centered >1 GDDRX2_TX.DQSDLL.Centered EA Transmit 2x Centered <1 GDDRX2_TX.PLL.Centered 1. Gearing Ratio of 1x is selected for clock frequencies less than 200MHz. Gearing ratio of 2x is selected for frequencies above 200 MHz. 2. These interfaces can only be selected in the Configuration Tab.12-141 LatticeECP3 High-Speed I/O Interface Figure 12-127. “DDR_MEM” Selected in Main IPexpress Window Figure 12-127 shows the IPexpress Main Window. To generate a DDR memory interface, select DDR_MEM, assign a module name and click on Customize to see the Configuration tab. Figure 12-128 shows the Configuration tab for the DDR_MEM interface. You can choose to implement the DDR1_MEM, DDR2_MEM or DDR3_MEM interface.12-142 LatticeECP3 High-Speed I/O Interface Figure 12-128. Configuration Tab for DDR_MEM Table 12-50 describes the various settings shown in the Configuration tab above. Table 12-50. Configuration Tab Settings for DDR_MEM GUI Option Description Range Default Value Interface DDR memory interface type DDR, DDR2, DDR3 DDR2 I/O Buffer Configuration I/O type configuration for DDR pins SSTL25_I, SSTL25_II SSTL18_I, SSTL18_II, SSTL15 DDR – SSTL25_I DDR2 – SSTL18_I DDR3 – SSTL15 Number of DQS Interface width (1 DQS per 8 bits of data) 1 to 9 4 DQS Group1 to DQS Group8 Number of DQ per DQS pin 1 to 8 8 DQS Buffer Configuration for DDR2 DQS buffer type Single-ended, Differential DDR – Single-ended DDR2 – Single-ended DDR3 – Differential Clock/Address/Command Clock/address/command interface will be generated when this option is checked ENABLED, DISABLED DISABLED Data Mask Data mask signal will be generated when this option is checked ENABLED, DISABLED DISABLED Lock/Jitter Sensitivity Lock Sensitivity attribute for DQSDLL1 HIGH, LOW HIGH12-143 LatticeECP3 High-Speed I/O Interface If the user chooses to generate the Clock/Address/Command signals using IPexpress, then the settings in the Clock/Address/Command Tab are active and can be set up as required. Figure 12-129 shows the Clock/Address/Command Tab in the IPexpress for DDR2 Memory. Figure 12-129. Clock/Address/Command Tab in the IPexpress for DDR_MEM Table 12-51 lists the values that can be used for the Clock/Address/Command settings. DDR Memory Frequency DDR Memory Interface Frequency DDR – 87.5 MHz, 100 MHz, 133.33 MHz, 166.67 MHz, 200 MHz DDR2 – 125 MHz, 200 MHz, 266.67 MHz DDR3 – 150 MHz, 200 Mhz, 300 MHz, 400 MHz DDR – 200 MHz DDR2 – 200 MHz DDR3 – 400 MHz ISI Calibration ISI calibration is available for the DDR3 interface to adjust for inter-symbol inference adjustment per DQS group BYPASS, DEL1, DEL2, DEL3, DEL4, DEL5, DEL6, DEL7 BYPASS 1. It is recommended to set Lock Sensitivity to HIGH for DDR Memory Frequency higher than 133 MHz. GUI Option Description Range Default Value12-144 LatticeECP3 High-Speed I/O Interface Table 12-51. Clock/Address/Command Settings for DDR_MEM GUI Option Range Default Value Number of Clocks 1, 2, 4 1 Number of Clock Enables 1, 2, 4 1 Address Width DDR: 12-14 DDR2: 13-16 DDR3: 13-16 DDR: 13 DDR2: 13 DDR3: 14 Bank Address Width DDR: 2 DDR2: 2, 3 DDR3: 3 DDR: 2 DDR2: 2 DDR3: 3 Number of ODT DDR: N/A DDR2: 1, 2, 4 DDR3: 1, 2, 4 DDR: N/A DDR2: 1 DDR3: 1 Number of Chip Selects DDR: 1, 2, 4, 8 DDR2: 1, 2, 4 DDR3: 1, 2, 4 DDR: 1 DDR2: 1 DDR3: 1 www.latticesemi.com 15-1 tn1169_02.4 May 2013 Technical Note TN1169 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Introduction Configuration is the process of loading or programming a design into volatile memory of an SRAM-based FPGA. This is accomplished via a bitstream file, representing the logical states, that is loaded into the FPGA internal configuration SRAM memory. The functional operation of the device after programming is determined by these internal configuration RAM settings. The SRAM cells must be loaded with configuration data each time the device powers up. The configuration memory in LatticeECP3™ FPGAs is built using volatile SRAM; therefore, an external non-volatile configuration memory is required to maintain the configuration data when the power is removed. This non-volatile memory supplies the configuration data to the LatticeECP3 when it powers up or anytime the device needs to be updated. To support multiple configuration options the LatticeECP3 supports the Lattice sysCONFIG™ interface as well as the dedicated JTAG port. The available configuration options, or modes, are listed in Table 15-1. Table 15-1. Supported Configuration Modes This technical note covers all of the configuration options available for LatticeECP3. The LatticeECP3 configuration RAM can be loaded in a number of different modes. In these configuration modes, the FPGA can act as a master, a peripheral to a CPU, or a slave of other system devices. It also supports in-system configuration via the JTAG port. The decision about which configuration mode to use is a system design concern. There are many methods for configuring the FPGA utilizing four basic schemes. • Master: As a master, the FPGA is the source of the clock, and accesses an external PROM or EPROM storage device through a serial connection, with no additional timing or control signals used. This scheme includes Serial Programming Interface (SPI) that supports a seamless connection for programming using industry-standard external Flash-based memory devices. • Slave: In slave mode the FPGA receives bit-serial or byte-wide data and a clock from an external data and timing source, either from a microprocessor, or from the lead device in an FPGA-daisy chain. As a slave device, the clock used to configure the FPGA is generated externally and provided to the CCLK input. Interface Port Description sysCONFIG SPI Serial Peripheral Interface to single or multiple FPGA devices. SPIm Serial Peripheral Interface to single Flash memory devices with partitioned memory. SSPI Configure and readback by standard SPI Master driver or devices. SCM Slave Serial Mode for daisy chain configuration. SPCM Slave 8-bit parallel CPU-like programming interface. JTAG JTAG (IEEE 1149.1 and IEEE 1532 compliant) Standard 4-pin JTAG interface. LatticeECP3 sysCONFIG Usage Guide15-2 LatticeECP3 sysCONFIG Usage Guide • JTAG: The device can be configured through the JTAG port. The JTAG port is always on and available regardless of the configuration mode selected. The system designer should determine the requirements for configuration very early in the design. Many factors must be considered when deciding which configuration mode is best suited for the design. The flexible features for configuration can provide a seamless design to the system. General Configuration Flow The LatticeECP3 enters Configuration mode when one of three things happens: power is applied to the device, the PROGRAMN pin is driven low, or a JTAG or SSPI Refresh instruction is issued. Upon entering Configuration mode the INITN pin and the DONE pin are driven low to indicate that the device is initializing (i.e. getting ready to receive configuration data). Once initialization is complete, the INITN pin will be driven high. The low-to-high transition of the INITN pin causes the CFG pins to be sampled, telling the LatticeECP3 which port it will configure from. The LatticeECP3 then begins reading data from the selected port and starts looking for the preamble header (BDB3 hex for unencrypted bitstreams, and BAB3 for encrypted bitstreams). All data after the preamble is valid configuration data. When the LatticeECP3 has finished reading all of the configuration data, and assuming there have been no errors, the DONE pin goes high and the LatticeECP3 enters user mode. In other words, the device begins to function according to your design. Note that the LatticeECP3 may also be programmed via JTAG. When programming via JTAG, the INITN and DONE signals have no meaning, because JTAG, per the IEEE standard, takes complete control of all device I/Os. It is recommended that the PROGRAMN input be held high when using the JTAG port to configure the FPGA. This prevents the FPGA SRAM memory from being cleared when the JTAG programming cycle is complete. The following sections define each configuration pin, each configuration mode, and all of the configuration options for the LatticeECP3. Configuration Pins The LatticeECP3 supports two types of configuration pins, dedicated and dual-purpose. The dedicated pins are used exclusively for configuration; the dual-purpose pins, when configuration is complete, are available as extra I/O pins. If a dual-purpose pin is to be used both for configuration and as a general purpose I/O (GPIO) the following conditions must be met: • The I/O type must remain the same. For example, if the pin is a 3.3V CMOS pin (LVCMOS33) during configuration, it must remain a 3.3V CMOS pin as a GPIO. • You must select the correct CONFIG_MODE setting and set the PERSISTENT attribute to OFF. Doing so permits the dual-purpose sysCONFIG pins to be used as GPIO when configuration completes. These settings can be found in the ispLEVER® Design Planner or Spreadsheet View in Lattice Diamond™ design software. See Table 15-3 for more information. • You are responsible for insuring that no internal or external logic will interfere with the control signals required by configuration mode you have selected. The dual-purpose configuration pins are controlled using HDL source file attributes, or with the ispLEVER or Diamond Preference Editor. You can read about how to apply HDL preferences in TN1177, LatticeECP3 sysIO Usage Guide. The LatticeECP3 also supports JTAG for configuration, transparent read back, and JTAG testing. The following sections describe the function of the various sysCONFIG and JTAG pins. Table 15-2 is provided for reference.15-3 LatticeECP3 sysCONFIG Usage Guide Table 15-2. LatticeECP3 Configuration Pins Pin Name I/O Type Pin Type Configuration Mode SPI SPIm SSPI1 SCM1 SPCM1 JTAG CFG[2:0] Input, weak pull-up Dedicated =000 =010 =001 =101 =111 PROGRAMN Input, weak pull-up Dedicated ALL INITN Bi-directional open drain5 Dedicated ALL DONE Bi-directional open drain5 Dedicated ALL CCLK Input Dedicated Slave mode, determined by the CFG0 setting =1 MCLK Bi-directional, weak pull-up Dual-Purpose Master mode, determined by the CFG0 setting =0 D0/SPIFASTN2 Bi-directional2 Dual-Purpose SPIFASTN SPIFASTN D0 D12, 3 Bi-directional2 Dual-Purpose D1 D22, 3 Bi-Directional2 Dual-Purpose D2 D3/SI2, 3 Bi-directional2 Dual-Purpose SI D3 D4/SO2, 3 Bi-directional2 Dual-Purpose SO D4 D52 Bi-directional2 Dual-Purpose D5 D62, 3 Bi-directional2 Dual-Purpose D6 D7/SPID02, 3 Bi-directional2 Dual-Purpose SPID0 SPID0 Note 4 D7 CSN/SN Bi-directional, weak pull-up Dual-Purpose SN CSN CS1N/HOLDN Bi-directional, weak pull-up Dual-Purpose HOLDN3 CS1N WRITEN Active low control input pin Dual-Purpose WRITEN BUSY/SISPI Bi-directional, weak pull-up Dual-Purpose SISPI SSIPI Note 4 BUSY DI/CSSPI0N Bi-directional, weak pull-up6 Dual-Purpose CSSPI0N CSSPI0N Note 4 DI DOUT/CSON Bi-directional, weak pull-up Dual-Purpose DOUT DOUT DOUT DOUT/ CSON 1. SSPI = Slave SPI, SCM = Serial Configuration Mode, SPCM = Slave Parallel Configuration Mode. 2. D[0:7] pins have no pull-up during power-up and configuration in all programming modes. This allows you to use large pull-up or pulldown resistors to pre-set those pins to a certain state while powering up your systems. 3. Weak pull-ups consist of a current source of 30µA to 150µA. The pull-ups for sysCONFIG dedicated and dual-purpose pins track VCCIO8. The pull-ups for TDI, TDO, and TMS track VCCJ. 4. This pin is used for programming the SPI Flash boot PROM. 5. Optional weak pull-up resistor available. 6. Requires external pull-up to VCCIO8.15-4 LatticeECP3 sysCONFIG Usage Guide Configuration Process and Flow Prior to becoming operational, the FPGA goes through a sequence of states, including initialization, configuration and wake-up. Figure 15-1. Configuration Flow Power-up Sequence In order for the LatticeECP3 to operate, power must be applied to the device. During a short period of time, as the voltages applied to the system rise, the FPGA will have an indeterminate state. Other devices in the system will also be in an indeterminate state. As power continues to ramp, a Power On Reset (POR) circuit inside the FPGA becomes active. The POR circuit, once active, makes sure the external I/O pins are in a high-impedance state. It also monitors the VCCcore, VCCaux, and the VCCIO8 input rails. The POR circuit waits for the following conditions: • VCCcore > 0.8V • VCCaux > 2.7V • VCCIO8 > 0.8V (Supply used for configuration I/O) Power not stable PROGRAMN must not be asserted low until after all power rails have reached stable operation. PROGRAMN must not make a falling edge transition during the time the FPGA is in the Initialization state. PROGRAMN must be asserted for a minimum low period of tPRGMRJ in order for it to be recognized by the FPGA. Failure to meet this requirement can cause the device to become non-operational, requiring power to be cycled. PROGRAMN or INITN=Low INITN=Low User Mode Configuration Write Progamming Data ERROR Power Up VCCore > 0.8V VCCaux > 2.7V VCCIO8 > 0.8V (Supply used for configuration I/O) INITN and DONE Driven Low Initialization Wake Up GSR, GWDIS, GOE, DONE DONE Released INITN Released CFG[2:0] Sampled Device refresh Device refresh Device refresh Device refresh: • PROGRAMN falling edge • IEEE 1532 refresh command • Power cycle PROGRAMN de-asserted and tICFG expired All configuration data received15-5 LatticeECP3 sysCONFIG Usage Guide When these conditions are met the POR circuit releases an internal reset strobe, allowing the device to begin its initialization process. The FPGA samples the CFG[2:0] input pins to determine if a master or a slave mode configuration is selected. The FPGA uses this information to determine the tICFG initialization period. The next step is to assert INITN active low, and to drive DONE low. When INITN and DONE are asserted low the device moves to the initialization state, as shown in Figure 15-1. The PROGRAMN input must not be asserted low as power is applied to the FPGA. Nor should it be allowed to transition from high to low at any time that INITN is in the initialization state. Figure 15-2. Configuration from Power-On-Reset Timing Initialization The LatticeECP3 enters the memory initialization phase immediately after the Power On Reset circuit drives the INITN and DONE status pins low. The purpose of the initialization state is to clear all of the SRAM memory inside the FPGA. The FPGA remains in the initialization state until all of the following conditions are met: • The tICFG time period has elapsed • The PROGRAMN pin is deasserted • The INITN pin is no longer asserted low by an external master The dedicated INITN pin provides two functions during the initialization phase. The first is to indicate the FPGA is currently clearing its configuration SRAM. The second is to act as an input preventing the transition from the initialization state to the configuration state. During the tICFG time period the FPGA is clearing the configuration SRAM. When the LatticeECP3 is part of a chain of devices each device will have different tICFG initialization times. The FPGA with the slowest tICFG parameter can prevent other devices in the chain from starting to configure. Premature release of the INITN in a multi-device chain may cause configuration of one or more chained devices to fail to configure intermittently. The active-low, open-drain initialization signal INITN must be pulled high by an external resistor when initialization is complete. To synchronize the configuration of multiple FPGAs, one or more INITN pins should be wire-ANDed. If one or more FPGAs or an external device holds INITN low, the FPGA remains in the initialization state. Loading the Configuration Memory The rising edge of the INITN pin causes the FPGA to enter the configuration state. The FPGA is able to accept the configuration bitstream created by the ispLEVER and Diamond development tools. If the FPGA CFG[2:0] input pins have placed it in a master configuration mode it will begin fetching data from an external non-volatile memory. If the FPGA CFG[2:0] input pins have placed it in a slave configuration mode, the FPGA waits for configuration data to be presented to it on each CCLK rising edge. DONE INITN V CC/VCCAUX/ V CCIO0 t ICFG Valid15-6 LatticeECP3 sysCONFIG Usage Guide During the time the FPGA receives its configuration data the INITN control pin takes on its final function. INITN is used to indicate an error exists in the configuration data. When INITN is active high configuration is proceeding without issue. If INITN is asserted low, an error has occurred and the FPGA will not operate. Wake-up Wake-up is the transition from configuration mode to functional mode. Wake-up starts when the device has correctly received all of its configuration data. When all configuration data is received, the FPGA asserts an internal DONE strobe. The assertion of the internal DONE causes a Wake Up state machine to run that sequences four controls. The four control strobes are: • External DONE • Global Write Disable (GWDISn) • Global Output Enable (GOE) • Global Set/Reset (GSR) External DONE is a bi-directional, open-drain I/O. The FPGA releases the open-drain DONE pin at the programmed wake-up phase. If an external agent is holding the external DONE pin low, the wake-up process of the LatticeECP3 does not proceed. Only after the external DONE is active high do the final wake-up phases complete. Once the final wake-up phases are complete, the FPGA enters user mode. The Global Output Enable, when it is asserted, permits the FPGA’s I/O to exit a high-impedance state and take on their programmed output function. The FPGA inputs are always active. However, they are typically prevented from performing any action on the FPGA logic by the assertion of the Global Set/Reset (GSR). The Global Set/Reset is an internal strobe that, when asserted, causes all I/O/LUT flip-flops, distributed RAM output flip-flops, and Embedded Block RAM output flip-flops that have the GSR enabled attribute to be set/cleared per their HDL definition. The Global Write Disable is a control that overrides the write enable strobe for all RAM logic inside the FPGA. The inputs on the FPGA are always active, as mentioned in the Global Output Enable section. Keeping GWDIS asserted prevents accidental corruption of the instantiated RAM resources inside the FPGA. Clearing the Configuration Memory and Re-initialization Several methods are available to clear the internal configuration memory of the LatticeECP3 device. The first is mentioned earlier when the device powers up (see the “Power-up Sequence” section of this document). A second method is to toggle the PROGRAMN pin. Also, JTAG can reinitialize the memory through an ISC Refresh command. SSPI can also initiate a reconfiguration with the Refresh command. The other methods available are: • Assertion of the PROGRAMn dedicated input • Sending the ISC Refresh command using a configuration port (JTAG, or Slave SPI) Invoking one of these methods causes the LatticeECP3 to drive INITN and DONE low. The FPGA enters the initialization state described above. FPGA Configuration Control Pin Definitions The LatticeECP3 FPGA provides a set of I/O pins that can be used to load a configuration bitstream into the device. Some of these I/O are single purpose and are always available to perform configuration operations. Those configuration pins that are not dedicated can be configured for your use after the FPGA has entered user mode. This section describes what each I/O is, how it functions, and how to reclaim some for your own use.15-7 LatticeECP3 sysCONFIG Usage Guide Configuration Pin Management The dual-purpose sysCONFIG pins described in the Table 15-2 are dedicated configuration pins during the device configuration process. The PERSISTENT attribute is used to determine whether the dual-purpose sysCONFIG pins remain sysCONFIG pins during normal operation. The LatticeECP3 provides three settings for the PERSISTENT feature. The available options are shown in Table 15-3. Table 15-3. PERSISTENT Setting and Affected Pins You can use the SLAVE_PARALLEL or the Slave SPI configuration port to access some of the resources connected to the FPGA. Accessing the FPGA resources requires special command sequences, which are described in other documents. Dedicated Control Pins The LatticeECP3 makes a set of dedicated control pins available to allow you to select the way you want to configure the FPGA. The following sub-sections describe the LatticeECP3 dedicated sysCONFIG pins. These pins are powered by VCCIO8. While the device is under IEEE 1149.1 or 1532 JTAG control the dedicated programming pins have no meaning. This is because a boundary scan cell will control each pin, per JTAG 1149.1, rather than normal internal logic. JTAG Pins The JTAG pins are standard IEEE 1149.1 TAP (Test Access Port) pins. The JTAG pins are dedicated pins and are always accessible when the LatticeECP3 device is powered up. While the device is under 1149.1 or 1532 JTAG control the dedicated programming pins INITN, DONE, and CCLK have no meaning. This is because a boundary scan cell will control each pin, per the IEEE standard, rather than normal internal logic. If the device is being accessed by JTAG then PROGRAMN will still be an active input even in JTAG mode. These pins are powered by VCCJ. TDO The Test Data Output pin is used to shift out serial test instructions and data. When TDO is not being driven by the internal circuitry, the pin will be in a high impedance state. This pin should be wired to TDO of the JTAG connector, or to TDI of a downstream device in a JTAG chain. An internal pull-up resistor on the TDO pin is provided. The internal resistor is pulled up to VCCJ. TDI The Test Data Input pin is used to shift in serial test instructions and data. This pin should be wired to TDI of the JTAG connector, or to TDO of an upstream device in a JTAG chain. An internal pull-up resistor on the TDI pin is provided. The internal resistor is pulled up to VCCJ. TMS The Test Mode Select pin controls test operations on the TAP controller. On the falling edge of TCK, depending on the state of TMS, a transition will be made in the TAP controller state machine. An internal pull-up resistor on the TMS pin is provided. The internal resistor is pulled up to VCCJ. Persistent Setting Pins OFF All dual-purpose configuration pins are available as GPIO SLAVE_PARALLEL D [0:7], CSN, CS1N, WRITEN, BUSY, CSON, MCLK1 SSPI SI, SO, SN, HOLDN, SISPI, SPID0, SPID1, CSSPIN and CSSPI1N 1. These pins are not used by the Slave Parallel logic, but they are reserved by the Slave Parallel logic. They are not available for use as GPIO.15-8 LatticeECP3 sysCONFIG Usage Guide TCK The test clock pin, TCK, provides the clock to run the TAP controller state machine, which loads and unloads the JTAG data and instruction registers. TCK can be stopped in either the high or low state and can be clocked at frequencies up to that indicated in the LatticeECP3 Family Data Sheet. The TCK pin supports hysterisis; the typical hysterisis is approximately 100mV when VCCJ = 3.3V. The TCK pin does not have a pull-up. A pull-down resistor between TCK and ground on the PCB of 4.7 K is recommended to avoid inadvertent clocking of the TAP controller as VCC ramps up. Optional TRST Test Reset, TRST, is not supported on the LatticeECP3. V CCJ Having a separate JTAG VCC (VCCJ) pin lets you apply a voltage level to the JTAG port that is independent from the rest of the device. Valid voltage levels are 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V, but the voltage used must match the other voltages in the JTAG chain. VCCJ must be connected even if JTAG is not used. Please see In-System Programming Design Guidelines for ispJTAG Devices for further JTAG chain information. Configuration and JTAG Pin Physical Description All of the sysCONFIG dedicated and dual-purpose pins are part of Bank 8. Bank 8 VCCIO determines the output voltage level of these pins, input thresholds are determined by the I/O Type selected in the ispLEVER Design Planner (default is 3.3V LVCMOS) and Diamond Spreadsheet View. JTAG voltage levels and thresholds are determined by the VCCJ pin, allowing the LatticeECP3 to accommodate JTAG chain voltages from 1.2V to 3.3V. CFG[2:0] The Configuration Mode pins, CFG[2:0], are used to inform the FPGA how you want to configure the device. The actions performed by the remaining configuration pins depend on the state of the CFG[2:0] inputs. The CFG[2:0] input pins have weak internal pull-up resistors, that guarantee a valid configuration mode is selected should they be left unconnected. Lattice recommends the CFG pins be connected with independent pull-up/pull-down resistors. It is also recommended that these pins not be directly connected to the power or ground planes. The CFG[2:0] pins are sampled at two different points in the configuration process. The first sample point is when the Power-On Reset state machine starts up. The POR sample point determines if the FPGA to be configured in master or slave mode. The tICFG time period changes based on this information. The second time the CFG pins are sampled is at the rising edge of the INITN pin. This sample is used to make the final configuration selection. Table 15-4 describes the configuration mode that is active based on the CFG input pins. The state on the CFG pins at any other time is not important. The state pins can be changed freely, which may be useful for selecting a new configuration mode. Table 15-4. LatticeECP3 Configuration Pins1 Configuration Mode Clock CFG [2] CFG [1] CFG [0] SPI Master (Single) MCLK 0 0 0 SPI Master (Multiple) 0 1 0 Slave SPI CCLK 001 XXX SCM CCLK 1 0 1 SPCM CCLK 1 1 1 1. JTAG is always available for IEEE 1149.1 and 1532 support.15-9 LatticeECP3 sysCONFIG Usage Guide PROGRAMN The PROGRAMn is a dedicated input that is used to configure the FPGA. The PROGRAMn pin is a falling edge sensitive, and has an internal weak pull-up. When a falling edge occurs, the FPGA exits user mode and starts a device configuration sequence at the Initialization phase, as described earlier. Proper operation of the LatticeECP3 FPGA depends on the PROGRAMn pin. The following conditions must be met: • The PROGRAMn pin must not be asserted until after all of the supply rails are stable. This can be achieved by either placing an external pullup resistor and tying it to the VCCIO8 voltage, or permitting the FPGA's internal pull-up resistor to pull the input high. • The PROGRAMn pin must make a high to low transition in order to cause the FPGA to enter configuration mode. This is not necessary when first powering the FPGA, as the FPGA will enter configuration mode after the internal Power On Reset circuit releases the internal reset. • The PROGRAMn pin must not be allowed to transition from high to low at any time INITn is active (i.e. low) as a result of being in the Initialization state. • PROGRAMn must meet the minimum active pulse width tPRGMRJ. • PROGRAMn remains an active input even when the JTAG bus is being used to program the FPGA. The PROGRAMn pin should not be asserted during JTAG programming sequences. Failing to follow these guidelines may prevent the FPGA from operating. PROGRAMn must be de-asseted in order for the FPGA to exit the Initialization state. Figure 15-3. Configuration from PROGRAMN Timing INITN The INITn pin is a bidirectional open-drain control pin. It has the following functions: • After power is applied, or after a PROGRAMn assertion it goes low to indicate the FPGA configuration cells are being erased. The low time assertion is specified with the tICFG parameter. • After the tICFG time period has elapsed the INITn pin is deasserted (i.e. is active high) to indicate the FPGA is ready for its configuration bits. In master mode the FPGA starts loading bits from an attached non-volatile memory. In slave mode the FPGA waits for the bits to arrive over the interface selected by the CFG[2:0] input pins. The rising edge of the INITn samples the CFG[2:0] inputs, allowing the FPGA to determine how it is to be configured. • INITn can be asserted low by an external agent before the tICFG time period has elapsed in order to prevent the FPGA from reading configuration bits. This is useful when there are multiple FPGA's chained together. The FPGA with the longest tICFG time can hold all other FPGA's in the chain from starting to get data until it is ready itself. DONE CFG[2:0] 1 INITN PROGRAMN t PRGMRJ t ICFG t DPPINIT t DPPDONE 1. The CFG pins are normally static (hard wired). Valid t DINIT t SUCFG t HCFG t SUCFG t HCFG Valid15-10 LatticeECP3 sysCONFIG Usage Guide • The last function provided by INITn is to signal an error during the time configuration data is being read. Once t ICFG has elapsed, and the INITn pin has gone high, any INITn assertion signals the FPGA has detected an error during configuration. The following conditions will cause INITN to become active, indicating the Initialization state is active: • Power has just been applied • PROGRAMN falling edge occurred • The IEEE 1532 Refresh command has been sent using a slave configuration port (JTAG, SSPI, etc.). If the INITN pin is asserted due to an error condition, the error can be cleared by correcting the configuration bitstream and forcing the FPGA into the Initialization state. Figure 15-4. Configuration Error Notification DONE The DONE pin is a dedicated bi-directional open drain with a weak pull-up that signals the FPGA is in User mode. DONE is first able to indicate entry into User mode only after the internal DONE pin is asserted. The intenal DONE signal defines the beginning of the FPGA Wake-Up state. The DONE output pin is controlled by the DONE_EX configuration parameter. The default state of this pin is OFF. The default mode causes the LatticeECP3 to start immediately after the internal DONE bit is asserted. The FPGA does not stall waiting for the DONE pin to be asserted high. The FPGA can be held from entering User mode indefinitely by having an external agent keep the DONE pin asserted low. In order to use DONE to stall entering user mode the DONE_EX configuration preference must be set ON. A common reason for keeping DONE driven low is to allow multiple FPGAs to be completely configured. As each FPGA reaches the DONE state, it is ready to begin operation. The last FPGA to configure can cause all FPGAs to start in unison. It is critical that DONE be asserted low when the LatticeECP3 is in a chain of FPGAs. The LatticeECP3 continues to pass configuration clock pulses to FPGAs attached downstream as long as DONE is de-assserted. Any FPGA permitted to assert DONE and enter User mode will only pass a few hundred more configuration clock cycles. Downstream FPGAs will never complete their configuration process if this occurs. The DONE pin drives low in tandem with the INITN pin when the FPGA enters Initialization mode. As described earlier, this condition happens when power is applied, PROGRAMN is asserted, or an IEEE 1532 Refresh command is received via a slave configuration port. Sampling the DONE pin is a good way for an external device to tell if the FPGA has finished configuration. However, when using IEEE 1532 JTAG to configure SRAM the DONE pin is driven by a boundary scan cell, so the state of the DONE pin has no meaning during IEEE 1532 JTAG configuration (once configuration is complete, DONE takes on the behavior defined by the DONE_EX configuration parameter). Configuration Clock (CCLK) The CCLK is a dedicated input-only whose purpose is to provide a reference clock for the FPGA when one of the slave configuration modes is selected by the CFG[2:0] inputs. DONE INITN PROGRAMN t INITL Configuration Error Configuration Started15-11 LatticeECP3 sysCONFIG Usage Guide Please refer to the LatticeECP3 AC Timing information in the LatticeECP3 Family Data Sheet for information about maximum clock rates, and data setup and hold parameters. When the LatticeECP3 is in a chain of FPGAs it is necessary to continue to drive CCLK until all of the FPGAs have received their configuration data. It is recommended the CCLK continue to be toggled until the DONE signal is active. Dual-Purpose sysCONFIG Pins The Dual-Purpose sysCONFIG pins, depending on the configuration mode selected by the CFG[2:0] input pins, provide special configuration functions during the Configuration phase of the device wake-up process. The dualpurpose pins can be recovered for your use once the FPGA enters User mode. Successful recovery of the dualpurpose pins relies on following the guidelines described in the “Configuration Pins” section of this document. The dual-purpose configuration pins are located in the same I/O bank as the dedicated configuration pins. The configuration pins in the LatticeECP3 are powered by the VCCIO8 voltage rail. Master Clock (MCLK) The MCLK provides a reference clock for synchronous non-volatile memories attached to the FPGA. MCLK is only active when the FPGA CFG[2:0] inputs select a master configuration mode. See Table 15-4 for a full description of the available configuration modes selectable by the CFG[2:0] input pins. MCLK acts as a general purpose I/O if the FPGA is in a slave configuration mode. The LatticeECP3 generates MCLK from an internal oscillator. The initial output frequency of the MCLK is approximately 2.5MHz. The MCLK frequency can be altered using the MCCLK_FREQ parameter. You can select the MCCLK_FREQ using the Diamond Spreadsheet View. For a complete list of the supported MCLK frequencies, see Table 15-8. During the initial stages of device configuration the frequency value specified using MCCLK_FREQ is loaded into the FPGA. Once the FPGA accepts the new MCLK_FREQ value the MCLK output begins driving the selected frequency. Make certain that when selecting the MCLK_FREQ that you do not exceed the frequency specification of your configuration memory, or of your PCB. Lattice recommends reviewing the LatticeECP3 AC specifications in the LatticeECP3 Family Data Sheet when making MCLK_FREQ decisions. The LatticeECP3 provides the ability to be configured from a bitstream that is encrypted. There are additional requirements on the MCCLK_FREQ selection that you must adhere to when configuring the LatticeECP3 with an encrypted bitstream. These conditions are discussed in the “Bitstream Encryption/Decryption Flow” section of this document. DI/CSSPI0N The DI/CSSPI0N configuration pin provides one of two functions depending on the FPGA’s configuration mode. When the FPGA is in Serial Configuration Mode the pin is set to DI (Data Input) mode. When the FPGA is in SPI Master or SPI Master Multiboot mode, the pin is set to CSSPI0N (Chip Select SPI 0). When the FPGA is in Serial Configuration Mode the DI pin receives incoming configuration data. See the Serial Configuration Mode section of this document for more information. When the FPGA is in SPI Master or SPI Master Multiboot mode the CSSPI0N is the chip select strobe to the attached SPI memory that contains the FPGA’s configuration bits. The FPGA asserts this pin active low during the Configuration phase of the wake-up process. An external pull-up resistor is required on CSSPI0N in SPI and SPIm modes of operation. Some SPI memory devices require the CSn input to rise in tandem with their input voltage. The internal pull-up on CSSPI0N does not become active until the FPGA determines all input voltage rails are stable. This does not meet the requirements of some SPI memory vendors.15-12 LatticeECP3 sysCONFIG Usage Guide DOUT/CSON The DOUT/CSON configuration pin is used only when placing the LatticeECP3 into a chain of FPGAs requiring configuration. The DOUT/CSON pin is an output from the LatticeECP3 and is only active when the FPGA is connected to another FPGA in a daisy chain. When in a daisy chain, the pin may act as either a data output (DOUT) or a chip select (CSON). The behavior is described in detail in the Configuring Multiple FPGA Devices section of this document. For serial and parallel configuration modes, when Bypass mode is selected, this pin becomes DOUT (see Figure 15-10). When the device is fully configured a Bypass instruction in the bitstream is executed and the data on DI, or D[0:7] in the case of a parallel configuration mode, will then be routed to the DOUT pin. This allows data to be passed, serially, to the next device. In a parallel configuration mode D0 will be shifted out first followed by D1, D2, and so on. Daisy chaining the Parallel devices can be implemented with the Flowthrough attribute. This attribute allows the CSON pin to be driven when the done bit is set and configuration of the first part is complete. The CSON of the first part will drive the CSN of the second part. You will find this attribute in the ispLEVER Generate Bitstream Data property under Chain Mode or in the Diamond Bitstream options window. See Appendix B for more information on setting these options in Diamond. The DOUT/CSON drives out a high on power-up and will continue to do so until the execution of the Bypass instruction within the bitstream, or until the I/O Type is changed by your code. CSN/SN The CSN/SN is a bidirectional pin that is active in Slave Parallel Configuration mode, or in Slave SPI mode. The pin is a chip select that gates the incoming configuration data. Detailed information about using the chip select pin can be found in the “Slave Parallel Mode (SPCM)” and “Slave SPI (SSPI)” configuration sections of this document. CS1N/HOLDN The CS1N/HOLDN configuration pin is active only in Slave Parallel Configuration mode or in Slave SPI mode. When the LatticeECP3 is in a Slave Parallel Configuration mode the pin acts as a chip select that works in conjunction with CSN. Information detailing the interaction of these two pins is described in the Parallel Configuration mode section of this document. The configuration pin takes on the HOLDN function when the LatticeECP3 is in Slave SPI Configuration mode. Assertion of the HOLDN input causes the FPGA to ignore the SPI SCLK. Details for using HOLDN are provided in the Slave SPI Configuration section. When CSN or CS1N is high, the D[0:7], and BUSY pins are tri-stated. CSN and CS1N are interchangeable when controlling the D[0:7], and BUSY pins. WRITEN The WRITEN configuration pin is an input pin that is active in Slave Parallel Configuration mode. It is a write enable strobe that controls the direction data flows on the D[0:7] data bus pins. When WRITEN is asserted active low the FPGA D[0:7] pins are tri-stated to allow an external bus master to write data into the FPGA. BUSY/SISPI The BUSY/SISPI configuration pin is active in Slave Parallel Configuration mode and in SPI Master modes. When the LatticeECP3 is in a Slave Parallel Configuration mode, the pin is a tri-state output pin. When the FPGA parallel bus is active due to the assertion of CSN/CS1N the BUSY pin indicates the FPGA’s ability to accept a byte of configuration data. The FPGA is able to accept another configuration byte when this output is driven low.15-13 LatticeECP3 sysCONFIG Usage Guide When the LatticeECP3 is in SPI Master mode the pin is connected to the data input of the SPI PROM that contains the configuration data. SISPI is an output used by the LatticeECP3 to transmit commands to the SPI PROM. D[0]/SPIFASTN The D[0]/SPIFASTN configuration pin is available in Slave Parallel Configuration and SPI Master configuration modes. In Slave Parallel Configuration mode the D[0] pin is the most-significant data bit in the combined D[0:7] parallel data bus. In SPI Master configuration modes it becomes the SPIFASTN input. The input is sampled at the rising edge of the INITN output. The SPIFASTN selects the Read Opcode transmitted to the SPI PROM. When SPIFASTN is deasserted (i.e. driven to Vih) the FPGA requests a Read Operation using the 03 hex Read Opcode. When SPIFASTN is asserted (i.e. driven to Vil) the FPGA requests a Read Operation using the 0B hex Read Opcode. A SPI PROM that accepts the 0B Read Opcode is able to operate at higher serial clock rates. Consult the SPI memory vendor’s data sheet for the exact capabilities of the SPI memory device. Do not leave this input floating when a SPI Master mode is selected. In parallel mode this pin is D[0] and operates in the same way as D[1:6] below. Taken together D[0:7] form the parallel data bus, D[0] is the most significant bit in the byte. The D[0:7] data bus are open-drain I/O without a pullup resistor during the time that power is applied to the FPGA. They also remain in this state until the FPGA is fully configured. When the FPGA is configured the D[0:7] I/O take on the attributes defined in your HDL source code, or using the Spreadsheet View preference editor. As with D[1:6], if SRAM (configuration memory) needs to be accessed using the parallel pins while the part is in user mode (the DONE pin is high) then the PERSISTENT control cell must be set to preserve this pin as D[0]. Note that SRAM may only be read using JTAG or Slave Parallel mode. D[1], D[2], D[5] and D[6] These configuration pins are only available in Slave Parallel Configuration mode and are intermediary data bits for the parallel data bus made up of bits D[0:7]. Remember that D[0] is the most-significant data bit and D[7] is the least-significant. D[3]/SI The D[3]/SI configuration pin is only available in Slave Parallel Configuration or in Slave SPI Configuration mode. When the LatticeECP3 is in Slave Parallel Configuration mode the pin acts as D[3]. In Slave SPI Configuration mode the pin acts as the Serial Input pin for data supplied by a SPI Master Controller. D[4]/SO The D[4]/SO configuration pin is only available in Slave Parallel Configuration or in Slave SPI Configuraiton mode. When the LatticeECP3 is in Slave Parallel Configuration mode the pin acts as D[4]. In Slave SPI Configuration mode the pin acts as the Serial Output pin for data transmitted from the FPGA back to the SPI Master Controller. D[7]/SPID0 The D[7]/SPID0 configuration pin is only available in Slave Parallel Configuration or in Master SPI Configuration mode. When the LatticeECP3 is in Slave Parallel Configuration mode the pin acts as D[7]. This is the least-significant-bit of the D[0:7] data bus.15-14 LatticeECP3 sysCONFIG Usage Guide In Master SPI Configuration mode the pin acts as the SPI Data Input pin receiving data from an attached SPI PROM. Configuration Modes LatticeECP3 devices support many different configuration modes, utilizing either serial or parallel data paths. The configuration method used by the LatticeECP3 is selected by driving the CFG[2:0] input pins. The CFG[2:0] input pins are sampled at the falling edge of INITN to determine if the part is in a master or a slave configuration mode. The pins are sampled a second time at the rising edge of INITN to determine the specific configuration mode. The LatticeECP3 starts the configuration process in one of three ways: • Initial application of power • Assertion of the PROGRAMN input pin • Reception of a REFRESH command form a configuration port (JTAG, Slave SPI, Slave Parallel) SPI Interface The Serial Peripheral Interface (SPI) is a four-wire de facto bus standard used to transmit and receive serial data. The LatticeECP3 can use a SPI data bus to retrieve its configuration data from most SPI ROMs. The amount of ROM storage required depends on the number of Look Up Tables (LUTs) in the LatticeECP3 device you have selected. Figure 15-5 shows how many bits of configuration data are required for each member of the LatticeECP3 family. Table 15-5. Maximum Configuration Bits – SPI Flash Mode Bitstream File1 The estimated configuration time can be calculated by dividing the bitstream size (in bits) from Table 15-5 by the configuration clock (MCLK or CCLK) frequency. The MCLK frequency is modified using the Global Preferences tab within the Diamond Spreadsheet View or in the ispLEVER Design Planner. The LatticeECP3 provides the following three SPI configuration modes: • SPI Master (SPI) • SPI Master Multiboot (SPIm) • Slave SPI (SSPI) SPI Master Mode The simplest SPI configuration consists of one SPI Serial Flash connected to one LatticeECP3, as shown in Figure 15-5. In this configuration the LatticeECP3 is the master of the SPI bus. The FPGA controls the chip select and the MCLK, and receives the configuration data on the SPID0 input. During FPGA configuration the SISPI output sends a command sequence to reset the SPI PROM’s internal address pointer. The SPIFASTN informs the FPGA which SPI Read Command to send to the SPI PROM. When Device Bitstream Size1 SPI Flash Dual Boot SPI Flash Units ECP3-17 4.5 8 16 Mb ECP3-35 8.2 16 32 Mb ECP3-70 22.5 32 64 Mb ECP3-95 22.5 32 64 Mb ECP3-150 35.7 64 128 Mb 1. The Bitstream Size column is the maximum number of bits the FPGA may require. This number takes into account the pre-initialization of all Embedded Block RAMs.15-15 LatticeECP3 sysCONFIG Usage Guide the SPIFASTN input is driven high, the FPGA sends a 03 Hex Read Opcode. When it is asserted active low, the FPGA sends a 0B Hex Read Opcode to the SPI PROM. As mentioned in the section describing the MCLK behavior, the configuration clock frequency can be altered. The MCLK frequency must not exceed the clock input frequency of the SPI PROM. Figure 15-5. One FPGA, One SPI Serial Flash In order to configure properly, the LatticeECP3 must transmit at least 128 clock pulses before it receives the preamble code (BDB3 hex for unencrypted bitstreams, and BAB3 for encrypted bitstreams). It is required that the data in the SPI PROM be padded to account for these extra clocks. The bitstream generation tool automatically adds the necessary padding information. SPI Master Multiboot (SPIm) Mode SPI Master Multiboot mode is an enhancement to the SPI Master boot mode. The SPI memory is attached to the FPGA in exactly the same way as SPI Master mode. SPIm enables you to partition the SPI PROM to store two configuration bitstreams. The FPGA will attempt to configure from the Primary image, and if the FPGA fails to configure from the primary image it tries to load a fail-safe Golden bitstream. Figure 15-6 shows the concept from a high level. Lattice FPGA SPI Mode MCLK DI/CSSPI0N BUSY/SISPI D7/SPID0 DOUT CFG1 CFG0 SPIFASTN SPI Serial Flash Q C CFG2 D0/SPIFASTN PROGRAMN DONE Note: The board-level pull-down on MCLK should have a 1-3 Kohms resistance. This counteracts the weak internal pull-up on MCLK and prevents an unintentional rising edge at power-up. D /CS15-16 LatticeECP3 sysCONFIG Usage Guide Figure 15-6. SPIm Mode for Dual-Boot Capability Internally, SPIm mode adds logic to detect a configuration failure and the ability to reattempt configuration from a different address within the SPI Flash device. While SPI mode treats the SPI Flash device as a single block of storage starting at address zero, SPIm mode allows segmentation of the Flash device for the golden bitstream. In SPIm mode, the primary bitstream is stored at address offset 0x010000. When configuring, the LatticeECP3 device automatically reads the data beginning at this address first. If after 2*14 clocks the device still does not receive the pre-amble code or a bitstream error is encountered after receiving the pre-amble code, the configuration logic resets and loads the data located at address offset 0xFFFF00. The LatticeECP3 uses a 24-bit addressing scheme to access the SPI memory array. The amount of storage remaining in the SPI starting at address 0xFFFF00 is only 256 bytes. This is not enough to store a complete LatticeECP3 configuration bitstream. The LatticeECP3 configuration bitstream is stored elsewhere in the SPI PROM. The data retrieved by the FPGA at address 0xFFFF00 is an instruction pointing to the start of the failsafe configuration data. An example of the SPI Flash memory organization for SPIm mode is shown in Table 15-6. LatticeECP3 MCLK DI/CSSPI0N BUSY/SISPI D7/SPID0 CFG1 CFG0 SPIFASTN CFG2 D0/SPIFASTN PROGRAMN DONE SPI Serial Flash Golden Image Primary Image15-17 LatticeECP3 sysCONFIG Usage Guide Table 15-6. SPIm Mode Data Map1, 2, 3 Slave SPI (SSPI) The LatticeECP3 can be configured by a SPI Master controller. Using the CFG[2:0] inputs to select SSPI configuration mode the FPGA becomes a SPI Slave device, receiving data from a SPI Master controller. The FPGA can be accessed using Mode 0 and Mode 3 bus transactions. The slave SPI interface allows for a the following functions to be performed: • Configuration of the FPGA • Readback of the FPGA configuration bitstream • Forcing the device to REFRESH as if PROGRAMN were asserted • Read/Write access to a SPI PROM attached to the SPI Master configuration pins • Clearing the FPGA configuration • Reading the FPGA ID code • Reading the FPGA User ID code Block (512Kb) SPI Flash Address Contents 0 0x000000 Unused 1 2 3 . . . 18 0x010000 0x020000 0x030000 . . . 0x120000 Primary Bitstream 32 33 34 . . . 49 0x200000 0x210000 0x220000 . . . 0x310000 Golden Bitstream N 0xFF0000 0xFFFF00 Jump instruction to 0x200000 1. The bitstream sizes shown are examples. Actual sizes and address boundaries vary with device density. 2. After the golden bitstream is written into the SPI Flash device, the top half of the SPI Flash can be write-protected to secure the golden bitstream from alterations. 3. When the SPI Flash device reaches the address 0xFFFFFF, it rolls over to address 0x000000. If the last page is un-programmed, the device can read the jump instruction programmed on address 0x000000 effectively implementing a multiple patterns support for board development or debugging need.15-18 LatticeECP3 sysCONFIG Usage Guide Table 15-7. Slave SPI Pins The chip select pin (SN) is a chip select input to the FPGA. The LatticeECP3 responds on the falling and rising edges of the SN input. SN is not a level sensitive input. When the SN falling edge occurs the FPGA is ready to accept commands from a SPI Master Controller. A rising edge on the SN input resets the internal state machine and tri-states the SO output pin. The only exception to this is when the FPGA has received a SPI_PROGRAM command. This command can only be interrupted by the assertion of the PROGRAMN input. The HOLDN pin is provided to allow a SPI Master Controller to pause transactions on the Slave SPI port. When HOLDN is asserted low the FPGA tri-states the SO output and ignores the SCLK input. This allows the SPI Master Controller to interact with another SPI device and then resume transactions to the LatticeECP3. Encrypted bitstreams must be sent without interruption. You are not permitted to assert HOLDN or deassert SN once an encrypted bitstream transmission has begun. Figure 15-7. Slave SPI Example Figure 15-7 illustrates how an on-board CPU can be connected to the LatticeECP3 using the Slave SPI programming interface. The CPU can fetch configuration data from the attached SPI PROM. The CPU is not required to deassert the SN input to the FPGA. When the CPU asserts the CS1N to access the SPI PROM the FPGA HOLDN is asserted causing it to ignore SCLK transitions. The HOLDN input can not be asserted when transferring an encrypted bitstream. Full details on using Slave SPI mode on the LatticeECP3 are provided in TN1222, LatticeECP3 Slave SPI Port User’s Guide. Slave Serial Configuration Mode (SCM) Slave Serial Configuration mode provides a simple, low pin count method for configuring one or more FPGAs. Data is presented to the FPGA on the Data Input pin DI at every CCLK rising edge. Signal Name Type Description Function SN Active Low Input Chip Select A falling edge on SN causes the FPGA to enter Command State. A rising edge on SN causes the FPGA to enter Reset State. SI Input Serial Input Data Serial input for command and data. SO Tri-state Output Serial Output Data Serial output data to the SPI Master. SCK Clock Input Serial Data Clock Serial input clock for command and data. HOLDN Asynchronous Active Low Input Put the Device on Hold Tri-state SO and set the device into the suspension state by ignoring the CCLK. Do not assert when loading encrypted bitstreams. CS1N CS0N DI DO CLK SPI Port CPU FPGA SSP Interface HOLDN SN SI SO SCK SPI Flash CCLK CFG0 CFG1 SSPI Mode Slave SPI Port CFG215-19 LatticeECP3 sysCONFIG Usage Guide Figure 15-8. Slave Serial Block Diagram The bitstream data generated by Lattice Diamond is formatted so that it is ready to shift into the FPGA. Left shift the data out of the file in order for it to be correctly received by the FPGA. The FPGA synchronizes itself on either a 0xBDB3 or 0xBAB3 code word. It is critical that any data presented on DIN not be recognized as one of these two synchronization words early. To guarantee proper recognition of the synchronization word it is recommended that the synchronization word always be preceded by a minimum of 128 ‘1’ bits. Presenting any other bitstream data, Programmer generated header information for example, risks the being misinterpreted due to bit slippage. Slave Serial Configuration Mode can be used to configure a chain of FPGAs. Details about configuring a chain of devices is discussed in “Combining Configuration Modes” on page 36 of this document. Slave Parallel Mode (SPCM) The LatticeECP3 can be configured using Slave Parallel Configuration Mode. Slave Parallel permits an external master to configure the FPGA using an 8-bit synchronous SRAM bus interface. Slave Parallel Configuration Mode is a flexible method for configuring one or more FPGAs. It is also the fastest mode available for configuring the LatticeECP3. The slave parallel interface allows for a multitude of different functions to be performed: • Configuration of the FPGA • Readback of the FPGA configuration bitstream • Reading the device CRC • Reading the programming status register • Reading the FPGA ID code • Reading the FPGA User ID code To next FPGA (optional) FPGA CFG2 CFG1 CFG0 DI DO CCLK DONE INITN CPU\Serial Interface DOUT CLK IN1 IN215-20 LatticeECP3 sysCONFIG Usage Guide Figure 15-9. Slave Parallel Block Diagram Figure 15-9 shows the typical Slave Parallel Configuration Mode usage. Configuration data can be written to the LatticeECP3 immediately following the INITN rising edge. The LatticeECP3 data bus bit ordering is denoted using a big-endian nomenclature. This means that D0 receives the MSBit, and D7 receives the LSBit. One byte of data can be sent to the FPGA on each rising CCLK edge as long as CSN, CS1N, and WRITEN are asserted. When the LatticeECP3 is the only device being configured the FPGA can receive configuration data at the full CCLK rate. The master device is not required to monitor the BUSY pin in this situation, because the configuration bitstreams are padded to avoid BUSY assertion. Sending an encrypted bitstream must be done atomically, i.e. without interruption. The bus master is not permitted to pause the transfer of an encrypted bitstream by deasserting the CSN or CS1N inputs. The CCLK pin can be stretched or stopped if desired, but the CSN and CS1N pins must remain asserted. Slave Parallel mode can also be to read status registers and the configuration bitstream. In order for the Slave Parallel port to be used to perform read operations the FPGA must have the PERSISTENT preference set to SLAVE_PARALLEL mode. See the Configuration Pin Management section of this document for more information. Figure 15-10. Parallel Port Write Timing Diagram JTAG Mode (IEEE 1149.1 and IEEE 1532) The LatticeECP3 provides an IEEE 1532 compliant interface. The IEEE 1532 specification, a superset of the IEEE 1149.1 JTAG specification, describes a standard methodology for configuring programmable logic devices. The FPGA CFG2 CFG1 CFG0 WRITEN CCLK DONE INITN CPU/Parallel Interface WRn CLK IN1 IN2 CSN CSN CS1N D[7:0] D[0:7] IN3 BUSY D[0:7] INITN PROGRAMN WRITEN CCLK BUSY Current Command Note: The BUSY pin cannot go high while both CS1N and CSN are low. The second BUSY high shown is OK since CS1N or CSN was low previously. Write Write BUSY is tristated with pull-up. Next Command CSN CS1N ………15-21 LatticeECP3 sysCONFIG Usage Guide LatticeECP3 only requires the four IEEE 1149.1 control signals (TCK, TMS, TDI, and TDO) in order to initiate and complete programming operations. The LatticeECP3 JTAG port is always available for use, regardless of the configuration mode selected. Programming the LatticeECP3 using the JTAG port is typically accomplished in one of several ways: • You can use Lattice Diamond Programmer software in combination with a Lattice download cable • You can use Automatic Test Equipment that can read Serial Vector Format (SVF), In-System Configuration (ISC), STAPL/JAM, or ATE vector files • You can use an embedded microprocessor to run Lattice's ispVM Embedded configuration software Lattice Diamond Programmer’s Fast Program The Lattice Diamond development tools translate your design into a bitstream containing an optional header, mandatory preamble, and the device configuration data. The configuration data includes its own preamble, fuse data, and finally a trailing CRC. This basic structure is used for all of the configuration modes supported by the LatticeECP3. The IEEE 1532 mode adds some additional operations to the device configuration process. Prior to sending the configuration data the FPGA’s Boundary Scan I/O Cells are placed in a high-impedance state, and the FPGA’s configuration memory is cleared. Because the I/O are tri-stated the DONE and INITn output signals do not provide status information while the configuration data is being written to the FPGA. The JTAG configuration mode uses an internal status register to confirm the FPGA DONE and INITn status signals indicate the device configured correctly. After the internal DONE and INITn controls are confirmed, the Boundary Scan I/O Cells are re-enabled, and all I/O take on the function assigned to them. The JTAG interface, because it can control the Boundary Scan I/O Cells, can also be used to configure the LatticeECP3 without putting the I/O into a high-impedance state. During device configuration the I/O cells can be locked in their last known active state. This mode of operation is called TransFR Programming. A full description of how to use TransFR is provided in TN1087, Minimizing System Interruption During Configuration Using TransFR Technology. JTAG Configuration Data Read and Save The JTAG interface can be used to read the configuration data stored in the FPGA’s SRAM array. There are two modes available to retrieve the data, foreground mode or background mode. Foreground readback is accessed using IEEE 1532 mode. When using this method the JTAG Boundary Scan Cells are placed in a high-impedance state, and the configuration data read. Once the configuration data is retrieved the Boundary Scan Cells are restored, and the FPGA returns to normal operation. The Background Read and Save operation allows you to read the content of the device while the device remains in operation. All I/O, as well at the non-JTAG configuration pins, continue normal operation during the Background Read and Save operation. You must not violate the following conditions when using the Background Read and Save function: • The Soft Error Detection system must not be running. De-assert the SEDENABLE pin to prevent the SED circuit from interfering with the Background Read and Save operation. It is recommended that you wait at least one full SEDSTART to SEDDONE time period after the deassertion of the SEDENABLE to make sure the SED circuit has discontinued operation. Alternately monitor the SEDINPROG output, and wait for it to de-assert. • Write operations to distributed RAM blocks must be suspended. Write operations that occur at the same time the SRAM cell is being read are non-deterministic. It is possible for the SRAM to receive, or retain, incorrect RAM data. Regardless of which read and save mode is used the configuration data will not include the EBR or the distributed RAM contents. Distributed RAM contents will always be return zeroes.15-22 LatticeECP3 sysCONFIG Usage Guide Boundary Scan and Boundary Scan Description Language (BSDL) Files The LatticeECP3, as mentioned previously, provides an IEEE 1149.1 compliant JTAG interface. The JTAG interface can be controlled by Automatic Test Equipment (ATE) that uses Boundary Scan Description Language (BSDL) files. Lattice makes BSDL files available for the LatticeECP3 on the Lattice Semiconductor website. The boundary scan ring covers all of the I/O pins, as well as the dedicated and dual-purpose sysCONFIG pins. Note that PROGRAMN, CCLK, and the CFG pins are observe only (BC4, JTAG read-only) boundary scan cells. When performing JTAG 1149.1 EXTEST instructions, the SERDES CML termination for both Tx and Rx is set to 50 ohm pull-ups. This allows the high-speed channels to operate properly if DC data is sent or received. During JTAG EXTEST, the termination will be set to 50 ohm. This overrides the termination resistance programmed into the SERDES logic. Bitstream Generation Software Usage This section describes the settings for bitstream generation performed by the Diamond software program that generates a bitstream. These options are controlled through the Global Preferences of the Diamond Spreadsheet View and the property settings of the Bit Generation Software tool. To set the Global Preferences and properties in Diamond, see Appendix B. By setting the proper parameter in the Lattice design software the selected configuration options are set in the generated bitstream. As the bitstream is loaded into the device the selected configuration options take effect. These options are described in the following sections. Bit Generation takes a fully routed Physical Design (.ncd file) as input and produces a configuration bitstream (bit images). The bitstream file contains all of the configuration information from the Physical Design defining the internal logic and interconnections of the FPGA, as well as device-specific information from other files associated with the target device. The data in the bitstream can then be downloaded directly into the FPGA memory cells or used to generate files for PROM programming (using a separate program, ispVM). Please refer to the ispVM documentation for details on creating PROM image files. Configuration Options Several configuration options are available for each configuration mode. These options are controlled from the Spreadsheet View for each Strategy. They include the following items. • When daisy chaining multiple FPGA devices an overflow option is provided for serial and parallel configuration modes • When using SPI or SPIm mode, the master clock frequency can be set • A security bit can be set to prevent SRAM readback • The Persistent option can be set • Configuration pins can be protected • DONE pin options can be selected By setting the proper parameter in the Lattice design software the selected configuration options are set in the generated bitstream. As the bitstream is loaded into the device the selected configuration options take effect. These options are described in the following sections. Master Clock If the CFG pins indicate an SPI or SPIm mode, the MCLK pin will become an output with a default frequency, or one selected when you added preferences to your design. The default Master Clock Frequency is 2.5 MHz. For a complete list of the supported Master Clock frequencies, please see the LatticeECP3 Family Data Sheet. When using the LatticeECP3 devices, the available frequencies are restricted, as shown in the data sheet. You can change the Master Clock frequency by setting the MCCLK_FREQ global preference in the Diamond Spreadsheet view tool. During configuration one of the first pieces of information loaded is the MCCLK_FREQ 15-23 LatticeECP3 sysCONFIG Usage Guide parameter. When this parameter is loaded the master clock frequency changes to the selected value without glitching. Care should be exercised not to exceed the frequency specification of the slave devices or the signal integrity capabilities of the PCB layout. Configuration time is computed by dividing the maximum number of configuration bits, as given in Table 15-5 above, by the Master Clock frequency. Table 15-8. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal) Security Bit Setting the CONFIG_SECURE option to ON prevents readback of the SRAM from JTAG or the sysCONFIG pins. When CONFIG_SECURE is set to ON the only operations available are erase and write. The security control bit is updated as the last operation of SRAM configuration. If a secured device is read it will output all ones. For LatticeECP3 devices the CONFIG_SECURE option is accessed via the Design Planner in ispLEVER. To set this option in Diamond, see Appendix B. The default is OFF. Persistent Option The PERSISTENT option is used to direct the place and route tools about how it can use the sysCONFIG pins. By default the PERSISTENT option is turned OFF, which allows the place and route tools to reclaim most of the configuration pins as general purpose input/output. Changing the PERSISTENT configuration option from its default state prevents the place and route tools from either the Slave SPI or the Slave Parallel configuration ports from becoming general purpose I/O. Enabling the dedicated sysCONFIG ports is useful for performing additional capabilities while the FPGA is in user mode. You use the SLAVE_PARALLEL setting when: • You want to read back the FPGAs SRAM contents. The LatticeECP3 provides a command set and access protocol that allows the configuration SRAM to be read from the FPGA. The Slave Parallel port can read all of the configuration data, except the EBR and the distributed RAM contents. • You have a LatticeECP3, configured as a SPI Master, in series of FPGAs in a device chain. The SPI Master FPGA must keep the MCLK pin active in order to provide a configuration clock for all of the chained FPGAs. Table 15-3 describes the configuration pins that are preserved. The MCLK output is only preserved Slave Parallel configuration mode. If PERSISTENT is set to OFF, or SSPI the MCLK output tri-states after the lead FPGA is configured, which prevents chained FPGAs from configuring. Use the SSPI PERSISTENT setting when: • You want to access a SPI PROM attached to the SPI Master configuration pins. You can attach a SPI memory controller and using a custom command you can perform erase, program, and verify sequences on the SPI PROM while the FPGA is in operation. Table 15-3 describes the configuration pins that are preserved. InformaMCCLK (MHz) MCCLK (MHz) 2.51 10 13 4.3 152 5.4 20 6.9 26 8.1 9.2 333 1. Software default MCLK frequency. Hardware default is 3.1MHz. 2. Maximum MCCLK with encryption enabled. 3. Maximum MCCLK without encryption15-24 LatticeECP3 sysCONFIG Usage Guide tion about the Slave SPI transactions are published in TN1222 LatticeECP3 Slave SPI Port User's Guide. You can also use the SSPI Embedded device programming software provided by Lattice. Configuration Mode The CONFIG_MODE option tells the software which configuration port the hardware is using to program the FPGA. Setting this parameter permits the design software to check to make sure configuration port pins are not oversubscribed. The oversubscription is only flagged as a warning. In some cases it is acceptable to oversubscribe the configuration port. For example it is acceptable to have the FPGA in SPI Master configuration mode and use the SISPI, SPID0,a nd SPICS pins as general purpose I/O. The CONFIG_MODE is also used to make sure encrypted bitstreams are generated correctly. To guarantee correct operation of encrypted bitstreams you need to set the CONFIG_MODE parameter. DONE EX During configuration the DONE output pin is low. Once configuration is complete, indicated by assertion of an internal DONE bit, the device wake-up sequence takes place. The external DONE pin is able to operate in one of two modes during the wake up sequence. The default behavior, set when DONE_EX = OFF, is for it to actively drive to VIL. When DONE_EX is set ON, the external DONE pin becomes an open-drain output. The LatticeECP3 wake up sequence will stall until the external DONE pin is pulled high. Set DONE_EX to ON when you want to synchronize the when a chain of FPGAs wakes up. Make sure you place a pullup resistor that is able to drive all of the DONE pins. Device Wake-Up When configuration is complete the device will wake up in a predictable fashion. Wake-Up occurs after successful configuration, without errors, and provides the transition from Configuration Mode to User Mode. The Wake-Up process begins when the internal DONE bit is set. Table 15-9 provides a list of the Wake-Up sequences supported by the LatticeECP3; Figure 15-11 shows the Wake-Up timing. The default Wake-Up sequence works fine for most single device applications. Table 15-9. Wake-Up Options Sequence Phase T0 Phase T1 Phase T2 Phase T3 1 DONE GOE, GWDIS, GSR 2 DONE GOE, GWDIS, GSR 3 DONE GOE, GWDIS, GSR 4 1 DONE GOE GWDIS, GSR 5 DONE GOE GWDIS, GSR 6 DONE GOE GWDIS GSR 7 DONE GOE GSR GWDIS 8 DONE GOE, GWDIS, GSR 9 DONE GOE, GWDIS, GSR 10 DONE GWDIS, GSR GOE 11 DONE GOE GWDIS, GSR 12 DONE GOE, GWDIS, GSR 13 GOE, GWDIS, GSR DONE 14 GOE DONE GWDIS, GSR 15 GOE, GWDIS DONE GSR 16 GWDIS DONE GOE, GSR 17 GWDIS, GSR DONE GOE 18 GOE, GSR DONE GWDIS 19 GOE, GWDIS, GSR DONE15-25 LatticeECP3 sysCONFIG Usage Guide Figure 15-11. Wake-Up Timing Diagram Synchronizing Wake-Up The LatticeECP3 is, in most cases, configured using one of the master configuration modes. The FPGA, when in master configuration mode, is driving the configuration clock. The configuration clock is used for stepping through the final four Wake-Up states described in the previous section. The LatticeECP3 has the ability to use an external clock source to control the final state transitions in the Wake_Up process. There are three possible sources for the clock. The JTAG TCK, the Slave Configuration CCLK, and a general-purpose input. Start_Up Clock Selection Once the FPGA is configured, it enters the start-up state, which is the transition between the configuration and operational states. This sequence is synchronized to a clock source, which defaults to CCLK when a slave configuration mode is used, or TCK when JTAG is used. If desired, a user-defined clock source can be used instead of CCLK/TCK. You need to specify this clock signal, and instantiate the STRTUP library element in your design. The example shown below shows the proper syntax of instantiating the STRTUP library element. 20 GOE, GWDIS, GSR DONE 212 GOE GWDIS, GSR DONE 22 GOE, GWDIS GSR DONE 23 GWDIS GOE, GSR DONE 24 GWDIS, GSR GOE DONE 25 GOE, GSR GWDIS DONE 1. Default when DONE_EX=ON. 2. Default when DONE_EX=OFF. Table 15-9. Wake-Up Options (Continued) Sequence Phase T0 Phase T1 Phase T2 Phase T3 CCLK/TCK DONE BIT GLOBAL OUTPUT ENABLE GLOBAL SET/RESET GLOBAL WRITE DISABLE DONE PIN T0 T1 T2 T315-26 LatticeECP3 sysCONFIG Usage Guide Verilog STRTUP u1 (.UCLK()) /* synthesis syn_noprune=1 */; VHDL component STRTUP port(STRTUP: in STD_ULOGIC ); end component; attribute syn_noprune: boolean ; attribute syn_noprune of STRTUP: component is true; begin u1: STRTUP port map (UCLK =>); Synchronous to Internal DONE Bit If the LatticeECP3 is the only device in the configuration chain, or the last device in the chain, DONE_EX should be set to the default value (OFF). The Wake-Up process will be initiated by setting of the internal DONE bit on successful completion of configuration. Synchronous to External DONE Pin The DONE pin can be used to synchronize Wake-Up to other devices in a configuration chain. If DONE_EX (see the DONE EX section above) is ON then the DONE pin is an open-drain bi-directional pin. If an external device drives the DONE pin low then the Wake-Up sequence stalls until DONE is active high. Once the DONE pin goes high the device will follow the selected WAKE_UP sequence. In a configuration chain, a chain of devices configuring from one source (such as Figure 15-17), it is usually desirable, or even necessary, to delay wake-up of all of the devices until the last device finishes configuration. This is accomplished by setting DONE_EX to OFF on the last device while setting DONE_EX to ON for the other devices. Wake-up Sequence Options The wake-up sequence options determine the order of application for three internal signals, GSR, GWDIS, and GOE, and one external signal, DONE. • GSR is used to set and reset the core of the device. GSR is asserted (low) during configuration and de-asserted (high) in the Wake-Up sequence. • When the GWDIS signal is low it safeguards the integrity of the RAM Blocks and LUTs in the device. This signal is low before the device wakes up. The GWDIS signal is internal to the FPGA, and does not appear on any FPGA I/O. During the time it is driven low all EBR and LUT RAM elements are safe from being modified. • During initialization and configuration the FPGA I/O are placed in a high impedance state. The GOE control controls when the FPGA I/O leave the high impedance state. The I/O are Hi-Z when GOE is asserted low. • The DONE pin, when high, indicates that FPGA has completed configuration and is in user mode. DONE will only be high if DONE_EX=ON, the output driver is released, and the external pin is pulled up. If DONE_EX (see DONE EX above) is OFF then sequence 21 is the default, but you can select any sequence from 8 to 25; if DONE_EX is ON the default sequence is 4, but you can select any sequence from 1 to 7. WAKE_ON_LOCK The wake-up sequence can be delayed until the selected PLLs have a chance to lock. The WAKE_ON_LOCK attribute selects which PLLs will delay the wake-up sequence until the PLL locks. If you choose an external signal for PLL feedback rather than an internal clock signal, wake-up must occur without waiting for PLL lock because all I/Os are tri-stated until the device wakes up, preventing the PLL from locking. Using the default mode of operation, the device PLLs do not have to be locked for wake-up to commence. You can choose to make the wake-up sequence dependent on any of the PLLs. If multiple PLLs are included in the design, all PLLs in the design have to be locked to satisfy the wake-up sequence.15-27 LatticeECP3 sysCONFIG Usage Guide Bitstream Generation Property Options Run DRC (T/F) When the Run DRC option is set to TRUE, a physical design rule check will be run prior to generating a bitstream. The output will be saved to the Bit Generation report (.bgn file). Running DRC before a bitstream is produced will detect any errors that could cause the FPGA to function improperly. If no fatal errors are detected, it will produce a bitstream file. The default is True and will run DRC. When this option is set to False, a design rule check (DRC) will not be run prior to generating a bitstream. Create Bitfile (T/F) This option allows you to decide whether or not to generate an output bitstream. The default setting is to create a bitstream. Bitstream File Formats • Bit file (binary) • Raw bit file • Mask & Readback file (ASCII) • Mask & Readback file (binary) These options allow you to chose the format of a bitstream file. The Raw Bit option causes the Bitstream Generator to create a Raw Bit (.rbt) file instead of a binary file (.bit). A binary .bit file can be viewed with a binary editor. The Raw Bit File is a text file containing ASCII ones and zeros representing the bits in the bitstream file. If you are using a microprocessor to configure a single FPGA, you can include the Raw Bit file in the source code as a text file to represent the configuration data. The sequence of characters in the Raw Bit file is the same as the bit sequence that will be written into the FPGA. This file is a large file. A Mask file (.msk) can be generated in either an ASCII formatted file or binary file. The Mask file is used to compare relevant bit locations for executing a readback of configuration data contained in an operating FPGA. You can compare readback data from the device to the mask file after downloading the bitstream. The ASCII mask file will contain 1’s and 0’s, and X’s. The file contains all FPGA data frames. It contains no header, ID frames, address frames and no preloaded frames. No Header (T/F) The generated bitstream contains no header. The default will be false and will always produce a bitstream file including all the header information. Bitstream Encryption/Decryption Flow The LatticeECP3 supports both encrypted and non-encrypted bitstreams. The encrypted flow adds only two steps to the normal FPGA design flow, encryption of the configuration bitstream and programming the encryption key into the LatticeECP3 devices. Encrypting the Bitstream As with any other Lattice FPGA design flow, the engineer must first create the design using a device and version of ispLEVER or Diamond which supports the encryption feature. You must obtain the Encryption Installer from Lattice prior to using Encryption capabilities. The design is synthesized, mapped, placed and routed, and verified. Once the engineer is satisfied with the design a bitstream is created and loaded into the FPGA for final debug. After the design has been debugged it is time to secure the design. The bitstream can be encrypted using an appropriate version of ispLEVER by going to the Tools pull-down menu and selecting Security features or by using the Universal File Writer (UFW), which is part of the Lattice ispVM™ 15-28 LatticeECP3 sysCONFIG Usage Guide System tool suite. The file is encrypted using ispVM as follows. To encrypt the bitstream in Diamond, see Appendix B. Figure 15-12. ispVM Main Window 1. Start ispVM. You can start ispVM from the Tools menu in ispLEVER or from the Start -> Programs menu in Windows. ispVM is not accessible from the Tools menu in Diamond. You should see a window that looks similar to Figure 15-12. Click on the UFW button on the toolbar. You will see a window similar to Figure 15- 13. Figure 15-13. Universal File Writer (Encryption Option) 2. Double click on Input Data File and browse to the non-encrypted bitstream created using ispLEVER or Diamond. Double-click on Output Data File and select an output file name. Right-click on Encryption and select ON. Right-click on Configuration Mode and select the type of device the FPGA will be configuring from, such as SPI Serial Flash. Right-click on Encryption Key and select Edit Encryption Key. You will see a window that looks similar to Figure 15-14.15-29 LatticeECP3 sysCONFIG Usage Guide Figure 15-14. Encryption Key Dialog Window 3. Enter the desired 128-bit key. The key can be entered in Hexadecimal or ASCII. Hex supports 0 through f and is not case sensitive. ASCII supports all alphanumeric characters, as well as spaces, and is case sensitive. Note: be sure to remember this key. Lattice cannot recover an encrypted file if the key is lost. Click on OK to go back to the main UFW window. 4. From the menu bar, click on Project -> Generate to create the encrypted bitstream file. 5. The bitstream can now be loaded directly into non-volatile configuration storage (such as SPI Serial Flash) using a Lattice ispDOWNLOAD® Cable, a third-party programmer, or any other method normally used to program a non-encrypted bitstream. However, before the LatticeECP3 can configure from the encrypted file the 128-bit key used to encrypt the file must be programmed into the one-time programmable cells on the FPGA. Programming the 128-bit Key The next step is to program the 128-bit encryption key into the one-time programmable cells on the LatticeECP3. This is done through the device JTAG interface. Note that this step is separated from file encryption to allow flexibility in the manufacturing flow. For instance, the board manufacturer might program the encrypted file into the SPI Serial Flash, but the key might be programmed at your facility. This flow adds to design security and it allows you to control over-building of a design. Over-building occurs when a third party builds more boards than are authorized and sells them to grey market customers. If the key is programmed at the factory, then the factory controls the number of working boards that enter the market. The LatticeECP3 will only configure from a file that has been encrypted with the same 128-bit key that is programmed into the FPGA. To program the key into the LatticeECP3, proceed as follows. 1. Attach a Lattice ispDOWNLOAD cable from a PC to the JTAG connector wired to the LatticeECP3 (note that the 128-bit key can only be programmed into the LatticeECP3 using the JTAG port). Apply power to the board. 2. Start the ispVM System software. ispVM can be started from within the ispLEVER Tools menu or from the Start -> Programs menu in Windows. ispVM cannot be invoked from the Tools menu in Diamond. You should see a window that looks similar to Figure 15-12. If the window does not show the board’s JTAG chain then proceed as follows. Otherwise, proceed to step 3. a. Click the SCAN button in the toolbar to find all Lattice devices in the JTAG chain. The chain shown in Figure 15-12 has only one device, the LatticeECP3. 15-30 LatticeECP3 sysCONFIG Usage Guide Figure 15-15. Device Information Window (Encryption Option) 3. Double-click on the line in the chain containing the LatticeECP3. This will open the Device Information window (see Figure 15-17). From the Device Access Options drop-down box select Security Mode, then click on the Security Key button to the right. The window will look similar to Figure 15-16. Figure 15-16. Enter the Encryption Key15-31 LatticeECP3 sysCONFIG Usage Guide 4. Enter the desired 128-bit key. The key can be entered in Hexadecimal or ASCII. Hex supports 0 through f and is not case sensitive. ASCII supports all alphanumeric characters, as well as spaces, and is case sensitive. This key must be the same as the key used to encrypt the bitstream. The LatticeECP3 will only configure from an encrypted file whose encryption key matches the one loaded into the FPGA’s one-time programmable cells. Note: be sure to remember this key. Once the Key Lock is programmed, Lattice Semiconductor cannot read back the one-time programmable key. a. The key can be saved to a file using the Save to File button. The key will be encrypted using an 8- character password that you select. The name of the file will be .bek. In the future, instead of entering the 128-bit key, simply click on Load from File and provide the password. 5. Programming the Key Lock secures the 128-bit encryption key. Once the Key Lock is programmed and the device is power cycled, the 128-bit encryption key cannot be read out of the device. When satisfied, type Yes to confirm, then click Apply. 6. From the main ispVM window (Figure 15-12) click on the green GO button on the toolbar to program the key into the LatticeECP3 one-time programmable cells. When complete, the LatticeECP3 will only configure from a bitstream encrypted with a key that exactly matches the one just programmed. Verifying a Configuration As an additional security step when an encrypted bitstream is used, the readback path from the SRAM fabric is automatically blocked. In this case, for all ports, a read operation will produce all 1's. However, even when the configuration bitstream has been encrypted and readback disabled, there are still ways to verify that the bitstream was successfully downloaded into the FPGA. If the SRAM fabric is programmed directly, the data is first decrypted and then the FPGA performs a cyclic redundancy code (CRC) on the data. (CRC) circuitry is used to validate each configuration data frame (sequence of data bits) as it is loaded into the target device. If all CRCs pass, configuration was successful. If a CRC does not pass, the DONE pin will stay low and INITN will go from high to low. If the encrypted data is stored in non-volatile configuration memory, such as SPI Serial Flash, the data is stored encrypted. A bit-for-bit verify can be performed between the encrypted configuration file and the stored data. File Formats The base binary file format is the same for all non-encrypted, non-1532 configuration modes. Different file types (hex, binary, ASCII, etc.) may ultimately be used to configure the device, but the data in the file is the same. Table 15-10 shows the format of a non-encrypted bitstream. The bitstream consists of a comment field, a header, the preamble, and the configuration setup and data.15-32 LatticeECP3 sysCONFIG Usage Guide Table 15-10. Non-Encrypted Configuration Data Table 15-11 shows a bitstream that is built for encryption but has not yet been encrypted. The highlighted areas will be encrypted. The changes between Table 15-10 and Table 15-11 include the following: • The Program Security frame (readback disable) has been moved to the beginning of the file so that readback is turned off at the very beginning of configuration. This is an important security feature that prevents someone from interrupting the configuration before completion and reading back unsecured data. • A copy of the usercode is placed in the non-encrypted comment string. This has been done to allow you a method to identify an encrypted file. For example, the usercode could be used as a file index. Note that the usercode itself, while encrypted in the configuration data file, is not encrypted on the device. At configuration the usercode is decrypted and placed in the JTAG Usercode register. This allows you a method to identify the data in the device. The JTAG Usercode register can be read back at any time, even when all SRAM readback paths have been turned off. The usercode can be set to any 32-bit value. For information on how to set usercode, see the ispLEVER or Diamond help facility. • A copy of CONFIG_MODE, one of the global preferences, is placed in the non-encrypted comment string. CONFIG_MODE can be SPI/SPIm, SSPI, Slave SCM, Slave PCM, Master PCM, or JTAG. Frame Contents Description Comments (Comment String) ASCII Comment (Argument) String and Terminator Header 1111...1111 16 Dummy bits 1011110110110011 16-bit Standard Bitstream Preamble (0xBDB3) Verify ID 64 bits of command and data Control Register 0 64 bits of command and data Reset Address 32 bits of command and data Write Increment 32 bits of command and data Data 0 Data, 16-bit CRC, and Stop bits Data 1 Data, 16-bit CRC, and Stop bits . . . . . . . . . Data n-1 Data, 16-bit CRC, and Stop bits End 1111...1111 Terminator bits and 16-bit CRC Usercode 64 bits of command and data SED CRC 64 bits of command and data Program Security 32 bits of command and data Program Done 32 bits of command and data, 16-bit CRC NOOP 1111...1111 64 bits of NOOP data End 1111...1111 32-bit Terminator (all ones) Note: The data in this table is intended for reference only.15-33 LatticeECP3 sysCONFIG Usage Guide Table 15-11. Configuration File Just Before Encryption Once encrypted, besides the obvious encryption of the data itself, the file will have additional differences from a non-encrypted file (refer to Tables 15-12, 15-13, and 15-14). • There are three preambles, the encryption preamble, alignment preamble, and the bitstream preamble. The alignment preamble marks the beginning of the encrypted data. The entire original bitstream, including the bitstream preamble are all encrypted, per Table 15-11. The comment string, the encryption preamble, dummy data, and alignment preamble are not encrypted. • The decryption engine within the FPGA takes some time to perform its task; extra time is provided in one of two ways. For master configuration modes (SPI and SPIm) the FPGA drives the configuration clock, so when extra time is needed the FPGA stops sending configuration clocks. For slave configuration modes (Bitstream-Burst, Slave Serial, and Slave Parallel) the data must be padded to create the extra time. Because of this there are several different file formats for encrypted data (see Tables 15-12, 15-13, and 15-14). Note that because of the time needed to decrypt the bitstream it takes longer to configure from an encrypted data file than it does from a nonencrypted file. The bitstream sizes may vary depending on the configuration mode. Frame Contents Description Comments (Comment String) ASCII Comment (Argument) String and Terminator Header 1111...1111 16 Dummy Bits 16-bit Standard Bitstream Preamble Verify ID 64 bits of Command and Data Control Register 0 64 bits of Command and Data Program Security 32 bits of Command and Data Reset Address 32 bits of Command and Data Write Increment 32 bits of Command and Data Data 0 Data, 16-bit CRC, and Stop Bits Data 1 Data, 16-bit CRC, and Stop Bits . . . . . . . . . Data n-1 Data, 16-bit CRC and Stop Bits End 1111...1111 Terminator Bits and 16-bit CRC Usercode 64 Bits of Command and Data SED CRC 64 Bits of Command and Data Program Done 32 Bits of Command and Data, 16-bit CRC NOOP 1111...1111 64 bits of NOOP data End 1111...1111 32-bit Terminator (All Ones). Note: The data in this table is intended for reference only. The shaded areas will be encrypted.15-34 LatticeECP3 sysCONFIG Usage Guide Table 15-12. Encrypted File Format for a Master Mode Table 15-13. Encrypted File Format for a Slave Serial Mode Frame Contents Description Comments (Comment String) ASCII Comment (Argument) String and Terminator. Header 1111...1111 16 Dummy bits. 16-bit Encryption Preamble. 30,000 Filler Bits This allows time for the device to load and hash the 128-bit encryption key. Alignment Preamble 16-bit Alignment Preamble. 1 1-bit Dummy Data. Data There are no dummy filler bits when the bitstream is generated for master programming modes. The CCLK of the master device stops the clock when it needs time to decrypt the data. It resumes the clock when ready for new data - Encrypted. Program Done 32-bit Program Done Command - Encrypted. End 1111...1111 32-bit Terminator (all ones) - Encrypted. Filler Bits Filler to meet the bound requirement. Dummy Data 1111...1111 200 bits of Dummy Data (all ones). Provides a delay to turn off the decryption engine. Note:The data in this table is intended for reference only. The shaded area is encrypted data. Frame Contents Description Comments (Comment String) ASCII Comment (Argument) String and Terminator. Header 1111...1111 2 Dummy Bytes. 16-bit Encryption Preamble 30,000 Filler Bits This allows time for the device to load and hash the 128-bit encryption key. Alignment Preamble 16-bit Alignment Preamble. 1 1-bit Dummy Data. Data 128 bits of Configuration Data. 64 bits of all ones data. Provides a delay for the decryption engine to decrypt the 128 bits of data just received. If the peripheral device can provide the needed 64 clocks while pausing data, then the 64 bits of dummy data are not required, saving file size. ... Last 128 bits of the last Frame of Configuration Data. 64 bits of all ones data. Provides a delay for the decryption engine to decrypt the 128 bits of data just received. If the peripheral device can provide the needed 64 clocks while pausing data, then the 64 bits of dummy data are not required, saving file size. Program Done 32-bit Program Done Command - Encrypted. End 32-bit Terminator (all ones) - Encrypted. Filler Bits Filler to meet the bound requirement. Delay 64 bits of all ones data. Delay to decrypt the Program Done command and the filler. Dummy Data 1111...1111 200 bits of Dummy Data (all ones), to provide delay to turn off the decryption engine. Note:The data in this table is intended for reference only. The shaded area is encrypted data.15-35 LatticeECP3 sysCONFIG Usage Guide Table 15-14. Encrypted File Format for a Slave Parallel Mode Decryption Flow Compared to the encryption flow just discussed, the decryption flow is much simpler. When data comes into the FPGA the decoder starts looking for the preamble and all information before the preamble is ignored. The preamble determines the path of the configuration data. If the decoder detects a standard bitstream preamble in the bitstream it knows that this is a non-encrypted data file. The decoder then selects the Raw data path. If the decoder detects an encryption preamble in the bitstream it knows that this is an encrypted data file. If an encryption key has not been programmed, the encrypted data is blocked and configuration fails (the DONE pin stays low), if the proper key has been programmed then configuration can continue. The next block read contains 30,000 clocks of filler data. This delay allows time for the FPGA to read the key cells and prepare the decryption engine. The decoder keeps reading the filler data looking for the alignment preamble. Once found, it knows that the following data needs to go through the decryption engine. It first looks for the standard preamble. Once found, then the SRAM cells’ programming begins. But what happens if the key in the FPGA does not match the key used to encrypt the file? Once the data is decrypted, the FPGA expects to find a valid standard bitstream preamble (BDB3), along with proper commands and data that pass CRC checks. If the keys do not match then the decryption engine will not produce a proper configuration bitstream; either configuration will not start because the preamble was not found (the INITN pin stays high and the DONE pin stays low) or CRC errors will occur, causing the INITN pin to go low to indicate the error. Frame Contents Description Comments (Comment String) ASCII Comment (Argument) String and Terminator. Header 1111...1111 2 Dummy Bytes. 2-byte Encryption Preamble. 30,000 Filler Bytes This allows time for the device to load and hash the 128-bit encryption key. Alignment Preamble 2-byte Alignment Preamble. 11111111 1-byte Dummy Data. Data 16 bytes of Configuration Data. 64 bytes (clocks) of all ones data. Provides a delay for the decryption engine to decrypt the 16 bytes of data just received. If the peripheral device can provide the needed 64 clocks while pausing data, then the 64 bytes of dummy data are not required, saving file size. ... 16 bytes of Configuration Data. 64 bytes (clocks) of all ones data. Provides a delay for the decryption engine to decrypt the 16 bytes of data just received. If the peripheral device can provide the needed 64 clocks while pausing data, then the 64 bytes of dummy data are not required, saving file size. Program Done 4-byte Program Done Command - Encrypted. End 4-byte Terminator (all ones) - Encrypted. Filler Bits Filler to meet the bound requirement. Delay 64 bytes of all ones data. Delay to decrypt the Program Done command and the filler. Dummy Data 1111...1111 200 bytes of Dummy Data (all ones), to provide delay to turn off the decryption engine. Note:The data in this table is intended for reference only. The shaded area is encrypted data.15-36 LatticeECP3 sysCONFIG Usage Guide Combining Configuration Modes Multiple FPGAs, One SPI Flash With a sufficiently large SPI Flash, multiple FPGAs can be configured as shown in Figure 15-17. The first FPGA is configured in SPI mode; the following FPGAs are configured in Slave Serial mode. Figure 15-17. Multiple FPGAs, One SPI Serial Flash Figure 15-18. Slave SPI Example 1 The system diagram shown in Figure 15-18 illustrates one application of the Slave SPI interface, where the FPGA selects the SPI Flash as the primary boot source. The modern CPU has the capability to program the SPI Flash boot PROM as well as to command the FPGA to re-boot from the SPI Flash by toggling the PROGRAMN pin. This requirement can only be met if the CPU drives the CCLK, and the MCLK is driven is by the FPGA for the SPI Flash boot PROM as shown in Figure 15-18. CS1N/HOLDN: When Slave SPI mode is used, this pin is an asynchronous active Low Input that tri-states the serial read out data of the SPI port and sets the device to the suspend state by ignoring the clock. Set the SSPI PERSISTENT to on to retain the pin as HOLDN pin to access the Slave SPI port in user mode. Lattice FPGA SPI Mode MCLK DI/CSSPI0N BUSY/SISPI D7/SPID0 DOUT CFG1 CFG0 SPIFASTN SPI Serial Flash Q C CFG2 D0/SPIFASTN PROGRAMN DONE D /CS Lattice FPGA Slave Serial CCLK DI/CSSPI0N CFG1 CFG0 CFG2 DOUT CPU SPI Mode CSN DI DO CLK HOLDN SN SI SO SCK GPIO PROGRAMn CCLK CSSPI0N SISPI SPID0 SCLK MCLK CFG0 CFG2 Master SPI Port Slave SPI Port CFG1 FPGA SPI Flash SPI Port15-37 LatticeECP3 sysCONFIG Usage Guide Figure 15-19. Slave Parallel with Flowthrough Chain Mode Options The LatticeECP3 can be one of many FPGAs in a chain that each need to get configuration data. The Bypass and Flowthrough options control how each FPGA in the chain of devices pass configuration bits to the other devices in the chain. Successful configuration of a chain of FPGAs depends on a thorough understanding of the Bypass and Flowthrough features. Bypass Option This option is used when you are configuring a chain of FPGAs in either parallel or serial daisy chain configurations. The Bypass option, when enabled, adds an additional command to the end of the configuration bitstream being sent to the LatticeECP3. The LatticeECP3 receives all of the configuration bits, and upon reception of the BYPASS command it enables a serial bypass register. This bypass register passes all incoming configuration bits to the DOUT pin for use by the next FPGA in the chain. Prior to the LatticeECP3 receiving the BYPASS command the internal bypass register is initialized to ‘1’. Any FPGA receiving data from the DOUT pin will see a long string of ones until the BYPASS command is accepted by the LatticeECP3. The following conditions must be met when Bypass is enabled: • The PERSISTENT option must be set to Slave Parallel mode • The bitstream can not be encrypted • The LatticeECP3 can not be in SPIm mode The Bypass Option is DISABLED by default. Flowthrough Option The Flowthrough option is used when you are configuring a chain of FPGAs in Slave Parallel Configuration mode. It is not applicable to any other configuration mode. The Flowthrough option, when enabled, adds a FLOWTHROUGH command to the end of the bitstream for the LatticeECP3. The LatticeECP3 receives all of the configuration data over the Slave Parallel data bus. When it receives the FLOWTHROUGH command it asserts the CSON output pin driving the parallel bus chip select input of the next FPGA in the chain. Until reception of the Lattice FPGA Slave Parallel CCLK D[0:7] DONE INITN CSON CFG1 CFG0 CFG2 CS1N PROGRAM BUSY WRITEN CSN PROGRAMN Lattice FPGA Slave Parallel CCLK D[0:7] DONE INITN CFG1 CFG0 CFG2 CS1N BUSY WRITEN CSN PROGRAMN CSON INITN DONE D[0:7] CCLK BUSY WRITEN FT_RESET SELECTN15-38 LatticeECP3 sysCONFIG Usage Guide FLOWTHROUGH command the CSON pin is deasserted high, which prevents any downstream FPGA from loading the incoming data bytes. The following conditions must be met to use the Flowthrough option: • The PERSISTENT option must be set to Slave Parallel • The bitstream can not be encrypted • The CONFIG_MODE must be Slave Parallel Configuration mode The Flowthrough option is DISABLED by default. Reset Configuration RAM in Reconfiguration (T/F) When this switch is set to true, it directs the bitstream to reinitialize the device when configuration starts. When the switch is set to false, it directs the bitstream to program the device to retain the current configuration and allows for additional bitstream configuration. The default is true. Use of the feature requires you to be aware of potential contention issues with the prior configuration loaded into the FPGA. References • Federal Information Processing Standard Publication 197, Nov. 26, 2001. Advanced Encryption Standard (AES) Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: techsupport@latticesemi.com Internet: www.latticesemi.com Revision History Date Version Change Summary February 2009 01.0 Initial release. June 2009 01.1 Added SSPI command table. Major changes to SPI support. October 2009 01.2 Added clarification for dual boot function. November 2009 01.3 Compression support removed. January 2010 01.4 Updated SPI Flash mode. March 2010 01.5 Updated Parallel Port Write Timing diagram. June 2010 01.6 Updated for Lattice Diamond design software support. December 2010 01.7 Removed EBR_READ command from the Slave SPI Commands table. March 2011 01.8 Updated Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal) table. August 2011 01.9 Added footnote to “One FPGA, One SPI Serial Flash” figure. September 2011 02.0 Added new table to Appendix A: Maximum Configuration Bits - Serial and Parallel Mode Bitstream Files. February 2012 02.1 Updated document with new corporate logo. August 2012 02.2 Added recommendation to pull up CSSPI0N. April 2013 02.3 Added pins and footnote to the PERSISTENT Setting and Affected Pins table. May 2013 02.4 Updated the PERSISTENT Setting and Affected Pins table.15-39 LatticeECP3 sysCONFIG Usage Guide Appendix A. Configuration Memory Requirements Table 15-15. Bitstream Memory Description Number of Bits Header 16 Preamble 16 Verify ID 64 Reserved 136 CReg0 64 NOOP 8 Reset address 32 Write inc 32 Data frames (by device) -35 2067 -70/95 2819 -150 3607 Bits per frame (by device) -35 3416 -70/95 6728 -150 8384 Total data frame bits (by device) Data frames multiplied by bits per frame CRC bits per frame 16 Stop bits per frame 32 End frame 160 CRC 16 Usercode 64 SED CRC 64 Program security 32 EBR frames Device and user design specified Write command 32 EBR data 18432 CRC 16 Stop bits 32 CRC 16 EBR bits per frame 18528 Total EBR frame bits Equal to EBR Frames multiplied by EBR bits per frame Program done 48 End 3215-40 LatticeECP3 sysCONFIG Usage Guide Table 15-16. Maximum Configuration Bits – Serial and Parallel Mode Bitstream Files Device All Modes Slave Serial Mode Slave Parallel Mode Units Unencrypted Bitstream Size Encrypted Bitstream Size Encrypted Bitstream Size LatticeECP3-17 No EBR 3.88 5.84 19.60 Mb LatticeECP3-17 Max EBR 4.41 6.64 22.26 Mb LatticeECP3-35 No EBR 6.83 10.28 34.38 Mb LatticeECP3-35 Max EBR 8.10 12.18 40.74 Mb LatticeECP3-95 No EBR 18.22 27.36 91.32 Mb LatticeECP3-95 Max EBR 22.46 33.72 112.53 Mb LatticeECP3-150 No EBR 29.01 43.54 145.27 Mb LatticeECP3-150 Max EBR 35.58 53.40 178.13 Mb15-41 LatticeECP3 sysCONFIG Usage Guide Appendix B. Lattice Diamond Usage Overview This appendix discusses the use of Lattice Diamond design software for projects that include the LatticeECP2M SERDES/PCS module . For general information about the use of Lattice Diamond, refer to the Lattice Diamond Tutorial. If you have been using ispLEVER software for your FPGA design projects, Lattice Diamond may look like a big change. But if you look closer, you will find many similarities because Lattice Diamond is based on the same toolset and work flow as ispLEVER. The changes are intended to provide a simpler, more integrated, and more enhanced user interface. Converting an ispLEVER Project to Lattice Diamond Design projects created in ispLEVER can easily be imported into Lattice Diamond. The process is automatic except for the ispLEVER process properties, which are similar to the Diamond strategy settings, and PCS modules. After importing a project, you need to set up a strategy for it and regenerate any PCS modules. Importing an ispLEVER Design Project Make a backup copy of the ispLEVER project or make a new copy that will become the Diamond project. 1. In Diamond, choose File > Open > Import ispLEVER Project. 2. In the ispLEVER Project dialog box, browse to the project’s .syn file and open it. 3. If desired, change the base file name or location for the Diamond project. If you change the location, the new Diamond files will go into the new location, but the original source files will not move or be copied. The Diamond project will reference the source files in the original location. The project files are converted to Diamond format with the default strategy settings. Adjusting PCS Modules PCS modules created with IPexpress have an unusual file structure and need additional adjustment when importing a project from ispLEVER. There are two ways to do this adjustment. The preferred method is to regenerate the module in Diamond. However this may upgrade the module to a more recent version. An upgrade is usually desirable but if, for some reason, you do not want to upgrade the PCS module, you can manually adjust the module by copying its .txt file into the implementation folder. If you use this method, you must remember to copy the .txt file into any future implementation folders. Regenerate PCS Modules 1. Find the PCS module in the Input Files folder of File List view. The module may be represented by an .lpc, .v, or .vhd file. 2. If the File List view shows the Verilog or VHDL file for the module, and you want to regenerate the module, import the module’s .lpc file: a. In the File List view, right-click the implementation folder ( ) and choose Add > Existing File. b. Browse for the module’s .lpc file, .lpc, and select it. c. Click Add. The .lpc file is added to the File List view. d. Right-click the module’s Verilog or VHDL file and choose Remove. 3. In File List, double-click the module’s .lpc file. The module’s IPexpress dialog box opens. 4. In the bottom of the dialog box, click Generate. The Generate Log tab is displayed. Check for errors and close.15-42 LatticeECP3 sysCONFIG Usage Guide In File List, the .lpc file is replaced with an .ipx file. The IPexpress manifest (.ipx) file is new with Diamond. The .ipx file keeps track of the files needed for complex modules. Using IPexpress with Lattice Diamond Using IPexpress with Lattice Diamond is essentially same as with ispLEVER. The configuration GUI tabs are all the same except for the Generation Options tab. Figure 15-20 shows the Generation Options tab window. Figure 15-20. Generation Options Tab Table 15-17. SERDES_PCS GUI Attributes – Generation Options Tab GUI Text Description Automatic Automatically generates the HDL and configuration(.txt) files as needed. Some changes do not require regenerating both files. Force Module and Settings Generation Generates both the HDL and configuration files. Force Settings Generation Only Generates only the attributes file. You get an error message if the HDL file also needs to be generated. Force Place & Route Process Reset Resets the Place & Route Design process, forcing it to be run again with the newly generated PCS module. Force Place & Route Trace Process Reset Resets the Place & Route Trace process, forcing it to be run again with the newly generated PCS module. Note: Automatic is set as the default option. If either Automatic or Force Settings Generation Only and no sub-options (Process Reset Options) are checked and the HDL module is not generated, the reset pointer is set to Bitstream generation automatically. After the Generation is finished, the reset marks in the process window will be reset accordingly.15-43 LatticeECP3 sysCONFIG Usage Guide Creating a New Simulation Project Using Simulation Wizard This section describes how to use the Simulation Wizard to create a simulation project (.spf) file so you can import it into a standalone simulator. 1. In Project Navigator, click Tools > Simulation Wizard. The Simulation Wizard opens. 2. In the Preparing the Simulator Interface page click Next. 3. In the Simulator Project Name page, enter the name of your project in the Project Name text box and browse to the file path location where you want to put your simulation project using the Project Location text box and Browse button. When you designate a project name in this wizard page, a corresponding folder will be created in the file path you choose. Click Yes in the popup dialog that asks you if you wish to create a new folder. 4. Click either the Active-HDL® or ModelSim® simulator check box and click Next. 5. In the Process Stage page choose which type of Process Stage of simulation project you wish to create Valid types are RTL, Post-Synthesis Gate-Level, Post-Map Gate-Level, and Post-Route Gate-level+Timing. Only those process stages that are available are activated. Note that you can make a new selection for the current strategy if you have more than one defined in your project. The software supports multiple strategies per project implementation which allow you to experiment with alternative optimization options across a common set of source files. Since each strategy may have been processed to different stages, this dialog allows you to specify which stage you wish to load. 6. In the Add Source page, select from the source files listed in the Source Files list box or use the browse button on the right to choose another desired source file. Note that if you wish to keep the source files in the local simulation project directory you just created, check the Copy Source to Simulation Directory option. 7. Click Next and a Summary page appears and provides information on the project selections including the simulation libraries. By default, the Run Simulator check box is enabled and will launch the simulation tool you chose earlier in the wizard in the Simulator Project Name page. 8. Click Finish. The Simulation Wizard Project (.spf) file and a simulation script DO file are generated after running the wizard. You can import the DO file into your current project if desired. If you are using Active-HDL, the wizard will generate an .ado file and if you are using ModelSim, it creates and .mdo file. Note: PCS configuration file, (.txt) must be added in step 6. Setting Global Preferences in Diamond To set any of the Global preferences in Table 15-18, do the following in Diamond: • Invoke the Spreadsheet View by selecting Tools > Spreadsheet View. • Select the Global Preferences Tab beneath the Spreadsheet View pane as shown in Figure 15-21. • Right-click on the Preference Value to be set. In the drop-down menu, select the desired value. 15-44 LatticeECP3 sysCONFIG Usage Guide Table 15-18. Global Preferences Preference Name Values PERSISTENT OFF SLAVE_PARALLEL SSPI CONFIG_MODE SPI SLAVE_SERIAL JTAG SLAVE_PARALLEL SPIm MASTER_PARALLEL SSPI DONE_EX OFF ON MCCLK_FREQ 2.5 4.3 5.4 6.9 8.1 9.2 10 13 15 20 26 30 34 41 45 55 60 130 CONFIG_SECURE OFF ON WAKE_UP 1 4 6 7 10 14 17 21 22 23 24 25 WAKE_ON_LOCK OFF ON ENABLE_NDR OFF ON CONFIG_IOVOLTAGE 2.5 1.2 1.5 1.8 3.3 STRTUP EXTERNAL TCLK CCLK MCLK15-45 LatticeECP3 sysCONFIG Usage Guide Figure 15-21. Global Preferences Tab Setting Bitstream Generation Options in Diamond To set any of the Bitstream Generation options listed in Table 15-19, do the following: • In the File List pane, double-click the left mouse button on a Strategy to invoke the Strategy settings window. • In the Process pane, left-click on Bitstream. All options related to generating a bitstream can be set in this window.15-46 LatticeECP3 sysCONFIG Usage Guide Table 15-19. Bitstream Generation Options Figure 15-22. Bitstream Options • Double-click the left mouse button on the Value you want to set. Select the desired value from the drop-down menu. Note: An explanation of the option is displayed at the bottom of the window. The Help button also invokes online help for the option • Select OK. You can then run the Bitstream File process. Preference Name Values Chain Mode Bypass Disable Flowthrough Create bit file True False No Header False True Output Format Bit File (Binary) Mask and Readback File (ASCII) Mask and Radback File (Binary) Raw Bit file (ASCII) PROM Data Output Format Intel Hex 32-bit Motorola Hex 32-bit Reset Config RAM in re-configuration True False Run DRC True False Search Path (Enter a value or browse to specify the search path)15-47 LatticeECP3 sysCONFIG Usage Guide Setting Security Options in Diamond Prior to setting security options in Diamond, you must have installed the Encryption Control Pack. You must also have selected an encrypted device in your project. To Set Security Settings, do the following: • Select the Tools > Security Setting option. The following dialog box appears: • If desired, select Change and enter a password. • Select OK. A dialog window appears to enter an encryption key. • If you do not want to enable an encryption key, select OK. • If you do want to enable an encryption key, select the Advanced Security Settings checkbox, enter the Key Format, and then enter the Encryption Key. • Select OK to create the encryption files. www.latticesemi.com 17-1 tn1246_01.3 April 2013 Technical Note TN1246 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Introduction This reference guide supplements TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2™ Devices Usage Guide which explains the software usage. In this document you will find: • WISHBONE Protocol • EFB Register Map • Command Sequences • Examples As an overview, the MachXO2 FPGA family combines a high-performance, low power, FPGA fabric with built-in, hardened control functions and on-chip User Flash Memory (UFM). The hardened control functions ease design implementation and save general purpose resources such as LUTs, registers, clocks and routing. The hardened control functions are physically located in the Embedded Function Block (EFB). All MachXO2 devices include an EFB module. The EFB block includes the following control functions: • Two I2 C Cores • One SPI Core • One 16-bit Timer/Counter • Interface to Flash Memory which includes: – User Flash Memory for MachXO2-640 and higher densities – Configuration Logic • Interface to Dynamic PLL configuration settings • Interface to On-chip Power Controller through I2 C and SPI Figure 17-1 shows the EFB architecture and the interface to the FPGA core logic. Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide17-2 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-1. Embedded Function Block (EFB) EFB Register Map The EFB module has a Register Map to allow the service of the hardened functions through the WISHBONE bus interface read/write operations. Each hardened function has dedicated 8-bit Data and Control registers, with the exception of the Flash Memory (UFM/Configuration), which are accessed through the same set of registers. Table 17-1 documents the register map of the EFB module. The PLL registers are located in the MachXO2 PLL modules, but they are accessed through EFB WISHBONE read/write cycles. Table 17-1. EFB Register Map Address spaces that are not defined in Table 17-1 are invalid and will result in non-deterministic results. It is the responsibility of the designer to ensure valid addresses are presented to the EFB WISHBONE slave interface. Address (Hex) Hardened Function 0x00-0x1F PLL0 Dynamic Access1 0x20-0x3F PLL1 Dynamic Access1 0x40-0x49 I2 C Primary 0x4A-0x53 I2 C Secondary 0x54-0x5D SPI 0x5E-0x6F Timer/Counter 0x70-0x75 Flash Memory (UFM/Configuration) 0x76-0x77 EFB Interrupt Source 1. There can be up to two PLLs in a MachXO2 device. PLL0 has an address range from 0x00 to 0x1F. PLL1 (if present) has an address range from 0x20 to 0x3F. Reference TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide, for details on PLL configuration registers and recommended usage. Configuration (including USERCODE) UFM Flash Command Interface Flash Memory EFB Register Map Configuration Master/Slave User Master/Slave WISHBONE Interface SPI Port EFB Power Controller Secondary I 2 C Port Primary I 2 C Port PLL0/ PLL1 Timer/ Counter Configuration OR Slave User Master/Slave User Master/Slave User Logic User Logic JTAG Feature Row (including TraceID)17-3 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide WISBONE Bus Interface The WISHBONE Bus in the MachXO2 is compliant with the WISHBONE standard from OpenCores. It provides connectivity between FPGA user logic and the EFB functional blocks. The user can implement a WISHBONE Master interface to interact with the EFB WISHBONE slave interface or a LatticeMico8™ soft processor core can be used to interact with the EFB WISHBONE. The block diagram in Figure 17-2 shows the supported WISHBONE bus signals between the FPGA core and the EFB. Table 17-2 provides a detailed definition of the supported signals. Figure 17-2. WISHBONE Bus Interface Between the FPGA Core and the EFB Module Table 17-2. WISHBONE Slave Interface Signals of the EFB Module Signal Name I/O Width Description wb_clk_i Input 1 Positive edge clock used by WISHBONE Interface registers and hardened functions within the EFB module. Supports clock speeds up to 133 MHz. wb_rst_i Input 1 Active-high, synchronous reset signal that will only reset the WISHBONE interface logic. This signal will not affect the contents of any registers. It will only affect ongoing bus transactions. Wait 1us after de-assertion before starting any subsequent WISHBONE transactions. wb_cyc_i Input 1 Active-high signal, asserted by the WISHBONE master, indicates a valid bus cycle is present on the bus. wb_stb_i Input 1 Active-high strobe, input signal, indicating the WISHBONE slave is the target for the current transaction on the bus. The EFB module asserts an acknowledgment in response to the assertion of the strobe. wb_we_i Input 1 Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation. wb_adr_i Input 8 8-bit wide address used to select a specific register from the register map of the EFB module. wb_dat_i Input 8 8-bit input data path used to write a byte of data to a specific register in the register map of the EFB module. wb_dat_o Output 8 8-bit output data path used to read a byte of data from a specific register in the register map of the EFB module. wb_ack_o Output 1 Active-high, transfer acknowledge signal asserted by the EFB module, indicating the requested transfer is acknowledged. EFB Register Map WISHBONE Slave Interface EFB wb_clk_i WISHBONE Master (User Logic) wb_rst_i wb_cyc_i wb_stb_i wb_we_i wb_addr_i[31:0] wb_dat_i[31:0] wb_dat_o[31:0] wb_ack_o MachXO2 User Logic17-4 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide To interface to the EFB you must create a WISHBONE Master controller in the User Logic. In a multiple-Master configuration, the WISHBONE Master outputs are multiplexed in a user-defined arbiter. A LatticeMico8 soft processor can also be utilized along with the Mico System Builder (MSB) platform which can implement multi-Master bus configurations. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface. The EFB WISHBONE bus supports the “Classic” version of the WISHBONE standard. Given that the WISHBONE bus is an open source standard, not all features of the standard are implemented or required: • Tags are not supported in the WISHBONE Slave interface of the EFB module. Given that the EFB is a hardened block, these signals cannot be added by the user. • The Slave WISHBONE bus interface of the EFB module does not require the byte select signals (sel_i or sel_o), since the data bus is only a single byte wide. • The EFB WISHBONE slave interface does not support the optional error and retry access termination signals. If the slave receives an access to an invalid address, it will simply respond by asserting wb_ack_o signal. It is the responsibility of the user to stay within the valid address range. WISHBONE Write Cycle Figure 17-3 shows the waveform of a Write cycle from the perspective of the EFB WISHBONE Slave interface. During a single Write cycle, only one byte of data is written to the EFB block from the WISHBONE Master. A Write operation requires a minimum three clock cycles. On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle: • The Master updates the address on the wb_adr_i[7:0] address lines • Updates the data that will be written to the EFB block, wb_dat_i[7:0] data lines • Asserts the write enable wb_we_i signal, indicating a write cycle • Asserts the wb_cyc_i to indicate the start of the cycle • Asserts the wb_stb_i, selecting a specific slave module On clock Edge 1, the EFB WISHBONE Slave decodes the input signals presented by the master. During this cycle: • The Slave decodes the address presented on the wb_adr_i[7:0] address lines • The Slave prepares to latch the data presented on the wb_dat_i[7:0] data lines • The Master waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb_ack_o line • The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added • The Slave asserts wb_ack_o signal The following occurs on clock Edge 2: • The Slave latches the data presented on the wb_dat_i[7:0] data lines • The Master de-asserts the strobe signal, wb_stb_i, the cycle signal, wb_cyc_i, and the write enable signal, wb_we_i • The Slave de-asserts the acknowledge signal, wb_ack_o, in response to the Master de-assertion of the strobe signal17-5 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-3. WISHBONE Bus Write Operation WISHBONE Read Cycle Figure 17-4 shows the waveform of a Read cycle from the perspective of the EFB WISHBONE Slave interface. During a single Read cycle, only one byte of data is read from the EFB block by the WISHBONE master. A Read operation requires a minimum three clock cycles. On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle: • The Master updates the address on the wb_adr_i[7:0] address lines • De-asserts the write enable wb_we_i signal, indicating a Read cycle • Asserts the wb_cyc_i to indicate the start of the cycle • Asserts the wb_stb_i, selecting a specific Slave module On clock Edge 1, the EFB WISHBONE slave decodes the input signals presented by the master. The following occurs during this cycle: • The Slave decodes the address presented on the wb_adr_i[7:0] address lines • The Master prepares to latch the data presented on wb_dat_o[7:0] data lines from the EFB WISHBONE slave on the following clock edge • The Master waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb_ack_o line • The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added. • The Slave presents valid data on the wb_dat_o[7:0] data lines • The Slave asserts wb_ack_o signal in response to the strobe, wb_stb_i signal wb_clk_i wb_rst_i wb_cyc_i wb_stb_i wb_we_i wb_adr_i [7:0] wb_dat_i [7:0] wb_dat_o [7:0] wb_ack_o VALID ADDRESS VALID DATA Edge 0 Edge 1 Edge 217-6 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide The following occurs on clock Edge 2: • The Master latches the data presented on the wb_dat_o[7:0] data lines • The Master de-asserts the strobe signal, wb_stb_i, and the cycle signal, wb_cyc_i • The Slave de-asserts the acknowledge signal, wb_ack_o, in response to the master de-assertion of the strobe signal Figure 17-4. WISHBONE Bus Read Operation WISHBONE Reset Cycle Figure 17-5 shows the waveform of the synchronous wb_rst_i signal. Asserting the reset signal will only reset the WISHBONE interface logic. This signal will not affect the contents of any registers in the EFB register map. It will only affect ongoing bus transactions. Figure 17-5. EFB WISHBONE Interface Reset The wb_rst_i signal can be asserted for any length of time. wb_clk_i wb_rst_i wb_cyc_i wb_stb_i wb_we_i wb_adr_i [7:0] wb_dat_i [7:0] wb_dat_o [7:0] wb_ack_o VALID ADDRESS VALID DATA Edge 0 Edge 1 Edge 2 wb_clk_i wb_rst_i wb_cyc_i wb_stb_i Edge 0 Edge 117-7 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Hardened I2 C IP Cores I 2 C is a widely used two-wire serial bus for communication between devices on the same board. Every MachXO2 device contains two hardened I2 C IP cores designated as the “Primary” and “Secondary” I2 C IP cores. Either of the two cores can be operated as an I2 C Master or as an I2 C Slave. The difference between the two cores is that the Primary core has pre-assigned I/O pins while the ports of the secondary core can be assigned by designers to any general purpose I/O. In addition, the Primary I2 C core can be used for accessing the User Flash Memory (UFM) and for programming the Configuration Flash. However, the Primary I2 C port cannot be used for both UFM/Config access and user functions in the same design. I 2 C Registers Both I2 C cores communicate with the EFB WISHBONE interface through a set of control, command, status and data registers. Table 17-3 shows the register names and their functions. These registers are a subset of the EFB register map. Table 17-3. I2 C Registers Table 17-4. I2 C Control (Primary/Secondary) I2CEN I2 C System Enable Bit – This bit enables the I2 C core functions. If I2CEN is cleared, the 2 C core is disabled and forced into idle state. 0: I2 C function is disabled 1: I2 C function is enabled GCEN Enable bit for General Call Response – Enables the general call response in slave mode. 0: Disable 1: Enable The General Call address is defined as 0000000 and works with either 7- or 10-bit addressing I 2 C Primary Register Name I 2 C Secondary Register Name Register Function Address I 2 C Primary Address I 2 C Secondary Access I2C_1_CR I2C_2_CR Control 0x40 0x4A Read/Write I2C_1_CMDR I2C_2_CMDR Command 0x41 0x4B Read/Write I2C_1_BR0 I2C_2_BR0 Clock Pre-scale 0x42 0x4C Read/Write I2C_1_BR1 I2C_2_BR1 Clock Pre-scale 0x43 0x4D Read/Write I2C_1_TXDR I2C_2_TXDR Transmit Data 0x44 0x4E Write I2C_1_SR I2C_2_SR Status 0x45 0x4F Read I2C_1_GCDR I2C_2_GCDR General Call 0x46 0x50 Read I2C_1_RXDR I2C_2_RXDR Receive Data 0x47 0x51 Read I2C_1_IRQ I2C_2_IRQ IRQ 0x48 0x52 Read/Write I2C_1_IRQEN I2C_2_IRQEN IRQ Enable 0x49 0x53 Read/Write Note: Unless otherwise specified, all reserved bits in writable registers shall be written ‘0’. I2C_1_CR / I2C_2_CR 0x40/0x4A Bit 7 6 5 4 3 2 1 0 Name I2CEN GCEN WKUPEN (Reserved) SDA_DEL_SEL[1:0] (Reserved) Default 0 0 0 000 0 0 Access R/W R/W R/W — R/W R/W — — Note: A write to this register will cause the I2 C core to reset.17-8 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide WKUPEN Wake-up from Standby/Sleep (by Slave Address matching) Enable Bit – When this bit is enabled the, I2 C core can send a wake-up signal to the on-chip power manager to wake the device up from standby/sleep. The wake-up function is activated when the MachXO2 Slave Address is matched during standby/sleep mode. 0: Disable 1: Enable SDA_DEL_SEL[1:0] SDA Output Delay (Tdel) Selection (see Figure 17-14) 00: 300ns 01: 150ns 10: 75ns 11: 0ns Table 17-5. I2 C Command (Pri/Sec) STA Generate START (or Repeated START) condition (Master operation) STO Generate STOP condition (Master operation) RD Indicate Read from slave (Master operation) WR Indicate Write to slave (Master operation) ACK Acknowledge Option – when receiving, ACK transmission selection 0: Send ACK 1: Send NACK CKSDIS Clock Stretching Disable. The I2 C cores support a “wait state” or clock stretching from the slave, meaning the slave can enforce a wait state if it needs time to finish the task. Bit CKSDIS disables the clock stretching if desired by the user. In this case, the overflow flag must be monitored. For Master operations, set this bit to ‘0’. Clock stretching will be used by the MachXO2 EFB I2 C Slave during both ‘read’ and ‘write’ operations (from the Master perspective) when I2 C Command Register bit CKSDIS=0. During a read operation (Slave transmitting), clock stretching occurs when TXDR is empty (under-run condition). During a write operation (Slave receiving) clock stretching occurs when RXDR is full (over-run condition). Translated into I2 C Status register bits, the I2 C clock-stretches if TRRDY=1. The decision to enable clock stretching is done on the 8TH SCL + 2 WISHBONE clocks. 0: Enabled 1: Disabled I2C_1_CMDR / I2C_2_CMDR 0x41/0x4B Bit 7 6 5 4 3 2 1 0 Name STA STO RD WR ACK CKSDIS (Reserved) Default 0 0 0 0 0 0 0 0 Access R/W R/W R/W R/W R/W R/W — —17-9 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-6. I2 C Clock Prescale 0 (Primary/Secondary) Table 17-7. I2 C Register Clock Prescale 1 (Primary/Secondary) I2C_PRESCALE[9:0] I2 C Clock Prescale value. A write operation to I2CBR [9:8] will cause an I2 C core reset. The WISHBONE clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I2 C clock frequency supported by the I2 C bus (50KHz, 100KHz, 400KHz). Note: Different from transmitting a Master, the practical limit for Slave I2 C bus speed support is (WISHBONE clock)/2048. For example, the maximum WISHBONE clock frequency to support a 50 KHz Slave I2 C operation is 102 MHz. Note: The digital value is calculated by IPexpress™ when the I2 C core is configured in the I2 C tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the I2 C Frequency, both entered by the user. The digital value of the divider is programmed in the MachXO2 device during device programming. After power-up or device reconfiguration, the data is loaded onto the I2C_1_BR1/0 and I2C_2_BR1/0 registers. Registers I2C_1_BR1/0 and I2C_2_BR1/0 have Read/Write access from the WISHBONE interface. Designers can update these clock pre-scale registers dynamically during device operation; however, care must be taken to not violate the I2 C bus frequencies. Table 17-8. I2 C Transmit Data Register (Primary/Secondary) I2C_Transmit_Data[7:0] I2 C Transmit Data. This register holds the byte that will be transmitted on the I2 C bus during the Write Data phase. Bit 0 is the LSB and will be transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit. I2C_1_BR0 / I2C_2_BR0 0x42/0x4C Bit 7 6 5 4 3 2 1 0 Name I2C_PRESCALE[7:0] Default1 00000000 Access R/W R/W R/W R/W R/W R/W R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters. See discussion below. I2C_1_BR1 / I2C_2_BR1 0x43/0x4D Bit 7 6 5 4 3 2 1 0 Name (Reserved) I2C_PRESCALE[9:8] Default1 0 0 0 0 0 000 Access — — — — — — R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters. See discussion below. I2C_1_TXDR / I2C_2_TXDR 0x44/0x4E Bit 7 6 5 4 3 2 1 0 Name I2C_Transmit_Data[7:0] Default 0 0 0 0 0 0 0 0 Access W W W W W W W W17-10 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-9. I2 C Status (Primary/Secondary) TIP Transmit In Progress. The current data byte is being transferred. Note that the TIP flag will suffer one-half SCL cycle latency right after the START condition because of the signal synchronization. Also note that this bit could be high after configuration wakeup and before the first valid I2 C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator. 1: Byte transfer in progress 0: Byte transfer complete BUSY I2 C Bus busy. The I2 C bus is involved in transaction. This is set at START condition and cleared at STOP. Note only when this bit is set should all other I2 C SR bits be treated as valid indicators for a valid transfer. 1: I2 C bus busy 0: I2 C bus not busy RARC Received Acknowledge. An acknowledge response from the addressed slave (during master write) or from receiving master (during master read) was received. 1: No acknowledge received 0: Acknowledge received SRW Slave Read/Write. Indicates transmit or receive mode. 1: Master receiving / slave transmitting 0: Master transmitting / slave receiving ARBL Arbitration Lost. The core has lost arbitration in Master mode. This bit is capable of generating an interrupt. 1: Arbitration Lost 0: Normal TRRDY Transmitter or Receiver Ready. The I2 C Transmit Data register is ready to receive transmit data, or the I2 C Receive Data Register contains receive data (dependent upon master/slave mode and SRW status). This bit is capable of generating an interrupt. 1: Transmitter or Receiver is ready 0: Transmitter of Receiver is not ready TROE Transmitter/Receiver Overrun Error or NACK received. A transmit or receive overrun error has occurred (dependent upon master/slave mode and SRW status), or a No Acknowledge was received (only when RARC also set). This bit is capable of generating an interrupt. 1: Transmitter or Receiver Overrun detected or NACK received 0: Normal HGC Hardware General Call Received. A hardware general call has been received in slave mode. The corresponding command byte will be available in the General Call Data Register. This bit is capable of generating an interrupt. I2C_1_SR / I2C_2_SR 0x45/0x4F Bit 7 6 5 4 3 2 1 0 Name TIP1 BUSY1 RARC SRW ARBL TRRDY TROE HGC Default — — — — — — — — Access R R R R R R R R 1. These bits exhibit 0.5 SCK period latency before valid in R1 devices. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices.17-11 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 1: General Call Received in slave mode 0: Normal Figure 17-6. I2 C General Call Data Register (Primary/Secondary) I2C_ GC _Data[7:0] I2 C General Call Data. This register holds the second (command) byte of the General Call transaction on the I2 C bus. Table 17-10. I2 C Receive Data Register (Primary/Secondary) I2C_ Receive _Data[7:0] I2 C Receive Data. This register holds the byte captured from the I2 C bus during the Read Data phase. Bit 0 is LSB and was received last. Table 17-11. I2 C Interrupt Status (Primary/Secondary) IRQARBL Interrupt Status for Arbitration Lost. When enabled, indicates ARBL was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Arbitration Lost Interrupt 0: No interrupt IRQTRRDY Interrupt Status for Transmitter or Receiver Ready. When enabled, indicates TRRDY was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Transmitter or Receiver Ready Interrupt 0: No interrupt IRQTROE Interrupt Status for Transmitter/Receiver Overrun or NACK received. When enabled, indicates TROE was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Transmitter or Receiver Overrun or NACK received Interrupt 0: No interrupt IRQHGC Interrupt Status for Hardware General Call Received. When enabled, indicates HGC was asserted. Write a ‘1’ to this bit to clear the interrupt. I2C_1_GCDR / I2C_2_GCDR 0x46/0x50 Bit 7 6 5 4 3 2 1 0 Name I2C_GC_Data[7:0] Default — — — — — — — — Access R R R R R R R R I2C_1_RXDR / I2C_2_RXDR 0x47/0x51 Bit 7 6 5 4 3 2 1 0 Name I2C_Receive_Data[7:0] Default — — — — — — — — Access R R R R R R R R I2C_1_IRQ / I2C_2_ IRQ 0x48/0x52 Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQARBL IRQTRRDY IRQTROE IRQHGC Default — — — ————— Access — — — — R/W R/W R/W R/W17-12 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 1: General Call Received in slave mode Interrupt 0: No interrupt Table 17-12. I2 C Interrupt Enable (Primary/Secondary) IRQARBLEN Interrupt Enable for Arbitration Lost 1: Interrupt generation enabled 0: Interrupt generation disabled IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready 1: Interrupt generation enabled 0: Interrupt generation disabled IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received 1: Interrupt generation enabled 0: Interrupt generation disabled IRQHGCEN Interrupt Enable for Hardware General Call Received 1: Interrupt generation enabled 0: Interrupt generation disabled Figure 17-7 shows a flow diagram for controlling Master I2 C reads and writes initiated via the WISHBONE interface. The following sequence is for the Primary I2 C but the same sequence applies to the Secondary I2 C. I2C_1_ IRQEN / I2C_2_IRQEN 0x49/0x53 Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQARBLEN IRQTRRDYEN IRQTROEEN IRQHGCEN Default 0 0 0 00 0 00 Access — — — — R/W R/W R/W R/W17-13 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-7. I2 C Master Read/Write Example (via WISHBONE) Start TXDR <= I2 C addr + ‘W’ CMDR <= 0x90 (STA+WR) Wait for TRRDY TXDR <= WRITE_DATA CMDR <=0x10 (WR) Write more data? Read data? CMDR <= 0x40 (STOP) Done TXDR <= I2 C addr + ‘R’ CMDR <= 0x90 (STA+WR) Wait for SRW CMDR <= 0x20 (RD) Last Read? Wait for TRRDY READ_DATA <= RXDR Wait * CMDR <= 0x68 (RD+NACK+STOP) Wait for TRRDY READ_DATA <= RXDR Y N Y N *Real-Time Delay Requirement Read only 1 byte: min < wait < max Read last of 2+ bytes: 0 < wait < max where: min = 2 * (1/fSCL) max = 7 * (1/fSCL) Y N17-14 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-8 shows a flow diagram for reading and writing from an I2 C Slave device via the WISHBONE interface. The following sequence is for the Primary I2 C but the same sequence applies to the Secondary I2 C. Figure 17-8. I2 C Slave Read/Write Example (via WISHBONE) Start wait for not BUSY CMDR <=0x04 (CKSDIS) IRQEN <= 0x00 Read more data? wait for SRW Y N * Required only for IRQ driven algorithms discard <= RXDR discard <= RXDR CMDR <=0x00 (CKSEN) IRQEN <= 0x04 (TRRDY)* Idle wait for TRRDY IN_DATA <= RXDR IRQ <= 0x04* Write reply data? TXDR <= OUT_DATA wait for TRRDY Write more data? TXDR <= OUT_DATA IRQ <= 0x04* N N Y Y17-15 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide I 2 C Framing Each command string sent to the I2 C EFB port must be correctly “framed” using the protocol defined for each interface. In the case of I2 C, the protocol is well known and defined by the industry as shown below. Table 17-13. Command Framing Protocol, by Interface Figure 17-9. I2 C Read Device ID Example Interface Pre-op (+) Command String Post-op (-) I 2 C Start (Command/Operands/Data) Stop SCL SDA A6 A5 A4 A3 A2 0 W 11100000 00000000 SCL (continued) SDA 00000000 (continued) 00000000 0 ... ... ... ... Start By Master ACK By MachXO2 ACK By MachXO2 ACK By MachXO2 Frame 1 I2 C Slave Address Byte Frame 2 CMD Byte Frame 3 Op Byte 1 Frame 4 Op Byte 2 ACK By MachXO2 Frame 5 Op Byte 3 ACK By XO2 A6 A5 A4 A3 A2 0 R 00000001 00101011 ID 0000 01000011 0 ... ... Restart By Master ACK By MachXO2 ACK By Master ACK By Master Frame 6 I2 C Slave Address Byte Frame 7 Read ID Byte 1 Frame 8 Read ID Byte 2 Frame 9 Read ID Byte 3 ACK By Master Frame 10 Read ID Byte 4 NACK By Master Stop By Master SCL (continued) SDA (continued) SCL (continued) SDA (continued) ID ID ID17-16 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-10. EFB Master – I2 C Write Figure 17-11. EFB Master – I2 C Read AD[(6:0),W] AD6 SCL AD5 AD4 AD3 AD2 AD1 AD0 Write 1 9 1 9 1 9 SDA D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Master Start Ack from Slave Ack from Slave Ack from Slave Master Stop I2C_1_SR[BUSY] I2C_1_SR[SRW] I2C_1_SR[TRRDY] Write IRQTRRDY I2C_1_IRQ[IRQTRRDY] W W rite IRQTRRDY rite I2C_1_TXDR Write I2C_1_TXDR I2C_1_SR[RARC] Write IRQTRRDY I2C_1_CMDR 0x10(WR) 0x10(WR) I2C_1_TXDR D[7:0] D[7:0] 0x90(Start+WR) 0x40(STOP) Idle AD[(6:0),W] 0x90 (START+WR) D[7:0] 0x68 (RD+NACK+STOP) Stop from Master SCL AD6 AD5 AD4 AD3 AD2 AD1 AD0 Read 1 91 91 9 SDA D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Master Start/ Restart Ack from Slave Ack from Master Nack from Master I2C_1_SR[BUSY] I2C_1_SR[SRW] I2C_1_SR[TRRDY] Read I2C1_RXDR Write IRQTRRDY I2C_1_IRQ[IRQTRRDY] Write IRQTRRDY I2C_1_CMDR I2C_1_TXDR I2C_1_RXDR D[7:0] 0x20 (RD) Write IRQTRRDY Read I2C1_RXDR I 2 C Functional Waveforms17-17 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-12. EFB Slave – I2 C Write Figure 17-13. EFB Slave – I2 C Read SCL AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write 1 91 91 9 SDA D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Start from Master Ack from Slave Ack from Slave Ack from Slave Stop from Master I2C_1_SR[BUSY] I2C_1_SR[SRW] I2C_1_SR[TRRDY] Write IRQTRRDY I2C_1_IRQ[IRQTRRDY] Read I2C_1_RXDR Write IRQTRRDY I2C_1_TXDR I2C_1_RXDR Read I2C_1_RXDR D[7:0] D[7:0] SCL AD6 AD5 AD4 AD3 AD2 AD1 AD0 1 9 1 9 1 9 SDA D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Start from Master I2C_1_SR[BUSY] I2C_1_SR[SRW] I2C_1_SR[TRRDY] Write IRQTRRDY I2C_1_IRQ[IRQTRRDY] Write IRQTRRDY Write I2C_1_TXDR Write I2C_1_TXDR I2C_1_SR[RARC] I2C_1_TXDR I2C_1_RXDR D[7:0] D[7:0] Write IRQTRRDY Read Ack from Slave Ack from Master No Ack from Master Stop from Master17-18 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide I 2 C Timing Diagram Figure 17-14. I2 C Bit Transfer Timing I 2 C Simulation Model The I2 C EFB Register Map translation to the MachXO2 EFB software simulation model is provided in below. Table 17-14. I2 C Primary Simulation Mode I 2 C Primary Register Name Register Size/Bit Location Register Function Address I2 C Primary Access Simulation Model Register Name Simulation Model Register Path I2C_1_CR [7:0] Control 0x40 Read/Write i2ccr1[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2CEN 7 i2c_en ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ GCEN 6 i2c_gcen ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ WKUPEN 5 i2c_wkupen ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ SDA_DEL_SEL[1:0] [3:2] sda_del_sel ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_CMDR [7:0] Command 0x41 Read/Write i2ccmdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ STA 7 i2c_sta ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ STO 6 i2c_sto ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ RD 5 i2c_rd ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ WR 4 i2c_wt ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ ACK 3 i2c_nack ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ CKSDIS 2 i2c_cksdis ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_BR0 [7:0] Clock Pre-scale 0x42 Read/Write i2cbr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_PRESCALE[7:0] [7:0] i2cbr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_BR1 [7:0] Clock Pre-scale 0x43 Read/Write i2cbr[9:8] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_PRESCALE[9:8] [1:0] i2cbr[9:8] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_TXDR [7:0] Transmit Data 0x44 Write i2ctxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_Transmit_Data[7:0] [7:0] i2ctxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_SR [7:0] Status 0x45 Read i2csr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ data line stable; data valid change of data allowed t SDA_DEL SCL SDA17-19 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide TIP 7 i2c_tip_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ BUSY 6 i2c_busy_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ RARC 5 i2c_rarc_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ SRW 4 i2c_srw_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ ARBL 3 i2c_arbl ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ TRRDY 2 i2c_trrdy ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ TROE 1 i2c_troe ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ HGC 0 i2c_hgc ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_GCDR [7:0] General Call 0x46 Read i2cgcdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_GC_Data[7:0] [7:0] i2cgcdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_RXDR [7:0] Receive Data 0x47 Read i2crxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_Receive_Data[7:0] [7:0] i2crxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/ I2C_1_IRQ [7:0] IRQ 0x48 Read/Write {1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqsts_3, i2csr_1st_irqsts_2, i2csr_1st_irqsts_1, i2csr_1st_irqsts_0} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQARBL 3 i2csr_1st_irqsts_3 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTRRDY 2 i2csr_1st_irqsts_2 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTROE 1 i2csr_1st_irqsts_1 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQHGC 0 i2csr_1st_irqsts_0 ../efb_top/efb_pll_sci_inst/u_efb_sci/ I2C_1_IRQEN [7:0] IRQ Enable 0x49 Read/Write {1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqena_3, i2csr_1st_irqena_2, i2csr_1st_irqena_1, i2csr_1st_irqena_0} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQARBLEN 3 i2csr_1st_irqena_3 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTRRDYEN 2 i2csr_1st_irqena_2 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTROEEN 1 i2csr_1st_irqena_1 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQHGCEN 0 i2csr_1st_irqena_0 ../efb_top/efb_pll_sci_inst/u_efb_sci/ Table 17-15. I2 C Secondary Simulation Model I 2 C Secondary Register Name Register Size/Bit Location Register Function Address I2 C Secondary Access Simulation Model Register Name Simulation Model Register Path I2C_2_CR [7:0] Control 0x4A Read/Write i2ccr1[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2CEN 7 i2c_en ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ GCEN 6 i2c_gcen ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ WKUPEN 5 i2c_wkupen ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ SDA_DEL_SEL[1:0] [3:2] sda_del_sel ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_CMDR [7:0] Command 0x4B Read/Write i2ccmdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ STA 7 i2c_sta ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ Table 17-14. I2 C Primary Simulation Mode (Continued) I 2 C Primary Register Name Register Size/Bit Location Register Function Address I2 C Primary Access Simulation Model Register Name Simulation Model Register Path17-20 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide STO 6 i2c_sto ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ RD 5 i2c_rd ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ WR 4 i2c_wt ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ ACK 3 i2c_nack ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ CKSDIS 2 i2c_cksdis ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_BR0 [7:0] Clock Pre-scale 0x4C Read/Write i2cbr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_PRESCALE[7:0] [7:0] i2cbr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_BR1 [7:0] Clock Pre-scale 0x4D Read/Write i2cbr[9:8] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_PRESCALE[9:8] [1:0] i2cbr[9:8] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_TXDR [7:0] Transmit Data 0x4E Write i2ctxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_Transmit_Data[7:0] [7:0] i2ctxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_SR [7:0] Status 0x4F Read i2csr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ TIP 7 i2c_tip_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ BUSY 6 i2c_busy_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ RARC 5 i2c_rarc_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ SRW 4 i2c_srw_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ ARBL 3 i2c_arbl ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ TRRDY 2 i2c_trrdy ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ TROE 1 i2c_troe ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ HGC 0 i2c_hgc ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_GCDR [7:0] General Call 0x50 Read i2cgcdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_GC_Data[7:0] [7:0] i2cgcdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_RXDR [7:0] Receive Data 0x51 Read i2crxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_Receive_Data[7:0] [7:0] i2crxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/ I2C_2_IRQ [7:0] IRQ 0x52 Read/Write {1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqsts_3, i2csr_2nd_irqsts_2, i2csr_2nd_irqsts_1, i2csr_2nd_irqsts_0} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQARBL 3 i2csr_2nd_irqsts_3 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTRRDY 2 i2csr_2nd_irqsts_2 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTROE 1 i2csr_2nd_irqsts_1 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQHGC 0 i2csr_2nd_irqsts_0 ../efb_top/efb_pll_sci_inst/u_efb_sci/ I2C_2_IRQEN [7:0] IRQ Enable 0x53 Read/Write {1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqena_3, i2csr_2nd_irqena_2, i2csr_2nd_irqena_1, i2csr_2nd_irqena_0} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQARBLEN 3 i2csr_2nd_irqena_3 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTRRDYEN 2 i2csr_2nd_irqena_2 ../efb_top/efb_pll_sci_inst/u_efb_sci/ Table 17-15. I2 C Secondary Simulation Model (Continued) I 2 C Secondary Register Name Register Size/Bit Location Register Function Address I2 C Secondary Access Simulation Model Register Name Simulation Model Register Path17-21 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Hardened SPI IP Core The MachXO2 EFB contains a hard SPI IP core that can be configured as a SPI Master or Slave. When the SPI core is configured as a Master it is able to control other devices with Slave SPI interfaces that are connected to the SPI bus. When the SPI core is configured as a Slave, it is able to interface to an external SPI Master device. SPI Registers The SPI core communicates with the WISHBONE interface through a set of control, command, status and data registers. Table 17-16 shows the register names and their functions. These registers are a subset of the EFB register map. Table 17-16. SPI Registers Table 17-17. SPI Control 0 TIdle_XCNT[1:0] Idle Delay Count. Specifies the minimum interval prior to the Master Chip Select low assertion (Master Mode only), in SCK periods. 00: ½ 01: 1 10: 1.5 11: 2 TTrail_XCNT[2:0] Trail Delay Count. Specifies the minimum interval between the last edge of SCK and the high deassertion of Master Chip Select (Master Mode only), in SCK periods. 000: ½ 001: 1 IRQTROEEN 1 i2csr_2nd_irqena_1 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQHGCEN 0 i2csr_2nd_irqena_0 ../efb_top/efb_pll_sci_inst/u_efb_sci/ SPI Register Name Register Function Address Access SPICR0 Control Register 0 0x54 Read/Write SPICR1 Control Register 1 0x55 Read/Write SPICR2 Control Register 2 0x56 Read/Write SPIBR Clock Pre-scale 0x57 Read/Write SPICSR Master Chip Select 0x58 Read/Write SPITXDR Transmit Data 0x59 Write SPISR Status 0x5A Read SPIRXDR Receive Data 0x5B Read SPIIRQ Interrupt Request 0x5C Read/Write SPIIRQEN Interrupt Request Enable 0x5D Read/Write Note: Unless otherwise specified, all Reserved bits in writable registers shall be written ‘0’. SPICR0 0x54 Bit 7 6 5 4 3 2 1 0 Name TIdle_XCNT[1:0] TTrail_XCNT[2:0] TLead_XCNT[2:0] Default 0 0 0 0 0 0 0 0 Access R/W R/W R/W R/W R/W R/W R/W R/W Note: A write to this register will cause the SPI core to reset. Table 17-15. I2 C Secondary Simulation Model (Continued) I 2 C Secondary Register Name Register Size/Bit Location Register Function Address I2 C Secondary Access Simulation Model Register Name Simulation Model Register Path17-22 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 010: 1.5 … 111: 4 TLead_XCNT[2:0] Lead Delay Count. Specifies the minimum interval between the Master Chip Select low assertion and the first edge of SCK (Master Mode only), in SCK periods. 000: ½ 001: 1 010: 1.5 … 111: 4 Table 17-18. SPI Control 1 SPE This bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state. 0: SPI disabled 1: SPI enabled, port pins are dedicated to SPI functions. WKUPEN_USER Wake-up Enable via User. Enables the SPI core to send a wake-up signal to the onchip Power Controller to wake the part from Standby mode when the User slave SPI chip select (spi_scsn) is driven low. 0: Wakeup disabled 1: Wakeup enabled. WKUPEN_CFG Wake-up Enable Configuration. Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration slave SPI chip select (ufm_sn) is driven low. 0: Wakeup disabled 1: Wakeup enabled. TXEDGE Data Transmit Edge. Enables Lattice proprietary extension to the SPI protocol. Selects which clock edge to transmit SPI data. Refer to Figures 17-25 through 17-28. 0: Transmit data on the MCLK edge defined by SPICR2[CPOL] and SPICR2[CPHA] 1: Transmit data ½ MCLK earlier than defined by SPICR2[CPOL] and SPICR2[CPHA] Table 17-19. SPI Control 2 SPICR1 0x55 Bit 7 6 5 4 3 2 1 0 Name SPE WKUPEN_USER WKUPEN_CFG TXEDGE (Reserved) Default 0 0 0 0 0 0 0 0 Access R/W R/W R/W R/W — — — — Note: A write to this register will cause the SPI core to reset. SPICR2 0x56 Bit 7 6 5 4 3 2 1 0 Name MSTR MCSH SDBRE (Reserved) (Reserved) CPOL CPHA LSBF Default 0 0 0 0 0000 Access R/W R/W R/W — — R/W R/W R/W Note: A write to this register will cause the SPI core to reset.17-23 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide MSTR SPI Master/Slave Mode. Selects the Master/Slave operation mode of the SPI core. Changing this bit forces the SPI system into idle state. 0: SPI is in Slave mode 1: SPI is in Master mode MCSH SPI Master CSSPIN Hold. Holds the Master chip select active when the host is busy, to halt the data transmission without de-asserting chip select. Note: This mode must be used only when the WISHBONE clock has been divided by a value greater than four (4) (greater than six (6) for R1 devices). For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices. 0: Master running as normal 1: Master holds chip select low even if there is no data to be transmitted SDBRE Slave Dummy Byte Response Enable. Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (e.g. WISHBONE host) cannot respond with initial data within the time required, and to make the slave read out data predictably available at high SPI clock rates. When enabled, dummy 0xFF bytes will be transmitted in response to a SPI slave read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the WISHBONE host, a single byte of 0x00 will be transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI master should scan for the initial 0x00 byte when reading the SPI slave to indicate the beginning of actual data. Refer to Figure 17-19. 0: Normal Slave SPI operation 1: Lattice proprietary Slave Dummy Byte Response Enabled Note: This mechanism only applies for the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate. CPOL SPI Clock Polarity. Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figures 17-25 through 17-28. 0: Active-high clocks selected. In idle state SCK is low. 1: Active-low clocks selected. In idle state SCK is high. CPHA SPI Clock Phase. Selects the SPI clock format. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Refer to Figures 17-25 through 17-28. 0: Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge. 1: Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge*. Note: When CPHA=1, the user must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (e.g. when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily. Slave SPI Configuration mode supports default setting only for CPOL, CPHA. LSBF LSB-First. LSB appears first on the SPI interface. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to 17-24 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figures 17-25 through 17-28. Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7. 0: Data is transferred most significant bit (MSB) first 1: Data is transferred least significant bit (LSB) first Table 17-20. SPI Clock Prescale DIVIDER[5:0] SPI Clock Prescale value. The WISHBONE clock frequency is divided by (DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register will cause a SPI core reset. DIVIDER must be >= 1. Note: The digital value is calculated by IPexpress when the SPI core is configured in the SPI tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the SPI Frequency, both entered by the user. The digital value of the divider is programmed in the MachXO2 device during device programming. After power-up or device reconfiguration, the data is loaded onto the SPIBR register. Register SPIBR has Read/Write access from the WISHBONE interface. Designers can update the clock pre-scale register dynamically during device operation. Table 17-21. SPI Master Chip Select CSN_[7:0] SPI Master Chip Selects. Used in master mode for asserting a specific Master Chip Select (MCSN) line. The register has eight bits, enabling the SPI core to control up to eight external SPI slave devices Each bit represents one master chip select line (Active-Low). Bits [7:1] may be connected to any I/O pin via the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has Read/Write access from the WISHBONE interface. A write operation on this register will cause the SPI core to reset. Table 17-22. SPI Transmit Data Register SPIBR 0x57 Bit 7 6 5 4 3 2 1 0 Name (Reserved) DIVIDER[5:0] Default1 0 0000000 Access — — R/W R/W R/W R/W R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters. See discussion below. SPICSR 0x58 Bit 7 6 5 4 3 2 1 0 Name CSN_7 CSN_6 CSN_5 CSN_4 CSN_3 CSN_2 CSN_1 CSN_0 Default 0 0 0 0 0 0 0 0 Access R/W R/W R/W R/W R/W R/W R/W R/W SPITXDR 0x59 Bit 7 6 5 4 3 2 1 0 Name SPI_Transmit_Data[7:0] Default — — — — — — — — Access W W W W W W W W17-25 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide SPI_Transmit_Data[7:0] SPI Transmit Data. This register holds the byte that will be transmitted on the SPI bus. Bit 0 in this register is LSB, and will be transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1. Note: When operating as a Slave, SPITXDR must be written when SPISR[TRDY] is '1' and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. See Figure 17-25. This timing requires at least one protocol dummy byte be included for all slave SPI read operations. Table 17-23. SPI Status TIP SPI Transmitting In Progress. Indicates the SPI port is actively transmitting/receiving data. 0: SPI Transmitting complete 1: SPI Transmitting in progress* Note: This bit is non-functional in R1 devices. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (Non-R1) Devices. TRDY SPI Transmit Ready. Indicates the SPI transmit data register (SPITXDR) is empty. This bit is cleared by a write to SPITXDR. This bit is capable of generating an interrupt. 0: SPITXDR is not empty 1: SPITXDR is empty RRDY SPI Receive Ready. Indicates the receive data register (SPIRXDR) contains valid receive data. This bit is cleared by a read access to SPIRXDR. This bit is capable of generating an interrupt. 0: SPIRXDR does not contain data 1: SPIRXDR contains valid receive data ROE Receive Overrun Error. Indicates SPIRXDR received new data before the previous data was read. The previous data is lost. This bit is capable of generating an interrupt. 0: Normal 1: Receiver Overrun detected MDF Mode Fault. Indicates the Slave SPI chip select (spi_scsn) was driven low while SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1 or SPICR2. This bit is capable of generating an interrupt. 0: Normal 1: Mode Fault detected SPISR 0x5A Bit 7 6 5 4 3 2 1 0 Name TIP (Reserved) TRDY RRDY (Reserved) ROE MDF Default 0 — —0 0 —0 0 Access R — —RR —RR17-26 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-24. SPI Receive Data Register SPI_Receive_Data[7:0] SPI Receive Data. This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and was received last when LSBF=0 or first when LSBF=1. Table 17-25. SPI Interrupt Status IRQTRDY Interrupt Status for SPI Transmit Ready. When enabled, indicates SPISR[TRDY] was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: SPI Transmit Ready Interrupt 0: No interrupt IRQRRDY Interrupt Status for SPI Receive Ready. When enabled, indicates SPISR[RRDY] was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: SPI Receive Ready Interrupt 0: No interrupt IRQROE Interrupt Status for Receive Overrun Error. When enabled, indicates ROE was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Receive Overrun Error Interrupt 0: No interrupt IRQMDF Interrupt Status for Mode Fault. When enabled, indicates MDF was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Mode Fault Interrupt 0: No interrupt Table 17-26. SPI Interrupt Enable IRQTRDYEN Interrupt Enable for SPI Transmit Ready. 1: Interrupt generation enabled 0: Interrupt generation disabled SPIRXDR 0x5B Bit 7 6 5 4 3 2 1 0 Name SPI_Receive_Data[7:0] Default 0 0 0 0 0 0 0 0 Access R R R R R R R R SPIIRQ 0x5C Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQTRDY IRQRRDY (Reserved) IRQROE IRQMDF Default — — —0 0 —0 0 Access — — — R/W R/W — R/W R/W SPIIRQEN 0x5D Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQTRDYEN IRQRRDYEN (Reserved) IRQROEEN IRQMDFEN Default 0 0 000 000 Access — — — R/W R/W — R/W R/W17-27 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide IRQRRDYEN Interrupt Enable for SPI Receive Ready 1: Interrupt generation enabled 0: Interrupt generation disabled IRQROEEN Interrupt Enable for Receive Overrun Error 1: Interrupt generation enabled 0: Interrupt generation disabled IRQMDFEN Interrupt Enable for Mode Fault 1: Interrupt generation enabled 0: Interrupt generation disabled Figure 17-15 shows a flow diagram for controlling Master SPI reads and writes initiated via the WISHBONE interface.17-28 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-15. SPI Master Read/Write Example (via WISHBONE) – Production Silicon Start CR2 <= 0xC0 wait for TRDY Done? Read data? TXDR <= SPI Write Data TXDR <= 0x00 wait for RRDY SPI Read Data <= RXDR Y N Y N wait for RRDY Discard Data <= RXDR Last Read? CR2 <= 0x80 Y N wait for not TIP Done17-29 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-16. SPI Master Read/Write Example (via WISHBONE) – R1 Silicon Note: For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2- 1200-R1 to Standard (Non-R1) Devices. Start CR2 <= 0xC0 wait for TRDY TXDR <= SPI Command Byte Done? Read data? TXDR <= SPI Write Data Done Discard Data <= RXDR TXDR <= 0x00 wait for RRDY TXDR <= 0x00 wait for RRDY SPI Read Data <= RXDR Y N Y N Y N wait for RRDY Discard Data <= RXDR Last Read? CR2 <= 0x80 17-30 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide SPI Framing Each command string sent to the SPI EFB port must be correctly ‘framed’ using the protocol defined for each interface. In the case of SSPI the protocol is well known and defined by the industry as shown below: Table 17-27. Command Framing Protocol, by Interface Figure 17-17. SSPI Read Device ID Example Interface Pre-op (+) Command String Post-op (-) SPI Assert CS (Command/Operands/Data) De-assert CS 111000000000000000000000 CMD Byte Op Byte 1 Op Byte 2 SN CCLK SI SO ... ... ... ... 00000000 Op Byte 3 Read ID Byte 1 Read ID Byte 2 SN (continued) CCLK (continued) SI (continued) SO (continued) ... ... ... ... ID ID ID ID 0 0 0 0 0 1 0 0 0 0 1 1 Read ID Byte 3 Read ID Byte 4 SN (continued) CCLK (continued) SI (continued) SO (continued) 000000010010101 117-31 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide SPI Functional Waveforms Figure 17-18. Fully Specified SPI Transaction Figure 17-19. Minimally Specified SPI Transaction R1 from SI to SPIRXDR (auto) T1 written to SPITXDR via WISHBONE (user) T1 from SPITXDR to SO (auto) T1 T2 T3 T4 T5 T6 T7 T8 T1 T2 T3 T4 T5 T6 T7 T8 R1 R2 R3 R4 R5 R6 R7 R8 R1 R2 R3 R4 R5 R6 R7 R8 SPISR[RRDY] SPIRXDR SPISR[TIP] SI SO SCSN SPITXDR SPISR[TRDY] R1 read from SPIRXDR via WISHBONE (user) Addr read from SPIRXDR via WISHBONE (user) Flush SPIRXDR via WISHBONE (user) Quit reading SPIRXDR (data is “don’t care”) CMD read from SPIRXDR via WISHBONE (user) 0x08 addr dum 0x08 addr dum old old dum1 dum2 D1 D2 D3 D4 D5 FF* dum2 D1 D2 D3 D4 D5 Command Reply to Command After SPISR[TIP] detected, write dummy to SPITXDR (user) After CMD/Addr decode, write good to SPITXDR (user) *Note: If SPITXDR is ‘empty’ at the start of a transaction, the second byte will be ‘FF’ (silicon limitation). Must write dummy byte in first byte period to get good Tx data in third period (dummy data may be overwritten in second period if necessary). SPISR[TRDY] SPISR[TRDY] SPIRXDR SPISR[TIP] SI SO SCSN SPITXDR SPISR[TRDY]17-32 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide SPI Timing Diagrams Figure 17-20. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0) Figure 17-21. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0) MCLK/CCLK (CPOL=0) MCLK/CCLK (CPOL=1) SPISO or SI SISPI or SO CSSPIN/SCSN/SN MSB first (LSBF=0): LSB first (LSBF=1): MSB LSB bit6 bit1 bit5 bit2 bit4 bit3 bit3 bit4 bit2 bit5 bit1 bit6 MSB LSB tL tT tI tL tL = TLead_XCNT tT = TTrail_XCNT tL = Tidle_XCNT sample instants *Note: MachXO2 SPI configuration modes only support CPHA = CPOL = LSBF = TXEDGE = 0 MSB first (LSBF=0): LSB first (LSBF=1): MSB LSB bit6 bit1 bit5 bit2 bit4 bit3 bit3 bit4 bit2 bit5 bit1 bit6 MSB LSB tL tT tI tL tL = TLead_XCNT tT = TTrail_XCNT tL = Tidle_XCNT sample instants MCLK/CCLK (CPOL=0) MCLK/CCLK (CPOL=1) SPISO or SI SISPI or SO CSSPIN or SCSN17-33 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-22. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1) Figure 17-23. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1) Figure 17-24. Slave SPI Dummy Byte Response (SPICR2[SDBRE]) Timing MSB first (LSBF=0): LSB first (LSBF=1): MSB LSB bit6 bit1 bit5 bit2 bit4 bit3 bit3 bit4 bit2 bit5 bit1 bit6 MSB LSB tL tT tI tL tL = TLead_XCNT tT = TTrail_XCNT tL = Tidle_XCNT sample instants MCLK/CCLK (CPOL=0) MCLK/CCLK (CPOL=1) SPISO or SI SISPI or SO CSSPIN or SCSN MSB first (LSBF=0): LSB first (LSBF=1): MSB LSB bit6 bit1 bit5 bit2 bit4 bit3 bit3 bit4 bit2 bit5 bit1 bit6 MSB LSB tL tT tI tL tL = TLead_XCNT tT = TTrail_XCNT tL = Tidle_XCNT sample instants MCLK/CCLK (CPOL=0) MCLK/CCLK (CPOL=1) SPISO or SI SISPI or SO CSSPIN or SCSN SI(MOSI) SO(MISO) CS(SS) FF FF FF FF FF CMD OP1 OP2 OP3 FF FF FF FF FF FF FF 00 D1 D2 D3 Receiving Read Command SPITXDR NOT Ready SPITXDR Ready DATA Read Out17-34 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide SPI Simulation Model The SPI EFB Register Map translation to the MachXO2 EFB software simulation model is provided below. Table 17-28. SPI Simulation Model SPI Register Name Register Size/Bit Location Register Function Address Access Simulation Model Register Name Simulation Model Register Path SPICR0 [7:0] Control Register 0 0x54 Read/Write spicr0[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ TIdle_XCNT[1:0] [7:6] spicr0[7:6] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ TTrail_XCNT[2:0] [5:3] spicr0[5:3] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ TLead_XCNT[2:0] [2:0] spicr0[2:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPICR1 [7:0] Control Register 1 0x55 Read/Write spicr1[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPE 7 spi_en ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ WKUPEN_USER 6 spi_wkup_usr ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ WKUPEN_CFG 5 spi_wkup_cfg ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ TXEDGE 4 spi_tx_edge ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPICR2 [7:0] Control Register 2 0x56 Read/Write spicr2[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ MSTR 7 spi_mstr ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ MCSH 6 spi_mcsh ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SDBRE 5 spi_srme ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CPOL 2 spi_cpol ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CPHA 1 spi_cpha ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ LSBF 0 spi_lsbf ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPIBR [7:0] Clock Pre-scale 0x57 Read/Write spibr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ DIVIDER[5:0] [5:0] spibr[5:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPICSR [7:0] Master Chip Select 0x58 Read/Write spicsr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_7 7 spicsr[7] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_6 6 spicsr[6] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_5 5 spicsr[5] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_4 4 spicsr[4] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_3 3 spicsr[3] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_2 2 spicsr[2] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_1 1 spicsr[1] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ CSN_0 0 spicsr[0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPITXDR [7:0] Transmit Data 0x59 Write spitxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPI_Transmit_Data[7:0] [7:0] spitxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/17-35 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide SPISR [7:0] Status 0x5A Read spisr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ TIP 7 spi_tip_sync ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ TRDY 4 spi_trdy ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ RRDY 3 spi_rrdy ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ ROE 1 spi_roe ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ MDF 0 spi_mdf ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPIRXDR [7:0] Receive Data 0x5B Read spirxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPI_Receive_Data[7:0] [7:0] spirxdr[7:0] ../efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/ SPIIRQ [7:0] Interrupt Request 0x5C Read/Write {1'b0, 1'b0, 1'b0, spisr_irqsts_4, spisr_irqsts_3, spisr_irqsts_2, spisr_irqsts_1, spisr_irqsts_0} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTRDY 4 spisr_irqsts_4 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQRRDY 3 spisr_irqsts_3 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQROE 1 spisr_irqsts_1 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQMDF 0 spisr_irqsts_0 ../efb_top/efb_pll_sci_inst/u_efb_sci/ SPIIRQEN [7:0] Interrupt Request Enable 0x5D Read/Write {1'b0, 1'b0, 1'b0, spisr_irqena_4, spisr_irqena_3, spisr_irqena_2, spisr_irqena_1, spisr_irqena_0} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQTRDYEN 4 spisr_irqena_4 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQRRDYEN 3 spisr_irqena_3 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQROEEN 1 spisr_irqena_1 ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQMDFEN 0 spisr_irqena_0 ../efb_top/efb_pll_sci_inst/u_efb_sci/ Table 17-28. SPI Simulation Model SPI Register Name Register Size/Bit Location Register Function Address Access Simulation Model Register Name Simulation Model Register Path17-36 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Hardened Timer/Counter PWM The MachXO2 EFB contains a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit Timer/Counter module with independent output compare units and PWM support. Timer/Counter Registers The Timer/Counter communicates with the FPGA logic through the WISHBONE interface, by utilizing a set of control, status and data registers. Table 17-29 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register. Table 17-29. Timer/Counter Registers Table 17-30. Timer/Counter Control 0 RSTEN Enables the reset signal (tc_rstn) to enter the Timer/Counter core from the PLD logic. 1: External reset enabled 0: External reset disabled PRESCALE[2:0] Used to divide the clock input to the Timer/Counter 000: Static (clock disabled) 001: Divide by 1 010: Divide by 8 011: Divide by 64 Timer/Counter Register Name Register Function Address Access TCCR0 Control Register 0 0x5E Read/Write TCCR1 Control Register 1 0x5F Read/Write TCTOPSET0 Set Top Counter Value [7:0] 0x60 Write TCTOPSET1 Set Top Counter Value [15:8] 0x61 Write TCOCRSET0 Set Compare Counter Value [7:0] 0x62 Write TCOCRSET1 Set Compare Counter Value [15:8] 0x63 Write TCCR2 Control Register 2 0x64 Read/Write TCCNT0 Counter Value [7:0] 0x65 Read TCCNT1 Counter Value [15:8] 0x66 Read TCTOP0 Current Top Counter Value [7:0] 0x67 Read TCTOP1 Current Top Counter Value [15:8] 0x68 Read TCOCR0 Current Compare Counter Value [7:0] 0x69 Read TCOCR1 Current Compare Top Counter Value [15:8] 0x6A Read TCICR0 Current Capture Counter Value [7:0] 0x6B Read TCICR1 Current Capture Counter Value [15:8] 0x6C Read TCSR0 Status Register 0x6D Read TCIRQ Interrupt Request 0x6E Read/Write TCIRQEN Interrupt Request Enable 0x6F Read/Write Note: Unless otherwise specified, all Reserved bits in writable registers shall be written ‘0’. TCCR0 0x5E Bit 7 6 5 4 3 2 1 0 Name RSTEN (Reserved) PRESCALE[2:0] CLKEDGE CLKSEL (Reserved) Default 0 0 0 00 0 Access R/W — R/W R/W R/W R/W17-37 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 100: Divide by 256 101: Divide by 1024 110: (Reserved setting) 111: (Reserved setting) CLKEDGE Used to select the edge of the input clock source. The Timer/Counter will update states on the edge of the input clock source. 0: Rising Edge 1: Falling Edge CLKSEL Defines the source of the input clock. 0: Clock Tree 1: On-chip Oscillator Table 17-31. Timer/Counter Control 1 SOVFEN Enables the overflow flag to be used with the interrupt output signal. It is set when the Timer/Counter is standalone, with no WISHBONE interface. 0: Disabled 1: Enabled Note: When this bit is set, other flags such as the OCRF and ICRF will not be routed to the interrupt output signal. ICEN Enables the ability to perform a capture operation of the counter value. Users can assert the “tc_ic” signal and load the counter value onto the TCICR0/1 registers. The captured value can serve as a timer stamp for a specific event. 0: Disabled 1: Enabled TSEL Enables the auto-load of the counter with the value from TCTOPSET0/1. When disabled, the value 0xFFFF is auto-loaded. 0: Disabled 1: Enabled OCM[1:0] Select the function of the output signal of the Timer/Counter. The available functions are Static, Toggle, Set/Clear and Clear/Set. All Timer/Counter modes: 00: The output is static low In non-PWM modes: 01: Toggle on TOP match In Fast PWM mode: 10: Clear on TOP match, Set on OCR match 11: Set on TOP match, Clear on OCR match In Phase and Frequency Correct PWM mode: 10: Clear on OCR match when the counter is incrementing TCCR1 0x5F Bit 7 6 5 4 3 2 1 0 Name (Reserved) SOVFEN ICEN TSEL OCM[1:0] TCM[1:0] Default 0000 0 0 Access — R/W R/W R/W R/W R/W17-38 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Set on OCR match when counter is decrementing 11: Set on OCR match when the counter is incrementing Clear on OCR match when the counter is decrementing TCM[1:0] Timer Counter Mode. Defines the mode of operation for the Timer/Counter. 00: Watchdog Timer Mode 01: Clear Timer on Compare Match Mode 10: Fast PWM Mode 11: Phase and Frequency Correct PWM Mode Table 17-32. Timer/Counter Set Top Counter Value 0 Table 17-33. Timer/Counter Set Top Counter Value 1 The value from TCTOPSET0/1 is loaded to the TCTOP0/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details. TCTOPSET0 register holds the lower eight bits [7:0] of the top value. TCTOPSET1 register holds the upper eight bits [15:8] of the top value. Table 17-34. Timer/Counter Set Compare Counter Value 0 Table 17-35. Timer/Counter Set Compare Counter Value 1 TCTOPSET0 0x60 Bit 7 6 5 4 3 2 1 0 Name TCTOPSET[7:0] Default1 11111111 Access R/W R/W R/W R/W R/W R/W R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters. TCTOPSET1 0x61 Bit 7 6 5 4 3 2 1 0 Name TCTOPSET[15:8] Default1 11111111 Access R/W R/W R/W R/W R/W R/W R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters. TCOCRSET0 0x62 Bit 7 6 5 4 3 2 1 0 Name TCOCRSET[7:0] Default1 11111111 Access R/W R/W R/W R/W R/W R/W R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters. TCOCRSET1 0x63 Bit 7 6 5 4 3 2 1 0 Name TCOCRSET[15:8] Default1 11111111 Access R/W R/W R/W R/W R/W R/W R/W R/W 1. Hardware default value may be overridden by EFB component instantiation parameters.17-39 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide The value from TCOCRSET0/1 is loaded to the TCOCR0/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details. TCOCRSET0 register holds the lower 8 bits [7:0] of the compare value. TCOCRSET1 register holds the upper eight bits [15:8] of the compare value. Table 17-36. Timer/Counter Control 2 WBFORCE In non-PWM modes, forces the output of the counter, as if the counter value matched the compare (TCOCR) value or it matched the top value (TCTOP). 0: Disabled 1: Enabled WBRESET Reset the counter from the WISHBONE interface by writing a '1' to this bit. Manually reset to ‘0’. The rising edge is detected in the WISHBONE clock domain, and the counter is reset synchronously on the next tc_clki. Due to the clock domain crossing, there is a one-clock uncertainty when the reset is effective. This bit has higher priority then WBPAUSE. 0: Disabled 1: Enabled WBPAUSE Pause the 16-bit counter 1: Pause 0: Normal Table 17-37. Timer/Counter Counter Value 0 Table 17-38. Timer/Counter Counter Value 1 Registers TCCNT0 and TCCNT1 are 8-bit registers, which combined, hold the counter value. The WISHBONE host has read-only access to these registers. TCCNT0 register holds the lower 8-bit value [7:0] of the counter value. TCCNT1 register holds the upper 8-bit value [15:8] of the counter value. TCCR2 0x64 Bit 7 6 5 4 3 2 1 0 Name (Reserved) WBFORCE WBRESET WBPAUSE Default 0 0 0 0 0000 Access — — — — — R/W R/W R/W TCCNT0 0x65 Bit 7 6 5 4 3 2 1 0 Name TCCNT[7:0] Default 0 0 0 0 0 0 0 0 Access R R R R R R R R TCCNT1 0x66 Bit 7 6 5 4 3 2 1 0 Name TCCNT[15:8] Default 0 0 0 0 0 0 0 0 Access R R R R R R R R17-40 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-39. Timer/Counter Current Top Counter Value 0 Table 17-40. Timer/Counter Current Top Counter Value 1 Registers TCTOP0 and TCTOP1 are 8-bit registers, which combined, receive a 16-bit value from the TCTOPSET0/1. The data stored in these registers represents the top value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details. TCTOP0 register holds the lower 8-bit value [7:0] of the top value. TCTOP1 register holds the upper 8-bit value [15:8] of the top value. Table 17-41. Timer/Counter Current Compare Counter Value 0 Table 17-42. Timer/Counter Current Compare Counter Value 1 Registers TCOCR0 and TCOCR1 are 8-bit registers, which combined, receive a 16-bit value from the TCOCRSET0/1. The data stored in these registers represents the compare value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details. TCOCR0 register holds the lower 8-bit value [7:0] of the compare value. TCOCR1 register holds the upper 8-bit value [15:8] of the compare value. TCTOP0 0x67 Bit 7 6 5 4 3 2 1 0 Name TCTOP[7:0] Default 1 1 1 1 1 1 1 1 Access R R R R R R R R TCTOP1 0x68 Bit 7 6 5 4 3 2 1 0 Name TCTOP[15:8] Default 1 1 1 1 1 1 1 1 Access R R R R R R R R TCOCR0 0x69 Bit 7 6 5 4 3 2 1 0 Name TCOCR[7:0] Default 1 1 1 1 1 1 1 1 Access R R R R R R R R TCOCR1 0x6A Bit 7 6 5 4 3 2 1 0 Name TCOCR[15:8] Default 1 1 1 1 1 1 1 1 Access R R R R R R R R17-41 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-43. Timer/Counter Current Capture Counter Value 0 Table 17-44. Timer/Counter Current Capture Counter Value 1 Registers TCICR0 and TCICR1 are 8-bit registers, which combined, can hold the counter value. The counter value is loaded onto these registers once a trigger event, tc_ic IP signal, is asserted. The capture value is commonly used as a time-stamp for a specific system event. The WISHBONE host has read-only access to these registers. TCICR0 register holds the lower 8-bit value [7:0] of the counter value. TCICR1 register holds the upper 8-bit value [15:8] of the counter value. Table 17-45. Timer/Counter Status Register BTF Bottom Flag. Asserted when the counter reaches value zero. A write operation to this register clears this flag. 1: Counter reached zero value 0: Counter has not reached zero ICRF Capture Counter Flag. Asserted when the user asserts the TC_IC input signal. The counter value is captured into the TCICR0/1 registers. A write operation to this register clears this flag. This bit is capable of generating an interrupt. 1: TC_IC signal asserted. 0: Normal OCRF Compare Match Flag. Asserted when counter matches the TCOCR0/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt. 1: Counter match 0: Normal OVF Overflow Flag. Asserted when the counter matches the TCTOP0/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt. 1: Counter match 0: Normal TCICR0 0x6B Bit 7 6 5 4 3 2 1 0 Name TCICR[7:0] Default 0 0 0 0 0 0 0 0 Access R R R R R R R R TCICR1 0x6C Bit 7 6 5 4 3 2 1 0 Name TCICR[15:8] Default 0 0 0 0 0 0 0 0 Access R R R R R R R R TCSR 0x6D Bit 7 6 5 4 3 2 1 0 Name (Reserved) BTF ICRF OCRF OVF Default — — — —0 0 0 0 Access — — — —R RRR17-42 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-46. Timer/Counter Interrupt Status IRQICRF Interrupt Status for Capture Counter Flag. When enabled, indicates ICRF was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Capture Counter Flag Interrupt 0: No interrupt IRQOCRF Interrupt Status for Compare Match Flag. When enabled, indicates OCRF was asserted. Write a ‘1’ to this bit to clear the interrupt. Note the interrupt line is asserted for only 1 clock cycle. 1: Compare Match Flag Interrupt 0: No interrupt IRQOVF Interrupt Status for Overflow Flag. When enabled, indicates OVF was asserted. Write a ‘1’ to this bit to clear the interrupt. Note the interrupt line is asserted for only 1 clock cycle. 1: Overflow Flag Interrupt 0: No interrupt Table 17-47. Timer/Counter Interrupt Enable IRQICRFEN Interrupt Enable for Capture Counter Flag. 1: Interrupt generation enabled 0: Interrupt generation disabled IRQOCRFEN Interrupt Enable for Compare Match Flag. 1: Interrupt generation enabled 0: Interrupt generation disabled IRQOVFEN Interrupt Enable for Overflow Flag. 1: Interrupt generation enabled 0: Interrupt generation disabled TCIRQ 0x6E Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQICRF IRQOCRF IRQOVF Default 0 0 0 0 0000 Access — — — — — R/W R/W R/W TCIRQEN 0x6F Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQICRFEN IRQOCRFEN IRQOVFEN Default 0 0 0 0 00 0 0 Access — — — — — R/W R/W R/W17-43 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Timer Counter Simulation Model The Timer Counter EFB Register Map translation to the MachXO2 EFB software simulation model is provided below. Table 17-48. Timer/Counter Simulation Mode Timer/Counter Register Name Register Size/Bit Location Register Function Address Access Simulation Model Register Name Simulation Model Register Path TCCR0 [7:0] Control Register 0 0x5E Read/Write {tc_rstn_ena, tc_gsrn_dis, tc_cclk_sel[2:0], tc_sclk_sel[2:0]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ RSTEN 7 tc_rstn_ena ../efb_top/efb_pll_sci_inst/u_efb_sci/ PRESCALE[2:0] [5:3] tc_cclk_sel[2:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ CLKEDGE 2 tc_sclk_sel[2] ../efb_top/efb_pll_sci_inst/u_efb_sci/ CLKSEL 1 tc_sclk_sel[1] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCCR1 [7:0] Control Register 1 0x5F Read/Write {1'b0, tc_ovf_ena, tc_ic_ena, tc_top_sel, tc_oc_mode[1:0], tc_mode[1:0]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ SOVFEN 6 tc_ivf_ena ../efb_top/efb_pll_sci_inst/u_efb_sci/ ICEN 5 tc_ic_ena ../efb_top/efb_pll_sci_inst/u_efb_sci/ TSEL 4 tc_top_sel ../efb_top/efb_pll_sci_inst/u_efb_sci/ OCM[1:0] [3:2] tc_oc_mode[1:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCM[1:0] [1:0] tc_mode[1:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOPSET0 [7:0] Set Top Counter Value [7:0] 0x60 Write {tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOPSET[7:0] [7:0] {tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOPSET1 [7:0] Set Top Counter Value [15:8] 0x61 Write {tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOPSET[15:8] [7:0] {tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCRSET0 [7:0] Set Compare Counter Value [7:0] 0x62 Write {tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCRSET[7:0] [7:0] {tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCRSET1 [7:0] Set Compare Counter Value [15:8] 0x63 Write {tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCRSET[15:8] [7:0] {tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]} ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCCR2 [7:0] Control Register 2 0x64 Read/Write {1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_oc_force, tc_cnt_reset, tc_cnt_pause} ../efb_top/efb_pll_sci_inst/u_efb_sci/ WBFORCE 2 tc_oc_force ../efb_top/efb_pll_sci_inst/u_efb_sci/ WBRESET 1 tc_cnt_reset ../efb_top/efb_pll_sci_inst/u_efb_sci/ WBPAUSE 0 tc_cnt_pause ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCCNT0 [7:0] Counter Value [7:0] 0x65 Read tc_cnt_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCCNT[7:0] [7:0] tc_cnt_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCCNT1 [7:0] Counter Value [15:8] 0x66 Read tc_cnt_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCCNT[15:8] [7:0] tc_cnt_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOP0 [7:0] Current Top Counter Value [7:0] 0x67 Read tc_top_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOP[7:0] [7:0] tc_top_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/17-44 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Flash Memory (UFM/Configuration) Access Designers can access the Flash Memory Configuration Logic interface using the JTAG, SPI, I2 C, or WISHBONE interfaces. The MachXO2 Flash Memory consists of two sectors: • User Flash Memory (UFM) – MachXO2-640 and higher density devices provide one sector of User Flash Memory (UFM). • Configuration – Configuration consists of two sectors Configuration Flash and the Feature Row. The UFM is a Flash sector which is organized in pages. The UFM is not byte addressable. Each page has 128 bits (16 bytes). TCTOP1 [7:0] Current Top Counter Value [15:8] 0x68 Read tc_top_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCTOP[15:8] [7:0] tc_top_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCR0 [7:0] Current Compare Counter Value [7:0] 0x69 Read tc_ocr_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCR[7:0] [7:0] tc_ocr_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCR1 [7:0] Current Compare Top Counter Value [15:8] 0x6A Read tc_ocr_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCOCR[15:8] [7:0] tc_ocr_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCICR0 [7:0] Current Capture Counter Value [7:0] 0x6B Read tc_icr_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCICR[7:0] [7:0] tc_icr_sts[7:0] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCICR1 [7:0] Current Capture Counter Value [15:8] 0x6C Read tc_icr_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCICR[15:8] [7:0] tc_icr_sts[15:8] ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCSR0 [7:0] Status Register 0x6D Read {1'b0, 1'b0, 1'b0, 1'b0, tc_btf_sts, tc_icrf_sts, tc_ocrf_sts, tc_ovf_sts} ../efb_top/efb_pll_sci_inst/u_efb_sci/ BTF 3 tc_btf_sts ../efb_top/efb_pll_sci_inst/u_efb_sci/ ICRF 2 tc_icrf_sts ../efb_top/efb_pll_sci_inst/u_efb_sci/ OCRF 1 tc_ocrf_sts ../efb_top/efb_pll_sci_inst/u_efb_sci/ OVF 0 tc_ovf_sts ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCIRQ [7:0] Interrupt Request 0x6E Read/Write {1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqsts, tc_ocrf_irqsts, tc_ovf_irqsts} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQICRF 2 tc_icrf_irqsts ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQOCRF 1 tc_ocrf_irqsts ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQOVF 0 tc_ovf_irqsts ../efb_top/efb_pll_sci_inst/u_efb_sci/ TCIRQEN [7:0] Interrupt Request Enable 0x6F Read/Write {1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqena, tc_ocrf_irqena, tc_ovf_irqena} ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQICRFEN 2 tc_icrf_irqena ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQOCRFEN 1 tc_ocrf_irqena ../efb_top/efb_pll_sci_inst/u_efb_sci/ IRQOVFEN 0 tc_ovf_irqena ../efb_top/efb_pll_sci_inst/u_efb_sci/ Table 17-48. Timer/Counter Simulation Mode (Continued) Timer/Counter Register Name Register Size/Bit Location Register Function Address Access Simulation Model Register Name Simulation Model Register Path17-45 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Flash Memory (UFM/Configuration) Access Ports Designers can access the UFM Sector via JTAG port (compliant with the IEEE 1149.1 and IEEE 1532 specifications), external Slave SPI port and external I2 C Primary port and the internal WISHBONE interface of the EFB module. Figure 17-25 illustrates the interfaces to the UFM and Configuration Memory sectors. Figure 17-25. Interfaces to the UFM/Configuration Sectors The configuration logic arbitrates access from the interfaces by the following priority. When higher priority ports are enabled Flash Memory access by lower priority ports will be blocked. 1. JTAG Port 2. Slave SPI Port 3. I2 C Primary Port 4. WISHBONE Slave Interface Note: Enabling Flash Memory (UFM/Configuration) Interface using Enable Configuration Interface command 0x74 Transparent Mode will temporarily disable certain features of the device including: • Power Controller • GSR • Hardened User SPI port Functionality is restored after the Flash Memory (UFM/Configuration) Interface is disabled using Disable Configuration Interface command 0x26 followed by Bypass command 0xFF. Configuration (including USERCODE) UFM Flash Command Interface Flash Memory EFB Register Map WISHBONE Interface User Logic EFB Feature Row (including TraceID) Primary I2 C Port (Address yyyxxxxx00) JTAG Configuration Slave Configuration Master/Slave SPI Port ufm_sn17-46 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Flash Memory (UFM/Configuration) Access through WISHBONE Slave Interface The WISHBONE Slave interface of the EFB module enables designers to access the Flash Memory (UFM/Configuration) directly from the FPGA core logic. The WISHBONE bus signals, described earlier in this document, are utilized by a WISHBONE host that designers can implement using the general purpose FPGA resources. In addition to the WISHBONE bus signals, an interrupt request output signal is brought to the FPGA fabric. The IP signal is “wbc_ufm_irq”, and it functions as an interrupt request to the internal WISHBONE host, based on the data Read/Write FIFO status or arbitration error. Note: To access the Flash Memory (UFM/Configuration) via WISHBONE in R1 devices, the hard SPI port or the primary I2 C port must be enabled. For more details, refer to AN8086, Designing for Migration from MachXO2-1200- R1 to Standard (Non-R1) Devices. The WISHBONE Interface communicates to the Configuration Logic through a set of data, control and status registers. Table 17-49 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register. Table 17-49. WISHBONE to Flash Memory (CFG) Logic Registers Table 17-50. Flash Memory (UFM/Configuration) Control WBCE WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write connection to the Flash Memory (UFM/Configuration) logic. This bit must be set prior to executing any command through the WISHBONE port. Likewise, this bit must be cleared to terminate the command. See “WISHBONE Framing” on page 50 for more information on framing WISHBONE commands. 1: Enabled 0: Disabled RSTE WISHBONE Connection Reset. Resets the input/output FIFO logic. The reset logic is level sensitive. After setting this bit to '1' it must be cleared to '0' for normal operation. 1: Reset 0: Normal operation WISHBONE to CFG Register Name Register Function Address Access CFGCR Control 0x70 Read/Write CFGTXDR Transmit Data 0x71 Write CFGSR Status 0x72 Read CFGRXDR Receive Data 0x73 Read CFGIRQ Interrupt Request 0x74 Read/Write CFGIRQEN Interrupt Request Enable 0x75 Read/Write Note: Unless otherwise specified, all Reserved bits in writable registers shall be written ‘0’. CFGCR 0x70 Bit 7 6 5 4 3 2 1 0 Name WBCE RSTE (Reserved) Default 0 0 0 0 0 0 0 0 Access R/W R/W — — — — — —17-47 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-51. Flash Memory (UFM/Configuration) Transmit Data CFG_Transmit_Data[7:0] CFG Transmit Data. This register holds the byte that will be written to the Flash Memory (UFM/Configuration) logic. Bit 0 is LSB. Figure 17-26. Flash Memory (UFM/Configuration) Status WBCACT WISHBONE Bus to Configuration Logic Active. Indicates that the WISHBONE to configuration interface is active and the connection is established. 1: WISHBONE Active 0: WISHBONE not Active TXFE Transmit FIFO Empty. Indicates that the Transmit Data register is empty. This bit is capable of generating an interrupt. 1: FIFO empty 0: FIFO not empty TXFF Transmit FIFO Full. Indicates that the Transmit Data register is full. This bit is capable of generating an interrupt. 1: FIFO full 0: FIFO not full RXFE Receive FIFO Empty. Indicates that the Receive Data register is empty. This bit is capable of generating an interrupt. 1: FIFO empty 0: FIFO not empty RXFF Receive FIFO Full. Indicates that the Transmit Data register is full. This bit is capable of generating an interrupt. 1: FIFO full 0: FIFO not full SSPIACT Slave SPI Active. Indicates the Slave SPI port has started actively communicating with the Configuration Logic while WBCE was enabled. This port has priority over the I2 C and WISHBONE ports and will pre-empt any existing, and prohibit any new, lower priority transaction. This bit is capable of generating an interrupt. 1: Slave SPI port active 0: Slave SPI port not active I2CACT I2 C Active. Indicates the I2 C port has started actively communicating with the Configuration Logic while WBCE was enabled. This port has priority over the WISHBONE ports and will pre-empt any existing, and prohibit any new WISHBONE transaction. This bit is capable of generating an interrupt. CFGTXDR 0x71 Bit 7 6 5 4 3 2 1 0 Name CFG_Transmit_Data[7:0] Default 0 0 0 0 0 0 0 0 Access W W W W W W W W CFGSR 0x72 Bit 7 6543210 Name WBCACT (Reserved) TXFE TXFF RXFE RXFF SSPIACT I2CACT Default 0 0000000 Access R —RRRRRR17-48 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 1: I2 C port active 0: I2 C port not active Table 17-52. Flash Memory (UFM/Configuration) Receive Data CFG_Receive_Data[7:0] CFG Receive Data. This register holds the byte read from the Flash Memory (UFM/Configuration) logic. Bit 0 in this register is LSB. Table 17-53. Flash Memory (UFM/Configuration) Interrupt Status IRQTXFE Interrupt Status for Transmit FIFO Empty. When enabled, indicates TXFE was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Transmit FIFO Empty Interrupt 0: No interrupt IRQTXFF Interrupt Status for Transmit FIFO Full. When enabled, indicates TXFF was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Transmit FIFO Full Interrupt 0: No interrupt IRQRXFE Interrupt Status for Receive FIFO Empty. When enabled, indicates RXFE was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Receive FIFO Empty Interrupt 0: No interrupt IRQRXFF Interrupt Status for Receive FIFO Full. When enabled, indicates RXFF was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Receive FIFO Full Interrupt 0: No interrupt IRQSSPIACT Interrupt Status for Slave SPI Active. When enabled, indicates SSPIACT was asserted. Write a ‘1’ to this bit to clear the interrupt. 1: Slave SPI Active Interrupt 0: No interrupt IRQI2CACT Interrupt Status for I2 C Active. When enabled, indicates I2CACT was asserted. Write a ‘1’ to this bit to clear the interrupt. CFGRXDR 0x73 Bit 7 6 5 4 3 2 1 0 Name CFG_Receive_Data[7:0] Default 0 0 0 0 0 0 0 0 Access R R R R R R R R CFGIRQ 0x74 Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQTXFE IRQTXFF IRQRXFE IRQRXFF IRQSSPIACT IRQI2CACT Default 0 00000 0 0 Access — — R/W R/W R/W R/W R/W R/W17-49 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 1: I2 C Active Interrupt 0: No interrupt Table 17-54. Flash Memory (UFM/Configuration) Interrupt Enable IRQTXFEEN Interrupt Enable for Transmit FIFO Empty 1: Interrupt generation enabled 0: Interrupt generation disabled IRQTXFFEN Interrupt Enable for Transmit FIFO Full 1: Interrupt generation enabled 0: Interrupt generation disabled IRQRXFEEN Interrupt Enable for Receive FIFO Empty 1: Interrupt generation enabled 0: Interrupt generation disabled IRQRXFFEN Interrupt Enable for Receive FIFO Full 1: Interrupt generation enabled 0: Interrupt generation disabled IRQSSPIACTEN Interrupt Enable for Slave SPI Active 1: Interrupt generation enabled 0: Interrupt generation disabled IRQI2CACTEN Interrupt Enable for I2 C Active 1: Interrupt generation enabled 0: Interrupt generation disabled Table 17-55. Unused (Reserved) Register Table 17-56. EFB Interrupt Source UFMCFG_INT Flash Memory (UFM/Configuration) Interrupt Source. Indicates EFB interrupt source is from the UFM/Configuration Block. Use CFGIRQ for further source resolution. 1: A bit is set in register CFGIRQ CFGIRQEN 0x75 Bit 7 6 5 4 3 2 1 0 Name (Reserved) IRQTXFEEN IRQTXFFEN IRQRXFEEN IRQRXFFEN IRQSSPIACTEN IRQI2CACTEN Default 0 00 0 0 0 0 0 Access — — R/W R/W R/W R/W R/W R/W UNUSED 0x76 Bit 7 6 5 4 3 2 1 0 Name (Reserved) Default 0 0 0 0 0 0 0 0 Access — — — — — — — — EFBIRQ 0x77 Bit 7 6 5 4 3 2 1 0 Name (Reserved) UFMCFG_INT TC_INT SPI_INT I2C2_INT I2C1_INT Default 0 0 0 0 0000 Access R R R R RRRR17-50 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 0: No interrupt TC_INT Timer/Counter Interrupt Source. Indicates EFB interrupt source is from the Timer/Counter Block. Use TCIRQ for further source resolution. 1: A bit is set in register TCIRQ 0: No interrupt SPI_INT SPI Interrupt Source. Indicates EFB interrupt source is from the SPI Block. Use SPIIRQ for further source resolution. 1: A bit is set in register SPIIRQ 0: No interrupt I2C2_INT I2C2 Interrupt Source. Indicates EFB interrupt source is from the Secondary I2 C Block. Use I2C_2_ IRQ for further source resolution. 1: A bit is set in register I2C_2_ IRQ 0: No interrupt I2C1_INT I2C1 Interrupt Source. Indicates EFB interrupt source is from the Primary I2 C Block. Use I2C_1_ IRQ for further source resolution. 1: A bit is set in register I2C_1_ IRQ 0: No interrupt WISHBONE Framing To access the Flash Memory (UFM/Configuration) each command string sent to the WISHBONE EFB ports must be correctly ‘framed’ using the protocol defined for each interface. In the case of the internal WISHBONE port, each command string is preceded by setting CFGCR[WBCE]. Similarly, each command string is followed by clearing the CFGCR[WBCE] bit. Table 17-57. Command Framing Protocol, by Interface Figure 17-27. WISHBONE Read Device ID Example (-1200 HC Device) Command and Data Transfers to Flash Memory (UFM/Configuration) Space The command and data transfers to the Flash Memory (UFM/Configuration) are identical for all the access ports, regardless of their different physical interfaces. The Flash Memory (UFM/Configuration) is organized in pages. Therefore, users address a specific page for Read or Write operations to that page. Each page has 128 bits (16 bytes). The transfers are based on a set of instructions and page addresses. The Flash memory is composed of two sectors, Configuration Memory (sector 0) and UFM (sector 1). The Erase operations are sector based. Interface Pre-op (+) Command String Post-op (-) WISHBONE Assert CFGCR[WBCE] (Command/Operands/Data) De-assert CFGCR[WBCE] 70 71 71 71 71 73 73 73 73 70 80 E0 00 00 00 00 wb_adr_i wb_dat_i wb_dat_o 01 2B A0 43 wb_we_i wb_str_i wb_ack_o wb_clk_i17-51 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Command Summary by Application Table 17-58. UFM (Sector 1) Commands Command Name Command MSB LSB SVF Command Name Description Read Status Register 0x3C LSC_READ_STATUS Read the 4-byte Configuration Status Register Check Busy Flag 0xF0 LSC_CHECK_BUSY Read the Configuration Busy Flag status Bypass 0xFF ISC_NOOP Null operation. Enable Configuration Interface (Transparent Mode) 0x74 ISC_ENABLE_X Enable Transparent UFM access – All user I/Os (except the hardened user SPI and primary user I 2 C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.) Enable Configuration Interface (Offline Mode) 0xC6 ISC_ENABLE Enable Offline UFM access – All user I/Os (except persisted sysCONFIG ports) are tristated. User logic ceases to function, UFM remains accessible, and the device enters 'Offline' access mode. (The subsequent commands in this table require the interface to be enabled.) Disable Configuration Interface 0x26 ISC_DISABLE Disable the configuration (UFM) access. Set Address 0xB4 LSC_WRITE_ADDRESS Set the UFM sector 14-bit Address Register Reset UFM Address 0x47 LSC_INIT_ADDR_UFM Reset the address to point to Sector 1, Page 0 of the UFM. Read UFM 0xCA LSC_READ_TAG Read the UFM data. Operand specifies number pages to read. Address Register is post-incremented. Erase UFM 0xCB LSC_ERASE_TAG Erase the UFM sector only. Program UFM Page 0xC9 LSC_PROG_TAG Write one page of data to the UFM. Address Register is post-incremented. Table 17-59. Configuration Flash (Sector 0) Commands Command Name Command MSB LSB SVF Command Name Description Read Device ID 0xE0 IDCODE_PUB Read the 4-byte Device ID (0x01 2b 20 43) Read USERCODE 0xC0 USERCODE Read 32-bit USERCODE Read Status Register 0x3C LSC_READ_STATUS Read the 4-byte Configuration Status Register Read Busy Flag 0xF0 LSC_CHECK_BUSY Read the Configuration Busy Flag status Refresh1 0x79 LSC_REFRESH Launch boot sequence (same as toggling PROGRAMN pin). STANDBY 0x7D LSC_DEVICE_CTRL Triggers the Power Controller to enter or wake from standby mode Bypass 0xFF ISC_NOOP Null operation. Enable Configuration Interface (Transparent Mode) 0x74 ISC_ENABLE_X Enable Transparent Configuration Flash access – All user I/Os (except the hardened user SPI and primary user I2 C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.)17-52 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-60. Non-Volatile Register (NVR) Commands When using the WISHBONE bus interface, the commands, operand and data are written to the CFGTXDR Register. The Slave SPI or I2 C interface shift the most significant bit (MSB) first into the MachXO2 device. This is required only when communicating with the configuration logic inside the MachXO2 device. In order to perform a Write, Read or Erase operation with the UFM or Configuration Flash, it is required that the interface is enabled using Command 0x74. Affected commands are noted in the Command Description as “EN Required.” Once the modification operations are completed, the interface can be disabled using commands 0x26 and 0xFF. Enable Configuration Interface (Offline Mode) 0xC6 ISC_ENABLE Enable Offline Configuration Flash access – All user I/Os (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, UFM remains accessible, and the device enters ‘Offline’ access mode. (The subsequent commands in this table require the interface to be enabled.) Disable Configuration Interface 0x26 ISC_DISABLE Exit access mode. Set Configuration Flash Address 0xB4 LSC_WRITE_ADDRESS Set the Configuration Flash 14-bit Page Address Verify Device ID 0xE2 VERIFY_ID Verify device ID with 32-bit input, set Fail flag if mismatched. Reset Configuration Flash Address 0x46 LSC_INIT_ADDRESS Reset the address to point to Sector 0, Page 0 of the Configuration Flash. Read Flash 0x73 LSC_READ_INCR_NV Read the Flash data. Operand specifies number pages to read. Address Register is post-incremented. Erase 0x0E ISC_ERASE Erase the Config Flash, Done bit, Security bits and USERCODE Program Page 0x70 LSC_PROG_INCR_NV Write 1 page of data to the Flash Memory (Configuration/UFM). Address Register is post-incremented. Program DONE 0x5E ISC_PROGRAM_DONE Program the Done bit Program SECURITY 0xCE ISC_PROGRAM_SECURITY Program the Security bit (Secures CFG Flash sector) Program SECURITY PLUS 0xCF ISC_PROGRAM_SECPLUS Program the Security Plus bit (Secures CFG and UFM Sectors). Note: SECURITY and SECURITY PLUS commands are mutually exclusive. Program USERCODE 0xC2 ISC_PROGRAM_USERCODE Program 32-bit USERCODE Read Feature Row 0xE7 LSC_READ_FEATURE Read Feature Row Program Feature Row 0xE4 LSC_PROG_FEATURE Program Feature Row Read FEABITS 0xFB LSC_READ_FEABITS Read FEA bits Program FEABITs 0xF8 LSC_PROG_FEABITS Program the FEA bits 1. The Refresh commands are not supported by the software simulation model. Command Name Command msb lsb SVF Command Name Description Read Trace ID code 0x19 UIDCODE_PUB Read 64-bit TraceID. Table 17-59. Configuration Flash (Sector 0) Commands (Continued) Command Name Command MSB LSB SVF Command Name Description17-53 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Command Descriptions by Command Code Table 17-61. Erase Flash (0x0E) Operand: 0000 ucfs 0000 0000 0000 0000(binary) where: u: Erase UFM sector 0: No action 1: Erase c: Erase CFG sector (Config Flash, DONE, security bits, USERCODE) 0: No action 1: Erase f: Erase Feature sector (Slave I2 C address, sysCONFIG port persistence, Boot mode, OTP, etc.) 0: No action 1: Erase s: Erase SRAM 0: No action 1: Erase Notes: Poll the BUSY bit (or wait, see Table 17-93) after issuing this command for erasure to complete before issuing a subsequent command other than Read Status or Check Busy. Erased condition for Flash bits = 0 Examples: 0x0E 04 00 00 Erase CFG sector 0x0E 08 00 00 Erase UFM sector 0x0E 0C 00 00 Erase UFM and CFG sectors Table 17-62. Read TraceID Code (0x19) Example: 0x19 00 00 00 Read 8-byte TraceID Note: First byte read is user portion. Next seven bytes are unique to each silicon die. Table 17-63. Disable Configuration Interface (0x26) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x x Y 0E See below — — — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x N 19 00 00 00 R 8B — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x x — 26 00 00 — — —17-54 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Example: 0x26 00 00 Disable Flash Memory (UFM/configuration) interface for change access Notes: Must have only two operands The interface cannot be disabled while the Configuration Status Register Busy bit is asserted. After commands (e.g. Erase, Program) verify Busy is clear before issuing the Disable command. This command should be followed by Command 0xFF (BYPASS) to complete the Disable operation. The BYPASS command is required to restore Power Controller, GSR, Hardened User SPI and I2 C port operation. SRAM must be erased before exiting Offline (0xC6) Mode Table 17-64. Read Status Register (0x3C) Data Format: Most significant byte of SR is received first, LSB last. D bit 8 Flash or SRAM Done Flag When C = 0 SRAM Done bit has been programmed • D = 1 Successful Flash to SRAM transfer • D = 0 Failure in the Flash to SRAM transfer When C=1 Flash Done bit has been programed • D = 1 Programmed • D = 0 Not Programmed C bit 9 Enable Configuration Interface (1=Enable, 0=Disable) B bit 12: Busy Flag (1 = busy) F bit 13: Fail Flag (1 = operation failed) I I=0 Device verified correct, I=1 Device failed to verify EEE bits[25:23]: Configuration Check Status 000: No Error 001: ID ERR 010: CMD ERR 011: CRC ERR 100: Preamble ERR 101: Abort ERR 110: Overflow ERR 111: SDM EOF (all other bits reserved) Usage: The BUSY bit should be checked following all Enable, Erase or Program operations. Note: Wait at least 1us after power-up or asserting wb_rst_i before accessing the EFB. Example: 0x3C 00 00 00 Read 4-byte Status Register e.g. 0x00 00 20 00 (fail flag set) Table 17-65. Reset CFG Address (0x46) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x x N 3C 00 00 00 R 4B xxxx IxEE Exxx xxxx xxFB xxCD xxxx xxxx UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y 46 00 00 00 — — —17-55 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Example: 0x46 00 00 00 Set Address register to Configuration Sector 0, page 0 Table 17-66. Reset UFM Address (0x47) Example: 0x47 00 00 00 Set Address register to UFM Sector 1, page 0 Table 17-67. Program DONE (0x5E) Example: 0x5E 00 00 00 Set the DONE bit Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy. Table 17-68. Program Configuration Flash (0x70) Example: 0x70 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Write one page of data, pointed to by Address Register Notes: 16 data bytes must be written following the command and operand bytes to ensure proper data alignment. The Address Register is auto-incremented following the page write. Operands (0x00 00 00) are equivalent to (0x00 00 01). Use 0x0E to erase CFG sector prior to executing this command. Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy. Table 17-69. Read Configuration Flash (0x73) (WISHBONE/SPI) Note: This applies when Configuration Flash is read through WISHBONE or SPI *Operand: 0001 0000 00pp pppp pppp pppp (binary) pp..pp: num_pages Number of CFG pages to read when num_pages = 1 Number of CFG pages to read +1 when num_pages > 1 **Data Size: (num_pages * 16) bytes UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y 47 00 00 00 — — — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y 5E 00 00 00 — — — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y 70 00 00 01 W 16B 16 bytes UFM write data UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y 73 * (below) R ** (below) *** (below)17-56 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Note: Read CFG may be aborted at any time. Any data remaining in the read FIFO will be discarded. Any read data beyond the prescribed read size will be indeterminate. The Address Register is auto-incremented after each page read. ***Examples: 0x73 10 00 01 0 bytes dummy followed by one page of CFG data (16 bytes total) 0x73 10 00 04 Read 1 page dummy followed by three pages of CFG data (4 pages total) Note: The maximum speed which one page of data (num_page=1) can be read through the WISHBONE is 36 MHz. There is no restriction on SPI speeds besides the port limitations. Table 17-70. Read Configuration Flash (0x73) (I2 C/WISHBONE/SPI) Note: This applies when Configuration Flash is read through I2 C, WISHBONE or SPI *Operand: 0000 0000 00pp pppp pppp pppp (binary) pp..pp: num_pages Number of CFG pages to read when num_pages = 1 Number of CFG pages to read +1 when num_pages > 1 **Data Size: (num_pages * 16) bytes when num_pages=1 32 bytes + (num_pages * 16 + 4) bytes when num_pages>1 Note: Read CFG may be aborted at any time. Any data remaining in the read FIFO will be dis-carded. Any read data beyond the prescribed read size will be indeterminate. The Address Register is auto-incremented after each page read. ***Examples: 0x73 00 00 01 0 bytes dummy followed by 1 page CFG data (16 bytes total) 0x73 00 00 04 Read 2 pages dummy, followed by three (1 page CFG data, followed by 4 bytes dummy) (5 pages and 12 bytes total) Note: The maximum speed which one page of data (num_page=1) can be read through the WISHBONE is 36 MHz. There is no restriction on I2 C and SPI speeds besides the port limitations. Table 17-71. Enable Configuration Interface (Transparent) (0x74) Notes: This command is required to enable modification of the UFM, configuration Flash, or non-volatile registers (NVR). Terminate this command with command 0x26 followed by command 0xFF. Exercising this command will temporarily disable certain features of the device, notably GSR, user SPI port, primary user I2 C port and Power Controller. These features are restored when the command is terminated. UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y 73 * (below) R ** (below) *** (below) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x x — 74 08 00 00 — — —17-57 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Poll the BUSY bit (or wait 5us) after issuing this command for the Flash pumps to fully charge. Example: 0x74 08 00 00 Enable UFM/configuration interface for change access Table 17-72. Refresh (0x79) Example: 0x79 00 00 Issue Refresh command Note: The Refresh command will Launch Boot sequence Must have only two operands After completing the Refresh command (e.g. SPI SN deassertion or I2 C stop), further bus accesses are prohibited for the duration of tREFRESH. Violating this requirement will cause the Refresh process to abort and leave the MachXO2 device in an unprogrammed state. Occasionally, following a device REFRESH or PROGRAMN pin toggle, the secondary I 2 C port may be left in an undefined (non-idle) state. The likely hood of this condition is design and route dependent. To positively return the Secondary I2 C port to the idle state, write a value of 0x40 to register I2C_2_CMDR via WISHBONE immediately after device reset is released. This will cause a short low-pulse on SCK as the hardblock signals a STOP on the bus then returns to the idle state. Failure to manually return the Secondary I2 C port to the idle state may result in an I2 C bus lock-up condition. Normal I2 C activity can be commenced without additional delay Table 17-73. STANDBY (0x7D) Example: 0x7D 0y 00 y:2 Triggers the Power Controller to enter standby mode y:8 Triggers the Power Controller to wakeup from standby mode Notes: Must have only two operands. The MachXO2 Power Controller needs to be included in the design. Additionally the following can be used to trigger the Power Controller to wakeup from standby mode (if the user logic standby signal has not been enabled): 1. I2 C has the following ways: a. Primary I2 C Configuration port – Address match to the I2 C Configuration address (No other settings required) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) 79 00 00 — — — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x N 7D 0y 00 — — —17-58 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide b. Primary or Secondary I2 C User port – Address match the I2 C User address. Must have I2C_1_CR[WKUPEN] or I2C_1_CR[WKUPEN] set c. General Call – Send the General Call Wakeup command (0xF3). Must have General Calls enabled (I2C_1_CR[GCEN] or I2C_2_CR[GCEN] set) and use the General Call address 2. SPI from the assertion of either Slave Configuration (ufm_sn) or User (spi_scsn) chip select, as long as the appropriate control register bit is set: a. Configuration: SPICR1[WKUPEN_CFG] b. User: SPICR[WKUPEN_USER] For more information on the Power Controller refer to TN1198, Power Estimation and Management for MachXO2 Devices. Table 17-74. Set Address (0xB4) Data Format: s: sector 0: Configuration 1: UFM aa..aa:address14-bit page address Example: 0xB4 00 00 00 40 00 00 0A Set Address register to UFM sector, page 10 decimal Table 17-75. Read USERCODE (0xC0) Example: 0xC0 00 00 00 EN Required = Y Read 4-byte USERCODE from CFG sector EN Required = N Read 4-byte USERCODE from SRAM Table 17-76. Program USERCODE (0xC2) Example: 0xC2 00 00 00 10 20 30 40 Sets USERCODE with 32-bit input 0x10 20 30 40 Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy. Table 17-77. Enable Configuration Interface (Offline) (0xC6)) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x x Y B4 00 00 00 W 4B 0s00 0000 0000 0000 00aa aaaa aaaa aaaa UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Hex) x Y/N C0 00 00 00 R 4B — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Hex) x Y C2 00 00 00 W 4B — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x C6 08 00 00 — — —17-59 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Example: 0xC6 08 00 00 Enable Flash Memory (UFM/configuration) interface for offline change access. Notes: Use this command to enable offline modification of the UFM, Configuration Flash, or non-volatile registers (NVR). SRAM must be erased exiting Offline mode. When exiting Offline mode follow the command 0x26 with the command 0xFF. Exercising this command will tri-state all user I/Os (except persisted sysCONFIG ports). User logic ceases to function. UFM remains accessible. Poll the BUSY bit (or wait 5us) after issuing this command for the Flash pumps to fully charge. Table 17-78. Program UFM (0xC9) Example: 0xC9 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Write one page of data, pointed to by Address Register Notes: 16 data bytes must be written following the command and operand bytes to ensure proper data alignment. The Address Register is auto-incremented following the page write. Use 0x0E or 0xCB to erase UFM sector prior to executing this command. Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy. Table 17-79. Read UFM (0xCA) (WISHBONE/SPI) *Operand: 0001 0000 00pp pppp pppp pppp (binary) where: pp..pp: num_pages – Number of UFM pages to read **Data Size (num_pages * 16) bytes Note: Read UFM may be aborted at any time. Any data remaining in the read fifo will be discarded. Any read data beyond the prescribed read size will be indeterminate. The Address Register is auto-incremented after each page read. ***Examples: 0xCA 10 00 01 Read 0 bytes dummy followed by 1 page UFM data (16 bytes total) 0xCA 10 00 04 Read 1 page dummy followed by 3 pages UFM data (4 pages total) Note: The maximum speed which one page of data (num_page=1) can be read using WISHBONE and no wait states is 16.6MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of TN1204, MachXO2 UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y C9 00 00 01 W 16B 16 bytes UFM write data UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y CA *(below) R **(below) ***(below)17-60 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Programming and Configuration Usage Guide. SPI transactions in MachXO2 always meet the minimum retrieval delay requirement. No special timing is necessary for SPI. Table 17-80. Read UFM (0xCA) (WISHBONE/SPI/I2 C) *Operand: 0000 0000 00pp pppp pppp pppp (binary) where: pp..pp: num_pages Number of UFM pages to read when num_pages=1 Number of UFM pages +1 to read when num_pages>1 **Data Size (num_pages * 16) byteswhen num_pages=1 32 bytes + (num_pages * 16 + 4) bytes when num_pages>1 Note: Read UFM may be aborted at any time. Any data remaining in the read fifo will be discarded. Any read data beyond the prescribed read size will be indeterminate. The Address Register is auto-incremented after each page read. ***Examples: 0xCA 00 00 01 Read 0 bytes dummy followed by 1 page UFM data (16 bytes total) 0xCA 00 00 04 Read 2 pages dummy followed by 3 (1 page UFM data, followed by 4 bytes dummy) (5 pages total and 12 bytes) Note: The maximum speed which one page of data (num_page=1) can be read using WISHBONE and no wait states is 16.6MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of TN1204, MachXO2 Programming and Configuration Usage Guide. SPI and I2 C transactions in MachXO2 always meet the minimum retrieval delay requirement. No special timing is necessary for SPI or I2 C. Table 17-81. Erase UFM (0xCB) Notes: Erased condition for UFM bits = ‘0’ Poll the BUSY bit (or wait, see Table 17-93) after issuing this command for erasure to complete before issuing a subsequent command other than Read Status or Check Busy. Example: 0xCB 00 00 00 Erase UFM sector Table 17-82. Program SECURITY (0xCE) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y CA *(below) R **(below) ***(below) UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y CB 00 00 00 — — — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y CE 00 00 00 — — —17-61 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Example: 0xCE 00 00 00 Set the SECURITY bit Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy. SECURITY and SECURITY PLUS commands are mutually exclusive. Table17-83. Program SECURITY PLUS (0xCF) Example: 0xCF 00 00 00 Set the SECURITY PLUS bit Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy. SECURITY and SECURITY PLUS commands are mutually exclusive. Table 17-84. Read Device ID Code (0xE0) Example: 0xE0 00 00 00 Read 4-byte device ID Table 17-85. Device ID Table Example: 0xE0 00 00 00 Read 4-byte device ID Table 17-86. Verify Device ID Code (0xE2) Example: 0xE2 00 00 00 01 2B 20 43 Verify device ID with 32-bit input, sets ID Error bit 27 in SR if mismatched UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format x Y CF 00 00 00 — — — UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Hex) x N E0 00 00 00 R 4B See Table 17-85 Device Name HE/ZE Devices HC Devices MachXO2-256 0x01 2B 00 43 0x01 2B 80 43 MachXO2-640 0x01 2B 10 43 0x01 2B 90 43 MachXO2-1200/MachXO2-640U 0x01 2B 20 43 0x01 2B A0 43 MachXO2-2000/MachXO2-1200U 0x01 2B 30 43 0x01 2B B0 43 MachXO2-4000/MachXO2-2000U 0x01 2B 40 43 0x01 2B C0 43 MachXO2-7000 0x01 2B 50 43 0x01 2B D0 43 UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Hex) x Y E2 00 00 00 W 4B See Table 17- 8517-62 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-87. Program Feature Row (0xE4) Data Format: ss: 8 bits for the user programmable I2 C Slave Address uu: 8 bits for the user programmable TraceID cc cc cc cc: 32 bits of Custom ID code Note: It is not recommended to reprogram the Feature Row once it has been program the first time. Example: 0xE4 00 00 00 00 00 01 00 00 00 12 34 Program Feature Row with User I2 C address set to 1, default user TraceID string, Custom ID code of 12 34 Table 17-88. Read Feature Row (0xE7) Data Format: ss: 8 bits for the user programmable I2 C Slave Address uu: 8 bits for the user programmable TraceID cc cc cc cc: 32 bits of Custom ID code Example: 0xE7 00 00 00 Reads the Feature Row Table 17-89. Check Busy Flag (0xF0) Data Format: B: bit 7: Busy Flag (1= busy) (all other bits reserved) Example: 0xF0 00 00 00 Read one byte, e.g. 0x80 (busy flag set) Table 17-90. Program FEABITs (0xF8) Data Format: bb: Boot Sequence 1. If b=00 (Default) and m=0 then Single Boot from Configuration Flash 2. If b=00 and m=1 then Dual Boot from Configuration Flash then External if there is a failure 3. If b=01 and m=1 then Single Boot from External Flash UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Hex) Y E4 00 00 00 8B 00 00 ss uu cc cc cc cc UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Hex) x Y E7 00 00 00 R 8B 00 00 ss uu cc cc cc cc UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x x N F0 00 00 00 R 1B Bxxx xxxx UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x Y F8 00 00 00 W 2B 00 bb mi sj di pa 00 0017-63 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide m: Master SPI Port Persistence 0=Disabled (Default), 1=Enabled i: I2 C Port Persistence 0=Enabled (Default), 1=Disabled s: Slave SPI Port Persistence 0=Enabled (Default), 1=Disabled j: JTAG Port Persistence 0=Enabled (Default), 1=Disabled d: DONE Persistence 0=Disabled (Default), 1=Enabled i: INITN Persistence 0=Disabled (Default), 1=Enabled p: PROGRAMN Persistence 0=Enabled (Default), 1=Disabled a: my_ASSP Enabled 0=Disabled (Default), 1=Enabled Note: It is not recommended to reprogram the FEABITs once they have been programmed the first time. Example: 0xF8 00 00 00 0D 20 Programs the FEABITs Table 17-91. Read FEABITs (0xFB) Data Format: bb: Boot Sequence 1. If b=00 (Default) and m=0 then Single Boot from Configuration Flash 2. If b=00 and m=1 then Dual Boot from Configuration Flash then External if there is a failure 3. If b=01 and m=1 then Single Boot from External Flash m: Master SPI Port Persistence 0=Disabled (Default), 1=Enabled i: I2 C Port Persistence 0=Enabled (Default), 1=Disabled s: Slave SPI Port Persistence 0=Enabled (Default), 1=Disabled j: JTAG Port Persistence 0=Enabled (Default), 1=Disabled d: DONE Persistence 0=Disabled (Default), 1=Enabled i: INITN Persistence UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x Y FB 00 00 00 R 2B 00 bb mi sj di pa 00 0017-64 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide 0=Disabled (Default), 1=Enabled p: PROGRAMN Persistence 0=Enabled (Default), 1=Disabled a: my_ASSP Enabled 0=Disabled (Default), 1=Enabled Table 17-92. Bypass (Null Operation) (0xFF) Note: Operands are optional Example: 0xFF FF FF FF Bypass Interface to Configuration Flash The WISHBONE interface of the EFB module allows a WISHBONE host to access the configuration resources of the MachXO2 devices. This can be particularly useful for reading data from configuration resources such as USERCODE and TraceID. Most importantly, this feature allows users to update the Configuration Flash array of the devices while the device is in operation mode. This is a self-configuration operation. Upon power-up or a configuration refresh operation, the new content of the Configuration Flash is loaded into the Configuration SRAM and the device continues operation with a new configuration. The data transfer and execution of operations is the same as the one documented in the UFM section of this document. This is due to the fact that the UFM is also a Flash Memory resource and the communication between the WISHBONE host and the configuration logic is performed through the same command, status and data registers. Please see Tables 17-49 to 17-57 for information on these registers. Figure 17-28 shows a basic flow diagram for implementing a Configuration Flash Update initiated via any of the sysCONFIG ports (I2 C, SPI, or WISHBONE). For detailed information on MachXO2 programming and configuration, see TN1204, MachXO2 Programming and Configuration Usage Guide. UFM CFG NVR EN Required CMD (Hex) Operands (Hex) Data Mode Data Size Data Format (Binary) x x x N FF FF FF FF — — —17-65 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Figure 17-28. Basic Configuration Flash Update Example Start Enable Transparent Configuration (0x74) Ensure unused Configuration Ports are Inactive Write more data? Set Flash DONE bit (0x5E) Y N Write 1 Page Config Data (0x70) Wait for !BUSY (0xF0) then verify !FAIL (0x3C) (optional) Set USERCODE (0xC2) Set SECURITY (0xCE, 0xCF) N Y Erase Configuration Flash Sector (0x0E) Wait for !BUSY (0xF0) then verify !FAIL (0x3C) Set Address to 0 (0x46) Wait for !BUSY (0xF0) then verify !FAIL (0x3C) Issue REFRESH (0x79) Wait for tREFRESH then verify DONE (0x3C) Configure via WISHBONE? Done N Disable Configuration (0x26) Wait for !BUSY (0xF0) then verify !FAIL (0x3C)17-66 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Flash Memory Erase and Program Performance Table 17-93. Flash Memory (UFM/Configuration) Performance in MachXO2 Devices1 Erase/Program/Verify Time Calculation Example Using the data above, it is possible to roughly calculate the time required to perform an Erase/Program/Verify operation. The calculation assumes nearly 100% bus utilization. Overhead required by bus master processes, if any, is not accounted for in the equation below. E/P/V time (us): tEPV = tE + tP + tV where: tE = tECFG + tEUFM1 tP = 0.2us * number of Pages to program2 tV = (8 * number of Pages programmed) * BusEff * tBUSCLK UFM Write and Read Examples The UFM and Configuration sectors support page-oriented read and write operations while erase operations are sector-based. Consistent with many Flash memory devices, byte-oriented operations are not supported. Also, as typical with Flash memory devices, attempting to modify a previously written location in Flash requires a read-modify-write operation on the smallest erasable Flash unit. In the case of MachXO2, the smallest erasable unit is the entire UFM sector or the entire Configuration Sector. For example, to arbitrarily modify a byte value in the UFM, the user must: 1. Read and save all UFM data to an alternate location (e.g. EBR); 2. Erase the UFM sector; 3. Modify the selected byte; and 4. Program the UFM page by page. MachXO2 -256 MachXO2 -640 MachXO2 -640U MachXO2 -1200 MachXO2 -1200U MachXO2 -2000 MachXO2 -2000U MachXO2 -4000 MachXO2 -7000 CFG Erase Min. 400 600 800 800 1100 1100 1800 1800 2800 Max. 700 1100 1400 1400 1900 1900 3100 3100 4800 CFG Program All 130 270 500 500 740 740 1400 1400 2200 1 page 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 UFM Erase Min. — 300 400 400 500 500 600 600 900 Max. — 600 700 700 900 900 1000 1000 1600 UFM Program All — 40 110 110 140 140 180 180 480 1 page — 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1. All times are averages, in (ms). SRAM erase times are < 0.1ms. Table 17-94. E/P/V Calculation parameters BusEff (Single Page Read) BusEff3 (Multi Page Read) tBUSCLK I 2 C 14 >12 2.5us min SPI 12 > 8 0.015us min WB 5.25 > 3 0.020us min 1. Sector erase times are additive. If a sector (e.g. CFG) is not erased, its erase time is 0. 2. Data transfer time is insignificant to tP for high-speed data protocols. To account for slow bus speeds (E.g. I2 C) multiply tV by 2. 3. Bus efficiency approaches this value as number of read pages increases. 17-67 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide In some applications it may be appropriate to keep a working copy of the UFM contents in volatile Embedded Block RAM and update the non-volatile UFM at appropriate intervals. The following examples show the sequence of commands for writing and reading from UFM. Table 17-95. Write Two UFM Pages Instruction Number R/W1 CMD2 Operand Data Comment + Open frame 1 W 74 08 00 00 — Enable Configuration Interface - Close frame + 2 W 3C 00 00 00 — Poll Configuration Status Register R xx xx bx xx - (Repeat until Busy Flag not set, or wait 5us if not polling) + 3 W 47 00 00 00 — Init UFM Address to 0000 - + 4 W C9 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Write UFM Page 0 Data - + 5 W 3C 00 00 00 — Poll Configuration Status Register R xx xx bx xx - (repeat until Busy Flag not set, or wait 200us if not polling) + 6 W C9 00 00 01 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F Write UFM Page 1 Data (Note: Address automatically incremented) - + 7 W 3C 00 00 00 — Poll Configuration Status Register R xx xx bx xx - (poll until Busy Flag clear, or wait 200us if not polling) + 8 W 26 00 00 — Disable Configuration Interface - + 9 W FF — — Bypass (NOP) - 1. When accessing UFM/Configuration Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data. 2. ‘+’ and ‘-’ refer to the command framing protocol appropriate for the interface, discussed in “WISHBONE Framing” on page 50. 17-68 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-96. Read One UFM Page (All Devices, WISHBONE/SPI) Instruction Number R/W1 CMD2 Operand Data Comment + Open frame 1 W 74 08 00 00 — Enable Configuration Interface - Close frame + 2 W 3C 00 00 00 — Poll Configuration Status Register R xx xx bx xx - (Repeat until Busy Flag not set, or wait 5us if not polling) + 3 W B4 00 00 00 40 00 00 01 Set UFM Address to 0001 - + 4 W CA 10 00 01 Read one page UFM (page 1) data R 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F - + 5 W 26 00 00 — Disable Configuration Interface - + 6 W FF — — Bypass (NOP) - 1. When accessing UFM/Configuration Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data. 2. ‘+’ and ‘-’ refer to the command framing protocol appropriate for the interface, discussed in “WISHBONE Framing” on page 50. 17-69 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Table 17-97. Read Two UFM Pages (WISHBONE/SPI) Instruction Number R/W1 CMD2 Operand Data Comment + Open frame 1 W 74 08 00 00 — Enable Configuration Interface - Close frame + 2 W 3C 00 00 00 — Poll Configuration Status Register R xx xx bx xx - (Repeat until Busy Flag not set, or wait 5us if not polling) + 3 W 47 00 00 00 — Init UFM address to 0000 - + 4 W CA 10 00 03 Read two pages of UFM data, after one page of dummy bytes.3 R xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F - + 5 W 26 00 00 — Disable Configuration Interface - + 6 W FF — — Bypass (NOP) - 1. When accessing UFM/Configuration Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data. 2. ‘+’ and ‘-’ refer to the command framing protocol appropriate for the interface 3. num_pages count must include dummy page.17-70 Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Reference Guide Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: techsupport@latticesemi.com Internet: www.latticesemi.com Revision History Date Version Change Summary June 2012 01.0 Initial release. August 2012 01.1 Timer/Counter Control 1 table – Corrected names of four LSBs. Program Feature Row (0xE4) table – Updated Data Size and Data Format (Hex) columns and text below table for ss, uu and cc cc cc cc. Added example. Read Feature Row (0xE7) table – Updated CMD (Hex) column. Read FEABITs (0xFB) table – Removed example below table. Read USERCODE (0xC0) table – Data Size column updated. EN Required” value changed from “N” to “Y/N” and example text updated. Updated Timer/Counter Control 0 table and Timer/Counter Control 1 table. Updated Basic Configuration Flash Update Example diagram. Device ID Table – Updated Device Name column. Read Status Register (0x3C) table – Updated Data Format column. Verify Device ID Code (0xE2) table – “EN Required” value changed from “N” to “Y” and example text updated. October 2012 01.2 Added restriction: Primary port can be used as Configuration/UFM port or as a user port, but not both. Added restriction: Primary I2 C port is unavailable while in ISC_ENABLE_X (transparent) configuration access mode. April 2013 01.3 Read Configuration Flash (0x73) (I2 C/WISHBONE/SPI) table – Corrected table title. Read Feature Row (0xE7) table – Updated Data Format in the table and description. Updated information in the I2 C Master Read/Write Example (via WISHBONE) figure. Updated examples in the Read UFM (0xCA) (WISHBONE/SPI/I2 C) table. Added note: SECURITY and SECURITY PLUS commands are mutually exclusive. Added Erase/Program/Verify time calculation example. Updated (decreased) the maximum WISHBONE clock rate for page reads from 36MHz to 16.6MHz. Corrected BUSY wait times (1000ns -> 200ns) in Write Two UFM Pages table. Updated Basic Configuration Flash Update Example, changed "Wait for !BUSY" to "Wait for tREFRESH" in last step. Added Wait for tREFRESH caution to Refresh command description. Clarified Secondary I2 C non-idle reset issue after REFRESH. Lattice Semiconductor Home Page: http://w w w .latticesemi.com Applications & Literature Hotline: 1-800-LATTICE Copyright 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L (stylized) Lattice Semiconductor Corporation and Lattice (design) are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies. February 2013 #PB1334B Lattice Ordering Guidelines for Standard Product Lattice requests, at a minimum, that devices be purchased at the tube/tray quantity level and recommend full box quantities as the optimal quantity level when volumes warrant it. Shipping in full tube, tray and box quantities contributes significantly to the quality and accuracy of our shipments buy eliminating the handling associated with partial box, tube or tray shipments. This reduced handling minimizes device damage, moisture exposure and count errors. Product Quantities Per Device Carrier Package Type Package Size (mm) Package Pitch (mm) Device per Tube / Tray Tubes / Trays per Box Devices per Box 20-Pin PDIP 6.4x26.2 2.54 18 / Tube 20 360 20-Pin CERDIP 7.3x24.1 2.54 19 / Tube 20 380 20-Pin PLCC 8.6x8.6 1.27 46 / Tube 10 460 20-Pin Ceramic LCC 9.1x9.1 2.54 56 / Tube 10 560 24-Pin CERDIP 7.3x31.8 2.54 15 / Tube 20 300 24-Pin PDIP 6.4x31.8 2.54 15 / Tube 20 300 24-Pin QFNS 4x4 0.5 560 / Tray 5 2,800 28-Pin PLCC 11.4x11.4 1.27 37 / Tube 10 370 28-Pin Ceramic LCC 11.7x11.7 1.27 42 / Tube 10 420 28-Pin SSOP 10.2x5.3 0.65 47 / Tube 10 470 32-Pin QFNS 5x5 0.5 490 / Tray 5 2,450 44-Pin Ceramic LCC 16.5x16.5 1.27 26 / Tube 30 780 44-Pin PLCC 16.5x16.5 1.27 26 / Tube 30 780 44-Pin TQFP 10x10 0.8 160 / Tray 5 800 48-Pin TQFP 7x7 0.5 250 / Tray 5 1,250 48-Pin QFNS 7x7 0.5 260 / Tray 5 1,300 64-Pin TQFP 10x10 0.5 160 / Tray 5 800 64-Pin QFNS 9x9 0.5 260 / Tray 5 1,300 68-Pin Ceramic LCC 24.1x24.1 1.27 21 / Tube 5 105 68-Pin PLCC 24.1x24.1 1.27 18 / Tube 30 540 84-Pin Ceramic PGA 29.2x29.2 2.54 10 / Tray 5 50 84-Pin PLCC 29.2x29.2 1.27 15 / Tube 30 450 100-Pin PQFP 14x20 0.65 66 / Tray 5 330 100-Pin TQFP 14x14 0.5 90 / Tray 5 450 120-Pin PQFP 28x28 0.8 24 / Tray 5 120 128-Pin PQFP 28x28 0.8 24 / Tray 5 120 128-Pin TQFP 14x14 0.4 90 / Tray 5 450 133-Pin Ceramic PGA 37.6x37.6 2.54 10 / Tray 5 50 144-Pin TQFP 20x20 0.5 60 / Tray 5 300 160-Pin PQFP 28x28 0.65 24 / Tray 5 120 176-Pin TQFP 24x24 0.5 40 / Tray 5 200 208-Pin PQFP 28x28 0.5 24 / Tray 5 120 Lead-Frame Packages Product BulletinLattice Semiconductor Home Page: http://w w w .latticesemi.com Applications & Literature Hotline: 1-800-LATTICE Copyright 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L (stylized) Lattice Semiconductor Corporation and Lattice (design) are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies. Product Quantities Per Device Carrier (Cont’d) Package Type Package Size (mm) Package Pitch (mm) Device per Tube / Tray Minimum Buy (in Boxes) Tubes / Trays / Reels per Box Devices per Box 25-Ball WLCSP ("TR") 2.5x2.5 0.4 5,000 / Reel 1 1 5,000 25-Ball WLCSP ("TR1K") 2.5x2.5 0.4 1,000 / Reel 1 1 1,000 25-Ball WLCSP ("TR50") 2.5x2.5 0.4 50 / Reel 1 1 50 49-Ball caBGA 7x7 0.8 416 / Tray 1 5 2,080 56-Ball csBGA 6x6 0.5 360 / Tray 1 5 1,800 64-Ball csBGA 5x5 0.5 490 / Tray 1 5 2,450 64-Ball ucBGA 4x4 0.4 490 / Tray 1 5 2,450 100-Ball caBGA 10x10 0.8 184 / Tray 1 5 920 100-Ball csBGA 8x8 0.5 360 / Tray 1 5 1,800 100-Ball fpBGA 11x11 1.0 176 / Tray 1 5 880 132-Ball csBGA 8x8 0.5 360 / Tray 1 5 1,800 132-Ball ucBGA 6x6 0.4 360 / Tray 1 5 1,800 144-Ball csBGA 7x7 0.5 360 / Tray 1 5 1,800 144-Ball fpBGA 13x13 1.0 160 / Tray 1 5 800 184-Ball csBGA 8x8 0.5 360 / Tray 1 5 1,800 208-Ball ftBGA 17x17 1.0 90 / Tray 1 5 450 208-Ball fpBGA 17x17 1.0 90 / Tray 1 5 450 256-Ball BGA 27x27 1.27 40 / Tray 1 5 200 256-Ball fpBGA 17x17 1.0 90 / Tray 1 5 450 256-Ball caBGA 14x14 0.8 119 / Tray 1 5 595 256-Ball ftBGA 17x17 1.0 90 / Tray 1 5 450 256-Ball SBGA 27x27 1.27 40 / Tray 1 5 200 272-Ball BGA 27x27 1.27 40 / Tray 1 5 200 320-Ball SBGA 31x31 1.27 27 / Tray 1 5 135 324-Ball ftBGA 19x19 1.0 84 / Tray 1 5 420 332-Ball caBGA 17x17 0.8 90 / Tray 1 5 450 352-Ball BGA 35x35 1.27 24 / Tray 1 5 120 352-Ball SBGA 35x35 1.27 24 / Tray 1 5 120 388-Ball BGA 35x35 1.27 24 / Tray 1 5 120 388-Ball fpBGA 23x23 1.0 60 / Tray 1 5 300 416-Ball fpBGA 27x27 1.0 40 / Tray 1 5 200 432-Ball SBGA 40x40 1.27 21 / Tray 1 5 105 484-Ball fpBGA 23x23 1.0 60 / Tray 1 5 300 516-Ball fpBGA 31x31 1.0 27 / Tray 1 5 135 672-Ball fpBGA 27x27 1.0 40 / Tray 1 5 200 676-Ball fpBGA 31x31 1.0 27 / Tray 1 5 135 680-Ball fpBGA 35x35 1.0 24 / Tray 1 5 120 680-Ball fpSBGA 40x40 1.0 21 / Tray 1 5 105 900-Ball fpBGA 31x31 1.0 27 / Tray 1 5 135 1020-Ball fcBGA 33x33 1.0 24 / Tray 1 3 72 1152-Ball fcBGA 35x35 1.0 24 / Tray 1 3 72 1152-Ball fpBGA 35x35 1.0 24 / Tray 1 5 120 1156-Ball fpBGA 35x35 1.0 24 / Tray 1 5 120 1704-Ball fcBGA 42.5x42.5 1.0 12 / Tray 1 3 36 Ball Gird Array Package (BGA) MachXO2™ Family Data Sheet DS1035 Version 02.0, January 2013www.latticesemi.com 1-1 DS1035 Introduction_01.6 January 2013 Data Sheet DS1035 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Features  Flexible Logic Architecture • Six devices with 256 to 6864 LUT4s and 19 to 335 I/Os  Ultra Low Power Devices • Advanced 65 nm low power process • As low as 19 µW standby power • Programmable low swing differential I/Os • Stand-by mode and other power saving options  Embedded and Distributed Memory • Up to 240 Kbits sysMEM™ Embedded Block RAM • Up to 54 Kbits Distributed RAM • Dedicated FIFO control logic  On-Chip User Flash Memory • Up to 256 Kbits of User Flash Memory • 100,000 write cycles • Accessible through WISHBONE, SPI, I2 C and JTAG interfaces • Can be used as soft processor PROM or as Flash memory  Pre-Engineered Source Synchronous I/O • DDR registers in I/O cells • Dedicated gearing logic • 7:1 Gearing for Display I/Os • Generic DDR, DDRX2, DDRX4 • Dedicated DDR/DDR2/LPDDR memory with DQS support  High Performance, Flexible I/O Buffer • Programmable sysIO™ buffer supports wide range of interfaces: – LVCMOS 3.3/2.5/1.8/1.5/1.2 – LVTTL – PCI – LVDS, Bus-LVDS, MLVDS, RSDS, LVPECL – SSTL 25/18 – HSTL 18 – Schmitt trigger inputs, up to 0.5V hysteresis • I/Os support hot socketing • On-chip differential termination • Programmable pull-up or pull-down mode  Flexible On-Chip Clocking • Eight primary clocks • Up to two edge clocks for high-speed I/O interfaces (top and bottom sides only) • Up to two analog PLLs per device with fractional-n frequency synthesis – Wide input frequency range (10 MHz to 400 MHz)  Non-volatile, Infinitely Reconfigurable • Instant-on – powers up in microseconds • Single-chip, secure solution • Programmable through JTAG, SPI or I2 C • Supports background programming of non-volatile memory • Optional dual boot with external SPI memory  TransFR™ Reconfiguration • In-field logic update while system operates  Enhanced System Level Support • On-chip hardened functions: SPI, I2 C, timer/ counter • On-chip oscillator with 5.5% accuracy • Unique TraceID for system tracking • One Time Programmable (OTP) mode • Single power supply with extended operating range • IEEE Standard 1149.1 boundary scan • IEEE 1532 compliant in-system programming  Broad Range of Package Options • TQFP, WLCSP, ucBGA, csBGA, caBGA, ftBGA, fpBGA, QFN package options • Small footprint package options – As small as 2.5x2.5mm • Density migration supported • Advanced halogen-free packaging MachXO2 Family Data Sheet Introduction1-2 Introduction MachXO2 Family Data Sheet Table 1-1. MachXO2™ Family Selection Guide Introduction The MachXO2 family of ultra low power, instant-on, non-volatile PLDs has six devices with densities ranging from 256 to 6864 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic these devices feature Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), Phase Locked Loops (PLLs), preengineered source synchronous I/O support, advanced configuration support including dual-boot capability and hardened versions of commonly used functions such as SPI controller, I2 C controller and timer/counter. These features allow these devices to be used in low cost, high volume consumer and system applications. The MachXO2 devices are designed on a 65nm non-volatile low power process. The device architecture has several features such as programmable low swing differential I/Os and the ability to turn off I/O banks, on-chip PLLs XO2-256 XO2-640 XO2-640U1 XO2-1200 XO2-1200U1 XO2-2000 XO2-2000U1 XO2-4000 XO2-7000 LUTs 256 640 640 1280 1280 2112 2112 4320 6864 Distributed RAM (Kbits) 2 5 5 10 10 16 16 34 54 EBR SRAM (Kbits) 0 18 64 64 74 74 92 92 240 Number of EBR SRAM Blocks (9 Kbits/block) Device Options 0 277 8 8 10 10 26 UFM (Kbits) 0 24 64 64 80 80 96 96 256 Number of PLLs Packages I/Os 0 HC2 HE3 ZE4 0 1 1 11 2 22 Hardened Functions: I 2 C SPI Timer/Counter 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 25 WLCSP5 (2.5 x 2.5mm, 0.4mm) 32 QFN 6 (5 x 5mm, 0.5mm) 18 64 ucBGA (4 x 4mm, 0.4mm) 44 21 100 TQFP (14 x 14mm) 132 csBGA (8 x 8mm, 0.5mm) 144 TQFP (20 x 20mm) 256 caBGA (14 x 14mm, 0.8mm) 256 ftBGA (17 x 17mm, 1.0mm) 332 caBGA (17 x 17mm, 0.8mm) 484 fpBGA (23 x 23mm, 1.0mm) 1. Ultra high I/O device. 2. High performance with regulator – VCC = 2.5V, 3.3V 3. High performance without regulator – VCC = 1.2V 4. Low power without regulator – VCC = 1.2V 5. WLCSP package only available for ZE devices. 6. QFN package only available for HC and ZE devices. 7. 184 csBGA package only available for HE devices. 278 278 334 274 278 206 206 206 206 206 206 206 107 107 111 114 114 55 79 104 104 104 55 78 79 79 184 csBGA7 (8 x 8mm, 0.5mm) 1501-3 Introduction MachXO2 Family Data Sheet and oscillators dynamically. These features help manage static and dynamic power consumption resulting in low static power for all members of the family. The MachXO2 devices are available in two versions – ultra low power (ZE) and high performance (HC and HE) devices. The ultra low power devices are offered in three speed grades -1, -2 and -3, with -3 being the fastest. Similarly, the high-performance devices are offered in three speed grades: -4, -5 and -6, with -6 being the fastest. HC devices have an internal linear voltage regulator which supports external VCC supply voltages of 3.3V or 2.5V. ZE and HE devices only accept 1.2V as the external VCC supply voltage. With the exception of power supply voltage all three types of devices (ZE, HC and HE) are functionally compatible and pin compatible with each other. The MachXO2 PLDs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5x2.5 mm WLCSP to the 23x23 mm fpBGA. MachXO2 devices support density migration within the same package. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters. The pre-engineered source synchronous logic implemented in the MachXO2 device family supports a broad range of interface standards, including LPDDR, DDR, DDR2 and 7:1 gearing for display I/Os. The MachXO2 devices offer enhanced I/O features such as drive strength control, slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pulldown and bus-keeper features are controllable on a “per-pin” basis. A user-programmable internal oscillator is included in MachXO2 devices. The clock output from this oscillator may be divided by the timer/counter for use as clock input in functions such as LED control, key-board scanner and similar state machines. The MachXO2 devices also provide flexible, reliable and secure configuration from on-chip Flash memory. These devices can also configure themselves from external SPI Flash or be configured by an external master through the JTAG test access port or through the I2 C port. Additionally, MachXO2 devices support dual-boot capability (using external Flash memory) and remote field upgrade (TransFR) capability. Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the MachXO2 family of devices. Popular logic synthesis tools provide synthesis library support for MachXO2. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the MachXO2 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification. Lattice provides many pre-engineered IP (Intellectual Property) LatticeCORE™ modules, including a number of reference designs licensed free of charge, optimized for the MachXO2 PLD family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.www.latticesemi.com 2-1 DS1035 Architecture_01.5 January 2013 Data Sheet DS1035 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Architecture Overview The MachXO2 family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). The larger logic density devices in this family have sysCLOCK™ PLLs and blocks of sysMEM Embedded Block RAM (EBRs). Figures 2-1 and 2-2 show the block diagrams of the various family members. Figure 2-1. Top View of the MachXO2-1200 Device Figure 2-2. Top View of the MachXO2-4000 Device sysMEM Embedded Block RAM (EBR) sysCLOCK PLL PIOs Arranged into sysIO Banks Programmable Function Units with Distributed RAM (PFUs) Embedded Function Block (EFB) User Flash Memory (UFM) On-chip Configuration Flash Memory Note: MachXO2-256, and MachXO2-640/U are similar to MachXO2-1200. MachXO2-256 has a lower LUT count and no PLL or EBR blocks. MachXO2-640 has no PLL, a lower LUT count and two EBR blocks. MachXO2-640U has a lower LUT count, one PLL and seven EBR blocks. sysMEM Embedded Block RAM (EBR) Programmable Function Units with Distributed RAM (PFUs) On-chip Configuration Flash Memory sysCLOCK PLL PIOs Arranged into sysIO Banks Embedded Function Block(EFB) User Flash Memory (UFM) Note: MachXO2-1200U, MachXO2-2000/U and MachXO2-7000 are similar to MachXO2-4000. MachXO2-1200U and MachXO2-2000 have a lower LUT count, one PLL, and eight EBR blocks. MachXO2-2000U has a lower LUT count, two PLLs, and 10 EBR blocks. MachXO2-7000 has a higher LUT count, two PLLs, and 26 EBR blocks. MachXO2 Family Data Sheet Architecture2-2 Architecture MachXO2 Family Data Sheet The logic blocks, Programmable Functional Unit (PFU) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either the logic blocks or the EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. In the MachXO2 family, the number of sysIO banks varies by device. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found in MachXO2-640/U and larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag “hard” control logic to minimize LUT usage. The MachXO2 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks on MachXO2- 640U, MachXO2-1200/U and larger devices. These blocks are located at the ends of the on-chip Flash block. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks. MachXO2 devices provide commonly used hardened functions such as SPI controller, I2 C controller and timer/ counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These hardened functions and the UFM interface to the core logic and routing through a WISHBONE interface. The UFM can also be accessed through the SPI, I2 C and JTAG ports. Every device in the family has a JTAG port that supports programming and configuration of the device as well as access to the user logic. The MachXO2 devices are available for operation from 3.3V, 2.5V and 1.2V power supplies, providing easy integration into the overall system. PFU Blocks The core of the MachXO2 device consists of PFU blocks, which can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. Each PFU block consists of four interconnected slices numbered 0 to 3 as shown in Figure 2-3. Each slice contains two LUTs and two registers. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-3. PFU Block Diagram Slice 0 LUT4 & CARRY LUT4 & CARRY FF/ Latch FCIN FCO D FF/ Latch D Slice 1 LUT4 & CARRY LUT4 & CARRY Slice 2 LUT4 & CARRY LUT4 & CARRY From Routin g To Routin g Slice 3 LUT4 & CARRY LUT4 & CARRY FF/ Latch D FF/ Latch D FF/ Latch D FF/ Latch D FF/ Latch D FF/ Latch D 2-3 Architecture MachXO2 Family Data Sheet Slices Slices 0-3 contain two LUT4s feeding two registers. Slices 0-2 can be configured as distributed memory. Table 2-1 shows the capability of the slices in PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. The control logic performs set/reset functions (programmable as synchronous/ asynchronous), clock select, chipselect and wider RAM/ROM functions. Table 2-1. Resources and Modes Available per Slice Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks. All slices have 15 inputs from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six for routing and one to carry-chain (to the adjacent PFU). Table 2-2 lists the signals associated with Slices 0-3. Figure 2-4. Slice Diagram Slice PFU Block Resources Modes Slice 0 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM Slice 1 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM Slice 2 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM Slice 3 2 LUT4s and 2 Registers Logic, Ripple, ROM LUT4 & Carry Slice Flip-flop/ Latch OFX0 F0 Q0 CI CO LUT4 & Carry CI CO OFX1 F1 Q1 F/SUM F/SUM D D FCI From Different Slice/PFU Memory & Control Signals FCO To Different Slice/PFU LUT5 From Mux Routing To Routing For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: • WCK is CLK • WRE is from LSR • DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 • WAD [A:D] is a 4-bit address from slice 2 LUT input A0 C0 D0 A1 B1 C1 D1 CE CLK LSR M1 M0 FXB FXA B0 Flip-flop/ Latch2-4 Architecture MachXO2 Family Data Sheet Table 2-2. Slice Signal Descriptions Modes of Operation Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. Logic Mode In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices. Ripple Mode Ripple mode supports the efficient implementation of small arithmetic functions. In Ripple mode, the following functions can be implemented by each slice: • Addition 2-bit • Subtraction 2-bit • Add/subtract 2-bit using dynamic control • Up counter 2-bit • Down counter 2-bit • Up/down counter with asynchronous clear • Up/down counter with preload (sync) • Ripple mode multiplier building block • Multiplier support • Comparator functions of A and B inputs – A greater-than-or-equal-to B – A not-equal-to B – A less-than-or-equal-to B Function Type Signal Names Description Input Data signal A0, B0, C0, D0 Inputs to LUT4 Input Data signal A1, B1, C1, D1 Inputs to LUT4 Input Multi-purpose M0/M1 Multi-purpose input Input Control signal CE Clock enable Input Control signal LSR Local set/reset Input Control signal CLK System clock Input Inter-PFU signal FCIN Fast carry in1 Output Data signals F0, F1 LUT4 output register bypass signals Output Data signals Q0, Q1 Register outputs Output Data signals OFX0 Output of a LUT5 MUX Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice Output Inter-PFU signal FCO Fast carry out1 1. See Figure 2-3 for connection details. 2. Requires two PFUs.2-5 Architecture MachXO2 Family Data Sheet Ripple mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per-slice basis to allow fast arithmetic functions to be constructed by concatenating slices. RAM Mode In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed by using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit Pseudo Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice as the read-only port. MachXO2 devices support distributed memory initialization. The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in MachXO2 devices, please see TN1201, Memory Usage Guide for MachXO2 Devices. Table 2-3. Number of Slices Required For Implementing Distributed RAM ROM Mode ROM mode uses the LUT logic; hence, slices 0-3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration. For more information on the RAM and ROM modes, please refer to TN1201, Memory Usage Guide for MachXO2 Devices. Routing There are many resources provided in the MachXO2 devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments. The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2 (spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions. The design tools take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design. Clock/Control Distribution Network Each MachXO2 device has eight clock inputs (PCLK [T, C] [Banknum]_[2..0]) – three pins on the left side, two pins each on the bottom and top sides and one pin on the right side. These clock inputs drive the clock nets. These eight inputs can be differential or single-ended and may be used as general purpose I/O if they are not used to drive the clock nets. When using a single ended clock input, only the PCLKT input can drive the clock tree directly. The MachXO2 architecture has three types of clocking resources: edge clocks, primary clocks and secondary high fanout nets. MachXO2-640U, MachXO2-1200/U and higher density devices have two edge clocks each on the top and bottom edges. Lower density devices have no edge clocks. Edge clocks are used to clock I/O registers and have low injection time and skew. Edge clock inputs are from PLL outputs, primary clock pads, edge clock bridge outputs and CIB sources. SPR 16x4 PDPR 16x4 Number of slices 3 3 Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM2-6 Architecture MachXO2 Family Data Sheet The eight primary clock lines in the primary clock network drive throughout the entire device and can provide clocks for all resources within the device including PFUs, EBRs and PICs. In addition to the primary clock signals, MachXO2 devices also have eight secondary high fanout signals which can be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, etc. Internal logic can drive the global clock network for internally-generated global clocks and control signals. The maximum frequency for the primary clock network is shown in the MachXO2 External Switching Characteristics table. The primary clock signals for the MachXO2-256 and MachXO2-640 are generated from eight 17:1 muxes The available clock sources include eight I/O sources and 9 routing inputs. Primary clock signals for the MachXO2- 640U, MachXO2-1200/U and larger devices are generated from eight 27:1 muxes The available clock sources include eight I/O sources, 11 routing inputs, eight clock divider inputs and up to eight sysCLOCK PLL outputs. Figure 2-5. Primary Clocks for MachXO2 Devices 8 11 Clock Pads Routing Primary Clock 0 Primary Clock 1 Primary Clock 2 Primary Clock 3 Primary Clock 4 Primary Clock 5 Primary Clock 6 8 Edge Clock Divider Primary clocks for MachXO2-640U, MachXO2-1200/U and larger devices. Note: MachXO2-640 and smaller devices do not have inputs from the Edge Clock Divider or PLL and fewer routing inputs. These devices have 17:1 muxes instead of 27:1 muxes. Primary Clock 7 Dynamic Clock Enable Dynamic Clock Enable Dynamic Clock Enable Dynamic Clock Enable Dynamic Clock Enable 27:1 27:1 27:1 27:1 27:1 27:1 27:1 27:1 27:1 27:1 Up to 8 PLL Outputs Dynamic Clock Enable Dynamic Clock Enable Dynamic Clock Enable Clock Switch Clock Switch2-7 Architecture MachXO2 Family Data Sheet Eight secondary high fanout nets are generated from eight 8:1 muxes as shown in Figure 2-6. One of the eight inputs to the secondary high fanout net input mux comes from dual function clock pins and the remaining seven come from internal routing. The maximum frequency for the secondary clock network is shown in MachXO2 External Switching Characteristics table. Figure 2-6. Secondary High Fanout Nets for MachXO2 Devices sysCLOCK Phase Locked Loops (PLLs) The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The MachXO2-640U, MachXO2-1200/U and larger devices have one or more sysCLOCK PLL. CLKI is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. CLKFB is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output. The MachXO2 sysCLOCK PLLs support high resolution (16-bit) fractional-N synthesis. Fractional-N frequency synthesis allows the user to generate an output clock which is a non-integer multiple of the input frequency. For more information about using the PLL with Fractional-N synthesis, please see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide. Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The CLKOS2 and CLKOS3 dividers may also be cascaded together to generate low frequency clocks. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the MachXO2 clock distribution network directly or general purpose routing resources can be used. 1 7 8:1 8:1 8:1 8:1 8:1 8:1 8:1 8:1 Clock Pads Routing Secondary High Fanout Net 0 Secondary High Fanout Net 1 Secondary High Fanout Net 2 Secondary High Fanout Net 3 Secondary High Fanout Net 4 Secondary High Fanout Net 5 Secondary High Fanout Net 6 Secondary High Fanout Net 72-8 Architecture MachXO2 Family Data Sheet The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-7. The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t LOCK parameter has been satisfied. The MachXO2 also has a feature that allows the user to select between two different reference clock sources dynamically. This feature is implemented using the PLLREFCS primitive. The timing parameters for the PLL are shown in the table. The MachXO2 PLL contains a WISHBONE port feature that allows the PLL settings, including divider values, to be dynamically changed from the user logic. When using this feature the EFB block must also be instantiated in the design to allow access to the WISHBONE ports. Similar to the dynamic phase adjustment, when PLL settings are updated through the WISHBONE port the PLL may lose lock and not relock until the tLOCK parameter has been satisfied. The timing parameters for the PLL are shown in the table. For more details on the PLL and the WISHBONE interface, see TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide. Figure 2-7. PLL Diagram CLKOP, CLKOS, CLKOS2, CLKOS3 REFCLK Internal Feedback FBKSEL CLKOP CLKOS 4 CLKOS2 CLKOS3 REFCLK Divider M (1 - 40) LOCK ENCLKOP, ENCLKOS, ENCLKOS2, ENCLKOS3 RST, RESETM, RESETC, RESETD CLKFB CLKI Dynamic Phase Adjust PHASESEL[1:0] PHASEDIR PHASESTEP FBKCLK Divider N (1 - 40) Fractional-N Synthesizer Phase detector, VCO, and loop filter. CLKOS3 Divider (1 - 128) CLKOS2 Divider (1 - 128) Phase Adjust Phase Adjust Phase Adjust/ Edge Trim CLKOS Divider (1 - 128) CLKOP Divider (1 - 128) Lock Detect ClkEn Synch ClkEn Synch ClkEn Synch ClkEn Synch PLLDATO[7:0] , PLLACK PLLCLK, PLLRST, PLLSTB, PLLWE, PLLDATI[7:0], PLLADDR[4:0] A0 B0 C0 D0 D1 Mux A2 Mux B2 Mux C2 Mux D2 Mux DPHSRC Phase Adjust/ Edge Trim STDBY2-9 Architecture MachXO2 Family Data Sheet Table 2-4 provides signal descriptions of the PLL block. sysMEM Embedded Block RAM Memory The MachXO2-640/U and larger devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. This memory can be used for a wide variety of purposes including data buffering, PROM for the soft processor and FIFO. sysMEM Memory Block The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-5. Table 2-4. PLL Signal Descriptions Port Name I/O Description CLKI I Input clock to PLL CLKFB I Feedback clock PHASESEL[1:0] I Select which output is affected by Dynamic Phase adjustment ports PHASEDIR I Dynamic Phase adjustment direction PHASESTEP I Dynamic Phase step – toggle shifts VCO phase adjust by one step. CLKOP O Primary PLL output clock (with phase shift adjustment) CLKOS O Secondary PLL output clock (with phase shift adjust) CLKOS2 O Secondary PLL output clock2 (with phase shift adjust) CLKOS3 O Secondary PLL output clock3 (with phase shift adjust) LOCK O PLL LOCK, asynchronous signal. Active high indicates PLL is locked to input and feedback signals. DPHSRC O Dynamic Phase source – ports or WISHBONE is active STDBY I Standby signal to power down the PLL RST I PLL reset without resetting the M-divider. Active high reset. RESETM I PLL reset - includes resetting the M-divider. Active high reset. RESETC I Reset for CLKOS2 output divider only. Active high reset. RESETD I Reset for CLKOS3 output divider only. Active high reset. ENCLKOP I Enable PLL output CLKOP ENCLKOS I Enable PLL output CLKOS when port is active ENCLKOS2 I Enable PLL output CLKOS2 when port is active ENCLKOS3 I Enable PLL output CLKOS3 when port is active PLLCLK I PLL data bus clock input signal PLLRST I PLL data bus reset. This resets only the data bus not any register values. PLLSTB I PLL data bus strobe signal PLLWE I PLL data bus write enable signal PLLADDR [4:0] I PLL data bus address PLLDATI [7:0] I PLL data bus data input PLLDATO [7:0] O PLL data bus data output PLLACK O PLL data bus acknowledge signal2-10 Architecture MachXO2 Family Data Sheet Table 2-5. sysMEM Block Configurations Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. EBR initialization data can be loaded from the UFM. To maximize the number of UFM bits, initialize the EBRs used in your design to an all-zero pattern. Initializing to an all-zero pattern does not use up UFM bits. MachXO2 devices have been designed such that multiple EBRs share the same initialization memory space if they are initialized to the same pattern. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. Memory Cascading Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs. Single, Dual, Pseudo-Dual Port and FIFO Modes Figure 2-8 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the memory array output. Memory Mode Configurations Single Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 True Dual Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 Pseudo Dual Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 FIFO 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 182-11 Architecture MachXO2 Family Data Sheet Figure 2-8. sysMEM Memory Primitives Table 2-6. EBR Signal Descriptions Port Name Description Active State CLK Clock Rising Clock Edge CE Clock Enable Active High OCE1 Output Clock Enable Active High RST Reset Active High BE1 Byte Enable Active High WE Write Enable Active High AD Address Bus — DI Data In — DO Data Out — CS Chip Select Active High AFF FIFO RAM Almost Full Flag — FF FIFO RAM Full Flag — AEF FIFO RAM Almost Empty Flag — EF FIFO RAM Empty Flag — RPRST FIFO RAM Read Pointer Reset — 1. Optional signals. 2. For dual port EBR primitives a trailing ‘A’ or ‘B’ in the signal name specifies the EBR port A or port B respectively. 3. For FIFO RAM mode primitive, a trailing ‘R’ or ‘W’ in the signal name specifies the FIFO read port or write port respectively. 4. For FIFO RAM mode primitive FULLI has the same function as CSW(2) and EMPTYI has the same function as CSR(2). 5. In FIFO mode, CLKW is the write port clock, CSW is the write port chip select, CLKR is the read port clock, CSR is the read port chip select, ORE is the output read enable. DI[17:0] CLKW WE FIFO RAM DO[17:0] RST FULLI AFF FF AEF EF CLKR RE CSR[1:0] ORE RPRST CSW[1:0] EMPTYI ROM DO[17:0] AD[12:0] CLK CE RST CS[2:0] OCE EBR EBR AD[12:0] DI[8:0] DO[8:0] CLK CE RST WE CS[2:0] OCE Single-Port RAM ADA[12:0] DIA[8:0] CLKA CEA RSTA WEA CSA[2:0] DOA[8:0] OCEA ADB[12:0] DI[8:0] CLKB CEB RSTB WEB CSB[2:0] DOB[8:0] OCEB True Dual Port RAM ADW[8:0] DI[17:0] CLKW CEW RST CSW[2:0] ADR[12:0] CLKR CER DO[17:0] CSR[2:0] OCER BE[1:0] Pseudo Dual Port RAM EBR EBR EBR2-12 Architecture MachXO2 Family Data Sheet The EBR memory supports three forms of write behavior for single or dual port operation: 1. Normal – Data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths. 2. Write Through – A copy of the input data appears at the output of the same port. This mode is supported for all data widths. 3. Read-Before-Write – When new data is being written, the old contents of the address appears at the output. FIFO Configuration The FIFO has a write port with data-in, CEW, WE and CLKW signals. There is a separate read port with data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. Table 2-7 shows the range of programming values for these flags. Table 2-7. Programmable FIFO Flag Ranges The FIFO state machine supports two types of reset signals: RST and RPRST. The RST signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset state. The RPRST signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO. Memory Core Reset The memory core contains data output latches for ports A and B. These are simple latches that can be reset synchronously or asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with port A and port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-9. Figure 2-9. Memory Core Reset Flag Name Programming Range Full (FF) 1 to max (up to 2N -1) Almost Full (AF) 1 to Full-1 Almost Empty (AE) 1 to Full-1 Empty (EF) 0 N = Address bit width. Q SET D Output Data Latches Memory Core Port A[18:0] Q SET D Port B[18:0] RSTB GSRN Programmable Disable RSTA2-13 Architecture MachXO2 Family Data Sheet For further information on the sysMEM EBR block, please refer to TN1201, Memory Usage Guide for MachXO2 Devices. EBR Asynchronous Reset EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-10. The GSR input to the EBR is always asynchronous. Figure 2-10. EBR Asynchronous Reset (Including GSR) Timing Diagram If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge. If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device wake up must occur before the release of the device I/Os becoming active. These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-10. The reset timing rules apply to the RPReset input versus the RE input and the RST input versus the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For more details refer to TN1201, Memory Usage Guide for MachXO2 Devices. Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled. Programmable I/O Cells (PIC) The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the MachXO2 devices, the PIO cells are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device. On all the MachXO2 devices, two adjacent PIOs can be combined to provide a complementary output driver pair. The MachXO2-640U, MachXO2-1200/U and higher density devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. Half of the PIO pairs on the top edge of these devices can be configured as true LVDS transmit pairs. The PIO pairs on the bottom edge of these higher density devices have on-chip differential termination and also provide PCI support. Reset Clock Clock Enable 2-14 Architecture MachXO2 Family Data Sheet Figure 2-11. Group of Four Programmable I/O Cells 1 PIC PIO A Output Register Block & Tristate Register Block Pin A Input Register Block PIO B Output Register Block & Tristate Register Block Pin B Input Register Block PIO C Output Register Block & Tristate Register Block Pin C Input Register Block Notes: 1. Input gearbox is available only in PIC on the bottom edge of MachXO2-640U, MachXO2-1200/U and larger devices. 2. Output gearbox is available only in PIC on the top edge of MachXO2-640U, MachXO2-1200/U and larger devices. PIO D Output Register Block & Tristate Register Block Pin D Input Register Block Core Logic/ Routing Input Gearbox Output Gearbox2-15 Architecture MachXO2 Family Data Sheet PIO The PIO contains three blocks: an input register block, output register block and tri-state register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic. Table 2-8. PIO Signal List Input Register Block The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition to this functionality, the input register blocks for the PIOs on the right edge include built-in logic to interface to DDR memory. Figure 2-12 shows the input register block for the PIOs located on the left, top and bottom edges. Figure 2-13 shows the input register block for the PIOs on the right edge. Left, Top, Bottom Edges Input signals are fed from the sysIO buffer to the input register block (as signal D). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), and a clock (INCK). If an input delay is desired, users can select a fixed delay. I/Os on the bottom edge also have a dynamic delay, DEL[4:0]. The delay, if selected, reduces input register hold time requirements when using a global clock. The input block allows two modes of operation. In single data rate (SDR) the data is registered with the system clock (SCLK) by one of the registers in the single data rate sync register block. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock (SCLK) signal, creating two data streams. Pin Name I/O Type Description CE Input Clock Enable D Input Pin input from sysIO buffer. INDD Output Register bypassed input. INCK Output Clock input Q0 Output DDR positive edge input Q1 Output Registered input/DDR negative edge input D0 Input Output signal from the core (SDR and DDR) D1 Input Output signal from the core (DDR) TD Input Tri-state signal from the core Q Output Data output signals to sysIO Buffer TQ Output Tri-state output signals to sysIO Buffer DQSR901 Input DQS shift 90-degree read clock DQSW901 Input DQS shift 90-degree write clock DDRCLKPOL1 Input DDR input register polarity control signal from DQS SCLK Input System clock for input and output/tri-state blocks. RST Input Local set reset signal 1. Available in PIO on right edge only.2-16 Architecture MachXO2 Family Data Sheet Figure 2-12. MachXO2 Input Register Block Diagram (PIO on Left, Top and Bottom Edges) Right Edge The input register block on the right edge is a superset of the same block on the top, bottom, and left edges. In addition to the modes described above, the input register block on the right edge also supports DDR memory mode. In DDR memory mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (DQSR90) in the DDR Memory mode creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams. The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the DQS domain. The DQSR90 and DDRCLKPOL signals are generated in the DQS read-write block. Figure 2-13. MachXO2 Input Register Block Diagram (PIO on Right Edge) Output Register Block The output register block registers signals from the core of the device before they are passed to the sysIO buffers. Left, Top, Bottom Edges In SDR mode, D0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-type register or latch. SCLK INCK Q1 Q0 INDD D Q0 Q1 D Q Programmable Delay Cell D/L Q D Q D Q Q1 Q0 INDD D DQSR90 Q0 Q1 SCLK S0 S1 DDRCLKPOL Programmable Delay Cell D/L Q INCK D Q D Q D Q D Q D Q D Q D Q 2-17 Architecture MachXO2 Family Data Sheet In DDR generic mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the same clock is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output. Figure 2-14 shows the output register block on the left, top and bottom edges. Figure 2-14. MachXO2 Output Register Block Diagram (PIO on the Left, Top and Bottom Edges) Right Edge The output register block on the right edge is a superset of the output register on left, top and bottom edges of the device. In addition to supporting SDR and Generic DDR modes, the output register blocks for PIOs on the right edge include additional logic to support DDR-memory interfaces. Operation of this block is similar to that of the output register block on other edges. In DDR memory mode, D0 and D1 inputs are fed into registers on the positive edge of the clock. At the next falling edge the registered D1 input is registered into the register Q1. A multiplexer running off the DQSW90 signal is used to switch the mux between the outputs of registers Q0 and Q1 that will then feed the output. Figure 2-15 shows the output register block on the right edge. Output path D/L Q TQ TD Tri-state path Q D1 D Q D Q Q1 D/L Q Q0 D0 SCLK 2-18 Architecture MachXO2 Family Data Sheet Figure 2-15. MachXO2 Output Register Block Diagram (PIO on the Right Edges) Tri-state Register Block The tri-state register block registers tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output. The tri-state register blocks on the right edge contain an additional register for DDR memory operation. In DDR memory mode, the register TS input is fed into another register that is clocked using the DQSW90 signal. The output of this register is used as a tri-state control. Input Gearbox Each PIC on the bottom edge has a built-in 1:8 input gearbox. Each of these input gearboxes may be programmed as a 1:7 de-serializer or as one IDDRX4 (1:8) gearbox or as two IDDRX2 (1:4) gearboxes. Table 2-9 shows the gearbox signals. Table 2-9. Input Gearbox Signal List Name I/O Type Description D Input High-speed data input after programmable delay in PIO A input register block ALIGNWD Input Data alignment signal from device core SCLK Input Slow-speed system clock ECLK[1:0] Input High-speed edge clock RST Input Reset Q[7:0] Output Low-speed data to device core: Video RX(1:7): Q[6:0] GDDRX4(1:8): Q[7:0] GDDRX2(1:4)(IOL-A): Q4, Q5, Q6, Q7 GDDRX2(1:4)(IOL-C): Q0, Q1, Q2, Q3 D1 D Q D Q Q1 D/L Q Q0 D0 DQSW90 Q SCLK D/L Q D Q TQ TD T0 Output Register Block Tristate Register Block 2-19 Architecture MachXO2 Family Data Sheet These gearboxes have three stage pipeline registers. The first stage registers sample the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals UPDATE and SEL0 from the control block. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. Figure 2-16 shows a block diagram of the input gearbox. Figure 2-16. Input Gearbox D Q D ECLK0/1 SCLK Q21 Q0_ S2 S0 D Q D Q T2 T0 Q0 Q2 D Q D Q CE D Q CE D Q Q65 Q43 S6 S4 D Q D Q T6 T4 D Q cdn D Q CE D Q cdn CE D Q Q54 Q_6 S3 S5 D D T3 T5 Q6 D Q D Q CE D Q CE D Q Q10 Q32 S1 D T1 D Q D Q CE Q65 Q65 Q43 Q43 Q21 Q10 Q21 Q32 Q54 Q_6 Q54 Q32 SEL0 Q4 Q5 Q1 Q3 S7 D Q T7 D Q CE Q7 UPDATE Q_6 2-20 Architecture MachXO2 Family Data Sheet More information on the input gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices. Output Gearbox Each PIC on the top edge has a built-in 8:1 output gearbox. Each of these output gearboxes may be programmed as a 7:1 serializer or as one ODDRX4 (8:1) gearbox or as two ODDRX2 (4:1) gearboxes. Table 2-10 shows the gearbox signals. Table 2-10. Output Gearbox Signal List The gearboxes have three stage pipeline registers. The first stage registers sample the low-speed input data on the low-speed system clock. The second stage registers transfer data from the low-speed clock registers to the highspeed clock registers. The third stage pipeline registers controlled by high-speed edge clock shift and mux the high-speed data out to the sysIO buffer. Figure 2-17 shows the output gearbox block diagram. Name I/O Type Description Q Output High-speed data output D[7:0] Input Low-speed data from device core Video TX(7:1): D[6:0] GDDRX4(8:1): D[7:0] GDDRX2(4:1)(IOL-A): D[3:0] GDDRX2(4:1)(IOL-C): D[7:4] SCLK Input Slow-speed system clock ECLK [1:0] Input High-speed edge clock RST Input Reset 2-21 Architecture MachXO2 Family Data Sheet Figure 2-17. Output Gearbox More information on the output gearbox is available in TN1203, Implementing High-Speed Interfaces with MachXO2 Devices. DDR Memory Support Certain PICs on the right edge of MachXO2-640U, MachXO2-1200/U and larger devices, have additional circuitry to allow the implementation of DDR memory interfaces. There are two groups of 14 or 12 PIOs each on the right edge with additional circuitry to implement DDR memory interfaces. This capability allows the implementation of up to 16-bit wide memory interfaces. One PIO from each group contains a control element, the DQS Read/Write D4 D0 D3 D1 T1 S1 S0 QC ODDRx2_A ODDRx2_C ODDRx2_C ECLK0/1 Q45 Q67 S4 S6 D Q D Q T4 T6 D6 D Q D Q CE D Q CE 0 1 0 1 Q01 Q23 S0 S2 T0 T2 Q32 Q10 S5 S3 Q D T5 T3 CE 0 1 D Q Q76 Q54 S7 Q D T7 D Q D Q D Q CE 0 1 S2 S4 GND S7 S6 S5 S3 D2 D7 D5 SCLK 0 1 0 1 0 1 1 0 1 Q34 Q56 Q67 GND Q45 S1 Q12 SEL /0 UPDATE Q23 Q/QA D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q 0 1 0 1 0 1 0 1 0 1 0 CE CE D Q CE D Q CE 0 1 0 1 CDN2-22 Architecture MachXO2 Family Data Sheet Block, to facilitate the generation of clock and control signals (DQSR90, DQSW90, DDRCLKPOL and DATAVALID). These clock and control signals are distributed to the other PIO in the group through dedicated low skew routing. DQS Read Write Block Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Read Write block provides the required clock alignment for DDR memory interfaces. DQSR90 and DQSW90 signals are generated by the DQS Read Write block from the DQS input. In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the read cycle) is unknown. The MachXO2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This circuit changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each read cycle for the correct clock polarity. Prior to the read operation in DDR memories, DQS is in tri-state (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit in the DQS Read Write block detects the first DQS rising edge after the preamble state and generates the DDRCLKPOL signal. This signal is used to control the polarity of the clock to the synchronizing registers. The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration signals (6-bit bus) from a DLL on the right edge of the device. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop. sysIO Buffer Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today’s systems including LVCMOS, TTL, PCI, SSTL, HSTL, LVDS, BLVDS, MLVDS and LVPECL. Each bank is capable of supporting multiple I/O standards. In the MachXO2 devices, single-ended output buffers, ratioed input buffers (LVTTL, LVCMOS and PCI), differential (LVDS) and referenced input buffers (SSTL and HSTL) are powered using I/O supply voltage (VCCIO). Each sysIO bank has its own VCCIO. In addition, each bank has a voltage reference, VREF, which allows the use of referenced input buffers independent of the bank VCCIO. MachXO2-256 and MachXO2-640 devices contain single-ended ratioed input buffers and single-ended output buffers with complementary outputs on all the I/O banks. Note that the single-ended input buffers on these devices do not contain PCI clamps. In addition to the single-ended I/O buffers these two devices also have differential and referenced input buffers on all I/Os. The I/Os are arranged in pairs, the two pads in the pair are described as “T” and “C”, where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer. MachXO2-640U, MachXO2-1200/U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 devices contain three types of sysIO buffer pairs. 1. Left and Right sysIO Buffer Pairs The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the left and right of the devices also have differential and referenced input buffers. 2. Bottom sysIO Buffer Pairs The sysIO buffer pairs in the bottom bank of the device consist of two single-ended output drivers and two single-ended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the bottom also have differential and referenced input buffers. Only the I/Os on the bottom banks have programmable PCI clamps 2-23 Architecture MachXO2 Family Data Sheet and differential input termination. The PCI clamp is enabled after VCC and VCCIO are at valid operating levels and the device has been configured. 3. Top sysIO Buffer Pairs The sysIO buffer pairs in the top bank of the device consist of two single-ended output drivers and two singleended input buffers (for ratioed inputs such as LVCMOS and LVTTL). The I/O pairs on the top also have differential and referenced I/O buffers. Half of the sysIO buffer pairs on the top edge have true differential outputs. The sysIO buffer pair comprising of the A and B PIOs in every PIC on the top edge have a differential output driver. The referenced input buffer can also be configured as a differential input buffer. Typical I/O Behavior During Power-up The internal power-on-reset (POR) signal is deactivated when VCC and VCCIO0 have reached VPORUP level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure that all V CCIO banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a weak pulldown to GND (some pins such as PROGRAMN and the JTAG pins have weak pull-up to VCCIO as the default functionality). The I/O pins will maintain the blank configuration until VCC and VCCIO (for I/O banks containing configuration I/Os) have reached VPORUP levels at which time the I/Os will take on the user-configured settings only after a proper download/configuration. There are various ways a user can ensure that there are no spurious signals on critical outputs as the device powers up. These are discussed in more detail in TN1202, MachXO2 sysIO Usage Guide. Supported Standards The MachXO2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL, and PCI. The buffer supports the LVTTL, PCI, LVCMOS 1.2, 1.5, 1.8, 2.5, and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS, MLVDS and LVPECL output emulation is supported on all devices. The MachXO2-640U, MachXO2-1200/U and higher devices support on-chip LVDS output buffers on approximately 50% of the I/Os on the top bank. Differential receivers for LVDS, BLVDS, MLVDS and LVPECL are supported on all banks of MachXO2 devices. PCI support is provided in the bottom bank of theMachXO2-640U, MachXO2-1200/U and higher density devices. Table 2-11 summarizes the I/O characteristics of the MachXO2 PLDs. Tables 2-11 and 2-12 show the I/O standards (together with their supply and reference voltages) supported by the MachXO2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1202, MachXO2 sysIO Usage Guide. Table 2-11. I/O Support Device by Device MachXO2-256, MachXO2-640 MachXO2-640U, MachXO2-1200 MachXO2-1200U MachXO2-2000/U, MachXO2-4000, MachXO2-7000 Number of I/O Banks 4 4 6 Type of Input Buffers Single-ended (all I/O banks) Differential Receivers (all I/O banks) Single-ended (all I/O banks) Differential Receivers (all I/O banks) Differential input termination (bottom side) Single-ended (all I/O banks) Differential Receivers (all I/O banks) Differential input termination (bottom side)2-24 Architecture MachXO2 Family Data Sheet Table 2-12. Supported Input Standards Types of Output Buffers Single-ended buffers with complementary outputs (all I/O banks) Single-ended buffers with complementary outputs (all I/O banks) Differential buffers with true LVDS outputs (50% on top side) Single-ended buffers with complementary outputs (all I/O banks) Differential buffers with true LVDS outputs (50% on top side) Differential Output Emulation Capability All I/O banks All I/O banks All I/O banks PCI Clamp Support No Clamp on bottom side only Clamp on bottom side only VCCIO (Typ.) Input Standard 3.3V 2.5V 1.8V 1.5 1.2V Single-Ended Interfaces LVTTL  2  2  2 LVCMOS33  2  2  2 LVCMOS25  2  2  2 LVCMOS18  2  2  2 LVCMOS15  2  2  2  2 LVCMOS12  2  2  2  2  PCI1  SSTL18 (Class I, Class II)  SSTL25 (Class I, Class II)  HSTL18 (Class I, Class II)  Differential Interfaces LVDS   BLVDS, MVDS, LVPECL, RSDS   Differential SSTL18 Class I, II  Differential SSTL25 Class I, II  Differential HSTL18 Class I, II  1. Bottom banks of MachXO2-640U, MachXO2-1200/U and higher density devices only. 2. Reduced functionality. Refer to TN1202, MachXO2 sysIO Usage Guide for more detail. MachXO2-256, MachXO2-640 MachXO2-640U, MachXO2-1200 MachXO2-1200U MachXO2-2000/U, MachXO2-4000, MachXO2-70002-25 Architecture MachXO2 Family Data Sheet Table 2-13. Supported Output Standards sysIO Buffer Banks The numbers of banks vary between the devices of this family. MachXO2-1200U, MachXO2-2000/U and higher density devices have six I/O banks (one bank on the top, right and bottom side and three banks on the left side). The MachXO2-1200 and lower density devices have four banks (one bank per side). Figures 2-18 and 2-19 show the sysIO banks and their associated supplies for all devices. Output Standard VCCIO (Typ.) Single-Ended Interfaces LVTTL 3.3 LVCMOS33 3.3 LVCMOS25 2.5 LVCMOS18 1.8 LVCMOS15 1.5 LVCMOS12 1.2 LVCMOS33, Open Drain — LVCMOS25, Open Drain — LVCMOS18, Open Drain — LVCMOS15, Open Drain — LVCMOS12, Open Drain — PCI33 3.3 SSTL25 (Class I) 2.5 SSTL18 (Class I) 1.8 HSTL18(Class I) 1.8 Differential Interfaces LVDS1, 2 2.5, 3.3 BLVDS, MLVDS, RSDS 2 2.5 LVPECL2 3.3 Differential SSTL18 1.8 Differential SSTL25 2.5 Differential HSTL18 1.8 1. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers. 2. These interfaces can be emulated with external resistors in all devices.2-26 Architecture MachXO2 Family Data Sheet Figure 2-18. MachXO2-1200U, MachXO2-2000/U, MachXO2-4000 and MachXO2-7000 Banks Figure 2-19. MachXO2-256, MachXO2-640/U and MachXO2-1200 Banks Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 VCCIO0 GND VCCIO2 GND VCCIO1 GND GND GND GND VCCIO5 VCCIO4 VCCIO3 Bank 0 Bank 1 Bank 2 Bank 3 VCCIO0 GND VCCIO2 GND VCCIO1 GND VCCIO3 GND2-27 Architecture MachXO2 Family Data Sheet Hot Socketing The MachXO2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO2 ideal for many multiple power supply and hot-swap applications. On-chip Oscillator Every MachXO2 device has an internal CMOS oscillator. The oscillator output can be routed as a clock to the clock tree or as a reference clock to the sysCLOCK PLL using general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit and a user input to enable/disable the oscillator. The oscillator frequency ranges from 2.08 MHz to 133 MHz. The software default value of the Master Clock (MCLK) is nominally 2.08 MHz. When a different MCLK is selected during the design process, the following sequence takes place: 1. Device powers up with a nominal MCLK frequency of 2.08 MHz. 2. During configuration, users select a different master clock frequency. 3. The MCLK frequency changes to the selected frequency once the clock configuration bits are received. 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.08 MHz. Table 2-14 lists all the available MCLK frequencies. Table 2-14. Available MCLK Frequencies Embedded Hardened IP Functions and User Flash Memory All MachXO2 devices provide embedded hardened functions such as SPI, I2 C and Timer/Counter. MachXO2-640/U and higher density devices also provide User Flash Memory (UFM). These embedded blocks interface through the WISHBONE interface with routing as shown in Figure 2-20. MCLK (MHz, Nominal) MCLK (MHz, Nominal) MCLK (MHz, Nominal) 2.08 (default) 9.17 33.25 2.46 10.23 38 3.17 13.3 44.33 4.29 14.78 53.2 5.54 20.46 66.5 7 26.6 88.67 8.31 29.56 1332-28 Architecture MachXO2 Family Data Sheet Figure 2-20. Embedded Function Block Interface Hardened I2 C IP Core Every MachXO2 device contains two I2 C IP cores. These are the primary and secondary I2 C IP cores. Either of the two cores can be configured either as an I2 C master or as an I2 C slave. The only difference between the two IP cores is that the primary core has pre-assigned I/O pins whereas users can assign I/O pins for the secondary core. When the IP core is configured as a master it will be able to control other devices on the I2 C bus through the interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I2 C Master. The I2 C cores support the following functionality: • Master and Slave operation • 7-bit and 10-bit addressing • Multi-master arbitration support • Clock stretching • Up to 400 KHz data transfer speed • General call support • Interface to custom logic through 8-bit WISHBONE interface Embedded Function Block (EFB) Core Logic/ Routing EFB WISHBONE Interface I 2 C (Primary) I 2 C (Secondary) SPI Timer/Counter PLL0 PLL1 Configuration Logic UFM I/Os for I2 C (Primary) I/Os for SPI I/Os for I2 C (Secondary) Indicates connection through core logic/routing. Power Control2-29 Architecture MachXO2 Family Data Sheet Figure 2-21. I2 C Core Block Diagram Table 2-15 describes the signals interfacing with the I2 C cores. Table 2-15. I2 C Core Signal Description Hardened SPI IP Core Every MachXO2 device has a hard SPI IP core that can be configured as a SPI master or slave. When the IP core is configured as a master it will be able to control other SPI enabled chips connected to the SPI bus. When the core is configured as the slave, the device will be able to interface to an external SPI master. The SPI IP core on MachXO2 devices supports the following functions: • Configurable Master and Slave modes • Full-Duplex data transfer • Mode fault error flag with CPU interrupt capability • Double-buffered data register • Serial clock with programmable polarity and phase • LSB First or MSB First Data Transfer • Interface to custom logic through 8-bit WISHBONE interface Signal Name I/O Description i2c_scl Bi-directional Bi-directional clock line of the I2 C core. The signal is an output if the I2 C core is in master mode. The signal is an input if the I2 C core is in slave mode. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I2 C ports in each MachXO2 device. i2c_sda Bi-directional Bi-directional data line of the I2 C core. The signal is an output when data is transmitted from the I2 C core. The signal is an input when data is received into the I2 C core. MUST be routed directly to the pre-assigned I/O of the chip. Refer to the Pinout Information section of this document for detailed pad and pin locations of I2 C ports in each MachXO2 device. i2c_irqo Output Interrupt request output signal of the I2 C core. The intended usage of this signal is for it to be connected to the WISHBONE master controller (i.e. a microcontroller or state machine) and request an interrupt when a specific condition is met. These conditions are described with the I2 C register definitions. cfg_wake Output Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the “Wakeup Enable” feature has been set within the EFB GUI, I2 C Tab. cfg_stdby Output Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the “Wakeup Enable” feature has been set within the EFB GUI, I2 C Tab. EFB SCL SDA Configuration Logic Core Logic/ Routing Power Control I 2 C Registers EFB WISHBONE Interface Control Logic I 2 C Function2-30 Architecture MachXO2 Family Data Sheet There are some limitations on the use of the hardened user SPI. These are defined in the following technical notes: • TN1087, Minimizing System Interruption During Configuration Using TransFR Technology (Appendix B) • TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices Figure 2-22. SPI Core Block Diagram Table 2-16 describes the signals interfacing with the SPI cores. Table 2-16. SPI Core Signal Description Hardened Timer/Counter MachXO2 devices provide a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit timer/counter module with independent output compare units and PWM support. The Timer/Counter supports the following functions: Signal Name I/O Master/Slave Description spi_csn[0] O Master SPI master chip-select output spi_csn[1..7] O Master Additional SPI chip-select outputs (total up to eight slaves) spi_scsn I Slave SPI slave chip-select input spi_irq O Master/Slave Interrupt request spi_clk I/O Master/Slave SPI clock. Output in master mode. Input in slave mode. spi_miso I/O Master/Slave SPI data. Input in master mode. Output in slave mode. spi_mosi I/O Master/Slave SPI data. Output in master mode. Input in slave mode. ufm_sn I Slave Configuration Slave Chip Select (active low), dedicated for selecting the User Flash Memory (UFM). cfg_stdby O Master/Slave Stand-by signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the “Wakeup Enable” feature has been set within the EFB GUI, SPI Tab. cfg_wake O Master/Slave Wake-up signal – To be connected only to the power module of the MachXO2 device. The signal is enabled only if the “Wakeup Enable” feature has been set within the EFB GUI, SPI Tab. EFB SPI Function Core Logic/ Routing EFB WISHBONE Interface SPI Registers Control Logic Configuration Logic MISO MOSI SCK MCSN SCSN2-31 Architecture MachXO2 Family Data Sheet • Supports the following modes of operation: – Watchdog timer – Clear timer on compare match – Fast PWM – Phase and Frequency Correct PWM • Programmable clock input source • Programmable input clock prescaler • One static interrupt output to routing • One wake-up interrupt to on-chip standby mode controller. • Three independent interrupt sources: overflow, output compare match, and input capture • Auto reload • Time-stamping support on the input capture unit • Waveform generation on the output • Glitch-free PWM waveform generation with variable PWM period • Internal WISHBONE bus access to the control and status registers • Stand-alone mode with preloaded control registers and direct reset input Figure 2-23. Timer/Counter Block Diagram Table 2-17. Timer/Counter Signal Description For more details on these embedded functions, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices. Port I/O Description tc_clki I Timer/Counter input clock signal tc_rstn I Register tc_rstn_ena is preloaded by configuration to always keep this pin enabled tc_ic I Input capture trigger event, applicable for non-pwm modes with WISHBONE interface. If enabled, a rising edge of this signal will be detected and synchronized to capture tc_cnt value into tc_icr for time-stamping. tc_int O Without WISHBONE – Can be used as overflow flag With WISHBONE – Controlled by three IRQ registers tc_oc O Timer counter output signal EFB Timer/Counter Core Logic Routing PWM EFB WISHBONE Interface Timer/ Counter Registers Control Logic2-32 Architecture MachXO2 Family Data Sheet User Flash Memory (UFM) MachXO2-640/U and higher density devices provide a User Flash Memory block, which can be used for a variety of applications including storing a portion of the configuration image, initializing EBRs, to store PROM data or, as a general purpose user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE interface. Users can also access the UFM block through the JTAG, I2 C and SPI interfaces of the device. The UFM block offers the following features: • Non-volatile storage up to 256Kbits • 100K write cycles • Write access is performed page-wise; each page has 128 bits (16 bytes) • Auto-increment addressing • WISHBONE interface For more information on the UFM, please refer to TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices. Standby Mode and Power Saving Options MachXO2 devices are available in three options for maximum flexibility: ZE, HC and HE devices. The ZE devices have ultra low static and dynamic power consumption. These devices use a 1.2V core voltage that further reduces power consumption. The HC and HE devices are designed to provide high performance. The HC devices have a built-in voltage regulator to allow for 2.5V VCC and 3.3V VCC while the HE devices operate at 1.2V VCC. MachXO2 devices have been designed with features that allow users to meet the static and dynamic power requirements of their applications by controlling various device subsystems such as the bandgap, power-on-reset circuitry, I/O bank controllers, power guard, on-chip oscillator, PLLs, etc. In order to maximize power savings, MachXO2 devices support an ultra low power Stand-by mode. While most of these features are available in all three device types, these features are mainly intended for use with MachXO2 ZE devices to manage power consumption. In the stand-by mode the MachXO2 devices are powered on and configured. Internal logic, I/Os and memories are switched on and remain operational, as the user logic waits for an external input. The device enters this mode when the standby input of the standby controller is toggled or when an appropriate I2 C or JTAG instruction is issued by an external master. Various subsystems in the device such as the band gap, power-on-reset circuitry etc can be configured such that they are automatically turned “off” or go into a low power consumption state to save power when the device enters this state.2-33 Architecture MachXO2 Family Data Sheet Table 2-18. MachXO2 Power Saving Features Description For more details on the standby mode refer to TN1198, Power Estimation and Management for MachXO2 Devices. Power On Reset MachXO2 devices have power-on reset circuitry to monitor VCCINT and VCCIO voltage levels during power-up and operation. At power-up, the POR circuitry monitors VCCINT and VCCIO0 (controls configuration) voltage levels. It then triggers download from the on-chip configuration Flash memory after reaching the VPORUP level specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. For devices without voltage regulators (ZE and HE devices), VCCINT is the same as the VCC supply voltage. For devices with voltage regulators (HC devices), VCCINT is regulated from the VCC supply voltage. From this voltage reference, the time taken for configuration and entry into user mode is specified as Flash Download Time (tREFRESH) in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tristate. I/Os are released to user functionality once the device has finished configuration. Note that for HC devices, a separate POR circuit monitors external VCC voltage in addition to the POR circuit that monitors the internal postregulated power supply voltage level. Once the device enters into user mode, the POR circuitry can optionally continue to monitor VCCINT levels. If V CCINT drops below VPORDNBG level (with the bandgap circuitry switched on) or below VPORDNSRAM level (with the bandgap circuitry switched off to conserve power) device functionality cannot be guaranteed. In such a situation the POR issues a reset and begins monitoring the VCCINT and VCCIO voltage levels. VPORDNBG and VPORDNSRAM are both specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Note that once a ZE or HE device enters user mode, users can switch off the bandgap to conserve power. When the bandgap circuitry is switched off, the POR circuitry also shuts down. The device is designed such that a minimal, low power POR circuit is still operational (this corresponds to the VPORDNSRAM reset point described in the paragraph above). However this circuit is not as accurate as the one that operates when the bandgap is switched on. The low power POR circuit emulates an SRAM cell and is biased to trip before the vast majority of SRAM cells flip. If users are concerned about the VCC supply dropping below VCC (min) they should not shut down the bandgap or POR circuit. Device Subsystem Feature Description Bandgap The bandgap can be turned off in standby mode. When the Bandgap is turned off, analog circuitry such as the POR, PLLs, on-chip oscillator, and referenced and differential I/O buffers are also turned off. Bandgap can only be turned off for 1.2V devices. Power-On-Reset (POR) The POR can be turned off in standby mode. This monitors VCC levels. In the event of unsafe VCC drops, this circuit reconfigures the device. When the POR circuitry is turned off, limited power detector circuitry is still active. This option is only recommended for applications in which the power supply rails are reliable. On-Chip Oscillator The on-chip oscillator has two power saving features. It may be switched off if it is not needed in your design. It can also be turned off in Standby mode. PLL Similar to the on-chip oscillator, the PLL also has two power saving features. It can be statically switched off if it is not needed in a design. It can also be turned off in Standby mode. The PLL will wait until all output clocks from the PLL are driven low before powering off. I/O Bank Controller Referenced and differential I/O buffers (used to implement standards such as HSTL, SSTL and LVDS) consume more than ratioed single-ended I/Os such as LVCMOS and LVTTL. The I/O bank controller allows the user to turn these I/Os off dynamically on a per bank selection. Dynamic Clock Enable for Primary Clock Nets Each primary clock net can be dynamically disabled to save power. Power Guard Power Guard is a feature implemented in input buffers. This feature allows users to switch off the input buffer when it is not needed. This feature can be used in both clock and data paths. Its biggest impact is that in the standby mode it can be used to switch off clock inputs that are distributed using general routing resources.2-34 Architecture MachXO2 Family Data Sheet Configuration and Testing This section describes the configuration and testing features of the MachXO2 family. IEEE 1149.1-Compliant Boundary Scan Testability All MachXO2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with VCCIO Bank 0 and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards. For more details on boundary scan test, see AN8066, Boundary Scan Testability with Lattice sysIO Capability and TN1087, Minimizing System Interruption During Configuration Using TransFR Technology. Device Configuration All MachXO2 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration and the sysCONFIG port which supports serial configuration through I2 C or SPI. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are various ways to configure a MachXO2 device: 1. Internal Flash Download 2. JTAG 3. Standard Serial Peripheral Interface (Master SPI mode) – interface to boot PROM memory 4. System microprocessor to drive a serial slave SPI port (SSPI mode) 5. Standard I2 C Interface to system microprocessor Upon power-up, the configuration SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port. Optionally the device can run a CRC check upon entering the user mode. This will ensure that the device was configured correctly. The sysCONFIG port has 10 dual-function pins which can be used as general purpose I/Os if they are not required for configuration. See TN1204, MachXO2 Programming and Configuration Usage Guide for more information about using the dual-use pins as general purpose I/Os. Lattice design software uses proprietary compression technology to compress bit-streams for use in MachXO2 devices. Use of this technology allows Lattice to provide a lower cost solution. In the unlikely event that this technology is unable to compress bitstreams to fit into the amount of on-chip Flash memory, there are a variety of techniques that can be utilized to allow the bitstream to fit in the on-chip Flash memory. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. The Test Access Port (TAP) has five dual purpose pins (TDI, TDO, TMS and TCK). These pins are dual function pins - TDI, TDO, TMS and TCK can be used as general purpose I/O if desired. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. TransFR (Transparent Field Reconfiguration) TransFR is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a simple push-button solution. For more details refer to TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details. Security and One-Time Programmable Mode (OTP)2-35 Architecture MachXO2 Family Data Sheet For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM-based FPGAs. This is further enhanced by device locking. MachXO2 devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile Flash memory spaces. The device can be in one of two modes: 1. Unlocked – Readback of the SRAM configuration and non-volatile Flash memory spaces is allowed. 2. Permanently Locked – The device is permanently locked. Once set, the only way to clear the security bits is to erase the device. To further complement the security of the device, a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the Flash and SRAM OTP portions of the device. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. Dual Boot MachXO2 devices can optionally boot from two patterns, a primary bitstream and a golden bitstream. If the primary bitstream is found to be corrupt while being downloaded into the SRAM, the device shall then automatically re-boot from the golden bitstream. Note that the primary bitstream must reside in the on-chip Flash. The golden image MUST reside in an external SPI Flash. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. Soft Error Detection The SED feature is a CRC check of the SRAM cells after the device is configured. This check ensures that the SRAM cells were configured successfully. This feature is enabled by a configuration bit option. The Soft Error Detection can also be initiated in user mode via an input to the fabric. The clock for the Soft Error Detection circuit is generated using a dedicated divider. The undivided clock from the on-chip oscillator is the input to this divider. For low power applications users can switch off the Soft Error Detection circuit. For more details, refer to TN1206, MachXO2 Soft Error Detection Usage Guide. TraceID Each MachXO2 device contains a unique (per device), TraceID that can be used for tracking purposes or for IP security applications. The TraceID is 64 bits long. Eight out of 64 bits are user-programmable, the remaining 56 bits are factory-programmed. The TraceID is accessible through the EFB WISHBONE interface and can also be accessed through the SPI, I2 C, or JTAG interfaces. Density Shifting The MachXO2 family has been designed to enable density migration within the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. For more details refer to the MachXO2 migration files.www.latticesemi.com 3-1 DS1035 DC and Switching_01.8 January 2013 Data Sheet DS1035 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Absolute Maximum Ratings1, 2, 3, 4 MachXO2 ZE/HE (1.2V) MachXO2 HC (2.5V/3.3V) Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V I/O Tri-state Voltage Applied5 . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V Dedicated Input Voltage Applied . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V Storage Temperature (Ambient). . . . . . . . . . . . . . -55°C to 125°C . . . . . . . . . . . . . -55°C to 125°C Junction Temperature (TJ ) . . . . . . . . . . . . . . . . . . -40°C to 125°C . . . . . . . . . . . . . -40°C to 125°C 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20ns. 5. The dual function I2 C pins SCL and SDA are limited to -0.25V to 3.75V or to -0.3V with a duration of <20ns. Recommended Operating Conditions1 Power Supply Ramp Rates1 Symbol Parameter Min. Max. Units V CC 1 Core Supply Voltage for 1.2V Devices 1.14 1.26 V Core Supply Voltage for 2.5V/3.3V Devices 2.375 3.465 V V CCIO 1, 2, 3 I/O Driver Supply Voltage 1.14 3.465 V t JCOM Junction Temperature Commercial Operation 0 85 °C t JIND Junction Temperature Industrial Operation -40 100 °C 1. Like power supplies must be tied together. For example, if VCCIO and VCC are both the same voltage, they must also be the same supply. 2. See recommended voltages by I/O standard in subsequent table. 3. VCCIO pins of unused I/O banks should be connected to the VCC power supply on boards. Symbol Parameter Min. Typ. Max. Units t RAMP Power supply ramp rates for all power supplies. 0.01 — 100 V/ms 1. Assumes monotonic ramp rates. MachXO2 Family Data Sheet DC and Switching Characteristics3-2 DC and Switching Characteristics MachXO2 Family Data Sheet Power-On-Reset Voltage Levels1, 2, 3, 4 Programming/Erase Specifications Hot Socketing Specifications1, 2, 3 ESD Performance Please refer to the MachXO2 Product Family Qualification Summary for complete qualification data, including ESD performance. Symbol Parameter Min. Typ. Max. Units VPORUP Power-On-Reset ramp up trip point (band gap based circuit monitoring VCCINT and VCCIO) 0.9 — 1.06 V VPORUPEXT Power-On-Reset ramp up trip point (band gap based circuit monitoring external VCC power supply) 1.5 — 2.1 V VPORDNBG Power-On-Reset ramp down trip point (band gap based circuit monitoring VCCINT) — — 0.93 V VPORDNSRAM Power-On-Reset ramp down trip point (SRAM based circuit monitoring VCCINT) — 0.6 — V 1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions. 2. For devices without voltage regulators VCCINT is the same as the VCC supply voltage. For devices with voltage regulators, VCCINT is regulated from the VCC supply voltage. 3. Note that VPORUP (min.) and VPORDNBG (max.) are in different process corners. For any given process corner VPORDNBG (max.) is always 12.0mV below VPORUP (min.). 4. VPORUPEXT is for HC devices only. In these devices a separate POR circuit monitors the external VCC power supply. Symbol Parameter Min. Max.1 Units NPROGCYC Flash Programming cycles per tRETENTION — 10,000 Cycles Flash functional programming cycles — 100,000 t RETENTION Data retention at 100°C junction temperature 10 — Years Data retention at 85°C junction temperature 20 — 1. Maximum Flash memory reads are limited to 7.5E13 cycles over the lifetime of the product. Symbol Parameter Condition Max. Units I DK Input or I/O leakage Current 0 < VIN < VIH (MAX) +/-1000 µA 1. Insensitive to sequence of VCC and VCCIO. However, assumes monotonic rise/fall rates for VCC and VCCIO. 2. 0 < VCC < VCC (MAX), 0 < VCCIO < VCCIO (MAX). 3. IDK is additive to IPU, IPD or IBH.3-3 DC and Switching Characteristics MachXO2 Family Data Sheet DC Electrical Characteristics Over Recommended Operating Conditions Symbol Parameter Condition Min. Typ. Max. Units I IL, IIH 1, 4 Input or I/O Leakage Clamp OFF and VCCIO < VIN < VIH (MAX) — — +175 µA Clamp OFF and VIN = VCCIO -10 — 10 µA Clamp OFF and VCCIO - 0.97V < VIN < V CCIO -175 — — µA Clamp OFF and 0V < VIN < VCCIO - 0.97V — — 10 µA Clamp OFF and VIN = GND — — 10 µA Clamp ON and 0V < VIN < VCCIO — — 10 µA I PU I/O Active Pull-up Current 0 < VIN < 0.7 VCCIO -30 — -309 µA I PD I/O Active Pull-down Current VIL (MAX) < VIN < VCCIO 30 — 305 µA I BHLS Bus Hold Low sustaining current VIN = VIL (MAX) 30 — — µA I BHHS Bus Hold High sustaining current VIN = 0.7VCCIO -30 — — µA I BHLO Bus Hold Low Overdrive current 0  VIN V CCIO — — 305 µA I BHHO Bus Hold High Overdrive current 0  VIN V CCIO — — -309 µA VBHT 3 Bus Hold Trip Points VIL (MAX) — VIH (MIN) V C1 I/O Capacitance2 V CCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V CC = Typ., VIO = 0 to VIH (MAX) 3 5 9 pf C2 Dedicated Input Capacitance2 V CCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V CC = Typ., VIO = 0 to VIH (MAX) 3 5.5 7 pf V HYST Hysteresis for Schmitt Trigger Inputs5 V CCIO = 3.3V, Hysteresis = Large — 450 — mV V CCIO = 2.5V, Hysteresis = Large — 250 — mV V CCIO = 1.8V, Hysteresis = Large — 125 — mV V CCIO = 1.5V, Hysteresis = Large — 100 — mV V CCIO = 3.3V, Hysteresis = Small — 250 — mV V CCIO = 2.5V, Hysteresis = Small — 150 — mV V CCIO = 1.8V, Hysteresis = Small — 60 — mV V CCIO = 1.5V, Hysteresis = Small — 40 — mV 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA 25°C, f = 1.0MHz. 3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document. 4. When VIH is higher than VCCIO, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For true LVDS output pins in MachXO2-640U, MachXO2-1200/U and larger devices, VIH must be less than or equal to VCCIO. 5. With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide.3-4 DC and Switching Characteristics MachXO2 Family Data Sheet Static Supply Current – ZE Devices1, 2, 3, 6 Static Power Consumption Contribution of Different Components –  ZE Devices The table below can be used for approximating static power consumption. For a more accurate power analysis for your design please use the Power Calculator tool. Symbol Parameter Device Typ.4 Units I CC Core Power Supply LCMXO2-256ZE 18 µA LCMXO2-640ZE 28 µA LCMXO2-1200ZE 56 µA LCMXO2-2000ZE 80 µA LCMXO2-4000ZE 124 µA LCMXO2-7000ZE 189 µA I CCIO Bank Power Supply5 V CCIO = 2.5V All devices 0 mA 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices. 2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at VCCIO or GND, on-chip oscillator is off, on-chip PLL is off. To estimate the impact of turning each of these items on, please refer to the following table or for more detail with your specific design use the Power Calculator tool. 3. Frequency = 0 MHz. 4. TJ = 25°C, power supplies at nominal voltage. 5. Does not include pull-up/pull-down. 6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool. Symbol Parameter Typ. Units I DCBG Bandgap DC power contribution 101 µA I DCPOR POR DC power contribution 38 µA I DCIOBANKCONTROLLER DC power contribution per I/O bank controller 143 µA3-5 DC and Switching Characteristics MachXO2 Family Data Sheet Static Supply Current – HC/HE Devices1, 2, 3, 6 Programming and Erase Flash Supply Current – ZE Devices1, 2, 3, 4 Symbol Parameter Device Typ.4 Units I CC Core Power Supply LCMXO2-256HC 1.15 mA LCMXO2-640HC 1.84 mA LCMXO2-640UHC 3.48 mA LCMXO2-1200HC 3.49 mA LCMXO2-1200UHC 4.80 mA LCMXO2-2000HC 4.80 mA LCMXO2-2000UHC 8.44 mA LCMXO2-4000HC 8.45 mA LCMXO2-7000HC 12.87 mA LCMXO2-2000HE 1.39 mA LCMXO2-4000HE 2.55 mA LCMXO2-7000HE 4.06 mA I CCIO Bank Power Supply5 V CCIO = 2.5V All devices 0 mA 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices. 2. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at VCCIO or GND, on-chip oscillator is off, on-chip PLL is off. 3. Frequency = 0 MHz. 4. TJ = 25°C, power supplies at nominal voltage. 5. Does not include pull-up/pull-down. 6. To determine the MachXO2 peak start-up current data, use the Power Calculator tool. Symbol Parameter Device Typ.5 Units I CC Core Power Supply LCMXO2-256ZE 13 mA LCMXO2-640ZE 14 mA LCMXO2-1200ZE 15 mA LCMXO2-2000ZE 17 mA LCMXO2-4000ZE 18 mA LCMXO2-7000ZE 20 mA I CCIO Bank Power Supply6 All devices 0 mA 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices. 2. Assumes all inputs are held at VCCIO or GND and all outputs are tri-stated. 3. Typical user pattern. 4. JTAG programming is at 25 MHz. 5. TJ = 25°C, power supplies at nominal voltage. 6. Per bank. VCCIO = 2.5V. Does not include pull-up/pull-down.3-6 DC and Switching Characteristics MachXO2 Family Data Sheet Programming and Erase Flash Supply Current – HC/HE Devices1, 2, 3, 4 Symbol Parameter Device Typ.5 Units I CC Core Power Supply LCMXO2-256HC 14.6 mA LCMXO2-640HC 16.1 mA LCMXO2-640UHC 18.8 mA LCMXO2-1200HC 18.8 mA LCMXO2-1200UHC 22.1 mA LCMXO2-2000HC 22.1 mA LCMXO2-2000UHC 26.8 mA LCMXO2-4000HC 26.8 mA LCMXO2-7000HC 33.2 mA LCMXO2-2000HE 18.3 mA LCMXO2-2000UHE 20.4 mA LCMXO2-4000HE 20.4 mA LCMXO2-7000HE 23.9 mA I CCIO Bank Power Supply6 All devices 0 mA 1. For further information on supply current, please refer to TN1198, Power Estimation and Management for MachXO2 Devices. 2. Assumes all inputs are held at VCCIO or GND and all outputs are tri-stated. 3. Typical user pattern. 4. JTAG programming is at 25 MHz. 5. TJ = 25°C, power supplies at nominal voltage. 6. Per bank. VCCIO = 2.5V. Does not include pull-up/pull-down.3-7 DC and Switching Characteristics MachXO2 Family Data Sheet sysIO Recommended Operating Conditions Standard V CCIO (V) VREF (V) Min. Typ. Max. Min. Typ. Max. LVCMOS 3.3 3.135 3.3 3.465 — — — LVCMOS 2.5 2.375 2.5 2.625 — — — LVCMOS 1.8 1.71 1.8 1.89 — — — LVCMOS 1.5 1.425 1.5 1.575 — — — LVCMOS 1.2 1.14 1.2 1.26 — — — LVTTL 3.135 3.3 3.465 — — — PCI3 3.135 3.3 3.465 — — — SSTL25 2.375 2.5 2.625 1.15 1.25 1.35 SSTL18 1.71 1.8 1.89 0.833 0.9 0.969 HSTL18 1.71 1.8 1.89 0.816 0.9 1.08 LVDS251, 2 2.375 2.5 2.625 — — — LVDS331, 2 3.135 3.3 3.465 — — — LVPECL1 3.135 3.3 3.465 — — — BLVDS1 2.375 2.5 2.625 — — — RSDS1 2.375 2.5 2.625 — — — SSTL18D 1.71 1.8 1.89 — — — SSTL25D 2.375 2.5 2.625 — — — HSTL18D 1.71 1.8 1.89 — — — 1. Inputs on-chip. Outputs are implemented with the addition of external resistors. 2. MachXO2-640U, MachXO2-1200/U and larger devices have dedicated LVDS buffers 3. Input on the bottom bank of the MachXO2-640U, MachXO2-1200/U and larger devices only.3-8 DC and Switching Characteristics MachXO2 Family Data Sheet sysIO Single-Ended DC Electrical Characteristics1, 2 Input/Output Standard VIL VIH V OL Max. (V) V OH Min. (V) I OL Max.4 (mA) I OH Max.4 Min. (V) (mA) 3 Max. (V) Min. (V) Max. (V) LVCMOS 3.3 LVTTL -0.3 0.8 2.0 3.6 0.4 VCCIO - 0.4 4 -4 8 -8 12 -12 16 -16 24 -24 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 2.5 -0.3 0.7 1.7 3.6 0.4 VCCIO - 0.4 4 -4 8 -8 12 -12 16 -16 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 1.8 -0.3 0.35VCCIO 0.65VCCIO 3.6 0.4 VCCIO - 0.4 4 -4 8 -8 12 -12 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 1.5 -0.3 0.35VCCIO 0.65VCCIO 3.6 0.4 VCCIO - 0.4 4 -4 8 -8 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 1.2 -0.3 0.35VCCIO 0.65VCCIO 3.6 0.4 VCCIO - 0.4 4 -2 8 -6 0.2 VCCIO - 0.2 0.1 -0.1 PCI -0.3 0.3VCCIO 0.5VCCIO 3.6 0.1VCCIO 0.9VCCIO 1.5 -0.5 SSTL25 Class I -0.3 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62 8 8 SSTL25 Class II -0.3 VREF - 0.18 VREF +0.18 3.6 NA NA NA NA SSTL18 Class I -0.3 VREF - 0.125 VREF +0.125 3.6 0.40 VCCIO - 0.40 8 8 SSTL18 Class II -0.3 VREF - 0.125 VREF +0.125 3.6 NA NA NA NA HSTL18 Class I -0.3 VREF - 0.1 VREF +0.1 3.6 0.40 VCCIO - 0.40 8 8 HSTL18 Class II -0.3 VREF - 0.1 VREF +0.1 3.6 NA NA NA NA 1. MachXO2 devices allow LVCMOS inputs to be placed in I/O banks where VCCIO is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where MachXO2 devices do not meet the relevant JEDEC specification are documented in the table below. 2. MachXO2 devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to please refer to TN1202, MachXO2 sysIO Usage Guide. 3. The dual function I2 C pins SCL and SDA are limited to a VIL min of -0.25V or to -0.3V with a duration of <10ns. 4. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank. Input Standard VCCIO (V) VIL Max. (V) LVCMOS 33 1.5 0.685 LVCMOS 25 1.5 1.687 LVCMOS 18 1.5 1.1643-9 DC and Switching Characteristics MachXO2 Family Data Sheet sysIO Differential Electrical Characteristics The LVDS differential output buffers are available on the top side of MachXO2-640U, MachXO2-1200/U and higher density devices in the MachXO2 PLD family. LVDS Over Recommended Operating Conditions Parameter Symbol Parameter Description Test Conditions Min. Typ. Max. Units VINP, VINM Input Voltage VCCIO = 3.3 0 — 2.605 V V CCIO = 2.5 0 — 2.05 V VTHD Differential Input Threshold ±100 — mV V CM Input Common Mode Voltage V CCIO = 3.3V 0.05 — 2.6 V V CCIO = 2.5V 0.05 — 2.0 V I IN Input current Power on — — ±10 µA V OH Output high voltage for VOP or VOM RT = 100 Ohm — 1.375 — V V OL Output low voltage for VOP or VOM RT = 100 Ohm 0.90 1.025 — V V OD Output voltage differential (VOP - VOM), RT = 100 Ohm 250 350 450 mV V OD Change in VOD between high and low — — 50 mV V OS Output voltage offset (VOP - VOM)/2, RT = 100 Ohm 1.125 1.20 1.395 V V OS Change in VOS between H and L — — 50 mV I OSD Output short circuit current VOD = 0V driver outputs shorted — — 24 mA3-10 DC and Switching Characteristics MachXO2 Family Data Sheet LVDS Emulation MachXO2 devices can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors. Figure 3-1. LVDS Using External Resistors (LVDS25E) Table 3-1. LVDS25E DC Conditions Over Recommended Operating Conditions Parameter Description Typ. Units Z OUT Output impedance 20 Ohms RS Driver series resistor 158 Ohms RP Driver parallel resistor 140 Ohms RT Receiver termination 100 Ohms V OH Output high voltage 1.43 V V OL Output low voltage 1.07 V V OD Output differential voltage 0.35 V V CM Output common mode voltage 1.25 V Z BACK Back impedance 100.5 Ohms I DC DC output current 6.03 mA 158 158 Zo = 100 140 100 On-chip On-chip Off-chip Off-chip VCCIO = 2.5 8mA 8mA Note: All resistors are ±1%. VCCIO = 2.5 + - Emulated LVDS Buffer 3-11 DC and Switching Characteristics MachXO2 Family Data Sheet BLVDS The MachXO2 family supports the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals. Figure 3-2. BLVDS Multi-point Output Example Table 3-2. BLVDS DC Conditions1 Over Recommended Operating Conditions Symbol Description Nominal Zo = 45 Zo = 90 Units Z OUT Output impedance 10 10 Ohms RS Driver series resistance 80 80 Ohms RTLEFT Left end termination 45 90 Ohms RTRIGHT Right end termination 45 90 Ohms V OH Output high voltage 1.376 1.480 V V OL Output low voltage 1.124 1.020 V V OD Output differential voltage 0.253 0.459 V V CM Output common mode voltage 1.250 1.250 V I DC DC output current 11.236 10.204 mA 1. For input buffer, see LVDS table. Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential 2.5V 80 80 80 80 80 80 45-90 ohms 45-90 ohms 80 2.5V 2.5V 2.5V 2.5V 2.5V 2.5V 2.5V + - . . . + - + - + - 16mA 16mA 16mA 16mA 16mA 16mA 16mA 16mA3-12 DC and Switching Characteristics MachXO2 Family Data Sheet LVPECL The MachXO2 family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Differential LVPECL is one possible solution for point-to-point signals. Figure 3-3. Differential LVPECL Table 3-3. LVPECL DC Conditions1 Over Recommended Operating Conditions For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet. Symbol Description Nominal Units Z OUT Output impedance 10 Ohms RS Driver series resistor 93 Ohms RP Driver parallel resistor 196 Ohms RT Receiver termination 100 Ohms V OH Output high voltage 2.05 V V OL Output low voltage 1.25 V V OD Output differential voltage 0.80 V V CM Output common mode voltage 1.65 V Z BACK Back impedance 100.5 Ohms I DC DC output current 12.11 mA 1. For input buffer, see LVDS table. Transmission line, Zo = 100 ohm differential 100 ohms 93 ohms 16mA 16mA 93 ohms On-chip Off-chip V CCIO = 3.3V V CCIO = 3.3V + - 196 ohms Off-chip On-chip 3-13 DC and Switching Characteristics MachXO2 Family Data Sheet RSDS The MachXO2 family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. Figure 3-4. RSDS (Reduced Swing Differential Standard) Table 3-4. RSDS DC Conditions Parameter Description Typical Units Z OUT Output impedance 20 Ohms RS Driver series resistor 294 Ohms RP Driver parallel resistor 121 Ohms RT Receiver termination 100 Ohms V OH Output high voltage 1.35 V V OL Output low voltage 1.15 V V OD Output differential voltage 0.20 V V CM Output common mode voltage 1.25 V Z BACK Back impedance 101.5 Ohms I DC DC output current 3.66 mA 100 294 294 On-chip Off-chip On-chip Emulated RSDS Buffer VCCIO = 2.5V VCCIO = 2.5V 8mA 8mA Zo = 100 + - 121 Off-chip3-14 DC and Switching Characteristics MachXO2 Family Data Sheet Typical Building Block Function Performance – HC/HE Devices1 Pin-to-Pin Performance (LVCMOS25 12mA Drive) Register-to-Register Performance Function -6 Timing Units Basic Functions 16-bit decoder 8.9 ns 4:1 MUX 7.5 ns 16:1 MUX 8.3 ns Function -6 Timing Units Basic Functions 16:1 MUX 412 MHz 16-bit adder 297 MHz 16-bit counter 324 MHz 64-bit counter 161 MHz Embedded Memory Functions 1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers) 183 MHz Distributed Memory Functions 16x4 Pseudo-Dual Port RAM (one PFU) 500 MHz 1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.3-15 DC and Switching Characteristics MachXO2 Family Data Sheet Typical Building Block Function Performance – ZE Devices1 Pin-to-Pin Performance (LVCMOS25 12mA Drive) Register-to-Register Performance Derating Logic Timing Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage. Function -3 Timing Units Basic Functions 16-bit decoder 13.9 ns 4:1 MUX 10.9 ns 16:1 MUX 12.0 ns Function -3 Timing Units Basic Functions 16:1 MUX 191 MHz 16-bit adder 134 MHz 16-bit counter 148 MHz 64-bit counter 77 MHz Embedded Memory Functions 1024x9 True-Dual Port RAM (Write Through or Normal, EBR output registers) 90 MHz Distributed Memory Functions 16x4 Pseudo-Dual Port RAM (one PFU) 214 MHz 1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.3-16 DC and Switching Characteristics MachXO2 Family Data Sheet Maximum sysIO Buffer Performance I/O Standard Max. Speed Units LVDS25 400 MHz LVDS25E 150 MHz RSDS25 150 MHz RSDS25E 150 MHz BLVDS25 150 MHz BLVDS25E 150 MHz MLVDS25 150 MHz MLVDS25E 150 MHz LVPECL33 150 MHz LVPECL33E 150 MHz SSTL25_I 150 MHz SSTL25_II 150 MHz SSTL25D_I 150 MHz SSTL25D_II 150 MHz SSTL18_I 150 MHz SSTL18_II 150 MHz SSTL18D_I 150 MHz SSTL18D_II 150 MHz HSTL18_I 150 MHz HSTL18_II 150 MHz HSTL18D_I 150 MHz HSTL18D_II 150 MHz PCI33 134 MHz LVTTL33 150 MHz LVTTL33D 150 MHz LVCMOS33 150 MHz LVCMOS33D 150 MHz LVCMOS25 150 MHz LVCMOS25D 150 MHz LVCMOS25R33 150 MHz LVCMOS18 150 MHz LVCMOS18D 150 MHz LVCMOS18R33 150 MHz LVCMOS18R25 150 MHz LVCMOS15 150 MHz LVCMOS15D 150 MHz LVCMOS15R33 150 MHz LVCMOS15R25 150 MHz LVCMOS12 91 MHz LVCMOS12D 91 MHz3-17 DC and Switching Characteristics MachXO2 Family Data Sheet MachXO2 External Switching Characteristics – HC/HE Devices1, 2, 3, 4, 5, 6, 7 Over Recommended Operating Conditions Parameter Description Device -6 -5 -4 Min. Max. Min. Max. Min. Max. Units Clocks Primary Clocks f MAX_PRI 8 Frequency for Primary Clock Tree All MachXO2 devices — 388 — 323 — 269 MHz t W_PRI Clock Pulse Width for Primary Clock All MachXO2 devices 0.5 — 0.6 — 0.7 — ns t SKEW_PRI Primary Clock Skew Within a Device MachXO2-256HC-HE — 912 — 939 — 975 ps MachXO2-640HC-HE — 844 — 871 — 908 ps MachXO2-1200HC-HE — 868 — 902 — 951 ps MachXO2-2000HC-HE — 867 — 897 — 941 ps MachXO2-4000HC-HE — 865 — 892 — 931 ps MachXO2-7000HC-HE — 902 — 942 — 989 ps Edge Clock f MAX_EDGE 8 Frequency for Edge Clock MachXO2-1200 and larger devices — 400 — 333 — 278 MHz Pin-LUT-Pin Propagation Delay t PD Best case propagation delay through one LUT-4 All MachXO2 devices — 6.72 — 6.96 — 7.24 ns General I/O Pin Parameters (Using Primary Clock without PLL) t CO Clock to Output - PIO Output Register MachXO2-256HC-HE — 7.13 — 7.30 — 7.57 ns MachXO2-640HC-HE — 7.15 — 7.30 — 7.57 ns MachXO2-1200HC-HE — 7.44 — 7.64 — 7.94 ns MachXO2-2000HC-HE — 7.46 — 7.66 — 7.96 ns MachXO2-4000HC-HE — 7.51 — 7.71 — 8.01 ns MachXO2-7000HC-HE — 7.54 — 7.75 — 8.06 ns t SU Clock to Data Setup - PIO Input Register MachXO2-256HC-HE -0.06 — -0.06 — -0.06 — ns MachXO2-640HC-HE -0.06 — -0.06 — -0.06 — ns MachXO2-1200HC-HE -0.17 — -0.17 — -0.17 — ns MachXO2-2000HC-HE -0.20 — -0.20 — -0.20 — ns MachXO2-4000HC-HE -0.23 — -0.23 — -0.23 — ns MachXO2-7000HC-HE -0.23 — -0.23 — -0.23 — ns t H Clock to Data Hold - PIO Input Register MachXO2-256HC-HE 1.75 — 1.95 — 2.16 — ns MachXO2-640HC-HE 1.75 — 1.95 — 2.16 — ns MachXO2-1200HC-HE 1.88 — 2.12 — 2.36 — ns MachXO2-2000HC-HE 1.89 — 2.13 — 2.37 — ns MachXO2-4000HC-HE 1.94 — 2.18 — 2.43 — ns MachXO2-7000HC-HE 1.98 — 2.23 — 2.49 — ns3-18 DC and Switching Characteristics MachXO2 Family Data Sheet t SU_DEL Clock to Data Setup - PIO Input Register with Data Input Delay MachXO2-256HC-HE 1.42 — 1.59 — 1.96 — ns MachXO2-640HC-HE 1.41 — 1.58 — 1.96 — ns MachXO2-1200HC-HE 1.63 — 1.79 — 2.17 — ns MachXO2-2000HC-HE 1.61 — 1.76 — 2.13 — ns MachXO2-4000HC-HE 1.66 — 1.81 — 2.19 — ns MachXO2-7000HC-HE 1.53 — 1.67 — 2.03 — ns t H_DEL Clock to Data Hold - PIO Input Register with Input Data Delay MachXO2-256HC-HE -0.24 — -0.24 — -0.24 — ns MachXO2-640HC-HE -0.23 — -0.23 — -0.23 — ns MachXO2-1200HC-HE -0.24 — -0.24 — -0.24 — ns MachXO2-2000HC-HE -0.23 — -0.23 — -0.23 — ns MachXO2-4000HC-HE -0.25 — -0.25 — -0.25 — ns MachXO2-7000HC-HE -0.21 — -0.21 — -0.21 — ns f MAX_IO Clock Frequency of I/O and PFU Register All MachXO2 devices — 388 — 323 — 269 MHz General I/O Pin Parameters (Using Edge Clock without PLL) t COE Clock to Output - PIO Output Register MachXO2-1200HC-HE — 7.53 — 7.76 — 8.10 ns MachXO2-2000HC-HE — 7.53 — 7.76 — 8.10 ns MachXO2-4000HC-HE — 7.45 — 7.68 — 8.00 ns MachXO2-7000HC-HE — 7.53 — 7.76 — 8.10 ns t SUE Clock to Data Setup - PIO Input Register MachXO2-1200HC-HE -0.19 — -0.19 — -0.19 — ns MachXO2-2000HC-HE -0.19 — -0.19 — -0.19 — ns MachXO2-4000HC-HE -0.16 — -0.16 — -0.16 — ns MachXO2-7000HC-HE -0.19 — -0.19 — -0.19 — ns t HE Clock to Data Hold - PIO Input Register MachXO2-1200HC-HE 1.97 — 2.24 — 2.52 — ns MachXO2-2000HC-HE 1.97 — 2.24 — 2.52 — ns MachXO2-4000HC-HE 1.89 — 2.16 — 2.43 — ns MachXO2-7000HC-HE 1.97 — 2.24 — 2.52 — ns t SU_DELE Clock to Data Setup - PIO Input Register with Data Input Delay MachXO2-1200HC-HE 1.56 — 1.69 — 2.05 — ns MachXO2-2000HC-HE 1.56 — 1.69 — 2.05 — ns MachXO2-4000HC-HE 1.74 — 1.88 — 2.25 — ns MachXO2-7000HC-HE 1.66 — 1.81 — 2.17 — ns t H_DELE Clock to Data Hold - PIO Input Register with Input Data Delay MachXO2-1200HC-HE -0.23 — -0.23 — -0.23 — ns MachXO2-2000HC-HE -0.23 — -0.23 — -0.23 — ns MachXO2-4000HC-HE -0.34 — -0.34 — -0.34 — ns MachXO2-7000HC-HE -0.29 — -0.29 — -0.29 — ns General I/O Pin Parameters (Using Primary Clock with PLL) t COPLL Clock to Output - PIO Output Register MachXO2-1200HC-HE — 5.97 — 6.00 — 6.13 ns MachXO2-2000HC-HE — 5.98 — 6.01 — 6.14 ns MachXO2-4000HC-HE — 5.99 — 6.02 — 6.16 ns MachXO2-7000HC-HE — 6.02 — 6.06 — 6.20 ns t SUPLL Clock to Data Setup - PIO Input Register MachXO2-1200HC-HE 0.36 — 0.36 — 0.65 — ns MachXO2-2000HC-HE 0.36 — 0.36 — 0.63 — ns MachXO2-4000HC-HE 0.35 — 0.35 — 0.62 — ns MachXO2-7000HC-HE 0.34 — 0.34 — 0.59 — ns Parameter Description Device -6 -5 -4 Min. Max. Min. Max. Min. Max. Units3-19 DC and Switching Characteristics MachXO2 Family Data Sheet t HPLL Clock to Data Hold - PIO Input Register MachXO2-1200HC-HE 0.41 — 0.48 — 0.55 — ns MachXO2-2000HC-HE 0.42 — 0.49 — 0.56 — ns MachXO2-4000HC-HE 0.43 — 0.50 — 0.58 — ns MachXO2-7000HC-HE 0.46 — 0.54 — 0.62 — ns t SU_DELPLL Clock to Data Setup - PIO Input Register with Data Input Delay MachXO2-1200HC-HE 2.88 — 3.19 — 3.72 — ns MachXO2-2000HC-HE 2.87 — 3.18 — 3.70 — ns MachXO2-4000HC-HE 2.96 — 3.28 — 3.81 — ns MachXO2-7000HC-HE 3.05 — 3.35 — 3.87 — ns t H_DELPLL Clock to Data Hold - PIO Input Register with Input Data Delay MachXO2-1200HC-HE -0.83 — -0.83 — -0.83 — ns MachXO2-2000HC-HE -0.83 — -0.83 — -0.83 — ns MachXO2-4000HC-HE -0.87 — -0.87 — -0.87 — ns MachXO2-7000HC-HE -0.91 — -0.91 — -0.91 — ns Generic DDRX1 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX1_RX.SCLK.Aligned9 t DVA Input Data Valid After CLK All MachXO2 devices, all sides — 0.317 — 0.344 — 0.368 UI t DVE Input Data Hold After CLK 0.742 — 0.702 — 0.668 — UI f DATA DDRX1 Input Data Speed — 300 — 250 — 208 Mbps f DDRX1 DDRX1 SCLK Frequency — 150 — 125 — 104 MHz Generic DDRX1 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX1_RX.SCLK.Centered9 t SU Input Data Setup Before CLK All MachXO2 devices, all sides 0.566 — 0.560 — 0.538 — ns t HO Input Data Hold After CLK 0.778 — 0.879 — 1.090 — ns f DATA DDRX1 Input Data Speed — 300 — 250 — 208 Mbps f DDRX1 DDRX1 SCLK Frequency — 150 — 125 — 104 MHz Generic DDRX2 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX2_RX.ECLK.Aligned9 t DVA Input Data Valid After CLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only — 0.316 — 0.342 — 0.364 UI t DVE Input Data Hold After CLK 0.710 — 0.675 — 0.679 — UI f DATA DDRX2 Serial Input Data Speed — 664 — 554 — 462 Mbps f DDRX2 DDRX2 ECLK Frequency — 332 — 277 — 231 MHz f SCLK SCLK Frequency — 166 — 139 — 116 MHz Generic DDRX2 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX2_RX.ECLK.Centered9 t SU Input Data Setup Before CLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only 0.233 — 0.219 — 0.198 — ns t HO Input Data Hold After CLK 0.287 — 0.287 — 0.344 — ns f DATA DDRX2 Serial Input Data Speed — 664 — 554 — 462 Mbps f DDRX2 DDRX2 ECLK Frequency — 332 — 277 — 231 MHz f SCLK SCLK Frequency — 166 — 139 — 116 MHz Parameter Description Device -6 -5 -4 Min. Max. Min. Max. Min. Max. Units3-20 DC and Switching Characteristics MachXO2 Family Data Sheet Generic DDR4 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX4_RX.ECLK.Aligned9 t DVA Input Data Valid After ECLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only — 0.290 — 0.320 — 0.345 UI t DVE Input Data Hold After ECLK 0.739 — 0.699 — 0.703 — UI f DATA DDRX4 Serial Input Data Speed — 756 — 630 — 524 Mbps f DDRX4 DDRX4 ECLK Frequency — 378 — 315 — 262 MHz f SCLK SCLK Frequency — 95 — 79 — 66 MHz Generic DDR4 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_RX.ECLK.Centered9 t SU Input Data Setup Before ECLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only 0.233 — 0.219 — 0.198 — ns t HO Input Data Hold After ECLK 0.287 — 0.287 — 0.344 — ns f DATA DDRX4 Serial Input Data Speed — 756 — 630 — 524 Mbps f DDRX4 DDRX4 ECLK Frequency — 378 — 315 — 262 MHz f SCLK SCLK Frequency — 95 — 79 — 66 MHz 7:1 LVDS Inputs (GDDR71_RX.ECLK.7:1)9 t DVA Input Data Valid After ECLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only — 0.290 — 0.320 — 0.345 UI t DVE Input Data Hold After ECLK 0.739 — 0.699 — 0.703 — UI f DATA DDR71 Serial Input Data Speed — 756 — 630 — 524 Mbps f DDR71 DDR71 ECLK Frequency — 378 — 315 — 262 MHz f CLKIN 7:1 Input Clock Frequency (SCLK) (minimum limited by PLL) — 108 — 90 — 75 MHz Generic DDR Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX1_TX.SCLK.Aligned9 t DIA Output Data Invalid After CLK Output All MachXO2 devices, all sides — 0.520 — 0.550 — 0.580 ns t DIB Output Data Invalid Before CLK Output — 0.520 — 0.550 — 0.580 ns f DATA DDRX1 Output Data Speed — 300 — 250 — 208 Mbps f DDRX1 DDRX1 SCLK frequency — 150 — 125 — 104 MHz Generic DDR Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX1_TX.SCLK.Centered9 t DVB Output Data Valid Before CLK Output All MachXO2 devices, all sides 1.210 — 1.510 — 1.870 — ns t DVA Output Data Valid After CLK Output 1.210 — 1.510 — 1.870 — ns f DATA DDRX1 Output Data Speed — 300 — 250 — 208 Mbps f DDRX1 DDRX1 SCLK Frequency (minimum limited by PLL) — 150 — 125 — 104 MHz Generic DDRX2 Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX2_TX.ECLK.Aligned9 t DIA Output Data Invalid After CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only — 0.200 — 0.215 — 0.230 ns t DIB Output Data Invalid Before CLK Output — 0.200 — 0.215 — 0.230 ns f DATA DDRX2 Serial Output Data Speed — 664 — 554 — 462 Mbps f DDRX2 DDRX2 ECLK frequency — 332 — 277 — 231 MHz f SCLK SCLK Frequency — 166 — 139 — 116 MHz Parameter Description Device -6 -5 -4 Min. Max. Min. Max. Min. Max. Units3-21 DC and Switching Characteristics MachXO2 Family Data Sheet Generic DDRX2 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX2_TX.ECLK.Centered9 t DVB Output Data Valid Before CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only 0.535 — 0.670 — 0.830 — ns t DVA Output Data Valid After CLK Output 0.535 — 0.670 — 0.830 — ns f DATA DDRX2 Serial Output Data Speed — 664 — 554 — 462 Mbps f DDRX2 DDRX2 ECLK Frequency (minimum limited by PLL) — 332 — 277 — 231 MHz f SCLK SCLK Frequency — 166 — 139 — 116 MHz Generic DDRX4 Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX4_TX.ECLK.Aligned9 t DIA Output Data Invalid After CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only — 0.200 — 0.215 — 0.230 ns t DIB Output Data Invalid Before CLK Output — 0.200 — 0.215 — 0.230 ns f DATA DDRX4 Serial Output Data Speed — 756 — 630 — 524 Mbps f DDRX4 DDRX4 ECLK Frequency — 378 — 315 — 262 MHz f SCLK SCLK Frequency — 95 — 79 — 66 MHz Generic DDRX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_TX.ECLK.Centered9 t DVB Output Data Valid Before CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only 0.455 — 0.570 — 0.710 — ns t DVA Output Data Valid After CLK Output 0.455 — 0.570 — 0.710 — ns f DATA DDRX4 Serial Output Data Speed — 756 — 630 — 524 Mbps f DDRX4 DDRX4 ECLK Frequency (minimum limited by PLL) — 378 — 315 — 262 MHz f SCLK SCLK Frequency — 95 — 79 — 66 MHz 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:19 t DVB Output Data Valid Before CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only. — 0.160 — 0.180 — 0.200 ns t DVA Output Data Valid After CLK Output — 0.160 — 0.180 — 0.200 ns f DATA DDR71 Serial Output Data Speed — 756 — 630 — 524 Mbps f DDR71 DDR71 ECLK Frequency — 378 — 315 — 262 MHz f CLKOUT 7:1 Output Clock Frequency (SCLK) (minimum limited by PLL) — 108 — 90 — 75 MHz Parameter Description Device -6 -5 -4 Min. Max. Min. Max. Min. Max. Units3-22 DC and Switching Characteristics MachXO2 Family Data Sheet LPDDR9 t DVADQ Input Data Valid After DQS Input MachXO2-1200/U and larger devices, right side only. — 0.369 — 0.395 — 0.421 UI t DVEDQ Input Data Hold After DQS Input 0.529 — 0.530 — 0.527 — UI t DQVBS Output Data Invalid Before DQS Output 0.25 — 0.25 — 0.25 — UI t DQVAS Output Data Invalid After DQS Output 0.25 — 0.25 — 0.25 — UI f DATA MEM LPDDR Serial Data Speed — 280 — 250 — 208 Mbps f SCLK SCLK Frequency — 140 — 125 — 104 MHz f LPDDR LPDDR Data Transfer Rate 0 280 0 250 0 208 Mbps DDR9 t DVADQ Input Data Valid After DQS Input MachXO2-1200/U and larger devices, right side only. — 0.350 — 0.387 — 0.414 UI t DVEDQ Input Data Hold After DQS Input 0.545 — 0.538 — 0.532 — UI t DQVBS Output Data Invalid Before DQS Output 0.25 — 0.25 — 0.25 — UI t DQVAS Output Data Invalid After DQS Output 0.25 — 0.25 — 0.25 — UI f DATA MEM DDR Serial Data Speed — 300 — 250 — 208 Mbps f SCLK SCLK Frequency — 150 — 125 — 104 MHz f MEM_DDR MEM DDR Data Transfer Rate N/A 300 N/A 250 N/A 208 Mbps DDR29 t DVADQ Input Data Valid After DQS Input MachXO2-1200/U and larger devices, right side only. — 0.360 — 0.378 — 0.406 UI t DVEDQ Input Data Hold After DQS Input 0.555 — 0.549 — 0.542 — UI t DQVBS Output Data Invalid Before DQS Output 0.25 — 0.25 — 0.25 — UI t DQVAS Output Data Invalid After DQS Output 0.25 — 0.25 — 0.25 — UI f DATA MEM DDR Serial Data Speed — 300 — 250 — 208 Mbps f SCLK SCLK Frequency — 150 — 125 — 104 MHz f MEM_DDR2 MEM DDR2 Data Transfer Rate N/A 300 N/A 250 N/A 208 Mbps 1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85°C and 1.14V. Other operating conditions, including industrial, can be extracted from the Diamond software. 2. General I/O timing numbers based on LVCMOS 2.5, 8mA, 0pf load. 3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports). 4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18. 5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports). 6. For Generic DDRX1 mode tSU = tHO = (tDVE - tDVA - 0.03ns)/2. 7. The tSU_DEL and tH_DEL values use the SCLK_ZERHOLD default step size. Each step is 105ps (-6), 113ps (-5), 120ps (-4). 8. This number for general purpose usage. Duty cycle tolerance is +/-10%. 9. Duty cycle is +/- 5% for system usage. 10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected. Parameter Description Device -6 -5 -4 Min. Max. Min. Max. Min. Max. Units3-23 DC and Switching Characteristics MachXO2 Family Data Sheet MachXO2 External Switching Characteristics – ZE Devices1, 2, 3, 4, 5, 6, 7 Over Recommended Operating Conditions Parameter Description Device -3 -2 -1 Min. Max. Min. Max. Min. Max. Units Clocks Primary Clocks f MAX_PRI 8 Frequency for Primary Clock Tree All MachXO2 devices — 150 — 125 — 104 MHz t W_PRI Clock Pulse Width for Primary Clock All MachXO2 devices 1.00 — 1.20 — 1.40 — ns t SKEW_PRI Primary Clock Skew Within a Device MachXO2-256ZE — 1250 — 1272 — 1296 ps MachXO2-640ZE — 1161 — 1183 — 1206 ps MachXO2-1200ZE — 1213 — 1267 — 1322 ps MachXO2-2000ZE — 1204 — 1250 — 1296 ps MachXO2-4000ZE — 1195 — 1233 — 1269 ps MachXO2-7000ZE — 1243 — 1268 — 1296 ps Edge Clock f MAX_EDGE 8 Frequency for Edge Clock MachXO2-1200 and larger devices — 210 — 175 — 146 MHz Pin-LUT-Pin Propagation Delay t PD Best case propagation delay through one LUT-4 All MachXO2 devices — 9.35 — 9.78 — 10.21 ns General I/O Pin Parameters (Using Primary Clock without PLL) t CO Clock to Output - PIO Output Register MachXO2-256ZE — 10.46 — 10.86 — 11.25 ns MachXO2-640ZE — 10.52 — 10.92 — 11.32 ns MachXO2-1200ZE — 11.24 — 11.68 — 12.12 ns MachXO2-2000ZE — 11.27 — 11.71 — 12.16 ns MachXO2-4000ZE — 11.28 — 11.78 — 12.28 ns MachXO2-7000ZE — 11.22 — 11.76 — 12.30 ns t SU Clock to Data Setup - PIO Input Register MachXO2-256ZE -0.21 — -0.21 — -0.21 — ns MachXO2-640ZE -0.22 — -0.22 — -0.22 — ns MachXO2-1200ZE -0.25 — -0.25 — -0.25 — ns MachXO2-2000ZE -0.27 — -0.27 — -0.27 — ns MachXO2-4000ZE -0.31 — -0.31 — -0.31 — ns MachXO2-7000ZE -0.33 — -0.33 — -0.33 — ns t H Clock to Data Hold - PIO Input Register MachXO2-256ZE 3.96 — 4.25 — 4.65 — ns MachXO2-640ZE 4.01 — 4.31 — 4.71 — ns MachXO2-1200ZE 3.95 — 4.29 — 4.73 — ns MachXO2-2000ZE 3.94 — 4.29 — 4.74 — ns MachXO2-4000ZE 3.96 — 4.36 — 4.87 — ns MachXO2-7000ZE 3.93 — 4.37 — 4.91 — ns3-24 DC and Switching Characteristics MachXO2 Family Data Sheet t SU_DEL Clock to Data Setup - PIO Input Register with Data Input Delay MachXO2-256ZE 2.62 — 2.91 — 3.14 — ns MachXO2-640ZE 2.56 — 2.85 — 3.08 — ns MachXO2-1200ZE 2.30 — 2.57 — 2.79 — ns MachXO2-2000ZE 2.25 — 2.50 — 2.70 — ns MachXO2-4000ZE 2.39 — 2.60 — 2.76 — ns MachXO2-7000ZE 2.17 — 2.33 — 2.43 — ns t H_DEL Clock to Data Hold - PIO Input Register with Input Data Delay MachXO2-256ZE -0.44 — -0.44 — -0.44 — ns MachXO2-640ZE -0.43 — -0.43 — -0.43 — ns MachXO2-1200ZE -0.28 — -0.28 — -0.28 — ns MachXO2-2000ZE -0.31 — -0.31 — -0.31 — ns MachXO2-4000ZE -0.34 — -0.34 — -0.34 — ns MachXO2-7000ZE -0.21 — -0.21 — -0.21 — ns f MAX_IO Clock Frequency of I/O and PFU Register All MachXO2 devices — 150 — 125 — 104 MHz General I/O Pin Parameters (Using Edge Clock without PLL) t COE Clock to Output - PIO Output Register MachXO2-1200ZE — 11.10 — 11.51 — 11.91 ns MachXO2-2000ZE — 11.10 — 11.51 — 11.91 ns MachXO2-4000ZE — 10.89 — 11.28 — 11.67 ns MachXO2-7000ZE — 11.10 — 11.51 — 11.91 ns t SUE Clock to Data Setup - PIO Input Register MachXO2-1200ZE -0.23 — -0.23 — -0.23 — ns MachXO2-2000ZE -0.23 — -0.23 — -0.23 — ns MachXO2-4000ZE -0.15 — -0.15 — -0.15 — ns MachXO2-7000ZE -0.23 — -0.23 — -0.23 — ns t HE Clock to Data Hold - PIO Input Register MachXO2-1200ZE 3.81 — 4.11 — 4.52 — ns MachXO2-2000ZE 3.81 — 4.11 — 4.52 — ns MachXO2-4000ZE 3.60 — 3.89 — 4.28 — ns MachXO2-7000ZE 3.81 — 4.11 — 4.52 — ns t SU_DELE Clock to Data Setup - PIO Input Register with Data Input Delay MachXO2-1200ZE 2.78 — 3.11 — 3.40 — ns MachXO2-2000ZE 2.78 — 3.11 — 3.40 — ns MachXO2-4000ZE 3.11 — 3.48 — 3.79 — ns MachXO2-7000ZE 2.94 — 3.30 — 3.60 — ns t H_DELE Clock to Data Hold - PIO Input Register with Input Data Delay MachXO2-1200ZE -0.29 — -0.29 — -0.29 — ns MachXO2-2000ZE -0.29 — -0.29 — -0.29 — ns MachXO2-4000ZE -0.46 — -0.46 — -0.46 — ns MachXO2-7000ZE -0.37 — -0.37 — -0.37 — ns General I/O Pin Parameters (Using Primary Clock with PLL) t COPLL Clock to Output - PIO Output Register MachXO2-1200ZE — 7.95 — 8.07 — 8.19 ns MachXO2-2000ZE — 7.97 — 8.10 — 8.22 ns MachXO2-4000ZE — 7.98 — 8.10 — 8.23 ns MachXO2-7000ZE — 8.02 — 8.14 — 8.26 ns t SUPLL Clock to Data Setup - PIO Input Register MachXO2-1200ZE 0.85 — 0.85 — 0.89 — ns MachXO2-2000ZE 0.84 — 0.84 — 0.86 — ns MachXO2-4000ZE 0.84 — 0.84 — 0.85 — ns MachXO2-7000ZE 0.83 — 0.83 — 0.81 — ns Parameter Description Device -3 -2 -1 Min. Max. Min. Max. Min. Max. Units3-25 DC and Switching Characteristics MachXO2 Family Data Sheet t HPLL Clock to Data Hold - PIO Input Register MachXO2-1200ZE 0.66 — 0.68 — 0.80 — ns MachXO2-2000ZE 0.68 — 0.70 — 0.83 — ns MachXO2-4000ZE 0.68 — 0.71 — 0.84 — ns MachXO2-7000ZE 0.73 — 0.74 — 0.87 — ns t SU_DELPLL Clock to Data Setup - PIO Input Register with Data Input Delay MachXO2-1200ZE 5.14 — 5.69 — 6.20 — ns MachXO2-2000ZE 5.11 — 5.67 — 6.17 — ns MachXO2-4000ZE 5.27 — 5.84 — 6.35 — ns MachXO2-7000ZE 5.15 — 5.71 — 6.23 — ns t H_DELPLL Clock to Data Hold - PIO Input Register with Input Data Delay MachXO2-1200ZE -1.36 — -1.36 — -1.36 — ns MachXO2-2000ZE -1.35 — -1.35 — -1.35 — ns MachXO2-4000ZE -1.43 — -1.43 — -1.43 — ns MachXO2-7000ZE -1.41 — -1.41 — -1.41 — ns Generic DDRX1 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX1_RX.SCLK.Aligned9 t DVA Input Data Valid After CLK All MachXO2 devices, all sides — 0.382 — 0.401 — 0.417 UI t DVE Input Data Hold After CLK 0.670 — 0.684 — 0.693 — UI f DATA DDRX1 Input Data Speed — 140 — 116 — 98 Mbps f DDRX1 DDRX1 SCLK Frequency — 70 — 58 — 49 MHz Generic DDRX1 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX1_RX.SCLK.Centered9 t SU Input Data Setup Before CLK All MachXO2 devices, all sides 1.319 — 1.412 — 1.462 — ns t HO Input Data Hold After CLK 0.717 — 1.010 — 1.340 — ns f DATA DDRX1 Input Data Speed — 140 — 116 — 98 Mbps f DDRX1 DDRX1 SCLK Frequency — 70 — 58 — 49 MHz Generic DDRX2 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX2_RX.ECLK.Aligned9 t DVA Input Data Valid After CLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only — 0.361 — 0.346 — 0.334 UI t DVE Input Data Hold After CLK 0.602 — 0.625 — 0.648 — UI f DATA DDRX2 Serial Input Data Speed — 280 — 234 — 194 Mbps f DDRX2 DDRX2 ECLK Frequency — 140 — 117 — 97 MHz f SCLK SCLK Frequency — 70 — 59 — 49 MHz Generic DDRX2 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX2_RX.ECLK.Centered9 t SU Input Data Setup Before CLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only 0.472 — 0.672 — 0.865 — ns t HO Input Data Hold After CLK 0.363 — 0.501 — 0.743 — ns f DATA DDRX2 Serial Input Data Speed — 280 — 234 — 194 Mbps f DDRX2 DDRX2 ECLK Frequency — 140 — 117 — 97 MHz f SCLK SCLK Frequency — 70 — 59 — 49 MHz Generic DDR4 Inputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input - GDDRX4_RX.ECLK.Aligned9 t DVA Input Data Valid After ECLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only — 0.307 — 0.316 — 0.326 UI t DVE Input Data Hold After ECLK 0.662 — 0.650 — 0.649 — UI f DATA DDRX4 Serial Input Data Speed — 420 — 352 — 292 Mbps f DDRX4 DDRX4 ECLK Frequency — 210 — 176 — 146 MHz f SCLK SCLK Frequency — 53 — 44 — 37 MHz Parameter Description Device -3 -2 -1 Min. Max. Min. Max. Min. Max. Units3-26 DC and Switching Characteristics MachXO2 Family Data Sheet Generic DDR4 Inputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_RX.ECLK.Centered9 t SU Input Data Setup Before ECLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only 0.434 — 0.535 — 0.630 — ns t HO Input Data Hold After ECLK 0.385 — 0.395 — 0.463 — ns f DATA DDRX4 Serial Input Data Speed — 420 — 352 — 292 Mbps f DDRX4 DDRX4 ECLK Frequency — 210 — 176 — 146 MHz f SCLK SCLK Frequency — 53 — 44 — 37 MHz 7:1 LVDS Inputs – GDDR71_RX.ECLK.7.19 t DVA Input Data Valid After ECLK MachXO2-640U, MachXO2-1200/U and larger devices, bottom side only — 0.307 — 0.316 — 0.326 UI t DVE Input Data Hold After ECLK 0.662 — 0.650 — 0.649 — UI f DATA DDR71 Serial Input Data Speed — 420 — 352 — 292 Mbps f DDR71 DDR71 ECLK Frequency — 210 — 176 — 146 MHz f CLKIN 7:1 Input Clock Frequency (SCLK) (minimum limited by PLL) — 60 — 50 — 42 MHz Generic DDR Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX1_TX.SCLK.Aligned9 t DIA Output Data Invalid After CLK Output All MachXO2 devices, all sides — 0.850 — 0.910 — 0.970 ns t DIB Output Data Invalid Before CLK Output — 0.850 — 0.910 — 0.970 ns f DATA DDRX1 Output Data Speed — 140 — 116 — 98 Mbps f DDRX1 DDRX1 SCLK frequency — 70 — 58 — 49 MHz Generic DDR Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX1_TX.SCLK.Centered9 t DVB Output Data Valid Before CLK Output All MachXO2 devices, all sides 2.720 — 3.380 — 4.140 — ns t DVA Output Data Valid After CLK Output 2.720 — 3.380 — 4.140 — ns f DATA DDRX1 Output Data Speed — 140 — 116 — 98 Mbps f DDRX1 DDRX1 SCLK Frequency (minimum limited by PLL) — 70 — 58 — 49 MHz Generic DDRX2 Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX2_TX.ECLK.Aligned9 t DIA Output Data Invalid After CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only — 0.270 — 0.300 — 0.330 ns t DIB Output Data Invalid Before CLK Output — 0.270 — 0.300 — 0.330 ns f DATA DDRX2 Serial Output Data Speed — 280 — 234 — 194 Mbps f DDRX2 DDRX2 ECLK frequency — 140 — 117 — 97 MHz f SCLK SCLK Frequency — 70 — 59 — 49 MHz Parameter Description Device -3 -2 -1 Min. Max. Min. Max. Min. Max. Units3-27 DC and Switching Characteristics MachXO2 Family Data Sheet Generic DDRX2 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX2_TX.ECLK.Centered9 t DVB Output Data Valid Before CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only 1.445 — 1.760 — 2.140 — ns t DVA Output Data Valid After CLK Output 1.445 — 1.760 — 2.140 — ns f DATA DDRX2 Serial Output Data Speed — 280 — 234 — 194 Mbps f DDRX2 DDRX2 ECLK Frequency (minimum limited by PLL) — 140 — 117 — 97 MHz f SCLK SCLK Frequency — 70 — 59 — 49 MHz Generic DDRX4 Outputs with Clock and Data Aligned at Pin Using PCLK Pin for Clock Input – GDDRX4_TX.ECLK.Aligned9 t DIA Output Data Invalid After CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only — 0.270 — 0.300 — 0.330 ns t DIB Output Data Invalid Before CLK Output — 0.270 — 0.300 — 0.330 ns f DATA DDRX4 Serial Output Data Speed — 420 — 352 — 292 Mbps f DDRX4 DDRX4 ECLK Frequency — 210 — 176 — 146 MHz f SCLK SCLK Frequency — 53 — 44 — 37 MHz Generic DDRX4 Outputs with Clock and Data Centered at Pin Using PCLK Pin for Clock Input – GDDRX4_TX.ECLK.Centered9 t DVB Output Data Valid Before CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only 0.873 — 1.067 — 1.319 — ns t DVA Output Data Valid After CLK Output 0.873 — 1.067 — 1.319 — ns f DATA DDRX4 Serial Output Data Speed — 420 — 352 — 292 Mbps f DDRX4 DDRX4 ECLK Frequency (minimum limited by PLL) — 210 — 176 — 146 MHz f SCLK SCLK Frequency — 53 — 44 — 37 MHz 7:1 LVDS Outputs – GDDR71_TX.ECLK.7:19 t DVB Output Data Valid Before CLK Output MachXO2-640U, MachXO2-1200/U and larger devices, top side only. — 0.240 — 0.270 — 0.300 ns t DVA Output Data Valid After CLK Output — 0.240 — 0.270 — 0.300 ns f DATA DDR71 Serial Output Data Speed — 420 — 352 — 292 Mbps f DDR71 DDR71 ECLK Frequency — 210 — 176 — 146 MHz f CLKOUT 7:1 Output Clock Frequency (SCLK) (minimum limited by PLL) — 60 — 50 — 42 MHz Parameter Description Device -3 -2 -1 Min. Max. Min. Max. Min. Max. Units3-28 DC and Switching Characteristics MachXO2 Family Data Sheet LPDDR9 t DVADQ Input Data Valid After DQS Input MachXO2-1200/U and larger devices, right side only. — 0.349 — 0.381 — 0.396 UI t DVEDQ Input Data Hold After DQS Input 0.665 — 0.630 — 0.613 — UI t DQVBS Output Data Invalid Before DQS Output 0.25 — 0.25 — 0.25 — UI t DQVAS Output Data Invalid After DQS Output 0.25 — 0.25 — 0.25 — UI f DATA MEM LPDDR Serial Data Speed — 120 — 110 — 96 Mbps f SCLK SCLK Frequency — 60 — 55 — 48 MHz f LPDDR LPDDR Data Transfer Rate 0 120 0 110 0 96 Mbps DDR9 t DVADQ Input Data Valid After DQS Input MachXO2-1200/U and larger devices, right side only. — 0.347 — 0.374 — 0.393 UI t DVEDQ Input Data Hold After DQS Input 0.665 — 0.637 — 0.616 — UI t DQVBS Output Data Invalid Before DQS Output 0.25 — 0.25 — 0.25 — UI t DQVAS Output Data Invalid After DQS Output 0.25 — 0.25 — 0.25 — UI f DATA MEM DDR Serial Data Speed — 140 — 116 — 98 Mbps f SCLK SCLK Frequency — 70 — 58 — 49 MHz f MEM_DDR MEM DDR Data Transfer Rate N/A 140 N/A 116 N/A 98 Mbps DDR29 t DVADQ Input Data Valid After DQS Input MachXO2-1200/U and larger devices, right side only. — 0.372 — 0.394 — 0.410 UI t DVEDQ Input Data Hold After DQS Input 0.690 — 0.658 — 0.618 — UI t DQVBS Output Data Invalid Before DQS Output 0.25 — 0.25 — 0.25 — UI t DQVAS Output Data Invalid After DQS Output 0.25 — 0.25 — 0.25 — UI f DATA MEM DDR Serial Data Speed — 140 — 116 — 98 Mbps f SCLK SCLK Frequency — 70 — 58 — 49 MHz f MEM_DDR2 MEM DDR2 Data Transfer Rate N/A 140 N/A 116 N/A 98 Mbps 1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85°C and 1.14V. Other operating conditions, including industrial, can be extracted from the Diamond software. 2. General I/O timing numbers based on LVCMOS 2.5, 8mA, 0pf load. 3. Generic DDR timing numbers based on LVDS I/O (for input, output, and clock ports). 4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18. LPDDR timing numbers based in LVCMOS18. 5. 7:1 LVDS (GDDR71) uses the LVDS I/O standard (for input, output, and clock ports). 6. For Generic DDRX1 mode tSU = tHO = (tDVE - tDVA - 0.03ns)/2. 7. The tSU_DEL and tH_DEL values use the SCLK_ZERHOLD default step size. Each step is 167ps (-3), 182ps (-2), 195ps (-1). 8. This number for general purpose usage. Duty cycle tolerance is +/-10%. 9. Duty cycle is +/- 5% for system usage. 10. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with the device selected. Parameter Description Device -3 -2 -1 Min. Max. Min. Max. Min. Max. Units3-29 DC and Switching Characteristics MachXO2 Family Data Sheet Figure 3-5. Receiver RX.CLK.Aligned and MEM DDR Input Waveforms Figure 3-6. Receiver RX.CLK.Centered Waveforms Figure 3-7. Transmitter TX.CLK.Aligned Waveforms Figure 3-8. Transmitter TX.CLK.Centered and MEM DDR Output Waveforms t DVA or tDVADQ t DVE or tDVEDQ RX.Aligned RX CLK Input or DQS Input RX Data Input or DQ Input t SU t HO t SU t HO RX.Centered RX CLK Input RX Data Input TX CLK Output t DIA TX Data Output t DIB TX.Aligned t DIB t DIA TX CLK Output or DQS Output t DVA or t DQVAS TX Data Output or DQ Output t DVB or t DQVBS TX.Centered t DVA or t DQVAS t DVB or t DQVBS3-30 DC and Switching Characteristics MachXO2 Family Data Sheet Figure 3-9. GDDR71 Video Timing Waveforms Figure 3-10. Receiver GDDR71_RX. Waveforms Figure 3-11. Transmitter GDDR71_TX. Waveforms 756 Mbps Data Out 756 Mbps Clock Out 125 MHz Clock In 125 MHz t DVA t DVE 0 123456 0 t DIA t DIB 0 123456 03-31 DC and Switching Characteristics MachXO2 Family Data Sheet sysCLOCK PLL Timing Over Recommended Operating Conditions Parameter Descriptions Conditions Min. Max. Units f IN Input Clock Frequency (CLKI, CLKFB) 7 400 MHz f OUT Output Clock Frequency (CLKOP, CLKOS, CLKOS2) 1.5625 400 MHz f OUT2 Output Frequency (CLKOS3 cascaded from CLKOS2) 0.0122 400 MHz f VCO PLL VCO Frequency 200 800 MHz f PFD Phase Detector Input Frequency 7 400 MHz AC Characteristics t DT Output Clock Duty Cycle Without duty trim selected3 45 55 % t DT_TRIM 7 Edge Duty Trim Accuracy -75 75 % t PH 4 Output Phase Accuracy -6 6 % t OPJIT 1, 8 Output Clock Period Jitter f OUT > 100MHz — 150 ps p-p f OUT < 100MHz — 0.007 UIPP Output Clock Cycle-to-cycle Jitter f OUT > 100MHz — 180 ps p-p f OUT < 100MHz — 0.009 UIPP Output Clock Phase Jitter f PFD > 100MHz — 160 ps p-p f PFD < 100MHz — 0.011 UIPP Output Clock Period Jitter (Fractional-N) f OUT > 100MHz — 230 ps p-p f OUT < 100MHz — 0.12 UIPP Output Clock Cycle-to-cycle Jitter (Fractional-N) f OUT > 100MHz — 230 ps p-p f OUT < 100MHz — 0.12 UIPP t SPO Static Phase Offset Divider ratio = integer -120 120 ps t W Output Clock Pulse Width At 90% or 10%3 0.9 — ns t LOCK 2, 5 PLL Lock-in Time — 15 ms t UNLOCK PLL Unlock Time — 50 ns t IPJIT 6 Input Clock Period Jitter f PFD  20 MHz — 1,000 ps p-p f PFD < 20 MHz — 0.02 UIPP t HI Input Clock High Time 90% to 90% 0.5 — ns t LO Input Clock Low Time 10% to 10% 0.5 — ns t STABLE 5 STANDBY High to PLL Stable — 15 ms t RST RST/RESETM Pulse Width 1 — ns t RSTREC RST Recovery Time 1 — ns t RST_DIV RESETC/D Pulse Width 10 — ns t RSTREC_DIV RESETC/D Recovery Time 1 — ns t ROTATE-SETUP PHASESTEP Setup Time 10 — ns3-32 DC and Switching Characteristics MachXO2 Family Data Sheet t ROTATE_WD PHASESTEP Pulse Width 4 — VCO Cycles 1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B. 2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment. 3. Using LVDS output buffers. 4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide for more details. 5. At minimum fPFD. As the fPFD increases the time will decrease to approximately 60% the value listed. 6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table. 7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none. 8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise. sysCLOCK PLL Timing (Continued) Over Recommended Operating Conditions Parameter Descriptions Conditions Min. Max. Units3-33 DC and Switching Characteristics MachXO2 Family Data Sheet MachXO2 Oscillator Output Frequency MachXO2 Standby Mode Timing – ZE Devices MachXO2 Standby Mode Timing – HC/HE Devices Symbol Parameter Min. Typ. Max Units f MAX Oscillator Output Frequency (Commercial Grade Devices, 0 to 85°C) 125.685 133 140.315 MHz Oscillator Output Frequency (Industrial Grade Devices, -40 to 100°C) 124.355 133 141.645 MHz t DT Output Clock Duty Cycle 43 50 57 % t OPJIT 1 Output Clock Period Jitter 0.01 0.012 0.02 UIPP t STABLEOSC STDBY Low to Oscillator Stable 0.01 0.05 0.1 µs 1. Output Clock Period Jitter specified at 133MHz. The values for lower frequencies will be smaller UIPP. The typical value for 133MHz is 95ps and for 2.08MHz the typical value is 1.54ns. Symbol Parameter Device Min. Typ. Max Units t PWRDN USERSTDBY High to Stop All — — 13 ns t PWRUP USERSTDBY Low to Power Up LCMXO2-256 — µs LCMXO2-640 — µs LCMXO2-1200 20 — 50 µs LCMXO2-2000 — µs LCMXO2-4000 — µs LCMXO2-7000 — µs t WSTDBY USERSTDBY Pulse Width All 19 — — ns t BNDGAPSTBL USERSTDBY High to Bandgap Stable All — — 15 ns Symbol Parameter Device Min. Typ. Max Units t PWRDN USERSTDBY High to Stop All — — 9 ns t PWRUP USERSTDBY Low to Power Up LCMXO2-256 — µs LCMXO2-640 — µs LCMXO2-640U — µs LCMXO2-1200 20 — 50 µs LCMXO2-1200U — µs LCMXO2-2000 — µs LCMXO2-2000U — µs LCMXO2-4000 — µs LCMXO2-7000 — µs t WSTDBY USERSTDBY Pulse Width All 18 — — ns USERSTDBY t PWRUP USERSTDBY Mode t PWRDN t WSTDBY BG, POR3-34 DC and Switching Characteristics MachXO2 Family Data Sheet Flash Download Time1, 2 JTAG Port Timing Specifications Symbol Parameter Device Typ. Units t REFRESH POR to Device I/O Active LCMXO2-256 0.6 ms LCMXO2-640 1.0 ms LCMXO2-640U 1.9 ms LCMXO2-1200 1.9 ms LCMXO2-1200U 1.4 ms LCMXO2-2000 1.4 ms LCMXO2-2000U 2.4 ms LCMXO2-4000 2.4 ms LCMXO2-7000 3.8 ms 1. Assumes sysMEM EBR initialized to an all zero pattern if they are used. 2. The Flash download time is measured starting from the maximum voltage of POR trip point. Symbol Parameter Min. Max. Units f MAX TCK clock frequency — 25 MHz t BTCPH TCK [BSCAN] clock pulse width high 20 — ns t BTCPL TCK [BSCAN] clock pulse width low 20 — ns t BTS TCK [BSCAN] setup time 10 — ns t BTH TCK [BSCAN] hold time 8 — ns t BTCO TAP controller falling edge of clock to valid output — 10 ns t BTCODIS TAP controller falling edge of clock to valid disable — 10 ns t BTCOEN TAP controller falling edge of clock to valid enable — 10 ns t BTCRS BSCAN test capture register setup time 8 — ns t BTCRH BSCAN test capture register hold time 20 — ns t BUTCO BSCAN test update register, falling edge of clock to valid output — 25 ns t BTUODIS BSCAN test update register, falling edge of clock to valid disable — 25 ns t BTUPOEN BSCAN test update register, falling edge of clock to valid enable — 25 ns 3-35 DC and Switching Characteristics MachXO2 Family Data Sheet Figure 3-12. JTAG Port Timing Waveforms TMS TDI TCK TDO Data to be captured from I/O Data to be driven out to I/O Valid Data Valid Data Valid Data Valid Data Data Captured t BTCPH t BTCPL t BTCOEN t BTCRS t BTUPOEN t BUTCO t BTUODIS t BTCRH t BTCO t BTCODIS t BTS t BTH t BTCP3-36 DC and Switching Characteristics MachXO2 Family Data Sheet sysCONFIG Port Timing Specifications I 2 C Port Timing Specifications1, 2 SPI Port Timing Specifications1 Symbol Parameter Min. Max. Units All Configuration Modes t PRGM PROGRAMN low pulse accept 55 — ns t PRGMJ PROGRAMN low pulse rejection — 25 ns t INITL INITN low time — 55 us t DPPINIT PROGRAMN low to INITN low — 70 ns t DPPDONE PROGRAMN low to DONE low — 80 ns t IODISS PROGRAMN low to I/O disable — 120 ns Slave SPI f MAX CCLK clock frequency — 66 MHz t CCLKH CCLK clock pulse width high 7.5 — ns t CCLKL CCLK clock pulse width low 7.5 — ns t STSU CCLK setup time 2 — ns t STH CCLK hold time 0 — ns t STCO CCLK falling edge to valid output — 10 ns t STOZ CCLK falling edge to valid disable — 10 ns t STOV CCLK falling edge to valid enable — 10 ns t SCS Chip select high time 25 — ns t SCSS Chip select setup time 3 — ns t SCSH Chip select hold time 3 — ns Master SPI f MAX MCLK clock frequency — 133 MHz t MCLKH MCLK clock pulse width high 3.75 — ns t MCLKL MCLK clock pulse width low 3.75 — ns t STSU MCLK setup time 5 — ns t STH MCLK hold time 1 — ns t CSSPI INITN high to chip select low 100 200 ns t MCLK INITN high to first MCLK edge 0.75 1 us Symbol Parameter Min. Max. Units f MAX Maximum SCL clock frequency — 400 KHz 1. MachXO2 supports the following modes: • Standard-mode (Sm), with a bit rate up to 100 kbit/s (user and configuration mode) • Fast-mode (Fm), with a bit rate up to 400 kbit/s (user and configuration mode) 2. Refer to the I2 C specification for timing requirements. Symbol Parameter Min. Max. Units f MAX Maximum SCK clock frequency — 45 MHz 1. Applies to user mode only. For configuration mode timing specifications, refer to sysCONFIG Port Timing Specifications table in this data sheet.3-37 DC and Switching Characteristics MachXO2 Family Data Sheet Switching Test Conditions Figure 3-13 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-5. Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces Note: Output test conditions for all other interfaces are determined by the respective standards. Test Condition R1 CL Timing Ref. VT LVTTL and LVCMOS settings (L -> H, H -> L)  0pF LVTTL, LVCMOS 3.3 = 1.5V — LVCMOS 2.5 = VCCIO/2 — LVCMOS 1.8 = VCCIO/2 — LVCMOS 1.5 = VCCIO/2 — LVCMOS 1.2 = VCCIO/2 — LVTTL and LVCMOS 3.3 (Z -> H) 188 0pF 1.5 VOL LVTTL and LVCMOS 3.3 (Z -> L) 1.5 VOH Other LVCMOS (Z -> H) VCCIO/2 VOL Other LVCMOS (Z -> L) VCCIO/2 VOH LVTTL + LVCMOS (H -> Z) VOH - 0.15 VOL LVTTL + LVCMOS (L -> Z) VOL - 0.15 VOH DUT V T R1 CL Test Poi n twww.latticesemi.com 4-1 DS1035 Pinout Information_01.7 January 3013 Data Sheet DS1035 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Signal Descriptions Signal Name I/O Descriptions General Purpose P[Edge] [Row/Column Number]_[A/B/C/D] I/O [Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PFU row or the column of the device on which the PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. [A/B/C/D] indicates the PIO within the group to which the pad is connected. Some of these user-programmable pins are shared with special function pins. When not used as special function pins, these pins can be programmed as I/Os for user logic. During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os and enable an internal pull-up, pull-down or buskeeper resistor. This option also applies to unused pins (or those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-down resistor enabled. When the device is erased, I/Os will be tri-stated with an internal pull-down resistor enabled. Some pins, such as PROGRAMN and JTAG pins, default to tri-stated I/Os with pull-up resistors enabled when the device is erased. NC — No connect. GND — GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together. VCC — V CC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply. VCCIOx — VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is recommended that all VCCIOs located in the same bank are tied to the same supply. PLL and Clock Functions (Used as user-programmable I/O pins when not used for PLL or clock pins) [LOC]_GPLL[T, C]_IN — Reference Clock (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement. [LOC]_GPLL[T, C]_FB — Optional Feedback (PLL) input pads: [LOC] indicates location. Valid designations are L (Left PLL) and R (Right PLL). T = true and C = complement. PCLK [n]_[2:0] — Primary Clock pads. One to three clock pads per side. Test and Programming (Dual function pins used for test access port and during sysCONFIG™) TMS I Test Mode Select input pin, used to control the 1149.1 state machine. TCK I Test Clock input pin, used to clock the 1149.1 state machine. TDI I Test Data input pin, used to load data into the device using an 1149.1 state machine. TDO O Output pin – Test Data output pin used to shift data out of the device using 1149.1. JTAGENB I Optionally controls behavior of TDI, TDO, TMS, TCK. If the device is configured to use the JTAG pins (TDI, TDO, TMS, TCK) as general purpose I/O, then: If JTAGENB is low: TDI, TDO, TMS and TCK can function a general purpose I/O. If JTAGENB is high: TDI, TDO, TMS and TCK function as JTAG pins. For more details, refer to TN1204, MachXO2 Programming and Configuration Usage Guide. Configuration (Dual function pins used during sysCONFIG) PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an active pull-up. INITN I/O Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. MachXO2 Family Data Sheet Pinout Information4-2 Pinout Information MachXO2 Family Data Sheet DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and the start-up sequence is in progress. MCLK/CCLK I/O Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes. SN I Slave SPI active low chip select input. CSSPIN I/O Master SPI active low chip select output. SI/SISPI I/O Slave SPI serial data input and master SPI serial data output. SO/SPISO I/O Slave SPI serial data output and master SPI serial data input. SCL I/O Slave I2 C clock input and master I2 C clock output. SDA I/O Slave I2 C data input and master I2 C data output. Signal Name I/O Descriptions General Purpose4-3 Pinout Information MachXO2 Family Data Sheet Pin Information Summary MachXO2-256 MachXO2-640 MachXO2-640U 32 QFN1 64 ucBGA 100 TQFP 132 csBGA 100 TQFP 132 csBGA 144 TQFP General Purpose I/O per Bank Bank 0 8 9 13 13 18 19 27 Bank 1 2 12 14 14 20 20 26 Bank 2 9 11 14 14 20 20 28 Bank 3 2 12 14 14 20 20 26 Bank 4 0 0 0 0 0 0 0 Bank 5 0 0 0 0 0 0 0 Total General Purpose Single Ended I/O 21 44 55 55 78 79 107 Differential I/O per Bank Bank 0 4 5 7 7 9 10 14 Bank 1 1 6 7 7 10 10 13 Bank 2 4 5 7 7 10 10 14 Bank 3 1 6 7 7 10 10 13 Bank 4 0 0 0 0 0 0 0 Bank 5 0 0 0 0 0 0 0 Total General Purpose Differential I/O 10 22 28 28 39 40 54 Dual Function I/O 22 27 29 29 29 29 33 High-speed Differential I/O Bank 0 0 0 0 0 0 0 7 Gearboxes Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) 00 0 0 0 0 7 Number of 7:1 or 8:1 Input Gearbox Available (Bank 2) 00 0 0 0 0 7 DQS Groups Bank 1 0 0 0 0 0 0 2 VCCIO Pins Bank 0 2 2 2 2 2 2 3 Bank 1 1 2 2 2 2 2 3 Bank 2 2 2 2 2 2 2 3 Bank 3 1 2 2 2 2 2 3 Bank 4 0 0 0 0 0 0 0 Bank 5 0 0 0 0 0 0 0 VCC 2 2 2 2 2 2 4 GND 2 8 8 8 8 10 12 NC 0 1 26 58 3 32 8 Total Count of Bonded Pins 31 62 73 73 96 99 135 1. Lattice recommends soldering the central thermal pad onto the top PCB ground for improved thermal resistance.4-4 Pinout Information MachXO2 Family Data Sheet MachXO2-1200 MachXO2-1200U 100 TQFP 132 csBGA 144 TQFP 25 WLCSP 256 ftBGA General Purpose I/O per Bank Bank 0 18 25 27 11 50 Bank 1 21 26 26 0 52 Bank 2 20 28 28 7 52 Bank 3 20 25 26 0 16 Bank 4 0 0 0 0 16 Bank 5 0 0 0 0 20 Total General Purpose Single Ended I/O 79 104 107 18 206 Differential I/O per Bank Bank 0 9 13 14 5 25 Bank 1 10 13 13 0 26 Bank 2 10 14 14 2 26 Bank 3 10 12 13 0 8 Bank 4 0 0 0 0 8 Bank 5 0 0 0 0 10 Total General Purpose Differential I/O 39 52 54 7 103 Dual Function I/O 31 33 33 18 33 High-speed Differential I/O Bank 0 4 7 7 0 14 Gearboxes Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) 4 7 7 0 14 Number of 7:1 or 8:1 Input Gearbox Available (Bank 2) 5 7 7 0 14 DQS Groups Bank 1 1 2 2 0 2 VCCIO Pins Bank 0 2 3 3 1 4 Bank 1 2 3 3 0 4 Bank 2 2 3 3 1 4 Bank 3 3 3 3 0 1 Bank 4 0 0 0 0 2 Bank 5 0 0 0 0 1 VCC 2 4 4 2 8 GND 8 10 12 2 24 NC 1 1 8 0 1 Total Count of Bonded Pins 98 130 135 24 2544-5 Pinout Information MachXO2 Family Data Sheet MachXO2-2000 MachXO2-2000U 100 TQFP 132 csBGA 144 TQFP 256 caBGA 256 ftBGA 484 ftBGA General Purpose I/O per Bank Bank 0 18 25 27 50 50 70 Bank 1 21 26 28 52 52 68 Bank 2 20 28 28 52 52 72 Bank 3 6 7 8 16 16 24 Bank 4 6 8 10 16 16 16 Bank 5 8 10 10 20 20 28 Total General Purpose Single-Ended I/O 79 104 111 206 206 278 Differential I/O per Bank Bank 0 9 13 14 25 25 35 Bank 1 10 13 14 26 26 34 Bank 2 10 14 14 26 26 36 Bank 3 3 3 4 8 8 12 Bank 4 3 4 5 8 8 8 Bank 5 4 5 5 10 10 14 Total General Purpose Differential I/O 39 52 56 103 103 139 Dual Function I/O 31 33 33 33 33 37 High-speed Differential I/O Bank 0 4 8 9 14 14 18 Gearboxes Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) 4 8 9 14 14 18 Number of 7:1 or 8:1 Input Gearbox Available (Bank 2) 10 14 14 14 14 18 DQS Groups Bank 1 1 2 2 2 2 2 VCCIO Pins Bank 0 2 3 3 4 4 10 Bank 1 2 3 3 4 4 10 Bank 2 2 3 3 4 4 10 Bank 3 1 1 1 1 1 3 Bank 4 1 1 1 2 2 4 Bank 5 1 1 1 1 1 3 VCC 2 4 4 8 8 12 GND 8 10 12 24 24 48 NC 1 1 4 1 1 105 Total Count of Bonded Pins 98 130 139 254 254 3784-6 Pinout Information MachXO2 Family Data Sheet MachXO2-4000 132 csBGA 144 TQFP 184 csBGA 256 caBGA 256 ftBGA 332 caBGA 484 fpBGA General Purpose I/O per Bank Bank 0 25 27 37 50 50 68 70 Bank 1 26 29 37 52 52 68 68 Bank 2 28 29 39 52 52 70 72 Bank 3 7 9 10 16 16 24 24 Bank 4 8 10 12 16 16 16 16 Bank 5 10 10 15 20 20 28 28 Total General Purpose Single Ended I/O 104 114 150 206 206 274 278 Differential I/O per Bank Bank 0 13 14 18 25 25 34 35 Bank 1 13 14 18 26 26 34 34 Bank 2 14 14 19 26 26 35 36 Bank 3 3 4 4 8 8 12 12 Bank 4 4 5 6 8 8 8 8 Bank 5 5 5 7 10 10 14 14 Total General Purpose Differential I/O 52 56 72 103 103 137 139 Dual Function I/O 37 37 37 37 37 37 37 High-speed Differential I/O Bank 0 8 9 8 18 18 18 18 Gearboxes Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) 8 9 9 18 18 18 18 Number of 7:1 or 8:1 Input Gearbox Available (Bank 2) 14 14 12 18 18 18 18 DQS Groups Bank 1 2 2 2 2 2 2 2 VCCIO Pins Bank 0 3 3 3 4 4 4 10 Bank 1 3 3 3 4 4 4 10 Bank 2 3 3 3 4 4 4 10 Bank 3 1 1 1 1 1 2 3 Bank 4 1 1 1 2 2 1 4 Bank 5 1 1 1 1 1 2 3 VCC 4 4 4 8 8 8 12 GND 10 12 16 24 24 27 48 NC 1 1 1 1 1 5 105 Total Count of Bonded Pins 130 142 182 254 254 326 3784-7 Pinout Information MachXO2 Family Data Sheet MachXO2-7000 144 TQFP 256 caBGA 256 ftBGA 332 caBGA 484 fpBGA General Purpose I/O per Bank Bank 0 27 50 50 68 82 Bank 1 29 52 52 70 84 Bank 2 29 52 52 70 84 Bank 3 9 16 16 24 28 Bank 4 10 16 16 16 24 Bank 5 10 20 20 30 32 Total General Purpose Single Ended I/O 114 206 206 278 334 Differential I/O per Bank Bank 0 14 25 25 34 41 Bank 1 14 26 26 35 42 Bank 2 14 26 26 35 42 Bank 3 4 8 8 12 14 Bank 4 5 8 8 8 12 Bank 5 5 10 10 15 16 Total General Purpose Differential I/O 56 103 103 139 167 Dual Function I/O 37 37 37 37 37 High-speed Differential I/O Bank 0 9 20 20 21 21 Gearboxes Number of 7:1 or 8:1 Output Gearbox Available (Bank 0) 9 20 20 21 21 Number of 7:1 or 8:1 Input Gearbox Available (Bank 2) 14 20 20 21 21 DQS Groups Bank 1 2 2 2 2 2 VCCIO Pins Bank 0 3 4 4 4 10 Bank 1 3 4 4 4 10 Bank 2 3 4 4 4 10 Bank 3 1 1 1 2 3 Bank 4 1 2 2 1 4 Bank 5 1 1 1 2 3 VCC 4 8 8 8 12 GND 12 24 24 27 48 NC 1 1 1 1 49 Total Count of Bonded Pins 142 254 254 330 4344-8 Pinout Information MachXO2 Family Data Sheet For Further Information For further information regarding logic signal connections for various packages please refer to the MachXO2 Device Pinout Files. Thermal Management Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Users must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values. For Further Information For further information regarding Thermal Management, refer to the following: • Thermal Management document • TN1198, Power Estimation and Management for MachXO2 Devices • The Power Calculator tool is included with the Lattice design tools, or as a standalone download from www.latticesemi.com/softwarewww.latticesemi.com 5-1 DS1035 Order Info_01.9 January 2013 Data Sheet DS1035 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. MachXO2 Part Number Description LCMXO2 – XXXX X X X – X XXXXXX X XX XX Device Status Blank = Production Device ES = Engineering Sample R1 = Production Release 1 Device 50 = WLCSP package, 50 parts per reel Shipping Method Blank = Trays TR = Tape and Reel Grade C = Commercial I = Industrial Logic Capacity 256 = 256 LUTs 640 = 640 LUTs 1200 = 1280 LUTs 2000 = 2112 LUTs 4000 = 4320 LUTs 7000 = 6864 LUTs Power/Performance Z = Low Power H = High Performance I/O Count Blank = Standard Device U = Ultra High I/O Device Supply Voltage C = 2.5V/3.3V E = 1.2V Speed 1 = Slowest 2 3 = Fastest 4 = Slowest 5 6 = Fastest Low Power High Performance Package UWG25 = 25-Ball Halogen-Free WLCSP (0.4 mm Pitch) SG32 = 32-Pin Halogen-Free QFN (0.5 mm Pitch) UMG64 = 64-Ball Halogen-Free ucBGA (0.4 mm Pitch) TG100 = 100-Pin Halogen-Free TQFP TG144 = 144-Pin Halogen-Free TQFP MG132 = 132-Ball Halogen-Free csBGA (0.5 mm Pitch) MG184 = 184-Ball Halogen-Free csBGA (0.5mm Pitch) BG256 = 256-Ball Halogen-Free caBGA (0.8 mm Pitch) FTG256 = 256-Ball Halogen-Free ftBGA (1.0 mm Pitch) BG332 = 332-Ball Halogen-Free caBGA FG484 = 484-Ball Halogen-Free fpBGA (1.0 mm Pitch) Device Family MachXO2 PLD Ordering Information MachXO2 devices have top-side markings, for commercial and industrial grades, as shown below: Notes: 1. Markings are abbreviated for small packages. 2. See PCN 05A-12 for information regarding a change to the top-side mark logo. LCMXO2-1200ZE 1TG100C Datecode LCMXO2 256ZE 1UG64C Datecode MachXO2 Family Data Sheet Ordering Information5-2 Ordering Information MachXO2 Family Data Sheet Ultra Low Power Commercial Grade Devices, Halogen Free (RoHS) Packaging Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-256ZE-1SG32C 256 1.2V -1 Halogen-Free QFN 32 COM LCMXO2-256ZE-2SG32C 256 1.2V -2 Halogen-Free QFN 32 COM LCMXO2-256ZE-3SG32C 256 1.2V -3 Halogen-Free QFN 32 COM LCMXO2-256ZE-1UMG64C 256 1.2V -1 Halogen-Free ucBGA 64 COM LCMXO2-256ZE-2UMG64C 256 1.2V -2 Halogen-Free ucBGA 64 COM LCMXO2-256ZE-3UMG64C 256 1.2V -3 Halogen-Free ucBGA 64 COM LCMXO2-256ZE-1TG100C 256 1.2V -1 Halogen-Free TQFP 100 COM LCMXO2-256ZE-2TG100C 256 1.2V -2 Halogen-Free TQFP 100 COM LCMXO2-256ZE-3TG100C 256 1.2V -3 Halogen-Free TQFP 100 COM LCMXO2-256ZE-1MG132C 256 1.2V -1 Halogen-Free csBGA 132 COM LCMXO2-256ZE-2MG132C 256 1.2V -2 Halogen-Free csBGA 132 COM LCMXO2-256ZE-3MG132C 256 1.2V -3 Halogen-Free csBGA 132 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-640ZE-1TG100C 640 1.2V -1 Halogen-Free TQFP 100 COM LCMXO2-640ZE-2TG100C 640 1.2V -2 Halogen-Free TQFP 100 COM LCMXO2-640ZE-3TG100C 640 1.2V -3 Halogen-Free TQFP 100 COM LCMXO2-640ZE-1MG132C 640 1.2V -1 Halogen-Free csBGA 132 COM LCMXO2-640ZE-2MG132C 640 1.2V -2 Halogen-Free csBGA 132 COM LCMXO2-640ZE-3MG132C 640 1.2V -3 Halogen-Free csBGA 132 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200ZE-1TG100C 1280 1.2V -1 Halogen-Free TQFP 100 COM LCMXO2-1200ZE-2TG100C 1280 1.2V -2 Halogen-Free TQFP 100 COM LCMXO2-1200ZE-3TG100C 1280 1.2V -3 Halogen-Free TQFP 100 COM LCMXO2-1200ZE-1MG132C 1280 1.2V -1 Halogen-Free csBGA 132 COM LCMXO2-1200ZE-2MG132C 1280 1.2V -2 Halogen-Free csBGA 132 COM LCMXO2-1200ZE-3MG132C 1280 1.2V -3 Halogen-Free csBGA 132 COM LCMXO2-1200ZE-1TG144C 1280 1.2V -1 Halogen-Free TQFP 144 COM LCMXO2-1200ZE-2TG144C 1280 1.2V -2 Halogen-Free TQFP 144 COM LCMXO2-1200ZE-3TG144C 1280 1.2V -3 Halogen-Free TQFP 144 COM5-3 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000ZE-1TG100C 2112 1.2V -1 Halogen-Free TQFP 100 COM LCMXO2-2000ZE-2TG100C 2112 1.2V -2 Halogen-Free TQFP 100 COM LCMXO2-2000ZE-3TG100C 2112 1.2V -3 Halogen-Free TQFP 100 COM LCMXO2-2000ZE-1MG132C 2112 1.2V -1 Halogen-Free csBGA 132 COM LCMXO2-2000ZE-2MG132C 2112 1.2V -2 Halogen-Free csBGA 132 COM LCMXO2-2000ZE-3MG132C 2112 1.2V -3 Halogen-Free csBGA 132 COM LCMXO2-2000ZE-1TG144C 2112 1.2V -1 Halogen-Free TQFP 144 COM LCMXO2-2000ZE-2TG144C 2112 1.2V -2 Halogen-Free TQFP 144 COM LCMXO2-2000ZE-3TG144C 2112 1.2V -3 Halogen-Free TQFP 144 COM LCMXO2-2000ZE-1BG256C 2112 1.2V -1 Halogen-Free caBGA 256 COM LCMXO2-2000ZE-2BG256C 2112 1.2V -2 Halogen-Free caBGA 256 COM LCMXO2-2000ZE-3BG256C 2112 1.2V -3 Halogen-Free caBGA 256 COM LCMXO2-2000ZE-1FTG256C 2112 1.2V -1 Halogen-Free ftBGA 256 COM LCMXO2-2000ZE-2FTG256C 2112 1.2V -2 Halogen-Free ftBGA 256 COM LCMXO2-2000ZE-3FTG256C 2112 1.2V -3 Halogen-Free ftBGA 256 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000ZE-1MG132C 4320 1.2V -1 Halogen-Free csBGA 132 COM LCMXO2-4000ZE-2MG132C 4320 1.2V -2 Halogen-Free csBGA 132 COM LCMXO2-4000ZE-3MG132C 4320 1.2V -3 Halogen-Free csBGA 132 COM LCMXO2-4000ZE-1TG144C 4320 1.2V -1 Halogen-Free TQFP 144 COM LCMXO2-4000ZE-2TG144C 4320 1.2V -2 Halogen-Free TQFP 144 COM LCMXO2-4000ZE-3TG144C 4320 1.2V -3 Halogen-Free TQFP 144 COM LCMXO2-4000ZE-1BG256C 4320 1.2V -1 Halogen-Free caBGA 256 COM LCMXO2-4000ZE-2BG256C 4320 1.2V -2 Halogen-Free caBGA 256 COM LCMXO2-4000ZE-3BG256C 4320 1.2V -3 Halogen-Free caBGA 256 COM LCMXO2-4000ZE-1FTG256C 4320 1.2V -1 Halogen-Free ftBGA 256 COM LCMXO2-4000ZE-2FTG256C 4320 1.2V -2 Halogen-Free ftBGA 256 COM LCMXO2-4000ZE-3FTG256C 4320 1.2V -3 Halogen-Free ftBGA 256 COM LCMXO2-4000ZE-1BG332C 4320 1.2V -1 Halogen-Free caBGA 332 COM LCMXO2-4000ZE-2BG332C 4320 1.2V -2 Halogen-Free caBGA 332 COM LCMXO2-4000ZE-3BG332C 4320 1.2V -3 Halogen-Free caBGA 332 COM LCMXO2-4000ZE-1FG484C 4320 1.2V -1 Halogen-Free fpBGA 484 COM LCMXO2-4000ZE-2FG484C 4320 1.2V -2 Halogen-Free fpBGA 484 COM LCMXO2-4000ZE-3FG484C 4320 1.2V -3 Halogen-Free fpBGA 484 COM5-4 Ordering Information MachXO2 Family Data Sheet High-Performance Commercial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-7000ZE-1TG144C 6864 1.2V -1 Halogen-Free TQFP 144 COM LCMXO2-7000ZE-2TG144C 6864 1.2V -2 Halogen-Free TQFP 144 COM LCMXO2-7000ZE-3TG144C 6864 1.2V -3 Halogen-Free TQFP 144 COM LCMXO2-7000ZE-1BG256C 6864 1.2V -1 Halogen-Free caBGA 256 COM LCMXO2-7000ZE-2BG256C 6864 1.2V -2 Halogen-Free caBGA 256 COM LCMXO2-7000ZE-3BG256C 6864 1.2V -3 Halogen-Free caBGA 256 COM LCMXO2-7000ZE-1FTG256C 6864 1.2V -1 Halogen-Free ftBGA 256 COM LCMXO2-7000ZE-2FTG256C 6864 1.2V -2 Halogen-Free ftBGA 256 COM LCMXO2-7000ZE-3FTG256C 6864 1.2V -3 Halogen-Free ftBGA 256 COM LCMXO2-7000ZE-1BG332C 6864 1.2V -1 Halogen-Free caBGA 332 COM LCMXO2-7000ZE-2BG332C 6864 1.2V -2 Halogen-Free caBGA 332 COM LCMXO2-7000ZE-3BG332C 6864 1.2V -3 Halogen-Free caBGA 332 COM LCMXO2-7000ZE-1FG484C 6864 1.2V -1 Halogen-Free fpBGA 484 COM LCMXO2-7000ZE-2FG484C 6864 1.2V -2 Halogen-Free fpBGA 484 COM LCMXO2-7000ZE-3FG484C 6864 1.2V -3 Halogen-Free fpBGA 484 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200ZE-1TG100CR11 1280 1.2V -1 Halogen-Free TQFP 100 COM LCMXO2-1200ZE-2TG100CR11 1280 1.2V -2 Halogen-Free TQFP 100 COM LCMXO2-1200ZE-3TG100CR11 1280 1.2V -3 Halogen-Free TQFP 100 COM LCMXO2-1200ZE-1MG132CR11 1280 1.2V -1 Halogen-Free csBGA 132 COM LCMXO2-1200ZE-2MG132CR11 1280 1.2V -2 Halogen-Free csBGA 132 COM LCMXO2-1200ZE-3MG132CR11 1280 1.2V -3 Halogen-Free csBGA 132 COM LCMXO2-1200ZE-1TG144CR11 1280 1.2V -1 Halogen-Free TQFP 144 COM LCMXO2-1200ZE-2TG144CR11 1280 1.2V -2 Halogen-Free TQFP 144 COM LCMXO2-1200ZE-3TG144CR11 1280 1.2V -3 Halogen-Free TQFP 144 COM 1. Specifications for the “LCMXO2-1200ZE-speed package CR1” are the same as the “LCMXO2-1200ZE-speed package C” devices respectively, except as specified in the R1 Device Specifications section on page 5-18 of this data sheet. Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-256HC-4SG32C 256 2.5V/3.3V -4 Halogen-Free QFN 32 COM LCMXO2-256HC-5SG32C 256 2.5V/3.3V -5 Halogen-Free QFN 32 COM LCMXO2-256HC-6SG32C 256 2.5V/3.3V -6 Halogen-Free QFN 32 COM LCMXO2-256HC-4UMG64C 256 2.5V/3.3V -4 Halogen-Free ucBGA 64 COM LCMXO2-256HC-5UMG64C 256 2.5V/3.3V -5 Halogen-Free ucBGA 64 COM LCMXO2-256HC-6UMG64C 256 2.5V/3.3V -6 Halogen-Free ucBGA 64 COM LCMXO2-256HC-4TG100C 256 2.5V/3.3V -4 Halogen-Free TQFP 100 COM LCMXO2-256HC-5TG100C 256 2.5V/3.3V -5 Halogen-Free TQFP 100 COM LCMXO2-256HC-6TG100C 256 2.5V/3.3V -6 Halogen-Free TQFP 100 COM LCMXO2-256HC-4MG132C 256 2.5V/3.3V -4 Halogen-Free csBGA 132 COM LCMXO2-256HC-5MG132C 256 2.5V/3.3V -5 Halogen-Free csBGA 132 COM LCMXO2-256HC-6MG132C 256 2.5V/3.3V -6 Halogen-Free csBGA 132 COM5-5 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-640HC-4TG100C 640 2.5V/3.3V -4 Halogen-Free TQFP 100 COM LCMXO2-640HC-5TG100C 640 2.5V/3.3V -5 Halogen-Free TQFP 100 COM LCMXO2-640HC-6TG100C 640 2.5V/3.3V -6 Halogen-Free TQFP 100 COM LCMXO2-640HC-4MG132C 640 2.5V/3.3V -4 Halogen-Free csBGA 132 COM LCMXO2-640HC-5MG132C 640 2.5V/3.3V -5 Halogen-Free csBGA 132 COM LCMXO2-640HC-6MG132C 640 2.5V/3.3V -6 Halogen-Free csBGA 132 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-640UHC-4TG144C 640 2.5V/3.3V -4 Halogen-Free TQFP 144 COM LCMXO2-640UHC-5TG144C 640 2.5V/3.3V -5 Halogen-Free TQFP 144 COM LCMXO2-640UHC-6TG144C 640 2.5V/3.3V -6 Halogen-Free TQFP 144 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200HC-4TG100C 1280 2.5V/3.3V -4 Halogen-Free TQFP 100 COM LCMXO2-1200HC-5TG100C 1280 2.5V/3.3V -5 Halogen-Free TQFP 100 COM LCMXO2-1200HC-6TG100C 1280 2.5V/3.3V -6 Halogen-Free TQFP 100 COM LCMXO2-1200HC-4MG132C 1280 2.5V/3.3V -4 Halogen-Free csBGA 132 COM LCMXO2-1200HC-5MG132C 1280 2.5V/3.3V -5 Halogen-Free csBGA 132 COM LCMXO2-1200HC-6MG132C 1280 2.5V/3.3V -6 Halogen-Free csBGA 132 COM LCMXO2-1200HC-4TG144C 1280 2.5V/3.3V -4 Halogen-Free TQFP 144 COM LCMXO2-1200HC-5TG144C 1280 2.5V/3.3V -5 Halogen-Free TQFP 144 COM LCMXO2-1200HC-6TG144C 1280 2.5V/3.3V -6 Halogen-Free TQFP 144 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200UHC-4FTG256C 1280 2.5V/3.3V -4 Halogen-Free ftBGA 256 COM LCMXO2-1200UHC-5FTG256C 1280 2.5V/3.3V -5 Halogen-Free ftBGA 256 COM LCMXO2-1200UHC-6FTG256C 1280 2.5V/3.3V -6 Halogen-Free ftBGA 256 COM5-6 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000HC-4TG100C 2112 2.5V/3.3V -4 Halogen-Free TQFP 100 COM LCMXO2-2000HC-5TG100C 2112 2.5V/3.3V -5 Halogen-Free TQFP 100 COM LCMXO2-2000HC-6TG100C 2112 2.5V/3.3V -6 Halogen-Free TQFP 100 COM LCMXO2-2000HC-4MG132C 2112 2.5V/3.3V -4 Halogen-Free csBGA 132 COM LCMXO2-2000HC-5MG132C 2112 2.5V/3.3V -5 Halogen-Free csBGA 132 COM LCMXO2-2000HC-6MG132C 2112 2.5V/3.3V -6 Halogen-Free csBGA 132 COM LCMXO2-2000HC-4TG144C 2112 2.5V/3.3V -4 Halogen-Free TQFP 144 COM LCMXO2-2000HC-5TG144C 2112 2.5V/3.3V -5 Halogen-Free TQFP 144 COM LCMXO2-2000HC-6TG144C 2112 2.5V/3.3V -6 Halogen-Free TQFP 144 COM LCMXO2-2000HC-4BG256C 2112 2.5V/3.3V -4 Halogen-Free caBGA 256 COM LCMXO2-2000HC-5BG256C 2112 2.5V/3.3V -5 Halogen-Free caBGA 256 COM LCMXO2-2000HC-6BG256C 2112 2.5V/3.3V -6 Halogen-Free caBGA 256 COM LCMXO2-2000HC-4FTG256C 2112 2.5V/3.3V -4 Halogen-Free ftBGA 256 COM LCMXO2-2000HC-5FTG256C 2112 2.5V/3.3V -5 Halogen-Free ftBGA 256 COM LCMXO2-2000HC-6FTG256C 2112 2.5V/3.3V -6 Halogen-Free ftBGA 256 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000UHC-4FG484C 2112 2.5V/3.3V -4 Halogen-Free fpBGA 484 COM LCMXO2-2000UHC-5FG484C 2112 2.5V/3.3V -5 Halogen-Free fpBGA 484 COM LCMXO2-2000UHC-6FG484C 2112 2.5V/3.3V -6 Halogen-Free fpBGA 484 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000HC-4MG132C 4320 2.5V/3.3V -4 Halogen-Free csBGA 132 COM LCMXO2-4000HC-5MG132C 4320 2.5V/3.3V -5 Halogen-Free csBGA 132 COM LCMXO2-4000HC-6MG132C 4320 2.5V/3.3V -6 Halogen-Free csBGA 132 COM LCMXO2-4000HC-4TG144C 4320 2.5V/3.3V -4 Halogen-Free TQFP 144 COM LCMXO2-4000HC-5TG144C 4320 2.5V/3.3V -5 Halogen-Free TQFP 144 COM LCMXO2-4000HC-6TG144C 4320 2.5V/3.3V -6 Halogen-Free TQFP 144 COM LCMXO2-4000HC-4BG256C 4320 2.5V/3.3V -4 Halogen-Free caBGA 256 COM LCMXO2-4000HC-5BG256C 4320 2.5V/3.3V -5 Halogen-Free caBGA 256 COM LCMXO2-4000HC-6BG256C 4320 2.5V/3.3V -6 Halogen-Free caBGA 256 COM LCMXO2-4000HC-4FTG256C 4320 2.5V/3.3V -4 Halogen-Free ftBGA 256 COM LCMXO2-4000HC-5FTG256C 4320 2.5V/3.3V -5 Halogen-Free ftBGA 256 COM LCMXO2-4000HC-6FTG256C 4320 2.5V/3.3V -6 Halogen-Free ftBGA 256 COM LCMXO2-4000HC-4BG332C 4320 2.5V/3.3V -4 Halogen-Free caBGA 332 COM LCMXO2-4000HC-5BG332C 4320 2.5V/3.3V -5 Halogen-Free caBGA 332 COM LCMXO2-4000HC-6BG332C 4320 2.5V/3.3V -6 Halogen-Free caBGA 332 COM LCMXO2-4000HC-4FG484C 4320 2.5V/3.3V -4 Halogen-Free fpBGA 484 COM LCMXO2-4000HC-5FG484C 4320 2.5V/3.3V -5 Halogen-Free fpBGA 484 COM LCMXO2-4000HC-6FG484C 4320 2.5V/3.3V -6 Halogen-Free fpBGA 484 COM5-7 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-7000HC-4TG144C 6864 2.5V/3.3V -4 Halogen-Free TQFP 144 COM LCMXO2-7000HC-5TG144C 6864 2.5V/3.3V -5 Halogen-Free TQFP 144 COM LCMXO2-7000HC-6TG144C 6864 2.5V/3.3V -6 Halogen-Free TQFP 144 COM LCMXO2-7000HC-4BG256C 6864 2.5V/3.3V -4 Halogen-Free caBGA 256 COM LCMXO2-7000HC-5BG256C 6864 2.5V/3.3V -5 Halogen-Free caBGA 256 COM LCMXO2-7000HC-6BG256C 6864 2.5V/3.3V -6 Halogen-Free caBGA 256 COM LCMXO2-7000HC-4FTG256C 6864 2.5V/3.3V -4 Halogen-Free ftBGA 256 COM LCMXO2-7000HC-5FTG256C 6864 2.5V/3.3V -5 Halogen-Free ftBGA 256 COM LCMXO2-7000HC-6FTG256C 6864 2.5V/3.3V -6 Halogen-Free ftBGA 256 COM LCMXO2-7000HC-4BG332C 6864 2.5V/3.3V -4 Halogen-Free caBGA 332 COM LCMXO2-7000HC-5BG332C 6864 2.5V/3.3V -5 Halogen-Free caBGA 332 COM LCMXO2-7000HC-6BG332C 6864 2.5V/3.3V -6 Halogen-Free caBGA 332 COM LCMXO2-7000HC-4FG484C 6864 2.5V/3.3V -4 Halogen-Free fpBGA 484 COM LCMXO2-7000HC-5FG484C 6864 2.5V/3.3V -5 Halogen-Free fpBGA 484 COM LCMXO2-7000HC-6FG484C 6864 2.5V/3.3V -6 Halogen-Free fpBGA 484 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200HC-4TG100CR11 1280 2.5V/3.3V -4 Halogen-Free TQFP 100 COM LCMXO2-1200HC-5TG100CR11 1280 2.5V/3.3V -5 Halogen-Free TQFP 100 COM LCMXO2-1200HC-6TG100CR11 1280 2.5V/3.3V -6 Halogen-Free TQFP 100 COM LCMXO2-1200HC-4MG132CR11 1280 2.5V/3.3V -4 Halogen-Free csBGA 132 COM LCMXO2-1200HC-5MG132CR11 1280 2.5V/3.3V -5 Halogen-Free csBGA 132 COM LCMXO2-1200HC-6MG132CR11 1280 2.5V/3.3V -6 Halogen-Free csBGA 132 COM LCMXO2-1200HC-4TG144CR11 1280 2.5V/3.3V -4 Halogen-Free TQFP 144 COM LCMXO2-1200HC-5TG144CR11 1280 2.5V/3.3V -5 Halogen-Free TQFP 144 COM LCMXO2-1200HC-6TG144CR11 1280 2.5V/3.3V -6 Halogen-Free TQFP 144 COM 1. Specifications for the “LCMXO2-1200HC-speed package CR1” are the same as the “LCMXO2-1200HC-speed package C” devices respectively, except as specified in the R1 Device Specifications section on page 5-18 of this data sheet. 5-8 Ordering Information MachXO2 Family Data Sheet High-Performance Commercial Grade Devices without Voltage Regulator, Halogen Free (RoHS) Packaging Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000HE-4TG100C 2112 1.2V -4 Halogen-Free TQFP 100 COM LCMXO2-2000HE-5TG100C 2112 1.2V -5 Halogen-Free TQFP 100 COM LCMXO2-2000HE-6TG100C 2112 1.2V -6 Halogen-Free TQFP 100 COM LCMXO2-2000HE-4TG144C 2112 1.2V -4 Halogen-Free TQFP 144 COM LCMXO2-2000HE-5TG144C 2112 1.2V -5 Halogen-Free TQFP 144 COM LCMXO2-2000HE-6TG144C 2112 1.2V -6 Halogen-Free TQFP 144 COM LCMXO2-2000HE-4MG132C 2112 1.2V -4 Halogen-Free csBGA 132 COM LCMXO2-2000HE-5MG132C 2112 1.2V -5 Halogen-Free csBGA 132 COM LCMXO2-2000HE-6MG132C 2112 1.2V -6 Halogen-Free csBGA 132 COM LCMXO2-2000HE-4BG256C 2112 1.2V -4 Halogen-Free caBGA 256 COM LCMXO2-2000HE-5BG256C 2112 1.2V -5 Halogen-Free caBGA 256 COM LCMXO2-2000HE-6BG256C 2112 1.2V -6 Halogen-Free caBGA 256 COM LCMXO2-2000HE-4FTG256C 2112 1.2V -4 Halogen-Free ftBGA 256 COM LCMXO2-2000HE-5FTG256C 2112 1.2V -5 Halogen-Free ftBGA 256 COM LCMXO2-2000HE-6FTG256C 2112 1.2V -6 Halogen-Free ftBGA 256 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000UHE-4FG484C 2112 1.2V -4 Halogen-Free fpBGA 484 COM LCMXO2-2000UHE-5FG484C 2112 1.2V -5 Halogen-Free fpBGA 484 COM LCMXO2-2000UHE-6FG484C 2112 1.2V -6 Halogen-Free fpBGA 484 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000HE-4TG144C 4320 1.2V -4 Halogen-Free TQFP 144 COM LCMXO2-4000HE-5TG144C 4320 1.2V -5 Halogen-Free TQFP 144 COM LCMXO2-4000HE-6TG144C 4320 1.2V -6 Halogen-Free TQFP 144 COM LCMXO2-4000HE-4MG132C 4320 1.2V -4 Halogen-Free csBGA 132 COM LCMXO2-4000HE-5MG132C 4320 1.2V -5 Halogen-Free csBGA 132 COM LCMXO2-4000HE-6MG132C 4320 1.2V -6 Halogen-Free csBGA 132 COM LCMXO2-4000HE-4BG256C 4320 1.2V -4 Halogen-Free caBGA 256 COM LCMXO2-4000HE-4MG184C 4320 1.2V -4 Halogen-Free csBGA 184 COM LCMXO2-4000HE-5MG184C 4320 1.2V -5 Halogen-Free csBGA 184 COM LCMXO2-4000HE-6MG184C 4320 1.2V -6 Halogen-Free csBGA 184 COM LCMXO2-4000HE-5BG256C 4320 1.2V -5 Halogen-Free caBGA 256 COM LCMXO2-4000HE-6BG256C 4320 1.2V -6 Halogen-Free caBGA 256 COM LCMXO2-4000HE-4FTG256C 4320 1.2V -4 Halogen-Free ftBGA 256 COM LCMXO2-4000HE-5FTG256C 4320 1.2V -5 Halogen-Free ftBGA 256 COM LCMXO2-4000HE-6FTG256C 4320 1.2V -6 Halogen-Free ftBGA 256 COM LCMXO2-4000HE-4BG332C 4320 1.2V -4 Halogen-Free caBGA 332 COM LCMXO2-4000HE-5BG332C 4320 1.2V -5 Halogen-Free caBGA 332 COM LCMXO2-4000HE-6BG332C 4320 1.2V -6 Halogen-Free caBGA 332 COM5-9 Ordering Information MachXO2 Family Data Sheet Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging LCMXO2-4000HE-4FG484C 4320 1.2V -4 Halogen-Free fpBGA 484 COM LCMXO2-4000HE-5FG484C 4320 1.2V -5 Halogen-Free fpBGA 484 COM LCMXO2-4000HE-6FG484C 4320 1.2V -6 Halogen-Free fpBGA 484 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-7000HE-4TG144C 6864 1.2V -4 Halogen-Free TQFP 144 COM LCMXO2-7000HE-5TG144C 6864 1.2V -5 Halogen-Free TQFP 144 COM LCMXO2-7000HE-6TG144C 6864 1.2V -6 Halogen-Free TQFP 144 COM LCMXO2-7000HE-4BG256C 6864 1.2V -4 Halogen-Free caBGA 256 COM LCMXO2-7000HE-5BG256C 6864 1.2V -5 Halogen-Free caBGA 256 COM LCMXO2-7000HE-6BG256C 6864 1.2V -6 Halogen-Free caBGA 256 COM LCMXO2-7000HE-4FTG256C 6864 1.2V -4 Halogen-Free ftBGA 256 COM LCMXO2-7000HE-5FTG256C 6864 1.2V -5 Halogen-Free ftBGA 256 COM LCMXO2-7000HE-6FTG256C 6864 1.2V -6 Halogen-Free ftBGA 256 COM LCMXO2-7000HE-4BG332C 6864 1.2V -4 Halogen-Free caBGA 332 COM LCMXO2-7000HE-5BG332C 6864 1.2V -5 Halogen-Free caBGA 332 COM LCMXO2-7000HE-6BG332C 6864 1.2V -6 Halogen-Free caBGA 332 COM LCMXO2-7000HE-4FG484C 6864 1.2V -4 Halogen-Free fpBGA 484 COM LCMXO2-7000HE-5FG484C 6864 1.2V -5 Halogen-Free fpBGA 484 COM LCMXO2-7000HE-6FG484C 6864 1.2V -6 Halogen-Free fpBGA 484 COM Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-256ZE-1SG32I 256 1.2V -1 Halogen-Free QFN 32 IND LCMXO2-256ZE-2SG32I 256 1.2V -2 Halogen-Free QFN 32 IND LCMXO2-256ZE-3SG32I 256 1.2V -3 Halogen-Free QFN 32 IND LCMXO2-256ZE-1UMG64I 256 1.2V -1 Halogen-Free ucBGA 64 IND LCMXO2-256ZE-2UMG64I 256 1.2V -2 Halogen-Free ucBGA 64 IND LCMXO2-256ZE-3UMG64I 256 1.2V -3 Halogen-Free ucBGA 64 IND LCMXO2-256ZE-1TG100I 256 1.2V -1 Halogen-Free TQFP 100 IND LCMXO2-256ZE-2TG100I 256 1.2V -2 Halogen-Free TQFP 100 IND LCMXO2-256ZE-3TG100I 256 1.2V -3 Halogen-Free TQFP 100 IND LCMXO2-256ZE-1MG132I 256 1.2V -1 Halogen-Free csBGA 132 IND LCMXO2-256ZE-2MG132I 256 1.2V -2 Halogen-Free csBGA 132 IND LCMXO2-256ZE-3MG132I 256 1.2V -3 Halogen-Free csBGA 132 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-640ZE-1TG100I 640 1.2V -1 Halogen-Free TQFP 100 IND LCMXO2-640ZE-2TG100I 640 1.2V -2 Halogen-Free TQFP 100 IND LCMXO2-640ZE-3TG100I 640 1.2V -3 Halogen-Free TQFP 100 IND LCMXO2-640ZE-1MG132I 640 1.2V -1 Halogen-Free csBGA 132 IND Part Number LUTs Supply Voltage Grade Package Leads Temp.5-10 Ordering Information MachXO2 Family Data Sheet LCMXO2-640ZE-2MG132I 640 1.2V -2 Halogen-Free csBGA 132 IND LCMXO2-640ZE-3MG132I 640 1.2V -3 Halogen-Free csBGA 132 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000HE-4MG184I 4320 1.2V -4 Halogen-Free csBGA 184 IND LCMXO2-4000HE-5MG184I 4320 1.2V -5 Halogen-Free csBGA 184 IND LCMXO2-4000HE-6MG184I 4320 1.2V -6 Halogen-Free caBGA 184 IND Part Number LUTs Supply Voltage Grade Package Leads Temp.5-11 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200ZE-1UWG25ITR1 1280 1.2V -1 Halogen-Free WLCSP 25 IND LCMXO2-1200ZE-1UWG25ITR502 1280 1.2V -1 Halogen-Free WLCSP 25 IND LCMXO2-1200ZE-1TG100I 1280 1.2V -1 Halogen-Free TQFP 100 IND LCMXO2-1200ZE-2TG100I 1280 1.2V -2 Halogen-Free TQFP 100 IND LCMXO2-1200ZE-3TG100I 1280 1.2V -3 Halogen-Free TQFP 100 IND LCMXO2-1200ZE-1MG132I 1280 1.2V -1 Halogen-Free csBGA 132 IND LCMXO2-1200ZE-2MG132I 1280 1.2V -2 Halogen-Free csBGA 132 IND LCMXO2-1200ZE-3MG132I 1280 1.2V -3 Halogen-Free csBGA 132 IND LCMXO2-1200ZE-1TG144I 1280 1.2V -1 Halogen-Free TQFP 144 IND LCMXO2-1200ZE-2TG144I 1280 1.2V -2 Halogen-Free TQFP 144 IND LCMXO2-1200ZE-3TG144I 1280 1.2V -3 Halogen-Free TQFP 144 IND 1. This part number has a tape and reel quantity of 5,000 units with a minimum order quantity of 10,000 units. Order quantities must be in increments of 10,000 units. For example, a 10,000 unit order will be shipped in two reels with one reel containing 5,000 units and the other reel with less than 5,000 units (depending on test yields). Unserviced backlog will be canceled. 2. This part number has a tape and reel quantity of 50 units with a minimum order quantity of 50. Order quantities must be in increments of 50 units. For example, a 1000 unit order will be shipped as 20 reels of 50 units each. Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000ZE-1TG100I 2112 1.2V -1 Halogen-Free TQFP 100 IND LCMXO2-2000ZE-2TG100I 2112 1.2V -2 Halogen-Free TQFP 100 IND LCMXO2-2000ZE-3TG100I 2112 1.2V -3 Halogen-Free TQFP 100 IND LCMXO2-2000ZE-1MG132I 2112 1.2V -1 Halogen-Free csBGA 132 IND LCMXO2-2000ZE-2MG132I 2112 1.2V -2 Halogen-Free csBGA 132 IND LCMXO2-2000ZE-3MG132I 2112 1.2V -3 Halogen-Free csBGA 132 IND LCMXO2-2000ZE-1TG144I 2112 1.2V -1 Halogen-Free TQFP 144 IND LCMXO2-2000ZE-2TG144I 2112 1.2V -2 Halogen-Free TQFP 144 IND LCMXO2-2000ZE-3TG144I 2112 1.2V -3 Halogen-Free TQFP 144 IND LCMXO2-2000ZE-1BG256I 2112 1.2V -1 Halogen-Free caBGA 256 IND LCMXO2-2000ZE-2BG256I 2112 1.2V -2 Halogen-Free caBGA 256 IND LCMXO2-2000ZE-3BG256I 2112 1.2V -3 Halogen-Free caBGA 256 IND LCMXO2-2000ZE-1FTG256I 2112 1.2V -1 Halogen-Free ftBGA 256 IND LCMXO2-2000ZE-2FTG256I 2112 1.2V -2 Halogen-Free ftBGA 256 IND LCMXO2-2000ZE-3FTG256I 2112 1.2V -3 Halogen-Free ftBGA 256 IND 1. Samples can be ordered in minimum order quantities and increments of 50 units. Production volumes can be ordered in minimum order quantities and increments of 10,000 units for the LCMXO2-1200ZE in the 25-ball WLCSP package.5-12 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000ZE-1MG132I 4320 1.2V -1 Halogen-Free csBGA 132 IND LCMXO2-4000ZE-2MG132I 4320 1.2V -2 Halogen-Free csBGA 132 IND LCMXO2-4000ZE-3MG132I 4320 1.2V -3 Halogen-Free csBGA 132 IND LCMXO2-4000ZE-1TG144I 4320 1.2V -1 Halogen-Free TQFP 144 IND LCMXO2-4000ZE-2TG144I 4320 1.2V -2 Halogen-Free TQFP 144 IND LCMXO2-4000ZE-3TG144I 4320 1.2V -3 Halogen-Free TQFP 144 IND LCMXO2-4000ZE-1BG256I 4320 1.2V -1 Halogen-Free caBGA 256 IND LCMXO2-4000ZE-2BG256I 4320 1.2V -2 Halogen-Free caBGA 256 IND LCMXO2-4000ZE-3BG256I 4320 1.2V -3 Halogen-Free caBGA 256 IND LCMXO2-4000ZE-1FTG256I 4320 1.2V -1 Halogen-Free ftBGA 256 IND LCMXO2-4000ZE-2FTG256I 4320 1.2V -2 Halogen-Free ftBGA 256 IND LCMXO2-4000ZE-3FTG256I 4320 1.2V -3 Halogen-Free ftBGA 256 IND LCMXO2-4000ZE-1BG332I 4320 1.2V -1 Halogen-Free caBGA 332 IND LCMXO2-4000ZE-2BG332I 4320 1.2V -2 Halogen-Free caBGA 332 IND LCMXO2-4000ZE-3BG332I 4320 1.2V -3 Halogen-Free caBGA 332 IND LCMXO2-4000ZE-1FG484I 4320 1.2V -1 Halogen-Free fpBGA 484 IND LCMXO2-4000ZE-2FG484I 4320 1.2V -2 Halogen-Free fpBGA 484 IND LCMXO2-4000ZE-3FG484I 4320 1.2V -3 Halogen-Free fpBGA 484 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-7000ZE-1TG144I 6864 1.2V -1 Halogen-Free TQFP 144 IND LCMXO2-7000ZE-2TG144I 6864 1.2V -2 Halogen-Free TQFP 144 IND LCMXO2-7000ZE-3TG144I 6864 1.2V -3 Halogen-Free TQFP 144 IND LCMXO2-7000ZE-1BG256I 6864 1.2V -1 Halogen-Free caBGA 256 IND LCMXO2-7000ZE-2BG256I 6864 1.2V -2 Halogen-Free caBGA 256 IND LCMXO2-7000ZE-3BG256I 6864 1.2V -3 Halogen-Free caBGA 256 IND LCMXO2-7000ZE-1FTG256I 6864 1.2V -1 Halogen-Free ftBGA 256 IND LCMXO2-7000ZE-2FTG256I 6864 1.2V -2 Halogen-Free ftBGA 256 IND LCMXO2-7000ZE-3FTG256I 6864 1.2V -3 Halogen-Free ftBGA 256 IND LCMXO2-7000ZE-1BG332I 6864 1.2V -1 Halogen-Free caBGA 332 IND LCMXO2-7000ZE-2BG332I 6864 1.2V -2 Halogen-Free caBGA 332 IND LCMXO2-7000ZE-3BG332I 6864 1.2V -3 Halogen-Free caBGA 332 IND LCMXO2-7000ZE-1FG484I 6864 1.2V -1 Halogen-Free fpBGA 484 IND LCMXO2-7000ZE-2FG484I 6864 1.2V -2 Halogen-Free fpBGA 484 IND LCMXO2-7000ZE-3FG484I 6864 1.2V -3 Halogen-Free fpBGA 484 IND5-13 Ordering Information MachXO2 Family Data Sheet High-Performance Industrial Grade Devices with Voltage Regulator, Halogen Free (RoHS) Packaging Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200ZE-1TG100IR11 1280 1.2V -1 Halogen-Free TQFP 100 IND LCMXO2-1200ZE-2TG100IR11 1280 1.2V -2 Halogen-Free TQFP 100 IND LCMXO2-1200ZE-3TG100IR11 1280 1.2V -3 Halogen-Free TQFP 100 IND LCMXO2-1200ZE-1MG132IR11 1280 1.2V -1 Halogen-Free csBGA 132 IND LCMXO2-1200ZE-2MG132IR11 1280 1.2V -2 Halogen-Free csBGA 132 IND LCMXO2-1200ZE-3MG132IR11 1280 1.2V -3 Halogen-Free csBGA 132 IND LCMXO2-1200ZE-1TG144IR11 1280 1.2V -1 Halogen-Free TQFP 144 IND LCMXO2-1200ZE-2TG144IR11 1280 1.2V -2 Halogen-Free TQFP 144 IND LCMXO2-1200ZE-3TG144IR11 1280 1.2V -3 Halogen-Free TQFP 144 IND 1. Specifications for the “LCMXO2-1200ZE-speed package IR1” are the same as the “LCMXO2-1200ZE-speed package I” devices respectively, except as specified in the R1 Device Specifications section on page 5-18 of this data sheet. Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-256HC-4SG32I 256 2.5V/3.3V -4 Halogen-Free QFN 32 IND LCMXO2-256HC-5SG32I 256 2.5V/3.3V -5 Halogen-Free QFN 32 IND LCMXO2-256HC-6SG32I 256 2.5V/3.3V -6 Halogen-Free QFN 32 IND LCMXO2-256HC-4UMG64I 256 2.5V/3.3V -4 Halogen-Free ucBGA 64 IND LCMXO2-256HC-5UMG64I 256 2.5V/3.3V -5 Halogen-Free ucBGA 64 IND LCMXO2-256HC-6UMG64I 256 2.5V/3.3V -6 Halogen-Free ucBGA 64 IND LCMXO2-256HC-4TG100I 256 2.5V/3.3V -4 Halogen-Free TQFP 100 IND LCMXO2-256HC-5TG100I 256 2.5V/3.3V -5 Halogen-Free TQFP 100 IND LCMXO2-256HC-6TG100I 256 2.5V/3.3V -6 Halogen-Free TQFP 100 IND LCMXO2-256HC-4MG132I 256 2.5V/3.3V -4 Halogen-Free csBGA 132 IND LCMXO2-256HC-5MG132I 256 2.5V/3.3V -5 Halogen-Free csBGA 132 IND LCMXO2-256HC-6MG132I 256 2.5V/3.3V -6 Halogen-Free csBGA 132 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-640HC-4TG100I 640 2.5V/3.3V -4 Halogen-Free TQFP 100 IND LCMXO2-640HC-5TG100I 640 2.5V/3.3V -5 Halogen-Free TQFP 100 IND LCMXO2-640HC-6TG100I 640 2.5V/3.3V -6 Halogen-Free TQFP 100 IND LCMXO2-640HC-4MG132I 640 2.5V/3.3V -4 Halogen-Free csBGA 132 IND LCMXO2-640HC-5MG132I 640 2.5V/3.3V -5 Halogen-Free csBGA 132 IND LCMXO2-640HC-6MG132I 640 2.5V/3.3V -6 Halogen-Free csBGA 132 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-640UHC-4TG144I 640 2.5V/3.3V -4 Halogen-Free TQFP 144 IND LCMXO2-640UHC-5TG144I 640 2.5V/3.3V -5 Halogen-Free TQFP 144 IND LCMXO2-640UHC-6TG144I 640 2.5V/3.3V -6 Halogen-Free TQFP 144 IND5-14 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200HC-4TG100I 1280 2.5V/3.3V -4 Halogen-Free TQFP 100 IND LCMXO2-1200HC-5TG100I 1280 2.5V/3.3V -5 Halogen-Free TQFP 100 IND LCMXO2-1200HC-6TG100I 1280 2.5V/3.3V -6 Halogen-Free TQFP 100 IND LCMXO2-1200HC-4MG132I 1280 2.5V/3.3V -4 Halogen-Free csBGA 132 IND LCMXO2-1200HC-5MG132I 1280 2.5V/3.3V -5 Halogen-Free csBGA 132 IND LCMXO2-1200HC-6MG132I 1280 2.5V/3.3V -6 Halogen-Free csBGA 132 IND LCMXO2-1200HC-4TG144I 1280 2.5V/3.3V -4 Halogen-Free TQFP 144 IND LCMXO2-1200HC-5TG144I 1280 2.5V/3.3V -5 Halogen-Free TQFP 144 IND LCMXO2-1200HC-6TG144I 1280 2.5V/3.3V -6 Halogen-Free TQFP 144 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200UHC-4FTG256I 1280 2.5V/3.3V -4 Halogen-Free ftBGA 256 IND LCMXO2-1200UHC-5FTG256I 1280 2.5V/3.3V -5 Halogen-Free ftBGA 256 IND LCMXO2-1200UHC-6FTG256I 1280 2.5V/3.3V -6 Halogen-Free ftBGA 256 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000HC-4TG100I 2112 2.5V/3.3V -4 Halogen-Free TQFP 100 IND LCMXO2-2000HC-5TG100I 2112 2.5V/3.3V -5 Halogen-Free TQFP 100 IND LCMXO2-2000HC-6TG100I 2112 2.5V/3.3V -6 Halogen-Free TQFP 100 IND LCMXO2-2000HC-4MG132I 2112 2.5V/3.3V -4 Halogen-Free csBGA 132 IND LCMXO2-2000HC-5MG132I 2112 2.5V/3.3V -5 Halogen-Free csBGA 132 IND LCMXO2-2000HC-6MG132I 2112 2.5V/3.3V -6 Halogen-Free csBGA 132 IND LCMXO2-2000HC-4TG144I 2112 2.5V/3.3V -4 Halogen-Free TQFP 144 IND LCMXO2-2000HC-5TG144I 2112 2.5V/3.3V -5 Halogen-Free TQFP 144 IND LCMXO2-2000HC-6TG144I 2112 2.5V/3.3V -6 Halogen-Free TQFP 144 IND LCMXO2-2000HC-4BG256I 2112 2.5V/3.3V -4 Halogen-Free caBGA 256 IND LCMXO2-2000HC-5BG256I 2112 2.5V/3.3V -5 Halogen-Free caBGA 256 IND LCMXO2-2000HC-6BG256I 2112 2.5V/3.3V -6 Halogen-Free caBGA 256 IND LCMXO2-2000HC-4FTG256I 2112 2.5V/3.3V -4 Halogen-Free ftBGA 256 IND LCMXO2-2000HC-5FTG256I 2112 2.5V/3.3V -5 Halogen-Free ftBGA 256 IND LCMXO2-2000HC-6FTG256I 2112 2.5V/3.3V -6 Halogen-Free ftBGA 256 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000UHC-4FG484I 2112 2.5V/3.3V -4 Halogen-Free fpBGA 484 IND LCMXO2-2000UHC-5FG484I 2112 2.5V/3.3V -5 Halogen-Free fpBGA 484 IND LCMXO2-2000UHC-6FG484I 2112 2.5V/3.3V -6 Halogen-Free fpBGA 484 IND5-15 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000HC-4TG144I 4320 2.5V/3.3V -4 Halogen-Free TQFP 144 IND LCMXO2-4000HC-5TG144I 4320 2.5V/3.3V -5 Halogen-Free TQFP 144 IND LCMXO2-4000HC-6TG144I 4320 2.5V/3.3V -6 Halogen-Free TQFP 144 IND LCMXO2-4000HC-4MG132I 4320 2.5V/3.3V -4 Halogen-Free csBGA 132 IND LCMXO2-4000HC-5MG132I 4320 2.5V/3.3V -5 Halogen-Free csBGA 132 IND LCMXO2-4000HC-6MG132I 4320 2.5V/3.3V -6 Halogen-Free csBGA 132 IND LCMXO2-4000HC-4BG256I 4320 2.5V/3.3V -4 Halogen-Free caBGA 256 IND LCMXO2-4000HC-5BG256I 4320 2.5V/3.3V -5 Halogen-Free caBGA 256 IND LCMXO2-4000HC-6BG256I 4320 2.5V/3.3V -6 Halogen-Free caBGA 256 IND LCMXO2-4000HC-4FTG256I 4320 2.5V/3.3V -4 Halogen-Free ftBGA 256 IND LCMXO2-4000HC-5FTG256I 4320 2.5V/3.3V -5 Halogen-Free ftBGA 256 IND LCMXO2-4000HC-6FTG256I 4320 2.5V/3.3V -6 Halogen-Free ftBGA 256 IND LCMXO2-4000HC-4BG332I 4320 2.5V/3.3V -4 Halogen-Free caBGA 332 IND LCMXO2-4000HC-5BG332I 4320 2.5V/3.3V -5 Halogen-Free caBGA 332 IND LCMXO2-4000HC-6BG332I 4320 2.5V/3.3V -6 Halogen-Free caBGA 332 IND LCMXO2-4000HC-4FG484I 4320 2.5V/3.3V -4 Halogen-Free fpBGA 484 IND LCMXO2-4000HC-5FG484I 4320 2.5V/3.3V -5 Halogen-Free fpBGA 484 IND LCMXO2-4000HC-6FG484I 4320 2.5V/3.3V -6 Halogen-Free fpBGA 484 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-7000HC-4TG144I 6864 2.5V/3.3V -4 Halogen-Free TQFP 144 IND LCMXO2-7000HC-5TG144I 6864 2.5V/3.3V -5 Halogen-Free TQFP 144 IND LCMXO2-7000HC-6TG144I 6864 2.5V/3.3V -6 Halogen-Free TQFP 144 IND LCMXO2-7000HC-4BG256I 6864 2.5V/3.3V -4 Halogen-Free caBGA 256 IND LCMXO2-7000HC-5BG256I 6864 2.5V/3.3V -5 Halogen-Free caBGA 256 IND LCMXO2-7000HC-6BG256I 6864 2.5V/3.3V -6 Halogen-Free caBGA 256 IND LCMXO2-7000HC-4FTG256I 6864 2.5V/3.3V -4 Halogen-Free ftBGA 256 IND LCMXO2-7000HC-5FTG256I 6864 2.5V/3.3V -5 Halogen-Free ftBGA 256 IND LCMXO2-7000HC-6FTG256I 6864 2.5V/3.3V -6 Halogen-Free ftBGA 256 IND LCMXO2-7000HC-4BG332I 6864 2.5V/3.3V -4 Halogen-Free caBGA 332 IND LCMXO2-7000HC-5BG332I 6864 2.5V/3.3V -5 Halogen-Free caBGA 332 IND LCMXO2-7000HC-6BG332I 6864 2.5V/3.3V -6 Halogen-Free caBGA 332 IND LCMXO2-7000HC-4FG484I 6864 2.5V/3.3V -4 Halogen-Free fpBGA 484 IND LCMXO2-7000HC-5FG484I 6864 2.5V/3.3V -5 Halogen-Free fpBGA 484 IND LCMXO2-7000HC-6FG484I 6864 2.5V/3.3V -6 Halogen-Free fpBGA 484 IND5-16 Ordering Information MachXO2 Family Data Sheet High Performance Industrial Grade Devices Without Voltage Regulator, Halogen Free (RoHS) Packaging Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-1200HC-4TG100IR11 1280 2.5V/3.3V -4 Halogen-Free TQFP 100 IND LCMXO2-1200HC-5TG100IR11 1280 2.5V/3.3V -5 Halogen-Free TQFP 100 IND LCMXO2-1200HC-6TG100IR11 1280 2.5V/3.3V -6 Halogen-Free TQFP 100 IND LCMXO2-1200HC-4MG132IR11 1280 2.5V/3.3V -4 Halogen-Free csBGA 132 IND LCMXO2-1200HC-5MG132IR11 1280 2.5V/3.3V -5 Halogen-Free csBGA 132 IND LCMXO2-1200HC-6MG132IR11 1280 2.5V/3.3V -6 Halogen-Free csBGA 132 IND LCMXO2-1200HC-4TG144IR11 1280 2.5V/3.3V -4 Halogen-Free TQFP 144 IND LCMXO2-1200HC-5TG144IR11 1280 2.5V/3.3V -5 Halogen-Free TQFP 144 IND LCMXO2-1200HC-6TG144IR11 1280 2.5V/3.3V -6 Halogen-Free TQFP 144 IND 1. Specifications for the “LCMXO2-1200HC-speed package IR1” are the same as the “LCMXO2-1200ZE-speed package I” devices respectively, except as specified in the R1 Device Specifications section on page 5-18 of this data sheet. Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000HE-4TG100I 2112 1.2V -4 Halogen-Free TQFP 100 IND LCMXO2-2000HE-5TG100I 2112 1.2V -5 Halogen-Free TQFP 100 IND LCMXO2-2000HE-6TG100I 2112 1.2V -6 Halogen-Free TQFP 100 IND LCMXO2-2000HE-4MG132I 2112 1.2V -4 Halogen-Free csBGA 132 IND LCMXO2-2000HE-5MG132I 2112 1.2V -5 Halogen-Free csBGA 132 IND LCMXO2-2000HE-6MG132I 2112 1.2V -6 Halogen-Free csBGA 132 IND LCMXO2-2000HE-4TG144I 2112 1.2V -4 Halogen-Free TQFP 144 IND LCMXO2-2000HE-5TG144I 2112 1.2V -5 Halogen-Free TQFP 144 IND LCMXO2-2000HE-6TG144I 2112 1.2V -6 Halogen-Free TQFP 144 IND LCMXO2-2000HE-4BG256I 2112 1.2V -4 Halogen-Free caBGA 256 IND LCMXO2-2000HE-5BG256I 2112 1.2V -5 Halogen-Free caBGA 256 IND LCMXO2-2000HE-6BG256I 2112 1.2V -6 Halogen-Free caBGA 256 IND LCMXO2-2000HE-4FTG256I 2112 1.2V -4 Halogen-Free ftBGA 256 IND LCMXO2-2000HE-5FTG256I 2112 1.2V -5 Halogen-Free ftBGA 256 IND LCMXO2-2000HE-6FTG256I 2112 1.2V -6 Halogen-Free ftBGA 256 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-2000UHE-4FG484I 2112 1.2V -4 Halogen-Free fpBGA 484 IND LCMXO2-2000UHE-5FG484I 2112 1.2V -5 Halogen-Free fpBGA 484 IND LCMXO2-2000UHE-6FG484I 2112 1.2V -6 Halogen-Free fpBGA 484 IND5-17 Ordering Information MachXO2 Family Data Sheet Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-4000HE-4MG132I 4320 1.2V -4 Halogen-Free csBGA 132 IND LCMXO2-4000HE-5MG132I 4320 1.2V -5 Halogen-Free csBGA 132 IND LCMXO2-4000HE-6MG132I 4320 1.2V -6 Halogen-Free csBGA 132 IND LCMXO2-4000HE-4TG144I 4320 1.2V -4 Halogen-Free TQFP 144 IND LCMXO2-4000HE-5TG144I 4320 1.2V -5 Halogen-Free TQFP 144 IND LCMXO2-4000HE-6TG144I 4320 1.2V -6 Halogen-Free TQFP 144 IND LCMXO2-4000HE-4BG256I 4320 1.2V -4 Halogen-Free caBGA 256 IND LCMXO2-4000HE-5BG256I 4320 1.2V -5 Halogen-Free caBGA 256 IND LCMXO2-4000HE-6BG256I 4320 1.2V -6 Halogen-Free caBGA 256 IND LCMXO2-4000HE-4FTG256I 4320 1.2V -4 Halogen-Free ftBGA 256 IND LCMXO2-4000HE-5FTG256I 4320 1.2V -5 Halogen-Free ftBGA 256 IND LCMXO2-4000HE-6FTG256I 4320 1.2V -6 Halogen-Free ftBGA 256 IND LCMXO2-4000HE-4BG332I 4320 1.2V -4 Halogen-Free caBGA 332 IND LCMXO2-4000HE-5BG332I 4320 1.2V -5 Halogen-Free caBGA 332 IND LCMXO2-4000HE-6BG332I 4320 1.2V -6 Halogen-Free caBGA 332 IND LCMXO2-4000HE-4FG484I 4320 1.2V -4 Halogen-Free fpBGA 484 IND LCMXO2-4000HE-5FG484I 4320 1.2V -5 Halogen-Free fpBGA 484 IND LCMXO2-4000HE-6FG484I 4320 1.2V -6 Halogen-Free fpBGA 484 IND Part Number LUTs Supply Voltage Grade Package Leads Temp. LCMXO2-7000HE-4TG144I 6864 1.2V -4 Halogen-Free TQFP 144 IND LCMXO2-7000HE-5TG144I 6864 1.2V -5 Halogen-Free TQFP 144 IND LCMXO2-7000HE-6TG144I 6864 1.2V -6 Halogen-Free TQFP 144 IND LCMXO2-7000HE-4BG256I 6864 1.2V -4 Halogen-Free caBGA 256 IND LCMXO2-7000HE-5BG256I 6864 1.2V -5 Halogen-Free caBGA 256 IND LCMXO2-7000HE-6BG256I 6864 1.2V -6 Halogen-Free caBGA 256 IND LCMXO2-7000HE-4FTG256I 6864 1.2V -4 Halogen-Free ftBGA 256 IND LCMXO2-7000HE-5FTG256I 6864 1.2V -5 Halogen-Free ftBGA 256 IND LCMXO2-7000HE-6FTG256I 6864 1.2V -6 Halogen-Free ftBGA 256 IND LCMXO2-7000HE-4BG332I 6864 1.2V -4 Halogen-Free caBGA 332 IND LCMXO2-7000HE-5BG332I 6864 1.2V -5 Halogen-Free caBGA 332 IND LCMXO2-7000HE-6BG332I 6864 1.2V -6 Halogen-Free caBGA 332 IND LCMXO2-7000HE-4FG484I 6864 1.2V -4 Halogen-Free fpBGA 484 IND LCMXO2-7000HE-5FG484I 6864 1.2V -5 Halogen-Free fpBGA 484 IND LCMXO2-7000HE-6FG484I 6864 1.2V -6 Halogen-Free fpBGA 484 IND5-18 Ordering Information MachXO2 Family Data Sheet R1 Device Specifications The LCMXO2-1200ZE/HC “R1” devices have the same specifications as their Standard (non-R1) counterparts except as listed below. For more details on the R1 to Standard migration refer to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard Non-R1) Devices. • The User Flash Memory (UFM) cannot be programmed through the internal WISHBONE interface. It can still be programmed through the JTAG/SPI/I2 C ports. • The on-chip differential input termination resistor value is higher than intended. It is approximately 200 as opposed to the intended 100. It is recommended to use external termination resistors for differential inputs. The on-chip termination resistors can be disabled through Lattice design software. • Soft Error Detection logic may not produce the correct result when it is run for the first time after configuration. To use this feature, discard the result from the first operation. Subsequent operations will produce the correct result. • Under certain conditions, IIH exceeds data sheet specifications. The following table provides more details: • The user SPI interface does not operate correctly in some situations. During master read access and slave write access, the last byte received does not generate the RRDY interrupt. • In GDDRX2, GDDRX4 and GDDR71 modes, ECLKSYNC may have a glitch in the output under certain conditions, leading to possible loss of synchronization. • When using the hard I2 C IP core, the I2 C status registers I2C_1_SR and I2C_2_SR may not update correctly. • PLL Lock signal will glitch high when coming out of standby. This glitch lasts for about 10µsec before returning low. • Dual boot only available on HC devices, requires tying VCC and VCCIO2 to the same 3.3V or 2.5V supply. Condition Clamp Pad Rising IIH Max. Pad Falling IIH Min. Steady State Pad High IIH Steady State Pad Low IIL VPAD > VCCIO OFF 1mA -1mA 1mA 10µA VPAD = VCCIO ON 10µA -10µA 10µA 10µA VPAD = VCCIO OFF 1mA -1mA 1mA 10µA VPAD < VCCIO OFF 10µA -10µA 10µA 10µAApril 2012 Data Sheet DS1035 © 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 6-1 DS1035 Further Info_01.3 For Further Information A variety of technical notes for the MachXO2 family are available on the Lattice web site. • TN1198, Power Estimation and Management for MachXO2 Devices • TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide • TN1201, Memory Usage Guide for MachXO2 Devices • TN1202, MachXO2 sysIO Usage Guide • TN1203, Implementing High-Speed Interfaces with MachXO2 Devices • TN1204, MachXO2 Programming and Configuration Usage Guide • TN1205, Using User Flash Memory and Hardened Control Functions in MachXO2 Devices • TN1206, MachXO2 SRAM CRC Error Detection Usage Guide • TN1207, Using TraceID in MachXO2 Devices • TN1074, PCB Layout Recommendations for BGA Packages • TN1087, Minimizing System Interruption During Configuration Using TransFR Technology • AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices • AN8066, Boundary Scan Testability with Lattice sysIO Capability • MachXO2 Device Pinout Files • Thermal Management document • Lattice design tools For further information on interface standards, refer to the following web sites: • JEDEC Standards (LVTTL, LVCMOS, LVDS, DDR, DDR2, LPDDR): www.jedec.org • PCI: www.pcisig.com MachXO2 Family Data Sheet Supplemental InformationJanuary 2013 Data Sheet DS1035 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 7-1 DS1035 Revision History Date Version Section Change Summary November 2010 01.0 — Initial release. January 2011 01.1 All Included ultra-high I/O devices. DC and Switching Characteristics Recommended Operating Conditions table – Added footnote 3. DC Electrical Characteristics table – Updated data for IIL, IIH. VHYST typical values updated. Generic DDRX2 Outputs with Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for TDIA and TDIB. Generic DDRX4 Outputs with Clock and Data Aligned at Pin (GDDRX4_TX.ECLK.Aligned) Using PCLK Pin for Clock Input tables – Updated data for TDIA and TDIB. Power-On-Reset Voltage Levels table - clarified note 3. Clarified VCCIO related recommended operating conditions specifications. Added power supply ramp rate requirements. Added Power Supply Ramp Rates table. Updated Programming/Erase Specifications table. Removed references to VCCP. Pinout Information Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables. Removed references to VCCP. April 2011 01.2 — Data sheet status changed from Advance to Preliminary. Introduction Updated MachXO2 Family Selection Guide table. Architecture Updated Supported Input Standards table. Updated sysMEM Memory Primitives diagram. Added differential SSTL and HSTL IO standards. DC and Switching Characteristics Updates following parameters: POR voltage levels, DC electrical characteristics, static supply current for ZE/HE/HC devices, static power consumption contribution of different components – ZE devices, programming and erase Flash supply current. Added VREF specifications to sysIO recommended operating conditions. Updating timing information based on characterization. Added differential SSTL and HSTL IO standards. Ordering Information Added Ordering Part Numbers for R1 devices, and devices in WLCSP packages. Added R1 device specifications. May 2011 01.3 Multiple Replaced “SED” with “SRAM CRC Error Detection” throughout the document. DC and Switching Characteristics Added footnote 1 to Program Erase Specifications table. Pinout Information Updated Pin Information Summary tables. Signal name SO/SISPISO changed to SO/SPISO in the Signal Descriptions table. MachXO2 Family Data Sheet Revision History7-2 Revision History MachXO2 Family Data Sheet August 2011 01.4 Architecture Updated information in Clock/Control Distribution Network and sysCLOCK Phase Locked Loops (PLLs). DC and Switching Characteristics Updated IIL and IIH conditions in the DC Electrical Characteristics table. Pinout Information Included number of 7:1 and 8:1 gearboxes (input and output) in the pin information summary tables. Updated Pin Information Summary table: Dual Function I/O, DQS Groups Bank 1, Total General Purpose Single-Ended I/O, Differential I/O Per Bank, Total Count of Bonded Pins, Gearboxes. Added column of data for MachXO2-2000 49 WLCSP. Ordering Information Updated R1 Device Specifications text section with information on migration from MachXO2-1200-R1 to Standard (non-R1) devices. Corrected Supply Voltage typo for part numbers: LCMX02-2000UHE- 4FG484I, LCMX02-2000UHE-5FG484I, LCMX02-2000UHE-6FG484I. Added footnote for WLCSP package parts. Supplemental Information Removed reference to Stand-alone Power Calculator for MachXO2 Devices. Added reference to AN8086, Designing for Migration from MachXO2-1200-R1 to Standard (non-R1) Devices. August 2011 01.5 DC and Switching Characteristics Updated ESD information. Ordering Information Updated footnote for ordering WLCSP devices. February 2012 01.6 — Data sheet status changed from preliminary to final. Introduction MachXO2 Family Selection Guide table – Removed references to 49-ball WLCSP. DC and Switching Characteristics Updated Flash Download Time table. Modified Storage Temperature in the Absolute Maximum Ratings section. Updated IDK max in Hot Socket Specifications table. Modified Static Supply Current tables for ZE and HC/HE devices. Updated Power Supply Ramp Rates table. Updated Programming and Erase Supply Current tables. Updated data in the External Switching Characteristics table. Corrected Absolute Maximum Ratings for Dedicated Input Voltage Applied for LCMXO2 HC. DC Electrical Characteristics table – Minor corrections to conditions for I IL, IIH. Pinout Information Removed references to 49-ball WLCSP. Signal Descriptions table – Updated description for GND, VCC, and VCCIOx. Updated Pin Information Summary table – Number of VCCIOs, GNDs, VCCs, and Total Count of Bonded Pins for MachXO2-256, 640, and 640U and Dual Function I/O for MachXO2-4000 332caBGA. Ordering Information Removed references to 49-ball WLCSP February 2012 01.7 All Updated document with new corporate logo. March 2012 01.8 Introduction Added 32 QFN packaging information to Features bullets and MachXO2 Family Selection Guide table. DC and Switching Characteristics Changed ‘STANDBY’ to ‘USERSTDBY’ in Standby Mode timing diagram. Pinout Information Removed footnote from Pin Information Summary tables. Date Version Section Change Summary7-3 Revision History MachXO2 Family Data Sheet March 2012 (cont.) 01.8 (cont.) Pinout Information (cont.) Added 32 QFN package to Pin Information Summary table. Ordering Information Updated Part Number Description and Ordering Information tables for 32 QFN package. Updated topside mark diagram in the Ordering Information section. April 2012 01.9 Architecture Removed references to TN1200. Ordering Information Updated the Device Status portion of the MachXO2 Part Number Description to include the 50 parts per reel for the WLCSP package. Added new part number and footnote 2 for LCMXO2-1200ZE- 1UWG25ITR50. Updated footnote 1 for LCMXO2-1200ZE-1UWG25ITR. Supplemental Information Removed references to TN1200. January 2013 02.0 Introduction Updated the total number IOs to include JTAGENB. Architecture Supported Output Standards table – Added 3.3 VCCIO (Typ.) to LVDS row. Changed SRAM CRC Error Detection to Soft Error Detection. DC and Switching Characteristics Power Supply Ramp Rates table – Updated Units column for tRAMP symbol. Added new Maximum sysIO Buffer Performance table. sysCLOCK PLL Timing table – Updated Min. column values for fIN, fOUT, f OUT2 and fPFD parameters. Added tSPO parameter. Updated footnote 6. MachXO2 Oscillator Output Frequency table – Updated symbol name for tSTABLEOSC. DC Electrical Characteristics table – Updated conditions for IIL, IIH symbols. Corrected parameters tDQVBS and tDQVAS Corrected MachXO2 ZE parameters tDVADQ and tDVEDQ Pinout Information Included the MachXO2-4000HE 184 csBGA package. Ordering Information Updated part number. Date Version Section Change Summary Page 1 Lattice Semiconductor Home Page: http://www.latticesemi.com Applications & Literature Hotline: 1-800-LATTICE Copyright 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L(stylized) Lattice Semiconductor Corporation and Lattice (design) are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies. PCN# Issue Date Description 05A-12 February 27, 2012 Initial release 05B-12 February 25, 2013 Removing the Shipping Box/Label Change (2b) The return address on all boxes will now be Lattice Singapore Pte. Ltd. February 25, 2013 Subject: PCN# 05B-12 Notification of Change in Lattice Logo affecting Device Topside Mark and Shipping Box/Label Design Dear Lattice Customer, Lattice is providing this notification of our intent to change the Lattice logo. The logo change is part of a rebranding effort at Lattice and will result in changes to topside marking on most devices as well as changes to all shipping boxes/labels. The conversion to the new device topside mark, shipping boxes/labels will be a gradual transition until existing inventories have been exhausted. Shown below are images of current and new Lattice logos. A description of each of the changes follows: 1. Device Topside Marking: The device topside marking on most Lattice products will now carry the new Lattice logo in one of the formats listed below depending on package size constraints. A list of all current logo formats and corresponding new logo formats can be found in Exhibit “A”. Custom device topside marks which utilize the current Lattice logo will also transition to the new logo. A comparison of device topside marks using the current and new logos in the full and short formats are shown below. Full Form Logo Device Topside Mark Example LCMXO2-7000ZE 1FG484I DATECODE LCMXO2-7000ZE 1FG484I DATECODE Current Logo on Device Topside Mark New Logo on Device Topside Mark PCN#05B-12 issued on February 25, 2013 will supersede PCN#05A-12 issued on February 27, 2012. Page 2 Lattice Semiconductor Home Page: http://www.latticesemi.com Applications & Literature Hotline: 1-800-LATTICE Copyright 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L(stylized) Lattice Semiconductor Corporation and Lattice (design) are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies. Short Form Logo Device Topside Mark Eaxmple 2. Shipping Box/Label Changes: a. The color of the shipping boxes will change from white to brown and carry the new logo b. A patent statement will be added c. Elimination of phrases such as “Silicon Forest”, “ISP Products” and “LSC Products” d. All standard Lattice labels will incorporate the new logo Physical dimensions and properties of the boxes are unchanged. Shown below are the current and new logos in the full and short forms as they would appear on shipping boxes/labels. Logo Format Current Logo New Logo Full Form Short Form TIMING This change is effective immediately. As mentioned earlier, specific conversions will be a function of existing inventories. RESPONSE No response is required. Lattice PCNs are available on the Lattice website. Please sign up to receive e-mail PCN alerts by registering here. If you already have a Lattice web account and wish to receive PCN alerts, you can do so by logging into your account and making edits to your subscription options. New Logo on Device Topside Mark Current Logo on Device Topside Mark LC4032ZE 5MN-7I DATECODE LC4032ZE 5MN-7I DATECODEPage 3 Lattice Semiconductor Home Page: http://www.latticesemi.com Applications & Literature Hotline: 1-800-LATTICE Copyright 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L(stylized) Lattice Semiconductor Corporation and Lattice (design) are either registered trademarks or trademarks of Lattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies. CONTACT If you have any questions or require additional information, please contact pcn@latticesemi.com. Sincerely, Lattice Semiconductor PCN Administration Page 4 EXHIBIT “A” – CURRENT AND NEW LOGO FORMATS Current Logo Format New Logo FormatPage 5 Current Logo Format New Logo Format No change No change 5555 Northeast Moore Court • Hillsboro, Oregon 97124 • Phone (503) 268-8000 • FAX (503) 268-8347 Internet: http:///www.latticesemi.com Rev. Q March 7, 2013 Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) REACH is a European Community Regulation on chemicals and their safe use (EC 1907/2006). It deals with the Registration, Evaluation, Authorisation and Restriction of CHemical substances. The law entered into force on 1 June 2007. The aim of REACH is to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. More information may be found at http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm. Lattice is a supplier of “articles” as defined in REACH. The “substances” contained in these articles are not intentionally released, nor do the articles contain any of the substances on the updated SVHC Candidate List of 138 substances published on December 19, 2012: # Substance Name CAS # SVHC Published Date 1 4,4'- Diaminodiphenylmethane (MDA) 101-77-9 10/28/2008 2 5-tert-butyl-2,4,6-trinitro-m-xylene (musk xylene) 81-15-2 10/28/2008 3 Alkanes, C10-13, chloro (Short Chain Chlorinated Paraffins) 85535-84-8 10/28/2008 4 Anthracene 120-12-7 10/28/2008 5 Benzyl butyl phthalate (BBP) 85-68-7 10/28/2008 6 Bis (2-ethylhexyl)phthalate (DEHP) 117-81-7 10/28/2008 7 Bis(tributyltin)oxide (TBTO) 56-35-9 10/28/2008 8 Cobalt dichloride 7646-79-9 10/28/2008 6/20/2011 9 Diarsenic pentaoxide 1303-28-2 10/28/2008 10 Diarsenic trioxide 1327-53-3 10/28/2008 11 Dibutyl phthalate (DBP) 84-74-2 10/28/2008 12 Hexabromocyclododecane (HBCDD) and all major diastereoisomers identified: 25637-99-4 10/28/2008 Alpha-hexabromocyclododecane 3194-55-6 Beta-hexabromocyclododecane (134237-50-6) Gamma-hexabromocyclododecane (134237-51-7) (134237-52-8) 13 Lead hydrogen arsenate 7784-40-9 10/28/2008 14 Sodium dichromate 7789-12-0 10/28/2008 10588-01-9 15 Triethyl arsenate 15606-95-8 10/28/2008 16 2,4-Dinitrotoluene 121-14-2 1/13/20105555 Northeast Moore Court • Hillsboro, Oregon 97124 • Phone (503) 268-8000 • FAX (503) 268-8347 Internet: http:///www.latticesemi.com Rev. Q 17 Anthracene oil 90640-80-5 1/13/2010 18 Anthracene oil, anthracene paste 90640-81-6 1/13/2010 19 Anthracene oil, anthracene paste, anthracene fraction 91995-15-2 1/13/2010 20 Anthracene oil, anthracene paste,distn. lights 91995-17-4 1/13/2010 21 Anthracene oil, anthracene-low 90640-82-7 1/13/2010 22 Diisobutyl phthalate 84-69-5 1/13/2010 23 Lead chromate 7758-97-6 1/13/2010 24 Lead chromate molybdate sulphate red (C.I. Pigment Red 104) 12656-85-8 1/13/2010 25 Lead sulfochromate yellow (C.I. Pigment Yellow 34) 1344-37-2 1/13/2010 26 Pitch, coal tar, high temp. 65996-93-2 1/13/2010 27 Tris(2-chloroethyl)phosphate 115-96-8 1/13/2010 28 Acrylamide 79-06-1 3/30/2010 29 Ammonium dichromate 7789-09-5 6/18/2010 30 Boric acid 10043-35-3 6/18/2010 11113-50-1 31 Disodium tetraborate, anhydrous 1303-96-4 1330-43-4 6/18/2010 12179-04-3 32 Potassium chromate 7789-00-6 6/18/2010 33 Potassium dichromate 7778-50-9 6/18/2010 34 Sodium chromate 7775-11-3 6/18/2010 35 Tetraboron disodium heptaoxide, hydrate 12267-73-1 6/18/2010 36 Trichloroethylene 79-01-6 6/18/2010 37 2-Ethoxyethanol 110-80-5 12/15/2010 38 2-Methoxyethanol 109-86-4 12/15/2010 39 Chromic acid, 7738-94-5 Oligomers of chromic acid and dichromic acid, - 12/15/2010 Dichromic acid 13530-68-2 40 Chromium trioxide 1333-82-0 12/15/2010 41 Cobalt(II) carbonate 513-79-1 12/15/2010 42 Cobalt(II) diacetate 71-48-7 12/15/2010 43 Cobalt(II) dinitrate 10141-05-6 12/15/2010 44 Cobalt(II) sulphate 10124-43-3 12/15/2010 45 1,2,3-Trichloropropane 96-18-4 6/20/2011 46 1,2-Benzenedicarboxylic acid, di-C6-8-branched alkyl esters, C7-rich 71888-89-6 6/20/2011 47 1,2-Benzenedicarboxylic acid, di-C7-11- branched and linear alkyl esters 68515-42-4 6/20/20115555 Northeast Moore Court • Hillsboro, Oregon 97124 • Phone (503) 268-8000 • FAX (503) 268-8347 Internet: http:///www.latticesemi.com Rev. Q 48 1-Methyl-2-pyrrolidone 872-50-4 6/20/2011 49 2-Ethoxyethyl acetate 111-15-9 6/20/2011 50 Hydrazine 302-01-2 6/20/2011 7803-57-8 51 Strontium chromate 7789-06-2 6/20/2011 52 Dichromium tris(chromate) 24613-89-6 12/19/2011 53 Potassium hydroxyoctaoxodizincatedi-chromate 11103-86-9 12/19/2011 54 Pentazinc chromate octahydroxide 49663-84-5 12/19/2011 55 Aluminosilicate Refractory Ceramic Fibres (RCF) - 12/19/2011 56 Zirconia Aluminosilicate Refractory Ceramic Fibres (Zr-RCF) - 12/19/2011 57 Formaldehyde, oligomeric reaction products with aniline (technical MDA) 25214-70-4 12/19/2011 58 Bis(2-methoxyethyl) phthalate 117-82-8 12/19/2011 59 2-Methoxyaniline; o-Anisidine 90-04-0 12/19/2011 60 4-(1,1,3,3-tetramethyl butyl)phenol, (4-tertOctylphenol) 140-66-9 12/19/2011 61 1,2-Dichloroethane 107-06-2 12/19/2011 62 Bis(2-methoxyethyl) ether 111-96-6 12/19/2011 63 Arsenic acid 7778-39-4 12/19/2011 64 Calcium arsenate 7778-44-1 12/19/2011 65 Trilead diarsenate 3687-31-8 12/19/2011 66 N,N-dimethylacetamide (DMAC) 127-19-5 12/19/2011 67 2,2'-dichloro-4,4'-methylenedianiline (MOCA) 101-14-4 12/19/2011 68 Phenolphthalein 77-09-8 12/19/2011 69 Lead azide, Lead diazide 13424-46-9 12/19/2011 70 Lead styphnate 15245-44-0 12/19/2011 71 Lead dipicrate 6477-64-1 12/19/2011 72 α,α-Bis[4-(dimethylamino)phenyl]-4 (phenylamino)naphthalene-1-methanol 6786-83-0 6/18/2012 (C.I. Solvent Blue 4) 73 N,N,N',N'-tetramethyl-4,4'-methylenedianiline (Michler's base) 101-61-1 6/18/2012 74 β-TGIC (1,3,5-tris[(2S and 2R)-2,3- epoxypropyl]-1,3,5-triazine-2,4,6-(1H,3H,5H)- trione) 59653-74-6 6/18/2012 75 Diboron trioxide 1303-86-2 6/18/2012 76 1,2-bis(2-methoxyethoxy)ethane (TEGDME; triglyme) 112-49-2 6/18/2012 77 4,4'-bis(dimethylamino)-4''-(methylamino)trityl alcohol 561-41-1 6/18/20125555 Northeast Moore Court • Hillsboro, Oregon 97124 • Phone (503) 268-8000 • FAX (503) 268-8347 Internet: http:///www.latticesemi.com Rev. Q 78 Lead(II) bis(methanesulfonate) 17570-76-2 6/18/2012 79 Formamide 75-12-7 6/18/2012 80 [4-[4,4'-bis(dimethylamino) benzhydrylidene]cyclohexa-2,5-dien-1- ylidene]dimethylammonium chloride 548-62-9 6/18/2012 81 1,2-dimethoxyethane; ethylene glycol dimethyl ether (EGDME) 110-71-4 6/18/2012 82 [4-[[4-anilino-1-naphthyl][4- (dimethylamino)phenyl]methylene]cyclohexa- 2,5-dien-1-ylidene] dimethylammonium chloride 2580-56-5 6/18/2012 83 TGIC (1,3,5-tris(oxiranylmethyl)-1,3,5-triazine- 2,4,6(1H,3H,5H)-trione) 2451-62-9 6/18/2012 84 4,4'-bis(dimethylamino)benzophenone 90-94-8 6/18/2012 (Michler's ketone) 85 Bis(pentabromophenyl) ether (decabromodiphenyl ether; DecaBDE) 1163-19-5 12/19/2012 86 Pentacosafluorotridecanoic acid 72629-94-8 12/19/2012 87 Tricosafluorododecanoic acid 307-55-1 12/19/2012 88 Henicosafluoroundecanoic acid 2058-94-8 12/19/2012 89 Heptacosafluorotetradecanoic acid 376-06-7 12/19/2012 90 Diazene-1,2-dicarboxamide (C,C'- azodi(formamide)) 123-77-3 12/19/2012 91 Cyclohexane-1,2-dicarboxylic anhydride [1] 85-42-7, 13149-00-3, 14166-21-3 12/19/2012 cis-cyclohexane-1,2-dicarboxylic anhydride [2] trans-cyclohexane-1,2-dicarboxylic anhydride [3] [The individual cis- [2] and trans- [3] isomer substances and all possible combinations of the cis- and trans-isomers [1] are covered by this entry]. 92 Hexahydromethylphthalic anhydride [1], 25550-51-0, 19438-60-9, 48122-14-1, 57110-29-9 12/19/2012 Hexahydro-4-methylphthalic anhydride [2], Hexahydro-1-methylphthalic anhydride [3], Hexahydro-3-methylphthalic anhydride [4] [The individual isomers [2], [3] and [4] (including their cis- and trans- stereo isomeric forms) and all possible combinations of the isomers [1] are covered by this entry] 93 4-Nonylphenol, branched and linear - 12/19/2012 [substances with a linear and/or branched alkyl chain with a carbon number of 9 covalently bound in position 4 to phenol, covering also UVCB- and well-defined substances which include any of the individual isomers or a combination thereof] 5555 Northeast Moore Court • Hillsboro, Oregon 97124 • Phone (503) 268-8000 • FAX (503) 268-8347 Internet: http:///www.latticesemi.com Rev. Q 94 4-(1,1,3,3-tetramethylbutyl)phenol, ethoxylated [covering well-defined substances and UVCB - 12/19/2012 substances, polymers and homologues] 95 Methoxyacetic acid 625-45-6 12/19/2012 96 N,N-dimethylformamide 68-12-2 12/19/2012 97 Dibutyltin dichloride (DBTC) 683-18-1 12/19/2012 98 Lead monoxide (Lead oxide) 1317-36-8 12/19/2012 99 Orange lead (Lead tetroxide) 1314-41-6 12/19/2012 100 Lead bis(tetrafluoroborate) 13814-96-5 12/19/2012 101 Trilead bis(carbonate)dihydroxide 1319-46-6 12/19/2012 102 Lead titanium trioxide 12060-00-3 12/19/2012 103 Lead titanium zirconium oxide 12626-81-2 12/19/2012 104 Silicic acid, lead salt 11120-22-2 12/19/2012 105 Silicic acid (H2Si2O5), barium salt (1:1), leaddoped 68784-75-8 12/19/2012 [with lead (Pb) content above the applicable generic concentration limit for 'toxicity for reproduction' Repr. 1A (CLP) or category 1 (DSD); the substance is a member of the group entry of lead compounds, with index number 082-001-00-6 in Regulation (EC) No 1272/2008] 106 1-bromopropane (n-propyl bromide) 106-94-5 12/19/2012 107 Methyloxirane (Propylene oxide) 75-56-9 12/19/2012 108 1,2-Benzenedicarboxylic acid, dipentylester, branched and linear 84777-06-0 12/19/2012 109 Diisopentylphthalate (DIPP) 605-50-5 12/19/2012 110 N-pentyl-isopentylphthalate 776297-69-9 12/19/2012 111 1,2-diethoxyethane 629-14-1 12/19/2012 112 Acetic acid, lead salt, basic 51404-69-4 12/19/2012 113 Lead oxide sulfate 12036-76-9 12/19/2012 114 [Phthalato(2-)]dioxotrilead 69011-06-9 12/19/2012 115 Dioxobis(stearato)trilead 12578-12-0 12/19/2012 116 Fatty acids, C16-18, lead salts 91031-62-8 12/19/2012 117 Lead cynamidate 20837-86-9 12/19/2012 118 Lead dinitrate 10099-74-8 12/19/2012 119 Pentalead tetraoxide sulphate 12065-90-6 12/19/2012 120 Pyrochlore, antimony lead yellow 8012-00-8 12/19/2012 121 Sulfurous acid, lead salt, dibasic 62229-08-7 12/19/2012 122 Tetraethyllead 78-00-2 12/19/2012 123 Tetralead trioxide sulphate 12202-17-4 12/19/2012 124 Trilead dioxide phosphonate 12141-20-7 12/19/2012 125 Furan 110-00-9 12/19/20125555 Northeast Moore Court • Hillsboro, Oregon 97124 • Phone (503) 268-8000 • FAX (503) 268-8347 Internet: http:///www.latticesemi.com Rev. Q 126 Diethyl sulphate 64-67-5 12/19/2012 127 Dimethyl sulphate 77-78-1 12/19/2012 128 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3- oxazolidine 143860-04-2 12/19/2012 129 Dinoseb (6-sec-butyl-2,4-dinitrophenol) 88-85-7 12/19/2012 130 4,4'-methylenedi-o-toluidine 838-88-0 12/19/2012 131 4,4'-oxydianiline and its salts 101-80-4 12/19/2012 132 4-aminoazobenzene 60-09-3 12/19/2012 133 4-methyl-m-phenylenediamine (toluene-2,4- diamine) 95-80-7 12/19/2012 134 6-methoxy-m-toluidine (p-cresidine) 120-71-8 12/19/2012 135 Biphenyl-4-ylamine 92-67-1 12/19/2012 136 o-aminoazotoluene [(4-o-tolylazo-o-toluidine)] 97-56-3 12/19/2012 137 o-toluidine 95-53-4 12/19/2012 138 N-methylacetamide 79-16-3 12/19/2012 While our products do not currently fall within the scope of REACH’s registration requirement, we continue to monitor the EU regulation for changes that may require our attention. Lattice is fully supportive of the various industry efforts throughout the world to phase out the use of undesirable elements from electronic equipment materials and manufacturing processes. Lattice remains committed to continually reducing its impact on the world's natural environment, and we work closely with our customers and suppliers to identify and rapidly eliminate hazardous substances from our products. Be assured that your business is greatly valued by Lattice Semiconductor and that we will do everything within our power to provide you with the highest level of service and support and with the broadest portfolio of high performance Field Programmable Gate Arrays (FPGAs), Field Programmable System Chips (FPSCs), ispPAC Mixed Signal devices and high-performance ISPTM programmable logic devices (PLDs). Regards, Chris Leonhard Sr. Customer Requirements Administrator Lattice Semiconductor Corp. custreq@latticesemi.com LatticeSC Family Data Sheet Version 01.0, February 2006February 2006 Preliminary Data Sheet © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1-1 Introduction_01.0 Features ■ High Performance FPGA Fabric • 15K to 115K four input Look-up Tables (LUT4s) • 132 to 942 I/Os • 700MHz global clock; 1GHz edge clocks ■ 8 to 32 High Speed SERDES and flexiPCS™ (per Device) • Performance ranging from 622Mbps to 3.4Gbps • Excellent Rx jitter tolerance (0.8UI at 3.125Gbps) • Low Tx jitter (0.29UI at 3.125Gbps) • Built-in Pre-emphasis and equalization • Low power (typically 100mW per channel) • Embedded Physical Coding Sublayer (PCS) provides pre-engineered implementation for the following standards: – GbE, XAUI, PCI Express, SONET, Serial RapidIO, 1G Fibre Channel, 2G Fibre Channel ■ 2Gbps High Performance PURESPEED™ I/O • Supports the following performance bandwidths – Differential I/O up to 2Gbps DDR (1GHz Clock) – Single-ended memory interfaces up to 800Mbps • 144 Tap programable Input Delay (INDEL) block on every I/O dynamically aligns data to clock for robust performance – Dynamic bit Adaptive Input Logic (AIL) monitoring and control circuitry per pin that automatically ensures proper set-up and hold – Dynamic bus: uses control bus from DLL – Static per bit • Electrical standards supported: – LVCMOS 3.3/2.5/1.8/1.5/1.2, LVTTL – SSTL 3/2/18 I, II; HSTL 18/15 I, II – PCI, PCI-X – LVDS, Mini-LVDS, Bus-LVDS, MLVDS, LVPECL, RSDS, Hypertransport • Programmable On Die Termination (ODT) – Includes Thevenin Equivalent and low power VTT termination options ■ Memory Intensive FPGA • sysMEM™ embedded Block RAM – 1 to 7.8 Mbits memory – True Dual Port/Pseudo Dual Port/Single Port – Dedicated FIFO logic for all block RAM – 500MHz performance • Additional 240K to 1.8Mbits distributed RAM ■ sysCLOCK™ Network • Eight analog PLLs per device – Frequency range from 15MHz to 1GHz – Spread spectrum support • 12 DLLs per device with direct control of I/O delay – Frequency range from 100MHz to 700MHz • Extensive clocking network – 700MHz primary and 325 MHz secondary clocks – 1GHz I/O-connected edge clocks • Precision Clock Divider – Phase matched x2 and x4 division of incoming clocks • Dynamic Clock Select (DCS) – Glitch free clock MUX ■ Masked Array for Cost Optimization (MACO™) Blocks • On-chip structured ASIC Blocks provide preengineered IP for low power, low cost system level integration ■ High Performance System Bus • Ties FPGA elements together with a standard bus framework – Connects to peripheral user interfaces for run-time dynamic configuration ■ System Level Support • IEEE standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer • IEEE Standard 1532 in-system configuration • 1.2V and 1.0V operation • Onboard oscillator for initialization and general use • Embedded PowerPC microprocessor interface • Low cost wire-bond and high pin count flip-chip packaging • Low cost SPI Flash RAM configuration LatticeSC Family Data Sheet IntroductionIntroduction Lattice Semiconductor LatticeSC Family Data Sheet 1-2 Table 1-1. LatticeSC Family Selection Guide The LatticeSCM devices add MACO-enabled IP functionality to the base LatticeSC devices. Table 1-2 shows the type and number of each pre-engineered IP core. Table 1-2. LatticeSCM Family – Current Introduction The LatticeSC family of FPGA combines a high-performance FPGA fabric, high-speed SERDES, high-performance I/Os and large embedded RAM in a single industry leading architecture. This FPGA family is fabricated in a state of the art technology to provide one of the highest performing FPGAs in the industry. This family of devices includes features to meet the needs of today’s communication network systems. These features include SERDES with embedded advance PCS (Physical Coding sub-layer), up to 7.8 Mbits of sysMEM embedded block RAM, dedicated logic to support system level standards such as RAPIDIO, HyperTransport, SPI4.2, SFI-4, UTOPIA, XGMII and CSIX. The devices in this family feature clock multiply, divide and phase shift PLLs, numerous DLLs and dynamic glitch free clock MUXs which are required in today’s high end system designs. High speed, high bandwidth I/O make this family ideal for high throughput systems. The ispLEVER® design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeSC family of FPGA devices. Synthesis library support for LatticeSC is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeSC device. The ispLEVER tool extracts the timing from the routing and backannotates it into the design for timing verification. Device SC15 SC25 SC40 SC80 SC115 LUT4s (K) 15.2 25.4 40.4 80.1 115.2 sysMEM Blocks (18Kb) 56 104 216 308 424 Embedded Memory (Mbits) 1.03 1.92 3.98 5.68 7.8 Max. Distributed Memory (Mbits) 0.24 0.41 0.65 1.28 1.84 Number of 3.4G SERDES (Max.) 8 16 16 32 32 DLLs 12 12 12 12 12 Analog PLLs 88888 MACO Blocks 4 6 10 10 12 Package I/O/SERDES Combinations (1mm ball pitch) 256-ball fpBGA (17 x 17mm) 139/4 900-ball fpBGA (31 x 31mm) 300/8 378/8 1020-ball ffBGA (33 x 33mm) 484/16 562/16 1152-ball fcBGA (35 x 35mm) 660/16 660/16 1704-ball fcBGA (42.5 x 42.5mm) 904/32 942/32 Device SCM15 SCM25 SCM40 SCM80 SCM115 flexiMAC Blocks • 1GbE Mode • 10GbE Mode • PCI Express Mode 12224 SPI4.2 Blocks 12222 Memory Controller Blocks • DDR1 DRAM Mode • DDR2 DRAM Mode • QDR2 SRAM Mode 12222Introduction Lattice Semiconductor LatticeSC Family Data Sheet 1-3 Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE™ modules for the LatticeSC family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity. Innovative high-performance FPGA architecture, high-speed SERDES with PCS support, sysMEM embedded memory and high performance I/O are combined in the LatticeSC to provide excellent performance for today’s leading edge systems designs. Table 1-3 details the performance of several common functions implemented within the LatticeSC. Table1-3. Speed Performance for Typical Functions1 Functions Performance (MHz)2 32-bit Address Decoder 455 64-bit Address Decoder 405 32:1 Multiplexer 507 64-bit Adder (ripple) 325 32x8 Distributed Single Port (SP) RAM 748 64-bit Counter (up or down counter, non-loadable) 355 True Dual-Port 1024x18 bits 359 FIFO Port A: x36 bits, B: x9 bits 361 1. For additional information, see Typical Building BLock Function Performance table in this data sheet. 2. Advance information (-7 speed grade).February 2006 Preliminary Data Sheet © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 2-1 Architecture_01.0 Architecture Overview The LatticeSC architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR). The upper left and upper right corners of the devices contain SERDES blocks and their associated PCS blocks, as show in Figure 2-1. Top left and top right corner of the device contain blocks of SERDES. Each block of SERDES contains four channels (quad). Each channel contains a single serializer and de-serializer, synchronization and word alignment logic. The SERDES quad connects with Physical Coding Sub-layer (PCS) block that contain logic to simultaneously perform alignment, coding, de-coding and other functions. The SERDES quad block has separate supply, ground and reference voltage pins. The PICs contain logic to facilitate the conditioning of signals to and from the I/O before they leave or enter the FPGA fabric. The block provides DDR and shift register capabilities that act as a gearbox between high speed I/O and the FPGA fabric. The blocks also contain programmable Adaptive Input Logic that adjusts the delay applied to signals as they enter the device to optimize setup and hold times and ensure robust performance. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM, ROM or FIFO. These blocks have dedicated logic to simplify the implementation of FIFOs. The PFU, PIC and EBR blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. These blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. The corners contain the sysCLOCK Analog Phase Locked Loop (PLL) and Delay Locked Loop (DLL) Blocks. The PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeSC architecture provides eight analog PLLs per device and 12 DLLs. The DLLs provide a simple delay capability and can also be used to calibrate other delays within the device. Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG™ port which allows for serial or parallel device configuration. The system bus simplifies the connections of the external microprocessor to the device for tasks such as SERDES and PCS configuration or interface to the general FPGA logic. The LatticeSC devices use 1.2V as their core voltage operation with 1.0V operation also possible. LatticeSC Family Data Sheet Architecture2-2 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-1. Simplified Block Diagram (Top Level) Programmable Function Unit (PFU) sysMEM Embedded Block RAM (EBR) Structured ASIC Block (MACO) Quad SERDES Physical Coding Sublayer (PCS) Quad SERDES Programmable I/O Cell (PIC) includes PURESPEED I/O Interface sysCLOCK Analog PLLs sysCLOCK DLLs sysCLOCK Analog PLLs sysCLOCK DLLs Each PIC contains four Programmable I/Os (PIO) Three PICs per four PFUs2-3 Architecture Lattice Semiconductor LatticeSC Family Data Sheet PFU Blocks The core of the LatticeSC devices consists of PFU blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-2. PFU Diagram Slice Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to implement 5, 6, 7 and 8 Input LUTs (LUT5, LUT6, LUT7 and LUT8). There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks. There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice. Slice 0 LUT4 & CARRY LUT4 & CARRY FF/ Latch D FF/ Latch D Slice 1 LUT4 & CARRY LUT4 & CARRY Slice 2 LUT4 & CARRY LUT4 & CARRY From Routing To Routing Slice 3 LUT4 & CARRY LUT4 & CARRY FF/ Latch D FF/ Latch D FF/ Latch D FF/ Latch D FF/ Latch D FF/ Latch D2-4 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-3. Slice Diagram Table 2-1. Slice Signal Descriptions Function Type Signal Names Description Input Data signal A0, B0, C0, D0 Inputs to LUT4 Input Data signal A1, B1, C1, D1 Inputs to LUT4 Input Multi-purpose M0 Multipurpose Input Input Multi-purpose M1 Multipurpose Input Input Control signal CE Clock Enable Input Control signal LSR Local Set/Reset Input Control signal CLK System Clock Input Inter-PFU signal FCIN Fast Carry In1 Output Data signals F0, F1 LUT4 output register bypass signals Output Data signals Q0, Q1 Register Outputs Output Data signals OFX0 Output of a LUT5 MUX Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice Output Inter-PFU signal FCO For the right most PFU the fast carry chain output2 1. See Figure 2-2 for connection details. 2. Requires two PFUs. LUT4 & CARRY LUT4 & CARRY Slice A0 B0 C0 D0 FF/ Latch OFX0 F0 Q0 A1 B1 C1 D1 CI CI CO CO F CE CLK LSR FF/ Latch OFX1 F1 Q1 F D D M1 To / From Different slice / PFU To / From Different slice / PFU LUT Expansion Mux M0 OFX0 From Routing To Routing Control Signals selected and inverted per slice in routing Note: some interslice signals not shown.2-5 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Modes of Operation Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. Table 2-2 lists the modes and the capability of the Slice blocks. Table 2-2. Slice Modes Logic Mode In this mode, the LUTs in each Slice are configured as combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices in the PFU. Ripple Mode Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice: • Addition 2-bit • Subtraction 2-bit • Up counter 2-bit • Down counter 2-bit • Comparator functions of A and B inputs - A greater-than-or-equal-to B - A not-equal-to B - A less-than-or-equal-to B Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices. RAM Mode In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed. The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the Slice. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the readonly port. For more information on RAM mode, please see details of additional technical documentation at the end of this data sheet. Table 2-3. Number of Slices Required For Implementing Distributed RAM ROM Mode The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration. Logic Ripple RAM ROM PFU Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit SPR 16x2 DPR 16x2 ROM 16x1 SPR16x2 DPR16x2 Number of Slices 1 2 Note: SPR = Single Port RAM, DPR = Dual Port RAM2-6 Architecture Lattice Semiconductor LatticeSC Family Data Sheet PFU Modes of Operation Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level. Table 2-4. PFU Modes of Operation Routing There are many resources provided in the LatticeSC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments. The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU) resources. The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions. All connections are buffered to ensure high-speed operation even with long high-fanout connections. The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design. sysCLOCK Network The LatticeSC devices have three distinct clock networks for use in distributing high-performance clocks within the device, primary clocks, secondary clocks and edge clocks. In addition to these dedicated clock networks, users are free to route clocks within the device using the general purpose routing. Figure 2-4 shows the clock resources available to each slice. Figure 2-4. Slice Clock Selection Primary Clock Sources LatticeSC devices have a wide variety of primary clock sources available. Primary clocks sources consists of the following: • Primary clock input pins • Edge clock input pins • Two outputs per DLL Logic Ripple RAM ROM LUT 4x8 or MUX 2x1 x 8 2-bit Add x 4 SPR 16x2 x 4 DPR 16x2 x 2 ROM 16x1 x 8 LUT 5x4 or MUX 4x1 x 4 2-bit Sub x 4 SPR 16x4 x 2 DPR 16x4 x 1 ROM 16x2 x 4 LUT 6x2 or MUX 8x1 x 2 2-bit Counter x 4 SPR 16x8 x 1 ROM 16x4 x 2 LUT 7x1 or MUX 16x1 x 1 2-bit Comp x 4 ROM 16x8 x1 Primary Clock Secondary Clock Routing Clock to Slice GND 12 6 Note: GND is available to switch off the network.2-7 Architecture Lattice Semiconductor LatticeSC Family Data Sheet • Two outputs per PLL • Clock divider outputs • Digital Clock Select (DCS) block outputs • Three outputs per SERDES quad Figure 2-5 shows the arrangement of the primary clock sources. Figure 2-5. Clock Sources Primary Clock Routing The clock routing structure in LatticeSC devices consists of 12 Primary Clock lines per quadrant. The primary clocks are generated from 64:1 MUXs located in each quadrant. Three of the inputs to each 64:1 MUX comes from local routing, one is connected to GND and rest of the 60 inputs are from the primary clock sources. Figure 2-6 shows this clock routing. SERDES PLL DCS DCS DCS DCS DCS DCS DLL DLL DLL DLL DLL DLL DCS Primary/ Edge Clock PIOs DCS PLL PLL (3 per SERDES Channel) (3 per SERDES Channel) 4 8 24 24 Primary Clock Sources PLL PLL DLL DLL DLL DLL PLL DLL DLL PLL PLL SERDES Primary/ Edge Clock PIOs Edge Clock PIOs Clock Dividers Clock Dividers Clock Dividers Clock Dividers Clock Dividers Primary/ Edge Clock PIOs Primary/ Edge Clock PIOs Primary/ Edge Clock PIOs Edge Clock PIOs Edge Clock PIOs Primary/ Edge Clock PIOs Edge Clock PIOs Primary/ Edge Clock PIOs Edge Clock PIOs2-8 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-6. Per Quadrant Clock Selection Secondary Clocks In addition to the primary clock network and edge clocks the LatticeSC devices also contain a secondary clock network. Built of X6 style routing elements this secondary clock network is ideal for routing slower speed clock and control signals throughout the device preserving high-speed clock networks for the most timing critical signals. Edge Clocks LatticeSC devices have a number of high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. There are eight edge clocks per bank for the top and bottom of the device. The left and right sides have eight edge clocks per side for both banks located on that side. Figure 2-7 shows the arrangement of edge clocks. Edge clock resources can be driven from a variety of sources. Edge clock resources can be driven from: • Edge clock PIOs in the same bank • Primary clock PIOs in the same bank • Routing • Adjacent PLLs and DLLs • ELSR output from the clock divider 12 Primary Clock per Quadrants 12 feedlines per quadrants times 4 + 12 feedlines from upper and lower half 12 Primary Clocks 60 Primary Clock Sources GND 60 3 3 GND GND From Local Routing From Local Routing From Local Routing 60 60 3 Note: GND is available to switch off the network.2-9 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-7. Edge Clock Resources Precision Clock Divider Each set of edge clocks has four high-speed dividers associated with it. These are intended for generating a slower speed system clock from the high-speed edge clock. The block operates in a X2 or X4 mode and maintains a known phase relationship between the divided down clock and high-speed clock based on the release of its reset signal. The clock dividers can be fed from selected PIOs, PLLs and routing. The clock divider outputs serve as primary clock sources. This circuit also generates an edge local set/reset (ELSR) signal which is fed to the PIOs via the edge clock network and is used for the rest of the I/O gearing logic. Figure 2-8. Clock Divider Circuit Dynamic Clock Select (DCS) The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is SERDES SERDES Bank 1 Bank 5 Bank 4 Bank 7 Bank 6 Bank 2 Bank 3 Edge clock S/R S/R S/R S/R Divided clock Clock derived from selected PIOs, PLLs and routing LSR Register chain to synchronize LSR to clock input ELSR2-10 Architecture Lattice Semiconductor LatticeSC Family Data Sheet toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-9 illustrates the DCS Block diagram. Figure 2-9. DCS Block Diagram Figure 2-10 shows timing waveforms for one of the DCS operating modes. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet. Figure 2-10. DCS Waveforms Clock Boosting There are programmable delays available in the clock signal paths in the PFU, PIC and EBR blocks. These allow setup and clock-to-output times to be traded to meet critical timing without slowing the system clock. If this feature is enabled then the design tool automatically uses these delays to improve timing performance. sysCLOCK Phase Locked Loops (PLLs) The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider and two clock output dividers. The input divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. The Phase Select block can modify the phase of the clock signal if desired. The Spread Spectrum block supports the modulation of the PLL output frequency. This reduces the peak energy in the fundamental and its harmonics providing for lower EMI (Electro Magnetic Interference). The sysCLOCK PLL can be configured at power-up and then, if desired, reconfigured dynamically through the serial memory interface bus which connects with the on-chip system bus. For example, the user can select inputs, loop filters, divider setting, delay settings and phase shift settings. The user can also directly access the SMI bus through the routing. The PLL clock input, from pin or routing, feeds into an input divider. There are four sources of feedback signal to the feedback divider: from the clock net, directly from the voltage controlled oscillator (VCO) output, from the routing or DCS CLK0 CLK1 DCSOUT SEL CLK0 SEL DCSOUT CLK12-11 Architecture Lattice Semiconductor LatticeSC Family Data Sheet from an external pin. The signal from the input clock divider and the feedback divider are passed through the programmable delay before entering the phase frequency detector (PFD) unit. The output of this PFD is used to control the voltage controlled oscillator. There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-11 shows the sysCLOCK PLL diagram. Figure 2-11. PLL Diagram For more information on the PLL, please see details of additional technical documentation at the end of this data sheet. Digital Locked Loop (DLLs) In addition to PLLs, the LatticeSC devices have up to 12 DLLs per device. DLLs assist in the management of clocks and strobes. DLLs are well suited to applications where the clock may be stopped or transferring jitter from input to output is important, for example forward clocked interfaces. PLLs are good for applications requiring the lowest output jitter or jitter filtering. All DLL outputs are routed as primary/edge clock sources. The DLL has two independent clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from the tapped delay line. The CLKOS has optional fine phase shift and divider blocks to allow this output to be further modified, if required. The fine phase shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 degrees relative to its normal position. LOCK output signal is asserted when the DLL is locked. The ALU HOLD signal setting allows users to freeze the DLL at its current delay setting. There is a Digital Control (DCNTL) bus available from the DLL block. This Digital Control bus is available to the delay lines in the PIC blocks in the adjacent banks. The UDDCNTL signal allows the user to latch the current value on the digital control bus. Figure 2-12 shows the DLL block diagram of the DLL inputs and outputs. The output of the phase frequency detector controls an arithmetic logic unit (ALU) to add or subract one delay tap. The digital output of this ALU is used to control the delay value of the delay chain and this digital code is transmitted via the DCNTL bus. The sysCLOCK DLL can be configured at power-up, then, if desired, reconfigured dynamically through the Serial Memory Interface bus which interfaces with the on-chip Microprocessor Interface (MPI) bus. In addition, users can drive the SMI interface from routing if desired. The user can configure the DLL for many common functions such as clock injection match and single delay cell. Lattice provides primitives in its design for time reference delay (DDR memory) and clock injection delay removal. CLKI CLKFB CLKOP CLKOS VCO/ Loop Filter Phase Adjust PFD LOCK Div Div Prog Delay Prog Delay Prog Delay Div Div Optional Internal Feedback RSTN From PFD2-12 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-12. DLL Diagram PLL/DLL Cascading The LatticeSC devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable combinations are as follows: • PLL to PLL Supported • PLL to DLL Supported • DLL to DLL Supported • DLL to PLL Not supported DLLs are used to shift the clock in relation to the data for source synchronous inputs. PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL blocks allows applications to utilize the unique benefits of both DLL and PLLs. For further information on the DLL, please see details of additional technical documentation at the end of this data sheet. sysMEM Memory Block The sysMEM block can implement single port, true dual port, pseudo dual port or FIFO memories. Dedicated FIFO support logic allows the LatticeSC devices to efficiently implement FIFOs without consuming LUTs or routing resources for flag generation. Each block can be used in a variety of depths and widths as shown in Table 2-5. Memory with ranges from x1 to x18 in all modes: single port, pseudo-dual port and FIFO also providing x36. CLKI CLKFB CLKOP CLKOS UDDCNTL ALUHOLD DCNTL Delay Chain ALU Duty50 Phase Adj Duty50 PFD DCNTL Gen LOCK Phase Adj RSTN2-13 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Table 2-5. sysMEM Block Configurations Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. Single, Dual and Pseudo-Dual Port Modes In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output. A clock is required even in asynchronous read mode. The EBR memory supports three forms of write behavior for dual port operation: 1. Normal — data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. 2. Write Through — a copy of the input data appears at the output of the same port. 3. Read-Before-Write — when new data is being written, the old content of the address appears at the output. FIFO Configuration The FIFO has a write port with Data-in, WCE, WE and WCLK signals. There is a separate read port with Data-out, RCE, RE and RCLK signals. The FIFO internally generates Almost Full, Full, Almost Empty, and Empty Flags. The Full and Almost Full flags are registered with WCLK. The Empty and Almost Empty flags are registered with RCLK. The range of program values for these flags are in Table 2-6. Memory Mode Configurations Single Port 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36 True Dual Port 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 Pseudo Dual Port 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36 FIFO 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 362-14 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Table 2-6. Programmable FIFO Flag Ranges The FIFO state machine supports two types of reset signals. The first reset signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in initial reset state. The second reset signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. Programmable I/O Cells (PIC) Each PIC contains four PIOs connected to their respective PURESPEED I/O Buffer which are then connected to the PADs as shown in Figure 2-13. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to PURESPEED I/O buffer, and receives input (DI) from the buffer. The PIO contains advanced capabilities to allow the support of speeds up to 2Gbps. These include dedicated shift and DDR logic and adaptive input logic. The dedicated resources simplify the design of robust interfaces. Flag Name Programming Range Full (FF) 1 to (up to 2N -1) Almost Full (AF) 1 to Full-1 Almost Empty (AE) 1 to Full-1 Empty (EF) 0 Note: N = Address bit width.2-15 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-13. PIC Diagram The A/B PIOs on the left and the right of the device can be paired to form a differentiated driver. The A/B and C/D PIOs on all sides of the device can be paired to form differential receivers. Either A or C PIOs on all sides except the one on top also contain an adaptive input logic capability that facilitates the implementation of high-speed interPIO B PADA TO DO DI "T" PADB “C” OPOS2 ONEG2 OPOS3 ONEG3 TD INCK INDD INFF IPOS0 INEG0 IPOS1 INEG1 IPOS2 INEG2 IPOS3 INEG3 RUNAIL LOCK UPDATE *AIL only on A or C pads located on the left, right and bottom of the device. CLK CE LSR GSRN HCLKOUT GSR LCLKOUT LSRO HCLKIN LCLKIN PIO A PURESPEED I/O Buffer Control Muxes CEO LSRO ELSR ECLK IOLT0 POS Update NEG Update DI DO Tristate Register Block Input Register Block (including delay and AIL elements*) Update Block Output Register Block PIO C PADC “T” PIO D PADD “C” OPOS0 ONEG0 OPOS1 ONEG12-16 Architecture Lattice Semiconductor LatticeSC Family Data Sheet faces in the LatticeSC devices. Figure 2-14 shows how differential receivers and drivers are arranged between PIOs. Figure 2-14. Differential Drivers and Receivers PIO The PIO contains five blocks: an input register block, output register block, tristate register block, update block, and a control logic block. These blocks contain registers for both single data rate (SDR), double data rate (DDR), and shift register operation along with the necessary clock and selection logic. Input Register Block The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-16 show the diagram of the input register block. The signal from the PURESPEED I/O buffer (DI) enters the input register block and can be used for three purposes, as a source for the combinatorial (INDD) and clock outputs (INCK), the input into the SDR register/latch block and the input to the delay block. The output of the delay block can be used as combinatorial (INDD) and clock (INCK) outputs, an input to the DDR/Shift Register Block or an input into the SDR register block. Input SDR Register/Latch Block The SDR register/latch block has a latch and a register/latch that can be used in a variety of combinations to provide a registered or latched output (INFF). The latch operates off high-speed input clocks and latches data on the positive going edge. The register/latch operates off the low-speed input clock and registers/latches data on the positive going edge. Both the latch and the register/latch have a clock enable input that is driven by the input clock enable. In addition both have a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR (LSR has precedence over CE) and Global Set Reset GSR enable or disable. The register and latch LSR inputs are driven from LSRI, which is generated from the PIO control MUX. The GSR inputs are driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis. Input Delay Block The delay block uses 144 tapped delay lines to obtain coarse and fine delay resolution. These delays can be adjusted during configuration or automatically via DLL or AIL blocks. The Adaptive Input Logic (AIL) uses this delay block to adjust automatically the delay in the data path to ensure that it has sufficient setup and hold time. The delay line in this block matches the delay line that is used in the 12 on-chip DLLs. The delay line can be set via configuration bits or driven from a calibration bus that allows the setting to be controlled either from one of the onchip DLLs or user logic. Controlling the delay from one of the on-chip DLLs allow the delay to be calibrated to the DLL clock and hence compensated for the variations in process, voltage and temperature. PIO D PIO C PADC "T" PADD "C" PIO A PADA "T" PIO B PADB "C" *Differential Driver only available on right and left of the device.2-17 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Adaptive Input Logic (AIL) Block The AIL block is available in the A or C pads of each PIO on the left, right and bottom of the chip. This logic automatically adjusts the delay in the data path on a signal-by-signal basis to ensure that it has sufficient set-up and hold. This capability simplifies the system level design of high-speed interfaces and ultimately allows higher overall speeds to be achieved. The AIL block receives data from nine taps in the delay line present in the input delay block. These signals are fed to 18 registers. The registers operate off the high-speed input clock (9 on the positive edge and 9 on the negative edge.) The output of these registers, along with the high speed input clock and RUNAIL signal are inputs to the AIL control logic. If RUNAIL is enabled then the AIL control logic will determine if the delay needs to be adjusted in order to avoid data transitions within a user specified margin. The margin can be a specified as 2, 4, 6 or 8 delay increments. The LOCK output indicates that transitions are not occurring within the specified margin of the clock edge. The AIL logic is automatically configured by the Lattice design tools dependent on the primitives that are specified. Figure 2-15 shows the arrangement of the adaptive input logic. Figure 2-15. Adaptive Input Logic and Delay Block Input DDR/Shift Block The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer to the low-speed clock domain. It functions as a gearbox allowing high-speed incoming data to be passed into the FPGA fabric. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. The PIOs A and C on the left, right and bottom of the device also contain an optional Adaptive Input Logic (AIL) element. This logic automatically aligns incoming data with the clock allowing for easy design of high-speed interfaces. Figure 2-16 shows a simpliDelay tap n+16 Delay tap n+14 Delay tap n+12 Delay tap n+10 Delay tap n+8 Delay tap n+6 Delay tap n+4 Delay tap n+2 Delay tap n Delay Line (96 Steps) Coarse Select (47 Steps) Fine Select Mux From DLL or configuration bits Fine Select Muxes Delay Block To IOL DI from input buffer AIL Control Logic Delay tap n+16 Delay tap n+14 Delay tap n+12 Delay tap n+10 Delay tap n+8 Delay tap n+6 Delay tap n+4 Delay tap n+2 Delay tap n To DDR/Shift Register Block AIL Block HCLKIN RUNAIL LOCK 7-bit Control Bus2-18 Architecture Lattice Semiconductor LatticeSC Family Data Sheet fied block diagram of the shift register block. The shift block in conjunction with the update and clock divider blocks automatically handles the hand off between the low-speed and high-speed clock domains. Figure 2-16. Input Register Block1 DDR/Shift Register Block Optional Adaptive Input Logic2 • DDR • DDR + half clock • DDR + shift x1 • DDR + shift x2 • DDR + shift x43 • Shift x1 • Shift x2 • Shift x43 To Routing INFF INDD INCK IPOS0 CLKDISABLE CLKENABLE IPOS1 INEG0 INEG1 LCLKIN (ECLK/SCLK) HCLKIN (ECLK/SCLK) Latch D-Type/ Latch Delay Block LOCK RUNAIL DI (from PURESPEED I/O Buffer) DCNTL[0:8] (From DLL) 1. UPDATE, Set and Reset not shown for clarity 2. Adaptive input logic is only available in selected PIO 3. By four shift modes utilize DDR/shift register block from paired PIO. 4. CLKDISABLE is used to block the transitions on the DQS pin during post-amble. Its main use is to disable DQS (typically found in DDR memory interfaces) or other clock signals. It can also be used to disable any/all input signals to save power. SDR Register/Latch Block2-19 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-17. Input DDR/Shift Register Block Output Register Block The output register block provides the ability to register signals from the core of the device before they are passed to the PURESPEED I/O buffers. The block contains a register for SDR operation and a group of registers for DDR and shift register operation. The output signal (DO) can be derived directly from one of the inputs (bypass mode), the SDR register or the DDR/shift register block. Figure 2-18 shows the diagram of the Output Register Block. Output SDR Register/Latch Block The SDR register operates on the positive edge of the high-speed clock. It has clock enable that is driven by the clock enable output signal generated by the control MUX. In addition it has a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR (LSR has precedence over CE) and Global Set Reset GSR enable or disable. The register LSR input is driven from LSRO, which is generated from the PIO control MUX. The GSR inputs is driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis. Output DDR/Shift Block The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer from the low-speed clock domain. It functions as a gearbox allowing low-speed parallel data from the FPGA fabric be output as a higher speed serial stream. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. Figure 2-18 shows a simplified block diagram of the shift register block. Data Input (From Delay Block) HCLKIN LCLKIN POS Update IPOS0 (Can act as IPOS2 when paired) IPOS1 (Can act as IPOS3 when paired) INEG0 (Can act as INEG2 when paired) INEG1 (Can act as INEG3 when paired) NEG Update Used for DDR with Half Clock Transfer To paired PIO for wide muxing To paired PIO for wide muxing Bypass used for DDR Bypass used for DDR From paired PIO for wide muxing From paired PIO for wide muxing2-20 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-18. Output Register Block1 Figure 2-19. Output/Tristate DDR/Shift Register Block DDR/Shift Register Block • DDR • DDR + half clock • DDR + shift x2 • DDR + shift x42 • Shift x2 • Shift x42 Notes: 1. CE, Update, Set and Reset not shown for clarity. 2. By four shift modes utilizes DDR/Shift register block from paired PIO. 3. DDR/Shift register block shared with tristate block. HCLKOUT LCLKOUT OPOS0 From Routing To Tri-state Block DO (to PURESPEED I/O Buffer) From Control MUX ONEG0 OPOS1 ONEG1 SDR Register Bypass Used for DDR/DDRX Modes Shift x2 / x4 Output LCLKOUT HCLKOUT From paired PIO ( x4 shift modes) To paired PIO (x4 shift modes) POS Update OPOS0 (Can act as OPOS2 when paired) NEG Update OPOS1 (Can act as OPOS3 when paired) Bypass Used for DDR/DDRX Modes From paired PIO ( x4 shift modes) To paired PIO (x4 shift modes) ONEG0 (Can act as ONEG2 when paired) ONEG1 (Can act as ONEG3 when paired) TSDDR/DDRX ODDR/DDR/ X2/X42-21 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Tristate Register Block The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the PURESPEED I/O buffers. The block contains a register for SDR operation and a group of three registers for DDR and shift register operation. The output signal tri-state control signal (TO) can be derived directly from one of the inputs (bypass mode), the SDR shift register, the DDR registers or the data associated with the buffer (for open drain emulation). Figure 2-20 shows the diagram of the Tristate Register Block. Tristate SDR Register/Latch Block The SDR register operates on the positive edge of the high-speed clock. In it has a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR and Global Set Reset GSR enable or disable. The register LSR input is driven from LSRO, which is generated from the PIO control MUX. The GSR input is driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis. Tristate DDR/Shift Register Block The DDR/Shift block is shared with the output block allowing DDR support using the high-speed clock and the associated transfer from the low-speed clock domain. It functions as a gearbox allowing low–speed parallel data from the FPGA fabric to provide a high-speed tri-state control stream. There is a special mode for DDR-II memory interfaces where the termination is controlled by the output tristate signal. During WRITE cycle when the FPGA is driving the lines, the parallel terminations are turned off. During READ cycle when the FPGA is receiving data, the parallel terminations are turned on. Figure 2-20. Tristate Register Block1 Control Logic Block The control logic block allows the modification of control signals selected by the routing before they are used in the PIO. It can optionally invert all signals passing through it except the Global Set/Reset. Global Set/Reset can be enabled or disabled. It can route either the edge clock or the clock to the high-speed clock nets. The clock provided to the PIO by routing is used as the slow-speed clocks. In addition this block contains delays that can be inserted in the clock nets to enable Lattice’s unique cycle boosting capability. Update Block The update block is used to generate the POS update and NEG update signals used by the DDR/Shift register blocks within the PIO. Note the update block is only required in shift modes. This is required in order to do the high speed to low speed handoff. One of these update signals is also selected and output from the PIC as the signal UPDATE. It consists of a shift chain that operates off either the high-speed input or output clock. The values of each DDR/Shift Register Block2 • DDR • DDR + half clock HCLKOUT LCLKOUT From Routing TO (To PURESPEED I/O Buffer) From Control MUX From Output OPOS1 VCC GND TD ONEG1 Notes: 1. CE, Update, Set and Reset not shown for clarity. 2. DDR/Shift Register Block shared with output register block. 2-22 Architecture Lattice Semiconductor LatticeSC Family Data Sheet register in the chain are set or reset depending on the desired mode of operation. The set/reset signal is generated from either the edge reset ELSR or the local reset LSR. These signals are optionally inverted by the Control Logic Block and provided to the update block as ELSRUP and LSRUP. The Lattice design tools automatically configure and connect the update block when one of the DDR or shift register primitives is used. Figure 2-21. Update Block PURESPEED I/O Buffer Each I/O is associated with a flexible buffer referred to as PURESPEED I/O buffer. These buffers are arranged around the periphery of the device in seven groups referred to as Banks. The PURESPEED I/O buffers allow users to implement the wide variety of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL. The availability of programmable on-chip termination for both input and output use, further enhances the utility of these buffers. PURESPEED I/O Buffer Banks LatticeSC devices have seven PURESPEED I/O buffer banks; each is capable of supporting multiple I/O standards. Each PURESPEED I/O bank has its own I/O supply voltage (VCCIO), and two voltage references VREF1 and V REF2 resources allowing each bank to be completely independent from each other. Figure 2-22 shows the seven banks and their associated supplies. Table 2-7 lists the maximum number of I/Os per bank for the whole LatticeSC family. In the LatticeSC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI33 and PCIX33) are powered using VCCIO. In addition to the bank VCCIO supplies, the LatticeSC devices have a VCC core logic power supply, and a VCCAUX supply that power all differential and referenced buffers. VCCAUX also powers a predriver of single-ended output buffers to enhance buffer performance. Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeSC devices any I/O pin in a bank can be configured to be a dedicated reference voltage supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages. Differential drivers have user selectable internal or external bias. External bias is brought in by the VREF1 pin in the bank. External bias for differential buffers is needed for applications that requires tighter than standard output common mode range. Since a bank can have only one external bias circuit for differential drivers, LVDS and RSDS differential outputs can be mixed in a bank but not with HYPT (HyperTransport). If a differential driver is configured in a bank, one pin in that bank becomes a DIFFR pin. This DIFFR pin must be connected to ground via an external 1K +/-1% ohm resistor. POS Update NEG Update HCLKUP ESLRUP LSRUP LCLKUP UPDATE ÷1/2/42-23 Architecture Lattice Semiconductor LatticeSC Family Data Sheet In addition, there are dedicated Terminating Supply (VTT) pins to be used as terminating voltage for one of the two ways to perform parallel terminations. These VTT pins are available in banks 2-7, these pins are not available in some packages. When these pins are not used they should be left unconnected. There are further restrictions on the use of VTT pins, for additional details refer to technical information at the end of this data sheet. Figure 2-22. LatticeSC Banks Table 2-7. Maximum Number of I/Os Per Bank in LatticeSC Family The LatticeSC devices contain three types of PURESPEED I/O buffers: 1. Left and Right Sides (Banks 2, 3, 6 and 7) These buffers can support LVCMOS standards up to 2.5V. A differential driver is provided on all primary PIO pairs (A and B) and differential receivers are available on all pairs. Adaptive input logic is available on PIOs A or C. Device LFSC15 LFSC25 LFSC40 LFSC80 LFSC115 Bank1 104 80 136 80 136 Bank2 28 36 60 96 136 Bank3 60 84 96 132 156 Bank4 72 100 124 184 208 Bank5 72 100 124 184 208 Bank6 60 84 96 132 156 Bank7 28 36 60 96 136 Note: Not all the I/Os of the Banks are available in all the packages Bank 2 Bank 3 V REF1[7] GND Bank 7 V CCIO7 VTT7 V REF2[7] V REF1[6] GND V CCIO6 VTT6 V REF2[6] V REF1[2] GND V CCIO2 VTT2 V REF2[2] V REF1[5] V GND CCIO5 VTT5 V REF2[5] V REF1[4] V GND CCIO4 VTT4 V REF2[4] V REF2[1] GND V CCIO1 V REF1[1] V REF1[3] GND V CCIO3 VTT[3] Bank 6 V REF2[3] Bank 4 SERDES SERDES Bank 5 Bank 12-24 Architecture Lattice Semiconductor LatticeSC Family Data Sheet 2. Top Side (Bank 1) These buffers can support LVCMOS standards up to 3.3V, including PCI33, PCI-X33 and SSTL-33. Differential receivers are provided on all PIO pairs but differential drivers are not available. Adaptive input logic is not available on this side. 3. Bottom Side (Banks 4 and 5) These buffers can support LVCMOS standards up to 3.3V, including PCI33, PCI-X33 and SSTL-33. Differential receivers are provided on all PIO pairs but differential drivers are not available. Adaptive input logic is available on PIOs A or C. Table 2-8 lists the standards supported by each side. Table 2-8. I/O Standards Supported by Different Banks Supported Standards The LatticeSC PURESPEED I/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 12, 15, 18, 25 and 33 standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, termination resistance, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL, HSTL, GTL (input only), GTL+ (input only), PCI33, PCIX33, PCIX15, AGP-1X33 and AGP-2X33. Differential standards supported include LVDS, RSDS, Description Top Side Banks 1 Right Side Banks 2-3 Bottom Side Banks 4-5 Left Side Banks 6-7 I/O Buffer Type Single-ended, Differential Receiver Single-ended, Differential Receiver and Driver Single-ended, Differential Receiver Single-ended, Differential Receiver and Driver Output Standards Supported LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I SSTL25_ I, II SSTL33_ I, II HSTL15_I, II, III1 , IV1 HSTL18_I, II,III1 , IV1 SSTL18D_I, II SSTL25D_I, II SSTL33D_I, II HSTL15D_I, II HSTL18D_I, II PCI33 PCIX15 PCIX33 AGP1X33 AGP2X33 MLVDS/BLVDS GTL2 , GTL+2 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I SSTL25_ I, II HSTL15_I,III HSTL18_I,II,III PCIX15 SSTL18D_I, II SSTL25D_I, II HSTL15D_I, II HSTL18D_I, II LVDS/RSDS/HYPT Mini-LVDS MLVDS/BLVDS GTL2 , GTL+2 LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I SSTL25_ I, II SSTL33_ I, II HSTL15_I, II, III1 , IV1 HSTL18_I, II,III1 , IV1 SSTL18D_I, II SSTL25D_I, II SSTL33D_I, II HSTL15D_I, II HSTL18D_I, II PCI33 PCIX15 PCIX33 AGP1X33 AGP2X33 MLVDS/BLVDS GTL2 , GTL+2 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I SSTL25_ I, II HSTL15_I,III HSTL18_I,II,III PCIX15 SSTL18D_I, II SSTL25D_I, II HSTL15D_I, II HSTL18D_I, II LVDS/RSDS/HYPT Mini-LVDS MLVDS/BLVDS GTL2 , GTL+2 Input Standards Supported Single-ended, Differential Single-ended, Differential Single-ended, Differential Single-ended, Differential Clock Inputs Single-ended, Differential Single-ended, Differential Single-ended, Differential Single-ended, Differential Differential Output Support via Emulation LVDS/MLVDS/BLVDS/ LVPECL MLVDS/BLVDS/ LVPECL LVDS/MLVDS/BLVDS/ LVPECL MLVDS/BLVDS/ LVPECL AIL Support No Yes Yes Yes 1. Input only. 2. Input only. Outputs supported by bussing multiple outputs together.2-25 Architecture Lattice Semiconductor LatticeSC Family Data Sheet BLVDS, MLVDS, LVPECL, HyperTransport, differential SSTL and differential HSTL. Tables 12 and 13 show the I/O standards (together with their supply and reference voltages) supported by the LatticeSC devices. The tables also provide the available internal termination schemes. For further information on utilizing the PURESPEED I/O buffer to support a variety of standards please see details of additional technical documentation at the end of this data sheet. Table 2-9. Supported Input Standards Input Standard VREF (Nom.) VCCIO 1 (Nom.) On-chip Termination Single Ended Interfaces LVTTL333 — 3.3 None LVCMOS 33, 25, 18, 15, 123 — 3.3/2.5/1.8/1.5/1.2 None PCI33, PCIX33, AGP1X333 — 3.3 None PCIX15 0.75 1.52 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 AGP2X33 1.32 — None HSTL18_I, II 0.9 1.82 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 HSTL18_III, IV 1.08 1.82 None / VCCIO: 50 HSTL15_I, II 0.75 1.52 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 HSTL15_III, IV 0.9 1.52 None / VCCIO: 50 SSTL33_I, II 1.5 3.3 None SSTL25_I, II 1.25 2.52 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 SSTL18_I, II 0.9 1.82 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 GTL+, GTL 1.0 / 0.8 1.5 / 1.22 None / VCCIO: 50 Differential Interfaces SSTL18D_I, II — 1.82 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 SSTL25D_I, II — 2.52 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 SSTL33D_I, II — 3.3 None HSTL15D_I, II — 1.52 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 HSTL18D_I, II — 1.82 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 LVDS — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 Mini-LVDS — — None / Diff: 120, 150 / Diff to VCMT: 120, 150 BLVDS25 — — None MLVDS25 — — None HYPT (Hyper Transport) — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 RSDS — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 LVPECL33 — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 1. When not specified VCCIO can be set anywhere in the valid operating range. 2. VCCIO needed for on-chip termination to VCCIO/2 or VCCIO only. VCCIO is not specified for off-chip termination. 3. All ratioed input buffers and dedicated pin input buffers include hysteresis with a typical value of 50mV.2-26 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Table 2-10. Supported Output Standards4 Output Standard Drive VCCIO (Nom) On-chip Output Termination Single-ended Interfaces LVTTL/D1 8mA, 16mA, 24mA 3.3 None. LVCMOS33/D1 8mA, 16mA, 24mA 3.3 None LVCMOS25/D1, 2 4mA, 8mA, 12mA, 16mA, 2.5 None, series: 25, 33, 50, 100 LVCMOS18/D1, 2 4mA, 8mA, 12mA, 16mA, 1.8 None, series: 25, 33, 50, 100 LVCMOS15/D1, 2 4mA, 8mA, 12mA, 16mA, 1.5 None, series: 25, 33, 50, 100 LVCMOS12/D1, 2 2mA, 4mA, 8mA, 12mA 1.2 None, series: 25, 33, 50, 100 PCIX15 N/A 1.5 None PCI33, PCIX33, AGP1X33, AGP2X33 N/A 3.3 None HSTL18_I N/A 1.8 None, series: 50 HSTL18_II N/A 1.8 None, series: 25, series + parallel to VCCIO/2: 25 + 60 HSTL15_I N/A 1.5 None, series: 50 HSTL15_II N/A 1.5 None, series: 25, series + parallel to VCCIO/2: 25 + 60 SSTL33_I N/A 3.3 None SSTL33_II N/A 3.3 None SSTL25_I N/A 2.5 None, series: 50 SSTL25_II N/A 2.5 None, series: 33, series + parallel to VCCIO/2: 33+ 60 SSTL18_ I N/A 1.8 None, series: 33 SSTL18_II N/A 1.8 None, series: 33, series + parallel to VCCIO/2: 33+ 60 Differential Interfaces SSTL18D_I N/A 1.8 None, series: 33 SSTL25D_I N/A 2.5 None, series: 50 SSTL18D_II, SSTL25D_II N/A 1.2/2.5/3.3 None, series: 33, series + parallel to VCCIO/2: 33+ 60 SSTL33D_I, II N/A 3.3 None HSTL15D_I, HSTL18D_I N/A 1.5/1.8 None, series: 50 HST15D_II, HSTL18D_II N/A 1.5/1.8 None, series: 25, series + parallel to VCCIO/2: 25 + 60 LVDS 2mA, 3.5mA, 4mA, 6mA 2.5 None Mini-LVDS 3.5mA, 4mA, 6mA 2.5 None BLVDS25 N/A 2.5 None MLVDS25 N/A 2.5 None LVPECL333 N/A 3.3 None HYPT (Hyper Transport) 3.5mA, 4mA, 6mA 2.5 None RSDS 2mA, 3.5mA, 4mA, 6mA 2.5 None 1. D refers to open drain capability. 2. User can select either drive current or driver impedances but not both. 3. Emulated with external resistors. 4. No GTL or GTL+ support.2-27 Architecture Lattice Semiconductor LatticeSC Family Data Sheet PCI Clamp A programmable PCI clamp is available on the top and bottom banks of the device. The PCI clamp can be turned “ON” or “OFF” on each pin independently. The PCI clamp is used when implementing a 3.3V PCI interface. The PCI Specification, Revision 2.2 requires the use of clamping diodes for 3.3V operation. For more information on the PCI interface, please refer to the PCI Specification, Revision 2.2. Programmable Slew Rate Control All output and bidirectional buffers have an optional programmable output slew rate control that can be configured for either low noise or high-speed performance. Each I/O pin has an individual slew rate control. This allows designers to specify slew rate control on a pin-by-pin basis. This slew rate control affects both the rising and falling edges. Programmable Termination Many of the I/O standards supported by the LatticeSC devices require termination at the transmitter, receiver or both. The SC devices provide the capability to implement many kinds of termination on-chip, minimizing stub lengths and hence improving performance. Utilizing this feature also has the benefit of reducing the number of discrete components required on the circuit board. The termination schemes can be split into two categories single-ended and differential. Single Ended Termination Single Ended Outputs: The SC devices support a number of different terminations for single ended outputs: • Series • Parallel to VCCIO or GND • Parallel to VCCIO/2 • Parallel to VCCIO/2 combined with series Figure 2-23 shows the single ended output schemes that are supported. The nominal values of the termination resistors are shown in Table 2-10.2-28 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-23. Output Termination Schemes Termination Type Discrete Off-Chip Solution Lattice On-Chip Solution Series termination (controlled output impedance) Parallel termination to V CCIO, or parallel driving end Combined series + parallel termination to V CCIO/2 at driving end (only series termination moved on-chip) Combined series + parallel to VCCIO/2 driving end Parallel termination to V CCIO/2 driving end ON-chip Zo Zo Zo OFF-chip OFF-chip ON-chip ON-chip Zo OFF-chip ON-chip VCCIO or GND VCCIO or GND Zo Zo Zo OFF-chip Zo Rs Rs Rs ON-chip OFF-chip Zo ON-chip OFF-chip Zo ON-chip VCCIO/2 Zo Zo OFF-chip VCCIO/2 Zo ON-chip Zo OFF-chip Rs VCCIO/2 Zo VCCIO/2 Zo VCCIO GND 2Zo 2Zo ON-chip OFF-chip Zo VCCIO GND 2Zo 2Zo ON-chip OFF-chip Zo2-29 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Single Ended Inputs: The SC devices support a number of different termination schemes for single ended inputs: • Parallel to VCCIO or GND • Parallel to VCCIO/2 • Parallel to VTT Figure 2-24 shows the single ended input schemes that are supported. The nominal values of the termination resistors are shown in Table 2-9. Figure 2-24. Input Termination Schemes In many situations designers can chose whether to use Thevenin or parallel to VTT termination. The Thevenin approach has the benefit of not requiring a termination voltage to be applied to the device. The parallel to VTT approach consumes less power. VTT Termination Resources Each I/O bank, except bank 1, has a number of VTT pins that must be connected if VTT is used. Note VTT pins can sink or source current and the power supply they are connected to must be able to handle the relatively high currents associated with the termination circuits. Note: VTT is not available in all package styles. On-chip parallel termination to VTT is supported at the receiving end only. On-chip parallel output termination to VTT is not supported. The VTT internal bus is also connected to the internal VCMT node. Thus in one bank designers can implement either VTT termination or VCMT termination for differential inputs. DDRII/RLDRAMII Termination Support The DDR II memory and RLDRAMII (in Bidirection Data mode) standards require that the on-chip termination to VTT be turned on when a pin is an input and off when the pin is an output. The LatticeSC devices contain the required circuitry to support this behavior. For additional detail refer to technical information at the end of the data sheet. Termination Type Discrete Off-Chip Solution Lattice On-Chip Solution Parallel termination to V CCIO/2 receiving end Parallel termination to to VCCIO, or parallel to GND receiving end VCCIO or GND OFF-chip ON-chip Zo Zo VCCIO2 OFF-chip ON-chip Zo Zo VTT OFF-chip ON-chip Zo Zo OFF-chip ON-chip Zo VTT Zo VCCIO or GND OFF-chip ON-chip Zo Zo VCCIO GND OFF-chip ON-chip 2Zo 2Zo Zo Parallel termination to VTT at receiving end2-30 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Differential Input Termination The LatticeSC device allows two types of differential termination. The first is a single resistor across the differential inputs. The second is a center-tapped system where each input is terminated to the on-chip termination bus VCMT. The VCMT bus is DC-coupled through an internal capacitor to ground. Figure 2-25 shows the differential termination schemes and Table 2-9 shows the nominal values of the termination resistors. Figure 2-25. Differential Termination Scheme Calibration There are two calibration sources that are associated with the termination scheme used in the LatticeSC devices: • DIFFR – This pin occurs in each bank and must be connected through a 1K+/-1% resistor to ground if differential outputs are used. • XRES – There is one of these pins per device. It is used for several functions including calibrating on-chip termination. This pin should always be connected through a 1K+/-1% resistor to ground. The LatticeSC devices support two modes of calibration: • Continuous – In this mode the SC devices continually calibrate the termination resistances. Calibration happens several times a second. Using this mode ensures that termination resistances remain calibrated as the silicon junction temperature changes. • User Request – In this mode the calibration circuit operates continuously. However, the termination resistor values are only updated on the assertion of the calibration_update signal available to the core logic. For more information on calibration, refer to the details of additional technical documentation at the end of this data sheet. Hot Socketing The LatticeSC devices have been carefully designed to ensure predictable behavior during power-up and powerdown. To ensure proper power sequencing, care must be taken during power-up and power-down as described below. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, Termination Type Discrete Off-Chip Solution Lattice On-Chip Solution Differential termination Differential and common mode termination OFF-chip ON-chip + - 2Zo Zo Zo OFF-chip ON-chip GND + - Zo Zo Zo Zo OFF-chip ON-chip + - 2Zo Zo Zo OFF-chip ON-chip GND VCMT + - Zo Zo Zo Zo2-31 Architecture Lattice Semiconductor LatticeSC Family Data Sheet this allows for easy integration with the rest of the system. These capabilities make the LatticeSC ideal for many multiple power supply and hot-swap applications. Power-Up Requirements To prevent high power supply and input pin currents, each VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies must have a monotonic ramp up time of 75 ms or less to reach its minimum operating voltage. Apart from VCC and VCC12, which have an additional requirement, and VCCIO and VCCAUX, which also have an additional requirement, the VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies can ramp up in any order, with no restriction on the time between them. However, the ramp time for each must be 75 ms or less. Configuration of the device will not proceed until the last power supply has reached its minimum operating voltage. Additional Requirement for VCC and VCC12 VCC12 must always be higher than VCC. This condition must be maintained at ALL times, including during powerup and power-down. Note that for 1.2V only operation, it is advisable to source both of these supplies from the same power supply. Additional Requirement for VCCIO and VCCAUX If any VCCIOs are 1.2/1.5/1.8V, then VCCAUX MUST be applied before them. If any VCCIO is 1.2/1.5/1.8V and is powered up before VCCAUX, then when VCCAUX is powered up, it may drag VCCIO up with it as it crosses through the VCCIO value. (Note: If the VCCIO supply is capable of sinking current, as well as the more usual sourcing capability, this behavior is eliminated. However, the amount of current that the supply needs to sink is unknown and is likely to be in the hundreds of milliamps range). Power-Down Requirements To prevent high power supply and input pin currents, power must be removed monotonically from either VCC or VCCAUX (and must reach the power-down trip point of 0.5V for VCC, 0.95V for VCCAUX) before power is removed monotonically from VCC12, any of the VCCIOs, or VCCJ. Note that VCC12 can be removed at the same time as VCC, but it cannot be removed earlier. In many applications, VCC and VCC12 will be sourced from the same power supply and so will be removed together. For systems where disturbance of the user pins is a don't care condition, the power supplies can be removed in any order as long as they power down monotonically within 200ms of each other. Additionally, if any banks have VCCIO=3.3V nominal (potentially banks 1, 4, 5) then VCCIO for those banks must not be lower than VCCAUX during power-down. The normal variation in ramp-up times of power supplies and voltage regulators is not a concern here. Note: The SERDES power supplies are NOT included in these requirements and have no specific sequencing requirements. However, when using the SERDES with VDDIB or VDDOB that is greater than 1.2V (1.5V nominal for example), the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in the ramp-up times of power supplies and voltage regulators is not a concern here. Supported Source Synchronous Interfaces The LatticeSC devices contain a variety of hardware, such as delay elements, DDR registers and PLLs, to simplify the implementation of Source Synchronous interfaces. Table 2-11 lists Source Synchronous and DDR/QDR standards supported in the LatticeSC. For additional detail refer to technical information at the end of the data sheet.2-32 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Table 2-11. Source Synchronous Standards Table1 flexiPCS™ (Physical Coding Sublayer Block) flexiPCS Functionality The LatticeSC family combines a high-performance FPGA fabric, high-performance I/Os and large embedded RAM in a single industry leading architecture. LatticeSC devices also feature up to 32 channels of embedded SERDES with associated Physical Coding Sublayer (PCS) logic. The flexiPCS logic can be configured to support numerous industry standard high-speed data transfer protocols. Each channel of flexiPCS logic contains dedicated transmit and receive SERDES for high-speed, full-duplex serial data transfers at data rates up to 3.4 Gbps. The PCS logic in each channel can be configured to support an array of popular data protocols including SONET (STS-12/STS-12c, STS-48/STS-48c, and TFI-5 support of 10 Gbps or above), Gigabit Ethernet (compliant to the IEEE 1000BASE-X specification), 1.02 or 2.04 Gbps Fibre Channel, PCI-Express, and Serial RapidIO. In addition, the protocol based logic can be fully or partially bypassed in a number of configurations to allow users flexibility in designing their own high-speed data interface. Protocols requiring data rates above 3.4 Gbps can be accommodated by dedicating either one pair or all four channels in one flexiPCS quad block to one data link. One quad can support full-duplex serial data transfers at data rates up to 13.6 Gbps. A single flexiPCS quad can be configured to support 10Gb Ethernet (with a fully compliant XAUI interface), 10Gb Fibre Channel, and x4 PCI-Express and 4x RapidIO. The flexiPCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic which can also be geared to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic. Each SERDES pin can be DC coupled independently and can allow for both high-speed and low-speed operation down to DC rates on the same SERDES pin, as required by some Serial Digital Video applications. The ispLEVER design tools from Lattice support all modes of the flexiPCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow a user to define their own operation. With ispLEVER, the user can define the mode for each quad in a design. Nine modes are currently supported by the ispLEVER design flow: • 8-bit SERDES Only • 10-bit SERDES Only • SONET (STS-12/STS-48) • Gigabit Ethernet • Fibre Channel • XAUI • Serial RapidIO Source Synchronous Standard Clocking Speeds (MHz) Data Rate (Mbps) RapidIO DDR 500 1000 HyperTransport DDR 400 800 SPI4.2 (POS-PHY4)/NPSI DDR 650 1300 SFI4/XSBI DDR SDR 334 667 667 XGMII DDR 156.25 312 CSIX SDR 250 250 QDRII memory interface DDR 300 600 DDR memory interface DDR 240 480 DDRII memory interface DDR 400 800 RLDRAM memory interface DDR 400 800 1. Memory width is dependent on the system design and limited by the number of I/Os in the device.2-33 Architecture Lattice Semiconductor LatticeSC Family Data Sheet • PCI-Express • Generic 8b10b flexiPCS Quad The flexiPCS logic is arranged in quads containing logic for four independent full-duplex data channels. Each device in the LatticeSC family has up to eight quads of flexiPCS logic. The LatticeSC Family Selection Guide table on the first page of this data sheet contains the number of flexiPCS channels present on the chip. Note that in some packages (particularly lower pin count packages), not all channels from all quads on a given device may be bonded to package pins. Each quad supports up to four channels of full-duplex data and can be programmed into any one of several protocol based modes. Each quad requires its own reference clock which can be sourced externally or from the FPGA logic. The user can utilize between one and four channels in a quad, depending on the application. Figure 2-26 shows an example of four flexiPCS quads in a LatticeSC device. Quads are labeled according to the address of their software controlled registers. Figure 2-26. LatticeSC flexiPCS Since each quad has its own reference clock, different quads can support different standards on the same chip. This feature makes the LatticeSC family of devices ideal for bridging between different standards. flexiPCS quads are not dedicated solely to industry standard protocols. Each quad (and each channel within a quad) can be programmed for many user defined data manipulation modes. For example, modes governing userdefined word alignment and multi-channel alignment can be programmed for non-standard protocol applications. For more information on the functions and use of the flexiPCS, refer to the LatticeSC flexiPCS Data Sheet. SERDES Interface FPGA Logic Channel 0 PCS Logic Channel 1 PCS Logic Channel 2 PCS Logic Channel 3 PCS Logic FPGA Logic I/Os FPGA Logic I/Os FPGA Logic I/Os flexiPCS Quad 360 PCS/FPGA Interface flexiPCS Quad 360 High Speed Serial Data FPGA Logic I/Os SERDES Interface Channel 0 PCS Logic Channel 1 PCS Logic Channel 2 PCS Logic Channel 3 PCS Logic flexiPCS Quad 361 PCS/FPGA Interface flexiPCS Quad 361 High Speed Serial Data SERDES Interface Channel 3 PCS Logic Channel 2 PCS Logic Channel 1 PCS Logic Channel 0 PCS Logic flexiPCS Quad 3E1 PCS/FPGA Interface flexiPCS Quad 3E1 High Speed Serial Data SERDES Interface Channel 3 PCS Logic Channel 2 PCS Logic Channel 1 PCS Logic Channel 0 PCS Logic flexiPCS Quad 3E0 PCS/FPGA Interface flexiPCS Quad 3E0 High Speed Serial Data2-34 Architecture Lattice Semiconductor LatticeSC Family Data Sheet System Bus Each LatticeSC device connects the FPGA elements with a standardized bus framework referred to as a System Bus. Multiple bus masters optimize system performance by sharing resources between different bus masters such as the MPI and configuration logic. The wide data bus configuration of 32 bits with 4-bit parity supports high-bandwidth, data intensive applications. There are two types of interfaces on the System Bus, master and slave. A master interface has the ability to perform actions on the bus, such as writes and reads to and from a specific address. A slave interface responds to the actions of a master by accepting data and address on a write and providing data on a read. The System Bus has a memory map which describes each of the slave peripherals that is connected on the bus. Using the addresses listed in the memory map, a master interface can access each of the slave peripherals on the System Bus. Any and all peripherals on the System Bus can be used at the same time. Table 2-12 list all of the available user peripherals on the System Bus after device power-up. Table 2-12. System Bus User Peripherals The peripherals listed in Table 2-12 can be added when the System Bus module is created using Module IP/Manager (ispLEVER Module/IP Manager). Figure 2-27 also lists the existing peripherals on the System Bus. The gray boxes are available only during configuration. Refer to Lattice technical note TN1080, LatticeSC sysCONFIG Usage Guide, for configuration options. The Status and Config box refers to internal System Bus registers. This document presents all the interfaces listed in Table 2-12 in detail to help the user utilize the desired functions of the System Bus. Figure 2-27. LatticeSC System Bus Interfaces Several interfaces exist between the System Bus and other FPGA elements. The MPI interface acts as a bridge between the external microprocessor bus and System Bus. The MPI may work in an independent clock domain from the System Bus if the System Bus clock is not sourced from the external microprocessor clock. Pipelined Peripheral Name Interface Type Micro Processor Interface MPI Master User Master Interface UMI Master User Slave Interface USI Slave Serial Management Interface (PLL, DLL, User Logic) SMI Slave Physical Coding Sublayer PCS Slave Direct FPGA Access DFA Slave DFA (Direct Access from MPI) SMI (PLL, DLL, USER LOGIC) STATUS and CONFIG (SYS REG) CONFIG (MASTER) System Bus USI (SLAVE) UMI (MASTER) EBR INIT (WRITE) MPI (MASTER) PCS (LEFT, RIGHT and INTER-QUAD) (SLAVE)2-35 Architecture Lattice Semiconductor LatticeSC Family Data Sheet operation allows high-speed memory interface to the EBR and peripheral access without the requirement for additional cycles on the bus. Burst transfers allow optimal use of the memory interface by giving advance information of the nature of the transfers. Details for the majority of the peripherals can be found in the associated technical documentation, see details at the end of this data sheet. Additional details of the MPI are provided below. Microprocessor Interface (MPI) The LatticeSC family devices have a dedicated synchronous MPI function block. The MPI is programmable to operate with PowerPC/PowerQUICC MPC860/MPC8260 series microprocessors. The MPI implements an 8-, 16-, or 32-bit interface with 1-bit, 2-bit, or 4-bit parity to the host processor (PowerPC) that can be used for configuration and read-back of the FPGA as well as for user-defined data processing and general monitoring of FPGA functions. The control portion of the MPI is available following power-up of the FPGA if the mode pins specify MPI mode, even if the FPGA is not yet configured. The width of the data port is selectable among 8-, 16-, or 32-bit and the parity bus can be 1-, 2-, or 4-bit. In configuration mode the data and parity bus width are related to the state of the M[0:3] mode pins. For post-configuration use, the MPI must be included in the configuration bit stream by using an MPI library element in your design from the ispLEVER primitive library, or by setting the bit of the MPI configuration control register prior to the start of configuration. The user can also enable and disable the parity bus through the con- figuration bit stream. These pads can be used as general I/O when they are not needed for MPI use. The MPI block also provides the capability to interface directly to the FPGA fabric with a databus after configuration.The bus protocol is still handled by the MPI block but the direct FPGA access allows high-speed block data transfers such as DMA transactions. Figure 2-28 shows one of the ways a PowerPC is connected to MPI. Figure 2-28. PowerPCI and MPI Schematic Bus Controller LatticeSC FPGA To DaisyChained Devices PowerPC DOUT DONE HDC INIT LDC CCLK RETRY MPI_RTRY MPI_ACK BDIP MPI_BDIP IRQx MPI_IRQ TS MPI_STRB CS0 TSZ[0:1] MPI_TSZ[0:1] A[14:31] PPC_A[14:31] CLKOUT MPI_CLK RD/WR MPI_RW TA DP[0:m] 1, 2, 4 8, 16, 32 DP[0:m] D[0:n] D[0:n] CS1 TEA MPI_TEA BURST MPI_BURST2-36 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Configuration and Testing The following section describes the configuration and testing features of the LatticeSC family of devices. IEEE 1149.1-Compliant Boundary Scan Testability All LatticeSC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage VCCJ and can operate with LVCMOS33, 25 and 18 standards. For additional detail refer to technical information at the end of the data sheet. Device Configuration All LatticeSC devices contain three possible ports that can be used for device configuration. The serial port, which supports bit-wide configuration, and the sysCONFIG port that supports both byte-wide and serial configuration. The MPI port supports 8-bit, 16-bit or 32-bit configuration. The serial port supports both the IEEE Std. 1149.1 Boundary Scan specification and the IEEE Std. 1532 In-System Configuration specification. The sysCONFIG port is a 20-pin interface with six of the I/Os used as dedicated pins and the rest being dual-use pins. When sysCONFIG mode is not used, these dual-use pins are available for general purpose I/O. All I/Os for the sysCONFIG and MPI ports are in I/O bank #1. On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port. Once a configuration port is selected, that port is locked and another configuration port cannot be activated until the next re-initialization sequence. For additional detail refer to technical information at the end of the data sheet. Internal Logic Analyzer Capability (ispTRACY) All LatticeSC devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice’s ispTRACY. The ispTRACY utility is added into the user design at compile time. For additional detail refer to technical information at the end of the data sheet. Temperature Sensing Lattice provides a way to monitor the die temperature by using a temperature-sensing diode that is designed into every LatticeSC device. The difference in VBE of the diode at two different forward currents varies with temperature. This relationship is shown in Figure 2-29. This temperature-sensing diode is designed to work with an external temperature sensor such as the Maxim 1617A. The Maxim 1617A is configured to measure difference in VBE (of the temperature-sensing diode) at 10µA and at 100µA. This difference in VBE voltage varies with temperature at approximately 1.64 mV/°C. A typical device with a 85°C junction temperature will measure approximately 593mV. For additional detail refer to technical information at the end of the data sheet.2-37 Architecture Lattice Semiconductor LatticeSC Family Data Sheet Figure 2-29. Sensing Diode Typical Characteristics Oscillator Every LatticeSC device has an internal CMOS oscillator, which is used as a master serial clock for configuration and is also available as a potential general purpose clock (MCK) for the FPGA core. There is a K divider (divide by 2/4/8/16/32/64/128) available with this oscillator to get lower MCK frequencies. This clock is available as a general purpose clock signal to the software routing tool. For additional detail refer to technical information at the end of the data sheet. Density Shifting The LatticeSC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. 0.50 -50 50 75 100 125 -25 25 100μA 10μA Junction Temperature (°C) Voltage 0 0.55 0.65 0.65 0.70 0.75 0.80 0.88 VBE difference increases with temperatureFebruary 2006 Preliminary Data Sheet © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 3-1 DC and Switching_01.0 Absolute Maximum Ratings Supply Voltage VCC, VCC12, VDDIB, V DDOB, V DDRX, V DDTX, V DDP . . . . . . . . . . -0.5 to 1.6V Supply Voltage VCCAUX, VDDAX25, VTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.75V Supply Voltage VCCJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.6V Supply Voltage VCCIO (Banks 1, 4, 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.6V Supply Voltage VCCIO (Banks 2, 3, 6, 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.75V Input or I/O Tristate Voltage Applied (Banks 1, 4, 5) . . . . . . . . . . . . . . . . . . . -0.5 to 3.6V Input or I/O Tristate Voltage Applied (Banks 2, 3, 6, 7) . . . . . . . . . . . . . . . . -0.5 to 2.75V Storage Temperature (Ambient). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C Notes: 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and Undershoot of -2V to (VIHMAX +2) volts is permitted for a duration of <20ns. Recommended Operating Conditions Symbol Parameter Min. Max. Units V CC Core Supply Voltage (Nominal 1.2V Operation) 0.95 1.26 V V CCAUX Programmable I/O Auxiliary Supply Voltage 2.375 2.625 V V CCIO 1, 2 Programmable I/O Driver Supply Voltage (Banks 1, 4, 5) 1.14 3.45 V V CCIO 1, 2 Programmable I/O Driver Supply Voltage (Banks 2, 3, 6, 7) 1.14 2.625 V V CC12 4 Internal 1.2V Configuration Logic and FPGA PLL Power Supply Voltage for Configuration Logic and FPGA PLL 1.14 1.26 V V DDP SERDES PLL Power Supply Voltage 1.14 1.26 V V DDTX, VDDRX SERDES Analog Supply Voltage 1.14 1.26 V V DDIB SERDES Input Buffer Supply Voltage 1.14 1.575 V V DDOB SERDES Output Buffer Supply Voltage 1.14 1.575 V V DDAX25 SERDES Termination Auxiliary Supply Voltage 2.375 2.625 V V CCJ 1 Supply Voltage for IEEE 1149.1 Test Access Port 1.71 3.45 V VTT 2, 3 Programmable I/O Termination Power Supply 0.5 VCCAUX - 0.5 V t JCOM Junction Commercial Operation 0 +85 C t JIND Junction Industrial Operation -40 105 C 1. If VCCIO or VCCJ is set to 2.5V, they must be connected to the same power supply as VCCAUX. 2. See recommended voltages by I/O standard in subsequent table. 3. If VTT termination and CTAP function is not used in a bank, VTT can be tied to ground. 4. VCC12 cannot be lower than VCC at any time. For 1.2V operation, it is recommended that the VCC and VCC12 supplies be tied together with proper noise decoupling between the digital VCC and analog VCC12 supplies. LatticeSC Family Data Sheet DC and Switching Characteristics3-2 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Hot Socketing Specifications DC Electrical Characteristics5 Over Recommended Operating Conditions Symbol Parameter Condition Min. Typ. Max Units I DK Programmable and dedicated Input or I/O leakage current1, 2, 3, 4, 5 0 <= VIN <= VIH (MAX) — — +/-1500 µA SERDES average input current when device powered down and inputs driven6 — — 4 mA 1. Assumes monotonic rise/fall rates for all power supplies. 2. Sensitive to power supply sequencing as described in hot socketing section. 3. Assumes power supplies are between 0 and maximum recommended operations conditions. 4. IDK is additive to IPU, IPD or IBH. 5. Represents DC conditions. For the first 20ns after hot insertion, current specification is 8 mA. 6. Assumes that the device is powered down with all supplies grounded, both P and N inputs driven by a CML driver with maximum allowed VDDOB of 1.575V, 8b/10b data and internal AC coupling. Symbol Parameter Condition Min.3 Typ. Max. Units I IL, IIH 1 Input or I/O Low leakage 0 ≤ VIN ≤ VIH (MAX) — — 10 µA I PU I/O Active Pull-up Current 0 ≤ VIN ≤ 0.7 VCCIO -30 — -210 µA I PD I/O Active Pull-down Current VIL (MAX) ≤ VIN ≤ VIH (MAX) 30 — 210 µA I BHLS Bus Hold Low Sustaining Current VIN = VIL (MAX) 30 — — µA I BHHS Bus Hold High Sustaining Current VIN = 0.7VCCIO -30 — — µA I BHLO Bus Hold Low Overdrive Current 0 ≤ VIN ≤ VIH (MAX) — — 210 µA I BHLH Bus Hold High Overdrive Current 0 ≤ VIN ≤ VIH (MAX) — — -210 µA I CL PCI Low Clamp Current -3 < VIN ≤ -1 -25 + (VIN + 1)/0.015 — — mA I CH PCI High Clamp Current VCC + 4 > VIN ≥ VCC + 1 25 + (VIN - VCC -1)/ 0.015 — — mA VBHT Bus Hold trip Points 0 ≤ VIN ≤ VIH (MAX) VIL (MAX) — VIH (MIN) V C1 I/O Capacitance2 V CCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V CC = 1.2V, VCCIP2 = 1.2V, V CCAUX = 2.5, VIO = 0 to VIH (MAX) — 8 — pf C32 Dedicated Input Capacitance2 V CCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V CC = 1.2V, VCCIP2 = 1.2V, V CCAUX = 2.5, VIO = 0 to VIH (MAX) — 6 — pf 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA 25°C, f = 1.0MHz 3. IPU, IPD, IBHLS and I BHHS have minimum values of 15 or -15µA if VCCIO is set to 1.2V nominal. 4. This table does not apply to SERDES pins. 5. For programmable I/Os.3-3 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Initialization and Standby Supply Current1, 2, 3 Over Recommended Operating Conditions Symbol Parameter Device 25 o C 105 o C Units I CC Core Operating Power Supply Current (for VCC + VCC12) LFSC15 mA LFSC25 210 1500 mA LFSC40 mA LFSC80 mA LFSC115 mA I CCAUX Auxiliary Operating Power Supply Current LFSC15 mA LFSC25 5 35 mA LFSC40 mA LFSC60 mA LFSC80 mA LFSC115 mA I CCIO Bank Power Supply Current4 LFSC15 mA LFSC25 0.2 1 mA LFSC40 mA LFSC80 mA LFSC115 mA Notes: 1. For further information on supply current, please see the details of additional technical documentation at the end of this data sheet. 2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND. 3. SERDES supply current is detailed in the SERDES section. 4. Includes ICCJ.3-4 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet PURESPEED I/O Recommended Operating Conditions V CCIO V REF (V) Standard Min. Typ. Max. Min. Typ. Max. LVCMOS 33 3.135 3.3 3.465 — — — LVCMOS 25 2.375 2.5 2.625 — — — LVCMOS 18 1.71 1.8 1.89 — — — LVCMOS 15 1.425 1.5 1.575 — — — LVCMOS 12 1.14 1.2 1.26 — — — LVTTL 3.135 3.3 3.465 — — — PCI33 3.135 3.3 3.465 — — — PCIX33 3.135 3.3 3.465 — — — PCIX15 1.425 1.5 1.575 0.49VCCIO 0.5VCCIO 0.51VCCIO AGP1X33 3.135 3.3 3.465 — — — AGP2X33 3.135 3.3 3.465 0.39VCCIO 0.4VCCIO 0.41VCCIO SSTL18_I, II3 1.71 1.8 1.89 0.833 0.9 0.969 SSTL25_I, II3 2.375 2.5 2.625 1.15 1.25 1.35 SSTL33_I, II3 3.135 3.3 3.465 1.3 1.5 1.7 HSTL15_I, II3 1.425 1.5 1.575 0.68 0.75 0.9 HSTL15_III1, 3 and IV1, 3 1.425 1.5 1.575 0.68 0.9 0.9 HSTL 18_I3 , II3 1.71 1.8 1.89 0.816 0.9 1.08 HSTL 18_ III1, 3, IV1, 3 1.71 1.8 1.89 0.816 1.08 1.08 GTL121, 3, GTLPLUS151, 3 — — — 0.882 1.0 1.122 LVDS — — — — — — Mini-LVDS —————— RSDS —————— HYPT (Hyper Transport) —————— LVPECL332, 3 3.135 3.3 3.465 — — — BLVDS252, 3 2.375 2.5 2.625 — — — MLVDS252, 3 2.375 2.5 2.625 — — — SSTL18D_I3 , II3 1.71 1.8 1.89 — — — SSTL25D_I3 , II3 2.375 2.5 2.625 — — — SSTL33D_I3 , II3 3.135 3.3 3.465 — — — HSTL15D_I3 , II3 1.425 1.5 1.575 — — — HSTL18D_I3 , II3 1.71 1.8 1.89 — — — 1. Input only. 2. Inputs on chip. Outputs are implemented with the addition of external resisters. 3. Input for this standard does not depend on the value of VCCIO.3-5 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet PURESPEED I/O Single-Ended DC Electrical Characteristics Over Recommended Operating Conditions Input/Output Standard VIL VIH V OL Max. (V) V OH Min. (V) I OL (mA) I OH Min. (V) Max. (V) Min. (V) Max. (V) (mA) LVCMOS 33 -0.3 0.8 2 3.6 0.4 2.4 24, 16, 8 -24, -16, -8 0.2 VCCIO - 0.2 0.1 -0.1 LVTTL -0.3 0.8 2 3.6 0.4 2.4 24, 16, 8 -24, -16, -8 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 25 -0.3 0.7 1.7 2.65 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 18 -0.3 0.35VCCIO 0.65VCCIO 2.65 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 15 -0.3 0.35VCCIO 0.65VCCIO 2.65 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 LVCMOS 12 -0.3 0.35VCCIO 0.65VCCIO 2.65 0.3 VCCIO - 0.3 12, 8, 4, 2 -12, -8, -4, -2 0.2 VCCIO - 0.2 0.1 -0.1 PCIX15 -0.3 0.3VCCIO 0.5VCCIO 1.5 0.1VCCIO 0.9VCCIO 1.5 -0.5 PCI33 -0.3 0.3VCCIO 0.5VCCIO 3.6 0.1VCCIO 0.9VCCIO 1.5 -0.5 PCIX33 -0.3 0.35VCCIO 0.5VCCIO 3.6 0.1VCCIO 0.9VCCIO 1.5 -0.5 AGP-1X, AGP-2X -0.3 0.3VCCIO 0.5VCCIO 3.6 0.1VCCIO 0.9VCCIO 1.5 -0.5 SSTL3_I -0.3 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 -8 SSTS3_I OST2 -0.3 VREF - 0.2 VREF + 0.2 3.6 0.9 VCCIO - 1.3 8 -8 SSTL3_II -0.3 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 -16 SSTL3_II OST2 -0.3 VREF - 0.2 VREF + 0.2 3.6 0.9 VCCIO - 0.13 16 -16 SSTL2_I -0.3 VREF - 0.18 VREF + 0.18 2.65 0.54 VCCIO - 0.62 7.6 -7.6 SSTL2_I OST2 -0.3 VREF - 0.18 VREF + 0.18 2.65 0.73 VCCIO - 0.81 7.6 -7.6 SSTL2_II -0.3 VREF - 0.18 VREF + 0.18 2.65 0.35 VCCIO - 0.43 15.2 -15.2 SSTL2_II OST2 -0.3 VREF - 0.18 VREF + 0.18 2.65 0.73 VCCIO - 0.81 15.2 -15.2 SSTL18_I -0.3 VREF - 0.125 VREF + 0.125 2.65 0.28 VCCIO - 0.28 13.4 -13.4 SSTL18_II -0.3 VREF - 0.125 VREF + 0.125 2.65 0.28 VCCIO - 0.28 13.4 -13.4 HSTL15_I -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 8 -8 HSTL15_II -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 16 -16 HSTL15_III1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A HSTL15_IV1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A HSTL18_I -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 9.6 -9.6 HSTL18_II -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 19.2 -19.2 HSTL18_III1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A HSTL18_IV1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A GTL121 , GTLPLUS151 -0.3 VREF - 0.2 VREF + 0.2 N/A N/A N/A N/A N/A 1. Input only. 2. Input with on-chip series termination.3-6 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet PURESPEED I/O Differential Electrical Characteristics LVDS Over Recommended Operating Conditions Hyper Transport Over Recommended Operating Conditions Parameter Symbol Parameter Description Test Conditions Min. Typ. Max. Units VINP, VINM Input voltage 0 — 2.4 V VTHD Differential input threshold +/-100 — — mV V CM Input common mode voltage 0.05 1.2 2.35 V I IN Input current Power on or power off — — +/-10 µA V OH Output high voltage for VOP or VOM RT = 100 Ohm — 1.38 1.60 V V OL Output low voltage for VOP or VOM RT = 100 Ohm 0.9V 1.03 — V V OD Output voltage differential (VOP - VOM), RT = 100 Ohm 250 350 450 mV ΔV OD Change in VOD between high and low — — 50 mV V OS Output voltage offset (VOP - VOM)/2, RT = 100 Ohm 1.125 1.20 1.375 V ΔV OS Change in VOS between H and L — — 50 mV I SAB Output short circuit current V OD = 0V Driver outputs shorted — — 12 mA Note: Data is for 3.5mA differential current drive. Other differential driver current options are available. Parameter Symbol Description Min. Typ. Max. Units V OD Differential output voltage 500 600 700 mV ΔV OD Change in VOD magnitude -15 — 15 mV V OCM Output common mode voltage 560 600 640 mV ΔV OCM Change in VOCM magnitude -15 — 15 mV VID Input differential voltage 500 600 700 mV ΔVID Input differential voltage -15 — 15 mV VICM Input common mode voltage 500 600 700 mV ΔVICM Change in VICM magnitude -15 — 15 mV Note: Data is for 6mA differential current drive. Other differential driver current options are available.3-7 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Mini-LVDS Over Recommended Operating Conditions RSDS Over Recommended Operating Conditions Parameter Symbol Description Min. Typ. Max. Units Z O Single-ended PCB trace impedance 30 50 75 ohms RT Differential termination resistance 60 100 150 ohms V OD Output voltage, differential, |VOP - VOM| 300 — 600 mV V OS Output voltage, common mode, |VOP + VOM|/2 1 1.2 1.4 V ΔV OD Change in VOD, between H and L — — 50 mV ΔVID Change in VOS, between H and L — — 50 mV VTHD Input voltage, differential, |VINP - VINM| 200 — 600 mV V CM Input voltage, common mode, |VINP + VINM|/2 0.3+(VTHD/2) — 2.1-(VTHD/2) T R, TF Output rise and fall times, 20% to 80% — — 500 ps T ODUTY Output clock duty cycle 45 — 55 % TIDUTY Input clock duty cycle 40 — 60 % Note: Data is for 6mA differential current drive. Other differential driver current options are available. Parameter Symbol Description Min. Typ. Max. Units V OD Output voltage, differential, RT = 100 ohms 100 200 600 mV V OS Output voltage, common mode 0.5 1.2 1.5 V I RSDS Differential driver output current 1 2 6 mA VTHD Input voltage differential 100 — — mV V CM Input common mode voltage 0.3 — 1.5 V T R, TF Output rise and fall times, 20% to 80% — 500 — ps T ODUTY Output clock duty cycle 45 50 55 % Note: Data is for 2mA drive. Other differential driver current options are available.3-8 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Differential HSTL and SSTL Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode. MLVDS The LatticeSC devices support the MLVDS standard. This industry standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. MLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-1 is one possible solution for bi-directional multi-point differential signals. Figure 3-1. MLVDS Multi-Point Output Example Table 3-1. MLVDS DC Conditions1 Over Recommended Operating Conditions Nominal Symbol Description Zo = 50 Zo = 70 Units Z OUT Output impedance 50 50 ohm RTLEFT Left end termination 50 70 ohm RTRIGHT Right end termination 50 70 ohm V OH Output high voltage 1.50 1.575 V V OL Output low voltage 1.00 0.925 V V OD Output differential voltage 0.50 0.65 V V CM Output common mode voltage 1.25 1.25 V I DC DC output current 20.0 18.5 mA 1. For input buffer, see LVDS table. Heavily loaded backplane, effective Zo ~ 50 to 70 ohms differential 50 50 2.5V 2.5V 50 50 2.5V 2.5V 50 50 2.5V 2.5V + - 50 50 2.5V 2.5V + - . . . 50-70 ohms, +/- 1% 50-70 ohms, +/- 1% + + - - + - . . .3-9 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet BLVDS The LatticeSC devices support BLVDS standard. This standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals. Figure 3-2. BLVDS Multi-point Output Example Table 3-2. BLVDS DC Conditions1 Over Recommended Operating Conditions Nominal Symbol Description Zo = 45 Zo = 90 Units Z OUT Output impedance 100 100 ohm RTLEFT Left end termination 45 90 ohm RTRIGHT Right end termination 45 90 ohm V OH Output high voltage 1.375 1.48 V V OL Output low voltage 1.125 1.02 V V OD Output differential voltage 0.25 0.46 V V CM Output common mode voltage 1.25 1.25 V I DC DC output current 11.2 10.2 mA 1. For input buffer, see LVDS table. Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential 100 100 2.5V 2.5V 100 100 2.5V 2.5V 100 100 2.5V 2.5V + - 100 100 2.5V 2.5V + - . . . 45-90 ohms, +/- 1% 45-90 ohms, +/- 1% + - + - . . . % - + -3-10 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet LVPECL The LatticeSC devices support differential LVPECL standard. This standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals. Figure 3-3. Differential LVPECL Table 3-3. LVPECL DC Conditions1 Over Recommended Operating Conditions For further information on LVPECL, BLVDS, MLVDS and other differential interfaces please see details of additional technical documentation at the end of this data sheet. On-die Differential Common Mode Termination Symbol Description Nominal Units Z OUT Output impedance 16 ohm RS Driver series resistor 85 ohm RP Driver parallel resistor 150 ohm RT Receiver termination 100 ohm V OH Output high voltage 2.03 V V OL Output low voltage 1.27 V V OD Output differential voltage 0.76 V V CM Output common mode voltage 1.65 V Z BACK Back impedance 86 ohm I DC DC output current 12.6 mA 1. For input buffer, see LVDS table. Symbol Description Min. Typ. Max. Units CCMT Capacitance VCMT to GND — 40 — pF Transmission line, Zo = 100 ohm differential 100 ohms 150 ohms ON-chip OFF-chip 3.3V 3.3V 24mA ~16 ohms 24mA ~16 ohms + 85 ohms +/-1% 85 ohms +/-1% Zback -3-11 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Typical Building Block Function Performance Pin to Pin Performance (LVCMOS25 12 mA Drive) Register-to-Register Performance Switching Characteristics All devices are 100% functionally tested. Listed below are representative values of internal and external timing parameters. For more specific, more precise, and worst-case guaranteed data at a particular temperature and voltage use the values reported by the static timing analyzer in the ispLEVER design tool from Lattice and back-annotate to the simulation net list. Function -7 -6 -5 Units Basic Functions 32-bit Decoder 6.02 6.49 7.00 ns Combinatorial (Pin to LUT to Pin) 4.91 5.24 5.56 ns Embedded Memory Functions (Single Port RAM) Pin to EBR Input Register Setup (Global Clock) 1.42 1.50 1.58 ns EBR Output Clock to Pin (Global Clock) 7.72 8.53 9.67 ns Distributed (PFU) RAM (Single Port RAM) Pin to PFU RAM Register Setup (Global Clock) 1.70 1.84 2.05 ns PFU RAM Clock to Pin (Global Clock) 5.66 6.19 6.73 ns Function -7 -6 -5 Units Basic Functions 32-Bit Decoder 455 432 398 MHz 64-Bit Decoder 405 381 368 MHz 16:1 MUX 524 487 447 MHz 32:1 MUX 507 458 424 MHz 16-Bit Adder 567 477 481 MHz 64-Bit Adder 325 296 270 MHz 16-Bit Counter 690 622 565 MHz 64-Bit Counter 355 320 291 MHz 32x8 SP RAM (PFU, Output Registered) 748 686 602 MHz 128x8 SP RAM (PFU, Output Registered) 544 472 471 MHz Embedded Memory Functions Single Port RAM (512x36 Bits) 359 341 325 MHz True Dual Port RAM 1024x18 Bits (No EBR Out Reg) 314 279 265 MHz True dual port RAM 1024x18 Bits (EBR Reg) 359 341 325 MHz FIFO port (A: x36 bits, B: x9 Bits, No EBR Out Reg) 315 290 243 MHz FIFO port (A: x36 bits, B: x9 Bits, EBR Reg) 361 342 325 MHz True DP RAM Width Cascading (1024x72) 346 285 280 MHz DSP Functions 9x9 1-stage Multiplier 196 176 158 MHz 18x18 1-Stage Mutiplier 140 126 109 MHz 9x9 3-Stage Pipelined Multiplier 347 332 281 MHz 18x18 4-Stage Pipelined Mutiplier 298 280 250 MHz 9x9 Constant Multiplier 359 341 325 MHz3-12 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet LatticeSC External Switching Characteristics4 Over Recommended Operating Conditions Parameter Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units General I/O Pin Parameters (Using Primary Clock without PLL)2 t CO Global Clock Input to Output - PIO Output Register — 5.00 — 5.54 — 6.08 ns t SU Global Clock Input Setup - PIO Input Register without fixed input delay 0.00 — 0.00 — 0.00 — ns t H Global Clock Input Hold - PIO Input Register without fixed input delay 1.14 — 1.14 — 1.14 — ns t SU_IDLY Global Clock Input Setup - PIO Input Register with input delay 0.68 — 0.83 — 0.73 — ns t H_IDLY Global Clock Input Hold - PIO Input Register with input delay 0.00 — 0.00 — 0.00 — ns f MAX_PFU Global Clock frequency of PFU register — 700 — 700 — 700 MHz f MAX_IO Global Clock frequency of I/O register — 1000 — 1000 — 1000 MHz t GC_SKEW Global Clock skew 89 — 103 — 116 — ps General I/O Pin Parameters (Using Primary Clock with PLL)1, 2 t CO Global Clock Input to Output - PIO Output Register — 4.02 — 4.42 — 4.83 ns t SU Global Clock Input Setup - PIO Input Register without fixed input delay 0.00 — 0.00 — 0.00 — ns t H Global Clock Input Hold - PIO Input Register without fixed input delay 0.60 — 0.60 — 0.60 — ns * Note: No PLL delay tuning (clock injection removal mode), system clock feedback. General I/O Pin Parameters (Using Edge Clock without PLL)2 t CO Edge Clock Input to Output - PIO Output Register — 4.14 — 4.60 — 5.08 ns t SU Edge Clock Input Setup - PIO Input Register without fixed input delay 0.00 — 0.00 — 0.00 — ns t H Edge Clock Input Hold - PIO Input Register without fixed input delay 0.48 — 0.48 — 0.48 — ns t SU_IDLY Edgel Clock Input Setup - PIO Input Register with input delay 0.53 — 0.66 — 0.78 — ns t H_IDLY Edge Clock Input Hold - PIO Input Register with input delay 0.00 — 0.00 — 0.00 — ns t EC_SKEW Edge Clock skew 28 — 32 — 36 — ps General I/O Pin Parameters (Using Latch FF without PLL)2 t SU Latch FF, Input Setup - PIO Input Register without fixed input delay 0.00 — 0.00 — 0.00 — ns t H Latch FF, Input Hold - PIO Input Register without fixed input delay 0.51 — 0.51 — 0.51 — ns t SU_IDLY Latch FF, Input Setup - PIO Input Register with input delay 0.71 — 0.83 — 0.96 — ns t H_IDLY Latch FF, Input Hold - PIO Input Register with input delay 0.00 — 0.00 — 0.00 — ns 1. No PLL delay tuning (clock injection removal mode, system clock feedback). 2. Using LVCMOS25 12mA I/O. 3. A complete listing of Timing Parameters can be displayed in ispLEVER. This is a sampling of the key timing parameters. 4. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time.3-13 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet LatticeSC Internal Timing Parameters1, 2 Over Recommended Operating Conditions Parameter Symbol Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units PFU Logic Mode Timing t LUT4_PFU CTOF_DEL LUT4 delay (A to D inputs to F output) — 0.046 — 0.050 — 0.054 ns t LUT5_PFU MTOOFX_DEL LUT5 delay (inputs to output) — 0.157 — 0.174 — 0.192 ns t LUT6_PFU CTOOFX_DEL LUT6 delay (A to D inputs to OFX output) — 0.130 — 0.144 — 0.157 ns t LSR_PFU LSR_DEL Set/Reset to output (asynchronous) — 0.393 — 0.433 — 0.474 ns t SUM_PFU M_SET Clock to Mux (M0,M1) input setup time 0.118 — 0.133 — 0.148 — ns t HM_PFU M_HLD Clock to Mux (M0,M1) input hold time 0.000 — 0.000 — 0.000 — ns t SUD_PFU DIN_SET Clock to D input setup time -0.025 — -0.026 — -0.027 — ns t HD_PFU DIN_HLD Clock to D input hold time 0.000 — 0.000 — 0.000 — ns t CK2Q_PFU REG_DEL Clock to Q delay, D-type register configuration — 0.232 — 0.256 — 0.279 ns t LE2Q_PFU LTCH_DEL Clock to Q delay latch configuration — 0.305 — 0.336 — 0.367 ns t LD2Q_PFU TLTCH_DEL D to Q throughput delay when latch is enabled — 0.311 — 0.344 — 0.376 ns PFU Memory Mode Timing t CORAM_PFU CLKTOF_DEL Clock to Output — 0.596 — 0.660 — 0.724 ns t SUDATA_PFU DIN_SET Data Setup Time -0.025 — -0.026 — -0.027 — ns t HDATA_PFU DIN_HLD Data Hold Time 0.000 — 0.000 — 0.000 — ns t SUADDR_PFU WAD_SET Address Setup Time -0.183 — -0.199 — -0.215 — ns t HADDR_PFU WAD_HLD Address Hold Time 0.114 — 0.126 — 0.138 — ns t SUWREN_PFU WE_SET Write/Read Enable Setup Time 0.014 — 0.019 — 0.024 — ns t HWREN_PFU WE_HLD Write/Read Enable Hold Time 0.081 — 0.087 — 0.094 — ns PIC Timing PIO Input/Output Buffer Timing t IN_PIO IN_DEL Input Buffer Delay (LVCMOS25) 0.559 0.839 0.635 1.036 0.686 1.309 ns t OUT_PIO DOPADI_DEL Output Buffer Delay (LVCMOS25) 1.946 4.254 2.154 5.436 2.362 6.619 ns IOLOGIC Input/Output Timing t SUI_PIO DIN_SET Input Register Setup Time (Data Before Clock) -0.073 — -0.077 — -0.082 — ns t HI_PIO DIN_HLD Input Register Hold Time (Data after Clock) 0.000 — 0.000 — 0.000 — ns t COO_PIO CK_DEL Output Register Clock to Output Delay — 0.532 — 0.580 — 0.639 ns t SUCE_PIO CE_SET Input Register Clock Enable Setup Time — 0.000 — 0.000 — 0.000 ns3-14 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet t HCE_PIO CE_HLD Input Register Clock Enable Hold Time — 0.134 — 0.148 — 0.161 ns t SULSR_PIO LSR_SET Set/Reset Setup Time 0.059 — 0.061 — 0.063 — ns t HLSR_PIO LSR_HLD Set/Reset Hold Time 0.000 — 0.000 — 0.000 — ns t LE2Q_PIO CK_DEL Input Register Clock to Q delay latch configuration — 0.348 — 0.379 — 0.410 ns t LD2Q_PIO DIN_DEL Input Registe D to Q throughput delay when latch is enabled — 0.600 — 0.658 — 0.717 ns EBR Timing t CO_EBR CK_Q_DEL Clock (Read) to output from Address or Data — 2.004 — 2.191 — 2.377 ns t COO_EBR CK_Q_DEL Clock (Write) to output from EBR output Register — 2.004 — 2.191 — 2.377 ns t SUDATA_EBR D_CK_SET Setup Data to EBR Memory (Write clk) 0.095 — 0.088 — 0.082 — ns t HDATA_EBR D_CK_HLD Hold Data to EBR Memory (Write clk) 0.219 — 0.254 — 0.289 — ns t SUADDR_EBR A_CK_SET Setup Address to EBR Memroy (Write clk) 0.074 — 0.060 — 0.047 — ns t HADDR_EBR A_CK_HLD Hold Address to EBR Memory (Write clk) 0.218 — 0.255 — 0.291 — ns t SUWREN_EBR CE_CK_SET Setup Write/Read Enable to EBR Memory (Write/ Read clk) 0.233 — 0.230 — 0.226 — ns t HWREN_EBR CE_CK_HLD Hold Write/Read Enable to EBR Memory (write/read clk) 0.076 — 0.096 — 0.116 — ns t SUCE_EBR CS_CK_SET Clock Enable Setup Time to EBR Output Register (Read clk) 0.271 — 0.274 — 0.276 — ns t HCE_EBR CS_CK_HLD Clock Enable Hold Time to EBR Output Register (Read clk) 0.024 — 0.040 — 0.055 — ns t RSTO_EBR RESET_Q_DEL Reset To Output Delay Time from EBR Output Register (asynchronous) — 0.663 — 0.736 — 0.809 ns Cycle Boosting Timing t DEL1 DEL1 Cycle boosting delay 1 applies to PIO, PFU, EBR — 0.498 — 0.534 — 0.570 ns t DEL2 DEL2 Cycle boosting delay 2 applies to PIO, PFU, EBR — 0.956 — 1.022 — 1.090 ns t DEL3 DEL3 Cycle boosting delay 3 applies to PIO, PFU, EBR — 1.418 — 1.514 — 1.612 ns 1. A complete listing of Timing Parameters can be displayed in ispLEVER. This is a sampling of the key timing parameters. 2. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. LatticeSC Internal Timing Parameters1, 2 (Continued) Over Recommended Operating Conditions Parameter Symbol Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units3-15 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Timing Diagrams PFU Timing Diagrams Figure 3-4. Slice Single/Dual Port Write Cycle Timing Notes: • Rising Edge for latching WREN, WAD and DATAIN. • WREN must continue past falling edge clock. • Data output occurs on negative edge. Figure 3-5. Slice Single/Dual Port Read Cycle Timing D D AD Old Data CK WRE DI DO AD D AD Old Data CK WRE DO AD3-16 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet EBR Memory Timing Diagrams Figure 3-6. Read Mode Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. Figure 3-7. Read Mode with Input Registers Only A0 A1 A0 A1 D0 D1 A0 t ACCESS t ACCESS t ACCESS t ACCESS t SU t H D0 D1 D0 CLKA CSA WEA ADA DIA DOA A0 A1 A0 A1 D0 D1 Mem(n) data from previous read D0 D1 output is only updated during a read cycle t SU t H t ACCESS t ACCESS CLKA CSA WEA ADA DIA DOA3-17 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Figure 3-8. Read Mode with Input and Output Registers Figure 3-9. Read Before Write (SP Read/Write on Port A, Input Registers Only) Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. A0 A1 A0 A0 D0 D1 D0 D0 output is only updated during a read cycle A1 D1 Mem(n) data from previous read D0 D1 Mem(n) data from previous read DOA t SU t H t ACCESS t ACCESS CLKA CSA WEA ADA DIA DOA DOA (Registered) A0 A1 A0 A1 D0 D1 D2 A0 D2 D3 D1 old A0 Data old A1 Data D0 D1 t SU t H t ACCESS t ACCESS t ACCESS t ACCESS t ACCESS CLKA CSA WEA ADA DIA DOA3-18 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Figure 3-10. Write Through (SP Read/Write On Port A, Input Registers Only) Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. Figure 3-11. FIFO Reset Waveform Note: RE and WE must be deactivated tRSU before the Positive FIFO reset edge and enabled tRSH after the FIFO reset negative edge. A0 A1 A0 D0 D1 D4 t SU t ACCESS t ACCESS t ACCESS t H D2 D3 D4 D0 D1 D2 Data from Prev Read or Write Three consecutive writes to A0 D3 t ACCESS CLKA CSA WEA ADA DIA DOA t RW t RSU t RSU t RSF t RSF t RSH Asynchronous RESET, RESET pulse width (tRW), RESET to Flag valid (tRSF), RESET hold time (tRSH) t RSH RE RST EF, AE flags WE FF, AF flags DO3-19 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Figure 3-12. Read Pointer Reset Waveform Note: RE and WE must be deactivated tRSU before the Positive FIFO reset edge and enabled tRSH after the FIFO reset negative edge. Figure 3-13. Waveforms First Read after Full Flag t RW t RSU t RSF t RSU t RSH t ACCESS_F t ACCESS_E t RSH RESET pulse width (tRW), RESET to Flag valid (tRSF), RST_B RESET hold time (tRSH) RE RCLK EF, AE flags WE WCLK FF, AF flags First Read Last Write (FIFO FULL) t SU1 t CO t CO t SU1 t H1 t SKEW t H1 WCLK RE RCLK FF (flag) WE CS3-20 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Figure 3-14. Waveform First Write after Empty Flag First Write Last Read (FIFO Empty) RCLK WE WCLK EF (flag) RE CS t SU1 t SU1 t CO t SKEW t CO t H1 t H13-21 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet LatticeSC Family Timing Adders Over Recommended Operating Conditions Buffer Type Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units LVDS LVDS -0.032 -0.032 -0.011 -0.011 0.009 0.009 ns RSDS RSDS -0.032 -0.032 -0.011 -0.011 0.009 0.009 ns BLVDS25 BLVDS -0.032 -0.032 -0.011 -0.011 0.009 0.009 ns MLVDS25 MLVDS -0.032 -0.032 -0.011 -0.011 0.009 0.009 ns HYPT Hypertransport -0.021 -0.03 -0.002 -0.005 0.02 0.017 ns LVPECL33 LVPECL -0.032 -0.032 -0.011 -0.011 0.009 0.009 ns HSTL18_I HSTL_18 class I -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL18_II HSTL_18 class II -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL18_III HSTL_18 class III -0.017 -0.019 0.008 0.002 0.032 0.023 ns HSTL18_IV HSTL_18 class IV -0.017 -0.019 0.008 0.002 0.032 0.023 ns HSTL18D_I Differential HSTL 18 class I 0.005 0.001 0.029 0.024 0.052 0.046 ns HSTL18D_II Differential HSTL 18 class II 0.005 0.001 0.029 0.024 0.052 0.046 ns HSTL15_I HSTL_15 class I -0.006 -0.017 0.026 -0.001 0.057 0.014 ns HSTL15_II HSTL_15 class II -0.006 -0.017 0.026 -0.001 0.057 0.014 ns HSTL15_III HSTL_15 class III -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL15_IV HSTL_15 class IV -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL15D_I Differential HSTL 15 class I -0.022 -0.023 0 -0.01 0.022 0.003 ns HSTL15D_II Differential HSTL 15 class II -0.022 -0.023 0 -0.01 0.022 0.003 ns SSTL33_I SSTL_3 class I -0.037 -0.063 -0.182 -0.314 -0.326 -0.565 ns SSTL33_II SSTL_3 class II -0.037 -0.063 -0.182 -0.314 -0.326 -0.565 ns SSTL33D_I Differential SSTL_3 class I 0.012 0.012 0.034 0.028 0.055 0.043 ns SSTL33D_II Differential SSTL_3 class II 0.012 0.012 0.034 0.028 0.055 0.043 ns SSTL25_I SSTL_2 class I 0.003 -0.009 0.03 0.011 0.058 0.03 ns SSTL25_II SSTL_2 class II 0.003 -0.009 0.03 0.011 0.058 0.03 ns SSTL25D_I Differential SSTL_2 class I 0.005 0 0.031 0.023 0.056 0.046 ns SSTL25D_II Differential SSTL_2 class II 0.005 0 0.031 0.023 0.056 0.046 ns SSTL18_I SSTL_18 class I -0.013 -0.015 0.015 0.007 0.042 0.029 ns SSTL18_II SSTL_18 class II -0.013 -0.015 0.015 0.007 0.042 0.029 ns SSTL18D_I Differential SSTL_18 class I 0.005 0.001 0.029 0.024 0.052 0.046 ns SSTL18D_II Differential SSTL_18 class II 0.005 0.001 0.029 0.024 0.052 0.046 ns LVTTL33 LVTTL 0.035 0.035 -0.05 -0.05 -0.134 -0.134 ns LVCMOS33 LVCMOS 3.3 0.035 0.035 -0.05 -0.05 -0.134 -0.134 ns LVCMOS25 LVCMOS 2.5 0 0 0 0 0 0 ns LVCMOS18 LVCMOS 1.8 -0.07 -0.07 -0.087 -0.087 -0.105 -0.105 ns LVCMOS15 LVCMOS 1.5 -0.135 -0.135 -0.188 -0.188 -0.241 -0.241 ns LVCMOS12 LVCMOS 1.2 -0.245 -0.245 -0.367 -0.367 -0.49 -0.49 ns PCI33 PCI 0.035 -0.063 -0.05 -0.314 -0.134 -0.565 ns PCIX33 PCI-X 3.3 0.035 -0.063 -0.05 -0.314 -0.134 -0.565 ns PCIX15 PCI-X 1.5 -0.006 -0.017 0.026 -0.001 0.057 0.014 ns AGP1X33 AGP-1X 3.3 0.035 -0.063 -0.05 -0.314 -0.134 -0.565 ns AGP2X33 AGP-2X -0.037 -0.063 -0.182 -0.314 -0.326 -0.565 ns3-22 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet GTLPLUS15 GTLPLUS15 -0.013 -0.018 0.012 0.003 0.037 0.024 ns GTL12 GTL12 -0.065 -0.074 -0.009 -0.049 0.056 -0.032 ns LVDS LVDS 0.022 -1.3932 0.0255 -1.602 0.029 -1.81 ns RSDS RSDS 0.022 -1.3932 0.0255 -1.602 0.029 -1.81 ns BLVDS25 BLVDS 0.362 0.362 0.394 0.394 0.427 0.427 ns MLVDS25 MLVDS 0.134 0.134 0.136 0.136 0.138 0.138 ns LVPECL33 LVPECL -0.125 -6.5322 -0.1435 -7.512 -0.163 -8.491 ns HYPT Hypertransport -0.007 -1.5752 -0.0085 -1.812 -0.009 -2.048 ns HSTL18_I HSTL_18 class I 0.057 0.021 0.068 0.014 0.078 0.007 ns HSTL18_II HSTL_18 class II 0.144 0.062 0.142 0.094 0.14 0.127 ns HSTL18D_I Differential HSTL 18 class I 0.057 0.021 0.068 0.014 0.078 0.007 ns HSTL18D_II Differential HSTL 18 class II 0.144 0.062 0.142 0.094 0.14 0.127 ns HSTL15_I HSTL_15 class I 0.095 0.064 0.075 0.062 0.061 0.055 ns HSTL15_II HSTL_15 class II 0.126 0.107 0.118 0.107 0.11 0.097 ns HSTL15D_I Differential HSTL 15 class I 0.095 0.064 0.075 0.062 0.061 0.055 ns HSTL15D_II Differential HSTL 15 class II 0.126 0.107 0.118 0.107 0.11 0.097 ns SSTL33_I SSTL_3 class I 0.179 0.179 0.169 0.169 0.159 0.159 ns SSTL33_II SSTL_3 class II 0.199 0.199 0.193 0.193 0.187 0.187 ns SSTL33D_I Differential SSTL_3 class I 0.179 0.179 0.169 0.169 0.159 0.159 ns SSTL33D_II Differential SSTL_3 class II 0.199 0.199 0.193 0.193 0.187 0.187 ns SSTL25_I SSTL_2 class I 0.061 0.026 0.067 0.033 0.073 0.04 ns SSTL25_II SSTL_2 class II 0.07 0.063 0.075 0.066 0.081 0.069 ns SSTL25D_I Differential SSTL_2 class I 0.061 0.026 0.067 0.033 0.073 0.04 ns SSTL25D_II Differential SSTL_2 class II 0.07 0.063 0.075 0.066 0.081 0.069 ns SSTL18_I SSTL_2 class I 0.111 0.078 0.1 0.086 0.094 0.089 ns SSTL18_II SSTL_2 class II 0.142 0.087 0.132 0.098 0.122 0.099 ns SSTL18D_I Differential SSTL_2 class I 0.111 0.078 0.1 0.086 0.094 0.089 ns SSTL18D_II Differential SSTL_2 class II 0.142 0.087 0.132 0.098 0.122 0.099 ns LVTTL33_8mA LVTTL 8mA drive -0.112 -0.112 -0.203 -0.203 -0.293 -0.293 ns LVTTL33_16mA LVTTL 16mA drive 0.094 0.094 0.034 0.034 -0.026 -0.026 ns LVTTL33_24mA LVTTL 24mA drive 0.168 0.168 0.119 0.119 0.07 0.07 ns LVCMOS33_8mA LVCMOS 3.3 8mA drive -0.112 -0.112 -0.203 -0.203 -0.293 -0.293 ns LVCMOS33_16mA LVCMOS 3.3 16mA drive 0.094 0.094 0.034 0.034 -0.026 -0.026 ns LVCMOS33_24mA LVCMOS 3.3 24mA drive 0.168 0.168 0.119 0.119 0.07 0.07 ns LVCMOS25_4mA LVCMOS 2.5 4mA drive -0.144 -0.144 -0.154 -0.154 -0.163 -0.163 ns LVCMOS25_8mA LVCMOS 2.5 8mA drive 0 0 0 0 0 0 ns LVCMOS25_12mA LVCMOS 2.5 12mA drive 0.041 0.041 0.044 0.044 0.048 0.048 ns LVCMOS25_16mA LVCMOS 2.5 16mA drive 0.065 0.065 0.07 0.07 0.075 0.075 ns LVCMOS25_OD LVCMOS 2.5 open drain -0.022 -0.283 -0.014 -0.263 -0.006 -0.244 ns LVCMOS18_4mA LVCMOS 1.8 4mA drive -0.135 -0.135 -0.173 -0.173 -0.211 -0.211 ns LVCMOS18_8mA LVCMOS 1.8 8mA drive 0.006 0.006 0.001 0.001 -0.004 -0.004 ns LatticeSC Family Timing Adders (Continued) Over Recommended Operating Conditions Buffer Type Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units3-23 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet LVCMOS18_12mA LVCMOS 1.8 12mA drive 0.053 0.053 0.058 0.058 0.063 0.063 ns LVCMOS18_16mA LVCMOS 1.8 16mA drive 0.082 0.082 0.086 0.086 0.091 0.091 ns LVCMOS18_OD LVCMOS 1.8 open drain 0.032 -0.22 0.002 -0.26 0.001 -0.301 ns LVCMOS15_4mA LVCMOS 1.5 4mA drive -0.081 -0.081 -0.167 -0.167 -0.252 -0.252 ns LVCMOS15_8mA LVCMOS 1.5 8mA drive 0.062 0.062 0.014 0.014 -0.033 -0.033 ns LVCMOS15_12mA LVCMOS 1.5 12mA drive 0.056 0.056 0.041 0.041 0.026 0.026 ns LVCMOS15_16mA LVCMOS 1.5 16mA drive 0.085 0.085 0.073 0.073 0.061 0.061 ns LVCMOS15_OD LVCMOS 1.5 open drain 0.04 -0.27 0.002 -0.305 -0.035 -0.34 ns LVCMOS12_2mA LVCMOS 1.2 2mA drive -0.136 -0.136 -0.229 -0.229 -0.321 -0.321 ns LVCMOS12_4mA LVCMOS 1.2 4mA drive 0.018 0.018 -0.042 -0.042 -0.101 -0.101 ns LVCMOS12_8mA LVCMOS 1.2 8mA drive 0.08 0.08 0.02 0.02 -0.041 -0.041 ns LVCMOS12_12mA LVCMOS 1.2 12mA drive 0.112 0.112 0.051 0.051 -0.011 -0.011 ns LVCMOS12_OD LVCMOS 1.2 open drain -0.013 -0.366 -0.054 -0.39 -0.094 -0.413 ns PCI33 PCI 0.0205 0.1589 0.0236 0.1822 0.027 0.206 ns PCIX33 PCI-X 3.3 0.0205 0.1589 0.0236 0.1822 0.027 0.206 ns PCIX15 PCI-X 1.5 0.107 0.107 0.107 0.107 0.108 0.108 ns AGP1X33 AGP-1X 3.3 0.0205 0.1589 0.0236 0.1822 0.027 0.206 ns AGP2X33 AGP-2X 0.0205 0.1589 0.0236 0.1822 0.027 0.206 ns LatticeSC Family Timing Adders (Continued) Over Recommended Operating Conditions Buffer Type Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units3-24 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet sysCLOCK PLL Timing Over Recommended Operating Conditions Parameter Description Conditions Min. Typ Max. Units f IN Input Clock Frequency (CLKI, CLKFB) 15 — 1000 MHz f OUT Output Clock Frequency (CLKOP, CLKOS) 1.5625 — 1000 MHz f VCO PLL VCO Frequency 100 — 1000 MHz f PFD Phase Detector Input Frequency 15 — 700 MHz AC Characteristics t DT Output Clock Duty Cycle Default duty cycle selected (at 50% levels) 45 — 55 % t OPJIT Output Clock Period Jitter f REF ≥ 50MHz — — 0.02 UI f REF < 50MHz — — 0.01m UI/VCO (MHz) UI t CPJIT Output Clock Cycle-to-Cycle Jitter Without feedback dividers — — 0.03 UI With feedback dividers — — 150 ps t SKEW Output Clock-to-Clock Skew (Between Two Outputs with the Same Phase Setting) — — 20 ps t LOCK PLL Lock-in Time — — 1 ms t IPJIT Input Clock Period Jitter — — +/- 250 ps t HI Input Clock High Time At 80% level 350 — — ps t LO Input Clock Low Time At 20% level 350 — — ps t RSWA Analog Reset Signal Pulse Width 100 — — ns t RSWD Digital Reset Signal Pulse Width 3 — — ns t DEL Timeshift Delay Step Size — 80 — ps t RANGE Timeshift Delay Range — +/- 560 — ps f SS Spread Spectrum Modulation Frequency 30 — 500 KHz % Spread Percentage Downspread for SS Mode 1 — 3 %3-25 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet sysCLOCK DLL Timing Over Recommended Operating Conditions Parameter Description Conditions Min. Typ. Max. Units f IN Input Clock Frequency (CLKI, CLKFB) 100 — 700 MHz f OUTOP Output Clock Frequency (CLKOP) 100 — 700 MHz f OUTOS Output Clock Frequency (CLKOS) 25 — 700 MHz AC Characteristics t DUTY Output Clock Duty Cycle Output Clock Duty Cycle (at 50% levels, 50% duty cycle input clock, duty cycle correction turned off, time reference delay mode) 38 — 62 % t DUTYRD Output Clock Duty Cycle Output Clock Duty Cycle (at 50% levels, arbitrary duty cycle input clock, duty cycle correction turned on, time reference delay mode) 45 — 55 % t DUTYCIR Output Clock Duty Cycle Output Clock Duty Cycle (at 50% levels, arbitrary duty cycle input clock, duty cycle correction turned on, clock injection removal mode) 40 — 60 % t OPJIT Output Clock Period Jitter — — 200 ps t CPJIT Output Clock Cycle-to-Cycle Jitter — — 200 ps t SKEW Output Clock to Clock Skew (Between Two Outputs with the Same Phase Setting) — — 100 ps t LOCK DLL Lock-in Time 8 — 18500 cycles t IPJIT Input Clock Period Jitter — — +/- 250 ps t HI Input Clock High Time At 80% level 500 — — ps t LO Input Clock Low Time At 20% level 500 — — ps t RSWD Reset Signal Pulse Width 3 — — ns t DEL Timeshift Delay Step Size 25 42 90 ps3-26 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet LatticeSC sysCONFIG Port Timing Over Recommended Operating Conditions Parameter Description Min. Max. Units General Configuration Timing t SMODE M[3:0] Setup Time to INITN High 0 — ns t HMODE M[3:0] Hold Time from INITN High 600 — ns t RW RESETN Pulse Width Low to Start Reconfiguration (1.2 V) 50 (or 100 at 0.95V) — ns t PGW PROGRAMN Pulse Width Low to Start Reconfiguration (1.2 V) 50 (or 100 at 0.95V) — ns f ESB_CLK_FRQ System Bus ESB_CLK Frequency (No Wait States) — 133 MHz sysCONFIG Master Serial Configuration Mode t SMS DIN Setup Time 4.4 — ns t HMS DIN Hold Time 0 — ns f CMS CCLK Frequency (No Divider) 90 190 MHz f C_DIV CCLK Frequency (Div 128) 0.70 1.48 MHz t D CCLK to DOUT Delay — 7.5 ns sysCONFIG Master Parallel Configuration Mode t AVMP RCLK to Address Valid — 10 ns t SMP D[7:0] Setup Time to RCLK High 6 — ns t HMP D[7:0] Hold Time to RCLK High 0 — ns t CLMP RCLK Low Time 8 190 MHz t CHMP RCLK High Time 0.63 1.48 MHz t DMP CCLK to DOUT — 7.5 ns sysCONFIG Asynchronous Peripheral Configuration Mode t WRAP WRN, CS0N and CS1 Pulse Width 5 - ns t SAP D[7:0] Setup Time 1.5 - ns t RDYAP RDY Delay — 8 ns t BAP RDY Low 1 8 CCLK periods t WR2AP Earliest WRN After RDY Goes High 0 — ns t DENAP RDN to D[7:0] Enable/Disable — 7.5 ns t DAP CCLK to DOUT — 7.5 ns sysCONFIG Slave Serial Configuration Mode t SSS DIN Setup Time 5.2 — ns t HSS DIN Hold Time 0 — ns t CHSS CCLK High Time 3.75 — ns t CLSS CCLK Low Time 3.75 — ns f CSS CCLK Frequency — 150 MHz t DSS CCLK to DOUT — 7.5 ns sysCONFIG Slave Parallel Configuration Mode t S1SP CS0N, CS1, WRN Setup Time 5.2 — ns t H1SP CS0N, CS1, WRN Hold Time 0 — ns t S2SP D[7:0] Setup Time 5.2 — ns t H2SP D[7:0] Hold Time 0 — ns t CHSP CCLK High Time 3.75 — ns3-27 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet sysCONFIG MPI Port t CL CCLK Low Time 3.75 — ns f CSP CCLK Frequency — 150 MHz sysCONFIG Readback Timing t SRB RDCFGN to CCLK Setup Time 5.2 — ns t RBA RDCFGN High Width to Abort Readback 2 — CCLK Cycles t CLRB CCLK Low Time 3.33 — ns t CHRB CCLK High Time 3.33 — ns f CRB CCLK Frequency — 150 MHz t DRB CCLK to RDDATA Delay — 7.5 ns Parameter Description -7 -6 -5 Min. Max. Min. Max. Min. Max. Units t MPICTRL_SET MPI Control (MPCSTRBN, MPCWRN, MPCCLK, etc.) to MPCCLK Setup Time 4.9 — 5.2 — 5.5 — ns t MPIADR_SET MPI Address to MPCCLK Setup Time 3.9 — 4.2 — 4.5 — ns t MPIDAT_SET MPI Write Data to MPCCLK Setup Time 4.9 — 5.2 — 5.5 — ns t MPIDPAR_SET MPI Write Parity Data to MPCCLK Setup Time 3.9 — 4.2 — 4.5 — ns t MPI_HLD All Hold Times 0 — 0 — 0 — ns t MPICTRL_DEL MPCCLK to MPI Control (MPCTA, MPCTEA, MPCRETRY) — 5.6 — 6.7 — 8.7 ns t MPIDAT_DEL MPCCLK to MPI Data — 5.6 — 6.7 — 8.7 ns t MPIDPAR_DEL MPCCLK to MPI Parity Data — 4.9 — 5.7 — 7.7 ns f MPI_CLK_FRQ MPCCLK Frequency — 100 — 83 — 66 MHz LatticeSC sysCONFIG Port Timing (Continued) Over Recommended Operating Conditions Parameter Description Min. Max. Units3-28 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Boundary Scan Timing Specifications Over Recommended Operating Conditions Symbol Parameter Min. Max. Units f MAX — 25 MHz t BTCP TCK [BSCAN] Clock Pulse Width 40 — ns t BTCPH TCK [BSCAN] Clock Pulse Width High 50 — mV/ns t BTCPL TCK [BSCAN] Clock Pulse Width Low — 10 ns t BTS TCK [BSCAN] Setup Time — 10 ns t BTH TCK [BSCAN] Hold Time 8 — ns t BTRF TCK [BSCAN] Rise/Fall Time 10 — ns t BTCO TAP Controller Falling Edge of Clock to Valid Output 20 — ns t BTCODIS TAP Controller Falling Edge of Clock to Valid Disable 20 — ns t BTCOEN TAP Controller Falling Edge of Clock to Valid Enable — 10 ns t BTCRS BSCAN Test Capture Register Setup Time 8 — ns t BTCRH BSCAN Test Capture Register Hold Time 10 — ns t BUTCO BSCAN Test Update Register, Falling Edge of Clock to Valid Output — 25 ns t BTUODIS BSCAN Test Update Register, Falling Edge of Clock to Valid Disable — 25 ns t BTUPOEN BSCAN Test Update Register, Falling Edge of Clock to Valid Enable — 25 ns3-29 DC and Switching Characteristics Lattice Semiconductor LatticeSC Family Data Sheet Switching Test Conditions Figure 3-15 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-4. Figure 3-15. Output Test Load, LVTTL and LVCMOS Standards Table 3-4. Test Fixture Required Components, Non-Terminated Interfaces Test Condition CL Timing Ref. VT LVTTL and other LVCMOS settings (L -> H, H -> L) 30pF LVCMOS 3.3 = 1.5V — LVCMOS 2.5 = VCCIO/2 — LVCMOS 1.8 = VCCIO/2 — LVCMOS 1.5 = VCCIO/2 — LVCMOS 1.2 = VCCIO/2 — LVCMOS 2.5 I/O (Z -> H) 30pF V CCIO/2 VOL LVCMOS 2.5 I/O (Z -> L) VCCIO/2 VOH LVCMOS 2.5 I/O (H -> Z) VOH - 0.15 VOL LVCMOS 2.5 I/O (L -> Z) VOL + 0.15 VOH Note: Output test conditions for all other interfaces are determined by the respective standards. DUT CL Test PointFebruary 2006 Preliminary Data Sheet © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 4-1 Pinouts_01.0 Signal Descriptions Signal Name I/O Description General Purpose P[Edge] [Row/Column Number*]_[A/B/C/D] I/O [Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PIC row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. [A/B/C/D] indicates the PIO within the PIC to which the pad is connected. Some of these user programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration. VREF1_x, VREF2_x — The reference supply pins for I/O bank x. Any I/O pin in a bank can be assigned as a reference supply pin, but software defaults use designated pin. NC — No connect. Non-SERDES Power Supplies VCCIOx — VCCIO - The power supply pins for I/O bank x. Dedicated pins. VCC12 — 1.2V supply for configuration logic and PLLs. VTT_x — Termination voltage for bank x. GND — GND - Ground. Dedicated pins. VCC — VCC - The power supply pins for core logic. Dedicated pins (1.2V/ 1.0V). VCCAUX — VCCAUX - Auxiliary power supply pin - powers all differential and referenced input buffers. Dedicated pins (2.5V). VCCJ — VCCJ - The power supply pin for JTAG Test Access Port. PROBE_VCC — VCC signal - Used for feedback to control the power converter. PROBE_GND — GND signal - Used for feedback to control the power converter. PLL and Clock Functions (Used as user-programmable I/O pins when not in use for PLL, DLL or clock pins.) [LOC]_PLL[T, C]_FB_[A/B] I PLL feedback input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the PLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T, C] indicates whether input is true or complement. [A, B] indicates PLL reference within the corner. [LOC]_DLL[T, C]_FB_[C, D, E, F] I DLL feedback input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the DLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T/C] indicates whether input is true or complement. [C, D, E, F] indicates DLL reference within a corner. Note: E and F are only available on the lower corners. LatticeSC Family Data Sheet Pinout Information4-2 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet [LOC]_PLL[T, C]_IN[A/B] I PLL reference clock input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the PLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T, C] indicates whether input is true or complement.[A, B] indicates PLL reference within the corner. [LOC]_DLL[T, C]_IN[C, D, E, F] DLL reference clock inputs. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the DLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T/C] indicates whether input is true or complement. [C, D, E, F] indicates DLL reference within a corner. Note: E and F are only available on the lower corners. PCLKxy_z General clock inputs. x indicates whether T (true) or C (complement). y indicates the I/O bank the clock is associated with. z indicates the clock number within a bank. Test and Programming (Dedicated pins. Pull-up is enabled on input pins during configuration.) TMS I Test Mode Select input, used to control the 1149.1 state machine. TCK I Test Clock input pin, used to clock the 1149.1 state machine. TDI I Test Data in pin, used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). TDO/RDDATA O Output pin -Test Data out pin used to shift data out of device using 1149.1. If used for serial read-back, RDDATA provides serial configuration data out which is clocked out using CCLK. Configuration Pads (Dedicated pins. Used during sysCONFIG.) M[3:0] I Mode pins used to specify configuration modes values latched on rising edge of INITN. INITN I/O Open Drain pin - Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an active pull-up. DONE I/O Open Drain pin - Indicates that the configuration sequence is complete, and the startup sequence is in progress. CCLK I/O Configuration Clock for configuring an FPGA in sysCONFIG mode. RESETN Reset. (Also sent to general routing). During configuration it resets the configuration state machine. After configuration this pin can perform the global set/reset (GSR) functions or can be used as a general input pin. CFGIRQN O MPI Interrupt request active low signal is controlled by system bus interrupt controller and may be sourced from any bus error or MPI con- figuration error. It can be connected to one of MPC860 IRQ pins. RDCFGN I Enables readback. Configuration Pads (User I/O if not used. Used during sysCONFIG.) HDC O High During Configuration is output high until configuration is complete. It is used as a control output, indicating that configuration is not complete. LDCN O Low During Configuration is output low until configuration is complete. It is used as a control output, indicating that configuration is not complete. Signal Descriptions (Continued) Signal Name I/O Description4-3 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet DOUT O Serial data output that can drive the D0/DIN of daisy-chained slave devices. The data-stream from this output will propagate preamble bits of the bitstream to daisy-chained devices. Data out on DOUT changes on the rising edge of CCLK. QOUT/CEON O During daisy-chaining configuration, QOUT is the serial data output that can drive the D0/DIN of daisy-chained slave devices that do not propagate preamble bits. Data out on QOUT changes on the rising edge of CCLK. During parallel-chaining configuration, active low CEON enables the cascaded slave device to receive bitstream data. RDN I Used in the asynchronous peripheral configuration mode. A low on RDN changes D[7:3] into status outputs. WRN and RDN should not be used simultaneously. If they are, the write strobe overrides. WRN I When the FPGA is selected, a low on the write strobe, WRN, loads the data on D[7:0] inputs into an internal data buffer. CS0N CS1 I Used in the asynchronous peripheral, slave parallel and MPI modes. The FPGA is selected when CS0N is low and CS1 is high. During con- figuration, a pull-up is enabled on both except with MPI DMA access control. A[21:0] I/O In master parallel mode, A[21:0] is an output and will address the con- figuration EPROMs up to 4 MB space. For MPI configuration mode, A[17:0] will be the MPI address MPI_ADDR[31:14], A[19:18] will be the transfer size and A[21:20] will be the burst mode and burst in process. D[n:0] I/O In parallel configuration modes, D[7:0] receives configuration data, and each pin is pull-up enabled. For slave serial mode, D0 is the data input. D[7:3] is the output internal status for peripheral mode when RDN is low. D[7:0] is also the first byte of MPI data pins. In MPI configuration mode, MPI selectable data bus width from 8 and 16-bit. Driven by a bus master in a write transaction. Driven by MPI in a read transaction. DP[m:0] I/O MPI selectable parity data bus width from 1, 2, and 3-bit DP[0] for D[7:0], DP[1] for D[15:8], and DP[2] for D[23:16]. BUSYN/RCLK O During configuration in peripheral mode, high on BUSYN/RCLK indicates another byte can be written to the FPGA. If a read operation is done when the device is selected, the same status is also available on D[7] in asynchronous peripheral mode. During configuration in slave parallel mode, low on BUSYN/RCLK inhibits the external host from sending new data. During configuration in master parallel and master byte modes, BUSYN/RCLK is a read clock output signal to an external memory. The BUSYN/RCLK frequency is the same as CCLK when used with uncompressed bitstreams. BUSYN/RCLK will be 1/8 the frequency of CCLK when the bitstream is compressed. During configuration in SPI mode, BUSYN/RCLK is generated by the device and connected to the CLK input of the FLASH memory. MPI Interface (Dedicated pin) Signal Descriptions (Continued) Signal Name I/O Description4-4 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet MPI_IRQ_N O MPI Interrupt request active low signal is controlled by system bus interrupt controller and may be sourced from any bus error or MPI con- figuration error. It can be connected to one of MPC860 IRQ pins. MPI Interface (User I/O if MPI is not used.) MPI_CS0N MPI_CS1 I MPI chip select pins, active low on MPI_CS0N while active high on MPI_CS1. Both have to be active during the whole transfer data phase. During transfer address phase, both can be inactive so that the decoding for them from address can be slow. If they are active during address phase, one cycle can be saved for sync read. MPI_CLK I This is the PowerPC bus clock. It can be a source of the clock for embedded system bus. If MPI_CLK is used as system bus clock, MPI will be set into sync mode by default. All of the operation on PowerPC side of MPI are synchronized to the rising edge of this clock. MPI_TSIZ[1:0] I Driven by a bus master to indicate the data transfer size for the transaction. 01 for byte, 10 for half-word, and 00 for word. MPI_WR_N I Driven high indicates that a read access is in progress. Driven low indicates that a write access is in process. MPI_BURST I Driven active low indicates that a burst transfer is in progress. Driven high indicates that the current transfer is not a burst. MPI_BDIP I Active low “Burst Data in Process” is driven by a PowerPC processor. Asserted indicates that the second beat in front of the current one is requested by the master. Negated before the burst transfer ends to abort the burst data phase. MPI_STRBN I Driven active low indicates the start of a transaction on the PowerPC bus. MPI will strobe the address bus at next rising edge of clock. MPI_ADDR[31:14] I Address bus driven by a PowerPC bus master. Only 18-bit width is needed. It has to be the least significant bit of the PowerPC 32-bit address A[31:14]. MPI_DAT[n:0] I/O Selectable data bus width from 8, and 16-bit. Driven by a bus master in a write transaction. Driven by MPI in a read transaction. MPI_PAR[m:0] I/O Selectable parity bus width from 1, 2, and 3-bit. MPI_DP[0] for MPI_D[7:0], MPI_DP[1] for MPI_D[15:8] and MPI_DP[2] for MPI_D[23:16]. MPI_TA O Transfer acknowledge. Driven active low indicates that MPI received the data on the write cycle or returned data on the read cycle. MPI_TEA O Transfer Error Acknowledge. Driven active low indicates that MPI detects a bus error on the internal system bus for current transaction. MPI_RETRY O Active low MPI Retry requests the MPC860 to relinquish the bus and retry the cycle. Multi-chip Alignment (User I/O if not used.) MCA_DONE_OUT O Multi-chip alignment done output (to second MCA chip) MCA_DONE_IN I Multi-chip alignment done input (from second MCA chip) MCA_CLK_P[1:2]_OUT O Multi-chip alignment clock [1:2] output (sourced by MCA master chip) MCA_CLK_P[1:2]_IN I Multi-chip alignment clock [1:2] input (from MCA master chip TEMP — Temperature sensing diode pin. Dedicated pin. Miscellaneous Dedicated Pins XRES — External reference resistor between this pin and ground. The reference resistor is used to calibrate the programmable terminating resistors used in the I/Os. Dedicated pin. Value: 1K ± 1% ohm. DIFFRx — Only used if a differential driver is used in a bank. This DIFFRx must be connected to ground via an external 1K ±1% ohm resistor for all banks that have a differential driver. Signal Descriptions (Continued) Signal Name I/O Description4-5 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet SERDES Block (Dedicated Pins) A_HDINPx_[L/R] I High-speed input (positive) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. A_HDINNx_[L/R] I High-speed input (negative) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. A_HDOUTPx_[L/R] O High-speed output (positive) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. A_HDOUTNx_[L/R] O High-speed output (negative) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. A_REFCLKP_[L/R] I Ref clock input (positive), aux channel on left [L] or right [R] side of device. A_REFCLKN_[L/R] I Ref clock input (negative), aux channel on left [L] or right [R] side of device. A_RXREFCLKP_[L/R] I Ref clock input (positive), RX only on left [L] or right [R] side of device. A_RXREFCLKN_[L/R] I Ref clock input (negative), RX only on left [L] or right [R] side of device. A_VDDIBx_[L/R] — Input buffer power supply for channel x (1.2V/1.5V) on left [L] or right [R] side of device. A_VDDOBx_[L/R] — Output buffer power supply for channel x (1.2V/1.5V) on left [L] or right [R] side of device. A_VDDAX25_[L/R] — Auxiliary power for input and output termination (2.5V) on left [L] or right [R] side of device. A_VDDRXx_[L/R] — Receiver power supply for channel x (1.2V) on left [L] or right [R] side of device. A_VDDTXx_[L/R] — Transmitter power supply for channel x (1.2V) on left [L] or right [R] side of device. A_VDDP_[L/R] — Power supply for SERDES PLL (1.2V) on left [L] or right [R] side of device. Signal Descriptions (Continued) Signal Name I/O Description4-6 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet Pin Information Summary Pin Type 900 ffBGA Single Ended User I/O 378 Differential Pair User I/O 182 LVDS Output Pairs 60 Configuration Dedicated 11 User I/O / MPI sysBUS 55 JTAG (excluding VCCJ) 4 Dedicated pins 4 V CC 46 V CC12 17 V CCAUX 36 V CCIO Bank1 18 Bank2 14 Bank3 15 Bank4 15 Bank5 15 Bank6 15 Bank7 16 VTT Bank2 2 Bank3 3 Bank4 3 Bank5 3 Bank6 3 Bank7 2 GND 177 NC 26 Single Ended User/Differential I/O per Bank Bank1 63/30 Bank2 30/15 Bank3 62/29 Bank4 66/32 Bank5 65/32 Bank6 62/29 Bank7 30/15 LVDS Output Pairs per Bank Bank2 9 Bank3 21 Bank6 21 Bank7 9 V CCJ 1 SERDES (signal + power supply) 76 Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.4-7 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet Power Supply and NC Connections1, 3 Ball Function 900 ffBGA Ball Numbers VCC AA10, AA11, AA12, AA13, AA14, AA17, AA18,AA19, AA20, AA21, AA22, AA9, AB10, AB21, J10, J21, J22, J9, K10, K11, K12, K13, K14, K17, K18, K19, K20, K21, K22, K9, L10, L21, M10, M21, N10, N21, P10, P21, U10, U21, V10, V21, W10, W21, Y10, Y21 VCC12 AB9, AB22, AC8, AC23, H8, H23, H15, R23, T8, E5, D4, AG4, AF5, AF26, AG27, D27, E26 VCCIO1 H10, H21, H22, H9, J11, J12, J13, J14, J15, J16, J17, J18, J19, J20, F20, C19, C12, F11 VCCIO2 J23, J24, K23, K24, L22, L23, M22, N22, P22, R22, G30, J29, K27, N25 VCCIO3 AA23, AA24, AB23, AB24, T22, U22, V22, W22, Y22, Y23, Y24, AC29, AA26, Y28, AA29 VCCIO4 AB16, AB17, AB18, AB19, AB20, AC20, AC21, AC22, AD20, AD21, AD22, AJ23, AG20, AJ26, AG23 VCCIO5 AB11, AB12, AB13, AB14, AB15, AC10, AC11, AC9, AD10, AD11, AD9, AE7, AH6, AG11, AJ9 VCCIO6 AA7, AA8, AB7, AB8, T9, U9, V9, W9, Y7, Y8, Y9, AB2, AD1, W4, AA4 VCCIO7 J7, J8, K7, K8, L8, L9, M9, N9, P9, R9, H2, N4, N6, J2, L2, H4 VCCJ J25 VCCAUX H11, H12, H19, H20, M23, M24, N23, N24, U23, U24, V23, V24, W23, W24, AC17, AC18, AC19, AD17, AD18, AD19, AC12, AC13, AC14, AD12, AD13, AD14, U7, U8, V7, V8, W7, W8, M7, M8, N7, N8 GND A1, A30, AA15, AA16, AK1, AK30, K15, K16, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, M11, M12, M13, M14, M15, M16, M17, M18, M19, M20, N11, N12, N13, N14, N15, N16, N17, N18, N19, N20, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, U11, U12, U13, U14, U15, U16, U17, U18, U19, U20, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, W11, W12, W13, W14, W15, W16, W17, W18, W19, W20, Y11, Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, H1, L4, M3, N5, K2, M2, P6, G4, H3, AC2, AA3, AE1, Y4, AB4, AA5, AE6, AE8, AH5, AG9, AG6, AF11, AG12, AJ10, AK26, AJ22, AF20, AJ25, AJ27, AF23, AF22, AE27, AA27, AB29, Y26, AC30, Y29, F30, E27, F27, P25, H29, K29, R24, M28, J27, N26, E20, E21, F21, F23, G23, D21, D20, E18, C20, C11, A12, E11, F8, G8, D11, D10, H7, F10, E10 NC2 M4, P5, J3, AB3, AH9, AG10, AF12, AG7, AK27, AJ24, AB30, AA28, P24, K28, P23, L28, E19, G21, G20, G19, F9, A11, G7, AC16, A2, A29 1. All grounds must be electrically connected at the board level. 2. NC pins should not be connected to any active signals, VCC or GND. 3. SERDES power supply pins not shown, see Logic Signal Connections table for details.4-8 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet VTT Ball Function VCCIO Bank 900 ffBGA Ball Numbers VTT_2 2 L24, T23 VTT_3 3 AC24, T25, W25 VTT_4 4 AD24, AE17, AE18 VTT_5 5 AC15, AD16, AE9 VTT_6 6 AA6, T7, W6 VTT_7 7 L7, P74-9 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet LFSC25 Logic Signal Connections: 900-Ball ffBGA1 Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA A_VDDAX25_L I - - F7 A_REFCLKP_L I - - B1 A_REFCLKN_L I - - C1 A_VDDP_L I - - D5 A_RXREFCLKP_L I - - B2 A_RXREFCLKN_L I - - C2 NC - - - A2 VCC12 VCC12 - - E5 VCC12 VCC12 - - D4 RESETN I 1 0 H5 RDCFGN I 1 0 H6 DONE IO 1 0 G6 INITN IO 1 0 G5 M0 I 1 0 F5 M1 I 1 0 F6 M2 I 1 0 F4 M3 I 1 0 E4 PL16A IO 7 2 ULC_PLLT_IN_A/ULC_PLLT_FB_B D3 PL16B IO 7 2 ULC_PLLC_IN_A/ULC_PLLC_FB_B D2 PL16C IO 7 2 J6 PL16D IO 7 2 J5 PL17A IO 7 2 ULC_DLLT_IN_C/ULC_DLLT_FB_D E3 PL17B IO 7 2 ULC_DLLC_IN_C/ULC_DLLC_FB_D E2 PL17C IO 7 2 ULC_PLLT_IN_B/ULC_PLLT_FB_A K4 PL17D IO 7 2 ULC_PLLC_IN_B/ULC_PLLC_FB_A J4 PL18A IO 7 2 ULC_DLLT_IN_D/ULC_DLLT_FB_C F3 PL18B IO 7 2 ULC_DLLC_IN_D/ULC_DLLC_FB_C G3 PL18C IO 7 2 K5 PL18D IO 7 2 VREF2_7 K6 PL20A IO 7 2 G2 PL20B IO 7 2 G1 PL21A IO 7 2 L5 PL21B IO 7 2 M5 PL22A IO 7 2 F2 PL22B IO 7 2 F1 PL22C IO 7 2 E1 PL22D IO 7 2 D1 PL25A IO 7 2 _ K3 PL25B IO 7 2 L3 PL25C IO 7 2 VREF1_7 L6 PL25D IO 7 2 DIFFR_7 M6 PL26A IO 7 2 PCLKT7_1 J1 PL26B IO 7 2 PCLKC7_1 K14-10 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PL27A IO 7 2 PCLKT7_0 L1 PL27B IO 7 2 PCLKC7_0 M1 PL27C IO 7 2 PCLKT7_2 P8 PL27D IO 7 2 PCLKC7_2 R8 PL29A IO 6 2 PCLKT6_0 N2 PL29B IO 6 2 PCLKC6_0 N1 PL29C IO 6 2 PCLKT6_1 R7 PL29D IO 6 2 PCLKC6_1 R6 PL30A IO 6 2 N3 PL30B IO 6 2 P3 PL30C IO 6 2 PCLKT6_3 P4 PL31A IO 6 2 P2 PL31B IO 6 2 R2 PL31C IO 6 2 PCLKT6_2 T3 PL31D IO 6 2 PCLKC6_2 R3 PL34A IO 6 2 P1 PL34B IO 6 2 R1 PL34C IO 6 2 VREF1_6 R5 PL34D IO 6 2 R4 PL35A IO 6 2 T2 PL35B IO 6 2 U2 PL35C IO 6 2 T6 PL36A IO 6 2 U3 PL36B IO 6 2 V3 PL38A IO 6 2 T1 PL38B IO 6 2 U1 PL39A IO 6 2 T5 PL39B IO 6 2 T4 PL40A IO 6 2 U4 PL40B IO 6 2 U5 PL42A IO 6 2 V1 PL42B IO 6 2 W1 PL42C IO 6 2 U6 PL42D IO 6 2 DIFFR_6 V6 PL43A IO 6 2 V2 PL43B IO 6 2 W2 PL43C IO 6 2 V5 PL43D IO 6 2 V4 PL44A IO 6 2 Y1 PL44B IO 6 2 AA1 PL47A IO 6 2 Y2 PL47B IO 6 2 AA2 PL47C IO 6 2 Y3 PL47D IO 6 2 W3 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-11 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PL48A IO 6 2 AB1 PL48B IO 6 2 AC1 PL48C IO 6 2 W5 PL49A IO 6 2 Y5 PL49B IO 6 2 Y6 PL51A IO 6 2 AD2 PL51B IO 6 2 AE2 PL51D IO 6 2 VREF2_6 AB5 PL52A IO 6 2 AC3 PL52B IO 6 2 AD3 PL53A IO 6 2 AC4 PL53B IO 6 2 AD4 PL55A IO 6 2 AF1 PL55B IO 6 2 AG1 PL55C IO 6 2 LLC_DLLT_IN_E/LLC_DLLT_FB_F AB6 PL55D IO 6 2 LLC_DLLC_IN_E/LLC_DLLC_FB_F AC5 PL56A IO 6 2 AE3 PL56B IO 6 2 AF3 PL57A IO 6 2 LLC_DLLT_IN_F/LLC_DLLT_FB_E AF2 PL57B IO 6 2 LLC_DLLC_IN_F/LLC_DLLC_FB_E AG2 PL57C IO 6 2 LLC_PLLT_IN_B/LLC_PLLT_FB_A AC6 PL57D IO 6 2 LLC_PLLC_IN_B/LLC_PLLC_FB_A AC7 XRES IO - - AE4 VCC12 VCC12 - - AG4 TEMP I 6 0 AD5 VCC12 VCC12 - - AF5 PB3A IO 5 4 LLC_PLLT_IN_A/LLC_PLLT_FB_B AH1 PB3B IO 5 4 LLC_PLLC_IN_A/LLC_PLLC_FB_B AJ1 PB3C IO 5 4 LLC_DLLT_IN_C/LLC_DLLT_FB_D AF4 PB3D IO 5 4 LLC_DLLC_IN_C/LLC_DLLC_FB_D AE5 PB4A IO 5 4 LLC_DLLT_IN_D/LLC_DLLT_FB_C AG3 PB4B IO 5 4 LLC_DLLC_IN_D/LLC_DLLC_FB_C AH2 PB4C IO 5 4 AD6 PB5A IO 5 4 AJ2 PB5B IO 5 4 AK2 PB5C IO 5 4 AD7 PB5D IO 5 4 VREF1_5 AD8 PB7A IO 5 4 AF7 PB7B IO 5 4 AF6 PB8A IO 5 4 AH4 PB8B IO 5 4 AG5 PB9A IO 5 4 AF8 PB9B IO 5 4 AG8 PB11A IO 5 4 AH3 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-12 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PB11B IO 5 4 AJ3 PB11C IO 5 4 AF9 PB11D IO 5 4 AE10 PB12A IO 5 4 AK3 PB12B IO 5 4 AJ4 PB13A IO 5 4 AE11 PB13B IO 5 4 AF10 PB15A IO 5 4 AH7 PB15B IO 5 4 AH8 PB15C IO 5 4 AE12 PB15D IO 5 4 AE13 PB16A IO 5 4 AK4 PB16B IO 5 4 AK5 PB17A IO 5 4 AJ5 PB17B IO 5 4 AJ6 PB19A IO 5 4 AJ7 PB19B IO 5 4 AJ8 PB20A IO 5 4 PCLKT5_3 AH10 PB20B IO 5 4 PCLKC5_3 AH11 PB20C IO 5 4 PCLKT5_4 AF13 PB20D IO 5 4 PCLKC5_4 AE14 PB21A IO 5 4 PCLKT5_5 AK6 PB21B IO 5 4 PCLKC5_5 AK7 PB21C IO 5 4 AF14 PB21D IO 5 4 AF15 PB23A IO 5 4 PCLKT5_0 AJ11 PB23B IO 5 4 PCLKC5_0 AJ12 PB23C IO 5 4 AG13 PB23D IO 5 4 VREF2_5 AH13 PB24A IO 5 4 PCLKT5_1 AK8 PB24B IO 5 4 PCLKC5_1 AK9 PB25A IO 5 4 PCLKT5_2 AH14 PB25B IO 5 4 PCLKC5_2 AG14 PB28A IO 5 4 AK10 PB28B IO 5 4 AK11 PB29A IO 5 4 AH15 PB29B IO 5 4 AG15 PB31A IO 5 4 AH12 PB31B IO 5 4 AJ13 PB31C IO 5 4 AD15 PB31D IO 5 4 AE15 PB32A IO 5 4 AK12 PB32B IO 5 4 AK13 PB33A IO 5 4 AJ14 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-13 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PB33B IO 5 4 AJ15 PB35A IO 5 4 AK14 PB35B IO 5 4 AK15 PB37A IO 4 4 AK16 PB37B IO 4 4 AK17 PB38A IO 4 4 AJ16 PB38B IO 4 4 AJ17 PB38C IO 4 4 AE16 PB38D IO 4 4 AF16 PB39A IO 4 4 AH16 PB39B IO 4 4 AG16 PB41A IO 4 4 AK18 PB41B IO 4 4 AK19 PB42A IO 4 4 AH17 PB42B IO 4 4 AH18 PB42C IO 4 4 AF17 PB42D IO 4 4 AG17 PB43A IO 4 4 AJ18 PB43B IO 4 4 AJ19 PB46A IO 4 4 PCLKT4_2 AK20 PB46B IO 4 4 PCLKC4_2 AK21 PB47A IO 4 4 PCLKT4_1 AF18 PB47B IO 4 4 PCLKC4_1 AG18 PB49A IO 4 4 PCLKT4_0 AJ20 PB49B IO 4 4 PCLKC4_0 AJ21 PB49C IO 4 4 VREF2_4 AG19 PB49D IO 4 4 AF19 PB51A IO 4 4 PCLKT4_5 AK22 PB51B IO 4 4 PCLKC4_5 AK23 PB51C IO 4 4 AH19 PB51D IO 4 4 AH20 PB52A IO 4 4 PCLKT4_3 AK24 PB52B IO 4 4 PCLKC4_3 AK25 PB52C IO 4 4 PCLKT4_4 AE19 PB52D IO 4 4 PCLKC4_4 AE20 PB53A IO 4 4 AE21 PB53B IO 4 4 AF21 PB55A IO 4 4 AG21 PB55B IO 4 4 AG22 PB56A IO 4 4 AH22 PB56B IO 4 4 AH23 PB56C IO 4 4 AH21 PB57A IO 4 4 AD23 PB57B IO 4 4 AE23 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-14 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PB59A IO 4 4 AH24 PB59B IO 4 4 AH25 PB60A IO 4 4 AK28 PB60B IO 4 4 AK29 PB60C IO 4 4 AE22 PB61A IO 4 4 AH26 PB61B IO 4 4 AH27 PB63A IO 4 4 AF24 PB63B IO 4 4 AG24 PB64A IO 4 4 AG25 PB64B IO 4 4 AF25 PB65A IO 4 4 AG26 PB65B IO 4 4 AF27 PB67A IO 4 4 AJ28 PB67B IO 4 4 AH28 PB67C IO 4 4 VREF1_4 AE24 PB67D IO 4 4 AE25 PB68A IO 4 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D AJ29 PB68B IO 4 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D AH29 PB68C IO 4 4 AE26 PB68D IO 4 4 AD25 PB69A IO 4 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B AJ30 PB69B IO 4 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B AH30 PB69C IO 4 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C AG28 PB69D IO 4 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C AG29 VCC12 VCC12 - - AF26 PROBE_VCC O - - AD27 VCC12 VCC12 - - AG27 PROBE_GND O - - AE28 PR57D IO 3 2 LRC_PLLC_IN_B/LRC_PLLC_FB_A AC25 PR57C IO 3 2 LRC_PLLT_IN_B/LRC_PLLT_FB_A AD26 PR57B IO 3 2 LRC_DLLC_IN_F/LRC_DLLC_FB_E AF28 PR57A IO 3 2 LRC_DLLT_IN_F/LRC_DLLT_FB_E AF29 PR56B IO 3 2 AD28 PR56A IO 3 2 AC27 PR55D IO 3 2 LRC_DLLC_IN_E/LRC_DLLC_FB_F AC26 PR55C IO 3 2 LRC_DLLT_IN_E/LRC_DLLT_FB_F AB26 PR55B IO 3 2 AG30 PR55A IO 3 2 AF30 PR53B IO 3 2 AE29 PR53A IO 3 2 AD29 PR52B IO 3 2 AC28 PR52A IO 3 2 AB28 PR51D IO 3 2 VREF2_3 AB27 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-15 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PR51B IO 3 2 AE30 PR51A IO 3 2 AD30 PR49B IO 3 2 AB25 PR49A IO 3 2 AA25 PR48C IO 3 2 Y25 PR48B IO 3 2 AA30 PR48A IO 3 2 Y30 PR47D IO 3 2 W27 PR47C IO 3 2 Y27 PR47B IO 3 2 W30 PR47A IO 3 2 V30 PR44B IO 3 2 W29 PR44A IO 3 2 V29 PR43D IO 3 2 W26 PR43C IO 3 2 V26 PR43B IO 3 2 U30 PR43A IO 3 2 T30 PR42D IO 3 2 DIFFR_3 V25 PR42C IO 3 2 U25 PR42B IO 3 2 W28 PR42A IO 3 2 V28 PR40B IO 3 2 T27 PR40A IO 3 2 R27 PR39B IO 3 2 V27 PR39A IO 3 2 U27 PR38B IO 3 2 R30 PR38A IO 3 2 P30 PR36B IO 3 2 U29 PR36A IO 3 2 T29 PR35C IO 3 2 T24 PR35B IO 3 2 N30 PR35A IO 3 2 M29 PR34D IO 3 2 U26 PR34C IO 3 2 VREF1_3 T26 PR34B IO 3 2 U28 PR34A IO 3 2 T28 PR31D IO 3 2 PCLKC3_2 M30 PR31C IO 3 2 PCLKT3_2 L29 PR31B IO 3 2 R29 PR31A IO 3 2 P29 PR30C IO 3 2 PCLKT3_3 P27 PR30B IO 3 2 N29 PR30A IO 3 2 N28 PR29D IO 3 2 PCLKC3_1 R25 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-16 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PR29C IO 3 2 PCLKT3_1 R26 PR29B IO 3 2 PCLKC3_0 R28 PR29A IO 3 2 PCLKT3_0 P28 PR27D IO 2 2 PCLKC2_2 N27 PR27C IO 2 2 PCLKT2_2 P26 PR27B IO 2 2 PCLKC2_0 L30 PR27A IO 2 2 PCLKT2_0 K30 PR26B IO 2 2 PCLKC2_1 J30 PR26A IO 2 2 PCLKT2_1 H30 PR25D IO 2 2 DIFFR_2 M26 PR25C IO 2 2 VREF1_2 M25 PR25B IO 2 2 G29 PR25A IO 2 2 F29 PR22D IO 2 2 H28 PR22C IO 2 2 J28 PR22B IO 2 2 E30 PR22A IO 2 2 E29 PR21B IO 2 2 M27 PR21A IO 2 2 L27 PR20B IO 2 2 H27 PR20A IO 2 2 G27 PR18D IO 2 2 VREF2_2 L26 PR18C IO 2 2 L25 PR18B IO 2 2 URC_DLLC_IN_D/URC_DLLC_FB_C F28 PR18A IO 2 2 URC_DLLT_IN_D/URC_DLLT_FB_C G28 PR17D IO 2 2 URC_PLLC_IN_B/URC_PLLC_FB_A K26 PR17C IO 2 2 URC_PLLT_IN_B/URC_PLLT_FB_A K25 PR17B IO 2 2 URC_DLLC_IN_C/URC_DLLC_FB_D D30 PR17A IO 2 2 URC_DLLT_IN_C/URC_DLLT_FB_D D29 PR16D IO 2 2 G26 PR16C IO 2 2 H26 PR16B IO 2 2 URC_PLLC_IN_A/URC_PLLC_FB_B E28 PR16A IO 2 2 URC_PLLT_IN_A/URC_PLLT_FB_B D28 VCCJ I - - J25 TDO O - - TDO/RDDATA H25 TMS I - - J26 TCK I - - G25 TDI I - - G24 PROGRAMN I 1 0 F26 MPIIRQN O 1 0 CFGIRQN/MPI_IRQ_N H24 CCLK IO 1 0 F25 VCC12 VCC12 - - D27 VCC12 VCC12 - - E26 NC - - - A29 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-17 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet A_RXREFCLKN_R I - - C29 A_RXREFCLKP_R I - - B29 A_VDDP_R I - - D26 A_REFCLKN_R I - - C30 A_REFCLKP_R I - - B30 A_VDDAX25_R I - - F24 A_VDDRX0_R I - - D25 A_VDDIB0_R I - - C28 A_HDINP0_R I - - PCS 3E0 CH 0 IN P B28 A_HDINN0_R I - - PCS 3E0 CH 0 IN N B27 A_VDDTX0_R I - - E25 A_HDOUTP0_R O - - PCS 3E0 CH 0 OUT P A28 A_VDDOB0_R I - - C27 A_HDOUTN0_R O - - PCS 3E0 CH 0 OUT N A27 A_VDDOB1_R I - - C26 A_HDOUTN1_R O - - PCS 3E0 CH 1 OUT N A26 A_VDDTX1_R I - - D24 A_HDOUTP1_R O - - PCS 3E0 CH 1 OUT P A25 A_HDINN1_R I - - PCS 3E0 CH 1 IN N B26 A_HDINP1_R I - - PCS 3E0 CH 1 IN P B25 A_VDDRX1_R I - - E24 A_VDDIB1_R I - - C25 A_VDDRX2_R I - - D23 A_VDDIB2_R I - - C24 A_HDINP2_R I - - PCS 3E0 CH 2 IN P B24 A_HDINN2_R I - - PCS 3E0 CH 2 IN N B23 A_VDDTX2_R I - - E23 A_HDOUTP2_R O - - PCS 3E0 CH 2 OUT P A24 A_VDDOB2_R I - - C23 A_HDOUTN2_R O - - PCS 3E0 CH 2 OUT N A23 A_VDDOB3_R I - - C22 A_HDOUTN3_R O - - PCS 3E0 CH 3 OUT N A22 A_VDDTX3_R I - - D22 A_HDOUTP3_R O - - PCS 3E0 CH 3 OUT P A21 A_HDINN3_R I - - PCS 3E0 CH 3 IN N B22 A_HDINP3_R I - - PCS 3E0 CH 3 IN P B21 A_VDDRX3_R I - - E22 A_VDDIB3_R I - - C21 PT49D IO 1 4 HDC G22 PT49C IO 1 4 LDCN F22 PT49B IO 1 4 D8/MPI_DATA8 B20 PT49A IO 1 4 CS1/MPI_CS1 B19 PT47D IO 1 4 D9/MPI_DATA9 A20 PT47C IO 1 4 D10/MPI_DATA10 A19 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-18 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PT47B IO 1 4 CS0N/MPI_CS0N D19 PT47A IO 1 4 RDN/MPI_STRB_N D18 PT46D IO 1 4 WRN/MPI_WR_N F19 PT46C IO 1 4 D7/MPI_DATA7 F18 PT46B IO 1 4 D6/MPI_DATA6 C18 PT46A IO 1 4 D5/MPI_DATA5 C17 PT45D IO 1 4 D4/MPI_DATA4 E17 PT45C IO 1 4 D3/MPI_DATA3 E16 PT45B IO 1 4 D2/MPI_DATA2 G18 PT45A IO 1 4 D1/MPI_DATA1 G17 PT43B IO 1 4 D0/MPI_DATA0 B18 PT43A IO 1 4 QOUT/CEON B17 PT42D IO 1 4 VREF2_1 G16 PT42B IO 1 4 DOUT A18 PT42A IO 1 4 MCA_DONE_IN A17 PT41B IO 1 4 MCA_CLK_P1_OUT H18 PT41A IO 1 4 MCA_CLK_P1_IN H17 PT39B IO 1 4 MCA_CLK_P2_OUT D17 PT39A IO 1 4 MCA_CLK_P2_IN D16 PT38D IO 1 4 MCA_DONE_OUT F17 PT38C IO 1 4 BUSYN/RCLK F16 PT38B IO 1 4 DP0/MPI_PAR0 C16 PT38A IO 1 4 MPI_TA C15 PT37B IO 1 4 PCLKC1_0 B16 PT37A IO 1 4 PCLKT1_0/MPI_CLK B15 PT35D IO 1 4 PCLKC1_4 H16 PT35B IO 1 4 MPI_RETRY A16 PT35A IO 1 4 A0/MPI_ADDR14 A15 PT33D IO 1 4 A1/MPI_ADDR15 G15 PT33C IO 1 4 A2/MPI_ADDR16 F15 PT33B IO 1 4 A3/MPI_ADDR17 E15 PT33A IO 1 4 A4/MPI_ADDR18 D15 PT32B IO 1 4 A5/MPI_ADDR19 C14 PT32A IO 1 4 A6/MPI_ADDR20 C13 PT31C IO 1 4 VREF1_1 H14 PT31B IO 1 4 A7/MPI_ADDR21 B14 PT31A IO 1 4 A8/MPI_ADDR22 B13 PT29B IO 1 4 A9/MPI_ADDR23 G14 PT29A IO 1 4 A10/MPI_ADDR24 F14 PT28B IO 1 4 A11/MPI_ADDR25 A14 PT28A IO 1 4 A12/MPI_ADDR26 A13 PT27D IO 1 4 D11/MPI_DATA11 G13 PT27C IO 1 4 D12/MPI_DATA12 H13 PT27B IO 1 4 A13/MPI_ADDR27 E14 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-19 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet PT27A IO 1 4 A14/MPI_ADDR28 E13 PT25D IO 1 4 A16/MPI_ADDR30 G12 PT25C IO 1 4 D13/MPI_DATA13 G11 PT25B IO 1 4 A15/MPI_ADDR29 D14 PT25A IO 1 4 A17/MPI_ADDR31 D13 PT24D IO 1 4 A19/MPI_TSIZ1 F12 PT24C IO 1 4 A20/MPI_BDIP F13 PT24B IO 1 4 A18/MPI_TSIZ0 B12 PT24A IO 1 4 MPI_TEA B11 PT23D IO 1 4 D14/MPI_DATA14 E12 PT23C IO 1 4 DP1/MPI_PAR1 D12 PT23B IO 1 4 A21/MPI_BURST G10 PT23A IO 1 4 D15/MPI_DATA15 G9 A_VDDIB3_L I - - C10 A_VDDRX3_L I - - E9 A_HDINP3_L I - - PCS 360 CH 3 IN P B10 A_HDINN3_L I - - PCS 360 CH 3 IN N B9 A_HDOUTP3_L O - - PCS 360 CH 3 OUT P A10 A_VDDTX3_L I - - D9 A_HDOUTN3_L O - - PCS 360 CH 3 OUT N A9 A_VDDOB3_L I - - C9 A_HDOUTN2_L O - - PCS 360 CH 2 OUT N A8 A_VDDOB2_L I - - C8 A_HDOUTP2_L O - - PCS 360 CH 2 OUT P A7 A_VDDTX2_L I - - E8 A_HDINN2_L I - - PCS 360 CH 2 IN N B8 A_HDINP2_L I - - PCS 360 CH 2 IN P B7 A_VDDIB2_L I - - C7 A_VDDRX2_L I - - D8 A_VDDIB1_L I - - C6 A_VDDRX1_L I - - E7 A_HDINP1_L I - - PCS 360 CH 1 IN P B6 A_HDINN1_L I - - PCS 360 CH 1 IN N B5 A_HDOUTP1_L O - - PCS 360 CH 1 OUT P A6 A_VDDTX1_L I - - D7 A_HDOUTN1_L O - - PCS 360 CH 1 OUT N A5 A_VDDOB1_L I - - C5 A_HDOUTN0_L O - - PCS 360 CH 0 OUT N A4 A_VDDOB0_L I - - C4 A_HDOUTP0_L O - - PCS 360 CH 0 OUT P A3 A_VDDTX0_L I - - E6 A_HDINN0_L I - - PCS 360 CH 0 IN N B4 A_HDINP0_L I - - PCS 360 CH 0 IN P B3 A_VDDIB0_L I - - C3 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-20 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet A_VDDRX0_L I - - D6 NC - - - M4 NC - - - J3 NC - - - P5 NC - - - AB3 NC - - - AH9 NC - - - AG10 NC - - - AF12 NC - - - AG7 NC - - - AK27 NC - - - AJ24 NC - - - AB30 NC - - - AA28 NC - - - P24 NC - - - K28 NC - - - P23 NC - - - L28 NC - - - E19 NC - - - G21 NC - - - G20 NC - - - G19 NC - - - F9 NC - - - A11 NC - - - G7 VCC12 VCC12 - - H8 VCC12 VCC12 - - T8 VCC12 VCC12 - - AB9 VCC12 VCC12 - - AC8 VCC12 VCC12 - - AB22 VCC12 VCC12 - - AC23 VCC12 VCC12 - - R23 VCC12 VCC12 - - H23 VCC12 VCC12 - - H15 VTT_2 VTT_2 - - L24 VTT_2 VTT_2 - - T23 VTT_3 VTT_3 - - AC24 VTT_3 VTT_3 - - T25 VTT_3 VTT_3 - - W25 VTT_4 VTT_4 - - AD24 VTT_4 VTT_4 - - AE17 VTT_4 VTT_4 - - AE18 VTT_5 VTT_5 - - AC15 VTT_5 VTT_5 - - AD16 VTT_5 VTT_5 - - AE9 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-21 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet VTT_6 VTT_6 - - AA6 VTT_6 VTT_6 - - T7 VTT_6 VTT_6 - - W6 VTT_7 VTT_7 - - L7 VTT_7 VTT_7 - - P7 VCC VCC - - AA10 VCC VCC - - AA11 VCC VCC - - AA12 VCC VCC - - AA13 VCC VCC - - AA14 VCC VCC - - AA17 VCC VCC - - AA18 VCC VCC - - AA19 VCC VCC - - AA20 VCC VCC - - AA21 VCC VCC - - AA22 VCC VCC - - AA9 VCC VCC - - AB10 VCC VCC - - AB21 VCC VCC - - J10 VCC VCC - - J21 VCC VCC - - K10 VCC VCC - - K11 VCC VCC - - K12 VCC VCC - - K13 VCC VCC - - K14 VCC VCC - - K17 VCC VCC - - K18 VCC VCC - - K19 VCC VCC - - K20 VCC VCC - - K21 VCC VCC - - K22 VCC VCC - - K9 VCC VCC - - L10 VCC VCC - - L21 VCC VCC - - M10 VCC VCC - - M21 VCC VCC - - N10 VCC VCC - - N21 VCC VCC - - P10 VCC VCC - - P21 VCC VCC - - U10 VCC VCC - - U21 VCC VCC - - V10 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-22 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet VCC VCC - - V21 VCC VCC - - W10 VCC VCC - - W21 VCC VCC - - Y10 VCC VCC - - Y21 VCCAUX VCCAUX - - H11 VCCAUX VCCAUX - - H12 VCCAUX VCCAUX - - H19 VCCAUX VCCAUX - - H20 VCCAUX VCCAUX - - M23 VCCAUX VCCAUX - - M24 VCCAUX VCCAUX - - N23 VCCAUX VCCAUX - - N24 VCCAUX VCCAUX - - U23 VCCAUX VCCAUX - - U24 VCCAUX VCCAUX - - V23 VCCAUX VCCAUX - - V24 VCCAUX VCCAUX - - W23 VCCAUX VCCAUX - - W24 VCCAUX VCCAUX - - AC17 VCCAUX VCCAUX - - AC18 VCCAUX VCCAUX - - AC19 VCCAUX VCCAUX - - AD17 VCCAUX VCCAUX - - AD18 VCCAUX VCCAUX - - AD19 VCCAUX VCCAUX - - AC12 VCCAUX VCCAUX - - AC13 VCCAUX VCCAUX - - AC14 VCCAUX VCCAUX - - AD12 VCCAUX VCCAUX - - AD13 VCCAUX VCCAUX - - AD14 VCCAUX VCCAUX - - U7 VCCAUX VCCAUX - - U8 VCCAUX VCCAUX - - V7 VCCAUX VCCAUX - - V8 VCCAUX VCCAUX - - W7 VCCAUX VCCAUX - - W8 VCCAUX VCCAUX - - M7 VCCAUX VCCAUX - - M8 VCCAUX VCCAUX - - N7 VCCAUX VCCAUX - - N8 VCCIO1 VCCIO1 - - H10 VCCIO1 VCCIO1 - - H21 VCCIO1 VCCIO1 - - H22 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-23 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet VCCIO1 VCCIO1 - - H9 VCCIO1 VCCIO1 - - J11 VCCIO1 VCCIO1 - - J12 VCCIO1 VCCIO1 - - J13 VCCIO1 VCCIO1 - - J14 VCCIO1 VCCIO1 - - J15 VCCIO1 VCCIO1 - - J16 VCCIO1 VCCIO1 - - J17 VCCIO1 VCCIO1 - - J18 VCCIO1 VCCIO1 - - J19 VCCIO1 VCCIO1 - - J20 VCCIO2 VCCIO2 - - J23 VCCIO2 VCCIO2 - - J24 VCCIO2 VCCIO2 - - K23 VCCIO2 VCCIO2 - - K24 VCCIO2 VCCIO2 - - L22 VCCIO2 VCCIO2 - - L23 VCCIO2 VCCIO2 - - M22 VCCIO2 VCCIO2 - - N22 VCCIO2 VCCIO2 - - P22 VCCIO2 VCCIO2 - - R22 VCCIO3 VCCIO3 - - AA23 VCCIO3 VCCIO3 - - AA24 VCCIO3 VCCIO3 - - AB23 VCCIO3 VCCIO3 - - AB24 VCCIO3 VCCIO3 - - T22 VCCIO3 VCCIO3 - - U22 VCCIO3 VCCIO3 - - V22 VCCIO3 VCCIO3 - - W22 VCCIO3 VCCIO3 - - Y22 VCCIO3 VCCIO3 - - Y23 VCCIO3 VCCIO3 - - Y24 VCCIO4 VCCIO4 - - AB16 VCCIO4 VCCIO4 - - AB17 VCCIO4 VCCIO4 - - AB18 VCCIO4 VCCIO4 - - AB19 VCCIO4 VCCIO4 - - AB20 VCCIO4 VCCIO4 - - AC20 VCCIO4 VCCIO4 - - AC21 VCCIO4 VCCIO4 - - AC22 VCCIO4 VCCIO4 - - AD20 VCCIO4 VCCIO4 - - AD21 VCCIO4 VCCIO4 - - AD22 VCCIO5 VCCIO5 - - AB11 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-24 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet VCCIO5 VCCIO5 - - AB12 VCCIO5 VCCIO5 - - AB13 VCCIO5 VCCIO5 - - AB14 VCCIO5 VCCIO5 - - AB15 VCCIO5 VCCIO5 - - AC10 VCCIO5 VCCIO5 - - AC11 VCCIO5 VCCIO5 - - AC9 VCCIO5 VCCIO5 - - AD10 VCCIO5 VCCIO5 - - AD11 VCCIO5 VCCIO5 - - AD9 VCCIO6 VCCIO6 - - AA7 VCCIO6 VCCIO6 - - AA8 VCCIO6 VCCIO6 - - AB7 VCCIO6 VCCIO6 - - AB8 VCCIO6 VCCIO6 - - T9 VCCIO6 VCCIO6 - - U9 VCCIO6 VCCIO6 - - V9 VCCIO6 VCCIO6 - - W9 VCCIO6 VCCIO6 - - Y7 VCCIO6 VCCIO6 - - Y8 VCCIO6 VCCIO6 - - Y9 VCCIO7 VCCIO7 - - J7 VCCIO7 VCCIO7 - - J8 VCCIO7 VCCIO7 - - K7 VCCIO7 VCCIO7 - - K8 VCCIO7 VCCIO7 - - L8 VCCIO7 VCCIO7 - - L9 VCCIO7 VCCIO7 - - M9 VCCIO7 VCCIO7 - - N9 VCCIO7 VCCIO7 - - P9 VCCIO7 VCCIO7 - - R9 GND GND - - A1 GND GND - - A30 GND GND - - AA15 GND GND - - AA16 GND GND - - AK1 GND GND - - AK30 GND GND - - K15 GND GND - - K16 GND GND - - L11 GND GND - - L12 GND GND - - L13 GND GND - - L14 GND GND - - L15 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-25 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet GND GND - - L16 GND GND - - L17 GND GND - - L18 GND GND - - L19 GND GND - - L20 GND GND - - M11 GND GND - - M12 GND GND - - M13 GND GND - - M14 GND GND - - M15 GND GND - - M16 GND GND - - M17 GND GND - - M18 GND GND - - M19 GND GND - - M20 GND GND - - N11 GND GND - - N12 GND GND - - N13 GND GND - - N14 GND GND - - N15 GND GND - - N16 GND GND - - N17 GND GND - - N18 GND GND - - N19 GND GND - - N20 GND GND - - P11 GND GND - - P12 GND GND - - P13 GND GND - - P14 GND GND - - P15 GND GND - - P16 GND GND - - P17 GND GND - - P18 GND GND - - P19 GND GND - - P20 GND GND - - R10 GND GND - - R11 GND GND - - R12 GND GND - - R13 GND GND - - R14 GND GND - - R15 GND GND - - R16 GND GND - - R17 GND GND - - R18 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-26 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet GND GND - - R19 GND GND - - R20 GND GND - - R21 GND GND - - T10 GND GND - - T11 GND GND - - T12 GND GND - - T13 GND GND - - T14 GND GND - - T15 GND GND - - T16 GND GND - - T17 GND GND - - T18 GND GND - - T19 GND GND - - T20 GND GND - - T21 GND GND - - U11 GND GND - - U12 GND GND - - U13 GND GND - - U14 GND GND - - U15 GND GND - - U16 GND GND - - U17 GND GND - - U18 GND GND - - U19 GND GND - - U20 GND GND - - V11 GND GND - - V12 GND GND - - V13 GND GND - - V14 GND GND - - V15 GND GND - - V16 GND GND - - V17 GND GND - - V18 GND GND - - V19 GND GND - - V20 GND GND - - W11 GND GND - - W12 GND GND - - W13 GND GND - - W14 GND GND - - W15 GND GND - - W16 GND GND - - W17 GND GND - - W18 GND GND - - W19 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-27 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet GND GND - - W20 GND GND - - Y11 GND GND - - Y12 GND GND - - Y13 GND GND - - Y14 GND GND - - Y15 GND GND - - Y16 GND GND - - Y17 GND GND - - Y18 GND GND - - Y19 GND GND - - Y20 VCCIO7 VCCIO7 - - H2 VCCIO7 VCCIO7 - - N4 VCCIO7 VCCIO7 - - N6 VCCIO7 VCCIO7 - - J2 VCCIO7 VCCIO7 - - L2 VCCIO7 VCCIO7 - - H4 VCCIO6 VCCIO6 - - AB2 VCCIO6 VCCIO6 - - AD1 VCCIO6 VCCIO6 - - W4 VCCIO6 VCCIO6 - - AA4 VCCIO5 VCCIO5 - - AE7 VCCIO5 VCCIO5 - - AH6 VCCIO5 VCCIO5 - - AG11 VCCIO5 VCCIO5 - - AJ9 VCCIO4 VCCIO4 - - AJ23 VCCIO4 VCCIO4 - - AG20 VCCIO4 VCCIO4 - - AJ26 VCCIO4 VCCIO4 - - AG23 VCCIO3 VCCIO3 - - AC29 VCCIO3 VCCIO3 - - AA26 VCCIO3 VCCIO3 - - Y28 VCCIO3 VCCIO3 - - AA29 VCCIO2 VCCIO2 - - G30 VCCIO2 VCCIO2 - - J29 VCCIO2 VCCIO2 - - K27 VCCIO2 VCCIO2 - - N25 VCCIO1 VCCIO1 - - F20 VCCIO1 VCCIO1 - - C19 VCCIO1 VCCIO1 - - C12 VCCIO1 VCCIO1 - - F11 GND GND - - H1 GND GND - - L4 GND GND - - M3 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-28 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet GND GND - - N5 GND GND - - K2 GND GND - - M2 GND GND - - P6 GND GND - - G4 GND GND - - H3 GND GND - - AC2 GND GND - - AA3 GND GND - - AE1 GND GND - - Y4 GND GND - - AB4 GND GND - - AA5 GND GND - - AE6 GND GND - - AE8 GND GND - - AH5 GND GND - - AG9 GND GND - - AG6 GND GND - - AF11 GND GND - - AG12 GND GND - - AJ10 GND GND - - AK26 GND GND - - AJ22 GND GND - - AF20 GND GND - - AJ25 GND GND - - AJ27 GND GND - - AF23 GND GND - - AF22 GND GND - - AE27 GND GND - - AA27 GND GND - - AB29 GND GND - - Y26 GND GND - - AC30 GND GND - - Y29 GND GND - - F30 GND GND - - E27 GND GND - - F27 GND GND - - P25 GND GND - - H29 GND GND - - K29 GND GND - - R24 GND GND - - M28 GND GND - - J27 GND GND - - N26 GND GND - - E20 LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGA4-29 Pinout Information Lattice Semiconductor LatticeSC Family Data Sheet GND GND - - E21 GND GND - - F21 GND GND - - F23 GND GND - - G23 GND GND - - D21 GND GND - - D20 GND GND - - E18 GND GND - - C20 GND GND - - C11 GND GND - - A12 GND GND - - E11 GND GND - - F8 GND GND - - G8 GND GND - - D11 GND GND - - D10 GND GND - - H7 GND GND - - F10 GND GND - - E10 NC _ - - AC16 VCC VCC - - J22 VCC VCC - - J9 1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement). LFSC25 Logic Signal Connections: 900-Ball ffBGA1 (Continued) Ball Function I/O VCCIO Bank VREF Group Dual Function 900 ffBGAFebruary 2006 Preliminary Data Sheet © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 5-1 Ordering Information_01.0 Part Number Description Ordering Information Commercial Industrial Part Number I/Os Grade Package Balls Temp. LUTs (K) LFSC3GA25E-7F900C 378 -7 fpBGA 900 COM 25.4 LFSC3GA25E-6F900C 378 -6 fpBGA 900 COM 25.4 LFSC3GA25E-5F900C 378 -5 fpBGA 900 COM 25.4 Part Number I/Os Grade Package Balls Temp. LUTs (K) LFSCM3GA25EP1-7F900C 378 -7 fpBGA 900 COM 25.4 LFSCM3GA25EP1-6F900C 378 -6 fpBGA 900 COM 25.4 LFSCM3GA25EP1-5F900C 378 -5 fpBGA 900 COM 25.4 Part Number I/Os Grade Package Balls Temp. LUTs (K) LFSC3GA25E-6F900I 378 -6 fpBGA 900 IND 25.4 LFSC3GA25E-5F900I 378 -5 fpBGA 900 IND 25.4 Part Number I/Os Grade Package Balls Temp. LUTs (K) LFSCM3GA25EP1-6F900I 378 -6 fpBGA 900 IND 25.4 LFSCM3GA25EP1-5F900I 378 -5 fpBGA 900 IND 25.4 LF XXX XXX XX E PX – X XXXXXX X Grade C = Commercial I = Industrial SERDES Speed 3GA = 3.8G Supply Voltage E = 1.2V Logic Capacity 15K LUTs 25K LUTs 40K LUTs 80K LUTs 115K LUTs Device Family LatticeSC FPGA LatticeSCM FPGA LF = Lattice FPGA Package* F256 = 256 fpBGA F900 = 900 fpBGA FF1020 = 1020 ffBGA FC1152 = 1152 fcBGA FC1704 = 1704 fcBGA Speed Grade -5 (Slowest) -6 -7 (Fastest) Predefined Function (LatticeSCM Only) P1 = Initial MACO Option *Note: fpBGA = 1.0mm pitch BGA, ffBGA = 1.0mm flip-chip BGA, fcBGA = 1.0mm ceramic flip-chip BGA LatticeSC Family Data Sheet Ordering InformationFebruary 2006 Preliminary Data Sheet © 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 6-1 Further Information_01.0 For Further Information A variety of technical notes for the LatticeSC family are available on the Lattice web site at www.latticesemi.com. • PURESPEED I/O Usage Guide (TN1088) • LatticeSC sysCLOCK and PLL/DLL User’s Guide (TN1098) • On-Chip Memory Usage Guide for LatticeSC Devices (TN1094) • LatticeSC DDR/DDR2 SDRAM Memory Interface User’s Guide (TN1099) • LatticeSC QDR-II SRAM Memory Interface User’s Guide (TN1096) • LatticeSC sysCONFIG Usage Guide (TN1080) • LatticeSC MPI/System Bus (TN1085) • Power Calculations and Considerations for LatticeSC Devices (TN1101) For further information on Interface standards refer to the following web sites: • JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org • Hyper Transport: www.hypertransport.org • Optical Interface (SPI-4.2, XSBI, CSIX and XGMII): www.oiforum.com • RAPIDIO: www.rapidio.org • PCI/PCIX: ww.pcisig.com LatticeSC Family Data Sheet Supplemental Information Power 2You A Guide to Power Supply Management and Control Shyam Chandra LEARN HOW TO: » Reduce Power Management Costs » Increase System Reliability » Reduce the Risk of Circuit Board Respins Board Power Management Functionsi Power 2 You A Guide to Power Supply Management and Control Shyam Chandraii Copyright © 2010 Lattice Semiconductor Corporation, 5555 NE Moore Court, Hillsboro, Oregon 97124, USA. All rights reserved. Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, ispPAC, PAC, PAC-Designer are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Revision History: April 2010: First Edition September 2010: Second Edition While every precaution has been taken in the preparation of this book, the author assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. ACKNOWLEDGEMENTS It takes a team of hardworking professionals to take a collection of documents, ideas, and diagrams and turn them into a finished book. Many thanks to Brian Kiernan, Buck Bartel, Chris Dix, Ed Coughlin, Ed Ramsden, Gordon Hands, Jeff Davis, Jim Krebs, John Alberts, Mark van Wyk, Nancy Knowlton, Shoji Sugawara, Ted Marena, Troy Scott, and Vesa Lauri. The contributions and efforts of these individuals helped to make the dream of this book a reality. ISBN: 978-0-578-06604-2iii Chapter 1. Introduction .......................................................1-1 1.1 Power 2 You............................................................................................................................................ 1-1 What is Power Management?.............................................................................................................. 1-1 Typical Board Power Supply Architectures ........................................................................................ 1-2 Typical Power Management Implementations and Their Drawbacks................................................. 1-4 1.2 Lattice Power Manager II IC Family ...................................................................................................... 1-5 1.3 PAC-Designer Software.......................................................................................................................... 1-8 1.4 Summary of Chapters.............................................................................................................................. 1-8 Chapter 2. Solutions Summary ..........................................2-1 2.1 N-Supply Supervisor, Reset Generator and Watchdog Timer................................................................ 2-1 2.2 Power Supply Sequencing ...................................................................................................................... 2-3 Flexible N-Supply Sequencing............................................................................................................ 2-3 Sequencing with MOSFETs and DC-DC Enables .............................................................................. 2-4 2.3 Hot-Swap Controllers ............................................................................................................................. 2-6 Hot-Swap Controller Using Soft-Start Mechanism............................................................................. 2-6 Hot-Swap Controller with Hysteretic Current Limit Mechanism ....................................................... 2-7 12V/24V Hot-Swap Controller............................................................................................................ 2-8 Negative Supply Hot-Swap Controller................................................................................................ 2-9 CompactPCI Board Management...................................................................................................... 2-11 CompactPCI Express Board Management ........................................................................................ 2-12 2.4 Redundant Supply Management ........................................................................................................... 2-14 Two Rail 5V Power Supply OR’ing (Using MOSFETs) .................................................................. 2-14 Table of ContentsTable of Contents iv Power Supply OR’ing of N-Rails Using MOSFETS ........................................................................ 2-15 N-rail (12V/24V) OR’ing .................................................................................................................. 2-16 -48V Supply OR’ing Through MOSFETS........................................................................................ 2-17 2.5 Power Feed Controllers......................................................................................................................... 2-19 Dual Rail -48V Power Feed Controller ............................................................................................. 2-19 Three-Channels of a 6V-24V Power Feed System............................................................................ 2-20 Two-Channel +12V & 3.3V Power Feed With Diode OR’ing ......................................................... 2-21 2.6 Trimming and Margining...................................................................................................................... 2-23 Chapter 3. Reset Generators & Supervisors.....................3-1 3.1 Introduction............................................................................................................................................. 3-1 Reliable Reset Generation by Monitoring All Supply Rails ............................................................... 3-2 Parts of a Supervisor IC....................................................................................................................... 3-3 Effect of Monitoring Accuracy on System Functionality ................................................................... 3-4 Reduced Accuracy Results in Reducing the Power Supply Tolerance Headroom ............................................................................................................................................ 3-6 Using a Supervisor IC With an Accuracy Of 1%................................................................................ 3-6 Effects of Fault Detection Delay ......................................................................................................... 3-6 If the Fault Detection Delay is 1ms:.................................................................................................... 3-7 If the Fault Detection Delay is 50µs:................................................................................................... 3-7 Supervisors Built Using ADC and a Microcontroller are Slow .......................................................... 3-8 Other Factors Contributing to Increased Reliability............................................................................ 3-8 3.2 N-Supply Supervisor, Reset Generator and Watchdog Timer.............................................................. 3-10 Circuit Operation ............................................................................................................................... 3-10 Reset Generator, Supervisor and Watchdog Timer Algorithm......................................................... 3-11 Parallel Equations of the Algorithm .................................................................................................. 3-11 Programmable Features ..................................................................................................................... 3-11 Additional Features That Can be Added to ProcessorPM-POWR605 ............................................. 3-11 Relevant Power Manager II ICs ........................................................................................................ 3-11 Chapter 4. Power Supply Sequencing...............................4-1 4.1 Introduction............................................................................................................................................. 4-1 Sequencing Power Supplies with Conflicting Sequencing Requirements....................................................................................................................................... 4-1 Other Factors Adding Complexity to Sequencing Algorithm............................................................. 4-2 4.2 Flexible N-Supply Sequencing Using Power Manager II II Devices ..................................................... 4-3 Voltages are Monitored During/After Sequencing.............................................................................. 4-3 N-Supply Closed Loop Sequencing Algorithm................................................................................... 4-5 N-supply Closed Loop Sequencing with Failure Monitor Algorithm................................................. 4-6 Applying LogiBuilder Instructions to Sequencing Methods............................................................... 4-6 Advantages of Power Manager II-based Supply Sequencing ............................................................. 4-8 Table of Contents v Additional Power Management Functions that can be Integrated into Power Manager II ................. 4-8 Applicable Power Manager II Devices................................................................................................ 4-8 4.3 Sequencing With MOSFETs and DC-DC Converter Enables................................................................ 4-9 Circuit Operation ................................................................................................................................. 4-9 Power Sequencing Algorithm............................................................................................................ 4-10 Applicable Power Manager II Devices.............................................................................................. 4-10 Chapter 5. Hot-Swap Controllers .......................................5-1 5.1 What is a Hot-Swap Controller? ............................................................................................................. 5-1 Hot-Swap Circuit Design Considerations............................................................................................ 5-2 5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices .................... 5-2 Hot-Swap Controller Using Soft-start ................................................................................................. 5-3 Hot-Swap Controller with Hysteretic Current Limit Mechanism ....................................................... 5-4 12V/24V Hot-Swap Controller............................................................................................................ 5-8 5.3 Implementing a Negative Supply Hot-Swap Controller ....................................................................... 5-13 Controlling Current Inrush While Operating the MOSFET in its Safe Operating Area ................... 5-14 Customizing the -48V Hot-Swap Controller..................................................................................... 5-15 5.4 CompactPCI Board Management ......................................................................................................... 5-16 CompactPCI Express Board Management ........................................................................................ 5-19 Chapter 6. Power Supply OR’ing Controllers ...................6-1 6.1 What is Power Rail OR'ing? ................................................................................................................... 6-1 6.2 Challenges of Designing a MOSFET OR’ing Circuit .......................................................................... 6-2 6.3 +5v Power Supply OR’ing (Using MOSFETs) Circuit ......................................................................... 6-3 6.4 Power Supply OR’ing of Three or More 5V Supply Rails Using MOSFETS ....................................... 6-5 6.5 N-rail (12V/24V) OR’ing......................................................................................................................... 6-7 6.6 -48V Supply OR’ing Through MOSFETS ............................................................................................ 6-10 Chapter 7. Power Feed Controllers....................................7-1 7.1 What are Power Feed Controllers? ......................................................................................................... 7-1 7.2 Dual Rail -48V Supply Feed................................................................................................................... 7-1 Circuit Operation ................................................................................................................................. 7-2 Algorithm............................................................................................................................................. 7-3 Programmable Features of this Circuit................................................................................................ 7-4 Applicable devices:.............................................................................................................................. 7-4 7.3 Three Channels of a +12V Power Feed System ..................................................................................... 7-4 Circuit Operation ................................................................................................................................. 7-5 Dual Current Level Hysteretic Control ............................................................................................... 7-6 Algorithm for Each Power Feed Channel............................................................................................ 7-7 Programmable Features of Power Feed............................................................................................... 7-7Table of Contents vi Integrating Other Payload Power Management Functions into the ispPAC-POWR1014A Device ... 7-7 Applicable Power Manager II Devices................................................................................................ 7-8 7.4 2-Channel +12V & 3.3V Power Feed With MOSFET OR’ing .............................................................. 7-8 Circuit Operation ................................................................................................................................. 7-9 During Operation......................................................................................................................................... 7- ispPAC-POWR1014A (MicroTCA) Power Feed Algorithm............................................................ 7-10 Programmable Features ............................................................................................................................. 7- Other Functional Enhancements........................................................................................................ 7-11 Applicable Power Manager II Devices.............................................................................................. 7-11 Chapter 8. Margining and Trimming ..................................8-1 8.1 What is Voltage Margining? ................................................................................................................... 8-1 8.2 Voltage Margining Implementation........................................................................................................ 8-1 8.3 What is Trimming? ................................................................................................................................. 8-2 Typical Applications That Require Power Supply Trimming............................................................. 8-3 8.4 Trimming and Margining – Principle of Operation ................................................................................ 8-3 Power Manager II TrimCell Architecture ........................................................................................... 8-4 Power Manager II Integrates Multiple TrimCells ............................................................................... 8-6 Closed Loop Trim - Mode Operation of TrimCell.............................................................................. 8-7 Closed Loop Trim and Closed Loop Margining Using a Microcontroller.......................................... 8-8 Interfacing Power Manager II with a DC-DC converter ..................................................................... 8-9 Designing Trimming and Margining Networks using PAC-Designer Software............................... 8-11 Creating a DC-DC Converter Library Entry ..................................................................................... 8-11 Chapter 9. Design Tools for Power Manager II .................9-1 9.1 PAC-Designer: Power Management Design Tool .................................................................................. 9-1 Benefits of Software-Driven Programmable Hardware Design.......................................................... 9-2 9.2 PAC-Designer Overview ........................................................................................................................ 9-3 Selecting the Power Manager II Device from a Design Specification................................................ 9-3 Power Manager II Design Example..................................................................................................... 9-5 Design Flow......................................................................................................................................... 9-6 9.3 Example Design Resources..................................................................................................................... 9-6 9.4 Designing PCI-Express Add-on Card Power Management Using an ispPAC-POWR1014A Device ... 9-7CHAPTER 1 1-1 Introduction 1.1 Power 2 You This book provides technical details and design considerations for implementing the common circuit board power management functions shown as 3-D blocks in Figure 1-1 and Figure 1-2. This book also provides generalized cost effective solutions for each of these functions that can be customized to meet a circuit board’s specific voltage, current and control environment. For readers viewing this document in .pdf format, the 3-D blocks in Figure 1-1 and Figure 1-2 are hyperlinked to the appropriate section of Chapter 2, where multiple circuit options are provided for that particular power management function. Each of the circuit options hyperlink to a detailed description in the relevant chapters. If you are already familiar with Lattice Semiconductor Power Manager II devices and need to find a solution for a power management function: 1. Click on the required power management block in Figure 1-1. 2. You will automatically navigate to the section of Chapter 2 that provides multiple circuit options for the selected power management function. 3. Click on the relevant circuit option. 4. You will automatically navigate to the detailed description of that circuit diagram. If you wish to read about the general board power management blocks, the design criteria and circuit options, read this chapter. After reading this chapter, you can skip Chapter 2 - “Solutions Summary” on page 2-1 and continue with Chapter 3 - “Reset Generators & Supervisors” on page 3-1. What is Power Management? Every circuit board is powered from one or more sources called the input, or primary, power supplies. And, every circuit board performs one or more functions using a number of ICs, such as ASICs, CPUs, FPGAs, and so on. These ICs are called the payload ICs. The circuit board generates multiple power rails from the input supplies to power these payload ICs, using board Power 2 You: A Guide to Power Supply Management and Control 1-2 Introduction mounted supplies called primary and secondary supplies. The term ‘Power Management’ in this book includes all power rail control functions implemented in a circuit board. Typically, input power rails are controlled by power management functions such as hot-swap control and redundant power rail control. On the payload side, power management functions include sequencing, monitoring, supervisory signal generation, trimming and margining. Typical Board Power Supply Architectures Circuit boards can be broadly classified into two types: 1. Boards that derive input power supply from a backplane with its power always on and the boards plugged into or extracted from the backplane without turning the power off – these are called hotswappable boards, shown in Figure 1-1. 2. Boards that derive power from an external power supply that is turned on after the board is connected and is turned off before the board is disconnected – these are called non hot-swappable boards. There are solutions to implement all of the critical power supply control functions. Advanced power supply designers can click on any of the hyperlinked functions to see the solution. To learn the background of all these functions, continue reading this chapter. Figure 1-1. Power Management in a Hot-Swappable Circuit Board. (If viewing this document in .pdf format, click on any of the 3-D blocks to jump to implementation details.) Figure 1-1 illustrates the power supply architecture of a circuit board with the common power management blocks shown in 3-D. A hot-swappable board derives its power from one or more supplies from the backplane. There can be more than one set of supplies sourced from the backplane, so these boards are operational even when one of the supplies fails. The backplane supplies in Figure 1-1 are also called the primary supplies. In systems that require high availability, such as telecom / datacom systems, backplanes provide redundant supplies called on-line and standby power. The Power Supply OR’ing Controller, also called the redundant power supply controller, selects between the online and standby supplies to derive the power to the board. (Refer to “2.4 Redundant Supply Management” on page 2-14.) In order to extract and reinsert the boards from the backplane without disturbing the other boards plugged into the same backplane, a hot-swap controller function is implemented on each of these circuit boards. Hot-Swap Controller DC-DC Primary Sequence Control Monitor Voltage & Current Reset Generation DC-DC Secondary DC-DC Secondary DC-DC Secondary Power Supply OR’ing Controller DC-DC Primary DC-DC Primary Trimming & Margining Backplane Power Payload ICs Sequencing Thru MOSFETs Chapter 6 Chapter 5 Chapter 4 Power Feed to External Chapter 7 Systems Chapter 3 Chapter 8Power 2 You: A Guide to Power Supply Management and Control Introduction 1-3 Introduction (Refer to “2.3 Hot-Swap Controllers” on page 2-6.) In some cases, the supply rail output from the hotswap controller feeds one or more DC-DC converters, shown in Figure 1-1 as ‘DC-DC Primary’ supplies. Primary supplies are used to derive one or more main payload supply rails, which are also called secondary supply rails and are shown in Figure 1-1 as the ‘DC-DC Secondary’ supplies. These secondary supplies may have to be sequenced either through the DC-DC converter enable signals or through MOSFETs. Sequencing of these supplies is controlled by the sequence controller. (Refer to “2.2 Power Supply Sequencing” on page 2-3.) After all supplies are sequenced, the reset generator starts the board’s normal operation by releasing the reset signal to the CPU. (Refer to “2.1 N-Supply Supervisor, Reset Generator and Watchdog Timer” on page 2-1.) The voltage and current are monitored for faults and board shut down or reset generation functions are initiated as a result. (Refer to “2.1 N-Supply Supervisor, Reset Generator and Watchdog Timer” on page 2-1.) In addition, monitoring these lower voltages for faults should take into consideration, and compensate for, other error sources such as the ground voltage difference between the supply and the monitoring device. For example, the fault level of 1.2V is 1.2V * 5% = ±60mV. The ground voltage difference between different points in the circuit board can be be as much as 20mV to 30mV. To compensate for the error, differential sensing, as shown in Figure 3-9 on page 9, is used. Modern ICs require lower core voltages (1.2V or lower) with high current capacity (10A or higher) with reduced voltage tolerance. To meet these stringent supply requirements, a power supply trimming controller is often required. (Refer to “2.6 Trimming and Margining” on page 2-23.) For quality assurance purposes, four-corner testing of boards (voltage and temperature) frequently requires margining of supplies. These boards use margining controllers. (Refer to “2.6 Trimming and Margining” on page 2-23.) In some applications, such as GSM basestation boards, microwave boards and boards supporting hotpluggable mezzanine cards, it may be necessary to power an external unit, such as a remote radio head or an outdoor antenna, or supply power to an AMC. To support these functions, the power feed controller is required. (Refer to “2.5 Power Feed Controllers” on page 2-19.) Figure 1-2 shows the power management requirements in a non hot-swappable circuit board. These boards require primary and secondary power management controllers, as shown in Figure 1-2. The only primary power management function that is not relevant in these non-hot-swappable boards is the hotswap controller. Systems that typically require non-hot-swappable boards include routers in “pizza-box” form factor, personal computers and medical ultrasound systems.Power 2 You: A Guide to Power Supply Management and Control 1-4 Introduction Figure 1-2. Power Management in a Non-Hot-Swappable Circuit Board. (If viewing this document in .pdf format, click on any of the 3-D blocks to jump to implementation details.) Typical Power Management Implementations and Their Drawbacks The power rails in a board currently are managed by simple, single function integrated circuits (ICs) on both the primary and secondary sides. On the input side, each function shown in Figure 1-1 requires different ICs, depending on the rail voltage, board power and other control specifications. Modern circuit boards with complex payload ICs typically require five or more secondary power rails. Monitoring, sequencing and the generation of resets in these boards require multiple single function ICs. Together, the power management section requires multiple types of single function power management ICs in a given system. This results in a larger bill of materials (BOM), higher cost of inventory and assembly, as well as reduced reliability. The cost of the power management portion in a circuit board increases with the number of rails, and the number of power management functions. Lower cost single function power management ICs are usually less accurate in monitoring for faults, resulting in reduced board reliability. In order to reduce the number of secondary power management ICs, some designs use microcontrollers with an Analog-to-Digital (ADC) converter to monitor power supplies and use software to adapt to board-specific requirements. These microcontrollers are too slow to respond to power supply faults (5 to 10ms) and are unreliable, as they use hundreds of lines of code to perform power management functions and require a watchdog timer to monitor software flow. Microcontrollers are also used because the changes to power management can be met simply by changing software, as opposed to modifying the circuit board layout. However, modifications to software are almost always avoided, as most companies have strict control over software releases. The ideal power management solution is the one that has the following characteristics: 1. Lower cost and reduced bill of material, and flexibility to meet individual board power management needs. 2. Increased board reliability through increased supply fault monitoring accuracy. DC-DC Primary Sequence Control Monitor Voltage & Current Reset Generation DC-DC Secondary DC-DC Secondary DC-DC Secondary Power Supply OR’ing Controller DC-DC Primary DC-DC Primary Trimming & Margining Input Supply Payload ICs Sequencing Thru MOSFETs Chapter 6 Chapter 4 Power Feed to External Systems Chapter 7 Chapter 3 Chapter 8Power 2 You: A Guide to Power Supply Management and Control Introduction 1-5 Introduction 3. Reduced risk of circuit board re-layout to board power management through programmability. This book details how a Lattice Power Manager II device can integrate all of these functions. Because these devices are in-system programmable, each device can be programmed to meet a wide variety of circuit board functions. 1.2 Lattice Power Manager II IC Family There are five members in the Power Manager II family of devices: ispPAC® -POWR1220AT8, ispPACPOWR1014A, ispPAC-POWR1014, ispPAC-POWR607 and ProcessorPM™-POWR605. Figure 1-3 shows the part numbering convention of the Lattice Power Manager II product family. Figure 1-3. Lattice Power Manager II Family Part Numbers Indicate I/O Resources While the largest device, the ispPAC-POWR1220AT8, can be used to implement complex power management functions, the smallest device, the ProcessorPM-POWR605, can be used to implement power management functions for a wide variety of microprocessors and DSPs. All Power Manager II devices can be programmed in-system through the JTAG interface. The power management algorithm can be designed using the PAC-Designer® software tool that can be downloaded from the Lattice website free of charge. Figure 1-4 shows the architecture of the largest member of the family, the ispPAC-POWR1220AT8. Figure 1-4. ispPAC-POWR1220AT8 Device Block Diagram Digital Outputs ispPAC-POWR XX YY A T 8 Trim Outputs Trimming if Present ADC if Present Analog Inputs 4 X High Voltage MOSFET Driver 16 Open Drain Outputs 6 Digital Inputs I 2 C Interface Timers & Oscillator ADC (10-bit ) Non-Volatile Configuration JTAG 8X Margin/ Trim Control 8 Margin/Trim • Closed Loop Trim • Precision Output Voltage Control (<1%) 12 Voltage Monitors • 2 Comparators Per Rail • UV & OV • Differential Voltage Sense • Programmable Thresholds • Range - 0.67V to 5.7V • 368 Steps • Accuracy 0.2% (Typ.) 20 Outputs • 4 Programmable MOSFET Drivers • 16 Digital Open-Drain Controls 100-pin TQFP Package 48 Macrocell PLDPower 2 You: A Guide to Power Supply Management and Control 1-6 Introduction This device can manage up to 12 supply rails and generate 20 outputs (including four programmable MOSFET drive outputs) using its on-chip 48-macrocell ruggedized CPLD. All supply voltages can be measured using the on-chip 10-bit ADC device via the I2 C interface. This device also supports trimming and margining of up to eight DC-DC converters. Various time delays used in the power management algorithm can be realized by four on-chip programmable hardware timers. The ispPAC-POWR1220AT8 device can integrate the following power management functions: • Power supply OR’ing • Positive rail power feed to external system • Hot-swap controller for positive voltage rail • Sequencing • Voltage and current monitoring • Reset generation • Trimming and margining • Watchdog timer Figure 1-5 is a block diagram of the next members of the Lattice Power Manager II family, the ispPACPOWR1014 and ispPAC-POWR1014A. Figure 1-5. Block Diagram of ispPAC-POWR1014 & ispPAC-POWR1014A Devices These devices can monitor up to 10 supply rails and generate 14 power management control outputs (including two programmable MOSFET drivers) using an on-chip 24-macrocell PLD block. The ispPACPOWR1014A device provides a 10-bit ADC and an I2 C interface to measure all supply voltages. Various time delays used in the power management algorithm can be realized by four on-chip programmable hardware timers. The ispPAC-POWR1014/A devices can integrate the following power management functions: 2 X High Voltage MOSFET Driver 12 Open Drain Outputs 4 Digital Inputs I 2 C* Interface Timers & Oscillator ADC* (10-bit ) Non-Volatile Configuration JTAG * ADC and I2 C Interface in ispPAC-POWR1014A only. 10 Voltage Monitors • 20 Precision Comparators • Programmable Thresholds • Range - 0.67V to 5.7V • 368 Steps • Accuracy 0.3% (Typ.) 14 Outputs • 2 Programmable MOSFET Drivers • 12 Digital Open-Drain Controls 48-pin TQFP Package 24 Macrocell PLDPower 2 You: A Guide to Power Supply Management and Control Introduction 1-7 Introduction • Power Supply OR’ing • Hot-swap controller for positive voltage rail • Positive or negative power feed controller • Sequencing • Voltage and current monitoring • Reset generation, sequencing • Watchdog timer The ispPAC-POWR607 device shown in Figure 1-6 can monitor up to six supplies and supports seven outputs (including two MOSFET drivers) that are controlled by the on-chip 16-macrocell PLD. Various time delays used in the power management algorithm can be realized by four on-chip programmable hardware timers. Figure 1-6. Block Diagram of an ispPAC-POWR607 Device This device can be powered down using a digital signal. The ispPAC-POWR607 device can be used for the following functions: • Power Supply OR’ing • Hot-swap controller for positive voltage rail • Hot-swap controller for negative voltage rail • Positive or negative power feed controller sequencing • Reset generation • Watchdog timer Figure 1-7 shows the ProcessorPM-POWR605 device, which is ideal for implementing power management functions for any processor or DSP. This device can monitor up to six supplies and generate five outputs that are controlled by the on-chip 16-macrocell PLD. Various time delays used in the power management algorithm can be realized by four on-chip programmable hardware timers. 2 X High Voltage MOSFET Driver 5 Open Drain I/O 2 Digital Inputs Timers & Oscillator Non-Volatile Configuration JTAG Power Down Control Powered-Down Mode < 10µA 6 Voltage Monitors • Programmable Thresholds • Range - 0.67V to 5.7V • 192 Steps • Accuracy 0.5% (Typ.) 7 Outputs • 2 Programmable MOSFET Drivers • 5 Digital Open-Drain I/O 32-pin QFN Package 16 Macrocell PLDPower 2 You: A Guide to Power Supply Management and Control 1-8 Introduction Figure 1-7. Architecture of the ProcessorPM-POWR605 Device The ProcessorPM-POWR605 device can be used to integrate the following functions: • Voltage supervision • Reset generation • Watchdog timer 1.3 PAC-Designer Software Board-specific power management is implemented using the PAC-Designer software: an intuitive, userfriendly software tool set. The PAC-Designer software enables the following: 1. Configure voltage monitoring thresholds for a given voltage rail. 2. Configure MOSFET driver characteristics to meet turn on and off ramp rates. 3. Implement power management functions such as hot-swap controller, sequencer, reset generator through LogiBuilder (simple configurable sequencer steps and logic equations). 4. Simulate the power management algorithm using either high-end tools such as Aldec® Active-HDL™ or Mentor Graphics® ModelSim™, or use the waveform simulator built into the software. 5. Calculate the resistor values to be connected between the Power Manager II devices and the DC-DC converters for implementing Trimming and Margining functions. 6. Generate JEDEC files and SVF files for programming the device using standard programming methods. 1.4 Summary of Chapters This book has nine chapters. Chapter 3 to Chapter 8 each cover a power management function in detail. Chapter 1 - “Introduction” on page 1-1 – summarizes the power management functions, explains drawbacks of traditional power management solutions, and provides a brief introduction to Lattice Power Manager II products. 5 Open Drain I/O 2 Digital Inputs Timers & Oscillator Non-Volatile Configuration JTAG Power Down Control 5 Outputs • 5 Digital Open-Drain I/O 6 Voltage Monitors • Programmable Thresholds • Range - 0.67V to 5.7V • 192 Steps • Accuracy 0.5% (Typ.) Powered-Down Mode < 10µA 24-pin QFN Package 16 Macrocell PLDPower 2 You: A Guide to Power Supply Management and Control Introduction 1-9 Introduction Chapter 2 - “Solutions Summary” on page 2-1 – is a summary of all of the solutions provided for each of the power management functions shown in Figure 1-1. Chapter 3 - “Reset Generators & Supervisors” on page 3-1 – describes reset generator supervisor and watchdog timer and identifies some of the common pitfalls to avoid in voltage supervision and reset generation in circuit boards with multiple power supplies. Chapter 4 - “Power Supply Sequencing” on page 4-1 – shows how a flexible power supply sequencing arrangement provides a solution. This section also describes software-based sequencing methodology. Chapter 5 - “Hot-Swap Controllers” on page 5-1 – describes design considerations for implementing hotswap controllers and selecting MOSFETs. This chapter also provides hot-swap controller solutions for positive rail, negative rail, and multiple backplane rails. Chapter 6 - “Power Supply OR’ing Controllers” on page 6-1 – describes the design considerations and provides N-rail positive and negative rail OR’ing solutions. Chapter 7 - “Power Feed Controllers” on page 7-1 – provides design considerations for implementing power feed controllers and selecting MOSFETs. N-supply positive and negative rail power feed, and MicroTCA power module design, are also discussed. Chapter 8 - “Margining and Trimming” on page 8-1 – describes the need for trimming and margining of supplies, provides trimming and margining solutions, and describes how to implement these designs using software. Chapter 9 - “Design Tools for Power Manager II” on page 9-1 – describes the software flow, provides a description of each of the steps, and describes software implementation of complex power management designs.Power 2 You: A Guide to Power Supply Management and Control 1-10 Introduction This page intentionally left blank.CHAPTER 2 2-1 Solutions Summary 2.1 N-Supply Supervisor, Reset Generator and Watchdog Timer Features of Supervisor, Reset Generator and Watchdog Timer in a Power Manager II Device • Monitors up to 12 rails for over-voltage / under-voltage faults • Precision (0.2% typ.) programmable monitoring threshold from 0.67V to 5.8V • Differential voltage sensing for monitoring low voltage, high current supplies • Fast fault detection with glitch filtering – up to 64s • Reset generation with programmable pulse stretch of up to hundreds of milliseconds • Low voltage interrupt generation • Manual reset input with programmable de-bounce period • Watchdog timer with programmable time delay from hundreds of milliseconds to minutes • Flexible watchdog timer interrupt / reset signal combinations • All features can be changed after assembly through in-system programming • Over-voltage protection and under-voltage lock-out • Integrates additional functions such as sequencing, hot-swap, trimming and margining • Measures voltage and current through I2 C. (A detailed circuit description of a design using ProcessorPM-POWR605 device is provided in “3.2 N-Supply Supervisor, Reset Generator and Watchdog Timer” on page 3-10.)Power 2 You: A Guide to Power Supply Management and Control 2-2 Solutions Summary Figure 2-1. ProcessorPM-POWR605 Integrating 6-Supply Supervisor, Reset Generator and Watchdog Timer Advantages of Supervisor, Reset Generator and Watchdog Timer in a Power Manager II Device • Lowers cost compared to multiple supervisor and reset ICs • Reduces number of components – No resistors to set threshold, no capacitors to set time delay • Increases functional reliability – Very fast fault detection, higher monitoring precision, fewer components • Reduces spurious supply fault interrupts due to supervisor monitoring threshold accuracy and filtering supply glitches • Reduces risk – Accommodates changes to specs through programmability • Reduces part types – Single chip can be used across a wide range of applications • Protects board against over-voltage faults by initiating shut-down. (A detailed circuit description of a design using ProcessorPM-POWR605 device is provided in “3.2 N-Supply Supervisor, Reset Generator and Watchdog Timer” on page 3-10.) ProcessorPM-POWR605 V#1 V#2 V#6 CPU_Reset WDT_Int Reset_in WDT_Trig VMON1 to VMON6 IN1 IN2 IN_OUT1 IN_OUT2Power 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-3 2.2 Power Supply Sequencing Solutions Summary Flexible N-Supply Sequencing Features of Sequencer Implementation in a Power Manager II Device • Programmable power up and power down sequencing • Shutdown can be initiated through supply fault or an external input • Allows user to change supply turn-on sequence or fine-tune sequence timing in software • Supports multiple types of supply turn-on/off sequencing algorithms • Closed loop sequencing / time-based open loop sequencing / complete sequencing within a given period • Integrates additional functions such as supervision reset generation, watchdog timer, hot-swap, trimming and margining • Measures voltage and current through through I2 C • Sequencing of supplies can be changed after assembly through in-system programming through JTAG. (A detailed circuit description is provided in “4.2 Flexible N-Supply Sequencing Using Power Manager II II Devices” on page 4-3.) Figure 2-2. Flexible N-Supply Sequencing Using the ispPAC-POWR1014A Device Advantages of Integrating Sequencer into a Power Manager II Device • Reduces cost by integrating the sequencing function along with other board power management functions • Minimizes the risk of board re-spin due to change of sequencing algorithm – Can adjust sequencing ADC ispPAC-POWR1014A En V OUT POWER_GOOD Shut_Down N OUT 3 OUT 4 OUT 10 OUT 11 OUT 12 SCL SDA IN1 IN 2 VMON 1 to VMON N Recycle Power En V OUT DC-DC / LDO #1 DC-DC / LDO #2 En V OUT DC-DC / LDO #N Sequence_FailPower 2 You: A Guide to Power Supply Management and Control 2-4 Solutions Summary algorithm after board assembly • Reduces first prototype board bring-up time – By providing additional debug flags such as sequence incomplete, supply turn-on timeout, etc. • Increases board reliability by reducing the number of components – Does not require resistors or capacitors for timing or sequencing threshold adjustment • Reduces the number of ICs required for power management, including sequencing, by meeting the sequencing requirements of a wide variety of boards. (A detailed circuit description is provided in “4.2 Flexible N-Supply Sequencing Using Power Manager II II Devices” on page 4-3.) Sequencing with MOSFETs and DC-DC Enables Features of Sequencer Implementation in a Power Manager II Device • Integrates multiple charge pumps to control high-side N-Channel MOSFETs • Has unified sequencing algorithm using MOSFETs and DC-DC converter enables • Programmable power-up and power-down sequencing • Shutdown can be initiated through supply fault or an external input • Allows user to change supply turn-on sequence or fine-tune sequence timing in software • Supports multiple types of supply turn-on/off sequencing algorithms: • Closed loop sequencing / time-based open-loop sequencing / complete sequencing within a given period • Integrates additional functions such as supervision reset generation, watchdog timer, hot-swap, trimming and margining • Sequencing of supplies can be changed after assembly through in-system programming via JTAG • Measures voltage and current through I2 C. (A detailed circuit description is provided in “4.3 Sequencing With MOSFETs and DC-DC Converter Enables” on page 4-9.)Power 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-5 Solutions Summary Figure 2-3. The ispPAC-POWR1014A Implementing Sequencing with MOSFET and DC-DC Enables Advantages of Integrating Sequencer into a Power Manager II Device • Lowers cost by reducing the number of DC-DC converters as well as integrating sequencing function along with other board power management functions • Minimizes the risk of board re-spin due to change of sequencing algorithm – Adjust sequencing algorithm after board assembly • Reduces board bring-up time by providing additional debug flags such as sequence incomplete and supply turn-on timeout • Increases board reliability by reducing the number of components – Does not require resistors or capacitors for timing or sequencing threshold adjustment • Reduces the number of ICs required for power management, including sequencing by meeting the sequencing requirements of a wide variety of boards. (A detailed circuit description is provided in “4.3 Sequencing With MOSFETs and DC-DC Converter Enables” on page 4-9.) VMON 5 VMON1 to HVOUT 1 OUT 3 OUT 4 OUT 5 Device #1 Device #2 Device #1 Sequence 1. 1.2V 2. 1.8V 3. 3.3V Device #2 Sequence 1. 3.3V 2. 2.5V 3. 1.2V 1.8V En 2.5V En 1.2V En Shut_Dn ispPAC-POWR1014A OUT 6 OUT 7 SCL SDA 3.3V ADC Power Good Failed Q1Power 2 You: A Guide to Power Supply Management and Control 2-6 Solutions Summary 2.3 Hot-Swap Controllers Hot-Swap Controller Using Soft-Start Mechanism Features of Hot-Swap Controller Implementation in a Power Manager II Device • Allows safe insertion into backplane – Programmable contact de-bounce delay • Over-voltage protection and under-voltage lockout • Controls inrush current through programmable soft-start rate feature • Retry on fault with programmable retry period • Backplane voltage status flag to secondary side • Isolates board from backplane due to faults on board. Ramp time can be customized to meet board turnon power requirements. • Backplane voltage range 3V to 5V • Integrate other board management functions such as sequencing, reset generation, supervision, watchdog timer, trimming and margining • Measure backplane voltage in addition to other board voltages and currents through I2 C • Management of supplies can be changed after assembly through in-system programming via JTAG • Hot-swap controller can be programmed independently of other ICs on the board. (A detailed circuit description is provided in “5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices” on page 5-2.) Figure 2-4. Hot-Swap Control Implemented Through MOSFET Ramp Rate Control Advantages of Integrating Hot-Swap Controller into a Power Manager II Device • Lowers cost by integrating other board management functions and reducing the number of power management ICs • Minimizes fault propagation to other boards in the system due to a fault on a circuit board • Increases shut-down reliability – Ensures safe board shutdown through early warning to the secondary side Inp_5V Soft_start Backplane Q1 5V Load Start_5V_Load Out_5V VMON1 VMON2 HVOUT1 OUT3 ADC ispPAC-POWR1014A I 2 CPower 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-7 Solutions Summary • Reduces the number of power management ICs – Integrates the remaining power management functions into the Power Manager II devices. (A detailed circuit description is provided in “5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices” on page 5-2.) Hot-Swap Controller with Hysteretic Current Limit Mechanism Features of Hot-Swap Controller Implementation in a Power Manager II Device • Limits the backplane current to a value during a current inrush event, minimizing power supply dip on the backplane • Two programmable over-current limits: hot-swap event and board operation • Programmable contact de-bounce delay • Over-voltage, over-current protection and under-voltage lockout • Short circuit protection response < 1s • Programmable retry period • Retry on hot-swap fault / secondary supply fault • Early warning about the backplane voltage status to secondary side • Isolates board from backplane due to faults on board • Integrates other board management functions such as sequencing, reset generation, supervision, watchdog timer, trimming and margining • Measures backplane voltage in addition to other board voltages and currents through I2 C • Management of supplies can be changed after assembly through in-system programming via JTAG • Hot-swap controller can be programmed independently of other ICs on the board. (A detailed circuit description is provided in “5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices” on page 5-2.) Figure 2-5. Hot-Swap Controller with Hysteretic Current Limit Inp_5V Hyst_Ctrl Q1 Out_5V I_In Rs +3.3V R1 R2 Short_Ckt IN1 Backplane 5V Load Start_5V_Load ADC ispPAC-POWR1014A SCL SDA VMON1 VMON2 VMON3 OUT3 HVOUT1 IN1 CSA Q2Power 2 You: A Guide to Power Supply Management and Control 2-8 Solutions Summary Advantages of Hot-Swap Controller Integrated into a Power Manager II Device • Reduces board cost by integrating other secondary board power management functions into Power Manager II • Reduces board space taken up by the hot-swap controller by using a smaller hold-off capacitor • Increases system reliability by reducing the peak current during the hot-swap event and during board fault • Minimizes fault propagation to other boards in the system due to a fault on a circuit board • Increases shut-down reliability – Ensures safe board shutdown through early warning to the secondary side • Reduces the number of power management ICs – Integrates the remaining power management functions into the Power Manager II device. (A detailed circuit description is provided in “5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices” on page 5-2.) 12V/24V Hot-Swap Controller Features of Hot-Swap Controller Integrated into a Power Manager II Device • Wide operating voltage range – 6V to 24V • Can be used across a wide range of board power – 10W to 200W • Limit the backplane current to a value during current inrush event to meet the safe operating area (SOA) specifications of a MOSFET • Programmable inrush and operating over-current limits independently • Programmable contact de-bounce delay • Over-voltage, over-current protection and under-voltage lockout • Short circuit protection response < 1s • Programmable retry period • Retry on hot-swap fault/ secondary supply fault • Backplane fault early warning • Isolates board from backplane due to faults on board • Integrates other board management functions such as sequencing, reset generation, supervision, watchdog timer, trimming and margining. • Measures backplane voltage in addition to other board voltages and currents through I2 C • Management of supplies can be changed after assembly through in-system programming via JTAG • Hot-swap controller can be programmed independently of other ICs on the board. (A detailed circuit description is provided in “5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices” on page 5-2.)Power 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-9 Solutions Summary Figure 2-6. 12V/24V Hot-Swap Controller Using an ispPAC-POWR1014A Device Advantages of Hot-Swap Controller Integrated Into a Power Manager II Device • Reduces board cost by integrating other secondary board power management functions into Power Manager II, lower cost MOSFET and smaller hold-off capacitor • Reduces board space due to smaller hold-off capacitor • Increases system reliability by reducing the peak current during the hot-swap event as during board fault • Minimizes fault propagation to other boards in the system due to a fault on a circuit board • Increases shut-down reliability – Ensures safe board shutdown through early warning to the secondary side • Reduces the number of power management ICs – Integrates the remaining power management functions into the Power Manager II device. (A detailed circuit description is provided in “5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices” on page 5-2.) Negative Supply Hot-Swap Controller Features of the Negative Supply Hot-Swap Controller Implementation • Wide operating voltage range: -35V to -80V • Supports wide range of board power: 10W to 200W • Deterministic current level during hot-swap to meet the SOA specifications of a MOSFET • Programmable inrush current limit • Programmable over-current limit • Short circuit protection response time < 1s Inp_12V Backplane Q1 Out_12V I_In Rs +3.3V R1 R2 Short_Ckt +3.3V D1 Q2 D2 C2 C1 12V Load Start_12V_Load C_Pmp S_Dn Q3 Ch VMON1 VMON2 VMON3 OUT3 HVOUT1 OUT4 ADC ispPAC-POWR1014A SCL IN1 SDA CSAPower 2 You: A Guide to Power Supply Management and Control 2-10 Solutions Summary • Programmable contact de-bounce delay • Over-voltage protection and under-voltage lockout • Enables load after the hot-swap event, further minimizing inrush current • Programmable retry period • Control of hot-swap from the secondary side. • Early fault warning to secondary side • Immune to 100V glitches. (A detailed circuit description is provided in “5.3 Implementing a Negative Supply Hot-Swap Controller” on page 5-13.) Figure 2-7. Hot-Swap Controller Circuit Using an ispPAC-POWR607 Device Advantages of Hot-Swap Controller Integrated into a Power Manager II Device Increases system reliability by: • Limiting inrush current to the programmed value • Limiting current due to secondary side faults to the programmed value • Reducing current glitches on the backplane • Reducing power stress on the MOSFET • Minimizes fault propagation through the system from a faulty card • Reducing overall system cost -48V 43k 3.3k 6V 3.3k 6V .01µF .05(RS) Voltage Regulator ispPAC-POWR607 100k 100 HVOUT2 HVOUT1 VMON6 VMON5 VMON4 VMON3 VMON2 VMON1 GND VCC Vin_High Vin_OK VDS_2 VDS_1 Isense_2 Isense_1 Gate_Drive_2 Gate_Drive_1 Ch IN/OUT3 Enable_Load 43k IN2 Q2 Q3 VCC_607 GND_607 VCC_607 VCC_607 GND_607 IN/OUT4 Shut_Dn R2 R1 -48V Return Load STB120NFPower 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-11 Solutions Summary • Reducing board space due to smaller hold-off capacitor • Reducing the number of hot-swap controller types across multiple projects. (A detailed circuit description is provided in “5.3 Implementing a Negative Supply Hot-Swap Controller” on page 5-13.) CompactPCI Board Management Features of CompactPCI Board Management Controller Integrated into a Power Manager II Device • Hot-swap for 3.3V, 5V, ±12V (CompactPCI hot-swap and board controller) • Can be used across a wide range of board power – 10W to 200W • Programmable inrush current per individual rail • Programmable contact de-bounce delay on all supply inputs • Over-voltage, over-current protection and under-voltage lockout • Short circuit protection response < 1s • Programmable retry period – Retry on hot-swap fault / secondary supply fault • Backplane fault early warning • Isolates board from backplane due to faults on board • Integrate other board management functions such as sequencing, reset generation, supervision, watchdog timer, trimming and margining. • Measures backplane voltages in addition to other board voltages and currents through I2 C • Management of supplies can be changed after assembly through in-system programming via JTAG. (A detailed circuit description is provided in “5.4 CompactPCI Board Management” on page 5-16.)Power 2 You: A Guide to Power Supply Management and Control 2-12 Solutions Summary Figure 2-8. An ispPAC-POWR1220AT8 Device – Complete CompactPCI Board Management Advantages of CompactPCI Board Management Integrated into a Power Manager II Device • Reduces board cost by integrating other secondary board power management functions into Power Manager II, lower cost MOSFET and smaller hold-off capacitor • Increases system reliability by reducing the peak current during the hot-swap event as well as during board fault • Minimizes fault propagation to other boards in the system due to a fault on a circuit board • Increases shut-down reliability – Ensures safe board shutdown through early warning to the secondary side • Reduces the number of power management ICs – Integrates the remaining power management functions into the Power Manager II device. (A detailed circuit description is provided in “5.4 CompactPCI Board Management” on page 5-16.) CompactPCI Express Board Management Advantages of CompactPCI Express Board Management • Hot-swap for 3.3V, 5V, +12V (CompactPCI Express, VME system board controller) • Can be used across a wide range of board power – 10W to 200W • Programmable inrush current per individual rail • Programmable contact de-bounce delay on all supply inputs +12V +5V Q1 Q2 Ch 1.8V POL 2.5V POL BRD_SEL# PCI_RST_b Brown_Out CPU_RSTb 12V 1.8V 2.5V 5V 3.3V I_Sens3V3 FETDRV3V3 V_Sens3V3 I_Sens5V FETDRV5V V_Sens5V V_In_12V FETDRV12V V_Sens12V En_1V8 En_2V5 SCL SDA ispPAC-POWR1220AT8 -12V +3.3V En_Neg12 Healthy# -12V +3.3V CSA CSA Q3Power 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-13 Solutions Summary • Over-voltage, over-current protection and under-voltage lockout • Short circuit protection response < 1s • Programmable retry period – Retry on hot-swap fault / secondary supply fault • Backplane fault early warning • Isolates board from backplane due to faults on board • Integrates other board management functions such as sequencing, reset generation, supervision, watchdog timer, trimming and margining. • Measures backplane voltages in addition to other board voltages and currents through I2 C • Management of supplies can be changed after assembly through in-system programming via JTAG. (A detailed circuit description is provided in “5.4 CompactPCI Board Management” on page 5-16.) Figure 2-9. Complete CompactPCI Express Board Power Management Advantages of CompactPCI Express Board Management Implementation • Reduces board cost by integrating other secondary board power management functions into Power Manager II, lower cost MOSFET and smaller hold-off capacitor • Increases system reliability by reducing the peak current during the hot-swap event as well as during board fault • Minimizes fault propagation to other boards in the system due to a fault on a circuit board • Increases shut-down reliability – Ensures safe board shutdown through early warning to the secondary side • Reduces the number of power management ICs – Integrates the remaining power management functions into the Power Manager II device. (A detailed circuit description is provided in “5.4 CompactPCI Board Management” on page 5-16.) +12V +5V +3.3V Q5 Q1 Q2 D2 C2 C_Pmp S_Dn Q3 Ch 3.3V ATNSW# PRSNT# PWREN# PERST# MPWRGD 12V 1.8V 2.5V 5V 3.3V I_Sens3V3 FETDRV3V3 V_Sens3V3 I_Sens5V FETDRV5V V_Sens5V V_In_12V I_Sens12V FETDRV12V Sh V_Sens12V ut_Dn En_1V8 En_2V5 SCL SDA CSA CSA 1.8V POL 2.5V POL Q4 CSA ispPAC-POWR1220AT8Power 2 You: A Guide to Power Supply Management and Control 2-14 Solutions Summary 2.4 Redundant Supply Management Two Rail 5V Power Supply OR’ing (Using MOSFETs) Features of Power Manager II-Based Implementation • Low power loss replacement for diode • Uses N-Channel MOSFET • Proactive reverse current protection • Under-voltage and over-voltage protection • Individual branch current and voltage measurement through I2 C • Integrates other board management functions such as hot-swap, supply sequencing, voltage supervision, reset generation, watchdog timer, trimming and margining. (A detailed circuit description is provided in “6.3 +5v Power Supply OR’ing (Using MOSFETs) Circuit ” on page 6-3.) Figure 2-10. An ispPAC-POWR1014A Device Implementing Two-Rail 5V OR’ing Control Advantages of Integrating Power OR’ing Control into a Power Manager II Device • Increases board reliability through proactive reverse current protection Inp_5Vb Hyst_Ctrl Q2 5V_Hot-swap Inp_5Va I_Inb Rs R2 Q1 Rs R1 5V_a Start 5V_Hot-swap CSA A VMON1 VMON2 VMON3 VMON4 HVOUT1 OUT3 SCL SDA ispPAC-POWR1014A 5V_b I_Ina ADC CSA B HVOUT2Power 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-15 Solutions Summary • Lowers power management cost through integrating multiple power management functions into a single device • Reduces the number of ICs required to implement the Power OR’ing feature. (A detailed circuit description is provided in “6.3 +5v Power Supply OR’ing (Using MOSFETs) Circuit ” on page 6-3.) Power Supply OR’ing of N-Rails Using MOSFETS Features of Power Manager II-Based Implementation • Single Power Manager II chip implements OR’ing up to six channels • Low power loss replacement for diode • Uses N-Channel MOSFET • Proactive reverse current protection • Under-voltage and over-voltage protection • Individual branch current and voltage measurement through I2 C • Integrate other board management functions such as hot-swap, supply sequencing, voltage supervision, reset generation, watchdog timer, trimming and margining. (A detailed circuit description is provided in “6.4 Power Supply OR’ing of Three or More 5V Supply Rails Using MOSFETS” on page 6-5.)Power 2 You: A Guide to Power Supply Management and Control 2-16 Solutions Summary Figure 2-11. N-Channel OR’ing through MOSFETS Advantages of Integrating Power OR’ing Control into a Power Manager II Device • Increases board reliability through proactive reverse current protection • Lowers power management cost through integrating multiple power management functions into a single device • Reduces number of ICs required to implement Power OR’ing feature. (A detailed circuit description is provided in “6.4 Power Supply OR’ing of Three or More 5V Supply Rails Using MOSFETS” on page 6-5.) N-rail (12V/24V) OR’ing Features of Power Manager II-Based Implementation • Wide operating voltage range: 6V to 24V • Single Power Manager II chip implements OR’ing up to six channels • Low power loss replacement for diode • Uses N-Channel MOSFET Inp_5Vb Qn 5V_Hot-Swap Inp_5Va I_Inn Rs Rn Q1 Rs R1 5V_a Start 5V_Hot-Swap CSA a VMON1 VMON2 VMON3 VMON4 HVOUT1 OUT3 SCL SDA ispPAC-POWR1014A 5V_n I_Ina ADC CSA nPower 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-17 Solutions Summary • Proactive reverse current protection • Under-voltage and over-voltage protection • Individual branch current and voltage measurement through I2 C • Integrates other board management functions such as hot-swap, supply sequencing, voltage supervision, reset generation, watchdog timer, trimming and margining. (A detailed circuit description is provided in “6.5 N-rail (12V/24V) OR’ing” on page 6-7.) Figure 2-12. N- 12V Rail OR’ing Through MOSFET Using an ispPAC-POWR1014A Device Advantages of Integrating Power OR’ing Control into a Power Manager II Device • Increases board reliability through proactive reverse current protection • Lowers power management cost through integrating multiple power management functions into a single device • Reduces number of ICs required to implement the Power OR’ing feature. (A detailed circuit description is provided in “6.5 N-rail (12V/24V) OR’ing” on page 6-7.) -48V Supply OR’ing Through MOSFETS Features of Power Manager II-Based Implementation Inp_12Vb Qn 12V_Hot-Swap Inp_12Va I_Inn Rs Rn Q1 Rs R1 12V_a Start 12V_Hot-Swap CSA a VMON1 VMON2 VMON3 VMON4 HVOUT1 OUT4 SCL SDA ispPAC-POWR1014A 12V_n I_Ina ADC CSA n OUT3 OUT5Power 2 You: A Guide to Power Supply Management and Control 2-18 Solutions Summary • Wide operating voltage range: -30V to -80V • Low power loss replacement for diode • Uses N-Channel MOSFET • Hot-swappable • Proactive reverse current protection • Under-voltage and over-voltage protection • Fuse fault detection • Controls hot-swap controller. (A detailed circuit description is provided in “6.6 -48V Supply OR’ing Through MOSFETS” on page 6-10.) Figure 2-13. Dual -48V MOSFET OR’ing Circuit Using an ispPAC-POWR607 Device Advantages of Integrating Power OR’ing Control into a Power Manager II Device • Increases board reliability through proactive reverse current protection • Lowers power management cost through integrating power OR’ing along with voltage monitoring and contact de-bouncing • Reduces number of ICs required to implement the Power OR’ing feature. (A detailed circuit description is provided in “6.6 -48V Supply OR’ing Through MOSFETS” on page 6-10.) -48VA -48VB 10K 10K A_Hi B_Hi A_On B_On Start_HS Q1 Q2 R1 R2 R3 R4 To Hot-swap Controller BRD -48V HVOUT2 GND HVOUT1 VMON6 VMON5 OUT5 ispPACPOWR607 3K 3KPower 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-19 2.5 Power Feed Controllers Solutions Summary Dual Rail -48V Power Feed Controller Features of Power Manager II-Based Implementation • Wide operating voltage range: -30V to -80V • Safe MOSFETs operation (SOA) • Individual channel current limiting • Individual channel short circuit protection - < 1s response time • No-current and over-current flags per output branch • Individual channel enables • Retry upon fault detection • Filters out short period over-current glitches. (A detailed circuit description is provided in “7.2 Dual Rail -48V Supply Feed” on page 7-1.) Figure 2-14. An ispPAC-POWR607 Implements a Two-Channel -48V Power Feed Circuit Advantages of Integrating 2-Channel -48V Power Feed into a Power Manager II • Lowers cost by integrating two-channel power feed into a single chip • Increases board reliability through current limiting and short circuit protection on a per-channel basis • Reduces the number of ICs by being able to be customized across a wide range of power feed and protection requirements. (A detailed circuit description is provided in “7.2 Dual Rail -48V Supply Feed” on page 7-1.) SC_2 Fault_1 R1 R2 R3 R4 Rs1 Rs2 Q2 N1 N2 100K 100K VMON 1 VMON 2 HVOUT1 VMON 3 VMON 4 HVOUT2 OUT3 OUT4 -48V_1 -48V_2 Fault_2 OUT6 OUT5 OC_SCb OUT7 ispPAC-POWR607 -48V_IN SC_1 GND -48V_Rtn 3V3 Reg Vcc SC_2 SC_1 En_2 En_1 VMON 6 VMON 5 IN1 IN2 N3 N4 Q1Power 2 You: A Guide to Power Supply Management and Control 2-20 Solutions Summary Three-Channels of a 6V-24V Power Feed System Features of Power Manager II-Based implementation • Wide operating voltage range: 6V to 24V • Expandable up to four channels of power feed control • Safe MOSFET operation (SOA) • Individual channel current limiting • Individual channel short circuit protection - < 1s response time • No-current and over-current flags per output branch • Individual channel enables • Retry upon fault detection • Filters out short period over-current glitches • Individual channel current and voltage measurement through I2 C • Integrates other board power management functions. (A detailed circuit description is provided in “7.3 Three Channels of a +12V Power Feed System” on page 7-4.) Figure 2-15. Three-Channel 12V Power Feed Circuit Advantages of Integrating Multiple Channel Power Feed into a Power Manager II Device • Reduces cost of implementation by reducing the number of ICs required for the entire power feed circuit • Reduced number of power feed ICs – Customizable to meet power feed characteristics across a wide variety of applications Inp_12VIn Rs3 Q3 Rs2 Q2 12V_In Rs1 Q1 2 12V#1 12V#2 12V#3 CPOUT I_12V_1, Out_12V_1 SC_1 SC_2 SC_3 EN_1 EN_2 EN_3 SC_1,2,3 Fault_1, Fault_2, Fault_3 ADC ispPAC-POWR1014A VMON1 VMON2,3 VMON4,5 SCL OUT3,4 HVOUT1 SDA VMON6,8 OUT5,6 OUT7,8 VMON9 VMON10 IN1 IN2,3,4 OUT9,10,11 2 2 2 2 2Power 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-21 Solutions Summary • Increased reliability of the board by integrating other board management functions such as sequencing, reset generation, etc. (A detailed circuit description is provided in “7.3 Three Channels of a +12V Power Feed System” on page 7-4.) Two-Channel +12V & 3.3V Power Feed With Diode OR’ing Features of the Power Feed Solution Integrated into Power Manager II • Designed for use in MicroTCA Power Module – Two channels • Feeds 3.3V and 12V with OR’ing support using MOSFET • Turns off 12V power feed within 50s of AMC card extraction • Programmable over-current protection • MOSFET operates in safe operating area • Supports OR’ing of payload power supply rails (+12V) • Proactive reverse current protection • Measures voltage and current through I2 C • Monitors input 12V supply for over- and under-voltage conditions • Expand up to four channels of power feed as well as trimming of 12V supply for power supply OR’ing function. (A detailed circuit description is provided in “7.4 2-Channel +12V & 3.3V Power Feed With MOSFET OR’ing” on page 7-8.)Power 2 You: A Guide to Power Supply Management and Control 2-22 Solutions Summary Figure 2-16. One-Channel uTCA Power Feed Using Half of an ispPAC-POWR104A Device Advantages of Two-Channel MicroTCA Power Feed Circuit Using a Power Manager Device: • Lowers cost of implementation • Increased reliability through high precision voltage monitoring • Integrates more channels of power feed circuitry along with trimming features. (A detailed circuit description is provided in “7.4 2-Channel +12V & 3.3V Power Feed With MOSFET OR’ing” on page 7-8.) EMMC Alert VMON Open Drain Digital Out HVOUT1 OUT VMON OUT EMMC Primary/ Redundant Enable# Payload On Mgmt Power Control Current Sensing Pass Device OR’ing Device Q1 Q2 12V Payload Power to Load 100 100 4.7M P1 4.7M 0.001µF C2 MMBT 2222A N1 47 D2 P2 0.01µF C1 2.2K Quick Shutoff Output Monitor Half of ispPACPOWR1014A OR-FET Control MMBT 2222A N2 Q3 3.3V Power to Load D1 Open Drain Digital Out Vcc 12V 3.3V + _ 47M 3K N3 6V 1K MMBT2907 Primary Power SourcePower 2 You: A Guide to Power Supply Management and Control Solutions Summary 2-23 2.6 Trimming and Margining Solutions Summary (A detailed circuit description is provided in “8.4 Trimming and Margining – Principle of Operation” on page 8-3.) Features of Closed Loop Trimming and Margining Implemented in a Power Manager II Device • Ideally suited for trimming any low voltage (<1.2V) and high current analog DC-DC converter • Output voltage accuracy = Set pin voltage ±10mV • Single chip supports up to eight channels of trimming and margining • Voltage margining support • Differential voltage sensing • Voltage scaling • VID support through simple PLD • Integrates trimming and margining along with voltage supervision, sequencing, reset generation and hot-swap controller functions. Figure 2-17. Low Cost Trimming and Margining Solution Using Power Manager II Advantages of Implementing Trimming and Margining Using a Power Manager II Device • Lowers cost of a DC-DC converter - No need for Digital DC-DC converter to support margining and trimming • Increases functional reliability through DC-DC converter precision output voltage control • Reduces operating power through voltage scaling • Reduces debug time by automated margining tests PWM Controller Inductor & Filters Switcher Feedback Any DC-DC Converter ispPAC-POWR1220AT8/ ispPAC-POWR6AT6 Load Differential Voltage Sense I 2 C 2 Result: Voltage Error <1% At Load! (-40° to +85° C) Set Point +/-1 VIN DAC ADCPower 2 You: A Guide to Power Supply Management and Control 2-24 Solutions Summary This page intentionally left blank.CHAPTER 3 3-1 Reset Generators & Supervisors 3.1 Introduction One of the most important peripheral ICs required for a microprocessor is a reset generator and a watchdog timer. The functions of a reset generator are: 1. Hold the processor in a reset condition for an extended period of time during a power turn-on event. 2. If any supply is faulty, activate the reset to prevent it from mis-executing instructions and/or risk Flash memory corruption. The functions of a watchdog timer are: 1. A monitor for software execution using the trigger generated by the software. 2. If the processor skips a trigger, activate an interrupt or reset the CPU to initiate a recovery process. Traditional reset generators monitor just one input supply to generate the reset signal. However, most modern processors operate using many supplies, as shown in Figure 3-1. Because a fault on any of the supplies could result in the processor mis-executing instructions, reset generators that monitor only one supply are not adequate. Instead, reset generators are required that monitor all the relevant supplies for faults in order to generate the CPU reset. Figure 3-1 illustrates this. In the example shown it is not clear which of the five supplies should be chosen for reset.Power 2 You: A Guide to Power Supply Management and Control 3-2 Reset Generators & Supervisors Figure 3-1. Single Rail Reset Generator Cannot Guarantee Reliable Reset Generation In Figure 3-1, the processor requires 1.2V for its core, 1.8V and 0.9V for communicating with DDRII memory and 3.3V for communicating with Flash memory and other peripherals. The processor operates reliably only if all of its supply rails are within the datasheet-specified voltage limits; for example, the acceptable tolerance for: 3.3V (±5%), 1.8V (±5%), 1.2V (±3%), and 0.9V (±5%). One common behavior of a microprocessor when operating at a core voltage less than its specified low voltage level is the misinterpretation of instructions. When the instructions are misinterpreted (also called mis-executed), the program execution becomes unpredictable and the program can hang (not perform the intended task). If the I/O voltage drops below the specified signaling threshold level, the instruction/data transferred between the memory and the processor can be corrupted. The misinterpretation of instructions, or proper execution of corrupted instructions, by a microprocessor results in unpredictable behavior; in some cases, the microprocessor could overwrite the on-board Flash memory, resulting in a failed circuit board. Imagine the circuit board failing just because it was extracted from its sub-rack slot! Unpredictable behavior under low voltage conditions is limited not only to microprocessors, but is also true for any ASIC / FPGA on the board. For example, if the power supply voltage drops below the limit for a networking ASIC, it might send a garbled packet. In some cases it might lose an internally buffered acknowledged packet, resulting in a corrupt message. Reliable Reset Generation by Monitoring All Supply Rails To prevent the processor from operating when any of its supplies is faulty, one has to monitor all supplies. Monitoring all the supplies for faults is known as supply supervision. Supervisor ICs are used to monitor multiple supplies simultaneously. The following functions are typically performed by one or multiple supervisor ICs: 1. Accurately monitor multiple supply rails for faults and quickly generate an interrupt 2. If the processor core or memory supplies fail, reset the processor V = ? 3.3V 1.8V 1.2V 0.9V Reset CPU TMS320C6XXX DDR 1.8V 0.9V Flash Memory Reset ICReset Generators & Supervisors 3-3 Power 2 You: A Guide to Power Supply Management and Control Reset Generators & Supervisors Voltage Supervision Reliability Is Determined By the Supervisor IC’s Fault Detection Accuracy As Well As Its Fault Detection Speed Figure 3-2 shows the ProcessorPM-POWR605 supervisor and reset IC (replacing the reset IC in Figure 3-1) to monitor all supplies on the circuit board and prevent Flash corruption due to supply faults. Figure 3-2. The Most Reliable Reset Generator ICs Monitor All Supplies (Supervisor IC) Parts of a Supervisor IC Figure 3-3 shows a simple, single supply, voltage monitoring circuit. Figure 3-3. Single Power Supply Voltage Monitoring Circuit This circuit uses a voltage comparator to monitor the supply voltage. One limb of the comparator is held at a constant reference voltage through the bandgap voltage reference. The monitored power supply voltage is attenuated using a resistor network such that the attenuated voltage is greater than the bandgap reference voltage as long as the supply voltage is above the fault level. For example, the bandgap voltage is 2V, and the power supply should be monitored for 3.3V - 5% (= 3.135V). The attenuator is selected such that the output of the attenuator is greater than 2V as long as the monitored supply voltage is greater than 3.135V. The comparator output toggles when the monitored voltage drops below 3.135V. reset generators, supervisors and voltage detectors use circuits similar to the one shown in Figure 3-3. Figure 3-4 shows the architecture of a device to monitor multiple power supply voltages. These devices contain multiple comparators with individual attenuators to facilitate the simultaneous monitoring of dif- 3.3V 1.8V 1.2V 0.9V Reset CPU TMS320C6XXX DDR II / DDRIII 1.8V 0.9V ProcessorPMPOWR605 (Supervisor + Reset Generator) Voltage Comparator Band-gap Reference Voltage Monitored Supply Voltage Logic Output Interrupt/ Reset Signal AttenuatorPower 2 You: A Guide to Power Supply Management and Control 3-4 Reset Generators & Supervisors ferent power supply voltages. The outputs of these comparators are logically combined to provide a single logic output to interrupt or reset the processor. Figure 3-4. Block Diagram of a Three Power Supply Supervisor IC Effect of Monitoring Accuracy on System Functionality In the circuit shown in Figure 3-3, suppose we use an ideal bandgap reference source (output voltage is always 2V), ideal attenuator (its output voltage is exactly 2V when the input voltage is 3.135V), and an ideal comparator: then, the output of the comparator always toggles exactly when the monitored voltage is 3.135V. But in reality, the bandgap reference voltage changes with temperature, the output voltage of the attenuator varies from device to device and there are inaccuracies with the comparator. All these result in a slight variation of the threshold voltages for each device and across temperature and voltage. The accuracy of a supervisor is a measure of the variation of threshold with respect to the intended threshold. Many off-the-shelf supervisory ICs detect power faults with an accuracy of ±2%. This means that the actual threshold can vary by as much as 2% of the threshold value across voltage and temperature, and from device to device. Let’s examine the effect of this accuracy on system functionality and fault detection threshold selection. Refer to Figure 3-5. If the device is specified at a threshold of 3.3V - 5% (3.135V) with a 2% accuracy, that device can declare the power supply as faulty anywhere between 3.135 + 2% and 3.135 - 2% (3.2V to 3.072V), shown by points A and B. Voltage Comparator Band-gap Reference Voltage Logic Output Interrupt/ Reset Signal Attenuator Voltage Comparator Attenuator Voltage Comparator Monitored Supply Voltage #1 Attenuator Monitored Logic Supply Voltage #2 Monitored Supply Voltage #3Reset Generators & Supervisors 3-5 Power 2 You: A Guide to Power Supply Management and Control Reset Generators & Supervisors Figure 3-5. Fault Detection with Supervisor Accuracy Of 2% As can be seen, the supervisor can sometimes declare the power supply faulty when it is healthy, or declare it healthy when it is faulty. The latter is a more serious error, because at lower than the desired threshold voltage the processor can be mis-executing instructions, which defeats the purpose of using a supervisor IC. To avoid such problems, the supervisor threshold should be set such that the entire power supply fault detect range lies within the operating voltage range of the processor. In this case, if the supervisor threshold is set at 3.2V, then the voltage range in which the supervisor can declare the power supply faulty is between 3.14V to 3.26V, thus avoiding the condition under which the processor is operating at a voltage less than its threshold (3.3V - 5%). Figure 3-6. Fault Detection with Supervisor with Correct Threshold In the example shown in Figure 3-6, the threshold value of the supervisor was set at 3.2V. The 3.2V threshold value was actually calculated using the following equation: Where VTSup - Supervisor Threshold Vin - Power Supply Nominal Voltage VinTol - Input Power Supply Tolerance VTSup = Vin * (1-VinTol/100)/ (1-Asup/100) 3.3v - 5% Processor Lower Voltage Threshold & Supervisor Threshold { A B Supervisor Fault Defect Range 3.3V – 5% = 3.14V A = 3.2V, B = 3.07V Typical Power Supply Voltage 3.3V Typical Power Supply Voltage 3.3V A B { Supervisor Fault Defect Range Supervisor Threshold = 3.2V Processor Lower Voltage Threshold Power Supply Tolerance Headroom - 1.1% 3.3V – 5% = 3.14V A = 3.26V, B = 3.14V { 3.3V – 5%Power 2 You: A Guide to Power Supply Management and Control 3-6 Reset Generators & Supervisors Asup - Accuracy of the Supervisor In this example, Vin at 3.3V, VinTol - 5%, Asup - 2%. Substituting these values into the equation above, VTSup = 3.3 * (1 - (5/100)) / (1 - (2/100)) = 3.2V. By selecting the Supervisor IC with the threshold at 3.2V or above, the processor is guaranteed to be held in reset when the power supply voltage is less than or equal to 3.3V - 5%. Reduced Accuracy Results in Reducing the Power Supply Tolerance Headroom Power supply tolerance headroom is the maximum voltage swing allowed for the power supply, across load and operating temperatures, before being declared faulty as shown in Figure 3-6. Consider the power supply headroom while using a supervisor IC with an accuracy of 2%. According to Figure 3-6, the power supply voltage variation should be higher than 3.26V (the highest voltage at which the supervisor would declare the supply faulty) all the time, or a power supply head room of 1.1%! Typically, power supplies have an output tolerance of about 3% across load and temperature, or the power supply voltage can swing from 3.2V to 3.4V. Clearly the choice for the user is either to use a more expensive supply with a power supply voltage variation of 1%, or use a supervisor with better accuracy. Using a Supervisor IC With an Accuracy Of 1% From the equation for the same system described above, but using an error of 1%, the supervisor selected should have a threshold of 3.17V. The upper limit of the fault detect range is 3.19V and is still less than the lowest output voltage of the power supply, -3.2V, and a power supply with a voltage variation of 3% can be used. The board can be operated reliably with a lower cost power supply with larger output voltage tolerance by using a more accurate supervisor. The ispPAC-POWR1220AT8 device offers an accuracy of 0.2% (typical) and 0.7% (maximum). Effects of Fault Detection Delay Fault detection delay is the duration from the time the power supply voltage drops below the threshold of the supervisor (with very high accuracy), to the time the output of the supervisor toggles, indicating the fault.Reset Generators & Supervisors 3-7 Power 2 You: A Guide to Power Supply Management and Control Reset Generators & Supervisors Figure 3-7. Effect of Fault Detection Delay On Board Operation In Figure 3-7, the 3.3V supply starts to fail. The power supply supervisor detects the power supply failure and signals the processor. As can be seen from Figure 3-7, the longer the supervisor takes to report the fault, the lower will be the power supply voltage. For example, the power supply voltage is decaying at a rate of 1V per millisecond. The supervisor precision is very high, which allows the effects of the accuracy described above to be ignored and is set at the threshold of 3.3V - 5%. Let us examine two cases: Fault detection delay is 1ms and 50s. If the Fault Detection Delay is 1ms: Because the power supply output voltage continues to drop, by the time the processor is reset its power supply voltage would be much less than the low voltage threshold (about 2V), which means that the processor was executing code until the supply reached 2V! Most likely the processor was mis-executing instructions or locked up. The purpose of the supervisor IC is defeated. If the Fault Detection Delay is 50µs: By the time the supervisor output is active, the processor voltage would have been reduced by about 50mV from its threshold of 3.3V-5%. Again, the processor operation is not guaranteed at this voltage. Now, if the threshold was set 50mV above the 3.3V-5% level, the processor would be reset by the time the power supply crossed the operational threshold. As can be seen, in this application the fault detection delay of 1ms is unacceptable. But a fault detection delay of about 50s requires the threshold to be set 50mV above the minimum operating power supply voltage threshold. The supervisor threshold for reliable operation should consider both the accuracy as well as the fault detection delay. Many applications use over-voltage monitoring; that is, if the power supply voltage reaches above the operating voltage range, either the faulty power supply itself is turned off, or a “crowbar” mechanism is turned on by shorting that power supply output voltage to ground, protecting the devices on the circuit board. Speed of over-voltage detection, in this case, is even more important than the under-voltage fault detection. Supervisor Output 3.3V – 5% ? 3.3V Fault Detection DelayPower 2 You: A Guide to Power Supply Management and Control 3-8 Reset Generators & Supervisors The previous example considered only one power supply voltage and used a very accurate supervisor IC. In reality, the number of power supplies that the supervisor should monitor is more than one. The supervisor should be able to monitor all supplies simultaneously for fault and should be able to detect power supply faults with minimum fault detection delay. Fault detection delay of 1ms or higher is typically seen in circuits that use a microcontroller to monitor voltages using their on-chip ADC. Supervisors Built Using ADC and a Microcontroller are Slow Some applications use a microcontroller to monitor all the power supplies using an on-chip Analog to Digital Converter and an analog multiplexer. The monitoring algorithm, which typically is initiated by an interrupt once every 5 or 10ms, digitizes each power supply voltage, one supply at a time in a round robin format. The ADC sample is compared with the internally stored threshold. If the ADC read value is lower than the threshold, an output port pin (reset or interrupt pin) is toggled to indicate the power supply fault. Because the voltage monitoring algorithm is activated by the real time interrupt, the speed of fault detection is also determined by the delay between interrupts (5ms to 10ms). This is too slow for power supply fault detection. The only perceived advantage of a microcontroller is that it offers a flexible interface that lets designers change the power management algorithm after the board is assembled. However, designers typically avoid changing the microcontroller code. Because there are no software simulators available, any change in the code requires extensive circuit board testing. Consequently, the perceived advantage of flexibility is not real. In order to meet the reliability needs, which include supply fault detection accuracy as well as speed of fault detection, it is advisable to use hardware supervisors instead of microcontrollers. To meet the flexibility needs, the Lattice Power Manager II devices offer programmable analog and programmable digital functions, while providing superior accuracy and fault detection speed. For example, the ispPACPOWR1220AT8 device monitors 12 power supplies simultaneously and has a fault detection delay of 16s. Other Factors Contributing to Increased Reliability The other factors to be considered for reliable power supply fault detection are: Glitch filter – Power supplies are usually fairly noisy during the circuit board operation. The noise can be due to power supply output ripple or to transient currents in the system due to device operation, etc. This noise can result in a randomly toggling supervisor output. To prevent this, supervisors have a glitch filter that generates a clean input to the threshold comparators. Power Manager II devices support a 64s glitch filter for each input. Hysteresis – A small amount of hysteresis is added to the threshold comparators to prevent the outputs from toggling multiple times, due to power supply noise, when the power supply voltage is at its threshold. In Power Manager II devices, the hysteresis is set to 1% of the threshold voltage. The hysteresis does not affect the accuracy of the threshold because the hysteresis transition requirement is applied after the voltage crosses the threshold. Differential Voltage Sensing on a Circuit Board – When monitoring voltage levels of 1.2V and below, one has to use differential voltage sensing to meet the fault detection accuracy needs of the circuit board.Reset Generators & Supervisors 3-9 Power 2 You: A Guide to Power Supply Management and Control Reset Generators & Supervisors Figure 3-8. Ground Voltage Difference Adds Error at Supervisor Input Figure 3-9. Ground Voltage Difference Error Nullified by Differential Sensing Newer fabrication processes with smaller transistor geometries stipulate reduced core supply voltage and range such as 1V with a ±50 mV range. If these voltage rails are monitored from a central location, one should consider the ground voltage difference between the monitored node and the supervisor IC. For example, in Figure 3-8, if the ground voltage difference between the CPU and the voltage monitoring device using a single ended sensing method is about 20mV, and if the actual voltage as seen by the CPU is 30mV, the supervisor IC sees a 30mV + 20mV = 50mV rise from the target value, which is a fault, and interrupts the processor or holds the processor in reset even when it could operate. If the ground voltage difference between the supervisor IC and the CPU is -20mV, the monitor IC does not see a fault even when the supply voltage is lower than its minimum operating threshold level. This results in an unreliable fault detection circuitry. Circuit Board Difference Between Ground Potentials = V GG 1.2V CPU Core Supply CPU 1.2V CPU Core Supply Single Ended Sensing Supervisor IC Sensed Voltage = VCPU – VGG V CPU Circuit Board Difference Between Ground Potentials = V GG 1.2V CPU Core Supply CPU 1.2V CPU Core Supply Differential Sensing Supervisor IC Sensed Voltage = VCPU V CPU + - Differential Sensing Cancels Error Due to V GGPower 2 You: A Guide to Power Supply Management and Control 3-10 Reset Generators & Supervisors The safest solution is to use differential voltage sensing (Figure 3-9). Here the ground voltage difference between the CPU and supervisor IC becomes a common mode voltage at the supervisor and its input difference amplifier cancels the common mode voltage before feeding it to the comparator. Ensuring Deterministic Behavior Under Fault Conditions Through Simulation – The response of a circuit board depends on the power supply failure. As a result, the supervisor is expected to perform different functions depending on the supply that failed. For example, if the core voltage of a CPU failed, the supervisor has to activate the reset signal and start the board power shutdown. However, if one of the redundant supplies failed, the supervisor has to interrupt the processor. To guarantee functional reliability, one should ensure that the design implemented in the Supervisor IC responds to the supply faults correctly. The easiest method is to simulate the design with different types of faults using software, rather than conduct the hardware regression tests. 3.2 N-Supply Supervisor, Reset Generator and Watchdog Timer The ProcessorPM-POWR605 device provides six precision programmable threshold comparators, five I/Os, two digital inputs, four programmable timers and a 16-macrocell CPLD. This device is used to integrate the supervisor, the reset generator and a watchdog timer function. The ProcessorPM-POWR605 devices monitor supply rails with an accuracy of 0.7% and can identify faults within 12s. Figure 3-10. ProcessorPM-POWR605 Integrating Six-Supply Supervisor, Reset Genenerator & Watchdog TimerT Circuit Operation The ProcessorPM-POWR605 in the circuit diagram in Figure 3-10 monitors six supplies directly by configuring each of the monitoring comparator inputs to the fault threshold. Two digital outputs of the ProcessorPM-POWR605 device are configured as CPU_reset and WDT_Int. The CPU_Reset signal supports programmable pulse stretching up to 2 seconds. For example, if the programmable delay is set to 200ms, the CPU_Reset signal will remain active for a period of 200ms after all supplies are above their respective threshold levels. The CPU_Reset signal also gets activated if any of the supplies drops below their respective threshold levels. The WDT_Int signal is activated if the WDT_Trig input is not toggled before the watchdog timer expires. The watchdog timer delay can be programmed from 32s to 2.5 minutes. The reset_in input is used to activate the CPU_Reset signal from an external input such as a manual reset input signal. ProcessorPM-POWR605 V#1 V#2 V#6 CPU_Reset WDT_Int Reset_in WDT_Trig VMON1 to VMON6 IN1 IN2 IN_OUT1 IN_OUT2Reset Generators & Supervisors 3-11 Power 2 You: A Guide to Power Supply Management and Control Reset Generator, Supervisor and Watchdog Timer Algorithm Reset Generators & Supervisors 1. Activate Reset signal, deactivate WDT_Int signals and wait for all supply levels to reach a value above their respective thresholds. 2. Wait for 200ms (time delay programmable). 3. Release Reset. 4. Wait for any supply to fail. If any supply fails, activate the reset signal and jump to step 1. Parallel Equations of the Algorithm 1. Timer equation waits for WDT trig. If the negative edge of the WDT_Trig signal is not received before the timer expires, activate WDT_Int signal. 2. If Reset_In signal is activated and remains active beyond the 50ms (programmable) de-bounce period, activate the CPU_Reset signal. Programmable Features • The monitoring threshold for each of the 6 supplies can be individually set to monitor any supply voltage rail from 0.67V to 5.8V. • Reset pulse stretch duration can be programmed from 32s to 2 seconds. • Watchdog timer delay – Watchdog timer delay can be set from 32s to hours. • The input reset switch de-bounce delay can be programmed from 32s to 2 seconds. Additional Features That Can be Added to ProcessorPM-POWR605 • Three of the remaining I/O pins can be used to implement other input monitor features such as warm reset input, software reset input, FPGA Done, etc., or output control features such as DC-DC enables for sequencing, reset distribution to three other devices at different time intervals, etc. • Over-voltage protection – any of the comparator thresholds can be set to monitor for over-voltage. This configuration can be used to provide over-voltage protection. Relevant Power Manager II ICs Devices such as the ispPAC-POWR1014/A can be used to monitor up to 10 rails. These devices support dual programmable threshold comparators for each of the inputs that enables them to monitor for both over and under-voltages at the same time. The ispPAC-POWR1220AT8 device can be used to monitor up to 12 rails. These devices also support differential sense inputs that can be used to monitor lower voltage supply rails on a larger board more accurately.Power 2 You: A Guide to Power Supply Management and Control 3-12 Reset Generators & Supervisors This page intentionally left blank.CHAPTER 4 4-1 Power Supply Sequencing 4.1 Introduction The number of power supplies (DC-DC Converters, LDOs, Voltage References) in a circuit board is determined by the number of multi-voltage devices used in its payload section. These devices also determine power supply sequencing. Power supply sequencing indicates that all supplies on the board should not be turned on arbitrarily at any time, but instead should be turned on or off in a prescribed sequence. For example, on a circuit board a device with 3 supplies of 3.3V, 1.8V and 1.2V, usually the lowest voltage rail should be turned on first, followed by the larger voltages. The turn on sequence is 1.2V, 1.8V and finally 3.3V. Turning these supplies on in this sequence can be implemented easily by connecting the power good signal from the 1.2V supply to the enable signal of the 1.8V supply, and finally connecting the 1.8V power good signal to the enable signal of the 3.3V supply. However, when there are multiple devices, each with its own sequencing requirements, the logic required for sequencing can become complex. Sequencing Power Supplies with Conflicting Sequencing Requirements What if there is a second device on that same board with supplies of 3.3V, 2.5V and 1.2V, but the supplies must be turned on starting with the highest voltage? This is further complicated by the fact that 3.3V is the main input supply. Now the designer is required to implement sequencing using the fewest possible supplies. In such cases, MOSFETs are used to gate the supplies that conflict with conventional sequencing. The circuit in Figure 4-1 shows one such arrangement.Power 2 You: A Guide to Power Supply Management and Control 4-2 Power Supply Sequencing Figure 4-1. Sequencing Supplies to Meet Conflicting Sequencing Requirements This circuit uses the 3.3V supply to generate the remaining supply rails on the board. Because Device 1 requires 3.3V last and Device 2 requires 3.3V first, the 3.3V is applied to Device 2 with the remaining supplies. Then, the power sequencer enables 2.5V, followed by 1.2V, completing the powering up of Device 2. Next, because the 1.2V for Device 1 is already on, the power sequencer turns on the 1.8V, followed by the 3.3V that is enabled through the MOSFET. One could have implemented this sequencing by using one more 3.3V supply and turning it on only when Device 1 needed it. However, that would increase the board cost. Adding a second multi-voltage device with its own sequencing requirements can make the sequencing more complex. There are other factors that contribute to increased supply sequencing complexity. Other Factors Adding Complexity to Sequencing Algorithm Number of Board-Mounted Supplies is Increasing Modern circuit boards use several multi-voltage ICs such as ASICs, CPUs, memories, and FPGAs. Due to the high level of integration, fabrication processes and support for multiple interface standards, each of these devices can require three to five power supplies. Furthermore, some of these devices require a nonstandard, low voltage core supply. So, it is not uncommon for boards to require five to ten supplies! Sequencing the power supplies to meet the needs of each of the devices can be quite complex. Abort Sequencing if Any Supply Fails During Power-Up Supplies usually fail when they are turning on, leaving some of the devices partially powered. Often some of these devices can only withstand the partially powered condition for a limited time. To mitigate such conditions, the sequencer is required to abort supply sequencing when any supply fails to turn on within a given period. In this case, the sequencer is required to monitor supplies and monitor time during the supply sequencing. 1.8V 2.5V 1.2V 3.3V Device #1 Device #2 En En En Power Sequencer Device #1 Sequence 1. 1.2V 2. 1.8V 3. 3.3V Device #2 Sequence 1. 3.3V 2. 2.5V 3. 1.2VPower 2 You: A Guide to Power Supply Management and Control Power Supply Sequencing Power Supply Sequencing 4-3 Power-Down Sequencing Some devices require the power supplies to be turned off in the reverse order of the turn on sequence to prevent undesirable side effects, such as excessive current consumption on one of the rails that can damage the circuitry. Removing power to all DC-DC converters at the same time may not guarantee safe shut down in these cases, because the capacitors connected to the DC-DC converter outputs may not all discharge at the same time. Minimum Duration Between Two Supplies During Turn On This condition is usually discovered during the board debug phase, when a board does not turn on reliably. The best solution is to be able to easily increase and/or decrease the delay between sequencing steps. Accommodating Changes to Sequencing Observed During the Board Debug Phase Board design engineers are required to meet the sequencing requirements of all devices on the board during the final phases of the board design. To prevent a board re-spin, power sequencing sections are designed with ample provisions for additional components and 0Ω jumpers. This increases the number of components but still may not avoid a jumper wire or two. Power Supply Ramp-Rate Control Some devices require that the supply be turned on with a slow ramp to minimize current in-rush. To meet this requirement, designers feed the power through a MOSFET and the ramp-rate is controlled through the gate of the MOSFET. Turning Unused Power Domains Off to Save Power During Inactive Periods In order to reduce overall board power dissipation, designers turn off sections of the board when they are not in use. This means that when a power domain is turned on, the supplies in that domain need to be turned on in a sequence. Sometimes, to avoid disruption to the operation of the rest of the board, a shut down sequence may be required to minimize current glitches in the system. 4.2 Flexible N-Supply Sequencing Using Power Manager II II Devices Power Manager II devices offer an ideal set of features, such as a PLD, multiple programmable threshold comparators, multiple programmable duration timers and multiple charge pumps, that can be used to turn MOSFETs on/off with programmable ramp-rate control. The resulting power management algorithm is very flexible because all features of the device, as well as the sequencing algorithm, can be controlled by the LogiBuilder utility in the PAC-Designer software tool. The sequencing algorithm also can be simulated to ensure that the algorithm is able to handle all of the faulty conditions. Figure 4-2 shows a typical power supply sequencing implementation using the ispPAC-POWR1014A device. In this circuit, the DC-DC converters are controlled by the ispPAC-POWR1014A device. While it is possible to interface with the active-low enable signals directly with the ispPAC-POWR1014A device outputs, an external transistor may be necessary to interface with active high enable signals. Voltages are Monitored During/After Sequencing All DC-DC converter voltages are monitored by the programmable threshold comparators of the ispPACPOWR1014A device. In this circuit, the ispPAC-POWR1014A device uses a programmable algorithm designed using the PAC-Designer software tool to turn the DC-DC converters on/off through the DC-DC Power 2 You: A Guide to Power Supply Management and Control 4-4 Power Supply Sequencing converter’s enable pins. During supply sequencing, the ispPAC-POWR1014A device will monitor the output voltage of each of the DC-DC converters using the on-chip programmable threshold precision comparators. The power supply sequencing is controlled by the open drain output pins of the ispPAC-POWR1014A. These output pins are controlled by the on-chip PLD. The sequencing algorithm is implemented using the LogiBuilder utility in the PAC-Designer software. Using the LogiBuilder utility, one can implement the following sequencing methods: 1. No sequencing – Here all the supplies are turned on at the same time and no sequencing is necessary. 2. The ispPAC-POWR1014A device waits for all the supplies to reach their operating levels and then generates a power good signal for the board to begin the initialization process. Operating voltage levels are higher than the lower voltage limit and less than the over-voltage limit. 3. Closed loop sequencing – This is a sequence where one supply is turned on only after the previous supply has reached its operating levels. 4. Time-based sequencing – The power sequencer inserts a time delay between each of the supplies without first checking if the first supply reached its normal operating level. 5. Closed loop sequencing with time delay – The second supply is turned on a fixed time after the first supply is on and is within its normal operating voltage level. 6. The supply reaches its normal operating condition within a period of time. Often, supplies fail during turn on. To prevent the locking up of sequencing while waiting for this failed supply, the algorithm turns the supply on and, if the supply does not reach its normal operating voltage levels within a specified time, then the supply is considered faulty and action for incomplete sequencing is initiated. 7. Turn on multiple supplies with a watchdog timer – In this case, supplies are turned on using any of the previous methods. After all the supplies are turned on, the power sequencing algorithm ensures that all supplies are on within the total watchdog timer period. If the watchdog timer expires, the faulty sequence action is initiated. Any or all of these sequencing methods can be implemented easily using the LogiBuilder utility within the PAC-Designer software. LogiBuilder enables implementation of a power management program using six types of intuitive, user friendly and powerful instructions. The user has the flexibility to apply these turn-on rules to each supply, or for groups of supplies, simply by using the appropriate LogiBuilder instructions to manage that supply.Power 2 You: A Guide to Power Supply Management and Control Power Supply Sequencing Power Supply Sequencing 4-5 N-Supply Closed Loop Sequencing Algorithm This section describes a closed loop N-supply sequencing algorithm implemented in the ispPACPOWR1014A device, as shown in Figure 4-2. Table 4-1 provides a detailed explanation of LogiBuilder instructions, along with the associated sequencing method. Figure 4-2. Flexible N- Supply Sequencing using the ispPAC-POWR1014A Device The power management algorithm is implemented in LogiBuilder in a sequence of steps using the LogiBuilder instructions. The Power Manager II device then executes these steps to sequence the supplies on the board. In this example there are N supplies. During each of the first N steps, the LogiBuilder instruction turns on a power supply and waits for the voltage to reach its operating limit. 1. Turn on DC-DC/LDO #1, enable the converter and wait for its output voltage to reach the operating range. The ispPAC-POWR1014A device uses two precision programmable threshold comparators to monitor a given voltage rail. One comparator threshold is set to the lower voltage limit of that voltage rail and the second comparator threshold is set to the over-voltage limit. A DC-DC converter is in its operating limit when its voltage is between the over and the under-voltage limits. 2. Turn on the DC-DC/LDO #2 enable signal and wait for its voltage to reach operating range. 3. Turn on the DC-DC/LDO #3 enable signal and wait for its voltage to reach its operating range (Same function as step 2). 4. Continue turning on supply #4 (Same function as step 2). 5. Continue turning on supply #5 (Same function as step 2). ADC ispPAC-POWR1014A En V OUT POWER_GOOD Shut_Down N OUT 3 OUT 4 OUT 10 OUT 11 OUT 12 SCL SDA IN1 IN 2 VMON 1 to VMON N Recycle Power En V OUT DC-DC / LDO #1 DC-DC / LDO #2 En V OUT DC-DC / LDO #N Sequence_FailPower 2 You: A Guide to Power Supply Management and Control 4-6 Power Supply Sequencing N. Continue turning on supply #N (Same function as step 2). O. If all the supplies are within the operating range, activate the power good signal. If any of the supplies are faulty, turn all the supplies off and activate the Sequence_Fail signal. P. Wait for the Recycle_Power to become active and then jump to step 1. Q. Shut-Down Signal Interrupt Routine – When the shut down signal becomes active, jump to step O. N-supply Closed Loop Sequencing with Failure Monitor Algorithm In the N-supply closed loop sequencing algorithm shown above, a supply failure would hold up the sequence forever. While this phenomenon may be acceptable for most applications, some ICs may be sensitive to being in a partially powered state for extended periods. In that case, the algorithm can be modified to include turn on with monitor mode. For example, if a device is sensitive to the duration of a partial power condition at step 2 of the algorithm above, it can be changed to the following: 1. Turn on DC-DC #1, enable converter and wait for its output voltage to reach operating range. 2. Turn on DC-DC#2 enable signal and wait for its voltage to reach operating range within 5ms. If the supply does not reach operating range within 5ms jump to step O or else proceed to turn off the rest of the supplies. 3. Turn on DC-DC #3 enable converter and wait for its output voltage to reach operating range. 4. Continue turning on supply #4, similar to step 3. 5. Continue turning on supply #5 with fault monitor, similar to step 2. N. Continue turning on supply #N, similar to step 3. O. If all the supplies are within the operating range, activate the power good signal. If any of the supplies are faulty, turn all the supplies off and activate the Sequence_Fail signal. P. Wait for Recycle_Power to become active and then jump to step 1. Applying LogiBuilder Instructions to Sequencing Methods As stated earlier, the LogiBuilder utility in the PAC-Designer software tool provides instructions to directly support different types of sequencing. Figure 4-3 shows the block diagram of a power sequencing circuit. Table 4-1 lists different LogiBuilder instruction sequences to implement the different sequencing methods used to enable the power to Device #1.Power 2 You: A Guide to Power Supply Management and Control Power Supply Sequencing Power Supply Sequencing 4-7 Figure 4-3. Three Supplies of a Device Managed by an ispPAC-POWR1014A Device Device #1 specifies that the 1.2V should be the first supply to turn on, the second is 2.5V for I/O and finally 3.3V for another set of I/Os. Table 4-1 describes the LogiBuilder instructions to implement different sequencing methods while meeting the sequencing requirements of Device #1. Table 4-1. LogiBuilder Instructions Description for a Given Sequence Method Sequence Method LogiBuilder Instruction (s) Output Description Closed Loop Sequencing with 1.2V followed by 2.5V & 3.3V Wait for Core_1V2_OK En_1V2=1 The 1.2V DC-DC is enabled (Active high) and the instruction waits at this step until 1.2V is in regulation Wait for IO_2V5_OK AND IO_3V3_OK En_2V5=0, En_3V3=1, The 2.5V DC-DC is enabled (Active low) and The 3.3V DC-DC is also enabled (Active high). This instruction waits at this step until 2.5 & 3.3V supplies are in regulation Open Loop Sequencing with 1.2V followed by 2.5V Separated by 5ms En_1V2 = 1 The 1.2V DC-DC is enabled (Active high) and the instruction does not wait at this step until 1.2V is in regulation Wait for 5ms using Timer 1 Waits for 5ms at this step before activating the next supply En_2V5 = 0 The 2.5V DC-DC is enabled (Active low) and the instruction does not wait at this step until 2.5V is in regulation but proceeds with the next instruction Closed Loop Sequencing with 1.2V followed by 2.5V Separated by 5ms Wait for Core_1V2_OK En_1V2=1 The 1.2V DC-DC is enabled (Active high) and the instruction waits at this step until 1.2V is in regulation Wait for 5ms using Timer 1 Waits for 5ms at this step before activating the next supply Wait for IO_2V5_OK En_2V5=0 The 2.5V DC-DC is enabled (Active low) and the instruction waits at this step until 2.5V is in regulation but proceeds with the next instruction Turn-on and ensure that the supply turns on within a short period of time Wait for Core_1V2_OK with Timeout of 5ms using Timer1. If Timer1 Go to Fault En_1V2=1 The 1.2V DC-DC is enabled (Active high) and the instruction waits at this step until 1.2V is in regulation within 5ms (determined by Timer 1), if Timer 1 expires, jump to Fault routine OUT 3 OUT 4 OUT 5 VMON1 VMON2 VMON3 En_3V3 En_2V5 En_1V2 ispPAC-POWR1014A 2.5V Device #1 3.3V 1.2V VIN 2.5V 3.3V 1.2VPower 2 You: A Guide to Power Supply Management and Control 4-8 Power Supply Sequencing Any of these sequencing methods can be used for any supply or group of supplies. The timer values can be set to any value between 32s and 2 seconds. Advantages of Power Manager II-based Supply Sequencing The sequencing of supplies is completely programmable. Designers can adjust the turn on or turn off sequence and the associated timing to provide reliable board start up after the board is assembled. No board re-spin is needed. Once the supplies are sequenced the ispPAC-POWR1014A device monitors all of the supplies for faults. Additional Power Management Functions that can be Integrated into Power Manager II In this circuit, the ispPAC-POWR1014A device provides flexible sequencing. The other functions that can be integrated into an ispPAC-POWR1014A device are: 1. Voltage supervision – Monitor all supplies after sequencing for fault and generate an interrupt signal such as a low voltage detect. 2. Reset generation – After the sequence is complete, the ispPAC-POWR1014A device can be used to release Reset for the CPU. 3. Hot-swap controller – If power supply sequencing is required in a positive voltage hot-swappable board, the hot-swap function can also be integrated. 4. Voltage measurement – In addition to all of the supplies being monitored for faults, an external microcontroller can measure individual voltages through the I2 C interface. 5. Fault logging – In case of a fault, the ispPAC-POWR1014A device can output the status of all comparators to an external PLD for logging into a non-volatile memory to aid debug. Applicable Power Manager II Devices Power Manager II devices that can be used for implementing sequencing are the ispPACPOWR1220AT8, ispPAC-POWR1014/A, ispPAC-POWR607 and ProcessorPM-POWR605. Turn-on multiple supplies with a watchdog timer Start Timer2 Timer 2 is the watchdog timer (eg., 20ms) this is started before beginning the supply sequence En_1V2 = 1, En_2V5=0 The 1.2V DC-DC & 2.5V DC-DC are enabled and the instruction does not wait for both supplied to reach regulation If Core_1V2_OK and IO_2V5_OK Then next step Else if Timer 2 Then jump to Fault Else Stay at this step This step waits for both 1.2V and 2.5V supplies to turn on within the 20ms timer. If the turn on, the control jumps to next step. If they fail to turn on within 20ms, the control jumps to fault routine Table 4-1. LogiBuilder Instructions Description for a Given Sequence Method (Continued) Sequence Method LogiBuilder Instruction (s) Output DescriptionPower 2 You: A Guide to Power Supply Management and Control Power Supply Sequencing Power Supply Sequencing 4-9 4.3 Sequencing With MOSFETs and DC-DC Converter Enables In some cases, to meet the device’s sequencing needs without using additional DC-DC converters, MOSFETs are required. Figure 4-4 shows one such circuit, where a ispPAC-POWR1014A device controls the DC-DC converter’s enable signals as well as an N-Channel MOSFET. In this circuit the MOSFET is used to enable 3.3V to Device 1 after all of its other supplies are turned on. To turn-on an N-Channel MOSFET on a 3.3V rail, its gate potential should be at least 8V. Designers either use the 12V supply (if available on the board) or a charge pump IC to generate 8V or higher. The ispPAC-POWR1014A device integrates two MOSFET gate drivers based on integrated charge pumps that can generate up to 12V. The charge pump voltage can be programmed to 6V, 8V, 10V or 12V. In addition, the MOSFET turn on ramp-rate also can be controlled using the programmable current source feature of the MOSFET driver. The gate drive source current can be set to 12.5A, 25A, 50A and 100A. The higher the current setting, the faster the MOSFET turn-on time. Circuit Operation In the circuit shown in Table 4-4, the ispPAC-POWR1014A device is controlling the enable signals of 1.8V, 2.5V and 1.2V DC-DC converters. The MOSFET driver of the ispPAC-POWR1014 device is used to turn the MOSFET Q1 on/off. The sequencing logic is implemented in the PLD using the LogiBuilder utility in the PAC-Designer software tool. After sequencing is complete, the ispPAC-POWR1014A activates the Power_Good signal. If the sequencing fails to complete, the algorithm activates the failed (to complete the sequence) signal. The Shut_Dn signal is used to turn the supplies off in reverse sequence. Figure 4-4. An ispPAC-POWR1014A Device Implementing Sequencing with MOSFET and DC-DC Enables VMON 5 VMON1 to HVOUT 1 OUT 3 OUT 4 OUT 5 Device #1 Device #2 Device #1 Sequence 1. 1.2V 2. 1.8V 3. 3.3V Device #2 Sequence 1. 3.3V 2. 2.5V 3. 1.2V 1.8V En 2.5V En 1.2V En Shut_Dn ispPAC-POWR1014A OUT 6 OUT 7 SCL SDA 3.3V ADC Power Good Failed Q1Power 2 You: A Guide to Power Supply Management and Control 4-10 Power Supply Sequencing Power Sequencing Algorithm The algorithm implemented in the Power Manager II is shown in Table 4-2 and Table 4-3). This section uses the actual LogiBuilder code extracted from the PAC-Designer software. Applicable Power Manager II Devices Power sequencing using MOSFETs can be implemented in ispPAC-POWR1220AT8, ispPACPOWR1014/A and ispPAC-POWR607 devices. Table 4-2. State Machine 0 Step Instruction Outputs Interruptible Comment 0 Begin Startup Sequence 0 ispPAC-POWR1014-02 reset 1 Wait for AGOOD 0 2 Wait for INP_3V3_OK 0 Do not proceed with the sequencing until input supply is within operating range 3 Wait for IO_2V5_OK En_2V5 = 1, 0 3.3V is stable for Device 2. Now enable 2.5V and wait for it to reach operating range 4 Wait for Core_1V2_OK or 2.56ms using Timer 1 If Timeout Then Go to 13 with {Failed = 1,} En_1V2 = 1, 0 1.2V supply should turn on within 2.5ms. If 1.2V fails to turn on, activate Failed signal 5 Wait for IO_1V8_OK En_1V8 = 0, 0 Turn on 1.8V with active low enable signal and wait for it to reach the operating level 6 Wait for FET_3V3_OK En_3V3_MOSF ET = 1, 0 Turn the MOSFET on to begin feed 3.3V to Device 1 and wait for it to be stable 7 Wait for NOT INP_3V3_OK OR NOT IO_2V5_OK OR NOT IO_1V8_OK OR NOT Core_1V2_OK OR NOT FET_3V3_OK Power_Good = 1, 1 Wait for any supply to fail. If any supply fails, turn all supplies off in reverse order. The power good signal is activated as soon as the state machine enters this step 8 Begin Shutdown Sequence 0 9 En_3V3_MOSFET = 0, Power_Good = 0, 0 Fault condition, turn the MOSFET off first and deactivate Power_Good Signal 10 Wait for 2.56ms using timer 1 0 11 En_1V8 = 1, 0 Turn-off 1.8V supply 12 Wait for 2.56ms using timer 1 0 13 En_1V2 = 0, 0 1.2V supply off 14 Wait for 2.56ms using timer 1 0 15 En_2V5 = 0, 0 16 Halt (end-of-program) 0 Table 4-3. Exception Table EID Expression Outputs Exception Handler Comment 0 If Shut_Dn {no outputs specified} Go to step 8 Begin Shutting down supplies in reverse order when Shut_dn signal is active CHAPTER 5 5-1 Hot-Swap Controllers 5.1 What is a Hot-Swap Controller? Hot-swap controllers limit the inrush current when a circuit board is plugged into a live backplane. In addition, these devices offer over-current, over-voltage and under-voltage protection to the circuit board. Figure 5-1 shows the block diagram of a typical hot-swap controller implementation for a positive backplane power supply rail. RS is the current sense resistor. The MOSFET Q1 is used to control the current through the circuit. The resistors R1 , R2 and R3 are used to monitor the backplane voltage. The hold-off capacitor, Ch , is used to provide power to the board when the backplane voltage briefly drops below the low operating voltage (undervoltage) threshold (say, for less than 10ms). Figure 5-1. Positive Rail Hot-Swap Controller When the card is plugged into the live backplane, the hold-off capacitor, Ch , begins to draw a large amount of current from the backplane. The hot-swap controller limits the current in-rush by controlling the voltage applied to the MOSFET gate using the voltage across RS as feedback. The MOSFET will operate in this current limit mode until the capacitor Ch is fully charged. During the brief capacitor charging period, the inrush current drawn from the backplane often can be significantly higher than the normal board operating current. As a result, the backplane voltage can dip below the under-voltage threshold momentarily for the other cards attached to Hot-swap Controller OV UV Backplane Supply (Positive) Hold-Off Capacitor Load Rs R1 R2 R3 Ch Q1Power 2 You: A Guide to Power Supply Management and Control 5-2 Hot-Swap Controllers the backplane. The charge stored in the capacitor, Ch , keeps the card operating during this brief voltage dip period. Hot-swap controllers are also required to isolate the board from the backplane in case it develops a fault during operation. For this purpose, the hot-swap controller will monitor the current through the sense resistor RS . When the voltage across the resistor RS increases beyond its threshold value, the hot-swap controller turns the MOSFET off. If the backplane voltage drops below the under-voltage threshold or goes above the over-voltage threshold, the power supply to the load is shut off by turning the MOSFET off. Figure 5-2. Negative Supply Hot-Swap Controller One of the popular backplane voltages in the telecom industry is -48V. Hot-swap controllers for negative supplies use the current limiting MOSFET on the negative supply limb, as shown in Figure 5-2. Functions of negative rail hot-swap controllers are similar to the positive voltage hot-swap controllers described above. Hot-Swap Circuit Design Considerations In a hot-swap controller circuit the MOSFET will be required to withstand high levels of power dissipation while the hold-off capacitor is being charged. The suitability of the MOSFET for this purpose is determined by its Safe Operating Area (SOA) curves. When a circuit board fault occurs, the current through the MOSFET can increase significantly. If the MOSFET is not quickly turned off, the peak power dissipated on the MOSFET can damage it. hot-swap controllers are also required to monitor over-current conditions and initiate either a fold-back current limiting mechanism or turn the MOSFETs off. Usually under high current conditions, the MOSFET should be turned off within approximately 1s. Some hot-swap controllers implement “retry” to turn the board on if the fault subsequently clears on its own accord. hot-swap controllers are also required to monitor for low voltage conditions and shut the board off when such a condition occurs. 5.2 Implementing a Positive Supply Hot-Swap Controller Using Power Manager II Devices There are many types of hot-swap controllers with different current control and other monitoring mechanisms. Usually, the complexity of a hot-swap controller depends on the power dissipation requirement of a circuit board. This section shows how Lattice Power Manager II devices can be used to implement hotswap controllers that range from the simple to the sophisticated. Hot-swap Controller OV UV Backplane Supply (Negative) Hold-off Capacitor Load R1 R2 R3 Rs Ch Q1Power 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-3 Hot-Swap Controller Using Soft-start Figure 5-3 shows the ispPAC-POWR1014A device implementing a simple hot-swap controller. The principle of operation of this circuit is also called a ‘soft-start’ mechanism. Figure 5-3. Hot-Swap Control Implemented Through MOSFET Ramp Rate Control Circuit Operation In this design, the backplane supply is 5V. The card with the ispPAC-POWR1014A device is plugged into the live 5V backplane. The ispPAC-POWR1014A device first waits for the 5V backplane voltage to stabilize from the initial contact bounce. After the contact bounce period is complete, the ispPACPOWR1014A turns the MOSFET Q1 on through the Soft_start pin (HVOUT pin). The HVOUT pin source current is set to a minimum (12.5A). This current charges the MOSFET gate capacitance slowly. As a result, the MOSFET on-resistance also drops slowly to its final RDS-on value (usually in a few tens to hundreds of mΩ range). This gradual reduction in MOSFET on-resistance reduces the current in-rush. This circuit can only be used in low power and low voltage boards. It also requires that the instantaneous power dissipated by the MOSFET does not violate its safe operating area specification. Soft-start algorithm: 1. Wait for 5V to be continuously on for 100ms and ensure it is within tolerance by monitoring Inp_5V signal. 2. Turn on Q1 by setting soft-start signal to logic 1. 3. Wait until supply at 5V load is within tolerance by monitoring the Out_5V signal. 4. Enable the 5V load through the Start_5V_Load signal. Programmable Features The following parameters can be changed to make this circuit meet a wide range of application needs: • Comparator thresholds can be changed to suit difference backplane voltages, e.g., 5V or 3.3V. The softstart function for 12V can be implemented using a P-Channel MOSFET and driven by one of the logic outputs. Negative rail soft-start can be implemented using N-channel MOSFETs. • Contact de-bounce period can be changed from 50ms to 2 seconds. Inp_5V Soft_start Backplane Q1 5V Load Start_5V_Load Out_5V VMON1 VMON2 HVOUT1 OUT3 ADC ispPAC-POWR1014A I 2 CPower 2 You: A Guide to Power Supply Management and Control 5-4 Hot-Swap Controllers • MOSFET turn on ramp rate can be set using the four current settings available for each HVOUT pin. • Design can be used to implement a dual hot-swap controller for dual supply backplanes using two MOSFET drivers in the ispPAC-POWR1014 device. Integrate Other Board Power Management Functions into a ispPAC-POWR1014A Device This design consumes a very small portion of the ispPAC-POWR1014A device. The remaining resources can be used to implement board power management functions such as power sequencing, voltage supervision, reset generation and watchdog timer. In addition, one may also include faulty board identification and protection. If the board is healthy, the voltage at the hold-off capacitor should stabilize within a short period of time (say, 5ms). If the board is faulty (drawing more current than expected), the voltage at the capacitor will drop to a value less than the lower voltage threshold. When such a condition arises, the MOSFET is turned off immediately. This prevents continuous overloading of the backplane. One can also monitor the backplane voltage to generate early warning to the load circuit for safe turn off. Backplane voltage and other on board rail voltages can be measured using the ispPAC-POWR1014A device’s ADC via the integrated I2 C interface. Applicable Power Manager II Devices In this example, a ispPAC-POWR1014A device was used to implement the soft-start function. However, the soft-start control application can also be implemented in ispPAC-POWR1220AT8, ispPACPOWR1014 and ispPAC-POWR607 devices. The ispPAC-POWR607 devices, however, do not support the programmable ramp-rate control feature. Hot-Swap Controller with Hysteretic Current Limit Mechanism When designing hot-swap controllers for boards with higher power dissipation, or when one is not able to guarantee the MOSFET safe operating area limits are not violated during the hot-swap operation, or when the backplane inrush current is to be limited to prevent disruption to other boards plugged into the same backplane, the following circuit (Figure 5-4) should be used. This circuit begins to operate with the MOSFET Q1 turned on. The current starts to increase to charge the capacitor Ch . When the current exceeds the preset value, the logic in the hot-swap controller turns the MOSFET off. At that time, the current starts to decrease. When the current drops below the preset value, the logic turns the MOSFET on and the current starts to increase again. This method of limiting the current to a preset value by turning the MOSFET on/off is called hysteretic mode of operation. Power 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-5 Figure 5-4. Hot-Swap Controller with Hysteretic Current Limit There are two additional blocks in comparison to the soft-start control circuit shown in Figure 5-3: current monitoring and quick shut-off control. The name of ispPAC-POWR1014A device’s high voltage MOSFET gate drive pin has been changed from Soft_start to Hyst_Ctrl. Principle of Operation of the Hysteretic Control Mechanism Figure 5-5 shows plots of the gate drive of the MOSFET Q1 , current through the MOSFET and the voltage across the capacitor Ch . When Hyst_Ctrl signal is turned on, Q1 ’s gate capacitance starts to charge. At the same time, the current through the MOSFET also begins to increase. The current through the MOSFET passes through the sense resistor RS . The current sense amplifier (CSA) outputs a current proportional to the voltage dropped across RS into series resistors R1 and R2 . The voltage drop across R1 and R2 is monitored by the ispPAC-POWR1014A device through the signal I_In (one of the VMON pins). The comparator output of this VMON pin toggles when the current through RS exceeds the maximum allowable limit (IH). As a result, the logic equation in the PLD turns the Hyst_Ctrl pin off. When the Hyst_Ctrl pin is at logic 0, the MOSFET gate starts to discharge, throttling the current through the MOSFET channel, and the current through the MOSFET begins to drop. The voltage at the I_In pin reduces. When the voltage drops below the I_In pin threshold (IL), the logic equation in the ispPAC-POWR1014A device turns the MOSFET back on. This cyclic throttling action maintains the average current to a value determined by the current threshold settings. This technique provides many of the advantages of linear current control while sidestepping many of the potential stability issues. Inp_5V Hyst_Ctrl Q1 Out_5V I_In Rs +3.3V R1 R2 Short_Ckt IN1 Backplane 5V Load Start_5V_Load ADC ispPAC-POWR1014A SCL SDA VMON1 VMON2 VMON3 OUT3 HVOUT1 IN1 CSA Q2Power 2 You: A Guide to Power Supply Management and Control 5-6 Hot-Swap Controllers Figure 5-5. Hysteretic Current Control Through the Capacitor Turning MOSFET Off Under Short Circuit Conditions To prevent excessive current drain from the backplane and to protect the MOSFET against damage due to excessive power dissipation during a short circuit event, the MOSFET should be turned off within 1s from the time the current reaches a dangerous level. In Figure 5-4, the ispPAC-POWR1014A device’s digital input pin IN1 is driven to Logic 0 by the transistor Q2 when the current through the 5V supply rail exceeds short circuit current limit. The voltage across R2 is 0.7V when the current through RS reaches the short circuit current level. The logic equation in the ispPAC-POWR1014A device turns the MOSFET off immediately within 200ns. Hysteretic Hot-Swap Control Algorithm The algorithm is divided into two sections: • Logic equations for hysteretic control and fast-acting MOSFET shut down during a short circuit event • Sequence control for overall hot-swap event control Equation 1 implements the hysteretic control. The signal En_Hot_Swap turns the hot-swap controller on or off. This signal is turned on by the sequence control algorithm after the contact-de-bounce period. The Hyst_Ctrl (D-type flip-flop) is turned off when the I_In signal voltage exceeds the over-current limit level and turns back on when the I_In signal drops below the threshold. The comparator hysteresis provides the delay between turn-on and turn-off. Equation 2 is a combinatorial equation that turns the MOSFET off as soon as the Short_Ckt signal is equal to logic 0. Equation 1: Hyst_Ctrl.D = En_Hot_swap AND NOT I_IN Equation 2: Hyst_Ctrl.Reset = NOT Short_Ckt VGH VGL IL IH Capacitor Voltage Time Gate Drive CurrentPower 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-7 Sequence control: 1. Wait for 5V to be continuously on for 100ms and within the tolerance limits (monitoring Inp_5V signal). 2. Turn on the hysteric hot-swap action by turning on En_Hot_swap signal. 3. Wait for supply at 5V load is within tolerance limits by monitoring the Out_5V signal. 4. Enable the 5V load through the Start_5V_Load signal. 5. During normal operation, if an over current or under-/over-voltage supply fault occurs for a period greater than the hold-off period (5ms to 10ms), then shut the MOSFET off and retry. Programmable Features This circuit offers many programmable features that make it suitable for a wide range of applications. • Comparator thresholds can be changed to suit different backplane voltages, e.g., 5V or 3.3V. • Contact de-bounce period can be changed from 50ms to 2 seconds. • Over-current and short circuit current levels can be set independently. • The design can be used to implement dual hot-swap controllers for dual supply rail backplanes. • Hold-off time is programmable from 2 to 100ms (time during which the MOSFET should be left on under supply fault). After this period expires, the MOSFET is turned off. The ispPAC-POWR1014A Device Can Integrate Other Board Power Management Functions The difference between the soft-start method and hysteretic control in the algorithm is the addition of two logic equations. As a result, the remaining resources can be used to implement power sequencing, voltage supervision, reset generation and watchdog timer functions for the board. For faulty board identification and protection, add a watchdog timer when monitoring the load voltage immediately after the hysteretic control loop is turned on (after step 4). If this timer expires before the 5V reaches the operating threshold level (implying a fault that is preventing the charge build up in the capacitor Ch ), turn the MOSFET off and turn an LED on, indicating the supply fault. Add backplane voltage monitoring logic to provide early warning to the load circuit for safe turn off. Applicable Power Manager II Devices This example used the ispPAC-POWR1014A device to implement the hysteretic control hot-swap function. However, the hysteretic control can also be implemented in ispPAC-POWR1220AT8, ispPACPOWR1014 and ispPAC-POWR607 devices. Advantages of Using Power Manager II Devices for Hot-Swap Controller There are many hot-swap controllers in the market. Designers have to use these hot-swap controller devices in addition to the board management function. The Power Manager II device reduces the cost of implementation by integrating the hot-swap controller function along with overall board management into a single chip. In addition, the design can be used across a wide range of applications.Power 2 You: A Guide to Power Supply Management and Control 5-8 Hot-Swap Controllers 12V/24V Hot-Swap Controller The operating principle of this circuit is the same as that of the 5V hot-swap controller with hysteretic control mechanism. Two additional features are added to make it compatible with the 12V hot-swap function. These features are an external charge pump and limiting operation of the MOSFET within its safe operating range. The maximum MOSFET gate drive voltage of ispPAC-POWR1014/A and ispPAC-POWR1220AT8 devices is 12V. However, to turn the N-Channel MOSFET on the 12V or 24V rail, one has to drive its gate voltage to 22V or 34V, respectively (about 10V above the rail voltage). To achieve this high voltage, the following circuit (Figure 5-6) implements an external charge pump using diodes, capacitors and a transistor. The operating principle of the external charge pump is as follows (Figure 5-6). The C_Pmp signal (ispPAC-POWR1014A HVOUT pin) toggles between 12V (for 32s) and 0V (for 8s) cyclically. When the C_Pmp signal is at 0V, the capacitor C1 gets charged to backplane voltage of 12V through the diode D1 . At this time the transistor Q2 is off. When the C-Pmp signal toggles up to 12V, the C1 voltage gets added to the C_Pmp pin voltage, resulting in the generation of approximately 24V at the junction of C1 and D1 . This voltage turns Q2 on and charges the capacitor C2 to about 22V through the diode D2 . This voltage is sufficient to turn the MOSFET Q1 on. The transistor Q3 , driven by the S_Dn signal, is used to shut the MOSFET Q1 off by discharging the MOSFET Q1 gate and C2 when there is a fault. Figure 5-6. 12V/24V Hot-Swap Controller Using an ispPAC-POWR1014A Device Limiting the Hot-Swap MOSFET Within its Safe Operating Area The ispPAC-POWR1014A device implements a hysteretic control loop to limit the current through the MOSFET within safe operating limits when charging the hold-off capacitor Ch . The HVOUT pin stops toggling when the current through the resistor RS exceeds the set threshold. When toggling is stopped, the Inp_12V Backplane Q1 Out_12V I_In Rs +3.3V R1 R2 Short_Ckt +3.3V D1 Q2 D2 C2 C1 12V Load Start_12V_Load C_Pmp S_Dn Q3 Ch VMON1 VMON2 VMON3 OUT3 HVOUT1 OUT4 ADC ispPAC-POWR1014A SCL IN1 SDA CSAPower 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-9 voltage at the MOSFET gate starts to drop down, reducing the current through the MOSFET. When the current drops below the threshold, the C-Pmp signal starts to toggle, turning the charge pump on again Figure 5-7. MOSFET Safe Operating Area (IRF7832) The safe operating area of the chosen MOSFET (IRF7832) is shown in Figure 5-7 as a log-log graph with the voltage across the MOSFET on the x-axis and the current through the MOSFET on the y-axis. The dashed lines in the graph show the maximum allowable current at a given voltage across the MOSFET for a given pulse width. The red line on the graph shows the operating current limit of this circuit. Throughout the power-on process, the MOSFET never exceeds its safe operating area limits. Figure 5-8. Inrush Current Through the MOSFET I D , Drain-to-Source Current (A) 100 µs 1 ms 10 ms Tc = 25° C Tj = 150° C Single Pulse 1000 100 10 1 V DS, Drain-to-Source Voltage (V) 1 10 100Power 2 You: A Guide to Power Supply Management and Control 5-10 Hot-Swap Controllers In the oscilloscope plot shown in Figure 5-8, the green trace is the current through the MOSFET and the pink trace is the voltage across the capacitor. As can be seen, the current is limited to 2A until the voltage across the capacitor reaches 6V, and after that the current is limited to 4A. Figure 5-9. Circuit Operation During Short Circuit When the circuit is turned on to a short circuit, the power feed begins as usual. If the capacitor voltage does not reach 9V within 10ms, the MOSFETs are turned off and the circuit waits for a retry command. Figure 5-9 shows the oscilloscope plot of the MOSFET turn-on current with the capacitor Ch replaced with a short. 12V Hot-Swap Controller Algorithm The hot-swap controller algorithm is divided into the following sections: • Logic equations for the external charge pump operation • Logic equations for hysteretic control and fast-acting MOSFET shut down during a short circuit event • Sequence control for overall hot-swap event control Toggle_C_Pump is an internal variable used to generate 8 s wide pulses. Equation 3 and Equation 4 use an on-chip hardware timer. There are four programmable timers in a ispPAC-POWR1014A device. Each timer delay can be set from 32s to 2 seconds. Timer count-down is iniEquation 3: Toggle_C_Pump.D = 32 s Timer Terminal Count Equation 4: 32 s Timer Gate.D = NOT Toggle_C_PumpPower 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-11 tiated by applying a logic 1 to the gate signal. The timer_TC signal transitions to logic 1 after the timer count-down is complete. When the timer gate signal is connected to the inverted Timer_TC (Figure 5- 10), the timer generates a 4s pulse every time the timer expires. Figure 5-10. Timer Configuration to Implement Programmable Frequency Clock If the timer delay is set to, say, 32s, the timer TC and the timer gate outputs will be: Figure 5-11. Generating 4µs Wide Pulses with Programmable Interval Using Timer Equation 3 latches the timer TC into a variable Toggle_C_Pump. This stretches the timer gate by another 4s. The waveform of Toggle_C_Pump is shown in Figure 5-12. Figure 5-12. Generating 8µs Wide Pulses with 32µs Interval Using Toggle_C_Pump Programmable Timer Timer Gate Timer TC 32µs to 2 seconds 4µs 32µs Timer Gate Timer TC 8µs 32µs Toggle_C_Pump Toggle_C_Pump Programmable Timer Timer Gate 32µs to 2 seconds Timer TC D Q D-FFPower 2 You: A Guide to Power Supply Management and Control 5-12 Hot-Swap Controllers Equation 5 controls the MOSFET drive circuit. The Toggle_C_Pump signal is used to drive the external charge pump circuit. This pulse train is modulated by: • En_Hot_Swap – Controlled by the sequence control • (NOT I_IN_2_A AND NOT OUT_12V_GT_6V) – Hysteretic control that limits the current to less than 2A when the voltage at Ch is less than 6V • (NOT I_IN_4_A AND NOT OUT_12V_GT_9V) – Hysteretic control that limits the current to 4A when the voltage at Ch is less than 9V • MOSFET_FULLY_ON – Term that turns the MOSFET fully on when the voltage at Ch is greater than 9V. This term is controlled by the sequence controller Equation 6 is a combinatorial equation that turns the MOSFET off as soon as the Short_Ckt signal is equal to logic 0 or when the operating current is greater than 4A. Sequence control: 1. Wait for 12V to be continuously on for 100ms and within tolerance by monitoring the Inp_12V signal. 2. Turn on the hysteric hot-swap action by turning on the En_Hot_swap signal. 3. Wait for the supply at 12V load to be within tolerance by monitoring the Out_12V signal within 10ms. If 10ms timer expires, set En_Hot_Swap signal to 0. 4. Set the TURN_MOSFET_ON_FULLY signal on. 5. Enable the 12V load through the Start_12V_Load signal. Programmable Features This circuit offers many programmable features that make it suitable for a wide range of applications. • Comparator thresholds can be changed to suit different backplane voltages, e.g., 12V or 24V. • Contact de-bounce period can be changed from 50ms to 2 seconds. • Over-current, and short circuit current levels can be set independently. Equation 5: C_Pmp.D = NOT Toggle_C_Pump AND En_Hot_swap AND ((NOT I_IN_2_A AND NOT OUT_12V_GT_6V) OR (NOT I_IN_4_A AND NOT OUT_12V_GT_9V) OR MOSFET_FULLY_ON) Equation 6: Shut_Dn = NOT Short_Ckt or (MOSFET_FULLY_ON AND I_IN_4_A)Power 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-13 • Design can be used to implement dual hot-swap controller for dual supply backplanes using two MOSFET drivers of the ispPAC-POWR1014 device. • Hold-off time programmable from 2 to 100ms (time during which the MOSFET should be left on under supply fault). After this period expires, the MOSFET is turned off. The ispPAC-POWR1014A Can Integrate Other Board Power Management Functions The hot-swap controller uses only about 25% of the ispPAC-POWR1014A device resources. The remaining resources can be used to implement power sequencing, voltage supervision, reset generation and watchdog timer functions for the board. Applicable Power Manager II Devices This example used the ispPAC-POWR1014A device to implement the hysteretic control hot-swap function. However, the hysteretic control can also be implemented in ispPAC-POWR1220AT8, ispPACPOWR1014, and ispPAC-POWR607 devices. 5.3 Implementing a Negative Supply Hot-Swap Controller Figure 5-13 shows the circuit diagram of a -48V hot-swap controller using the ispPAC-POWR607 device. Figure 5-13. Hot-Swap Controller Circuit Using an ispPAC-POWR607 Device The ispPAC-POWR607 controls the MOSFET (STB120NF) shown at the bottom right of the circuit diagram, for inrush current control while operating the MOSFET in its SOA. The controller monitors the circuit current using the current sense resistor shown to the left of the MOSFET. The backplane voltage and -48V 43k 3.3k 6V 3.3k 6V .01µF .05(RS) Voltage Regulator ispPAC-POWR607 100k 100 HVOUT2 HVOUT1 VMON6 VMON5 VMON4 VMON3 VMON2 VMON1 GND VCC Vin_High Vin_OK VDS_2 VDS_1 Isense_2 Isense_1 Gate_Drive_2 Gate_Drive_1 Ch IN/OUT3 Enable_Load 43k IN2 Q2 Q3 VCC_607 GND_607 VCC_607 VCC_607 GND_607 IN/OUT4 Shut_Dn R2 R1 -48V Return Load STB120NFPower 2 You: A Guide to Power Supply Management and Control 5-14 Hot-Swap Controllers the voltage across the MOSFET are monitored using two potential dividers of 43K and 3.3K. The 6V zener diode is used to protect the ispPAC-POWR607’s input section. When the blade is plugged into the backplane, the ispPAC-POWR607 waits for the contact bounce to settle and then begins to charge the hold-off capacitor, using current pulses instead of a continuous current feed. The rate of current pulses is programmable to meet the MOSFET's power dissipation characteristics. Once the voltage reaches a preset threshold, the rate of current pulses is increased to hasten the charging of the hold- off capacitor. After the hold-off capacitor is completely charged, the MOSFET is fully turned on and the Power_Good Signal is activated. This signal is used to enable the DC-DC converter. The voltage across the MOSFET is monitored by the two voltage monitoring inputs of the ispPAC-POWR607. The programmable threshold set for the first voltage monitoring (Fast Charge Duty Cycle Threshold) input determines the changeover from slow charging to faster charging of the hold-off capacitor. The second threshold (End of Soft Start) indicates the completion of the charging of the holdoff capacitor and to fully turn on the MOSFET. The ispPAC-POWR607 waits for a preset period (determined by the short circuit watchdog timer) for the voltage across the MOSFET to drop below the fast charge threshold. If the voltage across the MOSFET does not drop below the fast charge threshold, the MOSFET is turned off, indicating a fault such as a short circuit. With this implementation, the MOSFET continues to operate within its Safe Operating Area, even if a short circuit is present. During normal operation, the ispPAC-POWR607 senses the beginning of a brownout period when the backplane voltage drops below a preset threshold and initiates an internal programmable timer of 10ms. If the power supply recovers within that time, the circuit continues to function normally. If the 10ms timer expires, the hot-swap controller classifies it as an under-voltage event and jumps to the power recycle routine, waiting for the supply to stabilize before initiating a recharge of the hold-off capacitor. During normal operation, when a card is plugged into the backplane, the backplane supply dips momentarily. During the voltage dip period, all cards use the hold-off capacitor to remain functional. Consequently, the hold-off capacitor loses some charge. When the backplane recovers, the charge in these capacitors is replenished. This results in a brief current spike, usually less than 100s. This should be ignored by the hot-swap controller. However, if there is a catastrophic current fault on the board, the hotswap controller should respond to this high current and shut the MOSFET down in less than 1s to prevent fault propagation and to prevent damages to the MOSFET. The transistor Q2 is used to protect the card when the current fault results in very high current. When the voltage across the current sense resistor exceeds 0.7V, the transistor Q2 turns on and applies a logical 0 to the digital input of the ispPACPOWR607. The logic equation within the ispPAC-POWR607 then turns on the transistor Q3 . Q3 discharges the MOSFET gate charge, resulting in turning the MOSFET off within 1s. Controlling Current Inrush While Operating the MOSFET in its Safe Operating Area The top trace of the oscilloscope in Figure 5-14 shows 10ms wide, 1.5A current pulses charging the holdoff capacitor. The bottom trace is the voltage across the MOSFET while charging a 4700F hold-off capacitor.Power 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-15 Figure 5-14. Hold-off Capacitor Charging Current and Voltage Across the MOSFET Two of the ispPAC-POWR607’s MOSFET drivers drive the MOSFET gate. One MOSFET driver maintains the current amplitude at 1.5A, and the second MOSFET driver controls the modulation rate. In this circuit, the duty cycle was limited deliberately to one 10ms pulse every 260ms. This limits the worst-case (during short circuit) average power dissipated by the MOSFET to 1.5A * 48V * 5ms / 260ms = 1.4W. Hot-Swap Controller Algorithm • The hot-swap controller algorithm is mainly implemented in an ispPAC-POWR607 device using sequence control. However, the short circuit over current is monitored using a combinatorial logic equation because of speed. Sequence control: 1. Turn-off MOSFET and wait for contact bounce to settle. 2. Until the voltage across the MOSFET drops below 25V, charge the capacitor using 10ms wide 1.5A pulses repeated once every 260ms. If the voltage does not drop below 25V within 512ms, stop hotswap. 3. After the voltage across the MOSFET drops below 25V, increase the duty cycle to 10ms wide 1.5A pulses repeated at a rate of 65ms. 4. Wait for the voltage across the MOSFET to drop below 1V and turn the MOSFET on fully. 5. If an over-current condition occurs, turn the MOSFET off and retry once in two seconds. Customizing the -48V Hot-Swap Controller The entire hot-swap algorithm can be implemented within the 16-macrocell PLD of the programmable hot-swap controller. Designers can customize this algorithm to suit their blade requirements. The following parameters of the programmable hot-swap controller can be customized: • Short circuit watchdog duration: If the hold-off capacitor does not charge in the specified time period, the MOSFET is shut off. If Short_ckt_Det (output of Q2 ) = 0 then turn on Q3 (Q3 discharges the MOSFET gate) INPUT CURRENT 1A/div FET VDS 20V/div 48V 1.5APower 2 You: A Guide to Power Supply Management and Control 5-16 Hot-Swap Controllers • Charging Current Pulse Duration: The pulse width is set to guarantee that the MOSFET operates within its SOA. • Charging Current Pulse Frequency: This parameter, along with the charging current pulse duration, determines the power dissipation for a given MOSFET. • Minimum Hold-off Time Before Recycling: This determines the blade’s immunity to brownouts. • Current Sense Scaling: This is set by the selection of the Rsense (RS ) resistor, R1 and R2. • Height of Charging Current Pulse: Determined by the RS resistor value, sets the amplitude of the charging current pulses. • Circuit Breaker Current: Maximum current value to initiate shut off and re-start. • End of Soft-start Operation: Sets the voltage at which the MOSFET is fully turned on and the Power_Good Signal is generated. • Transition to Fast Charge Duty Cycle: Determines the voltage at which the charge pulse frequency is increased to safely reduce the hold-off capacitor charging time. • Minimum Operating Voltage: Determines the backplane voltage below which the brownout process begins. • Over-Voltage Protection: Above this voltage, the MOSFET is shut off to protect the blade circuitry. Applicable Power Manager II Devices This design is implemented using an ispPAC-POWR607 device. However, the ispPAC-POWR1014A device can also be used to implement the hot-swap controller if the design requires voltage measurement through the I2 C interface. 5.4 CompactPCI Board Management Applications such as CompactPCI or CompactPCI Express use a backplane with multiple power supply rails. Figure 5-15 shows the requirements of the hot-swap controller for CompactPCI standard backplane with voltages of +12V, +5V, +3.3V & -12V. In this design, the +5V and +3.3V rails carry the bulk of the power.Power 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-17 Figure 5-15. CompactPCI Board Power Management Including Hot-Swap The Power Manager II ispPAC-POWR1220AT8 device has been used to implement not only the hotswap controller but also the entire circuit board’s power management, as shown in Figure 5-15. In this design, the 5V and 3.3V hot-swap controllers use the hysteretic current control mechanism (as described in the section “Hot-Swap Controller with Hysteretic Current Limit Mechanism” on page 5-4) and the +12 and -12V use the soft-start control mechanism (described under “Hot-Swap Controller Using Soft-start” on page 5-3). The +12V rail uses a P-Channel MOSFET. CompactPCI Board Management Algorithm The hot-swap controller, after initiating the hysteretic and soft-start functions, waits for the board supplies to reach normal operating levels within the watchdog time period and then activates the Healthy# signal. /BD_SEL +12V /PCI_RST /HEALTHY Board-level Power Management +12V Board +5V Board +3.3V Board -12V Board /Local_PCI_RST CPCI Bus Board-side Power POL 1.8V POL 1.2V 1.8V Board 1.2V Board /en /en +5V +3.3V -12VPower 2 You: A Guide to Power Supply Management and Control 5-18 Hot-Swap Controllers Figure 5-16. ispPAC-POWR1220AT8 Device – Complete CompactPCI Board Management If the hot-swap function fails, the Healthy# signal is not activated and the main system does not activate the PCI card. One can then re-initiate the hot-swap function by extracting and re-inserting the board into the backplane. After all hot-swapped rails reach normal operating value, the ispPAC-POWR1220AT8 device initiates the sequencing of 2.5V and 1.8V supplies. After all supplies are stable (including the onboard sequenced supplies), the CPU reset signal (CPU_RSTb) is activated. If any supply fails, the brown_out signal is activated. Programmable Features The circuit shown in Figure 5-16 can be customized for the following: • Over-current for 5V and 3.3V • Sequencing of board mounted voltage • Protecting against board faults – Turn off all hot-swap MOSFETs • Generating other board specific power management signals • Measuring voltage and current • Trimming and margining of supplies Applicable Power Manager II Devices This example shows CompactPCI Express board power management functions implemented using an ispPAC-POWR1220AT8 device. If the CompactPCI Express board required the hot-swap function and minimal board management, then a ispPAC-POWR1014A device would be sufficient. +12V +5V Q1 Q2 Ch 1.8V POL 2.5V POL BRD_SEL# PCI_RST_b Brown_Out CPU_RSTb 12V 1.8V 2.5V 5V 3.3V I_Sens3V3 FETDRV3V3 V_Sens3V3 I_Sens5V FETDRV5V V_Sens5V V_In_12V FETDRV12V V_Sens12V En_1V8 En_2V5 SCL SDA ispPAC-POWR1220AT8 -12V +3.3V En_Neg12 Healthy# -12V +3.3V CSA CSA Q3Power 2 You: A Guide to Power Supply Management and Control Hot Swap Controllers Hot-Swap Controllers 5-19 CompactPCI Express Board Management CompactPCI Express backplanes are similar to CompactPCI backplanes. However, the 12V supply is also required to carry the bulk of the power in addition to +5V and 3.3V rails. Figure 5-17. Complete CompactPCI Express Board Power Management The difference between the CompactPCI and CompactPCI Express board power management implementation (Figure 5-17) is that in this circuit the 12V hot-swap uses a hysteretic current control mechanism. The +5V and +3.3V hot-swap implementation is the same as the one described in “Hot-Swap Controller with Hysteretic Current Limit Mechanism” on page 5-4. The 12V hot-swap mechanism is described in “12V/24V Hot-Swap Controller” on page 5-8. Programmable Features • The secondary board power management section can be completely customized to meet board management needs. • Power rail voltage and current can be measured through I2 C. • 12V hot-swap behavior can be adjusted to meet the characteristics of any MOSFET. Applicable Power Manager II Devices This example shows CompactPCI Express board power management functions implemented using an ispPAC-POWR1220AT8 device. If the CompactPCI Express board required the hot-swap function and minimal board management, then a ispPAC-POWR1014A device would be sufficient. +12V +5V +3.3V Q5 Q1 Q2 D2 C2 C_Pmp S_Dn Q3 Ch 3.3V ATNSW# PRSNT# PWREN# PERST# MPWRGD 12V 1.8V 2.5V 5V 3.3V I_Sens3V3 FETDRV3V3 V_Sens3V3 I_Sens5V FETDRV5V V_Sens5V V_In_12V I_Sens12V FETDRV12V Sh V_Sens12V ut_Dn En_1V8 En_2V5 SCL SDA CSA CSA 1.8V POL 2.5V POL Q4 CSA ispPAC-POWR1220AT8Power 2 You: A Guide to Power Supply Management and Control 5-20 Hot-Swap Controllers This page intentionally left blank.CHAPTER 6 6-1 Power Supply OR’ing Controllers 6.1 What is Power Rail OR'ing? One method used to increase the reliability of high availability systems is through the use of systems that are powered by two or more (redundant) power supplies. These supplies are generated either by multiple sources or the system is connected to the main supply by the use of multiple paths. Boards connected to these redundant supplies derive a single high availability rail through the use of diodes, as shown in Figure 6-1. This arrangement is called a power rail OR’ing. Figure 6-1. N-supply OR’ing Control Using Diodes This is a simple arrangement. Only the supply that has the highest voltage drives the main board voltage. Also, if the supply voltages are roughly equal, the load power is shared between each source. If a supply fails, the load is transferred to other supplies automatically without any interruption. Although this is the simplest and most reliable way of OR’ing supplies, this circuit has a disadvantage: it wastes power. Diodes usually drop about 700mV. If the load current is, say, 2A, the power dissipated by the diode is 1.4W. If there are ten boards in a shelf, the power dissipated is 14W, which stresses the cooling system. In addition, diodes that can dissipate more than 2W must be used. These diodes are not only expensive but also are large, requiring more circuit board area. Vin A Vin B Vin N I = 2A Vdiode = 700mV Vin to Board Power Dissipated = 1.4WPower 2 You: A Guide to Power Supply Management and Control 6-2 Power Supply OR’ing Controllers To minimize the power dissipation, some designs use Schottky diodes. These diodes drop about 400mV, resulting in approximately half the power dissipation. Nonetheless, the dissipated power is still too high, and Schottky diodes are usually more expensive. Modern power OR’ing circuits use MOSFETS (Figure 6-2) to reduce the power dissipation significantly. Typical turn-on resistance of an N-channel MOSFET is about 25mΩ, so the power dissipated by this MOSFET at 2A is 100mW (2*2*25 E-3). In other words, the power dissipation is reduced by 93%. Figure 6-2. Power Supply OR’ing Control Using MOSFETs to Reduce Power Dissipation 6.2 Challenges of Designing a MOSFET OR’ing Circuit When turned on, MOSFETs allow current to flow in both directions. Consequently, a voltage difference between any two rails results in a reverse current flow into the lower voltage supply rail. For example, a 1V difference between VinA and VinB can result in 20A (1V / (0.025 +0.025)) flowing from the higher voltage supply into a lower supply rail. This causes overloading of supplies and, in some cases, damage to the supplies. To prevent reverse currents, a power supply OR’ing control circuit is required. There are two methods used for preventing the reverse current: • Monitor current through the MOSFET and turn off the MOSFET, which has less current than the threshold. Current dropping below the threshold can indicate reverse current build up in that limb. If the current in all the limbs is greater than the minimum threshold, all the MOSFETs are left turned on in order to enable load current sharing. • Monitor the voltage difference between the rails of the input supplies and turn off the MOSFET that is connected to the lower voltage rail. When the voltage difference between the two rails is less than a diode voltage drop, then both MOSFETs are left on, the current to be shared. The following section discusses positive voltage and negative voltage OR’ing circuits implemented using Lattice Power Manager II devices. Vin A Vin B Vin N Vin to Board V mosfet = 50mV Power Dissipated = 100mW I = 2APower 2 You: A Guide to Power Supply Management and Control Power Supply OR’ing Controllers Power Supply OR’ing Controllers 6-3 6.3 +5v Power Supply OR’ing (Using MOSFETs) Circuit The circuit in Figure 6-3 shows OR’ing of two 5V supply rails, 5V_a and 5V_b. The OR’ing control algorithm is implemented in a ispPAC-POWR1014A device. The current through each limb is monitored by the ispPAC-POWR1014A device through current sense amplifiers CSA_a and CSA_b. MOSFETs Q1 and Q2 implement the OR’ing function. The common 5V supply rail is derived by combining the drain terminals of Q1 and Q2 . When both MOSFETs are off, their body diodes provide an inefficient OR’ing mechanism. In Figure 6-3 the OR’d supply feeds a hot-swap controller. Figure 6-3. An ispPAC-POWR1014A Device Implementing Two-Rail 5V OR’ing Control The circuit starts with both MOSFETs turned off. The load is turned on by enabling the hot-swap controller. When the load starts drawing power, it automatically draws power from one of the MOSFET body diodes. If both voltages are very close, the load pulls current from both the MOSFET body diodes, and both are sensed by the respective current sense amplifiers. The ispPAC-POWR1014A device turns on the MOSFET on a limb only if the current through that limb is above a threshold value. If the current in both rails is above their thresholds, then both MOSFETs are turned on. The ispPAC-POWR1014A device continues to monitor the current level in both limbs. During operation, if the current through one of the MOSFETs drops below its low current threshold (due to a sudden drop of Inp_5Vb Hyst_Ctrl Q2 5V_Hot-swap Inp_5Va I_Inb Rs R2 Q1 Rs R1 5V_a Start 5V_Hot-swap CSA A VMON1 VMON2 VMON3 VMON4 HVOUT1 OUT3 SCL SDA ispPAC-POWR1014A 5V_b I_Ina ADC CSA B HVOUT2Power 2 You: A Guide to Power Supply Management and Control 6-4 Power Supply OR’ing Controllers that power rail’s voltage), then that MOSFET is instantly turned off. When the MOSFET is turned off its body diode blocks the reverse current. Because the MOSFET is turned off when the current drops below the positive threshold, the reverse current that would be driven back into the power supply is avoided. In effect, this circuit implements OR’ing of supply rails through a proactive reverse current avoidance method. Algorithm for Implementing OR’ing through MOSFETs Step 1 – Wait for at least one of the rails to reach operating voltage value. Step 2 – Enable the load or the hot-swap controller. Step 3 – Wait for the load to turn on. Step 4 – If the current in Limb A is greater than its turn-off threshold, turn on the MOSFET. Step 5 – If the current in Limb B is greater than its turn-off threshold, turn on the MOSFET. Step 6 – Wait for either of the currents in the MOSFETS that are turned on in a limb to drop below its turn-off threshold. If the current drops below the turn-off threshold, turn it off and wait for the current to increase above the turn-off threshold, then turn the MOSFET back on. Continue executing step 6. Programmable Features The following programmable features enable the design described above to meet the needs of a wide variety of OR’ing circuits. • Individually program thresholds of two comparators to implement hysteresis using a logic equation for MOSFET turn on current and MOSFET turn-off current levels. • Programmable thresholds for determining the valid input operating voltage range. Additional Functions That Can be Integrated into the ispPAC-POWR1014A Device • Hot-swap controller – Either soft start or hysteretic current controller. – One of the MOSFET drivers can be freed to implement the hot-swap controller by using the transistor circuit shown in Figure 6-4 on page 6-6. • Integrate sequencing. • Integrate voltage supervision, reset generation and watchdog timer functions. Applicable Power Manager II Devices Driving a 5V rail requires a MOSFET drive of 12V. This feature is supported in the ispPACPOWR1220AT8, ispPAC-POWR1014 and ispPAC-POWR1014A devices.Power 2 You: A Guide to Power Supply Management and Control Power Supply OR’ing Controllers Power Supply OR’ing Controllers 6-5 6.4 Power Supply OR’ing of Three or More 5V Supply Rails Using MOSFETS A ispPAC-POWR1014 device supports two MOSFET drive circuits; however, each MOSFET drive can drive gates of multiple MOSFETs simultaneously. The circuit in Figure 6-4 makes use of this feature to implement N-supply rail OR’ing through a MOSFET using one HVOUT signal from the Power Manager II device. The operating principle of this circuit is the same as above. The only difference here is that a four-transistor circuit is used to drive the MOSFET gate, as shown in the inset block as OR MOSFET Control. The P1 PNP transistor is turned on to enable the voltage and current from HVOUT to the gate of the MOSFET. P1 is turned on when N2 turns on, which is when the OUT pin of the ispPAC-POWR1014 is at Logic 0 (N1 is off). At that time N3 is also off. To turn the OR MOSFET off, digital output is set to Logic 0. At that time N2 turns off and N3 turns on, draining the charge stored in the MOSFET gate, which turns it off immediately. The diode D1 is introduced in the base circuit of the N3 to delay turning on N3 compared to N1 , and to turn the N3 off before N1 . This avoids the condition where P1 and N3 are both on at the same time, preventing turning off the other MOSFETS in the OR circuit.Power 2 You: A Guide to Power Supply Management and Control 6-6 Power Supply OR’ing Controllers Figure 6-4. N-Channel OR’ing through MOSFETS Algorithm Implementing N-channel OR’ing through MOSFETs Step 1 – Wait for at least one of the rails to reach operating voltage value. Step 2 – Enable the load or the hot-swap controller. Step 3 – Wait for the load to turn on. Step 4 – If the current in Limb A is greater than the minimum threshold, turn on the MOSFET through the corresponding digital control. Step N – If the current in Limb N is greater than its minimum threshold, turn the MOSFET on. Step N+1 – Wait for either the current through the limb whose MOSFET is turned on to drop below the threshold and then turn it off, or wait for the current in the limb whose MOSFET is turned off to go above threshold and then turn that MOSFET on. Continue executing step N+1. 3.3V HVOUT1 Gate OUT OR MOSFET Control P1 N1 N2 N3 D1 Inp_5Vb Qn 5V_Hot-swap Inp_5Va I_Inn Rs Rn Q1 Rs R1 5V_a Start 5V_Hot-swap CSA a VMON1 VMON2 VMON3 VMON4 HVOUT1 OUT3 SCL SDA ispPAC-POWR1014A 5V_n I_Ina ADC CSA n OUT8 OUT9Power 2 You: A Guide to Power Supply Management and Control Power Supply OR’ing Controllers Power Supply OR’ing Controllers 6-7 (Steps N+1 is implemented using logic equations for all N-MOSFETs such that the circuit monitors and controls all MOSFETs in parallel.) Programmable Features The following programmable features enable the design described above to meet the needs of a wide variety of OR’ing circuits. • Individually program the thresholds of two comparators to implement hysteresis (using logic equations) for MOSFET turn-on current and MOSFET turn-off current levels. • Programmable thresholds for determining the valid input operating voltage range. Additional Functions That Can be Integrated Into the ispPAC-POWR1014A Device • Hot-swap controller – Either soft start or hysteretic current controller. The OR’ing circuit uses only one MOSFET drive output. The second MOSFET drive can then be used to implement the hot-swap controller. • Integrate sequencing. • Integrate voltage supervision, reset generation and watchdog timer functions. Applicable Power Manager II Devices Driving a 5V rail requires a MOSFET drive of 12V. This feature is supported in the ispPACPOWR1220AT8, ispPAC-POWR1014 and ispPAC-POWR1014A devices. 6.5 N-rail (12V/24V) OR’ing The operating principle of the N Rail 12V OR’ing with MOSFET is the same as that of the N-Rail 5V OR’ing with MOSFET. The difference is that the gate of the N-Channel MOSFET on the 12V rail requires higher voltage than the one supplied by the HVOUT pin of the ispPAC-POWR1014 device. In addition to the blocks shown in Figure 6-4, Figure 6-5 shows an additional c-pump block at the bottom right corner that implements an external charge pump to generate 20V at the MOSFET gate.Power 2 You: A Guide to Power Supply Management and Control 6-8 Power Supply OR’ing Controllers Figure 6-5. N- 12V Rail OR’ing through MOSFET Using an ispPAC-POWR1014A Device 3.3V CPOUT Gate OUT OR MOSFET Control P1 N1 N2 N3 D1 Inp_12Vb Qn 12V_Hot-swap Inp_12Va I_Inn Rs Rn Q1 Rs R1 12V_a Start 12V_Hot-swap CSA a VMON1 VMON2 VMON3 VMON4 HVOUT1 OUT8 SCL SDA ispPAC-POWR1014A 12V_n I_Ina ADC CSA n P2 C2 C1 D2 D3 OUT3 OUT9 CPOUT HVOUT 12V_n 12V_a C-PumpPower 2 You: A Guide to Power Supply Management and Control Power Supply OR’ing Controllers Power Supply OR’ing Controllers 6-9 Operating Principle of the C-Pump Block The HVOUT pin of the ispPAC-POWR1014A device toggles, outputting 12V for 32s and 0V for 8s. When the HVOUT pin is at 0V, the capacitor C1 gets charged to a voltage that is highest of all 12V rails through the diode D2. When the HVOUT pin is at 12V, this voltage is then added to the capacitor (C1 ) voltage and that turns the transistor P2 on and charges C2 through diode D3 to approximately 20V. This voltage is then routed to the MOSFET gates through the OR MOSFET control block. The ispPAC-POWR1014 device, like the N-rail (5V) OR’ing circuit operation, then monitors the currents through the rails and turns on the corresponding MOSFET if its current is higher than the turn-on threshold. Algorithm Implementing N-Channel OR’ing Through MOSFETS Step 1 – Wait for at least one of the rails to reach operating voltage value. Step 2 – Enable the load or the hot-swap controller. Step 3 – Wait for the load to turn on. Step 4 – If the current in Limb A is greater than the minimum threshold, turn on the MOSFET through the corresponding digital control. Step N – If the current in Limb N is greater than its minimum threshold, turn the MOSFET on. Step N+1 – Wait for either the current through the limb, whose MOSFET is turned on, to drop below the threshold and then turn it off, or wait for the current in the limb whose MOSFET is turned off to go above threshold and then turn that MOSFET on. Continue executing step N+1. (Steps N+1 is implemented using logic equations for all N-MOSFETs such that the circuit monitors and controls all MOSFETS in parallel) Programmable Features The following programmable features enable the design described above to meet the needs of a wide variety of OR’ing circuits. • Individually program the thresholds of two comparators to implement hysteresis through logic equations for MOSFET turn-on current and MOSFET turn-off current levels. • Programmable thresholds for determining the valid input operating voltage range. Additional Functions That can be Integrated Into the ispPAC-POWR1014A Device • Hysteretic current control hot-swap controller. The OR’ing circuit uses only one MOSFET drive output. The Second MOSFET drive then can be used to implement the hot-swap controller. • Integrate sequencing. • Integrate voltage supervision, reset generation and watchdog timer functions.Power 2 You: A Guide to Power Supply Management and Control 6-10 Power Supply OR’ing Controllers Applicable Power Manager II Devices 12V rail OR’ing using MOSFETS can be implemented using ispPAC-POWR607, ispPACPOWR1220AT8, ispPAC-POWR1014 and ispPAC-POWR1014A devices. 6.6 -48V Supply OR’ing Through MOSFETS The circuit shown in Figure 6-6 monitors the voltage difference between the two -48V voltage rails using a simple resistive voltage divider. In the following circuit there are two rails, -48VA and -48VB. Initially the MOSFET is off and the OR’ing function is performed by the body diodes. The voltage difference between the two rails is monitored by the resistors R1 through R4 . The values are selected such that when the voltage difference is greater than 0.4V, a Schottky turn-on voltage, the corresponding node A_Hi or B_Hi goes above 0.75V. The logic equation within the ispPAC-POWR607 device turns the MOSFET on and the less negative rail is turned off, preventing reverse current. If the voltage difference between the two rails is less than 0.4V, both MOSFETS will be turned on. Figure 6-6. Dual -48V MOSFET OR’ing Circuit Using an ispPAC-POWR607 Device Programmable Features The values of R1 , R2 , R3 and R4 are selected such that there is a dead band of 0.4V about the common - 48V rail. That is, if the -48VA and -48VB are within 0.4V of each other, both the MOSFETS are turned on. This dead band voltage value can be changed by selecting a different potential divider setting. Additional Functions That Can Be Integrated Into the ispPAC-POWR607 Device One of the useful functions that can be added to the circuit shown in Figure 6-6 is monitoring of -48VA and -48VB rails, as well as monitoring for fuse failure as shown in Figure 6-7. The voltage monitoring section generates two fault signals: Battery_Fail_VA and Battery_Fail_VB. These signals also become active when the corresponding fuse fails. If all the boards in the shelf show a battery failure, then it indiAlgorithm: If A_Hi is True, Turn on Q1 If B_Hi is True turn on Q2 -48VA -48VB 10K 10K A_Hi B_Hi A_On B_On Start_HS Q1 Q2 R1 R2 R3 R4 To Hot-swap Controller BRD -48V HVOUT2 GND HVOUT1 VMON6 VMON5 OUT5 ispPACPOWR607 3K 3KPower 2 You: A Guide to Power Supply Management and Control Power Supply OR’ing Controllers Power Supply OR’ing Controllers 6-11 cates the main battery failure. However if one of the cards indicate the battery failure, it indicates a fuse fault. Figure 6-7 shows the -48V voltage sensing circuit that uses two 50kΩ resistors (R1 and R2 ) to monitor the voltage. The voltage at the junction of R1 and R2 determines the current through the resistors R2 , R4 and the transistor P1 . The ispPAC-POWR607 monitors the voltage across the resistor R4 , which is proportional to the voltage across the resistors R1 and R2 . The second ispPAC-POWR607 device performs the hot-swap function in hot-swappable boards. The voltage monitoring, fuse fault monitoring, MOSFET OR'ing, and hot-swap control functions can be integrated into an ispPAC-POWR1014 device. In addition, if power measurement is required, one can use an ispPAC-POWR1014A device instead of the ispPAC-POWR1014 device and use a opamp circuit to amplify the current through the circuit. Figure 6-7. Voltage Monitoring in Addition to OR’ing Two -48V Rails Using an ispPAC-POWR607 Device Figure 6-8. -48V Rail Voltage Monitoring Circuit Shown as Vsense A and VSense B Blocks in Figure 6-7. Applicable Power Manager II Devices This circuit can be implemented using the ispPAC-POWR607 or ispPAC-POWR1014A devices. 48V Return 10K 10K 3K A48_OV A48_UV B48_OV B48_UV A_Hi B_Hi A_On B_On Battery_Fail_VA Battery_Fail_VB Start_HS Enable_Load On_Off HS_Complete L O A D Enable_Load IN1 IN2 VMON1 VMON2 VMON3 VMON4 VMON5 VMON6 HVOUT1 GND HVOUT2 OUT3 OUT4 OUT5 OUT6 ispPAC POWR607 Hot-Swap Controller ispPACPOWR607 #2 Vsense A Vsense B -48VA -48VB -48V Rtn -48V A/B 50K 50K 50K 3K VMON of ispPAC-POWR607 GND of ispPAC-POWR607 R1 R2 R3 R4 P1Power 2 You: A Guide to Power Supply Management and Control 6-12 Power Supply OR’ing Controllers This page intentionally left blank.CHAPTER 7 7-1 Power Feed Controllers 7.1 What are Power Feed Controllers? In many systems, including base stations, microwave add-drop multiplexers and MicroTCA shelves, a circuit board is required to feed power to an external system. In base stations, the power is for a remote radio head; in the case of a microwave system, an external modem and an antenna on a tower require power to be sourced from the system on the ground; and in the case of MicroTCA, the power module is needed to feed power to multiple Advanced Mezzanine cards plugged into the same shelf. In most of these cases, the power feed is required to monitor for faults such as over current and under current, as well as to provide short circuit protection. This chapter discusses -48V and 12V power feed arrangements because they are the most common. These designs can be modified to support other voltages as well. 7.2 Dual Rail -48V Supply Feed The circuit shown in Figure 7-1 uses MOSFETs to control the power feed to two -48V rails. To prevent damage to the MOSFETs during the power feed event, the current through the MOSFET is limited using a hysteretic current control mechanism for a fixed period. After that period, the MOSFET is fully turned on and the circuit goes on to monitor the currents for over current and under current faults. There are three types of current faults that can occur in power feed circuits: 1. No current fault – If the external cable is broken 2. Over current fault- External system draws more current than normal (not dangerously high current) 3. Short circuit current fault – Dangerously high current due to a short circuit in the power feed cable If a no-current or over-current fault is detected, the fault flag becomes active for that channel. If a short circuit is detected, the MOSFET is shut down in less than 500ns. After a fault is Power 2 You: A Guide to Power Supply Management and Control 7-2 Power Feed Controllers detected, the circuit tries continuously to restart the power feed as long as the enable signal is active for that channel. Figure 7-1. The ispPAC-POWR607 Device Implements a Dual-Channel -48V Power Feed Circuit Circuit Operation The circuit generates two channels of power, -48V_1 and -48V_2, through the MOSFETs Q1 and Q2 . The open circuit current limit (the value below which the circuit is assumed to be open) is set by the resistors RS 1 and RS 2. The monitoring threshold voltage of VMON1, VMON2, VMON3 and VMON4 pins of the ispPAC-POWR607 device are set to 0.075V. The values of series resistors RS 1 and RS 2 are selected such that at the lower current limit the voltage dropped across the RS 1 and RS 2 is 0.075V. The over current limit is set by the resistors R1 and R2 for the power feed 1, and R3 and R4 set the over current limit for power feed circuit 2. R1 and R2 are selected such that R1 / (R1 +R2 ) = 0.075V when maximum current is flowing through the RS 1 resistor. In other words, Imax * RS 1 * R1 / (R1 +R2 ) = 0.075V. The values of R4 and R5 are also selected using the same equation. When the enable signal is activated, the circuit turns on the MOSFET with the current limited to a value determined by the programmed over current limit for a period determined by the Timer 1 for power feed 1 and Timer 2 for the circuit 2. After Timer 1 or Timer 2 expires, the corresponding MOSFET is fully turned on and the circuit starts to monitor for over and under current. Note: The selected MOSFET should be able to handle the maximum current for the duration determined by Timer 1. After the MOSFET is fully turned on, if an over or under current condition is detected, the MOSFET is turned off through the transistor N1/ N2, and Timer 3 and Timer 4 (retry timers) are started. When the retry timer expires, the MOSFET is turned back on with an initial hysteretic control, as before. If the circuit detects a very high current (as detected by 0.7V across the series resistors RS 1, RS 2) the transistors N3, N4 pull down signal SC1 and SC2. These signals are connected to the digital inputs of the ispPAC-POWR607 device. The logic equations within the ispPAC-POWR607 device shut the MOSFET SC_2 Fault_1 R1 R2 R3 R4 Rs1 Rs2 Q2 N1 N2 100K 100K VMON 1 VMON 2 HVOUT1 VMON 3 VMON 4 HVOUT2 OUT3 OUT4 -48V_1 -48V_2 Fault_2 OUT6 OUT5 OC_SCb OUT7 ispPAC-POWR607 -48V_IN SC_1 GND -48V_Rtn 3V3 Reg Vcc SC_2 SC_1 En_2 En_1 VMON 6 VMON 5 IN1 IN2 N3 N4 Q1Power 2 You: A Guide to Power Supply Management and Control Power Feed Controllers Power Feed Controllers 7-3 Q1 , Q2 down immediately through N1 , N2 (in less than 500ns) and the retry timer is started. After the retry timer expires, the transistor N1 , N2 that shuts down the MOSFET is turned off. The Fault 1 and Fault 2 signals are controlled by a routine that monitors over and under current conditions in each of the circuits. When an over current fault occurs, the corresponding flag is set to high. Along with that, the UC_OCb (under current and over current flag) will be set to logic 0. If an under current event is detected, the UC_OCb signal will be set to Logic 1. If the fault exists in both circuits 1 and 2, then the status flag toggles between the conditions once every 8ms. Algorithm The design is implemented using logic equations to provide independent operation on each of the channels. The following algorithm makes use of simple logic equations. There are five equations that control the power feed for one of the circuits. All equations are active in parallel. For example, the short circuit monitoring section is always active and shuts the MOSFET down if a short circuit occurs when any one of the other four equations are operational. This algorithm (set of five equations) is repeated for the second channel power feed. The fault indication flags are controlled by the algorithm implemented in the sequence controller section of the algorithm. 1. Equation 1 circuit 1 – Waits for the enable signal to become active to begin the hysteretic controlled power feed. The Power feed is expected to be complete within a preset period set by the hysteretic control timer. The hysteretic control timer is also started when the enable signal gets activated and starts the hysteretic control timer. After the initial hysteretic control timer expires, the MOSFET is turned on fully. If a fault is detected, this equation waits for the retry timer to expire before initiating the hysteretic power feed. 2. Equation 2 circuit 1 – Waits for a short circuit condition detection. When a short circuit is detected, this equation turns the MOSFET off through a fast asynchronous reset signal. 3. Equation 3 circuit 1 – Monitors for over or under current conditions. When such a condition is detected, the MOSFET is turned off and a retry timer (2 seconds) is started. 4. Equation 4 circuit 1 – Monitors for the retry signal and the enable signal to begin the 5ms hysteretic control timer. This hysteretic control timer is used by equation 1. 5. Equation 5 circuit 1 – The fault flag is cleared to recapture the fault condition when the normal operation begins. The fault conditions are reported by the sequence controller. 1. When the circuit 1 is operating normally and a fault has not already been reported, check on circuit 1 for over or under current fault on circuit 1 and, if a fault is detected, activate the Fault_1 output. 2. If it is an over current condition or short circuit condition, turn the UC_UCb flag off. 3. When the circuit 2 is operating normally and a fault has not already been reported, check on circuit 2 for over or under current fault on circuit 2 and, if a fault is detected, activate the Fault_2 output.Power 2 You: A Guide to Power Supply Management and Control 7-4 Power Feed Controllers 4. If it is an over current condition or short circuit condition, turn the UC_UCb flag off or else turn it back on. Programmable Features of this Circuit 1. The over-current, no-current conditions can be set by selecting the RS 1, R1 and R2 for circuit 1 and RS 2, R3 and R4 for circuit 2. 2. Program the hysteretic current timer duration to meet the MOSFET’s safe operating area. Note: Both over current and the duration of hysteretic control duration are determined by the safe operating area of the MOSFET. 3. Retry duration can be set independently for both circuits. Applicable devices: This circuit uses the ispPAC-POWR607 device. 7.3 Three Channels of a +12V Power Feed System In some applications, two or more channels of 12V power feed are required. For such applications, the following three-channel power feed circuit is used. More than three channels of power feed requires multiple implementations of the following circuit. This design is modular in order to address implementations requiring less than three channels of power feed so that free resources can be used for other payload power management functions.Power 2 You: A Guide to Power Supply Management and Control Power Feed Controllers Power Feed Controllers 7-5 Figure 7-2. Three-Channel 12V Power Feed Circuit Figure 7-2 shows a ispPAC-POWR1014A device used to feed 12V to three channels. Each of the channels can be controlled independently. For each channel this circuit offers under current, over current and short circuit current protection, along with fault indication. After the fault is detected, the circuit retries continuously with a programmable delay between retries. The power is controlled through a MOSFET and the circuit ensures operation of the MOSFET in its safe operating area. All voltage and current during the operation can be measured using the on-chip ADC through I2 C. Circuit Operation The ispPAC-POWR1014A device derives its power from the input 12V supply. The operating principle of the external charge pump is as follows (Figure 7-2): The ispPAC-POWR1014A HVOUT pin toggles between 12V (for 32s) and 0V (for 8s) cyclically. When the HVOUT1 pin is at 0V, the capacitor C1 gets charged to backplane voltage of 12V through the diode D2 . At this time the transistor P2 is off. When the HVOUT1 toggles up to 12V, the C1 voltage is added to the HVOUT1 pin voltage, resulting in the generation of approximately 24V at the junction of C1 and D2 . This voltage turns P2 on and charges the capacitor C2 to about 22V through the diode D3 . This voltage is sufficient to turn on the MOSFETs Q1 through Q3 . Inp_12VIn Rs3 Q3 Rs2 Q2 12V_In P2 C2 CPOUT HVOUT C-Pump C1 D2 D3 Rs1 Q1 2 12V#1 12V#2 12V#3 CPOUT I_12V_1, Out_12V_1 SC_1 SC_2 SC_3 EN_1 EN_2 EN_3 SC_1,2,3 3.3V SC I_12V Out_12V CPOUT Drv S_Dn Gate 12V 12V_In Fault_1, Fault_2, Fault_3 ADC ispPAC-POWR1014A VMON1 VMON2,3 VMON4,5 SCL OUT3,4 HVOUT1 SDA VMON6,8 OUT5,6 OUT7,8 VMON9 VMON10 IN1 IN2,3,4 OUT9,10,11 2 2 2 2 2 3.3V CPOUT Gate Drv OR MOSFET Control P1 N1 N2 N3 D1 3.3V 3.3V S-Dn N4 CSAPower 2 You: A Guide to Power Supply Management and Control 7-6 Power Feed Controllers Once on, the device begins toggling the HVOUT1 pin to generate about 22V at the CPOUT pin and waits for a high on any of the 3 EN signals. After receiving the En signal, the corresponding MOSFET is turned on using the dual current level hysteretic control mechanism while monitoring for the output voltage. When, say, the EN_1 signal is turned on, the OUT3 pin is set to logic 0. This turns off the transistor N1 , which in turn turns on the transistor N2 . The transistor N2 provides the gate drive for the transistor P1 , turning it on. The transistor P1 then applies 22V from the CPOUT pin to the gate of the MOSFET Q1 through a resistor, turning it on. If a supply fault is detected, the OUT3 and the OUT4 pins are set to Logic 1. This turns off the transistor P2 and turns on the transistor N4 . The N4 then discharges the MOSFET gate to turn it off immediately. When power feed operation begins the MOSFET Q1 is turned on. As a result, the current through the MOSFET starts to increase significantly. This results in the MOSFET operating outside its safe operation area (SOA), resulting in damage to the transistor. To avoid that damage, the MOSFET is turned on with a hysteretic current control. The following section describes the MOSFET current control operation. Dual Current Level Hysteretic Control Figure 7-3 shows the safe operating area for a MOSFET. This is a Log-Log graph with voltage across the MOSFET (VDS) on the X-axis and current through the MOSFET on the Y-axis. The dotted lines represent the safe operation envelopes for different pulse width durations. When the power is applied to the MOSFET and begins to turn on, the point of operation is at the right bottom side of the graph. The red line indicates the current limit controlled by the hysteretic controller implemented in the ispPACPOWR1014A device. The current through the MOSFET is limited initially to the lower level. This current charges the capacitor on the load, reducing the voltage across the MOSFET. When the voltage across the MOSFET drops to approximately its mid point (for example, 6V), the current is doubled while operating completely within the safe operation area. The first set point current and the second set point values are determined by the safe operation area of the MOSFET as shown by the red line in Figure 7-3. Figure 7-3. Safe Operating Area of MOSFET – (IRF7832) I D , Drain-to-Source Current (A) 100 µs 1 ms 10 ms Tc = 25° C Tj = 150° C Single Pulse 1000 100 10 1 V DS, Drain-to-Source Voltage (V) 1 10 100Power 2 You: A Guide to Power Supply Management and Control Power Feed Controllers Power Feed Controllers 7-7 After the voltage at the load reaches the minimum operating value, the MOSFET is turned on fully. The circuit then begins to monitor for over current and no current faults. When a fault is detected, the corresponding fault output is activated and the circuit waits for the retry delay. During the retry waiting period, the fault indication is maintained. After the retry period, the circuit begins to restart the MOSFET current. If the output voltage does not reach its minimum operating value within 10ms, the fault flag is turned on and the circuit waits for another retry period. Algorithm for Each Power Feed Channel 1. Wait for enable signal. 2. Start power feed and wait for output voltage to reach its minimum operating level within 10ms. This step turns on the MOSFET with two current settings. 3. If the output voltage is within its safe operating level, turn the MOSFET on fully and begin monitoring the output current for over and under current faults. If a fault is observed, flag the fault, then turn the MOSFET off and jump to retry timer. 4. Wait for the retry timer to expire, then jump to step 1 to begin the power feed process. 5. During the four step sequence above, the following operations are performed in parallel: – 12V Power feed control with two-step current feed. – Monitor for short circuit current and turn the MOSFET off within 500ns when a fault is detected. – Monitor for the enable signal and turn off the MOSFET. Programmable Features of Power Feed The following section outlines all the programmable features of this design: 1. Customize the design to meet any MOSFET characteristics: two current levels can be programmed. If the design requires only one current level, the corresponding equation can be changed easily. 2. If faster turn-on times are required, the circuit can be modified to pump larger currents during start up. These new currents can be independent of the min and max operating current limits. 3. The timer used to monitor the initial supply turn-on period is programmable. This design used 10ms. It can be increased or decreased, depending on the design’s requirement. 4. Retry period – this design used a two second timer. It can be programmed from 32s to two seconds in 122 steps. 5. Over current and under current setting – this can be changed simply by altering the threshold of the comparator. Integrating Other Payload Power Management Functions into the ispPACPOWR1014A Device This circuit uses the ispPAC-POWR1014A device to implement three channel 12V power feed functions. Each channel uses three VMON signals, one digital input signal and four output signals. If the circuit requires fewer power feed channels, that portion of the design can be removed and the free resources can be used to integrate other payload power management functions, such as sequencing, monitoring and Power 2 You: A Guide to Power Supply Management and Control 7-8 Power Feed Controllers watchdog timers. This design can also be exported to a ispPAC-POWR1220AT8 device to implement the three channel power feed functions along with other payload power management functions. Applicable Power Manager II Devices This design used the ispPAC-POWR1014 device. However, the power feed algorithm can be integrated into a ispPAC-POWR1220AT8 device, or an ispPAC-POWR607 device can be used to implement the power feed algorithm for each channel. 7.4 2-Channel +12V & 3.3V Power Feed With MOSFET OR’ing In applications such as MicroTCA, the power module is required to implement 16 channels of 12V power feed circuits. Each channel provides power to an Advanced Mezzanine Card (AMC) slot. When an AMC is plugged into the back plane, the power module turns on the 3.3V to power the AMC’s management module. The management module then communicates with a shelf manager, which then orders the power module to turn-on 12V. In some cases, the 12V supply is turned on along with the 3.3V supply and the circuit does not wait for an independent payload power enable signal. The power module then begins to monitor for over current and, if an over current condition is detected, the MOSFET is turned off. During system operation, if the AMC card is extracted the Power Module is required to turn the power off within 100s. For reliability purposes, the 12V and 3.3V supplies are sourced from two different power module cards. Both of these supplies are OR’d on the backplane. At any given time only one of the power modules supplies power to the backplane. The standby power module sets its voltage to a value lower than the online module. To avoid wasting power, MOSFETs are used to provide OR’ing functionality. A detailed description of the MicroTCA power feed standard is beyond the scope of this document. The circuit in Figure 7-4 shows how a ispPAC-POWR1014A device can be used to implement a twochannel power feed.Power 2 You: A Guide to Power Supply Management and Control Power Feed Controllers Power Feed Controllers 7-9 Figure 7-4. One-Channel uTCA Power Feed Using Half of an ispPAC-POWR104A Device Circuit Operation Figure 7-4 shows the circuit required to implement one channel of 12V and 3.3V power feed. The 12V power feed is controlled through two MOSFETs, the Pass device (Q1 ) and the OR’ing (Q2 ) device, shown at the top right section of the circuit. The 3.3V power feed is controlled through a P-Channel MOSFET Q3 using the transistor N3 . When the Enable# signal is active, the 3.3V supply is turned on through the MOSFET Q3 . Subsequently, when the Payload_On signal becomes active, the 12V power is fed to the circuit through the Pass MOSFET Q1 . The pass MOSFET Q1 is turned on using the two-current hysteretic control mechanism. Because Q1 is on the 12V rail, its gate voltage should be at about 20V when it is turned on. The 20V gate drive is generated through the external charge pump implemented using C1 , D1 , P2 , D2 and C2 (the circuit operation described in “Dual Current Level Hysteretic Control” on page 7-6), to ensure that the MOSFET is operated within its SOA. Once the output power is above its minimum operating level, Q1 is fully turned on and the OR’ing MOSFET Q2 is turned on or off depending on the EMMC primary or redundant status. This ensures that only the primary supply wins the OR’ing arbitration. When an over current event is detected, the ispPAC-POWR1014A device shuts Q1 and Q2 down through the transistor N1 . EMMC Alert VMON Open Drain Digital Out HVOUT1 OUT VMON OUT EMMC Primary/ Redundant Enable# Payload On Mgmt Power Control Current Sensing Pass Device OR’ing Device Q1 Q2 12V Payload Power to Load 100 100 4.7M P1 4.7M 0.001µF C2 MMBT 2222A N1 47 D2 P2 0.01µF C1 2.2K Quick Shutoff Output Monitor Half of ispPACPOWR1014A OR-FET Control MMBT 2222A N2 Q3 3.3V Power to Load D1 Open Drain Digital Out Vcc 12V 3.3V + _ 47M 3K N3 6V 1K MMBT2907 Primary Power SourcePower 2 You: A Guide to Power Supply Management and Control 7-10 Power Feed Controllers During Operation 1. If the output supply drops below the minimum threshold (probably because the on-line supply has failed), the standby device turns on the OR’ing MOSFET Q2 and the primary device turns the OR’ing MOSFET off and flags the EMMC Alert signal. This ensures that the AMC does not see its 12V supply voltage dip below its operating level. 2. The current in the 12V supply is also monitored for fault. If the current exceeds the maximum operating level, the Pass MOSFET is turned off, activating the EMMC Alert signal. 3. Before the extraction of the AMC from its slot, the AMC usually sends a signal to the shelf manager. The shelf manager then deactivates its payload power supply by disabling the Payload_On signal. When the payload signal is turned off, the user can extract the AMC from its backplane. Subsequently, when the AMC is extracted, the enable signal gets deactivated and the 3.3V supply feed to the AMC is turned off within 100s. In some cases, the enable payload voltage signal does not exist. In such cases, the design can be modified to support only Step 4. 4. In the case of an accidental AMC card extraction process, both 12V and the 3.3V supplies are turned off at the same time within 100s from the time the enable signal becomes inactive. ispPAC-POWR1014A (MicroTCA) Power Feed Algorithm 1. Wait for the enable signal, and when it becomes active turn the 3.3V supply on. 2. Wait for the Payload_On signal and turn 12V on. This can be modified easily to turn 12V on when the enable signal is activated. If the 12V does not turn on within 10ms, turn 12V off and report the fault. 3. Turn OR’MOSFET on if the card is primary; otherwise, turn the OR’ing MOSFET off. 4. Start to monitor the following and take action: a. Current – Should be lower than the over current limit. If the current is more than the over current limit, shut the Pass MOSFET off and flag the error to EMMC. b. Output voltage – If the voltage is not higher than the lower threshold for primary, then turn the OR’ing MOSFET off and report the error. If the payload voltage is higher than the over-voltage limit, turn the Pass and OR’ing MOSFETs off and report the error to the EMMC. c. If the card is configured as secondary or redundant, and if the voltage is lower than the minimum primary voltage, turn the OR’ing MOSFET on and report the error back to EMMC. d. If the enable signal becomes inactive, turn the Pass and OR’ing MOSFETs off immediately. e. If the primary becomes secondary during operation, turn the OR’ing MOSFET off and monitor for lower than allowed voltage to turn the MOSFET on. f. If the secondary becomes primary, turn the OR’ing MOSFET on and start monitoring for a higher than allowed voltage range.Power 2 You: A Guide to Power Supply Management and Control Power Feed Controllers Power Feed Controllers 7-11 Programmable Features • The power feed turn on monitor duration can be programmed to meet the requirements of different MOSFETs. • The maximum value of the output current can be altered by reprogramming the ispPAC-POWR1014A device’s current monitor thresholds. Other Functional Enhancements • The voltage and current values can be measured through I2 C. • Not all MicroTCA implementations use all of the features specified in the standard. In such cases, one can keep the OR’ing MOSFET off when the current is below a lower threshold limit. This protects against reverse current flow from the secondary when its voltage is higher than the primary. Applicable Power Manager II Devices While up to four channels of Power Feed can be implemented in a ispPAC-POWR1220AT8 device, an ispPAC-POWR607 device can be used to power a single channel.Power 2 You: A Guide to Power Supply Management and Control Power Feed Controllers Power Feed Controllers 7-12 This page intentionally left blank.CHAPTER 8 8-1 Margining and Trimming 8.1 What is Voltage Margining? Margining is a test step that ensures a board is operational across the input variable range. A voltage margining test ensures that the board is functional across the operating range of its onboard and input supplies. Circuit boards are also subject to other margining tests such as temperature, timing and noise. For example, if the allowed tolerance of input supply is ±10%, the voltage margining test ensures that the board is functional when the input supply is at its margin-high (nominal voltage + 10%) value and when its supply is at margin-low (nominal voltage -10%) value. If the board has a number of board-mounted supplies, then the margining test should also cover the variation of individual board-mounted supplies. Semiconductor devices typically operate slowest when their operating temperature is at its highest value and applied voltages are at their lowest. Similarly, these devices are fastest when the operating temperature is at its lowest and the voltages are at their highest. To ensure that the design is stable across temperature and voltage, designers subject their circuit boards to high temperature in an environmental chamber with the operating voltages dialed down, and then check the operation at colder temperatures with their voltages dialed up. This is called 4-corner testing. Margining tests typically are conducted during board debug. In some cases, Quality and Reliability departments will require margining before they will approve manufactured boards. 8.2 Voltage Margining Implementation Figure 8-1 shows a DC-DC converter with a resistor connected to its Trim/ Feedback Node. The value of this resistor typically determines the nominal output voltage value of the DC-DC converter.Power 2 You: A Guide to Power Supply Management and Control 8-2 Margining and Trimming Figure 8-1. Supplies are Margined by Changing the Resistor Connected to the Trim/FB Node DC-DC converters usually require standard resistor values to set their output voltage to a standard value – e.g., 3.3V, 2.5V, 1.5V. To change the output voltage by ±5% of their nominal operating voltage, designers use either a potentiometer for each of the DC-DC converters or a series parallel combination of standard resistor values. One has to manually implement the resistor change to all the boards that will be subject to testing in an environmental chamber. Some disadvantages of manually altering resistor values for margining: • Increased Delay - finding resistor values that accurately alter the output voltage often require a series and/or parallel combination of standard resistors that must be manually soldered. Different resistor combinations for each of the supplies must be found. Sometimes the board failures in the environmental chamber could be due to bad solder joints caused by manual soldering. Even if a potentiometer is used, the moisture in the environmental chamber creates contact problems that delay the margin test. • Manually soldering a resistor for margining cannot be used for automated reliability testing. • Due to accuracy requirements, manual methods cannot be used for margining the low core supply voltages of modern VLSIs and CPUs. 8.3 What is Trimming? Modern circuit boards require multiple DC-DC converters with low voltages (1.2V or less) with high current capacity. A specification of 10A to 20A at such low voltages is not uncommon. In addition, ICs require very tight output voltage regulation of approximately 1.5% or less to ensure that there is enough headroom to meet the dynamic current requirements of the CPU/ASIC without violating the input voltage specs. Trimming is the process of accurately setting and maintaining the output voltage of a DC-DC converter close to a pre-determined value across voltage and temperature. Margining is a special case of trimming. Trimming also uses the same mechanism shown in Figure 8-1 to set a given voltage. However, to meet accuracy requirements of 1.5% or better, DC-DC converters use very high accuracy (0.1% or better) trim resistors to set the output voltage. In some cases, laser trimmed resistors and compensating resistors are used to allow for converter to converter output voltage accuracy differences. As can be seen, when the DC-DC converter is required to meet high accuracy demands, cost increases significantly. In some cases, digital power converters are used to meet these high power and high current demands. These DC-DC converters are more expensive, as they require ADCs, DACs and accurate voltage references. DC-DC Converter Trim/ FB V OUT R Margined voltage Note: Change R to increase or decrease the output nominal voltage by +/-5%. Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-3 Typical Applications That Require Power Supply Trimming Trimming is required for circuit boards using ICs that require low supply voltages (1.2V or lower) with high current ratings (5A or more). For example, a 1.2V DC-DC converter should guarantee a maximum of ±5% (±60mV) variation under all of the following conditions: • No-load to full-load average current variation • Output voltage ripple • Dynamic power demands by the IC during different average current levels • Component tolerances during manufacturing In general, to meet the voltage device spec under all of the above conditions safely, the DC-DC converter requires an initial operating voltage accuracy of 2% or better. These high accuracy, low voltage supplies are usually more expensive and require high precision resistors to set the voltage. Alternatively, the accuracy of a conventional lower cost DC-DC converter can be improved by using an external trimming mechanism. The next section describes trimming using the Lattice Power Manager II IC. 8.4 Trimming and Margining – Principle of Operation Figure 8-2 below shows a Lattice Power Manager II device implementing trimming and margining functions for an analog DC-DC converter. Figure 8-2. Supplies are Margined by Changing the Resistor Connected to the Trim/FB Node On the top portion of Figure 8-2 is a DC-DC converter supplying power to its load. The output voltage is determined by the components used in its feedback circuitry. The Power Manager II device at the bottom measures the voltage using the on-chip ADC though differential sense inputs. The Power Manager II can increase or decrease the output voltage of the DC-DC converter by increasing or decreasing the voltage or current applied to the DC-DC converter’s feedback node, using its on-chip DAC. For some DC-DC converters, increasing the feedback node current or voltage reduces its output voltage. PWM Controller Inductor & Filters Switcher Feedback Any DC-DC Converter ispPAC-POWR1220AT8/ ispPAC-POWR6AT6 Load Differential Voltage Sense I 2 C 2 Result: Voltage Error <1% At Load! (-40° to +85° C) Set Point +/-1 VIN DAC ADCPower 2 You: A Guide to Power Supply Management and Control 8-4 Margining and Trimming A set point register in the Power Manager II holds the required voltage value at the load. Once every 580s the Power Manager II device measures the voltage at the load using its on-chip ADC. The digital output of the ADC is compared against the set-point register contents. If the load voltage is higher, the DAC contents are decremented, which in turn reduces the voltage applied to the feedback node of the DC-DC converter. If the load voltage is lower, the DAC contents are incremented, applying higher voltage to the node. This is called the closed loop trim mechanism. It is possible to break the closed loop trim and load the DAC register directly through the I2 C bus. This method is used to implement margining. An external microprocessor directly loads a pre-selected DAC value into the Power Manager II, which will result in changing the output voltage by, for example, ±5%. The microprocessor can also measure the output voltage of the DC-DC converter using the Power Manager II’s ADC, and tweak the output voltage up and down as needed to implement closed loop margining. In a circuit board, there typically are multiple types of supplies providing different supply voltages. These individual supplies require different current levels to be injected into their feedback nodes. This in turn requires a unique resistor network for each type of DC-DC converter to be connected between the Power Manager II and the DC-DC converter feedback node. The next section briefly describes the Power Manager II’s architecture blocks and then explains the details of designing a resistor network connected between the DC-DC converter feedback node and the Power Manager II DAC output. Power Manager II TrimCell Architecture The DAC in Figure 8-2 stores the DAC codes for nominal output voltage, as well as for margining up and down. For example, to support margining (for example ±5%) and trimming of a low voltage set-point (for example 1.2V 10mV), the three individual DAC values must be stored in different DAC registers. The Power Manager II device supports six registers for each DAC. The block that includes the DAC and its associated registers is called a TrimCell. Figure 8-3 is a TrimCell block diagram.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-5 Figure 8-3. TrimCell Architecture in a Power Manager II Device Six DAC registers are divided into four hardware addressable groups called Voltage Profiles. Of these six DAC codes, four are stored in on-chip EEPROM memory. The two remaining registers are volatile. One of the volatile registers can be loaded directly via the I2 C interface. The second register is controlled by the closed loop trim circuit. Voltage Profiles 3, 2 and 1, when selected by either the external hardware pins or internally by the PLD, load the corresponding codes stored in the EEPROM memory into the DAC. With this feature one can margin each supply high or low using the on-chip PLD, or through the hardware pins of the Power Manager II device. While operating in these profiles, the Power Manager II is said to be operating in an open-loop; that is, the DAC register contents are static and are not adjusted during operation, depending on the actual DC-DC converter output voltage. To support the controlling of output voltage to a very high degree of accuracy (Set-point voltage ±10mV), the Profile 0 should be used. There are three modes of operation in Profile 0: 1. Open Loop operation with the DAC code stored in the E2 CMOS® configuration memory. Operation in this mode is similar to that of the profiles 1, 2 and 3. 2. Open Loop/ External Closed Loop operation – Load the I2 C DAC register via the I2 C bus. This mode of operation is used by an external microcontroller to fine tune the output voltage, depending on the DC-DC converter’s actual output voltage. This is called an external closed loop mode of operation. 3. Closed Loop Trim – This mode of operation is used to trim a given DC-DC converter output voltage accurately. Tight control of the output voltage is maintained by the on-chip closed loop control circuitry. Closed loop circuitry gets activated once every 580s. It can also be programmed to be activated at a slower rate: 1.15ms, 9.2ms or 18.5ms. When activated, the on-chip closed loop control circuitry measures the DC-DC converter output voltage and compares it to the value stored in the set point register. Depending on the DC-DC converter’s output voltage excursion, the closed loop circuitry increments or decrements the DAC contents in a way that counters the output voltage excursion Voltage Profile 2 Voltage Profile 1 Voltage Profile 0 From Closed Loop Trim Circuit Voltage Profile 0 Mode Select (E2CMOS) Common Voltage Profile Control DAC Register 3 (E2CMOS) Voltage Profile 3 DAC Register 2 (E2CMOS) DAC Register 1 (E2CMOS) DAC Register 0 (E2CMOS) DAC Register (I2C) Profile Mux 11 8 10 01 00 DAC TRIMx Closed Loop Trim Register Mode Mux 8 8 8 8 2 8 8 8Power 2 You: A Guide to Power Supply Management and Control 8-6 Margining and Trimming direction. The ispPAC-POWR1220AT8 device supports eight TrimCells in its TrimBlock, as shown in Figure 8-4. Power Manager II Integrates Multiple TrimCells The ispPAC-POWR1220AT8 device supports eight TrimCells in its TrimBlock, as shown in Figure 8-4. Each of the TrimCells can be programmed independently to control a DC-DC converter. The Voltage profile selection is common to all TrimCells and is controlled by either the hardware control pins (VPS [0:1]) or through the on-chip PLD. Figure 8-4. The ispPAC-POWR1220AT8 Device Provides Eight TrimCells in its Trim Block When the Voltage proPOWR file is set to, for example, 3 in Figure 8-4 shown above, the DC-DC1 converter outputs 0.95V (5% below the normal operating voltage of 1V), while the DC-DC 2 converter outputs 1.14V (5% below the 1.2V nominal), and so on. When the voltage profile is set to, for example, 1, the DC-DC1 converter outputs 1V+5%. The DC-DC2 converter outputs 1.2V + 5%. This method is used to implement margining. TrimCell #1 (Closed Loop) TrimCell #2 (I2 C Update) TrimCell #3 (I2 C Update) TrimCell #8 (Register 0) DC-DC 1 Trim-in VIN 0 123 1V (CLT) 1.05V 0.97V 0.95V DC-DC Output Voltage Controlled by Profiles DC-DC 2 DC-DC 3 Digital Closed Loop and I 2 C Interface Control ispPAC-POWR1220AT8 Margin/Trim Block Trim 1 Trim 2 Trim 3 Trim 8 Trim-in Trim-in R1* R2* R3* R8* *Indicates resistor network PLD Control Signals PLD_CLT_EN, PLD_VPS[0:1] Input From ADC Mux Read – 10-bit ADC Code VPS[0:1] VIN VIN DC-DC 8 Trim-in VIN 1.2V (I2 C) 1.26V 1.16V 1.14V 1.5V (I2 C) 1.57V 1.45V 1.42V 3.3V (EE) 3.46V 3.20V 3.13VPower 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-7 When VPS [0:1] = 0 the DC-DC 1 converter outputs 1V and the DC-DC2 converter outputs 1.2V. However, TrimCell 0 maintains the DC-DC converter output voltage using the on-chip closed loop control mechanism, while TrimCell1 uses an external microcontroller to maintain the voltage at 1.2V. Closed Loop Trim - Mode Operation of TrimCell Figure 8-5 shows the connection between the TrimCell and the DC-DC converter when configured to operate in closed loop trim mode. The resistor between the Trim pin and the DC-DC converter Trim_in pin converts the voltage applied by the DAC into a current added to the Trim summing node of the DCDC converter. The ADC is used to measure the DC-DC converter voltage. The three-state comparator compares the ADC measured value with the set-point and the output increments, decrements or holds the content of the closed loop trim register as is. Figure 8-5. The ispPAC-POWR1220AT8 Device Closed Loop Trimming Mechanism When the Power Manager II device is powered on, the DAC output voltage starts at the bi-polar zero value. The bipolar zero voltage is determined by its offset voltage setting 0.6V, 0.8V, 1V and 1.25V. This results in starting the DC-DC converter output voltage very close to its nominal value. Using this value, all supplies are sequenced. Once the supply sequencing is complete, the closed loop trimming process is activated. The closed loop trimming circuitry operates on each of the TrimCells in a cycle. The closed loop trimming cycle can be activated using a programmable timer and can be set to 580s, 1.15ms, 9.2ms or 18.5ms. The closed loop trim circuitry consists of the ADC, three state comparator, set point register, channel polarity controller, the control loop register increment/ decrement control and the DAC. During a trim cycle, the closed loop trim circuitry performs the following functions for each of the TrimCells: 1. Measures the voltage of the DC-DC converter differentially through the ADC. 2. Compares the output of the ADC with the set point register. If the polarity is set as positive, the following are the effects of the comparison: a. If the DC-DC converter voltage is higher than set point, decrement the contents of the closed loop trim register. Three-State Digital Compare (+1/0/-1) Setpoint (E2 CMOS) Channel Polarity (E2 CMOS) E 2 CMOS Registers TRIMx VMONx TRIMIN DC-DC Converter VOUT GND ispPAC-POWR1220AT8 DAC Register 3 DAC Register 2 Closed Loop Trim Register DAC TrimCell DAC Register 1 DAC Register 0 DAC Register I2 C Profile 0 Mode Control (E2 CMOS) Profile Control (Pins/ PLD) Update Rate Control ADC +/-1Power 2 You: A Guide to Power Supply Management and Control 8-8 Margining and Trimming b. If the DC-DC converter voltage value is less than the set point register value, the closed loop trim register contents are incremented. c. If the ADC value is the same as that of the set point register, maintain the closed loop trim register value. If the polarity set is negative, the incrementing and decrementing register in steps a. and b. above are reversed. Closed loop trimming ensures that the voltage at the load is accurate within ±10mV from the set-point value This error includes the maximum ADC measurement steady state error and the DAC quantization error. According to the datasheet, the maximum ADC error (including its gain, offset, INL and DNL across process, voltage and temperature) is 8mV. The error from the DAC is due to its step size. This error is calculated as follows: Usually the resistors between the DAC and the DC-DC converters are calculated such that the full scale (128) swing of DAC results in swinging the output voltage of the DC-DC converter by 5%. This means that each step of the DAC code results in an output voltage step of 5% / 128 ~ 0.05%. For a 3.3V supply, the voltage variation due to a single step of DAC code results in changing the output voltage by 3.3*0.05/100*128 = 130V (approximately). In effect the major error component is the ADC error. Errors due to DC-DC converter components, DC-DC converter accuracy, etc. are compensated for by the closed loop trim mechanism, which maintains the output voltage accurately. Closed Loop Trim and Closed Loop Margining Using a Microcontroller Figure 8-6 shows the configuration used for closed loop trimming with a microcontroller. Here the microcontroller measures the DC-DC converter output voltage periodically, using the on-chip ADC through the I 2 C bus. The microcontroller then algorithmically calculates the new DAC value depending on the DCDC converter voltage and loads the new DAC code through the I2 C interface. The microcontroller-based margining is implemented entirely through the I2 C bus and uses profile 0 in the Power Manager II. To implement closed loop margining, the microcontroller loads the starting DAC code into the DAC register via I2 C and waits for the ADC voltage to stabilize. Depending on the stabilized voltage value, the microcontroller increments or decrements the DAC code. This method enables setting and controlling the margined voltage accurately.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-9 Figure 8-6. Closed Loop Trimming and Margining Using a Microcontroller Interfacing Power Manager II with a DC-DC converter Interfacing a DC-DC converter with the DAC requires that the DC-DC converter output voltage is at its nominal value when the DAC register value is at its bipolar-zero voltage in Profile 0. It also requires that the DAC maximum or minimum code results in swinging the DC-DC converter voltage to its margin voltage value through appropriate current injection into the feedback node. The resistor values also should take into consideration the type of feedback node arrangements used in DC-DC converters, their internal reference type (current/ voltage), and type of feedback. To map all types of DC-DC converter variables to the DAC output voltage swing, a number of resistor network topologies, shown in Figure 8-7 through Figure 8-11 are required. Figure 8-7 shows a typical resistor network between a Power Manager II device and a DC-DC converter. As discussed earlier, the ispPAC-POWR1220AT8 device can monitor and trim up to eight DC-DC converters individually. The trim circuit of the Power Manager interfaces to different types of DC-DC converters through a resistor network, as shown in Figure 8-7. The resistors R1 and , R2 and R3 determine the starting voltage of the DC-DC converter. This is equivalent to connecting a resistor to ground from the trim pin. The values of these resistors are selected such that the voltage at the node between R1 and R3 , is equal to the DAC voltage at power up. The values of these three resistors are calculated by the PAC-Designer software using the following inputs: 1. Type of DC-DC Converter. There are four types of DC-DC converters: a. Fixed voltage b. Output voltage programmable through a resistor to ground connected to its trim input c Output voltage programmable through a resistor to the output voltage terminal d. Output voltage is determined by two resistors connected from its feedback node output voltage terminal and to ground Microcontroller E 2 CMOS Registers I 2 C Bus TRIMx VMONx TRIMIN DC-DC Converter VOUT GND POWR1220AT8/POWR6AT6 DAC Register 3 DAC Register 2 Closed Loop Trim Register DAC Trim Cell DAC Register 1 DAC Register 0 DAC Register I2 C Profile 0 Mode Control (E2 CMOS) Profile Control (Pins/ PLD) ADCPower 2 You: A Guide to Power Supply Management and Control 8-10 Margining and Trimming 2. Nominal operating voltage 3. Margining voltage range in positive and negative directions Figure 8-7. Resistor Network Topology #1 Connecting a TrimCell to a DC-DC Converter Not all DC-DC converter types require the same resistor network of R1 , R2 and R3 as that shown in Figure 8-7. The other possible types of resistor networks generated by the PAC-Designer software are shown in Figure 8-8, Figure 8-9, Figure 8-10 and Figure 8-11. Figure 8-8. Resistor Network Topology #2 Figure 8-9. Resistor Network Topology #3 Figure 8-10. Resistor Network Topology #4 ispPAC-POWR1220AT8 DC-DC Converter Trim V OUT V OUT R3 R1 R2 VIN TrimCell #N DAC V= output voltage of DAC at bipolar zero ispPACPOWR1220AT8 DC-DC Converter Trim V OUT R3 R1 R2 DAC ispPACPOWR1220AT8 DC-DC Converter R1 R3 DAC R2 ispPACPOWR1220AT8 DC-DC Converter R1 R3 DAC R2 Trim V OUTPower 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-11 Figure 8-11. Resistor Network Topology #5 Designing Trimming and Margining Networks using PAC-Designer Software Determining the required resistor topology involves finding a solution for a number of nodal equations and an understanding of the error amplifier architecture of the DC-DC converter. In addition, the design can be iterated until the solution yields standard resistor values. The PAC-Designer software automates the process of determining the resistor topology while using standard resistors in the resistor network. Calculating the resistor values shown in Figure 8-7 through Figure 8-11 using the PAC-Designer software is a two-step process: 1. Create a DC-DC Converter Library using the DC-DC converter’s feedback and trim section characteristics – This uses a few parameters commonly specified in a DC-DC converter datasheet. 2. Associate a DC-DC converter to a TrimCell and calculate the resistors for a given output trim and margin voltage specification for that DC-DC converter. Creating a DC-DC Converter Library Entry 1. To create a DC-DC converter library entry, open the ispPAC-POWR1220AT8 design and click on the button ‘DC-DC’ as shown in Figure 8-12 to open the DC-DC Model Selection menu. Click the button, enter the name of the DC-DC module (example - Murata_1V2_POL) and click on to open “Select the DC-DC Converter Type” dialog box. ispPACPOWR1220AT8 DC-DC Converter R1 DACPower 2 You: A Guide to Power Supply Management and Control 8-12 Margining and Trimming Figure 8-12. Adding a DC-DC Converter into the Library 2. The “Select the DC-DC Converter Type” dialog box shows four types of DC-DC converters: a. DC-DC Converter with Trim-up & Trim-down – This DC-DC converter usually is available as a module with a fixed voltage. These supplies can be margined up and down by connecting a resistor to GND or to VOUT b. DC-DC Converter with Programmable Output Voltage – The output voltage of these DC-DC Converters is set by connecting a resistor from trim pin to ground. The value of the resistor determines the output voltage. c Programmable DC-DC Converter with Rtrim connected to VOUT – The output voltage of these DC-DC Converters is set by connecting a resistor from its trim pin to its Vout terminal. The value of the resistor determines the output voltage. d. The Discrete Implementation – Represents a class of DC-DC converters whose output voltage is determined by two resistors: one between the Vout terminal to the feedback node and the second between the feedback node and the ground.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-13 Figure 8-13. Selecting the Type of DC-DC Converter Refer to the DC-DC converter datasheet to select the type of DC-DC converter and click on the button. 3. This section describes configuration for each type of DC-DC converter. Fixed voltage – DC-DC Converter with Trim Up and Down Supply This type of DC-DC converter is usually a module and is designed to provide a fixed voltage. The following message box (Figure 8-14) is used to create the library entry.Power 2 You: A Guide to Power Supply Management and Control 8-14 Margining and Trimming Figure 8-14. Creating the Library Element for a Fixed Voltage DC-DC Converter These supplies have a trim pin. This pin is used to margin the supply up by 5- 10% or margin the supply down by 5-10%. Nominal output voltage – This is the normal operating voltage of the DC-DC converter when its trim pin is open. This is its normal operating state. Next, there are two fields under the headings “Example 1 R to GND”, “Example 2 R to GND” and “Example 3 R to Vout.” Examples 1 and 2 are conditions used to generate a margin voltage that is different than the nominal voltage. Different target voltages will require different resistor values. These values are provided in the DC-DC converter datasheet, usually in a table format. Some datasheets provide a formula to calculate these resistors. Enter the values of the target output voltage and the values of the target resistors that are connected between Trim and GND pins into the required fields.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-15 The third column requires the value of the resistor to be connected between the trim pin and the Vout pin of the DC-DC to achieve the corresponding output voltage. Input the resistor value and voltage values in the required fields. Again, these values are found in the DC-DC converter datasheet. After entering these values, enter the necessary comments that describe the use of the DC-DC converter and click on the button followed by the key. In this case the software creates a library element called “Murtata_1V2_POL. Programmable Voltage with Resistor Connected from Trim pin to Gnd Figure 8-15 shows the dialog box that appears when the programmable voltage DC-DC converter is selected. Figure 8-15. Reference Voltage/ Current for the DC-DC Converter All DC-DC converters use some type of reference voltage or current to set the output voltage. The value of the reference voltage ‘Vref’ is shown either in the specifications section of the datasheet or in its output voltage calculation formula. Sometimes, the datasheet shows the architecture of the error amplifier with the value of Vref. Power 2 You: A Guide to Power Supply Management and Control 8-16 Margining and Trimming In some cases, the DC-DC converters use current reference instead of a voltage reference. The current reference value is accompanied by a parallel resistor. Again, some DC-DC converter datasheets show the equivalent circuit in the error amplifier section. After entering the Vref or Iref & Rref values, click on to get the dialog box shown in Figure 8-16. Figure 8-16. Configuring the Programmable Voltage DC-DC Converter Library Entry The output voltage of these types of DC-DC converters is determined by the resistor connected from their Trim pin to Gnd. To complete this dialog box, refer to the DC-DC converter datasheet for a table that maps the resistor values connected between the trim pin and GND to the desired output voltage values. In some cases, the DCDC datasheet provides a formula for calculating the output voltage for a given trim resistor.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-17 The first field is the output voltage of the DC-DC converter when the trim pin is open. This usually will be one of the entries in the table, or is calculated using a formula in the datasheet. The two examples columns are also completed using the same table or the formula in the datasheet of the DC-DC converter. Note: one of the voltage values selected should be the maximum output voltage and the second voltage value should correspond to the minimum voltage. These voltage values need not be the actual output voltage used in the circuit board. Finally, enter the DC-DC converter model name (for example, Murata_OKYT3_D12) and save the file. Programmable Voltage with Resistor Connected from Trim Pin to Vout Figure 8-17 shows the dialog box that appears when the programmable voltage DC-DC converter is selected. Figure 8-17. Reference Voltage/ Current for the DC-DC Converter All DC-DC converters use some form of reference voltage or current to set the output voltage. The value of the reference voltage ‘Vref’ is shown either in the specifications section of the datasheet or in its output voltage calculation formula. Sometimes the datasheet shows the architecture of the error amplifier with the value of Vref. In some cases, the DC-DC converters use current reference instead of voltage reference. The current reference value is accompanied by a parallel resistor. Again, some DC-DC converter datasheets show the equivalent circuit in the error amplifier section. After entering the Vref or Iref & Rref values, click on to get the dialog box shown in Figure 8-18. Power 2 You: A Guide to Power Supply Management and Control 8-18 Margining and Trimming Figure 8-18. Configuring the Programmable Voltage DC-DC Converter Library Entry The output voltage of these types of DC-DC converters is determined by the resistor connected from their Trim pin to Gnd. To complete this dialog box, refer to the DC-DC converter datasheet for a table that maps the output voltage to the resistor values connected between the trim pin and Vout. In some cases, the DC-DC datasheet provides a formula for calculating the output voltage for a given trim resistor. The first field is the output voltage of the DC-DC converter when the trim pin is open. This usually will be one of the entries in the table, or is calculated using a formula in the datasheet. The two examples columns are also completed using the same table or the formula in the datasheet of the DC-DC converter. Note: one of the voltage values selected should be the maximum output voltage and the second voltage value should be minimum voltage. These voltage values need not be the actual output voltage used in the circuit board. Finally, enter the DC-DC converter model name (for example, POL_XYZ) and save the file.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-19 Creating a Library Entry for a Discrete DC-DC Converter These types of DC-DC converters are common when they are realized using switcher ICs, switching and filter elements. The output voltage is programmed by connecting two resistors, Rfb and Rin. The output voltage of the DC-DC converter is calculated using the formula: When the DC-DC converter used is of this type, the dialog box, shown in Figure 8-19, is used to create the library entry. The dialog box is completed by entering the Rfb and Rin values calculated for a given output voltage, and Vref, which is found in the datasheet. Note: the number of resistors used for controlling these types of DC-DC converters can be minimized by using the actual voltage that is used on the board. Figure 8-19. Creating a Library Entry for a Discrete DC-DC Converter 4. Once the library entry is created, the next step is to associate the DC-DC converter from the library to the Trim pin. This is done using the following procedure, shown in Figure 8-20. a. Start with the ispPAC-POWR1220AT8 schematic b. Double Click on the Margin/ Trim block Vout = Rfb*Vref / Rin. (Vref is the DC-DC converter reference voltage)Power 2 You: A Guide to Power Supply Management and Control 8-20 Margining and Trimming c Double Click on the TrimCell of interest (for example, TrimCell 1) d. The dialog box shown in Figure 8-21 is used to design the resistor network Figure 8-20. Accessing the Margin and Trim Dialog Box Designing the resistor network for a DC-DC converter connected to a TrimCell. The following dialog box opens after double clicking a TrimCell in the bottom schematic in Figure 8-21.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-21 Figure 8-21. Calculating the Resistor Network for a Given DC-DC Converter Schematic Net Name – The actual name of the pin in the schematic DC-DC converter – Select the appropriate DC-DC converter from the library by clicking the import DCDC menu. In this example, Murata_OKY3_D12 is selected. Profile 0 mode – The pull down menu selects the operating mode of the TrimCell : Closed loop trim, Trim using I2 C interface with an external microcontroller and E2 CMOS value (open loop trimming), is selected Voltage Profile 0 – The nominal operating voltage of the DC-DC converter. Voltage Profile 1 – One of the margining profiles: it can be margin-up or margin- low value. Voltage Profile 2 – The other margin profile. Again, this can be margin-down or margin-up voltage value. Voltage Profile 3 – An additional profile provided for convenience. In some cases, this can be used for additional margin testing. After entering the required voltage values, click on . The software calculates the resistors to be placed between the TrimCell output and the DC-DC converter trim pin. Calculated DAC code values Power 2 You: A Guide to Power Supply Management and Control 8-22 Margining and Trimming along with the DAC currents for each of the profiles are also shown. When the OK button is clicked, these values are stored into the source file. The button opens the following dialog box (Figure 8-22) that can be used to fine tune the calculated resistor values. Figure 8-22. Optimizing Resistor Values EIA resistor standard – limits the resistor selection to EIA 12, EIA24, EIA48, EIA96, EIA192. It also provides a method to calculate the exact resistor values. The selection of this option depends on design requirements Maximum DAC code range – used to provide additional headroom in the DAC code for maximum voltage variation. This is to account for the errors in resistor values and the DC-DC converter inaccuracies. Maximum supply adjustment range – this is the maximum margin voltage range with respect to the nominal value that is specified on profile 0. If the design requires margining of 10%, this value is set to 10%. Attenuation crossover voltage – the maximum input voltage for the ADC is 2.048V. If this ADC is used for measuring voltage higher than the Attenuation Crossover Voltage, the on-chip 1:3 attenuator should be turned on. This allows the maximum voltage input to the ADC to increase to 6.144V. This entry sets the voltage at which the attenuator should be switched on. Open External Resistor(s) Threshold – the maximum resistor value above which the resistor is treated as an open circuit - The trim and margin routine calculates up to three resistors and the associated topology as shown in Figure 8-7, Figure 8-8, Figure 8-9, Figure 8-10 and Figure 8-11. This field can be used to force the algorithm to minimize the number of resistors to the equivalent circuit shown by Figure 8-11. To do that, first calculate the resistors using the default values. Change the Open External Resistor(s) Threshold field to a value slightly higher than the series resistor value and click on the button. The software automatically calculates the new resistors and the associated DAC values. Vbpz Selection – usually it is best left as auto. In some cases, by forcing the Vbpz values to one of the other voltages (0.6V, 0.8V, 1V or 1.25V), the number of resistors can be reduced.Power 2 You: A Guide to Power Supply Management and Control Margining and Trimming Margining and Trimming 8-23 After calculating the resistor values for all TrimCells, the software automatically saves all the values in to the “XXX.PAC” file. To generate a report file of all resistors connected to all TrimCells the following procedure is followed. Click on Files> Export and the following dialog box (Figure 8-23) opens. Figure 8-23. Generating a Report File for Margin and Trim Under “Export What,” select Margin/ Trim to a file selected by using the Browse button, and click OK. The output text file format is as shown as follows: MarginTrimCell Idx0 TrimCellNumber1 TargetVoutSP11.200 TargetVoutSP21.260 TargetVoutSP31.140 TargetVoutSP41.200 RealizedVoutSP11.198 RealizedVoutSP21.256 RealizedVoutSP31.140 RealizedVoutSP41.198 VdacCodeSP12.000 VdacCodeSP2-6.000 VdacCodeSP310.000 VdacCodeSP42.000 Vref0.752 Rbuffer2561546.920 Rfb14467007.127 Rin1000000000.000Power 2 You: A Guide to Power Supply Management and Control 8-24 Margining and Trimming Invert1 IsProgrammable1 IsModule1 IsRtGnd1 Rseries2400000.000 Rpdn110000000.000 Rpup210000000.000 Rpdn210000000.000 Rpup110000000.000 BPZVoltage0.600 BrickNameMurata_OKYT3-D12.xml BrickFilename TargetVdacCodesMax110 EIAStdIdx1 LooseEIAStdIdx1 AttenuationCrossoverVoltage1.900 MaxDeltaVoutPercent5.000000 RpdnOption0 Ropen10000000.000000000000000 BPZSel0.000000000001056 ResistorComputationAlgorithm1 MarginTrimCell_endCHAPTER 9 9-1 Design Tools for Power Manager II 9.1 PAC-Designer: Power Management Design Tool One major reason for the popularity among system engineers of programmable devices like the Power Manager II family is the flexibility of the hardware solution. One silicon device can serve in a variety of applications or integrate multiple board power management functions. While the term “programmable” usually conjures images of a software engineer writing ‘C’ or assembly language for an embedded microcontroller, programmable devices like the Power Manager II are designed using a class of Electronic Design Automation (EDA) software that is easy to learn for a hardware engineer with expertise in the analog, system or digital electronics disciplines. Rather than a software engineer writing firmware, the hardware designer will model the design using a hardware design language (HDL) or graphical tools like a schematic or waveform editor. To make designing with the Power Manager II device as easy as possible for the engineer with a power circuit design background, Lattice provides a free EDA tool called PAC-Designer*. In the PAC-Designer tool, circuit designs are entered graphically and then verified, all within the software environment. In the example below, the PAC-Designer schematic window provides access to all configurable elements of an ispPAC-POWR1014A device via its graphical user interface. All analog input and output pins are represented. Static or non-configurable pins such as power, ground and the serial digital interface are omitted for clarity. Any element in the schematic window can be accessed via mouse operations as well as menu commands. When completed, configurations can be saved, simulated and downloaded to devices. Programmable hardware with a software design tool provides a more flexible solution for engineering and a cost-cutting measure for component procurement departments. Programmability is attractive from an economic standpoint to component engineers and procurement personnel who wish to reduce the number of discrete solutions and vendors that they must qualify, inventory, and manage. It’s for these economic benefits that procurement departments will heavily influence the preferred part inventory of electronic components. This chapter describes how PAC-Designer software and development kits are applied to solve the power management and control scenarios described in earlier chapters of Power 2 You. * This document refers to PAC-Designer version 5.3 or later.Power 2 You: A Guide to Power Supply Management and Control 9-2 Design Tools for Power Manager Benefits of Software-Driven Programmable Hardware Design Power management and control solutions traditionally have been implemented with discrete analog and mixed-signal ICs. Browse the component catalog of any popular vendor of voltage supervisor or watchdog timer ICs and you’ll quickly see the hundreds of variations available to satisfy a range of accuracy, operating conditions and capacity. Further, depending on the degree of functional integration required, even more product variations are available. The Power Manager II technology is disruptive due to it’s versatility, enabled through programmability. In the same way the TTL discrete logic ICs of the 1970s have been almost entirely integrated by modern CPLDs and FPGAs, Power Manager II integrates multiple discrete analog ICs and is flexible enough to be applied across most power management configurations. Benefits of software-driven programmable hardware design include: • Reduce cost by reducing the number of Power Manager II components – Multiple power management functions can be integrated into a single power management device. The integrated solution can also be customized to meet board-specific sense and control interface requirements. • Reduced risk of board re-spins and faster time to market – New designs or changing board requirements can be handled by an updated program for the Power Manager II. HDL-based designs are flexible to meet changing functional requirements. • Increased likelihood of first-time success and reduced time to market - Functions and performance can be modeled by a software program and the model can be tested fully using simulation methods Advantages of Power Manager II over Microcontroller Firmware-Based Solutions One of the alternative approaches to a flexible power management solution is a microcontroller with firmware. Some of the major drawbacks of this approach are: • Reduced reliability due to slow response to power faults: Power monitoring is controlled by hardwaregenerated interrupts, which occur once in 5 to 10ms. This determines the response time of the power management function, which is too slow to prevent faults such as Flash memory corruption. • Increased time to market due to limited fault coverage of the power management algorithm: A major advantage of HDL-based designs over firmware-based designs is that the HDL-based designs can be simulated fully on a computer rather than a testing circuit board with limited fault coverage. The types of faults that can be created on a circuit board are limited because of secondary fault conditions due to other components on the circuit board that can interfere with the power management algorithm. • As a result, any changes to software require extensive board-level regression tests that are costly and time consuming. Consequently, changes to firmware are avoided, reducing its flexibility.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-3 9.2 PAC-Designer Overview Table 9-1 provides an overview of the major features of PAC-Designer software. Selecting the Power Manager II Device from a Design Specification The first step in a power management and control design is to determine how many functions can be integrated into a Power Manager II device. Here are some of the key considerations (Refer to Figure 9- 1“PAC-Designer Software - ispPAC-POWR1014A” on page 9-7 for a brief description of these functions): • Primary Power Management – Hot-swap, redundant power feed management, external power feed – Input voltage – Positive/ negative, need for isolation • Secondary power management functions – Main secondary rail(s) – Number of DC/DC converters that will be sequenced, supervised. – Number of DC/DC converters that will be margined/trimmed Table 9-1. Design Tools Overview Design Entry Tools Purpose Power Manager II Schematic Navigate and access the configuration of Power Manager II functional blocks such as: • Digital I/O buffer configuration • Analog input comparators • High-voltage output drivers • Timer/oscillator settings • Margin and trim cell settings • Sequence control and supervisory logic LogiBuilder LogiBuilder is used to design the embedded digital functions of the Power Manager II. Logic can be captured as a sequence of events described in a high-level state machine like language or as traditional Boolean equations. LogiBuilder provides a Sequence Controller window that allows you to create control sequences and define logic functions and a Supervisory Equation window to enter combinatorial or registered logic independent of sequence controller logic. DC-DC Library Builder The Library Builder is used to define the voltage adjustment characteristics of DC-DC converters and voltage regulators. A detailed description of trimming and margining software GUI is provided in the ‘Margining and Trimming,’ Chapter 7. Simulation Tools Purpose HDL Export The HDL writer included with PAC-Designer exports an industry standard Verilog HDL or VHDL model of the digital logic and timer/counter of the Power Manager II design. HDL models can be executed with any popular third party simulator such as Aldec’s Active-HDL program. Waveform Editor The Waveform Editor is a graphical application used to create and edit waveforms for logic stimulus. Each waveform is given a userdefined name, and then edited to show transitions. The stimulus is applied to the LogiBuilder - generated model and waveform results are produced much like those of a traditional logic analyzer. Lattice Logic Simulator PAC-Designer includes a logic simulator to verify logic produced by the LogiBuilder tool.Power 2 You: A Guide to Power Supply Management and Control 9-4 Design Tools for Power Manager – Number of reset signals that will be distributed on the board for microprocessor, DSP, ASIC, FPGA devices. – Number of external watchdog timers required for the system Once the board power management functions are finalized, use Table 9-2 to select potential Power Manager II devices to integrate the power management functions. Table 9-2. Power Manager II Vs Board Power Management Functions Managing Supply Rails in a Circuit Board ProcessorPMPOWR605 ispPACPOWR607 ispPACPOWR1014 ispPACPOWR1014A ispPACPOWR1220AT8 Board Input (Primary) Supply Management Hot-swap -48V Hot-swap Controller (Payload - isolated) X +12 / 24V Hot-swap Controller X X X X Power Feed To External Systems -48V Supply Feed X +12/24V Supply Feed X X X X Redundant Supply Selection -48V Supply OR'ing using MOSFET (Payload - isolated) X +12/24V Supply OR'ing using MOSFET X X X X Payload (Secondary) Power Management Supply Sequencing X X X X Voltage Supervision X X X X X Reset Generation X X X X X Watchdog Timer X X X X X Voltage Measurement Using ADC X X Power Supply Voltage Trimming X Power Supply Margining XPower 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-5 The next step is to identify the smallest Power Manager II device using the number of secondary power supply rails as well as the functions in Table 9-3. Power Manager II Design Example The example considered in this section is a PCI-Express add-on card application. This example is used to describe the procedure for integrating the power management design into a Power Manager II device. The first step is to collect the power management design specifications for the PCI Express add-on card. Table 9-4 summarizes the power management functions implemented in a PCI-Express add-on card: Table 9-2 shows that these functions can be integrated into a ispPAC-POWR1014A or a ispPACPOWR1220AT8 device. However, using Table 9-3, the smallest Power Manager II device that can integrate all these functions is an ispPAC-POWR1014A. The next step is to start designing the Power Management algorithm using the information given in earlier chapters. Table 9-3. Select the Smallest Power Manager II Device Using the Number of Rails Number of rails <3 3 to 5 5 to 8 >8 Comments Reset Generation ProcessorPMPOWR605 ispPACPOWR1014 ispPACPOWR1220AT8 Voltage Supervision ProcessorPMPOWR605 ispPACPOWR1014 ispPACPOWR1220AT8 Watchdog Timer ProcessorPMPOWR605 ispPACPOWR1014 ispPACPOWR1220AT8 Minimal sequencing < 3 groups ProcessorPMPOWR605 ispPACPOWR1014 ispPACPOWR1220AT8 Individual Supply Sequencing Control ProcessorPMPOWR605 ispPACPOWR607 ispPACPOWR1220AT8 ispPACPOWR1220AT8 Hot-swap controller - 48V ispPAC-POWR607 ispPACPOWR607 ispPACPOWR607 ispPACPOWR607 Used on -48V Rail Hot-swap controller +5 or 12 or 24V ispPAC-POWR607 ispPACPOWR1014 ispPACPOWR1220AT8 ispPACPOWR1220AT8 I 2 C, ADC Measurement ispPACPOWR1014A ispPACPOWR1014A ispPACPOWR1220AT8 ispPACPOWR1220AT8 Supply Margining/Trimming ispPACPOWR6AT6 ispPACPOWR6AT6 ispPACPOWR1220AT8 ispPACPOWR1220AT8 Table 9-4. PCIe Board Power Management Specifications Backplane voltage 12V Hot-swap function required? Yes Redundant supplies used? No External power feed function required? No Number of secondary rails 5 Secondary supply sequencing needed? Yes Reset generation needed? Yes Number of reset signals 2 Watchdog Timer required? Yes Voltage and current measurement needed? YesPower 2 You: A Guide to Power Supply Management and Control 9-6 Design Tools for Power Manager Design Flow This section describes a typical user scenario using PAC-Designer software to design a power management algorithm. The typical design flow to design with PAC-Designer software: 1. Create/Open a project. 2. Configure analog input signals. 3. Configure digital inputs. 4. Configure digital output pins. 5. Configure high-voltage output (HVOUT) pins (MOSFET driver outputs). 6. Configure timer values. 7. Configure an I2 C address. 8. Implement the power management algorithm using the LogiBuilder tool. 9. Simulate the design and iterate steps 2 through 6. 10.Download the design into a Power Manager II device and verify design. 9.3 Example Design Resources The fastest way to a solution for your particular application often is to modify an existing example. Lattice provides three types of example designs: • Project examples installed with PAC-Designer software - To open a project example from PAC-Designer, choose File > Design Example. A dialog listing of each example with a brief description is provided. Details of each example can be found in \Examples\Design Examples.ppt. • Power Manager II Reference Designs at the Lattice website - Each Lattice Reference Design has a web page that provides a brief overview of that function and available options. Complete details can be found in the documentation for that particular design. The documentation, along with the actual source code, can be downloaded from the web pages. Link to Lattice Reference Designs: http://www.latticesemi.com/products/intellectualproperty/aboutreferencedesigns.cfm • Demonstration designs included with Power Manager II Development Kits - Demo designs are typically preprogrammed into Power Manager II evaluation boards and are designed to showcase key features and benefits of the hardware. Other demonstrations and interface utilities are available at the respective Development Kit web page. Link to Lattice Development Kits: http://www.latticesemi.com/products/developmenthardware/developmentkits/index.cfmPower 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-7 9.4 Designing PCI-Express Add-on Card Power Management Using an ispPAC-POWR1014A Device 1. Open/Create a New Design This section uses the design example ispPAC-POWR1014A-3_PCIe_HS_Seq_Rd_Sup.PAC. The feature list of this design is found on page 40 of the ‘Design Examples.PPT’ file found in the / Examples directory. The circuit diagram of the implementation is shown on page 41 of the Design Examples.PPT file. Page 42 provides the algorithm for implementing 12V hot-swap, sequencing, supervision and reset generation for this design. The next step is to implement the design in PAC-Designer software. The PAC-Designer software provides the complete design source code. Start the PAC-Designer software. Click on File > Design Examples and select the above mentioned design example file and click on button. The software opens the screen shown in Figure 9-1. Figure 9-1. PAC-Designer Software - ispPAC-POWR1014A 2. Configuring Analog Input Signals The next step is to configure the monitoring voltage thresholds. To do that, click on the Analog Inputs block on the top right of the schematic. The software shows two programmable threshold comparators with the associated window logic for each of the VMON inputs. In the ispPAC-POWR1014A device there are 20 programmable threshold comparators.Power 2 You: A Guide to Power Supply Management and Control 9-8 Design Tools for Power Manager Double click on any of the programmable threshold comparators to open the dialog box. This dialog box shows the names of the voltage monitoring comparator outputs as well as the thresholds for each of the comparators. Figure 9-2. Configuring Voltage Monitoring Inputs of the ispPAC-POWR1014A Device This dialog box is used to specify the current and voltage monitoring thresholds of both the hot-swap section and the secondary power management sections. This enables fault detection anywhere on the circuit board. The fault threshold level can be changed by using the Trip point selection pull-down menu. For each VMON input, its window monitoring mode and/or the associated glitch filter can also be enabled. This dialog box can also be used to change the pin allocation of any of the VMON pins by using the ‘Pin Name’ pull down menu. Then, click on button, navigate back to the main screen and double click on any portion outside the schematic.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-9 3. Configure Digital Inputs To configure the digital inputs, click on the digital inputs in the schematic shown in Figure 9-1. The software opens a screen with input signals with input buffers. Click on any of the input buffers to open the dialog box shown in Figure 9-3. Figure 9-3. Configure Digital Inputs Enter the names of the digital input pins and also identify the source of the signal (I2 C/JTAG/ device pin) and click OK. This section specifies the interfacing of the Power Manager II with the active low signals on the backplane, such as PRST_N or PERST_N, as well as to the onboard active low signal using the FPGA_Done_N. This dialog box can also be used to change the pin allocation of any of the IN pins by using the Pin Name pull down menu. Navigate back to the main schematic by double clicking anywhere on the blank screen around the input pin connection schematic. 4. Configure Digital Output Pins From the main schematic in Figure 9-1, double click on the digital output to navigate to the next screen with multiple output buffers. Double click on any of the output buffers to open the dialog box shown in Figure 9-4.Power 2 You: A Guide to Power Supply Management and Control 9-10 Design Tools for Power Manager Figure 9-4. Output Pin Configuration Dialog Box This dialog box is used to configure the output pin name that is used in the algorithm. If a pin is used as an I2 C output port expander, click on the appropriate radio button for that output. This section identifies the signals that drive the DC-DC converter signals for sequencing on-board control signals such as PERST local, brown_out_N, etc. This dialog box can also be used to change the pin allocation of the any of the OUT pins by using the ‘Pin Name’ pull down menu. Click on the OK button to navigate back to the screen with output buffers. Click anywhere on that screen. 5. Configure HVOUT Pins These pins are used to drive the 12V hot-swap control MOSFET as well as the 3.3V soft start MOSFET. To configure these signals, first click on the HVOUT outputs block on the screen. This opens an intermediate dialog box. Click on any of the boxes to open the dialog box shown in Figure 9-5.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-11 Figure 9-5. MOSFET Configuration Dialog Box This dialog box enables setting the MOSFET drive voltage as well as MOSFET turn-on/ turn-off ramp rates. Enter the names of the output signals used in the design to control the external charge pump for the 12V MOSFET, as well as the MOSFET turn on for 3.3V. Click OK and navigate back to the main screen using the same methods described previously. 6. Configure Timer Values This design uses multiple hardware design timers for the external charge pump, for pulse stretching the reset output, etc. To configure the timer, double-click on the timer control box between the input and output control signals to open an intermediate schematic. Click on the timer blocks to open the timer configuration dialog box as shown in Figure 9-6.Power 2 You: A Guide to Power Supply Management and Control 9-12 Design Tools for Power Manager Figure 9-6. Timer Configuration Dialog Box This dialog box enables changing the Master/ Slave mode of operation when more than one Power Manager II device is used on the board. The time delay for each of the timers can also be set from this menu. For example, the Timer 4 is used for external charge pump implementation that requires the HVOUT2 pin toggle with a cadence of 32s on and 8s off. Once the timers are configured, click on the button to return to the main schematic. 7. Configure I2 C Addresses The ispPAC-POWR1014A device can be used to measure the voltages and currents through the I2 C interface. For this, the ispPAC-POWR1014A should be assigned a unique address by clicking on the I2 C box in the main schematic in Figure 9-1 to open the dialog box shown in Figure 9-7.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-13 Figure 9-7. Setting the I2 C Address for the ispPAC-POWR1014A Device The address is set by using the pull down menu on top of the dialog box shown in Figure 9-7. The output control for each of the output pins as well as for the input pins can be set through this dialog box as well. Click OK to navigate back to the main schematic. 8. Implementing the Power Management Algorithm Using the LogiBuilder Tool The power management algorithm as described in the ‘Design Examples.PPT’ file is entered into the ispPAC-POWR1014A device in this section using the LogiBuilder utility. Double click on the sequence control block of the main schematic to open the LogiBuilder screen, as shown in Figure 9-8. To facilitate understanding of the PCI-Express add-on card algorithm, the next section explains the LogiBuilder screen sections. The LogiBuilder screen is divided into three sections: The sequential execution sections – Enter a list of instructions listed in Table 9-5 to implement the sequential execution part of the algorithm. The exception conditions section – Enables a set of Boolean expressions which, when they become true, interrupt the sequential execution flow. These exception conditions can only interrupt the steps which are marked as interruptible. All other steps are not affected by the exception conditions. The supervisory logic section – Enables the Boolean expressions direct control of some of the outputs that are not controlled by the sequential execution portion of the algorithm. The Boolean expressions in the exception condition as well as supervisory logic section operate in parallel to the instructions executed in the sequential execution section.Power 2 You: A Guide to Power Supply Management and Control 9-14 Design Tools for Power Manager In the sequential execution section each step is divided into five columns: • Step – This indicates the step number of a given instruction. This step number is used to branch to a given step from a different location. • Sequencer instruction – This is the instruction that is being executed by that step. Each step can take one to several clock cycles. For example, a start timer instruction takes one clock cycle. A wait for timer instruction stays in that step until the timer expires. • Outputs – This lists all the outputs whose output values are changed at that step. The output state changes after the first clock pulse while in that step. • Interruptible – This flag enables the exception condition to interrupt the flow of execution. If the interruptible flag is set to ‘no,’ the exception condition cannot alter the flow at that step. • Comment – This column is used to enter the comment for that instruction. Sequencer Instructions There are six types of instructions used to implement the sequential execution portion of the power management algorithm. These instructions are listed in Table 9-5. Table 9-5. Sequencer Instructions and Description Instruction Type Instruction Sub Type Operands Description Wait for Wait for timer Selected Timer Starts a given timer, waits for it to expire and jumps to the next sequential step. The timer is reset in the prior step. Wait for Boolean Expression Waits for the Boolean expression to become true at that step. When Boolean is true, it jumps to next sequential step. Wait for with Timer Boolean Expression & Selected Timer Waits for the Boolean expression to become true until the timer expires at that step. When Boolean is true, it jumps to next sequential step. If the timer expired, it branches to a step indicated by the instruction. The timer is reset in the prior step. IF-Then-Else IF-Then-Else Boolean Expression Tests the Boolean expression: If true the control branches to the location specified by the 'Then' Branch. It is possible to alter selected outputs only during this branch. If false the control branches to the location specified by the 'Else' Branch. It is possible to alter selected outputs only during this branch. IF-Then-Else with Timer Boolean Expression & Selected Timer Tests the Boolean expression: If true the control branches to the location specified by the 'Then' Branch. It is possible to alter selected outputs only during this branch. If the condition is not true, if the timer is expired, control branches to the location specified by the 'On Timeout Go to Sequencer Step' Branch. If the condition is not true and the timer has not expired, the control branches to a location specified by the 'Else' branch. Output None Specified outputs Only the selected output condition is set to the state specified by this instruction. Writing the same value to the output pin does not result in glitches. Go To Go to Step Number Control Branches to the step indicated Halt None Jumps to the same step and waits forever.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-15 Exception conditions section Each of the exception condition is divided into five columns: Exception ID – The number of the exception condition: used by the compiler to point errors in that line Boolean expression – this is the Boolean expression which, when it becomes true, will force the sequence execution to jump to the step indicated by the exception handler step. Outputs – Forces the outputs to the value set by the exception condition. Setting or resetting an output results in the Boolean expression always controlling that output, and is independent of the sequence instruction execution Exception handler – This is the step number in the sequential execution section to which the control jumps when the exception condition becomes true and the sequential execution section is executing a step that has been flagged as an interruptible step. Comments – This section is used for providing useful comments about that exception condition. Supervisory equation section The supervisory equation window is used to control outputs that are not controlled by the sequential execution section. The supervisory equation is divided into four columns. Equation – This field indicates the supervisory equation number and is used by the compiler to flag errors. Supervisory Logic Equation – this column is where the Boolean logic condition and the associated output that is controlled by the equation is specified. Macrocell Configuration – This column indicates the type of assignment in the supervisory logic equation for that output. It can be combinational, D-type, T-type, Asynchronous Reset or Asynchronous Preset. Comment – provides additional information about the step for better understanding of that equation. 9. PCI-Express Example LogiBuilder Code Figure 9-8 shows the implementation of the PCI-Express add-on card algorithm implemented using the instructions shown above. Start/ Stop Timer Start Timer Selected Timer Starts a given timer, does NOT wait for it to expire but simply jumps to the next sequential step. The timer is reset in the prior step. Instruction used along with the if-then-else with Timer instruction. Stop Timer Selected Timer Reset the selected timer. NOP None None No action taken during that step. Usually used in conjunction with the wait for timer or start timer instructions. This enables the code to jump to those instructions. Table 9-5. Sequencer Instructions and Description (Continued) Instruction Type Instruction Sub Type Operands DescriptionPower 2 You: A Guide to Power Supply Management and Control 9-16 Design Tools for Power Manager Figure 9-8. LogiBuilder Screen to Implement the Power Management Algorithm The algorithm implemented in this LogiBuilder screen is shown below: Sequential Execution Section 1. Disable hot-swap operation. 2. Wait for 12V and 3.3V rails to stabilize. 3. Enable hot-swap operation on 12V, operate MOSFET in SOA 4. Wait for 12V output from the MOSFET to reach acceptable thresholds. 5. Start sequencing by enabling 3.3V and 1V supplies. 6. Wait for 3.3V and 1V supplies to reach acceptable voltage levels. 7. Enable 1.8V and soft start 3.3V from the connector. 8. Wait for all board supplies to reach acceptable voltage levels & FPGA to configure. 9. Activate early configuration start signal. 10.Release CPU_Reset signal after the stretch period. 11.Wait for voltage or current faults.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-17 12.Activate Brown_Out signal and wait for interrupt process to complete. 13.Activate CPU_Reset signal and disable 1.8V supply & turn off the 3.3V MOSFET. 14.Wait for 2ms and disable 3.3V and 1V supplies. 15.Wait for 2ms and turn off 12V MOSFET. Exception conditions section 1. If over current condition is detected jump to step 12. 2. Transfer input PERST state to PERST_Local signal. Supervisory Equations section 1. Operate charge pump to drive the 12V control N-channel MOSFET by toggling the HS- 12V_MOSFET drive pin (8s Off, 32s On). 2. Limit 12V MOSFET operation in SOA until 12V rail reaches acceptable level, after that turn the MOSFET on fully. 3. Turn-off 12V MOSFET when over current condition is detected. The programmable features, shown below, of this design can be used to adapt the design across different PCI-express add-on card configurations. • SOA and over current levels. • Customize the design to suit most MOSFETs. • Initial contact de-bounce period programmable from 32s to 2 seconds. • Short circuit timeout during start up programmable from 32s to 2 seconds. • Reset pulse can be stretch duration programmable from 32s to 2 seconds. • Each of the voltage monitoring thresholds are programmable from 0.67V to 5.8V. This algorithm can be imported easily into an ispPAC-POWR1220AT8 device if the number of supplies in the PCI-Express add-on card increases beyond five or other control functions need to be added. 10. Compiling the Design After the design is entered, the next step is to compile the program. To compile the program click on Tools> Compile the LogiBuilder Design The program converts the code into ABEL (Advanced Boolean Expression Language) language and compiles the ABEL language into a highly optimized equations netlist. These equations are then sent to the Fitter program that fits the design into the CPLD of the Power Manager II. 11. Simulating Control and Supervisory Logic When the primary supply rails for a circuit board are energized how will the Power Manager II respond and sequence the various DC-DC converters and distribute the reset signals? If the firmware of a microcontroller hangs and fails to reset the watchdog timers you have defined, will the WDT assert an interrupt the way you expect? These are the types of scenarios you’d like to model before you commit your design Power 2 You: A Guide to Power Supply Management and Control 9-18 Design Tools for Power Manager to hardware. To help, PAC-Designer software can extract a model of your digital and timer logic to any popular HDL simulator. From PAC-Designer, the optimized equations produced by LogiBuilder can also be exported into VHDL or VerilogHDL languages. These files can then be used for simulation. To export an HDL file, choose File > Export. The Export dialog, shown in Figure 9-9, appears. From the Export What list, choose VHDL File or Verilog File. Figure 9-9. Dialog Box to Export the Design in Verilog for Simulation The exported Verilog source file shown in Figure 9-10 can be tested fully using any of the popular HDL simulators such as Aldec’s Active-HDL.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-19 Figure 9-10. Exported Verilog Source FilePower 2 You: A Guide to Power Supply Management and Control 9-20 Design Tools for Power Manager This page intentionally left blank.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-21 This page intentionally left blank.Power 2 You: A Guide to Power Supply Management and Control Design Tools for Power Manager Design Tools for Power Manager 9-22 This page intentionally left blank.latticesemi.com/power2you Order #: B0041 About the Author Srirama (“Shyam”) Chandra is a widely-published author and recognized authority on power management. He is the Product Marketing Manager for programmable mixed signal products at Lattice Semiconductor Corporation. Prior to joining Lattice, Shyam worked for Vantis and AMD in sales and applications and previously was a telecom design engineer with Indian Telephone Industries. Shyam received his Masters degree in Electrical Engineering from the Indian Institute of Technology, Madras. Shyam can be contacted at: power2you@latticesemi.com GAL20V8 High Performance E2 CMOS PLD Generic Array Logic™ 1 2 28 I I/CLK NC I I I I I I NC NC NC GND I I I/OE I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I Vcc I I/O/Q 4 5 7 9 11 12 14 16 18 19 21 23 25 26 PLCC 1 12 13 I/CLK 24 I I I I I I I I I I GND Vcc I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I I/OE 6 18 GAL20V8 Top View GAL 20V8 DIP Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. August 2006 Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 20v8_07 Features • HIGH PERFORMANCE E2 CMOS® TECHNOLOGY — 5 ns Maximum Propagation Delay — Fmax = 166 MHz — 4 ns Maximum from Clock Input to Data Output — UltraMOS® Advanced CMOS Technology • 50% to 75% REDUCTION IN POWER FROM BIPOLAR — 75mA Typ Icc on Low Power Device — 45mA Typ Icc on Quarter Power Device • ACTIVE PULL-UPS ON ALL PINS • E2 CELL TECHNOLOGY — Reconfigurable Logic — Reprogrammable Cells — 100% Tested/100% Yields — High Speed Electrical Erasure (<100ms) — 20 Year Data Retention • EIGHT OUTPUT LOGIC MACROCELLS — Maximum Flexibility for Complex Logic Designs — Programmable Output Polarity — Also Emulates 24-pin PAL® Devices with Full Function/ Fuse Map/Parametric Compatibility • PRELOAD AND POWER-ON RESET OF ALL REGISTERS — 100% Functional Testability • APPLICATIONS INCLUDE: — DMA Control — State Machine Control — High Speed Graphics Processing — Standard Logic Speed Upgrade • ELECTRONIC SIGNATURE FOR IDENTIFICATION • LEAD-FREE PACKAGE OPTIONS Description The GAL20V8C, at 5ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E2 ) floating gate technology to provide the highest speed performance available in the PLD market. High speed erase times (<100ms) allow the devices to be reprogrammed quickly and efficiently. The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL20V8 are the PAL architectures listed in the table of the macrocell description section. GAL20V8 devices are capable of emulating any of these PAL architectures with full function/fuse map/parametric compatibility. Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor delivers 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified. Functional Block Diagram Pin Configuration I CLK I I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I I I I I I I I I I I/OE I/CLK OE 8 8 8 8 8 8 8 8 OLMC OLMC OLMC OLMC OLMC OLMC OLMC IMUX IMUX PROGRAMMABLE AND-ARRAY (64 X 40) OLMC Lead-Free Package Options Available!2 Specifications GAL20V8 T ) pd (ns) T ) su (ns T ) co (ns I # cc (mA O e rdering Packag 1 0 0 17 0 13 G CI AL20V8 -10LJ 28-Lead PLCC 1 I 30 G P AL20V8B-10LP 24-Pin Plastic DI 1 I 30 G C AL20V8B-10LJ 28-Lead PLC 1 2 5 1 01 0 1 I 3 G P AL20V8B-15LP 24-Pin Plastic DI 1 I 30 G C AL20V8B-15LJ 28-Lead PLC 2 3 0 1 11 56 I G P AL20V8B-20QP 24-Pin Plastic DI 6 I 5 G C AL20V8B-20QJ 28-Lead PLC 2 5 5 1 21 56 I G P AL20V8B-25QP 24-Pin Plastic DI 6 I 5 G C AL20V8B-25QJ 28-Lead PLC 1 I 30 G P AL20V8B-25LP 24-Pin Plastic DI 1 I 30 G C AL20V8B-25LJ 28-Lead PLC Industrial Grade Specifications T ) pd (ns) T ) su (ns T ) co (ns I # cc (mA O e rdering Packag 534 5 1 J 1 G C AL20V8C-5L 28-Lead PLC 7 75 5 .5 11 G CJ AL20V8 -7L 28-Lead PLCC 1 P 15 G P AL20V8B-7L 24-Pin Plastic DI 1 0 0 17 5 11 G CJ AL20V8 -10L 28-Lead PLCC 1 P 15 G P AL20V8B-10L 24-Pin Plastic DI 1 2 5 1 01 55 P G P AL20V8B-15Q 24-Pin Plastic DI 5 J 5 G C AL20V8B-15Q 28-Lead PLC 9 P 0 G P AL20V8B-15L 24-Pin Plastic DI 9 J 0 G C AL20V8B-15L 28-Lead PLC 2 5 5 1 21 55 P G P AL20V8B-25Q 24-Pin Plastic DI 5 J 5 G C AL20V8B-25Q 28-Lead PLC 9 P 0 G P AL20V8B-25L 24-Pin Plastic DI 9 J 0 G C AL20V8B-25L 28-Lead PLC GAL20V8 Ordering Information Conventional Packaging Commercial Grade SpecificationsSpecifications GAL20V8 3 Part Number Description Industrial Grade Specifications Lead-Free Packaging Commercial Grade Specifications T ) pd (ns) T ) su (ns T ) co (ns I # cc (mA O e rdering Packag 534 5 1 N 1 G C AL20V8C-5LJ Lead-Free 28-Lead PLC 7 75 5 .5 11 G CN AL20V8 -7LJ L C ead-Free 28-Lead PLC 1 N 15 G P AL20V8B-7LP Lead-Free 24-Pin Plastic DI 1 0 0 17 5 11 G CN AL20V8 -10LJ L C ead-Free 28-Lead PLC 1 N 15 G P AL20V8B-10LP Lead-Free 24-Pin Plastic DI 1 2 5 1 01 55 N G C AL20V8B-15QJ Lead-Free 28-Lead PLC 5 N 5 G P AL20V8B-15QP Lead-Free 24-Pin Plastic DI 9 N 0 G C AL20V8B-15LJ Lead-Free 28-Lead PLC 9 N 0 G P AL20V8B-15LP Lead-Free 24-Pin Plastic DI 2 5 5 1 21 55 N G C AL20V8B-25QJ Lead-Free 28-Lead PLC 5 N 5 G P AL20V8B-25QP Lead-Free 24-Pin Plastic DI 9 N 0 G e AL20V8B-25LJ L C ead-Fre 28-Lead PLC 9 N 0 G P AL20V8B-25LP Lead-Free 24-Pin Plastic DI T ) pd (ns) T ) su (ns T ) co (ns I # cc (mA O e rdering Packag 1 0 0 17 0 13 G CI AL20V8 -10LJN Lead-Free 28-Pin Plastic DIP 1 I 30 G P AL20V8B-10LPN Lead-Free 24-Pin Plastic DI 1 2 5 1 01 0 1 I 3 G C AL20V8B-15LJN Lead-Free 28-Lead PLC 1 I 30 G P AL20V8B-15LPN Lead-Free 24-Pin Plastic DI 2 3 0 1 11 56 I G C AL20V8B-20QJN Lead-Free 28-Lead PLC 6 I 5 G P AL20V8B-20QPN Lead-Free 24-Pin Plastic DI 2 5 5 1 21 56 I G C AL20V8B-25QJN Lead-Free 28-Lead PLC 6 I 5 G P AL20V8B-25QPN Lead-Free 24-Pin Plastic DI 1 I 30 G C AL20V8B-25LJN Lead-Free 28-Lead PLC 1 I 30 G P AL20V8B-25LPN Lead-Free 24-Pin Plastic DI Blank = Commercial I = Industrial Grade L = Low Power Power Package Q = Quarter Power Speed (ns) XXXXXXXX XX X XX X Device Name _ P = Plastic DIP PN = Lead-free Plastic DIP J = PLCC JN = Lead-free PLCC GAL20V8C GAL20V8B4 Specifications GAL20V8 The following discussion pertains to configuring the output logic macrocell. It should be noted that actual implementation is accomplished by development software/hardware and is completely transparent to the user. There are three global OLMC configuration modes possible: simple, complex, and registered. Details of each of these modes is illustrated in the following pages. Two global bits, SYN and AC0, control the mode configuration for all macrocells. The XOR bit of each macrocell controls the polarity of the output in any of the three modes, while the AC1 bit of each of the macrocells controls the input/output configuration. These two global and 16 individual architecture bits define all possible configurations in a GAL20V8 . The information given on these architecture bits is only to give a better understanding of the device. Compiler software will transparently set these architecture bits from the pin definitions, so the user should not need to directly manipulate these architecture bits. The following is a list of the PAL architectures that the GAL20V8 can emulate. It also shows the OLMC mode under which the devices emulate the PAL architecture. Software compilers support the three different global OLMC modes as different device types. These device types are listed in the table below. Most compilers have the ability to automatically select the device type, generally based on the register usage and output enable (OE) usage. Register usage on the device forces the software to choose the registered mode. All combinatorial outputs with OE controlled by the product term will force the software to choose the complex mode. The software will choose the simple mode only when all outputs are dedicated combinatorial without OE control. The different device types listed in the table can be used to override the automatic device selection by the software. For further details, refer to the compiler software manuals. When using compiler software to configure the device, the user must pay special attention to the following restrictions in each mode. In registered mode pin 1 and pin 13 (DIP pinout) are permanently configured as clock and output enable, respectively. These pins cannot be configured as dedicated inputs in the registered mode. In complex mode pin 1 and pin 13 become dedicated inputs and use the feedback paths of pin 22 and pin 15 respectively. Because of this feedback path usage, pin 22 and pin 15 do not have the feedback option in this mode. In simple mode all feedback paths of the output pins are routed via the adjacent pins. In doing so, the two inner most pins ( pins 18 and 19) will not have the feedback option as these pins are always configured as dedicated combinatorial output. Registered Complex Simple Auto Mode Select ABEL P20V8R P20V8C P20V8AS P20V8 CUPL G20V8MS G20V8MA G20V8AS G20V8 LOG/iC GAL20V8_R GAL20V8_C7 GAL20V8_C8 GAL20V8 OrCAD-PLD "Registered"1 "Complex"1 "Simple"1 GAL20V8A PLDesigner P20V8R2 P20V8C2 P20V8C2 P20V8A TANGO-PLD G20V8R G20V8C G20V8AS3 G20V8 1) Used with Configuration keyword. 2) Prior to Version 2.0 support. 3) Supported on Version 1.20 or later. PAL Architectures GAL20V8 Emulated by GAL20V8 Global OLMC Mode 20R8 Registered 20R6 Registered 20R4 Registered 20RP8 Registered 20RP6 Registered 20RP4 Registered 20L8 Complex 20H8 Complex 20P8 Complex 14L8 Simple 16L6 Simple 18L4 Simple 20L2 Simple 14H8 Simple 16H6 Simple 18H4 Simple 20H2 Simple 14P8 Simple 16P6 Simple 18P4 Simple 20P2 Simple Output Logic Macrocell (OLMC) Compiler Support for OLMCSpecifications GAL20V8 5 In the Registered mode, macrocells are configured as dedicated registered outputs or as I/O functions. Architecture configurations available in this mode are similar to the common 20R8 and 20RP4 devices with various permutations of polarity, I/O and register placement. All registered macrocells share common clock and output enable control pins. Any macrocell can be configured as registered or I/ O. Up to eight registers or up to eight I/Os are possible in this mode. Dedicated input or output functions can be implemented as subsets of the I/O function. Registered outputs have eight product terms per output. I/Os have seven product terms per output. The JEDEC fuse numbers, including the User Electronic Signature (UES) fuses and the Product Term Disable (PTD) fuses, are shown on the logic diagram on the following page. Registered Configuration for Registered Mode - SYN=0. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this output configuration. - Pin 1 controls common CLK for the registered outputs. - Pin 13 controls common OE for the registered outputs. - Pin 1 & Pin 13 are permanently configured as CLK & OE for registered output configuration. Combinatorial Configuration for Registered Mode - SYN=0. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1 defines this output configuration. - Pin 1 & Pin 13 are permanently configured as CLK & OE for registered output configuration.. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. D Q Q CLK OE XOR XOR Registered Mode6 Specifications GAL20V8 DIP (PLCC) Package Pinouts OE 0000 PTD 2640 0280 0320 0600 0640 0920 0960 1240 1280 1560 1600 1880 1920 2200 2240 2520 OLMC OLMC XOR-2567 AC1-2639 OLMC XOR-2566 AC1-2638 OLMC XOR-2565 AC1-2637 OLMC XOR-2564 AC1-2636 XOR-2563 AC1-2635 OLMC XOR-2562 AC1-2634 OLMC OLMC XOR-2561 AC1-2633 XOR-2560 AC1-2632 11(13) 10(12) 9(11) 8(10) 7(9) 6(7) 5(6) 4(5) 3(4) 2(3) 1(2) 23(27) 22(26) 21(25) 20(24) 19(23) 18(21) 17(20) 16(19) 15(18) 14(17) 13(16) SYN-2704 AC0-2705 2703 0 4 8 12 16 20 24 28 32 36 Registered Mode Logic DiagramSpecifications GAL20V8 7 In the Complex mode, macrocells are configured as output only or I/O functions. Architecture configurations available in this mode are similar to the common 20L8 and 20P8 devices with programmable polarity in each macrocell. Up to six I/Os are possible in this mode. Dedicated inputs or outputs can be implemented as subsets of the I/O function. The two outer most macrocells (pins 15 & 22) do not have input capability. Designs requiring eight I/Os can be implemented in the Registered mode. All macrocells have seven product terms per output. One product term is used for programmable output enable control. Pins 1 and 13 are always available as data inputs into the AND array. The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. Combinatorial I/O Configuration for Complex Mode - SYN=1. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1. - Pin 16 through Pin 21 are configured to this function. Combinatorial Output Configuration for Complex Mode - SYN=1. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1. - Pin 15 and Pin 22 are configured to this function. XOR XOR Complex Mode8 Specifications GAL20V8 DIP (PLCC) Package Pinouts 0000 PTD 2640 0280 0320 0600 0640 0920 0960 1240 1280 1560 1600 1880 1920 2200 2240 2520 SYN-2704 AC0-2705 OLMC OLMC OLMC OLMC OLMC OLMC OLMC OLMC 23(27) 22(26) 21(25) 20(24) 19(23) 18(21) 17(20) 16(19) 15(18) 14(17) 13(16) 11(13) 10(12) 9(11) 8(10) 7(9) 6(7) 5(6) 4(5) 3(4) 2(3) 1(2) 2703 XOR-2567 AC1-2639 XOR-2566 AC1-2638 XOR-2565 AC1-2637 XOR-2564 AC1-2636 XOR-2563 AC1-2635 XOR-2562 AC1-2634 XOR-2561 AC1-2633 XOR-2560 AC1-2632 0 4 8 12 16 20 24 28 32 36 Complex Mode Logic DiagramSpecifications GAL20V8 9 Combinatorial Output with Feedback Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this configuration. - All OLMC except pins 18 & 19 can be configured to this function. Combinatorial Output Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this configuration. - Pins 18 & 19 are permanently configured to this function. Dedicated Input Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1 defines this configuration. - All OLMC except pins 18 & 19 can be configured to this function. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. In the Simple mode, pins are configured as dedicated inputs or as dedicated, always active, combinatorial outputs. Architecture configurations available in this mode are similar to the common 14L8 and 16P6 devices with many permutations of generic output polarity or input choices. All outputs in the simple mode have a maximum of eight product terms that can control the logic. In addition, each output has programmable polarity. Pins 1 and 13 are always available as data inputs into the AND array. The “center” two macrocells (pins 18 and 19) cannot be used in the input configuration. The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page. Vcc XOR Vcc XOR Simple Mode10 Specifications GAL20V8 DIP (PLCC) Package Pinouts 0000 PTD 2640 0280 0320 0600 0640 0920 0960 1240 1280 1560 1600 1880 1920 2200 2240 2520 OLMC OLMC OLMC OLMC OLMC OLMC OLMC XOR-2560 AC1-2632 OLMC XOR-2561 AC1-2633 XOR-2562 AC1-2634 XOR-2563 AC1-2635 XOR-2564 AC1-2636 XOR-2565 AC1-2637 XOR-2566 AC1-2638 XOR-2567 AC1-2639 23(27) 22(26) 21(25) 20(24) 19(23) 18(21) 17(20) 16(19) 15(18) 14(17) 13(16) SYN-2704 AC0-2705 2703 11(13) 10(12) 9(11) 8(10) 7(9) 6(7) 5(6) 4(5) 3(4) 2(3) 1(2) 0 4 8 12 16 20 24 28 32 36 Simple Mode Logic DiagramSpecifications GAL20V8 11 GAL20V8C VIL Input Low Voltage Vss – 0.5 — 0.8 V VIH Input High Voltage 2.0 — Vcc+1 V IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 μA IIH Input or I/O High Leakage Current 3.5V≤ VIN ≤ VCC — — 10 μA VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V IOL Low Level Output Current — — 16 mA IOH High Level Output Current — — –3.2 mA IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –150 mA Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA ) ............................... 0 to 75°C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA ) ........................... –40 to 85°C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS COMMERCIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L -5/-7/-10 — 75 115 mA Supply Current ftoggle = 15MHz Outputs Open INDUSTRIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L-10 — 75 130 mA Supply Current ftoggle = 15MHz Outputs Open 1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C Absolute Maximum Ratings(1) Supply voltage VCC ...................................... –0.5 to +7V Input voltage applied .......................... –2.5 to VCC +1.0V Off-state output voltage applied ......... –2.5 to VCC +1.0V Storage Temperature ................................ –65 to 150°C Ambient Temperature with Power Applied ........................................ –55 to 125°C 1.Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified)12 Specifications GAL20V8C GAL20V8 -7 MIN. MAX. -10 MIN. MAX. tpd A Input or I/O to 8 outputs switching 1 5 3 7.5 3 10 ns Comb. Output 1 output switching — — — 7 — — ns tco A Clock to Output Delay 1 4 2 5 2 7 ns tcf2 — Clock to Feedback Delay — 3 — 3 — 6 ns tsu — Setup Time, Input or Feedback before Clock↑ 3 — 5 — 7.5 — ns th — Hold Time, Input or Feedback after Clock↑ 0 — 0 — 0 — ns A Maximum Clock Frequency with 142.8 — 100 — 66.7 — MHz External Feedback, 1/(tsu + tco) fmax3 A Maximum Clock Frequency with 166 — 125 — 71.4 — MHz Internal Feedback, 1/(tsu + tcf) A Maximum Clock Frequency with 166 — 125 — 83.3 — MHz No Feedback twh — Clock Pulse Duration, High 3 — 4 — 6 — ns twl — Clock Pulse Duration, Low 3 — 4 — 6 — ns ten B Input or I/O to Output Enabled 1 6 3 9 3 10 ns B OE to Output Enabled 1 6 2 6 2 10 ns tdis C Input or I/O to Output Disabled 1 5 2 9 2 10 ns C OE to Output Disabled 1 5 1.5 6 1.5 10 ns PARAMETER UNITS TEST COND1 . DESCRIPTION COM COM COM/IND -5 MIN. MAX. 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section. 3) Refer to fmax Descriptions section. Characterized initially and after any design or process changes that may affect these parameters. SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested AC Switching Characteristics Over Recommended Operating Conditions Capacitance (TA = 25°C, f = 1.0 MHz)Specifications GAL20V8 13 GAL20V8B INDUSTRIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L -10/-15/-25 — 75 130 mA Supply Current ftoggle = 15MHz Outputs Open Q -20/-25 — 45 65 mA COMMERCIAL ICC Operating Power VIL = 0.5V VIH = 3.0V L -7/-10 — 75 115 mA Supply Current ftoggle = 15MHz Outputs Open L -15/-25 — 75 90 mA Q -15/-25 — 45 55 mA Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA ) ............................... 0 to 75°C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Industrial Devices: Ambient Temperature (TA ) ........................... –40 to 85°C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL PARAMETER CONDITION MIN. TYP.3 MAX. UNITS VIL Input Low Voltage Vss – 0.5 — 0.8 V VIH Input High Voltage 2.0 — Vcc+1 V IIL1 Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 μA IIH Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 μA VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V IOL Low Level Output Current — — 24 mA IOH High Level Output Current — — –3.2 mA IOS2 Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 — –150 mA 1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C Absolute Maximum Ratings(1) Supply voltage VCC ...................................... –0.5 to +7V Input voltage applied .......................... –2.5 to VCC +1.0V Off-state output voltage applied ......... –2.5 to VCC +1.0V Storage Temperature ................................ –65 to 150°C Ambient Temperature with Power Applied ........................................ –55 to 125°C 1.Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).14 Specifications GAL20V8B GAL20V8 tpd A Input or I/O to 8 outputs switching 3 7.5 3 10 3 15 3 20 3 25 ns Comb. Output 1 output switching — 7 — — — — — — — — ns tco A Clock to Output Delay 2 5 2 7 2 10 2 11 2 12 ns tcf2 — Clock to Feedback Delay — 3 — 6 — 8 — 9 — 10 ns tsu — Setup Time, Input or Fdbk before Clk↑ 7 — 10 — 12 — 13 — 15 — ns th — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns A Maximum Clock Frequency with 83.3 — 58.8 — 45.5 — 41.6 — 37 — MHz External Feedback, 1/(tsu + tco) fmax3 A Maximum Clock Frequency with 100 — 62.5 — 50 — 45.4 — 40 — MHz Internal Feedback, 1/(tsu + tcf) A Maximum Clock Frequency with 100 — 62.5 — 62.5 — 50 — 41.7 — MHz No Feedback twh — Clock Pulse Duration, High 5 — 8 — 8 — 10 — 12 — ns twl — Clock Pulse Duration, Low 5 — 8 — 8 — 10 — 12 — ns ten B Input or I/O to Output Enabled 3 9 3 10 — 15 — 18 — 25 ns B OE to Output Enabled 2 6 2 10 — 15 — 18 — 20 ns tdis C Input or I/O to Output Disabled 2 9 2 10 — 15 — 18 — 25 ns C OE to Output Disabled 1.5 6 1.5 10 — 15 — 18 — 20 ns UNITS 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section. 3) Refer to fmax Descriptions section. -25 MIN. MAX. -20 MIN. MAX. -15 MIN. MAX. -10 MIN. MAX. PARAM. DESCRIPTION TEST COND1 . -7 MIN. MAX. SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested. COM COM / IND COM / IND IND COM / IND AC Switching Characteristics Over Recommended Operating Conditions Capacitance (TA = 25°C, f = 1.0 MHz)Specifications GAL20V8 15 Combinatorial Output Registered Output Input or I/O to Output Enable/Disable OE to Output Enable/Disable fmax with Feedback Clock Width COMBINATIONAL OUTPUT VALID INPUT INPUT or I/O FEEDBACK tpd CLK (w/o fb) 1/fmax twh twl INPUT or I/O FEEDBACK REGISTERED OUTPUT CLK VALID INPUT (external fdbk) tsu tco th 1/fmax OE REGISTERED OUTPUT tdis ten CLK REGISTERED FEEDBACK tcf tsu 1/fmax (internal fdbk) COMBINATIONAL OUTPUT INPUT or I/O FEEDBACK tdis ten Switching Waveforms16 Specifications GAL20V8 fmax with Internal Feedback 1/(tsu+tcf) Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd. fmax with No Feedback Note:fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%. GAL20V8C Output Load Conditions (see figure) Test Condition R1 R2 CL A 200Ω 200Ω 50pF B Active High ∞ 200Ω 50pF Active Low 200Ω 200Ω 50pF C Active High ∞ 200Ω 5pF Active Low 200Ω 200Ω 5pF TEST POINT C *L FROM OUTPUT (O/Q) UNDER TEST +5V *CL INCLUDES TEST FIXTURE AND PROBE CAPACITANCE R2 R1 GAL20V8B Output Load Conditions (see figure) Test Condition R1 R2 CL A 200Ω 390Ω 50pF B Active High ∞ 390Ω 50pF Active Low 200Ω 390Ω 50pF C Active High ∞ 390Ω 5pF Active Low 200Ω 390Ω 5pF CLK REGISTER LOGIC ARRAY tcf tpd fmax with External Feedback 1/(tsu+tco) Note:fmax with external feedback is calculated from measured tsu and tco. REGISTER LOGIC ARRAY ts u tc o CLK Input Pulse Levels GND to 3.0V Input Rise and GAL20V8B 2 – 3ns 10% – 90% Fall Times GAL20V8C 1.5ns 10% – 90% Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load See Figure 3-state levels are measured 0.5V from steady-state active level. REGISTER LOGIC ARRAY CLK tsu + th fmax Descriptions Switching Test ConditionsSpecifications GAL20V8 17 1.0 2.0 3.0 4.0 5.0 -60 0 -20 -40 0 Input Voltage (Volts) Input Current (uA) Electronic Signature An electronic signature is provided in every GAL20V8 device. It contains 64 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell. NOTE: The electronic signature is included in checksum calculations. Changing the electronic signature will alter the checksum. Security Cell A security cell is provided in the GAL20V8 devices to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell. Latch-Up Protection GAL20V8 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias minimizes the potential of latch-up caused by negative input undershoots. Additionally, outputs are designed with n-channel pull-ups instead of the traditional p-channel pull-ups in order to eliminate latch-up due to output overshoots. Device Programming GAL devices are programmed using a Lattice Semiconductorapproved Logic Programmer, available from a number of manufacturers. Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle. Typical Input Pull-up Characteristic Output Register Preload When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because, in system operation, certain events occur that may throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions. GAL20V8 devices include circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing text vectors perform output register preload automatically. Input Buffers GAL20V8 devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices. The GAL20V8 input and I/O pins have built-in active pull-ups. As a result, unused inputs and I/O's will float to a TTL "high" (logical "1"). Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to another active input, VCC, or Ground. Doing this will tend to improve noise immunity and reduce ICC for the device.18 Specifications GAL20V8 Typ. Vref = 3.2V Typical Output Typ. Vref = 3.2V Typical Input Vcc PIN Vcc Vref Active Pull-up Circuit ESD Protection Circuit ESD Protection Circuit Vcc PIN Vcc PIN Tri-State Vref Control Active Pull-up Circuit Feedback (To Input Buffer) PIN Feedback Data Output Circuitry within the GAL20V8 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, 1μs MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. Because of the asynchronous nature of system power-up, some conditions must be met to provide Vcc CLK INTERNAL REGISTER Q - OUTPUT FEEDBACK/EXTERNAL OUTPUT REGISTER Vcc (min.) tpr Internal Register Reset to Logic "0" Device Pin Reset to Logic "1" twl tsu a valid power-up reset of the device. First, the VCC rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements. Power-Up Reset Input/Output Equivalent SchematicsSpecifications GAL20V8 19 Delta Tpd vs # of Outputs Switching Number of Outputs Switching Delta Tpd (ns) -1 -0.75 -0.5 -0.25 0 12345678 RISE FALL Delta Tco vs # of Outputs Switching Number of Outputs Switching Delta Tco (ns) -1 -0.75 -0.5 -0.25 0 12345678 RISE FALL Delta Tpd vs Output Loading Output Loading (pF) Delta Tpd (ns) -2 0 2 4 6 8 0 50 100 150 200 250 300 RISE FALL Delta Tco vs Output Loading Output Loading (pF) Delta Tco (ns) -2 0 2 4 6 8 0 50 100 150 200 250 300 RISE FALL Normalized Tpd vs Vcc Supply Voltage (V) Normalized Tpd 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tco vs Vcc Supply Voltage (V) Normalized Tco 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 RISE FALL Normalized Tsu vs Vcc Supply Voltage (V) Normalized Tsu 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tpd vs Temp Temperature (deg. C) Normalized Tpd 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Normalized Tco vs Temp Temperature (deg. C) Normalized Tco 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 RISE FALL Normalized Tsu vs Temp Temperature (deg. C) Normalized Tsu 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 -55 -25 0 25 50 75 100 125 PT H->L PT L->H GAL20V8C: Typical AC and DC Characteristic Diagrams20 Specifications GAL20V8 Vol vs Iol Iol (mA) Vol (V) 0 0.5 1 1.5 2 0.00 20.00 40.00 60.00 80.00 Voh vs Ioh Ioh(mA) Voh (V) 0 1 2 3 4 5 0.00 10.00 20.00 30.00 40.00 50.00 Voh vs Ioh Ioh(mA) Voh (V) 3.25 3.5 3.75 4 4.25 0.00 1.00 2.00 3.00 4.00 Normalized Icc vs Vcc Supply Voltage (V) Normalized Icc 0.80 0.90 1.00 1.10 1.20 4.50 4.75 5.00 5.25 5.50 Normalized Icc vs Temp Temperature (deg. C) Normalized Icc 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 Normalized Icc vs Freq. Frequency (MHz) Normalized Icc 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 0 25 50 75 100 Delta Icc vs Vin (1 input) Vin (V) Delta Icc (mA) 0 2 4 6 8 10 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Input Clamp (Vik) Vik (V) Iik (mA) 0 5 10 15 20 25 30 35 40 45 -2.00 -1.50 -1.00 -0.50 0.00 GAL20V8C: Typical AC and DC Characteristic DiagramsSpecifications GAL20V8 21 Normalized Tpd vs Vcc Supply Voltage (V) Normalized Tpd 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tco vs Vcc Supply Voltage (V) Normalized Tco 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 RISE FALL Normalized Tsu vs Vcc Supply Voltage (V) Normalized Tsu 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tpd vs Temp Temperature (deg. C) Normalized Tpd 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Normalized Tco vs Temp Temperature (deg. C) Normalized Tco 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 RISE FALL Normalized Tsu vs Temp Temperature (deg. C) Normalized Tsu 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Delta Tpd vs # of Outputs Switching Number of Outputs Switching Delta Tpd (ns) -2 -1.5 -1 -0.5 0 12345678 RISE FALL Delta Tco vs # of Outputs Switching Number of Outputs Switching Delta Tco (ns) -2 -1.5 -1 -0.5 0 12345678 RISE FALL Delta Tpd vs Output Loading Output Loading (pF) Delta Tpd (ns) -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL Delta Tco vs Output Loading Output Loading (pF) Delta Tco (ns) -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL GAL20V8B-7/-10: Typical AC and DC Characteristic Diagrams22 Specifications GAL20V8 Vol vs Iol Iol (mA) Vol (V) 0 0.25 0.5 0.75 1 0.00 20.00 40.00 60.00 80.00 100.00 Voh vs Ioh Ioh(mA) Voh (V) 0 1 2 3 4 5 0.00 10.00 20.00 30.00 40.00 50.00 60.00 Voh vs Ioh Ioh(mA) Voh (V) 3.5 3.75 4 4.25 4.5 0.00 1.00 2.00 3.00 4.00 Normalized Icc vs Vcc Supply Voltage (V) Normalized Icc 0.80 0.90 1.00 1.10 1.20 4.50 4.75 5.00 5.25 5.50 Normalized Icc vs Temp Temperature (deg. C) Normalized Icc 0.8 0.9 1 1.1 1.2 -55 -25 0 25 50 75 100 125 Normalized Icc vs Freq. Frequency (MHz) Normalized Icc 0.80 0.90 1.00 1.10 1.20 1.30 0 25 50 75 100 Delta Icc vs Vin (1 input) Vin (V) Delta Icc (mA) 0 2 4 6 8 10 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Input Clamp (Vik) Vik (V) Iik (mA) 0 10 20 30 40 50 60 70 80 90 100 -2.00 -1.50 -1.00 -0.50 0.00 GAL20V8B-7/-10: Typical AC and DC Characteristic DiagramsSpecifications GAL20V8 23 Normalized Tpd vs Vcc Supply Voltage (V) Normalized Tpd 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tco vs Vcc Supply Voltage (V) Normalized Tco 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 RISE FALL Normalized Tsu vs Vcc Supply Voltage (V) Normalized Tsu 0.8 0.9 1 1.1 1.2 4.50 4.75 5.00 5.25 5.50 PT H->L PT L->H Normalized Tpd vs Temp Temperature (deg. C) Normalized Tpd 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Normalized Tco vs Temp Temperature (deg. C) Normalized Tco 0.7 0.8 0.9 1 1.1 1.2 1.3 -55 -25 0 25 50 75 100 125 RISE FALL Normalized Tsu vs Temp Temperature (deg. C) Normalized Tsu 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 -55 -25 0 25 50 75 100 125 PT H->L PT L->H Delta Tpd vs # of Outputs Switching Number of Outputs Switching Delta Tpd (ns) -2 -1.5 -1 -0.5 0 12345678 RISE FALL Delta Tco vs # of Outputs Switching Number of Outputs Switching Delta Tco (ns) -2 -1.5 -1 -0.5 0 12345678 RISE FALL Delta Tpd vs Output Loading Output Loading (pF) Delta Tpd (ns) -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL Delta Tco vs Output Loading Output Loading (pF) Delta Tco (ns) -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 RISE FALL GAL20V8B-15/-25: Typical AC and DC Characteristic Diagrams24 Specifications GAL20V8 Vol vs Iol Iol (mA) Vol (V) 0 0.5 1 1.5 2 0.00 20.00 40.00 60.00 80.00 100.00 Voh vs Ioh Ioh(mA) Voh (V) 0 1 2 3 4 5 0.00 10.00 20.00 30.00 40.00 50.00 60.00 Voh vs Ioh Ioh(mA) Voh (V) 3.25 3.5 3.75 4 4.25 0.00 1.00 2.00 3.00 4.00 Normalized Icc vs Vcc Supply Voltage (V) Normalized Icc 0.80 0.90 1.00 1.10 1.20 4.50 4.75 5.00 5.25 5.50 Normalized Icc vs Temp Temperature (deg. C) Normalized Icc 0.8 0.9 1 1.1 1.2 -55 -25 0 25 50 75 100 125 Normalized Icc vs Freq. Frequency (MHz) Normalized Icc 0.80 0.90 1.00 1.10 1.20 1.30 1.40 0 25 50 75 100 Delta Icc vs Vin (1 input) Vin (V) Delta Icc (mA) 0 2 4 6 8 10 12 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Input Clamp (Vik) Vik (V) Iik (mA) 0 10 20 30 40 50 60 70 80 90 100 -2.00 -1.50 -1.00 -0.50 0.00 GAL20V8B-15/-25: Typical AC and DC Characteristic DiagramsSpecifications GAL20V8 25 Revision History Date Version Change Summary - 20v8_06 Previous Lattice release. August 2006 20v8_07 Updated for lead-free package options. DATA SHEET Product specification File under Integrated Circuits, IC06 December 1990 INTEGRATED CIRCUITS 74HC/HCT237 3-to-8 line decoder/demultiplexer with address latches For a complete data sheet, please also download: •The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications •The IC06 74HC/HCT/HCU/HCMOS Logic Package Information •The IC06 74HC/HCT/HCU/HCMOS Logic Package OutlinesDecember 1990 2 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 FEATURES • Combines 3-to-8 decoder with 3-bit latch • Multiple input enable for easy expansion or independent controls • Active HIGH mutually exclusive outputs • Output capability: standard • I CC category: MSI GENERAL DESCRIPTION The 74HC/HCT237 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT237 are 3-to-8 line decoder/demultiplexers with latches at the three address inputs (An). The “237” essentially combines the 3-to-8 decoder function with a 3-bit storage latch. When the latch is enabled (LE = LOW), the “237” acts as a 3-to-8 active LOW decoder. When the latch enable (LE) goes from LOW-to-HIGH, the last data present at the inputs before this transition, is stored in the latches. Further address changes are ignored as long as LE remains HIGH. The output enable input (E1 and E2) controls the state of the outputs independent of the address inputs or latch operation. All outputs are HIGH unless E1 is LOW and E2 is HIGH. The “237” is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems. QUICK REFERENCE DATA GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns Notes 1. CPD is used to determine the dynamic power dissipation (PD in µW): P D = CPD × VCC2 × fi + ∑ (CL × VCC2 × f o) where: fi = input frequency in MHz f o = output frequency in MHz ∑ (CL × VCC2 × fo) = sum of outputs CL = output load capacitance in pF V CC = supply voltage in V 2. For HC the condition is VI = GND to VCC For HCT the condition is VI = GND to VCC − 1.5 V ORDERING INFORMATION See “74HC/HCT/HCU/HCMOS Logic Package Information”. SYMBOL PARAMETER CONDITIONS TYPICAL UNIT HC HCT t PHL / tPLH propagation delay CL = 15 pF; VCC = 5 V An to Yn 16 19 ns LE to Yn 19 21 ns E1 to Yn 14 17 ns E2 to Yn 14 17 ns CI input capacitance 3.5 3.5 pF CPD power dissipation capacitance per package notes 1 and 2 60 63 pFDecember 1990 3 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 PIN DESCRIPTION PIN NO. SYMBOL NAME AND FUNCTION 1, 2, 3 A0 to A2 data inputs 4 LE latch enable input (active LOW) 5 E1 data enable input (active LOW) 6 E2 data enable input (active HIGH) 8 GND ground (0 V) 15, 14, 13, 12, 11, 10, 9, 7 Y0 to Y7 multiplexer outputs 16 VCC positive supply voltage Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.December 1990 4 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 FUNCTION TABLE Notes 1. H = HIGH voltage level L = LOW voltage level X = don’t care INPUTS OUTPUTS LE E1 E2 A0 A1 A2 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 H L H X X X stable XHX XXX L L L L LLL L XX L XXX L L L L LLL L L L H L L L H L L L LLL L L L HHL L L H L L LLL L L L H LHL L L H L LLL L L L HHH L L L L HLLL L L L H L L H L L L LHLL L L L H H L H L L L L LHL L L L H L HH L L L L L LH L L L HHHH L L L L LLL H Fig.4 Functional diagram.December 1990 5 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 Fig.5 Logic diagram.December 1990 6 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 DC CHARACTERISTICS FOR 74HC For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”. Output capability: standard I CC category: MSI AC CHARACTERISTICS FOR 74HC GND = 0 V; tr = tf = 6 ns; CL = 50 pF SYMBOL PARAMETER Tamb (°C) UNIT TEST CONDITIONS 74HC V CC (V) WAVEFORMS +25 −40 to +85 −40 to +125 min. typ. max. min. max. min. max. t PHL/ tPLH propagation delay An to Yn 52 19 15 160 32 27 200 40 34 240 48 41 ns 2.0 4.5 6.0 Fig.6 t PHL/ tPLH propagation delay LE to Yn 61 22 18 190 38 32 240 48 41 285 57 48 ns 2.0 4.5 6.0 Fig.7 t PHL/ tPLH propagation delay E1 to Yn 47 17 14 145 29 25 180 36 31 220 44 38 ns 2.0 4.5 6.0 Fig.7 t PHL/ tPLH propagation delay E2 to Yn 47 17 14 145 29 25 180 36 31 220 44 38 ns 2.0 4.5 6.0 Fig.6 t THL/ tTLH output transition time 19 7 6 75 15 13 95 19 16 110 22 19 ns 2.0 4.5 6.0 Fig.6 t W LE pulse width LOW 50 10 9 11 4 3 65 13 11 75 15 13 ns 2.0 4.5 6.0 Fig.8 t su set-up time An to LE 50 10 9 6 2 2 65 13 11 75 15 13 ns 2.0 4.5 6.0 Fig.8 t h hold time An to LE 30 6 5 3 1 1 40 8 7 45 9 8 ns 2.0 4.5 6.0 Fig.8December 1990 7 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 DC CHARACTERISTICS FOR 74HCT For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”. Output capability: standard I CC category: MSI Note to HCT types The value of additional quiescent supply current (∆I CC) for a unit load of 1 is given in the family specifications. To determine ∆I CC per input, multiply this value by the unit load coefficient shown in the table below. AC CHARACTERISTICS FOR 74HCT GND = 0 V; tr = tf = 6 ns; CL = 50 pF INPUT UNIT LOAD COEFFICIENT An 1.50 E1 1.50 E2 1.50 LE 1.50 SYMBOL PARAMETER Tamb (°C) UNIT TEST CONDITIONS 74HCT V CC (V) WAVEFORMS +25 −40 to +85 −40 to +125 min. typ. max. min. max. min. max. t PHL/ tPLH propagation delay An to Yn 22 38 48 57 ns 4.5 Fig.6 t PHL/ tPLH propagation delay LE to Yn 25 42 53 63 ns 4.5 Fig.7 t PHL/ tPLH propagation delay E1 to Yn 20 35 44 53 ns 4.5 Fig.7 t PHL/ tPLH propagation delay E2 to Yn 20 33 41 50 ns 4.5 Fig.6 t THL/ tTLH output transition time 7 15 19 22 ns 4.5 Fig.6 t W LE pulse width HIGH 10 5 13 15 ns 4.5 Fig.8 t su set-up time An to LE 10 2 13 15 ns 4.5 Fig.8 t h hold time An to LE 5 0 5 5 ns 4.5 Fig.8December 1990 8 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 AC WAVEFORMS Fig.6 Waveforms showing the address input (An) and enable inputs (E2, LE) to output (Yn) propagation delays and the output transition times. (1) HC : VM = 50%; VI = GND to VCC . HCT: VM = 1.3 V; VI = GND to 3 V. Fig.7 Waveforms showing the enable input (E1) to output (Yn) propagation delays and the output transition times. (1) HC : VM = 50%; VI = GND to VCC . HCT: VM = 1.3 V; VI = GND to 3 V. Fig.8 Waveforms showing the data set-up, hold times for An input to LE input and the latch enable pulse width. The shaded areas indicate when the input is permitted to change for predictable output performance. (1) HC : VM = 50%; VI = GND to VCC . HCT: VM = 1.3 V; VI = GND to 3 V.December 1990 9 Philips Semiconductors Product specification 3-to-8 line decoder/demultiplexer with address latches 74HC/HCT237 APPLICATION INFORMATION PACKAGE OUTLINES See “74HC/HCT/HCU/HCMOS Logic Package Outlines”. Fig.9 6-to-64 line decoder with input address storage. August 12, 2008 DS10CP154A 1.5 Gbps 4x4 LVDS Crosspoint Switch General Description The DS10CP154A is a 1.5 Gbps 4x4 LVDS crosspoint switch optimized for high-speed signal routing and switching over FR-4 printed circuit board backplanes and balanced cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity. The non-blocking architecture allows connections of any input to any output or outputs. The switch configuration can be accomplished via external pins or the System Management Bus (SMBus) interface. In addition, the SMBus circuitry enables the loss of signal (LOS) monitors that can inform a system of the presence of an open inputs condition (e.g. disconnected cable). Wide input common mode range allows the switch to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires a minimal space on the board while the flow-through pinout allows easy board layout. Each differential input and output is internally terminated with a 100Ω resistor to lower return losses, reduce component count and further minimize board space. Features ■ DC - 1.5 Gbps low jitter, low skew, low power operation ■ Pin and SMBus configurable, fully differential, nonblocking architecture ■ Wide input common mode range enables DC coupled interface to CML or LVPECL drivers ■ LOS circuitry detects open inputs fault condition ■ On-chip 100 Ω input and output termination minimizes insertion and return losses, reduces component count and minimizes board space ■ 8 kV ESD on LVDS I/O pins protects adjoining components ■ Small 6 mm x 6 mm LLP-40 space saving package Applications ■ High-speed channel select applications ■ Clock and data buffering and muxing ■ SD / HD SDI Routers Typical Application 30073703 © 2008 National Semiconductor Corporation 300737 www.national.com DS10CP154A 1.5 Gbps 4x4 LVDS Crosspoint SwitchOrdering Code NSID Function DS10CP154ATSQ Crosspoint Switch Block Diagram 30073701 www.national.com 2 DS10CP154AConnection Diagram 30073702 DS10CP154A Pin Diagram 3 www.national.com DS10CP154APin Descriptions Pin Name Pin Number I/O, Type Pin Description IN0+, IN0- , IN1+, IN1-, IN2+, IN2-, IN3+, IN3- 1, 2, 4, 5, 6, 7, 9, 10 I, LVDS Inverting and non-inverting high speed LVDS input pins. OUT0+, OUT0-, OUT1+, OUT1-, OUT2+, OUT2-, OUT3+, OUT3- 29, 28, 27, 26, 24, 23, 22, 21 O, LVDS Inverting and non-inverting high speed LVDS output pins. EN_smb 17 I, LVCMOS System Management Bus (SMBus) mode enable pin. The pin has an internal 20k pull down. When the pin is set to a [1], the device is in the SMBus mode. All SMBus registers are reset when the pin is toggled. S00/SCL, S01/SDA 37, 36 I/O, LVCMOS For EN_smb = [1], these pins select which LVDS input is routed to the OUT0. In the SMBus mode, when the EN_smb = [1], these pins are the SMBus clock input and data I/O pins respectively. S10/ADDR0, S11/ADDR1 35, 34 I/O, LVCMOS For EN_smb = [0], these pins select which LVDS input is routed to the OUT1. In the SMBus mode, when the EN_smb = [1], these pins are the User-Set SMBus Slave Address inputs. S20/ADDR2, S21/ADDR3 33, 32 I/O, LVCMOS For EN_smb = [0], these pins select which LVDS input is routed to the OUT2. In the SMBus mode, when the EN_smb = [1], these pins are the User-Set SMBus Slave Address inputs. S30, S31 13, 14 I, LVCMOS For EN_smb = [0], these pins select which LVDS input is routed to the OUT3. In the SMBus mode, when the EN_smb = [1], these pins are nonfunctional and should be tied to either logic [0] or [1]. PWDN 38 I, LVCMOS For EN_smb = [0], this is the power down pin. When the PWDN is set to a [0], the device is in the power down mode. The SMBus circuitry can still be accessed provided the EN_smb pin is set to a [1]. In the SMBus mode, the device is powered up by either setting the PWDN pin to [1] OR by writing a [1] to the Control Register D[7] bit ( SoftPWDN). The device will be powered down by setting the PWDN pin to [0] AND by writing a [0] to the Control Register D[7] bit ( SoftPWDN). NC 11, 12, 18, 19, 20, 31, 39, 40 No connect pins. May be left floating. VDD 3, 8, 15,25, 30 Power Power supply pins. GND 16, DAP Power Ground pin and pad (DAP - die attach pad). www.national.com 4 DS10CP154AAbsolute Maximum Ratings (Note 4) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage −0.3V to +4V LVCMOS Input Voltage −0.3V to (VCC + 0.3V) LVCMOS Output Voltage −0.3V to (VCC + 0.3V) LVDS Input Voltage −0.3V to +4V LVDS Differential Input Voltage 0V to 1.0V LVDS Output Voltage −0.3V to (VCC + 0.3V) LVDS Differential Output Voltage 0V to 1.0V LVDS Output Short Circuit Current Duration 5 ms Junction Temperature +150°C Storage Temperature Range −65°C to +150°C Lead Temperature Range Soldering (4 sec.) +260°C Maximum Package Power Dissipation at 25°C SQA Package 4.65W Derate SQA Package 37.2 mW/°C above +25°C Package Thermal Resistance  θJA +26.9°C/W  θJC +3.8°C/W ESD Susceptibility HBM (Note 1) ≥8 kV MM (Note 2) ≥250V CDM (Note 3) ≥1250V Note 1: Human Body Model, applicable std. JESD22-A114C Note 2: Machine Model, applicable std. JESD22-A115-A Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C Recommended Operating Conditions Min Typ Max Units Supply Voltage (VCC) 3.0 3.3 3.6 V Receiver Differential Input Voltage (VID) 0 1.0 V Operating Free Air Temperature (TA ) −40 +25 +85 °C SMBus (SDA, SCL) 3.6 V Electrical Characteristics Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 5, 6, 7) Symbol Parameter Conditions Min Typ Max Units LVCMOS DC SPECIFICATIONS VIH High Level Input Voltage 2.0 VDD V VIL Low Level Input Voltage GND 0.8 V I IH High Level Input Current VIN = 3.6V VCC = 3.6V 0 ±10 μA EN_smb pin 40 175 250 μA I IL Low Level Input Current VIN = GND VCC = 3.6V 0 ±10 μA VCL Input Clamp Voltage ICL = −18 mA, VCC = 0V −0.9 −1.5 V VOL Low Level Output Voltage IOL= 4 mA SDA pin 0.4 V LVDS INPUT DC SPECIFICATIONS VID Input Differential Voltage 0 1 V VTH Differential Input High Threshold VCM = +0.05V or VCC-0.05V 0 +100 mV VTL Differential Input Low Threshold −100 0 mV VCMR Common Mode Voltage Range VID = 100 mV 0.05 VCC - 0.05 V I IN Input Current VIN = 3.6V or 0V VCC = 3.6V or 0V ±1 ±10 μA CIN Input Capacitance Any LVDS Input Pin to GND 1.7 pF RIN Input Termination Resistor Between IN+ and IN- 100 Ω 5 www.national.com DS10CP154ASymbol Parameter Conditions Min Typ Max Units LVDS OUTPUT DC SPECIFICATIONS VOD Differential Output Voltage RL = 100Ω 250 350 450 mV ΔVOD Change in Magnitude of VOD for Complimentary Output States -35 35 mV VOS Offset Voltage RL = 100Ω 1.05 1.2 1.375 V ΔVOS Change in Magnitude of VOS for Complimentary Output States -35 35 mV IOS Output Short Circuit Current (Note 8) OUT to GND -25 -55 mA OUT to VCC 7 55 mA COUT Output Capacitance Any LVDS Output Pin to GND 1.2 pF ROUT Output Termination Resistor Between OUT+ and OUT- 100 Ω SUPPLY CURRENT ICC1 Supply Current PWDN = 0 40 50 mA ICC2 Supply Current PWDN = 1 Broadcast Mode (1:4) 103 125 mA ICC3 Supply Current PWDN = 1 Quad Buffer Mode (4:4) 115 140 mA Note 4: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Note 5: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 6: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except VOD and ΔVOD. Note 7: Typical values represent most likely parametric norms for VCC = +3.3V and TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Note 8: Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. www.national.com 6 DS10CP154AAC Electrical Characteristics Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 9, 10) Symbol Parameter Conditions Min Typ Max Units LVDS OUTPUT AC SPECIFICATIONS (Note 11) tPLHD Differential Propagation Delay Low to High RL = 100Ω 500 675 ps tPHLD Differential Propagation Delay High to Low 460 675 ps tSKD1 Pulse Skew |tPLHD − tPHLD| , (Note 12) 40 100 ps tSKD2 Channel to Channel Skew , (Note 13) 40 125 ps tSKD3 Part to Part Skew , (Note 14) 50 225 ps tLHT Rise Time RL = 100Ω 145 350 ps tHLT Fall Time 145 350 ps tON Power Up Time Time from PWDN = LH to OUTn active 7 20 μs tOFF Power Down Time Time from PWDN = HL to OUTn inactive 6 25 ns tSEL Select Time Time from Sn = LH or HL to new signal at OUTn 8 12 ns JITTER PERFORMANCE (Note 11) tRJ1 Random Jitter (RMS Value) (Note 15) VID = 350 mV VCM = 1.2V Clock (RZ) 135 MHz 1 2.0 ps tRJ2 311 MHz 0.5 1.2 ps tRJ3 503 MHz 0.5 1.0 ps tRJ4 750 MHz 0.5 1.0 ps tDJ1 Deterministic Jitter (Peak to Peak Value) (Note 16) VID = 350 mV VCM = 1.2V K28.5 (NRZ) 270 Mbps 7 30 ps tDJ2 622 Mbps 12 26 ps tDJ3 1.06 Gbps 9 24 ps tDJ4 1.5 Gbps 12 28 ps tTJ1 Total Jitter (Peak to Peak Value) (Note 17) VID = 350 mV VCM = 1.2V PRBS-23 (NRZ) 270 mbps 0.008 0.036 UIP-P tTJ2 622 Mbps 0.007 0.043 UIP-P tTJ3 1.06Gbps 0.008 0.064 UIP-P tTJ4 1.5 Gbps 0.007 0.072 UIP-P 7 www.national.com DS10CP154ASymbol Parameter Conditions Min Typ Max Units SMBus AC SPECIFICATIONS fSMB SMBus Operating Frequency 10 100 kHz tBUF Bus free time between Stop and Start Conditions 4.7 μs tHD:SDA Hold time after (Repeated) Start Condition. After this period, the first clock is generated. 4.0 μs tSU:SDA Repeated Start Condition setup time. 4.7 μs tSU:SDO Stop Condition setup time 4.0 μs tHD:DAT Data hold time 300 ns tSU:DAT Data setup time 250 ns tTIMEOUT Detect clock low timeout 25 35 ms tLOW Clock low period 4.7 μs tHIGH Clock high period 4.0 50 μs tPOR Time in which a device must be operational after power-on reset 500 ms Note 9: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 10: Typical values represent most likely parametric norms for VCC = +3.3V and TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Note 11: Specification is guaranteed by characterization and is not tested in production. Note 12: tSKD1, |tPLHD − tPHLD|, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. Note 13: tSKD2, Channel to Channel Skew, is the difference in propagation delay (tPLHD or tPHLD) among all output channels in Broadcast mode (any one input to all outputs). Note 14: tSKD3, Part to Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same VCC and within 5°C of each other within the operating temperature range. Note 15: Measured on a clock edge with a histogram and an acummulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically. Note 16: Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically. Note 17: Measured on an eye diagram with a histogram and an acummulation of 3500 histogram hits. Input stimulus jitter is subtracted. www.national.com 8 DS10CP154ADC Test Circuits 30073720 FIGURE 1. Differential Driver DC Test Circuit AC Test Circuits and Timing Diagrams 30073721 FIGURE 2. Differential Driver AC Test Circuit 30073722 FIGURE 3. Propagation Delay Timing Diagram 30073723 FIGURE 4. LVDS Output Transition Times 9 www.national.com DS10CP154AFunctional Description The DS10CP154A is a 1.5 Gbps 4x4 LVDS digital crosspoint switch optimized for high-speed signal routing and switching over lossy FR-4 printed circuit board backplanes and balanced cables. The DS10CP154A operates in two modes: Pin Mode (EN_smb = 0) and SMBus Mode (EN_smb = 1). When in the Pin Mode, the switch is fully configurable with external pins. This is possible with two input select pins per output (e.g. S00 and S01 pins for OUT0). In the Pin Mode, feedback from the LOS (Loss Of Signal) monitor circuitry is not available (there is not an LOS output pin). When in the SMBus Mode, the full switch configuration and SoftPWDN can be programmed via the SMBus interface. In addition, by using the SMBus interface, a user can obtain the feedback from the built-in LOS circuitry which detects an open inputs fault condition. In the SMBus Mode, the S00 and S01 pins become SMBus clock (SCL) input and data (SDA) input pins respectively; the S10, S11, S21 and S21 pins become the User-Set SMBus Slave Address input pins (ADDR0, 1, 2 and 3) while the S30 and S31 pins become non-functional (tieing these two pins to either H or L is recommended if the device will function only in the SMBus mode). In the SMBus Mode, the PWDN pin remains functional. How this pin functions in each mode is detailed in the following sections. DS10CP154A OPERATION IN THE PIN MODE Power Up In the Pin Mode, when the power is applied to the device power suppy pins, the DS10CP154A enters the Power Up mode when the PWDN pin is set to logic H. When in the Power Down mode (PWDN pin is set to logic L), all circuitry is shut down except the minimum required circuitry for the LOS and SMBus Slave operation. Switch Configuration In the Pin Mode, the DS10CP154A operates as a fully pinconfigurable crosspoint switch. The following truth tables illustrate how the swich can be configured with external pins. Switch Configuration Truth Tables TABLE 1. Input Select Pins Configuration for the Output OUT0 S01 S00 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 TABLE 2. Input Select Pins Configuration for the Output OUT1 S11 S10 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 www.national.com 10 DS10CP154ATABLE 3. Input Select Pins Configuration for the Output OUT2 S21 S20 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 TABLE 4. Input Select Pins Configuration for the Output OUT3 S31 S30 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 DS10CP154A OPERATION IN THE SMBUS MODE The DS10CP154A operates as a slave on the System Management Bus (SMBus) when the EN_smb pin is set to a high (1). Under these conditions, the SCL pin is a clock input while the SDA pin is a serial data input pin. Device Address Based on the SMBus 2.0 specification, the DS10CP154A has a 7-bit slave address. The three most significant bits of the slave address are hard wired inside the DS10CP154A and are “101”. The four least significant bits of the address are assigned to pins ADDR3-ADDR0 and are set by connecting these pins to GND for a low (0) or to VCC for a high (1). The complete slave address is shown in the following table: TABLE 5. DS10CP154A Slave Address 1 0 1 ADDR3 ADDR2 ADDR1 ADDR0 MSB LSB This slave address configuration allows up to sixteen DS10CP154A devices on a single SMBus bus. Transfer of Data via the SMBus During normal operation the data on SDA must be stable during the time when SCK is high. There are three unique states for the SMBus: START: A HIGH to LOW transition on SDA while SCK is high indicates a message START condition. STOP: A LOW to HIGH transition on SDA while SCK is high indicates a message STOP condition. IDLE: If SCK and SDA are both high for a time exceeding tBUF from the last detected STOP condition or if they are high for a total exceeding the maximum specification for tHIGH then the bus will transfer to the IDLE state. SMBus Transactions A transaction begins with the host placing the DS10CP154A SMBus into the START condition, then a byte (8 bits) is transferred, MSB first, followed by a ninth ACK bit. ACK bits are ‘0’ to signify an ACK, or ‘1’ to signify NACK, after this the host holds the SCL line low, and waits for the receiver to raise the SDA line as an ACKnowledge that the byte has been received. Writing to a Register To write a register, the following protocol is used (see SMBus 2.0 specification): 1) The Host drives a START condition, the 7-bit SMBus address, and a “0” indicating a WRITE. 2) The Device (Slave) drives an ACK bit (“0”). 3) The Host drives the 8-bit Register Address. 4) The Device drives an ACK bit (“0”). 5) The Host drives the 8-bit data byte. 6) The Device drives an ACK bit “0”. 7) The Host drives a STOP condition. The WRITE transaction is completed, the bus goes Idle and communication with other SMBus devices may now occur. Reading From a Register To read a register, the following protocol is used (see SMBus 2.0 specification): 1) The Host drives a START condition, the 7-bit SMBus address, and a “0” indicating a WRITE. 2) The Device (Slave) drives an ACK bit (“0”). 3) The Host drives the 8-bit Register Address. 4) The Device drives an ACK bit (“0”). 5) The Host drives a START condition. 6) The Host drives the 7-bit SMBus Address, and a “1” indicating a READ. 7) The Device drives an ACK bit “0”. 8) The Device drives the 8-bit data value (register contents). 9) The Host drives a NACK bit “1” indicating end of READ transfer. 10) The Host drives a STOP condition. The READ transaction is completed, the bus goes Idle and communication with other SMBus devices may now occur. 11 www.national.com DS10CP154AREGISTER DESCRIPTIONS There are three data registers in the DS10CP154A accessible via the SMBus interface. TABLE 6. DS10CP154A SMBus Data Registers Address (hex) Name Access Description 0 Switch Configuration R/W Switch Configuration Register 3 Control R/W Powerdown, LOS Enable and Pin Control Register 4 LOS RO Loss Of Signal (LOS) Reporting Register 30073710 FIGURE 5. DS10CP154A Registers Block Diagram www.national.com 12 DS10CP154ASwitch Configuration Register The Switch Configuration register is utilized to configure the switch. The following two tables show the Switch Configuration Register mapping and associated truth table. Bit Default Bit Name Access Description D[1:0] 00 Input Select 0 R/W Selects which input is routed to the OUT0. D[3:2] 00 Input Select 1 R/W Selects which input is routed to the OUT1. D[5:4] 00 Input Select 2 R/W Selects which input is routed to the OUT2. D[7:6] 00 Input Select 3 R/W Selects which input is routed to the OUT3. TABLE 7. Switch Configuration Register Truth Table D1 D0 Input Routed to the OUT0 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 The truth tables for the OUT1, OUT2, and OUT3 outputs are identical to this table. The switch configuration logic has a SmartPWDN circuitry which automatically optimizes the device's power consumption based on the switch configuration (i.e. It places unused I/O blocks and other unused circuitry in the power down state). 13 www.national.com DS10CP154AControl Register The Control register enables SoftPWDN control, individual output power down (PWDNn) control and LOS Circuitry Enable control via the SMBus. The following table shows the register mapping. Bit Default Bit Name Access Description D[3:0] 1111 PWDNn R/W Writing a [0] to the bit D[n] will power down the output OUTn when either the PWDN pin OR the Control Register bit D[7] (SoftPWDN) is set to a high [1]. D[4] x n/a R/W Undefined. D[5] x n/a R/W Undefined. D[6] 0 EN_LOS R/W Writing a [1] to the bit D[6] will enable the LOS circuitry and receivers on all four inputs. The SmartPWDN circuitry will not disable any of the inputs nor any supporting LOS circuitry depending on the switch configuration. D[7] 0 SoftPWDN R/W Writing a [0] to the bit D[7] will place the device into the power down mode. This pin is ORed together with the PWDN pin. TABLE 8. DS10CP154A Power Modes Truth Table PWDN SoftPWDN PWDNn DS25CP104 Power Mode 0 0 x Power Down Mode. In this mode, all circuitry is shut down except the minimum required circuitry for the LOS and SMBus Slave operation. The SMBus circuitry allows enabling the LOS circuitry and receivers on all inputs in this mode by setting the EN_LOS bit to a [1]. 0 1 1 1 0 1 x x x Power Up Mode. In this mode, the SmartPWDN circuitry will automatically power down any unused I/O and logic blocks and other supporting circuitry depending on the switch configuration. An output will be enabled only when the SmartPWDN circuitry indicates that that particular output is needed for the particular switch configuration and the respective PWDNn bit has logic high [1]. An input will be enabled when the SmartPWDN circuitry indicates that that particular input is needed for the particular switch configuration or the EN_LOS bit is set to a [1]. LOS Register The LOS register reports an open inputs fault condition for each of the inputs. The following table shows the register mapping. Bit Default Bit Name Access Description D[0] 0 LOS0 RO Reading a [0] from the bit D[0] indicates an open inputs fault condition on the IN0. A [1] indicates presence of a valid signal. D[1] 0 LOS1 RO Reading a [0] from the bit D[1] indicates an open inputs fault condition on the IN1. A [1] indicates presence of a valid signal. D[2] 0 LOS2 RO Reading a [0] from the bit D[2] indicates an open inputs fault condition on the IN2. A [1] indicates presence of a valid signal. D[3] 0 LOS3 RO Reading a [0] from the bit D[3] indicates an open inputs fault condition on the IN3. A [1] indicates presence of a valid signal. D[7:4] 0000 Reserved RO Reserved for future use. Returns undefined value when read. www.national.com 14 DS10CP154AINPUT INTERFACING The DS10CP154A accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the DS10CP154A can be DC-coupled with all common differential drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS10CP154A inputs are internally terminated with a 100Ω resistor. 30073731 Typical LVDS Driver DC-Coupled Interface to DS10CP154A Input 30073732 Typical CML Driver DC-Coupled Interface to DS10CP154A Input 30073733 Typical LVPECL Driver DC-Coupled Interface to DS10CP154A Input 15 www.national.com DS10CP154AOUTPUT INTERFACING The DS10CP154A outputs signals that are compliant to the LVDS standard. Its outputs can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accomodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation. 30073734 Typical DS10CP154A Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver www.national.com 16 DS10CP154APhysical Dimensions inches (millimeters) unless otherwise noted Order Number DS10CP154ATSQ NS Package Number SQA40A (See AN-1187 for PCB Design and Assembly Recommendations) 17 www.national.com DS10CP154ANotes DS10CP154A 1.5 Gbps 4x4 LVDS Crosspoint Switch For more National Semiconductor product information and proven design tools, visit the following Web sites at: Products Design Support Amplifiers www.national.com/amplifiers WEBENCH www.national.com/webench Audio www.national.com/audio Analog University www.national.com/AU Clock Conditioners www.national.com/timing App Notes www.national.com/appnotes Data Converters www.national.com/adc Distributors www.national.com/contacts Displays www.national.com/displays Green Compliance www.national.com/quality/green Ethernet www.national.com/ethernet Packaging www.national.com/packaging Interface www.national.com/interface Quality and Reliability www.national.com/quality LVDS www.national.com/lvds Reference Designs www.national.com/refdesigns Power Management www.national.com/power Feedback www.national.com/feedback Switching Regulators www.national.com/switchers LDOs www.national.com/ldo LED Lighting www.national.com/led PowerWise www.national.com/powerwise Serial Digital Interface (SDI) www.national.com/sdi Temperature Sensors www.national.com/tempsensors Wireless (PLL/VCO) www.national.com/wireless THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders. Copyright© 2008 National Semiconductor Corporation For the most current product information visit us at www.national.com National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com www.national.com http://www.farnell.com/datasheets August 12, 2008 DS10CP154A 1.5 Gbps 4x4 LVDS Crosspoint Switch General Description The DS10CP154A is a 1.5 Gbps 4x4 LVDS crosspoint switch optimized for high-speed signal routing and switching over FR-4 printed circuit board backplanes and balanced cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity. The non-blocking architecture allows connections of any input to any output or outputs. The switch configuration can be accomplished via external pins or the System Management Bus (SMBus) interface. In addition, the SMBus circuitry enables the loss of signal (LOS) monitors that can inform a system of the presence of an open inputs condition (e.g. disconnected cable). Wide input common mode range allows the switch to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires a minimal space on the board while the flow-through pinout allows easy board layout. Each differential input and output is internally terminated with a 100Ω resistor to lower return losses, reduce component count and further minimize board space. Features ■ DC - 1.5 Gbps low jitter, low skew, low power operation ■ Pin and SMBus configurable, fully differential, nonblocking architecture ■ Wide input common mode range enables DC coupled interface to CML or LVPECL drivers ■ LOS circuitry detects open inputs fault condition ■ On-chip 100 Ω input and output termination minimizes insertion and return losses, reduces component count and minimizes board space ■ 8 kV ESD on LVDS I/O pins protects adjoining components ■ Small 6 mm x 6 mm LLP-40 space saving package Applications ■ High-speed channel select applications ■ Clock and data buffering and muxing ■ SD / HD SDI Routers Typical Application 30073703 © 2008 National Semiconductor Corporation 300737 www.national.com DS10CP154A 1.5 Gbps 4x4 LVDS Crosspoint SwitchOrdering Code NSID Function DS10CP154ATSQ Crosspoint Switch Block Diagram 30073701 www.national.com 2 DS10CP154AConnection Diagram 30073702 DS10CP154A Pin Diagram 3 www.national.com DS10CP154APin Descriptions Pin Name Pin Number I/O, Type Pin Description IN0+, IN0- , IN1+, IN1-, IN2+, IN2-, IN3+, IN3- 1, 2, 4, 5, 6, 7, 9, 10 I, LVDS Inverting and non-inverting high speed LVDS input pins. OUT0+, OUT0-, OUT1+, OUT1-, OUT2+, OUT2-, OUT3+, OUT3- 29, 28, 27, 26, 24, 23, 22, 21 O, LVDS Inverting and non-inverting high speed LVDS output pins. EN_smb 17 I, LVCMOS System Management Bus (SMBus) mode enable pin. The pin has an internal 20k pull down. When the pin is set to a [1], the device is in the SMBus mode. All SMBus registers are reset when the pin is toggled. S00/SCL, S01/SDA 37, 36 I/O, LVCMOS For EN_smb = [1], these pins select which LVDS input is routed to the OUT0. In the SMBus mode, when the EN_smb = [1], these pins are the SMBus clock input and data I/O pins respectively. S10/ADDR0, S11/ADDR1 35, 34 I/O, LVCMOS For EN_smb = [0], these pins select which LVDS input is routed to the OUT1. In the SMBus mode, when the EN_smb = [1], these pins are the User-Set SMBus Slave Address inputs. S20/ADDR2, S21/ADDR3 33, 32 I/O, LVCMOS For EN_smb = [0], these pins select which LVDS input is routed to the OUT2. In the SMBus mode, when the EN_smb = [1], these pins are the User-Set SMBus Slave Address inputs. S30, S31 13, 14 I, LVCMOS For EN_smb = [0], these pins select which LVDS input is routed to the OUT3. In the SMBus mode, when the EN_smb = [1], these pins are nonfunctional and should be tied to either logic [0] or [1]. PWDN 38 I, LVCMOS For EN_smb = [0], this is the power down pin. When the PWDN is set to a [0], the device is in the power down mode. The SMBus circuitry can still be accessed provided the EN_smb pin is set to a [1]. In the SMBus mode, the device is powered up by either setting the PWDN pin to [1] OR by writing a [1] to the Control Register D[7] bit ( SoftPWDN). The device will be powered down by setting the PWDN pin to [0] AND by writing a [0] to the Control Register D[7] bit ( SoftPWDN). NC 11, 12, 18, 19, 20, 31, 39, 40 No connect pins. May be left floating. VDD 3, 8, 15,25, 30 Power Power supply pins. GND 16, DAP Power Ground pin and pad (DAP - die attach pad). www.national.com 4 DS10CP154AAbsolute Maximum Ratings (Note 4) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage −0.3V to +4V LVCMOS Input Voltage −0.3V to (VCC + 0.3V) LVCMOS Output Voltage −0.3V to (VCC + 0.3V) LVDS Input Voltage −0.3V to +4V LVDS Differential Input Voltage 0V to 1.0V LVDS Output Voltage −0.3V to (VCC + 0.3V) LVDS Differential Output Voltage 0V to 1.0V LVDS Output Short Circuit Current Duration 5 ms Junction Temperature +150°C Storage Temperature Range −65°C to +150°C Lead Temperature Range Soldering (4 sec.) +260°C Maximum Package Power Dissipation at 25°C SQA Package 4.65W Derate SQA Package 37.2 mW/°C above +25°C Package Thermal Resistance  θJA +26.9°C/W  θJC +3.8°C/W ESD Susceptibility HBM (Note 1) ≥8 kV MM (Note 2) ≥250V CDM (Note 3) ≥1250V Note 1: Human Body Model, applicable std. JESD22-A114C Note 2: Machine Model, applicable std. JESD22-A115-A Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C Recommended Operating Conditions Min Typ Max Units Supply Voltage (VCC) 3.0 3.3 3.6 V Receiver Differential Input Voltage (VID) 0 1.0 V Operating Free Air Temperature (TA ) −40 +25 +85 °C SMBus (SDA, SCL) 3.6 V Electrical Characteristics Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 5, 6, 7) Symbol Parameter Conditions Min Typ Max Units LVCMOS DC SPECIFICATIONS VIH High Level Input Voltage 2.0 VDD V VIL Low Level Input Voltage GND 0.8 V I IH High Level Input Current VIN = 3.6V VCC = 3.6V 0 ±10 μA EN_smb pin 40 175 250 μA I IL Low Level Input Current VIN = GND VCC = 3.6V 0 ±10 μA VCL Input Clamp Voltage ICL = −18 mA, VCC = 0V −0.9 −1.5 V VOL Low Level Output Voltage IOL= 4 mA SDA pin 0.4 V LVDS INPUT DC SPECIFICATIONS VID Input Differential Voltage 0 1 V VTH Differential Input High Threshold VCM = +0.05V or VCC-0.05V 0 +100 mV VTL Differential Input Low Threshold −100 0 mV VCMR Common Mode Voltage Range VID = 100 mV 0.05 VCC - 0.05 V I IN Input Current VIN = 3.6V or 0V VCC = 3.6V or 0V ±1 ±10 μA CIN Input Capacitance Any LVDS Input Pin to GND 1.7 pF RIN Input Termination Resistor Between IN+ and IN- 100 Ω 5 www.national.com DS10CP154ASymbol Parameter Conditions Min Typ Max Units LVDS OUTPUT DC SPECIFICATIONS VOD Differential Output Voltage RL = 100Ω 250 350 450 mV ΔVOD Change in Magnitude of VOD for Complimentary Output States -35 35 mV VOS Offset Voltage RL = 100Ω 1.05 1.2 1.375 V ΔVOS Change in Magnitude of VOS for Complimentary Output States -35 35 mV IOS Output Short Circuit Current (Note 8) OUT to GND -25 -55 mA OUT to VCC 7 55 mA COUT Output Capacitance Any LVDS Output Pin to GND 1.2 pF ROUT Output Termination Resistor Between OUT+ and OUT- 100 Ω SUPPLY CURRENT ICC1 Supply Current PWDN = 0 40 50 mA ICC2 Supply Current PWDN = 1 Broadcast Mode (1:4) 103 125 mA ICC3 Supply Current PWDN = 1 Quad Buffer Mode (4:4) 115 140 mA Note 4: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Note 5: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 6: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except VOD and ΔVOD. Note 7: Typical values represent most likely parametric norms for VCC = +3.3V and TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Note 8: Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. www.national.com 6 DS10CP154AAC Electrical Characteristics Over recommended operating supply and temperature ranges unless otherwise specified. (Notes 9, 10) Symbol Parameter Conditions Min Typ Max Units LVDS OUTPUT AC SPECIFICATIONS (Note 11) tPLHD Differential Propagation Delay Low to High RL = 100Ω 500 675 ps tPHLD Differential Propagation Delay High to Low 460 675 ps tSKD1 Pulse Skew |tPLHD − tPHLD| , (Note 12) 40 100 ps tSKD2 Channel to Channel Skew , (Note 13) 40 125 ps tSKD3 Part to Part Skew , (Note 14) 50 225 ps tLHT Rise Time RL = 100Ω 145 350 ps tHLT Fall Time 145 350 ps tON Power Up Time Time from PWDN = LH to OUTn active 7 20 μs tOFF Power Down Time Time from PWDN = HL to OUTn inactive 6 25 ns tSEL Select Time Time from Sn = LH or HL to new signal at OUTn 8 12 ns JITTER PERFORMANCE (Note 11) tRJ1 Random Jitter (RMS Value) (Note 15) VID = 350 mV VCM = 1.2V Clock (RZ) 135 MHz 1 2.0 ps tRJ2 311 MHz 0.5 1.2 ps tRJ3 503 MHz 0.5 1.0 ps tRJ4 750 MHz 0.5 1.0 ps tDJ1 Deterministic Jitter (Peak to Peak Value) (Note 16) VID = 350 mV VCM = 1.2V K28.5 (NRZ) 270 Mbps 7 30 ps tDJ2 622 Mbps 12 26 ps tDJ3 1.06 Gbps 9 24 ps tDJ4 1.5 Gbps 12 28 ps tTJ1 Total Jitter (Peak to Peak Value) (Note 17) VID = 350 mV VCM = 1.2V PRBS-23 (NRZ) 270 mbps 0.008 0.036 UIP-P tTJ2 622 Mbps 0.007 0.043 UIP-P tTJ3 1.06Gbps 0.008 0.064 UIP-P tTJ4 1.5 Gbps 0.007 0.072 UIP-P 7 www.national.com DS10CP154ASymbol Parameter Conditions Min Typ Max Units SMBus AC SPECIFICATIONS fSMB SMBus Operating Frequency 10 100 kHz tBUF Bus free time between Stop and Start Conditions 4.7 μs tHD:SDA Hold time after (Repeated) Start Condition. After this period, the first clock is generated. 4.0 μs tSU:SDA Repeated Start Condition setup time. 4.7 μs tSU:SDO Stop Condition setup time 4.0 μs tHD:DAT Data hold time 300 ns tSU:DAT Data setup time 250 ns tTIMEOUT Detect clock low timeout 25 35 ms tLOW Clock low period 4.7 μs tHIGH Clock high period 4.0 50 μs tPOR Time in which a device must be operational after power-on reset 500 ms Note 9: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 10: Typical values represent most likely parametric norms for VCC = +3.3V and TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Note 11: Specification is guaranteed by characterization and is not tested in production. Note 12: tSKD1, |tPLHD − tPHLD|, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. Note 13: tSKD2, Channel to Channel Skew, is the difference in propagation delay (tPLHD or tPHLD) among all output channels in Broadcast mode (any one input to all outputs). Note 14: tSKD3, Part to Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same VCC and within 5°C of each other within the operating temperature range. Note 15: Measured on a clock edge with a histogram and an acummulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically. Note 16: Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically. Note 17: Measured on an eye diagram with a histogram and an acummulation of 3500 histogram hits. Input stimulus jitter is subtracted. www.national.com 8 DS10CP154ADC Test Circuits 30073720 FIGURE 1. Differential Driver DC Test Circuit AC Test Circuits and Timing Diagrams 30073721 FIGURE 2. Differential Driver AC Test Circuit 30073722 FIGURE 3. Propagation Delay Timing Diagram 30073723 FIGURE 4. LVDS Output Transition Times 9 www.national.com DS10CP154AFunctional Description The DS10CP154A is a 1.5 Gbps 4x4 LVDS digital crosspoint switch optimized for high-speed signal routing and switching over lossy FR-4 printed circuit board backplanes and balanced cables. The DS10CP154A operates in two modes: Pin Mode (EN_smb = 0) and SMBus Mode (EN_smb = 1). When in the Pin Mode, the switch is fully configurable with external pins. This is possible with two input select pins per output (e.g. S00 and S01 pins for OUT0). In the Pin Mode, feedback from the LOS (Loss Of Signal) monitor circuitry is not available (there is not an LOS output pin). When in the SMBus Mode, the full switch configuration and SoftPWDN can be programmed via the SMBus interface. In addition, by using the SMBus interface, a user can obtain the feedback from the built-in LOS circuitry which detects an open inputs fault condition. In the SMBus Mode, the S00 and S01 pins become SMBus clock (SCL) input and data (SDA) input pins respectively; the S10, S11, S21 and S21 pins become the User-Set SMBus Slave Address input pins (ADDR0, 1, 2 and 3) while the S30 and S31 pins become non-functional (tieing these two pins to either H or L is recommended if the device will function only in the SMBus mode). In the SMBus Mode, the PWDN pin remains functional. How this pin functions in each mode is detailed in the following sections. DS10CP154A OPERATION IN THE PIN MODE Power Up In the Pin Mode, when the power is applied to the device power suppy pins, the DS10CP154A enters the Power Up mode when the PWDN pin is set to logic H. When in the Power Down mode (PWDN pin is set to logic L), all circuitry is shut down except the minimum required circuitry for the LOS and SMBus Slave operation. Switch Configuration In the Pin Mode, the DS10CP154A operates as a fully pinconfigurable crosspoint switch. The following truth tables illustrate how the swich can be configured with external pins. Switch Configuration Truth Tables TABLE 1. Input Select Pins Configuration for the Output OUT0 S01 S00 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 TABLE 2. Input Select Pins Configuration for the Output OUT1 S11 S10 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 www.national.com 10 DS10CP154ATABLE 3. Input Select Pins Configuration for the Output OUT2 S21 S20 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 TABLE 4. Input Select Pins Configuration for the Output OUT3 S31 S30 INPUT SELECTED 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 DS10CP154A OPERATION IN THE SMBUS MODE The DS10CP154A operates as a slave on the System Management Bus (SMBus) when the EN_smb pin is set to a high (1). Under these conditions, the SCL pin is a clock input while the SDA pin is a serial data input pin. Device Address Based on the SMBus 2.0 specification, the DS10CP154A has a 7-bit slave address. The three most significant bits of the slave address are hard wired inside the DS10CP154A and are “101”. The four least significant bits of the address are assigned to pins ADDR3-ADDR0 and are set by connecting these pins to GND for a low (0) or to VCC for a high (1). The complete slave address is shown in the following table: TABLE 5. DS10CP154A Slave Address 1 0 1 ADDR3 ADDR2 ADDR1 ADDR0 MSB LSB This slave address configuration allows up to sixteen DS10CP154A devices on a single SMBus bus. Transfer of Data via the SMBus During normal operation the data on SDA must be stable during the time when SCK is high. There are three unique states for the SMBus: START: A HIGH to LOW transition on SDA while SCK is high indicates a message START condition. STOP: A LOW to HIGH transition on SDA while SCK is high indicates a message STOP condition. IDLE: If SCK and SDA are both high for a time exceeding tBUF from the last detected STOP condition or if they are high for a total exceeding the maximum specification for tHIGH then the bus will transfer to the IDLE state. SMBus Transactions A transaction begins with the host placing the DS10CP154A SMBus into the START condition, then a byte (8 bits) is transferred, MSB first, followed by a ninth ACK bit. ACK bits are ‘0’ to signify an ACK, or ‘1’ to signify NACK, after this the host holds the SCL line low, and waits for the receiver to raise the SDA line as an ACKnowledge that the byte has been received. Writing to a Register To write a register, the following protocol is used (see SMBus 2.0 specification): 1) The Host drives a START condition, the 7-bit SMBus address, and a “0” indicating a WRITE. 2) The Device (Slave) drives an ACK bit (“0”). 3) The Host drives the 8-bit Register Address. 4) The Device drives an ACK bit (“0”). 5) The Host drives the 8-bit data byte. 6) The Device drives an ACK bit “0”. 7) The Host drives a STOP condition. The WRITE transaction is completed, the bus goes Idle and communication with other SMBus devices may now occur. Reading From a Register To read a register, the following protocol is used (see SMBus 2.0 specification): 1) The Host drives a START condition, the 7-bit SMBus address, and a “0” indicating a WRITE. 2) The Device (Slave) drives an ACK bit (“0”). 3) The Host drives the 8-bit Register Address. 4) The Device drives an ACK bit (“0”). 5) The Host drives a START condition. 6) The Host drives the 7-bit SMBus Address, and a “1” indicating a READ. 7) The Device drives an ACK bit “0”. 8) The Device drives the 8-bit data value (register contents). 9) The Host drives a NACK bit “1” indicating end of READ transfer. 10) The Host drives a STOP condition. The READ transaction is completed, the bus goes Idle and communication with other SMBus devices may now occur. 11 www.national.com DS10CP154AREGISTER DESCRIPTIONS There are three data registers in the DS10CP154A accessible via the SMBus interface. TABLE 6. DS10CP154A SMBus Data Registers Address (hex) Name Access Description 0 Switch Configuration R/W Switch Configuration Register 3 Control R/W Powerdown, LOS Enable and Pin Control Register 4 LOS RO Loss Of Signal (LOS) Reporting Register 30073710 FIGURE 5. DS10CP154A Registers Block Diagram www.national.com 12 DS10CP154ASwitch Configuration Register The Switch Configuration register is utilized to configure the switch. The following two tables show the Switch Configuration Register mapping and associated truth table. Bit Default Bit Name Access Description D[1:0] 00 Input Select 0 R/W Selects which input is routed to the OUT0. D[3:2] 00 Input Select 1 R/W Selects which input is routed to the OUT1. D[5:4] 00 Input Select 2 R/W Selects which input is routed to the OUT2. D[7:6] 00 Input Select 3 R/W Selects which input is routed to the OUT3. TABLE 7. Switch Configuration Register Truth Table D1 D0 Input Routed to the OUT0 0 0 IN0 0 1 IN1 1 0 IN2 1 1 IN3 The truth tables for the OUT1, OUT2, and OUT3 outputs are identical to this table. The switch configuration logic has a SmartPWDN circuitry which automatically optimizes the device's power consumption based on the switch configuration (i.e. It places unused I/O blocks and other unused circuitry in the power down state). 13 www.national.com DS10CP154AControl Register The Control register enables SoftPWDN control, individual output power down (PWDNn) control and LOS Circuitry Enable control via the SMBus. The following table shows the register mapping. Bit Default Bit Name Access Description D[3:0] 1111 PWDNn R/W Writing a [0] to the bit D[n] will power down the output OUTn when either the PWDN pin OR the Control Register bit D[7] (SoftPWDN) is set to a high [1]. D[4] x n/a R/W Undefined. D[5] x n/a R/W Undefined. D[6] 0 EN_LOS R/W Writing a [1] to the bit D[6] will enable the LOS circuitry and receivers on all four inputs. The SmartPWDN circuitry will not disable any of the inputs nor any supporting LOS circuitry depending on the switch configuration. D[7] 0 SoftPWDN R/W Writing a [0] to the bit D[7] will place the device into the power down mode. This pin is ORed together with the PWDN pin. TABLE 8. DS10CP154A Power Modes Truth Table PWDN SoftPWDN PWDNn DS25CP104 Power Mode 0 0 x Power Down Mode. In this mode, all circuitry is shut down except the minimum required circuitry for the LOS and SMBus Slave operation. The SMBus circuitry allows enabling the LOS circuitry and receivers on all inputs in this mode by setting the EN_LOS bit to a [1]. 0 1 1 1 0 1 x x x Power Up Mode. In this mode, the SmartPWDN circuitry will automatically power down any unused I/O and logic blocks and other supporting circuitry depending on the switch configuration. An output will be enabled only when the SmartPWDN circuitry indicates that that particular output is needed for the particular switch configuration and the respective PWDNn bit has logic high [1]. An input will be enabled when the SmartPWDN circuitry indicates that that particular input is needed for the particular switch configuration or the EN_LOS bit is set to a [1]. LOS Register The LOS register reports an open inputs fault condition for each of the inputs. The following table shows the register mapping. Bit Default Bit Name Access Description D[0] 0 LOS0 RO Reading a [0] from the bit D[0] indicates an open inputs fault condition on the IN0. A [1] indicates presence of a valid signal. D[1] 0 LOS1 RO Reading a [0] from the bit D[1] indicates an open inputs fault condition on the IN1. A [1] indicates presence of a valid signal. D[2] 0 LOS2 RO Reading a [0] from the bit D[2] indicates an open inputs fault condition on the IN2. A [1] indicates presence of a valid signal. D[3] 0 LOS3 RO Reading a [0] from the bit D[3] indicates an open inputs fault condition on the IN3. A [1] indicates presence of a valid signal. D[7:4] 0000 Reserved RO Reserved for future use. Returns undefined value when read. www.national.com 14 DS10CP154AINPUT INTERFACING The DS10CP154A accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the DS10CP154A can be DC-coupled with all common differential drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS10CP154A inputs are internally terminated with a 100Ω resistor. 30073731 Typical LVDS Driver DC-Coupled Interface to DS10CP154A Input 30073732 Typical CML Driver DC-Coupled Interface to DS10CP154A Input 30073733 Typical LVPECL Driver DC-Coupled Interface to DS10CP154A Input 15 www.national.com DS10CP154AOUTPUT INTERFACING The DS10CP154A outputs signals that are compliant to the LVDS standard. Its outputs can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accomodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation. 30073734 Typical DS10CP154A Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver www.national.com 16 DS10CP154APhysical Dimensions inches (millimeters) unless otherwise noted Order Number DS10CP154ATSQ NS Package Number SQA40A (See AN-1187 for PCB Design and Assembly Recommendations) 17 www.national.com DS10CP154ANotes DS10CP154A 1.5 Gbps 4x4 LVDS Crosspoint Switch For more National Semiconductor product information and proven design tools, visit the following Web sites at: Products Design Support Amplifiers www.national.com/amplifiers WEBENCH www.national.com/webench Audio www.national.com/audio Analog University www.national.com/AU Clock Conditioners www.national.com/timing App Notes www.national.com/appnotes Data Converters www.national.com/adc Distributors www.national.com/contacts Displays www.national.com/displays Green Compliance www.national.com/quality/green Ethernet www.national.com/ethernet Packaging www.national.com/packaging Interface www.national.com/interface Quality and Reliability www.national.com/quality LVDS www.national.com/lvds Reference Designs www.national.com/refdesigns Power Management www.national.com/power Feedback www.national.com/feedback Switching Regulators www.national.com/switchers LDOs www.national.com/ldo LED Lighting www.national.com/led PowerWise www.national.com/powerwise Serial Digital Interface (SDI) www.national.com/sdi Temperature Sensors www.national.com/tempsensors Wireless (PLL/VCO) www.national.com/wireless THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders. Copyright© 2008 National Semiconductor Corporation For the most current product information visit us at www.national.com National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com www.national.com OXPCIe840, PCI Express to Parallel Port Highlights ƒGeneral Features oSingle IEEE1284 parallel port oPCIe x1 end-point -Integrated 2.5 GT/s SerDes o11 x 11mm2 , 120-pin TFBGA package oTypical Power: 200 mWatts ƒKey Features oStandards Compliant -PCI Express Base Specification, r1.1 (backwards compatible with PCIe r1.0a) -PCI Power Management Spec, r1.2 -ExpressCard, Mini Card & AIC compatible -MSI/MSI-X compatible - ASPM (L0S, L1) Link power management oHigh Performance -IEEE1284 compliant parallel port: ƒ Supports SPP, EPP, and ECP modes ƒ 5V tolerant parallel port IOs ƒ Direction control logic for external parallel port drivers oFlexibility -8 user-configurable GPIOs/PWMs - Device parameters configurable via EEPROM -1.8V, 2.5V or 3.3V UART & GPIO I/O voltage oRobust Operation - Operation from a single 3.3 V supply -Industrial temperature range -40°C to 85°C oBroad Device Driver Support -Windows Vista/XP/2K -WinCE 4.2/5.0/6.0 -Linux 2.4/2.6 Part of the Expresso family of high performance PCI Express devices, the OXPCIe840 is a single chip parallel port device in a range of 2, 4 & 8 serial port solutions, that includes the OXPCIe952, OXPCIe954 & OXPCIe958. Incorporating PLX Technology’s high performance parallel port technology, it combines outstanding system performance with unrivaled flexibility for a class leading connectivity solution. Complete with the Oxide development tools and certified device drivers, the OXPCIe840 is easy to design-in and the ideal connectivity solution for a diverse range of products including: PC Add-on Cards, Industrial PC, Point of Sale Terminals, Industrial Control, and Embedded Systems. Accelerate your product development and time to market with Oxide and PLX Technology’s easy to design-in, high performance serial connectivity solutions that just work. © PLX Technology, www.plxtech.com Page 1 of 2 4/29/2009, Version 1.00 OXPCIe840, PCI Express to Parallel Port Outstanding Performance The OXPCIe840 offers the flexibility of SPP, EPP, and ECP modes of parallel port operation, with advanced MSI interrupt handling for optimum system performance. Its 5V tolerant IOs can be connected directly to a parallel port device or for true 5V signalling environments the OXPCIe840 includes the direction control logic required for an external parallel port driver. Additionally the device provides 8 GPIO/PWM lines for further flexibility and product customization. With comprehensive power management and industrial temperature range as standard, the OXPCIe840 is perfect for power and temperature sensitive ExpressCard and MiniCarddesigns and is the choice for high performance systems. To support these advanced features the OXPCIe840 is backed by a dedicated PLX device driver that is quality assured, exhaustively tested and WHQL approved; saving development time and providing peace of mind. OXPCIe840 Development Support Design and evaluation of the OXPCIe840 couldn’t be easier with this comprehensive reference design kit (RDK). The RDK includes everything you need for PC installation and evaluation including Hardware, Oxide Development Tools and software device drivers. Simply plug the half length PCI Express evaluation board into any PCI Express slot, install the software and its ready to go. Changing the dynamics of device customization, Oxide development tools enable customization of the OXPCIe840 in minutes. No more complex, time consuming, error prone manual editing of programming files and driver source code; Oxide’s intuitive graphical user interface provides simple ‘point and click’ feature selection and text box entry for fast, error free customization with minimal software expertise as well as instant access to up to date documentation, software and reference designs. Check the PLX website for details. Ordering Information Part Number Description OXPCIe840-FBAG Parallel Port to PCIe Bridge EK-OXPCIe840 Reference Design Kit © PLX Technology, www.plxtech.com Page 2 of 2 4/29/2009, Version 1.00 BALADEUSE ETANCHE HLWC 111; Tension, alimentation:230V; Puissance:11W; Light Source:Fluorescente; Longueur:265mm; Couleur, lentilles:Clear; IP / NEMA Rating:IP67; Largeur (externe):50mm; Longueur/hauteur:265mm; Matière:Plastic; Poids:1kg; Tension d'alimentation Vac:230V MAGNIFIER, LUMINAIRE, SNL319 - UK; Tension, alimentation:230V; Lamp Base Type:3 x fluocompact 9W; Puissance:9W; Light Source:Fluorescente; Longueur:830mm; Diamètre, lentille:162.11mm; Couleur:Light grey RAL7035; Tension d'alimentation Vac:230V LUMINAIRE, 3-ARM, IP64, ES, 60W; Tension, alimentation:240V; Puissance:60W; Light Source:Å” incandescence; Longueur:750mm; Diamètre, lentille:127mm; Diamètre, extérieur:127mm; IP / NEMA Rating:IP64; Longueur (max..):750mm TUBULAR LIGHT, CFL, 110V EXT, 18W; Tension, alimentation:110V; Lamp Base Type:Bi-broche; Puissance:18W; Light Source:Fluorescente compacte; Longueur:478mm; Diamètre, lentille:60mm; Diamètre, extérieur:60mm; IP / NEMA Rating:IP67; Longueur (max..):478mm; Longueur cordon:2.75m; Longueur/hauteur:478mm; Tension, alimentation c.c.:110V FLUORESCENT FITTING, T5 LINK, 570MM; Tension, alimentation:230V; Lamp Base Type:T5; Puissance:13W; Longueur:570mm; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:43mm; IP / NEMA Rating:IP20; Largeur (externe):21mm; Light Source:Fluorescente; Longueur/hauteur:570mm; Matière:Polycarbonate; Profondeur:55mm; Tension d'alimentation Vac:230V TUBULAR LIGHT, T8, IP67, 240V, 36W; Tension, alimentation:240V; Lamp Base Type:T8; Puissance:36W; Light Source:Fluorescente; Longueur:1.35m; Diamètre, lentille:80mm; Diamètre, extérieur:80mm; IP / NEMA Rating:IP67; Longueur (max..):1350mm; Longueur cordon:2.75m; Longueur/hauteur:1350mm; Tension d'alimentation Vac:240V TUBULAR LIGHT, CFL, 110V INT, 24W; Tension, alimentation:110V; Lamp Base Type:Bi-broche; Puissance:24W; Light Source:Fluorescente compacte; Longueur:579mm; Diamètre, lentille:60mm; Diamètre, extérieur:60mm; IP / NEMA Rating:IP67; Longueur (max..):579mm; Longueur cordon:2.75m; Longueur/hauteur:579mm; Tension, alimentation c.c.:110V ECLAIRAGE MURAL BLANC; Light Source:BC GLS 100W; Longueur:220mm; Largeur:230mm; Profondeur:230mm; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Hauteur:220mm; IP / NEMA Rating:IP65; Lamp Base Type:BC 100W; Matière:Cast Aluminium; Puissance:100W; Tension, alimentation:230V; Tension d'alimentation Vac:230V LIGHT FITTING, CEILING BRASS; SVHC:No SVHC (19-Dec-2011); Couleur:Brass; Diamètre, extérieur:305mm; IP / NEMA Rating:IP20; Lamp Base Type:BC 60W; Light Source:1 x lampe GLS 60W BC; Longueur/hauteur:90mm; Matière:Pressed Steel; Profondeur:90mm; Puissance:60W; Tension, alimentation:230V; Tension d'alimentation Vac:230V LIGHT FITTING, CEILING, SLIM, 16W; Largeur:295mm; Profondeur:45mm; SVHC:No SVHC (19-Dec-2011); Couleur:White; Diamètre, extérieur:295mm; IP / NEMA Rating:IP20; Lamp Base Type:4 broches double-D; Largeur (externe):295mm; Light Source:1 x 4 broches 2D 16W; Longueur/hauteur:45mm; Matière:Steel/Acrylic; Profondeur:45mm; Puissance:16W; Tension, alimentation:230V; Tension d'alimentation Vac:230V ECLAIRAGE SIMPLE SPOT BLANC; Longueur:145mm; Largeur:90mm; Profondeur:160mm; SVHC:No SVHC (19-Dec-2011); Couleur:White; Diamètre, extérieur:90mm; Hauteur:160mm; IP / NEMA Rating:IP20; Lamp Base Type:ES R80; Largeur (externe):90mm; Light Source:1 x ES R80 100W; Longueur/hauteur:145mm; Matière:Pressed Steel; Profondeur:160mm; Puissance:100W; Tension, alimentation:230V; Tension d'alimentation Vac:230V TRACKLIGHT, COUPLER; SVHC:No SVHC (19-Dec-2011); Couleur:White; IP / NEMA Rating:IP20 TRACKLIGHT, FLEXIBLE TRACK COUPLER; SVHC:No SVHC (19-Dec-2011); Couleur:White; IP / NEMA Rating:IP20 TRACKLIGHT, LIVE END; SVHC:No SVHC (19-Dec-2011); Couleur:White; IP / NEMA Rating:IP20 TRACKLIGHT, TRACK 1200MM; Longueur:1.2m; SVHC:No SVHC (19-Dec-2011); Couleur:White; IP / NEMA Rating:IP20; Longueur/hauteur:1200mm ECLAIRAGE TRIPLE SPOT GZ10 BLANC; Longueur:257mm; Profondeur:120mm; SVHC:No SVHC (19-Dec-2011); Couleur:White; Diamètre, extérieur:257mm; Hauteur:120mm; IP / NEMA Rating:IP21; Lamp Base Type:GZ10, 50W; Largeur (externe):55mm; Light Source:Halogène; Longueur/hauteur:257mm; Matière:Pressed Steel/Cast Aluminium; Puissance:50W; Tension, alimentation:230V; Tension d'alimentation Vac:230V ECLAIRAGE DOUBLE SPOTS BLANC; Longueur:370mm; Largeur:90mm; Profondeur:170mm; SVHC:No SVHC (19-Dec-2011); Couleur:White; Diamètre, extérieur:90mm; Hauteur:170mm; IP / NEMA Rating:IP20; Lamp Base Type:ES R80; Largeur (externe):90mm; Light Source:2 x ES R80 100W; Longueur/hauteur:370mm; Matière:Pressed Steel; Puissance:100W; Tension, alimentation:230V; Tension d'alimentation Vac:230V VOYANT NEON; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Vert; Couleur:vert; Diamètre de découpe panneau:9.5mm; Diamètre, lentille:12mm; Dimension de la lentille:12mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:31mm; Profondeur, derrière panneau:9mm; Taille de lampe:12mm; Tension d'alimentation Vac:250V INDICATOR NEON 110V BLEU; Tension, alimentation:110V; Lamp Base Type:Fil; Intensité lumineuse:7.5mcd; Couleur:Bleu; Diamètre trou de fixation:14mm; Courant:6mA; SVHC:No SVHC (19-Dec-2011); Approval Bodies:CE; Base Type:Fil; Couleur:Bleu; Courant, fonctionnement c.a.:6mA; Diamètre de découpe panneau:14.5mm; Diamètre, encadrement:16mm; Dimension de la lentille:10mm; Durée de vie:25000h; Durée de vie moyenne de la lampe:25000h; Intensité lumineuse typique:7.5mcd; Longueur, derrière panneau:67mm; Ma VOYANT NEON; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Ambre; Couleur:Ambre; Diamètre de découpe panneau:9.5mm; Diamètre, lentille:12mm; Dimension de la lentille:12mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:31mm; Profondeur, derrière panneau:9mm; Taille de lampe:12mm; Tension d'alimentation Vac:250V PLUNGER, RACON, DIA 11.5MM, L 4.8MM; Couleur:White; Diamètre, extérieur:11.5mm; Hauteur:9.7mm; Longueur:4.8mm; Longueur/hauteur:4.8mm CHASSIS D'INSOLATION A PRESSION 1 FACE; Longueur:625mm; Largeur:305mm; Profondeur:104mm; Working Area:254mm x 405mm; SVHC:No SVHC (19-Dec-2011); Poids:9.5kg; Puissance:60W; Temps de fonctionnement max.:7min; Tension, alimentation:220V; Tension d'alimentation Vac:220V; Tubes, nombre:4 CHASSIS D'INSOLATION A PRESSION CIP 1840; Largeur:290mm; Profondeur:135mm; Working Area:180mm x 400mm; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:30W; Courant:30mA; Hauteur:135mm; Largeur (externe):290mm; Longueur/hauteur:480mm; Poids:5.5kg; Puissance:30W; Tension, alimentation:230V LAMP, E/SAVING, BC, 9W; Tension, alimentation:240V; Puissance:9W; Flux lumineux:45lm; Longueur:145mm; Diamètre de l'ampoule:41mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:41mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:145mm; Puissance GLS équivalente:40W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, BC, 3W; Tension, alimentation:240V; Puissance:3W; Longueur:120mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:120mm; Puissance GLS équivalente:20W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, ES, 3W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:3W; Longueur:120mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:120mm; Puissance GLS équivalente:20W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, MINI, BC, 14W; Tension, alimentation:240V; Puissance:14W; Longueur:132mm; Diamètre de l'ampoule:40mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:40mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:132mm; Puissance GLS équivalente:75W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, GLOBE, BC, 178MM, B22, 24W; Tension, alimentation:240V; Puissance:24W; Longueur:178mm; Diamètre de l'ampoule:110mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:110mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:178mm; Puissance GLS équivalente:120W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, GLOBE, ES, 168MM, E27, 20W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:20W; Longueur:168mm; Diamètre de l'ampoule:110mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:110mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:168mm; Puissance GLS équivalente:100W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, GLOBE, ES, 178MM, E27, 24W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:24W; Longueur:178mm; Diamètre de l'ampoule:110mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:110mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:178mm; Puissance GLS équivalente:120W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, MINI, SPIRAL, FLUO, BC, 7W; Tension, alimentation:240V; Puissance:7W; Flux lumineux:420lm; Longueur:87mm; Diamètre de l'ampoule:32mm; Température, couleur:2700K; Diamètre, extérieur:32mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:87mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V ENCASTRE GU10 MOULE ORIENTABLE CHROME; Profondeur:116mm; Diamètre, extérieur:80mm; Largeur (externe):80mm; Light Source:Halogène; Longueur/hauteur:116mm; Puissance:50W; Tension, alimentation:240V LAMP, LOW ENERGY, CANDLE, BC, 5W; Tension, alimentation:240V; Puissance:5W; Longueur:120mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:120mm; Puissance GLS équivalente:30W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, MINI, ES, 8W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:8W; Longueur:112mm; Diamètre de l'ampoule:40mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:40mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:112mm; Puissance GLS équivalente:40W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, BC, 20W; Tension, alimentation:240V; Puissance:20W; Longueur:138mm; Diamètre de l'ampoule:52mm; Température, couleur:2700K; Diamètre, extérieur:52mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:138mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, BC, 25W; Tension, alimentation:240V; Puissance:25W; Longueur:155mm; Diamètre de l'ampoule:53mm; Température, couleur:2700K; Diamètre, extérieur:53mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:155mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, ES, 25W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:25W; Longueur:155mm; Diamètre de l'ampoule:53mm; Température, couleur:2700K; Diamètre, extérieur:53mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:155mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V VOYANT NEON; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Clair; Diamètre trou de fixation:6.3mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Clair; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:13.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:13.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:250V LAMP, E/SAVING, ES, 9W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:9W; Flux lumineux:45lm; Longueur:145mm; Diamètre de l'ampoule:41mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:41mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:145mm; Puissance GLS équivalente:40W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, SES, 5W; Tension, alimentation:240V; Puissance:5W; Longueur:120mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:120mm; Puissance GLS équivalente:30W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, ES, 7W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:7W; Longueur:130mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:130mm; Puissance GLS équivalente:40W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, ES, 11W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:11W; Longueur:130mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:130mm; Puissance GLS équivalente:60W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, ES, 11W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:11W; Longueur:113mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:113mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V VOYANT NEON; Tension, alimentation:130V; Lamp Base Type:Fil; Couleur:Clair; Diamètre trou de fixation:6.3mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Clair; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:130V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:13.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:13.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:250V VOYANT NEON; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Clair; Diamètre trou de fixation:13.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Clair; Diamètre de découpe panneau:13.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:9mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:9mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:50mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:250V LAMP, 2D, 38W, 4PIN, 3500K; Tension, alimentation:110V; Lamp Base Type:GR10q; Puissance:38W; Flux lumineux:2700lm; Longueur:207mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011); Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:2700lm; Intensité lumineuse, max..:2700lm; Largeur (externe):205mm; Longueur/hauteur:207mm; Nombre de broches:4; Tension d'alimentation Vac:230V LAMP, 2D, 16W, 2PIN, 2700K; Tension, alimentation:103V; Lamp Base Type:GR8; Puissance:16W; Flux lumineux:1050lm; Longueur:141mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:1050lm; Intensité lumineuse, max..:1050lm; Largeur (externe):138mm; Longueur/hauteur:141mm; Nombre de broches:2; Tension d'alimentation Vac:230V LAMP, 2D, 28W, 4PIN, 3500K; Tension, alimentation:108V; Lamp Base Type:GR10q; Puissance:28W; Flux lumineux:2050lm; Longueur:207mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011); Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:2050lm; Intensité lumineuse, max..:2050lm; Largeur (externe):205mm; Longueur/hauteur:207mm; Nombre de broches:4; Tension d'alimentation Vac:230V VOYANT; Taille de lampe:7.6mm; Tension, alimentation:14V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:6.3mm; Dimension de la lentille:7.6mm; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:14V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:250V LAMP, LOW ENERGY, CANDLE, SES, 3W; Tension, alimentation:240V; Puissance:3W; Longueur:120mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:120mm; Puissance GLS équivalente:20W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, BC, 7W; Tension, alimentation:240V; Puissance:7W; Longueur:130mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:130mm; Puissance GLS équivalente:40W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, SES, 7W; Tension, alimentation:240V; Puissance:7W; Longueur:130mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:130mm; Puissance GLS équivalente:40W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, CANDLE, BC, 11W; Tension, alimentation:240V; Puissance:11W; Longueur:130mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:130mm; Puissance GLS équivalente:60W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, MINI, SES, 5W; Tension, alimentation:240V; Puissance:5W; Longueur:124mm; Diamètre de l'ampoule:40mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:40mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:124mm; Puissance GLS équivalente:25W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, LOW ENERGY, MINI, ES, 14W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:14W; Longueur:132mm; Diamètre de l'ampoule:40mm; Température, couleur:2700K; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:40mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:132mm; Puissance GLS équivalente:75W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP, GLOBE, BC, 168MM, B22, 20W; Tension, alimentation:240V; Puissance:20W; Longueur:168mm; Diamètre de l'ampoule:110mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:110mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:168mm; Puissance GLS équivalente:100W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, BC, 15W; Tension, alimentation:240V; Puissance:15W; Longueur:128mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:128mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, ES, 15W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:15W; Longueur:128mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:128mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V FLUORESCENT LAMP, SPIRAL, ES, 20W; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:20W; Longueur:138mm; Diamètre de l'ampoule:52mm; Température, couleur:2700K; Diamètre, extérieur:52mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:138mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:6.3mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:250V VOYANT NEON AMBRE; Taille de lampe:7.6mm; Tension, alimentation:130V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:130V VOYANT NEON AMBRE; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:19mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:130V VOYANT NEON TRANSPARENT; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Clair; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Clair; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:19mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:130V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:38.2mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:38.2mm; Tension d'alimentation Vac:250V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:6.3mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:130V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:6.3mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:130V BATTEN, TWIN, 36W, 4FT, S/S; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:36W; Longueur:1.24m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):89mm; Light Source:Fluorescente; Longueur/hauteur:1238mm; Profondeur:92mm; Profondeur:92mm EXIT SIGN, MAINTAINED, 8W; Longueur:360mm; Largeur:184mm; Profondeur:70mm; Température de fonctionnement max..:+25°C; IP / NEMA Rating:IP20; Durée de vie (fonctionnement):3 Hours; Lamp Base Type:G5; Largeur (externe):360mm; Longueur/hauteur:184mm; Poids:2.10kg; Profondeur:70mm; Puissance:8W; Tension, alimentation:230V BULKHEAD, SQUARE, IP65, OPAL, 28W; Longueur:254mm; Largeur:254mm; Profondeur:95mm; Couleur:Blanc; IP / NEMA Rating:IP65; Lamp Base Type:GR10q; Poids:1.4kg; Puissance:28W; Tension, alimentation:230V VOYANT NEON AMBRE; Tension, alimentation:130V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:130V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:8mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:8mm; Epaisseur, panneau max..:1.6mm; Epaisseur, panneau min.:0.8mm; Longueur/hauteur:41mm; Tension d'alimentation Vac:250V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:8mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:8mm; Epaisseur, panneau max..:1.6mm; Epaisseur, panneau min.:0.8mm; Longueur/hauteur:41mm; Tension d'alimentation Vac:250V VOYANT; Taille de lampe:7.6mm; Tension, alimentation:28V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; Diamètre de découpe panneau:6.3mm; Dimension de la lentille:7.6mm; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:28V BATTEN, TWIN, 70W, 6FT, S/S; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:70W; Longueur:1.8m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):89mm; Light Source:Fluorescente; Longueur/hauteur:1802mm; Profondeur:92mm; Profondeur:92mm BULKHEAD, 8W, NON-MAINTAINED, IP65; Longueur:390mm; Largeur:110mm; Profondeur:90mm; Température de fonctionnement max..:+25°C; IP / NEMA Rating:IP65; Couleur, base:White; Durée de vie (fonctionnement):3 Hours; Lamp Base Type:G5; Largeur (externe):110mm; Longueur/hauteur:390mm; Poids:1.80kg; Profondeur:90mm; Puissance:8W; Tension, alimentation:230V FLUORESCENT FITTING, IP65, 1X58W; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:58W; Longueur:1.57m; Diamètre de l'ampoule:26mm; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP65; Largeur (externe):100mm; Light Source:Fluorescente; Longueur/hauteur:1570mm; Profondeur:101mm; Profondeur:101mm FLUORESCENT FITTING, IP65, 2X58W; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:58W; Longueur:1.57m; Diamètre de l'ampoule:26mm; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP65; Largeur (externe):160mm; Light Source:Fluorescente; Longueur/hauteur:1570mm; Profondeur:101mm; Profondeur:101mm FLOODLIGHT, GALAXY, SON-E/I, 70W; Longueur:375mm; Largeur:300mm; Profondeur:190mm; IP / NEMA Rating:IP65; Couleur, base:Black; Largeur (externe):300mm; Longueur/hauteur:322mm; Matière:Polycarbonate; Poids:3.5kg; Profondeur:190mm; Puissance:70W; Tension, alimentation:230V LAMP, 2D, 38W, 4PIN, 2700K; Puissance:38W; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011) VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:2 broches; Couleur:Vert; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:Vert / Noir; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.75mm; Tension d'alimentation Vac:250V; Type de terminaison:Faston Tab VOYANT; Taille de lampe:7.6mm; Tension, alimentation:28V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:6.3mm; Dimension de la lentille:7.6mm; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:28V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Epaisseur, panneau max..:3mm; Epaisseur, panneau min.:0.75mm; Tension d'alimentation Vac:250V BATTEN, SINGLE, 58W, 5FT, S/S; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:58W; Longueur:1.54m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):58mm; Light Source:Fluorescente; Longueur/hauteur:1538mm; Profondeur:92mm; Profondeur:92mm BULKHEAD, 8W, NON-MAINTAINED, IP65; Longueur:351mm; Largeur:95mm; Profondeur:75mm; Température de fonctionnement max..:+25°C; IP / NEMA Rating:IP65; Couleur, base:White; Durée de vie (fonctionnement):3 Hours; Lamp Base Type:G5; Largeur (externe):95mm; Longueur/hauteur:351mm; Poids:1.20kg; Profondeur:75mm; Puissance:8W; Tension, alimentation:230V LIGHT, LOWBAY, SON-E, 250W; Longueur:600mm; Largeur:318mm; Profondeur:184mm; IP / NEMA Rating:IP20; Lamp Base Type:E40; Largeur (externe):318mm; Longueur/hauteur:600mm; Matière:Aluminium; Poids:12kg; Profondeur:184mm; Puissance:250W; Tension, alimentation:230V VOYANT NEON VERT; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:19mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:130V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Epaisseur, panneau max..:3mm; Epaisseur, panneau min.:0.75mm; Tension d'alimentation Vac:250V BATTEN, SINGLE, 36W, 4FT, S/S; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:36W; Longueur:1.24m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):58mm; Light Source:Fluorescente; Longueur/hauteur:1238mm; Profondeur:92mm; Profondeur:92mm BATTEN, SINGLE, 70W, 6FT, S/S; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:70W; Longueur:1.8m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):58mm; Light Source:Fluorescente; Longueur/hauteur:1802mm; Profondeur:92mm; Profondeur:92mm BATTEN, TWIN, 58W, 5FT, S/S; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:58W; Longueur:1.54m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):89mm; Light Source:Fluorescente; Longueur/hauteur:1538mm; Profondeur:92mm; Profondeur:92mm BATTEN, SINGLE, 58W, 5FT, HF; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:58W; Longueur:1.54m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):58mm; Light Source:Fluorescente; Longueur/hauteur:1538mm; Profondeur:92mm; Profondeur:92mm BATTEN, TWIN, 70W, 6FT, HF; Tension, alimentation:230V; Lamp Base Type:G13; Puissance:70W; Longueur:1.8m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; Couleur:White; Diamètre, tube fluorescent:26mm; IP / NEMA Rating:IP20; Largeur (externe):89mm; Light Source:Fluorescente; Longueur/hauteur:1802mm; Profondeur:92mm; Profondeur:92mm SPOT LIGHT, TWIN, EMERGENCY, 2X18W; Longueur:355mm; Largeur:360mm; Profondeur:80mm; Température de fonctionnement max..:+25°C; IP / NEMA Rating:IP20; Durée de vie (fonctionnement):3 Hours; Lamp Base Type:Culot Wedge; Largeur (externe):360mm; Longueur/hauteur:355mm; Poids:7.0kg; Profondeur:80mm; Puissance:18W; Tension, alimentation:230V VOYANT NEON VERT; Tension, alimentation:130V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:130V FLOODLGHT, PRTBL, 38A/H, WITH TRIPOD; Couleur:Black; Durée de vie (fonctionnement):3h high 6h low; Intensité lumineuse, max..:11600lm; Light Source:Fluorescente; Matière:ABS; Tension, alimentation:12V HCI-TT POWERBALL 150W WDL; Longueur:210mm; Diamètre de l'ampoule:46mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Couleur:Warm White; Lamp Base Type:E40; Puissance:148W DETECTEUR PRSCE IR FLUSH 2000W 2 CANAUX; Angle de faisceau:360°; Longueur:52mm; Largeur:80mm; Profondeur:80mm; Distance de détection max..:7m; IP / NEMA Rating:IP40; Lamp Base Type:Incandescent / Halogène; Largeur (externe):80mm; Longueur/hauteur:52mm; Profondeur:80mm; Puissance:2kW; Tension, alimentation:230V DETECTEUR DE PRESENCE IR 2000W 2 CANAUX; Angle de faisceau:360°; Largeur:121.5mm; Distance de détection max..:7m; IP / NEMA Rating:IP40; Lamp Base Type:Incandescent / Halogène; Largeur (externe):121.5mm; Longueur/hauteur:42.5mm; Profondeur:121.5mm; Puissance:2kW; Tension, alimentation:230V DETECTEUR DE PRESENCE IR FLUSH 2000W; Angle de faisceau:360°; Longueur:52mm; Largeur:80mm; Profondeur:80mm; Distance de détection max..:7m; IP / NEMA Rating:IP40; Lamp Base Type:Incandescent / Halogène; Largeur (externe):80mm; Longueur/hauteur:52mm; Profondeur:80mm; Puissance:2kW; Tension, alimentation:230V INCANDESCENT LAMP 21VDC; Tension, alimentation:21V; Lamp Base Type:GX5,3; Puissance:150W; Durée de vie moyenne de la lampe:200h; Durée de vie:200h; Longueur/hauteur:44.5mm TUNGSTEN HALOGEN, 150 WATT; Tension, alimentation:15V; Lamp Base Type:GZ6,35; Puissance:150W; Diamètre, réflecteur:51mm HCI-TT POWERBALL 70W WDL; Longueur:155mm; Diamètre de l'ampoule:30mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Couleur:Warm White; Lamp Base Type:E27; Puissance:74W CAPTEUR IR 360° MONTAGE MURAL; Angle de faisceau:360°; Longueur:53mm; Largeur:103mm; Profondeur:103mm; Couleur:White; Fréquence:50Hz; Gamme:6m; Largeur (externe):103mm; Tension, contact c.a. max..:230V; Type de montage:Montage en surface LAMP, MASCHINE 10-40 V DC; Tension, alimentation:40V; Puissance:12W; Light Source:LED; Longueur:284mm; Couleur:White; Couleur:Blanc; IP / NEMA Rating:IP67; Poids:1kg; Safety Category:III LAMP MOBILE POWER JET-LIGHT 3X36W ; Tension, alimentation:230V; Lamp Base Type:R7s; Puissance:108W; Longueur:42mm; SVHC:No SVHC (19-Dec-2011); Hauteur:19cm; IP / NEMA Rating:IP44; Intensité lumineuse:2770mcd; Largeur (externe):32cm; Longueur cordon:1.5m; Poids:2kg; Profondeur:23cm; Tension d'alimentation Vac:230V PLAFONNIER FLUORESCENT T4 16W; Tension, alimentation:230V; Lamp Base Type:T4; Puissance:16W; Longueur:520mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:43mm; IP / NEMA Rating:IP20; Largeur (externe):19mm; Longueur cordon:2m; Longueur/hauteur:520mm; Matière:Plastic; Tension d'alimentation Vac:230V SPOT LV; Profondeur:117mm; SVHC:No SVHC (19-Dec-2011); Couleur:Nickel brossé; Diamètre de découpe panneau:73mm; Diamètre, extérieur:83mm; IP / NEMA Rating:IP65; Lamp Base Type:GU5,3; Light Source:Halogène; Matière:Acier; Puissance:50W; Tension, alimentation:12V PLAFONNIER FLUORESCENT T4 10W; Tension, alimentation:230V; Lamp Base Type:T4; Puissance:10W; Longueur:390mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:43mm; IP / NEMA Rating:IP20; Largeur (externe):19mm; Longueur cordon:2m; Longueur/hauteur:390mm; Matière:Plastic; Tension d'alimentation Vac:230V PROJECTEUR 2X26W; Longueur:275mm; Largeur:215mm; Profondeur:112mm; IP / NEMA Rating:IP44; SVHC:No SVHC (19-Dec-2011); Light Source:Fluorescente compacte; Matière:ABS PROJECTEUR 2X26W; Longueur:275mm; Largeur:215mm; Profondeur:112mm; IP / NEMA Rating:IP44; SVHC:No SVHC (19-Dec-2011); Light Source:Fluorescente compacte; Matière:ABS RBK EMERY CLOTH SHEETS FF; Longueur:380mm; Hauteur:280mm; Largeur (externe):230mm; Longueur/hauteur:380mm; Normes:Flexible; Profondeur:14mm; Taille du grain:F2 FLOODLIGHT, SAFELUX, 38W; Longueur:280mm; Largeur:280mm; Profondeur:80mm; IP / NEMA Rating:IP54; Light Source:Fluorescente compacte; Matière:Polycarbonate PROJECTEUR 57W AVEC CELLULE PHOTO; Longueur:160mm; Largeur:285mm; Profondeur:145mm; IP / NEMA Rating:IP65; SVHC:No SVHC (19-Dec-2011); Light Source:Fluorescente; Matière:Polycarbonate PROJECTEUR 24W BASSE ENERGIE; Longueur:135mm; Largeur:210mm; Profondeur:100mm; IP / NEMA Rating:IP44; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:Black; Light Source:Fluorescente; Matière:Polycarbonate PROJECTEUR PIR 23W BASSE ENERGIE; Longueur:135mm; Largeur:210mm; Profondeur:100mm; IP / NEMA Rating:IP44; SVHC:No SVHC (19-Dec-2011); Light Source:Fluorescente; Matière:Polycarbonate LAMPS, INCANDESCENT 6.5V; Tension, alimentation:6.5V; Lamp Base Type:S8; Taille de lampe:26mm; Puissance:17.9W; MSCP:23; Durée de vie moyenne de la lampe:100h; Courant:2.75A; Dimension de la lentille:S-8; Durée de vie:100h; Longueur/hauteur:51mm HALOGEN LAMPS 24VDC; Tension, alimentation:24V; Lamp Base Type:G 6,35; Puissance:150W; SVHC:No SVHC (20-Jun-2011) PACK LEGENDE; Longueur:220mm; Largeur:108mm; SVHC:No SVHC (19-Dec-2011) PLAFONNIER FLUORESCENT T4 20W; Tension, alimentation:230V; Lamp Base Type:T4; Puissance:20W; Longueur:620mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:43mm; IP / NEMA Rating:IP20; Largeur (externe):19mm; Longueur cordon:2m; Longueur/hauteur:620mm; Matière:Plastic; Tension d'alimentation Vac:230V PROJECTEUR PORTABLE. UK SPOT LV. BLANC; Profondeur:117mm; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre de découpe panneau:73mm; Diamètre, extérieur:83mm; IP / NEMA Rating:IP65; Lamp Base Type:GU5,3; Light Source:Halogène; Matière:Acier; Puissance:50W; Tension, alimentation:12V BATTEN, FLUORESCENT, T5, 35W; Tension, alimentation:230V; Lamp Base Type:G5; Puissance:35W; Flux lumineux:3300lm; Longueur:1.48m; Diamètre de l'ampoule:38mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:38mm FLUORESCENT LAMP, TRIPLE, 42W, UK PLG; Lamp Base Type:Pince; Puissance:250W; Light Source:3 x tube économie d'énergie 14W; SVHC:No SVHC (19-Dec-2011) T6.8 SLIDE BASE VERT 28VDC; Couleur de LED:Vert; Longueur d'onde typ.:527nm; Intensité lumineuse:23cd; Puissance:625mW; Taille de lampe:T-6 4/5; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:28V T6.8 SLIDE BASE WHITE 28VDC; Couleur de LED:Blanc froid; Température de couleur proximale:8000K; Intensité lumineuse:14cd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:28V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:10mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:10mm; Diamètre, lentille:13.2mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:57.8mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:130V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:10mm; Diamètre, lentille:13.2mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:57.8mm; Tension d'alimentation Vac:130V TETE DE VOYANT BA 9S; Lamp Base Type:BA9s; SVHC:Bis (2-ethylhexyl)phthalate (DEHP) (19-Dec-2011); Couleur:Red; Diamètre de découpe panneau:22mm T6.8 SLIDE BASE BLEU 24VDC; Couleur de LED:Bleu; Longueur d'onde typ.:470nm; Intensité lumineuse:7000mcd; Puissance:625mW; Taille de lampe:T-6 4/5; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Tension, direct If:24V LAMP, IR, 10M; Longueur:60mm; Largeur:49mm; Courant:450mA; Courant, fonctionnement c.c.:450mA; Light Source:LED; Longueur/hauteur:60mm; Tension, alimentation:12VDC; Tension, alimentation c.c.:12V LUMINAIRE, 3-ARM, ES, 60W, IP20; Tension, alimentation:240V; Puissance:60W; Light Source:Å” incandescence; Longueur:1.05m; Diamètre, lentille:127mm; Longueur (max..):1050mm ACCESSORIES FOR 3SB3; Lamp Base Type:BA9s; Couleur de LED:Blanc; Tension, alimentation:24V; Courant:15mA; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V BASE, WHT, SCREW; Couleur:White LENS NIGHT LIGHT, DUSK/DAWN; Longueur:120mm; Largeur:50mm; Profondeur:70mm; Température de fonctionnement max..:+40°C; Puissance:7W; Tension, alimentation:240VAC SPARE LAMPS FOR NIGHT LIGHT; Tension, alimentation:230V; Lamp Base Type:E14; Puissance:7W; Couleur:Clear; Tension:240VAC INSPECTION LIGHT, ARM, 700MM; Tension, alimentation:12V; Puissance:50W; Light Source:Halogène; Longueur:700mm; Diamètre, lentille:95mm; Couleur, base:Noir; IP / NEMA Rating:IP65; Longueur (max..):700mm; Longueur cordon:2m; Matière:Polycarbonate VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:10mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:10mm; Diamètre, lentille:13.2mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:57.8mm; Tension d'alimentation Vac:250V CORPS COMPLET; Lamp Base Type:BA9s; Tension, alimentation:250V; Puissance:2.4W; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge; Diamètre de découpe panneau:22mm; Largeur, découpe panneau:30mm; Longueur, découpe panneau:46.5mm; Profondeur, derrière panneau:43mm; Tension, alimentation max..:250V VOYANT NEON; Tension, alimentation:130V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:8mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:8mm; Epaisseur, panneau max..:1.6mm; Epaisseur, panneau min.:0.8mm; Longueur/hauteur:41mm; Tension d'alimentation Vac:130V VOYANT NEON VERT; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:38.2mm; Tension d'alimentation Vac:130V VOYANT NEON AMBRE; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:38.2mm; Tension d'alimentation Vac:130V LAMP, 6V, 15W; Tension, alimentation:6V; Puissance:15W; Tension:6V; Tension c.a.:6V HALOGEN LAMP, 24V, 20W; Tension, alimentation:24V; Puissance:20W; Tension, alimentation c.c. max..:24V PROJECTEUR AVEC DETECTEUR DE MOUV.; Angle de faisceau:110°; Longueur:255mm; Largeur:110mm; Profondeur:110mm; Couleur:Blanc; Distance de détection max..:8m; IP / NEMA Rating:IP44; Lamp Base Type:BC (capuchon baèonnette); Largeur (externe):110mm; Longueur/hauteur:275mm; Profondeur:100mm; Puissance:60W; Tension, alimentation:240V; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:8mm; Courant:40mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:8mm; Longueur/hauteur:37.9mm; Tension d'alimentation Vac:250V LAMP, 2W, 24V; Tension, alimentation:30V; Lamp Base Type:BA9s; Taille de lampe:28mm; Puissance:2W; Dimension de la lentille:28mm; Longueur/hauteur:28mm; Tension c.a.:30V; Tension, résistance d'isolation:400V; Tension, vérification:5V LAMP, BA, 9S, 110-130V; Tension, alimentation:130V; Lamp Base Type:BA9s; Puissance:2.5W; Longueur/hauteur:28mm; Tension c.a.:130V; Tension, résistance d'isolation:400V; Tension, vérification:5V ACCESSORIES FOR 3SB3; Lamp Base Type:BA9s; Couleur de LED:Rouge; Tension, alimentation:24V; Courant:15mA; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V INSPECTION LAMP, SW., 8W, EURO; Tension, alimentation:230V; Lamp Base Type:G5; Puissance:8W; Light Source:Fluorescente; Longueur:500mm; SVHC:No SVHC (19-Dec-2011); Longueur (max..):50cm; Longueur cordon:5m; Longueur/hauteur:50cm; Poids:0.480kg; Tension d'alimentation Vac:230V ECLAIRAGE EXTERIEUR FLUORESCENT; Longueur:247mm; Largeur:126mm; Profondeur:110mm; Couleur:Noir; Couleur, base:Noir; Couleur, lentilles:Clair; IP / NEMA Rating:IP65; Lamp Base Type:Baèonnette; Matière:Polycarbonate; Normes:BS4533 Pt102.1; Puissance:18W; Tension, alimentation:240V; Tension d'alimentation Vac:240V PROJECTEUR. 26W NOIR; Longueur:232mm; Largeur:278mm; Profondeur:122mm; IP / NEMA Rating:IP65; Couleur:Black; Lamp Base Type:2 broches; Largeur (externe):278mm; Light Source:Fluorescente; Longueur/hauteur:232mm; Matière:Polycarbonate; Profondeur:122mm; Puissance:26W; Tension, alimentation:230V PROJECTEUR. 26W NOIR + PHOTOELECTRIQUE; Longueur:232mm; Largeur:278mm; Profondeur:122mm; IP / NEMA Rating:IP65; Couleur:Black; Lamp Base Type:2 broches; Largeur (externe):278mm; Light Source:Fluorescente; Longueur/hauteur:232mm; Matière:Polycarbonate; Profondeur:122mm; Puissance:26W; Tension, alimentation:230V LAMP, SPARE, RECHARGEABLE; Puissance:11W; Couleur:Clear VOYANT NEON VERT; Tension, alimentation:125V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:6.4mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Green; Diamètre de découpe panneau:6.4mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:125V VOYANT NEON VERT; Tension, alimentation:240V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:6.4mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Green; Diamètre de découpe panneau:6.4mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:240V VOYANT NEON AMBRE; Tension, alimentation:240V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:6.4mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:6.4mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:240V T6.8 SLIDE BASE BLEU 28VDC; Couleur de LED:Bleu; Longueur d'onde typ.:470nm; Intensité lumineuse:7cd; Puissance:625mW; Taille de lampe:T-6 4/5; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:28V T6.8 SLIDE BASE WARM WHITE 28VDC; Couleur de LED:Blanc chaud; Intensité lumineuse:9.2cd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:28V LAMP HOLDER, DIRECT, 130V, 22MM; Lamp Base Type:BA9s; Tension, alimentation:130V; Diamètre de découpe panneau:22.5mm O/D LIGHTS - 40 CLEAR CHAS. LAMP, PAR36; Tension, alimentation:6.4V; Puissance:30W; Durée de vie moyenne de la lampe:100h; Angle:5°; Diamètre, extérieur:115mm; Dimension de la lentille:115mm; Durée de vie:100h; Longueur/hauteur:70mm; Tension:6.4V; Tension c.a.:6.4V PROJECTEUR. 42W NOIR + PHOTOELECTRIQUE; Longueur:232mm; Largeur:278mm; Profondeur:122mm; IP / NEMA Rating:IP65; Couleur:Black; Lamp Base Type:4 broches; Largeur (externe):278mm; Light Source:Fluorescente; Longueur/hauteur:232mm; Matière:Polycarbonate; Profondeur:122mm; Puissance:42W; Tension, alimentation:230V VOYANT NEON AMBRE; Tension, alimentation:240V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:10mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:10mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:31mm; Température de fonctionnement max..:180°C VOYANT NEON AMBRE; Taille de lampe:15.6mm; Tension, alimentation:130V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:10mm; Diamètre, lentille:13.2mm; Dimension de la lentille:15.6mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:57.8mm; Tension d'alimentation Vac:130V TETE VERTE; Lamp Base Type:BA9s; SVHC:Bis (2-ethylhexyl)phthalate (DEHP) (19-Dec-2011); Couleur:Vert; Diamètre:22mm; Diamètre de découpe panneau:28.5mm; Profondeur, derrière panneau:11.5mm LAMP, IR MEDIUM 20W WORK LIGHT, 24V, 700MM; Tension, alimentation:24V; Puissance:20W; Light Source:Halogène; Longueur:700mm; Couleur:Noir; Diamètre, base:60mm; IP / NEMA Rating:IP20; Longueur (max..):960mm; Longueur/hauteur:960mm; Matière:Polycarbonate; Tension, alimentation c.c. max..:24V PROJECTEUR AVEC DETECTEUR DE MOUV.; Angle de faisceau:110°; Longueur:255mm; Largeur:110mm; Profondeur:110mm; Couleur:Noir; Distance de détection max..:8m; IP / NEMA Rating:IP44; Lamp Base Type:BC (capuchon baèonnette); Largeur (externe):110mm; Longueur/hauteur:275mm; Profondeur:100mm; Puissance:60W; Tension, alimentation:240V; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V LAMP HOLDER, BA9S, BASE; Lamp Base Type:BA9s; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V ACCESSORIES FOR 3SB3; Lamp Base Type:BA9s; Couleur de LED:Vert; Tension, alimentation:24V; Courant:15mA; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V BENCH LIGHT, 2X24W; Type de fiche d'alimentation:UK; Lamp Base Type:G13; Puissance:24W LAMP, IR MEDIUM 50W HALOGEN LAMP, 24V, 50W; Tension, alimentation:24V; Lamp Base Type:Bi-broche; Puissance:50W; Tension, alimentation c.c.:24V LAMP HOLDER, BA9S; Lamp Base Type:BA9s; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V LAMP HOLDER, 230/240V; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V ACCESSORIES FOR 3SB3; Lamp Base Type:BA9s; Couleur de LED:Jaune; Tension, alimentation:24V; Courant:15mA; Série:3SB3; Tension, résistance d'isolation:400V; Tension, vérification:5V SIGNAL LAMP, TRANSPARENT, CLEAR; Taille de lampe:12.5mm; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / clear; Diamètre de découpe panneau:10mm; Dimension de la lentille:12.5mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, GREEN; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:10mm; Base Type:Borne souder; Couleur:Transparent / Vert; Diamètre de découpe panneau:10mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, RED; Taille de lampe:12.5mm x 12.5mm; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Rouge; Diamètre de découpe panneau:10mm; Dimension de la lentille:12.5mm x 12.5mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, CLEAR; Tension, alimentation:24V; Puissance:450mW; Diamètre de découpe panneau:5mm; Hauteur, dessus du panneau:1mm SIGNAL LAMP; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:14mm; Puissance:1.2W; Base Type:Borne souder; Couleur:Transparent / Rouge; Diamètre de découpe panneau:14mm; Hauteur, dessus du panneau:4mm SIGNAL LAMP; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Jaune; Diamètre trou de fixation:14mm; Puissance:1.2W; Base Type:Borne souder; Couleur:Transparent / Jaune; Diamètre de découpe panneau:14mm; Hauteur, dessus du panneau:4mm SIGNAL LAMP, TRANSPARENT, RED; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:10mm; Base Type:Borne souder; Couleur:Transparent / Rouge; Diamètre de découpe panneau:10mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, GREEN; Taille de lampe:16mm x 18.2mm; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Vert; Diamètre de découpe panneau:10mm; Dimension de la lentille:18.2mm x 16mm; Hauteur, dessus du panneau:3mm ECLAIRAGE EXTERIEUR; Light Source:BC GLS 100W; Longueur:247mm; Largeur:126mm; Profondeur:110mm; Couleur:Noir; Couleur, base:Noir; Couleur, lentilles:Clair; IP / NEMA Rating:IP65; Lamp Base Type:BC (capuchon baèonnette); Matière:Polycarbonate; Normes:BS4533 Pt102.1; Puissance:100W; Tension, alimentation:240V; Tension d'alimentation Vac:240V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:9.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:9.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2.8mm; Longueur/hauteur:59.2mm; Tension d'alimentation Vac:250V LUMINAIRE, 2-ARMS, ES, 60W, IP20; Puissance:60W; Light Source:Å” incandescence; Longueur:650mm; Diamètre, lentille:127mm; Diamètre, extérieur:127mm; Longueur (max..):650mm; Longueur/hauteur:650mm LUMINAIRE, BENCH MOUNTED; Tension, alimentation:12V; Puissance:20W; Light Source:Halogène; Longueur:700mm; Consommation de puissance:20W; Couleur:Noir; Longueur (max..):600mm; Longueur/hauteur:600mm; Tension d'alimentation Vac:12V VOYANT NEON AMBRE; Tension, alimentation:125V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:8mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:8mm; Longueur/hauteur:37.9mm; Tension d'alimentation Vac:125V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:8mm; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre de découpe panneau:8mm; Longueur/hauteur:37.9mm; Tension d'alimentation Vac:250V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:13mm; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Diamètre, extérieur:13mm; Diamètre, lentille:11.5mm; Epaisseur, panneau max..:4mm; Epaisseur, panneau min.:1.5mm; Longueur/hauteur:28.5mm; Tension d'alimentation Vac:250V VOYANT NEON AMBRE; Tension, alimentation:125V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:6.4mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Amber; Diamètre de découpe panneau:6.4mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:125V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:13mm; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre, extérieur:13mm; Diamètre, lentille:11.5mm; Epaisseur, panneau max..:4mm; Epaisseur, panneau min.:1.5mm; Longueur/hauteur:28.5mm; Tension d'alimentation Vac:250V PROJECTEUR. 42W NOIR; Longueur:232mm; Largeur:278mm; Profondeur:122mm; IP / NEMA Rating:IP65; Couleur:Black; Lamp Base Type:4 broches; Largeur (externe):278mm; Light Source:Fluorescente; Longueur/hauteur:232mm; Matière:Polycarbonate; Profondeur:122mm; Puissance:42W; Tension, alimentation:230V INSPECTION LAMP, 100W, 240V, ES; Tension, alimentation:240V; Puissance:100W; Light Source:Å” incandescence; Type de fiche d'alimentation:UK; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:110mm; IP / NEMA Rating:IP20; Longueur (max..):260mm; Longueur cordon:5m; Longueur/hauteur:260mm; Poids:840g; Tension d'alimentation Vac:240V SIGNAL LAMP; Taille de lampe:15mm; Tension, alimentation:42V; Puissance:1.2W; Couleur:Noir; Diamètre de découpe panneau:16.2mm; Dimension de la lentille:15mm; Hauteur, dessus du panneau:7.5mm SIGNAL LAMP, TRANSPARENT, RED; Taille de lampe:12.5mm; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Rouge; Diamètre de découpe panneau:10mm; Dimension de la lentille:12.5mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, CLEAR; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Clair; Diamètre trou de fixation:10mm; Base Type:Borne souder; Couleur:Transparent / clear; Diamètre de découpe panneau:10mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, YELLOW; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Jaune; Diamètre trou de fixation:10mm; Base Type:Borne souder; Couleur:Transparent / Jaune; Diamètre de découpe panneau:10mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, YELLOW; Taille de lampe:16mm x 18.2mm; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Jaune; Diamètre de découpe panneau:10mm; Dimension de la lentille:18.2mm x 16mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, YELLOW; Tension, alimentation:24V; Puissance:450mW; Couleur:Jaune; Diamètre de découpe panneau:5mm; Hauteur, dessus du panneau:1mm SIGNAL LAMP, TRANSPARENT, RED; Taille de lampe:8.5mm; Tension, alimentation:24V; Puissance:840mW; Couleur:Transparent / Rouge; Diamètre de découpe panneau:7mm; Dimension de la lentille:8.5mm; Hauteur, dessus du panneau:5mm SIGNAL LAMP, TRANSPARENT, GREEN; Taille de lampe:8.5mm; Tension, alimentation:24V; Puissance:840mW; Couleur:Transparent / Vert; Diamètre de découpe panneau:7mm; Dimension de la lentille:8.5mm; Hauteur, dessus du panneau:5mm SIGNAL LAMP, TRANSPARENT, COLOURL; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / clear; Diamètre de découpe panneau:14mm; Hauteur, dessus du panneau:4mm SIGNAL LAMP, TRANSPARENT, RED; Taille de lampe:18mm; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Rouge; Diamètre de découpe panneau:14mm; Dimension de la lentille:18mm; Hauteur, dessus du panneau:4mm NEON BULB; Tension, alimentation:220V; Lamp Base Type:BA9s; Courant:1.8mA; Couleur:Clear; Longueur/hauteur:24mm SIGNAL LAMP, TRANSPARENT, GREEN; Taille de lampe:12.5mm; Lamp Base Type:Borne souder; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Vert; Diamètre de découpe panneau:10mm; Dimension de la lentille:12.5mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, GREEN; Taille de lampe:12.5mm x 12.5mm; Lamp Base Type:Borne souder; Tension, alimentation:28V; Puissance:1.2W; Couleur:Transparent / Vert; Diamètre de découpe panneau:10mm; Dimension de la lentille:12.5mm x 12.5mm; Hauteur, dessus du panneau:3mm SIGNAL LAMP, TRANSPARENT, GREEN; Tension, alimentation:24V; Puissance:450mW; Couleur:Vert; Diamètre de découpe panneau:5mm; Hauteur, dessus du panneau:1mm NEON BULB; Tension, alimentation:220V; Lamp Base Type:E10; Courant:1.8mA; Couleur:Clear; Longueur/hauteur:28mm CORPS DE VOYANT; Taille de lampe:T-5 1/2; Tension, alimentation:250V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Contact Material:Argent, Plaqué or; Diamètre de découpe panneau:16.2mm; Dimension de la lentille:T5.5; Largeur (externe):24mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:45mm CORPS DE VOYANT; Taille de lampe:T-1 3/4; Tension, alimentation:250V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Contact Material:Argent, Plaqué or; Diamètre de découpe panneau:16.2mm; Dimension de la lentille:T-1 3/4; Largeur (externe):24mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:30mm INDICATOR T1 ROUND; Taille de lampe:T-1; Lamp Base Type:Bi-broche; SVHC:No SVHC (19-Dec-2011); Diamètre de découpe panneau:8mm; Dimension de la lentille:T1; Largeur (externe):9mm; Longueur/hauteur:9mm; Profondeur:25mm; Température de fonctionnement max..:45°C; Température d'utilisation min:-25°C INDICATOR T1 SQUARE; Taille de lampe:T-1; Lamp Base Type:Bi-broche; Tension, alimentation:72V; Courant:1A; SVHC:No SVHC (19-Dec-2011); Diamètre de découpe panneau:8mm; Dimension de la lentille:T1; Largeur (externe):9mm; Longueur/hauteur:9mm; Profondeur:25mm; Température de fonctionnement max..:45°C; Température d'utilisation min:-25°C; Tension, contact c.a. max..:42VAC; Tension, fonctionnement:42VDC CORPS DE VOYANT; Taille de lampe:T-5 1/2; Tension, alimentation:250V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Contact Material:Argent, Plaqué or; Diamètre de découpe panneau:16.2mm; Dimension de la lentille:T5.5; Largeur (externe):18mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:45mm BULB T1 3/4 28V; Tension, alimentation:28V; Lamp Base Type:Midget Groove; Taille de lampe:T-3 1/4; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:40mA; Dimension de la lentille:T-1 3/4; Durée de vie:10000h 400 W LAMP ENCLOSURE; SVHC:No SVHC (19-Dec-2011) REPLACEMENT BULB 3W CREE FUTURE 3D+; SVHC:No SVHC (19-Dec-2011); Tailles de batterie acceptées:AAA, AA PROJECTEUR 57W BASSE ENERGIE; Longueur:160mm; Largeur:285mm; Profondeur:145mm; IP / NEMA Rating:IP65; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:Black; Light Source:Fluorescente; Matière:Aluminium SPOT GU10. BLANC; Profondeur:117mm; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre de découpe panneau:73mm; Diamètre, extérieur:83mm; IP / NEMA Rating:IP65; Lamp Base Type:GU10; Light Source:Halogène; Matière:Steel; Puissance:50W; Tension, alimentation:240V SPOT GU10. CHROME; Profondeur:117mm; SVHC:No SVHC (19-Dec-2011); Couleur:Chrome poli; Diamètre de découpe panneau:73mm; Diamètre, extérieur:83mm; IP / NEMA Rating:IP65; Lamp Base Type:GU10; Light Source:Halogène; Matière:Steel; Puissance:50W; Tension, alimentation:240V VOYANT; Taille de lampe:T-1 3/4; SVHC:No SVHC (19-Dec-2011); Diamètre de découpe panneau:18mm; Dimension de la lentille:T-1 3/4; Largeur (externe):18mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:36mm VOYANT; Taille de lampe:T-1 3/4; SVHC:No SVHC (19-Dec-2011); Diamètre de découpe panneau:18mm; Dimension de la lentille:T-1 3/4; Largeur (externe):24mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:36mm SENSOR, DULUX EL, 240V, E27, 15W; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:15W; Flux lumineux:900lm; Longueur:140mm; Diamètre de l'ampoule:52mm; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:52mm; Durée de vie:15000h; Durée de vie moyenne de la lampe:15000h VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:15.9mm; Epaisseur, panneau max..:1.5mm; Epaisseur, panneau min.:0.8mm; Longueur/hauteur:35mm; Tension d'alimentation Vac:250V VOYANT NEON AMBRE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:15.9mm; Epaisseur, panneau max..:1.5mm; Epaisseur, panneau min.:0.8mm; Longueur/hauteur:35mm; Tension d'alimentation Vac:250V VOYANT NEON VERT; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:9.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:9.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2.8mm; Longueur/hauteur:59.2mm; Tension d'alimentation Vac:250V RACCORD FLUORESCENT T5. 8W; Tension, alimentation:230V; Lamp Base Type:Fluorescent T5 300 mm; Puissance:8W; Longueur:345mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011) VOYANT NEON VERT; Tension, alimentation:240V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:10mm; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:10mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:31mm; Température de fonctionnement max..:180°C LAMP, 23W, E27; Tension, alimentation:240V; Puissance:23W; Flux lumineux:3000lm; SVHC:No SVHC (19-Dec-2011); Flux lumineux typique:3000lm; Tension d'alimentation Vac:240V VOYANT NEON VERT; Tension, alimentation:125V; Lamp Base Type:Borne souder; Couleur:Vert; Diamètre trou de fixation:8mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Borne souder; Couleur:vert; Diamètre de découpe panneau:8mm; Longueur/hauteur:37.9mm; Tension d'alimentation Vac:125V ULTRA SLIM ESD MAGNIFIER EU PLUG; Puissance:28W; Light Source:Fluorescente; Longueur:950mm; Diamètre, lentille:175mm; SVHC:No SVHC (19-Dec-2011) INSPECTION LIGHT, EURO PLUG; Tension, alimentation:240V; Lamp Base Type:2 broches euro; Puissance:8W; Light Source:Fluorescente; Longueur:55mm; SVHC:Bis (2-ethylhexyl)phthalate (DEHP) (20-Jun-2011) VOYANT A FILAMENT VERTICALE; Taille de lampe:6.7mm; Tension, alimentation:6V; Courant:40mA; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:vert; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:6V VOYANT A FILAMENT; Taille de lampe:6.7mm; Tension, alimentation:14V; Courant:40mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:14V VOYANT A FILAMENT; Taille de lampe:6.7mm; Tension, alimentation:28V; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:28V VOYANT A FILAMENT; Taille de lampe:6.7mm; Tension, alimentation:14V; Courant:40mA; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:rouge; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:14V VOYANT A FILAMENT; Taille de lampe:6.7mm; Tension, alimentation:28V; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:rouge; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:28V DESK LIGHT, WHITE, UK PLUG; Lamp Base Type:G23; Puissance:11W; Light Source:Fluorescente compacte; Longueur:830mm; Type de fiche d'alimentation:UK; Longueur (max..):1155mm DESK LIGHT, BLACK, UK PLUG; Lamp Base Type:G24; Puissance:11W; Light Source:Fluorescente compacte; Longueur:830mm; Type de fiche d'alimentation:UK; Longueur (max..):1155mm FILAMENT BULB; Tension, alimentation:30V; Lamp Base Type:BA9s; Puissance:2W; Durée de vie moyenne de la lampe:10000h; Couleur:Clear; Courant:0.083A; Dimension de la lentille:11mm; Durée de vie:10000h; Longueur/hauteur:29mm; Tension:30V; Tension c.a.:30V FILAMENT BULB; Tension, alimentation:24V; Lamp Base Type:S8,5; Puissance:3W; Durée de vie moyenne de la lampe:200h; Couleur:Clear; Dimension de la lentille:11.5mm; Durée de vie:200h; Longueur/hauteur:39mm; Tension:24V; Tension c.a.:24V FILAMENT BULB; Tension, alimentation:28V; Lamp Base Type:T1/4; Taille de lampe:T-1/4; Puissance:840mW; Durée de vie moyenne de la lampe:5000h; Couleur:Clear; Courant:0.03A; Dimension de la lentille:4.3mm; Durée de vie:5000h; Longueur/hauteur:10.5mm; Tension:28V; Tension c.a.:28V VOYANT A FILAMENT; Taille de lampe:6.7mm; Tension, alimentation:14V; Courant:40mA; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:Ambre; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:14V VOYANT A FILAMENT; Taille de lampe:6.7mm; Tension, alimentation:28V; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:vert; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:28V DESK LIGHT, WHITE, UK PLUG; Puissance:11W; Light Source:Fluorescente; Longueur:765mm; Type de fiche d'alimentation:UK; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:765mm; Largeur (externe):290mm; Longueur cordon:1380mm; Longueur/hauteur:55cm; Poids:362g; Profondeur:240mm DESK LIGHT, BLACK, UK PLUG; Puissance:11W; Light Source:Fluorescente; Longueur:765mm; Type de fiche d'alimentation:UK; SVHC:No SVHC (19-Dec-2011); Couleur:Black; Hauteur:765mm; Largeur (externe):290mm; Longueur cordon:1380mm; Longueur/hauteur:55cm; Poids:362g; Profondeur:240mm FILAMENT BULB; Tension, alimentation:30V; Lamp Base Type:E14; Taille de lampe:BA15d; Puissance:4W; Durée de vie moyenne de la lampe:1000h; Couleur:Clear; Courant:0.165A; Dimension de la lentille:17mm; Durée de vie:1000h; Longueur/hauteur:57mm; Tension:30V; Tension c.a.:30V FILAMENT BULB; Tension, alimentation:24V; Lamp Base Type:T4,5; Puissance:480mW; Durée de vie moyenne de la lampe:8000h; Couleur:Clear; Courant:0.02A; Dimension de la lentille:4.2mm; Durée de vie:8000h; Longueur/hauteur:16.5mm; Tension:24V; Tension c.a.:24V FILAMENT BULB; Tension, alimentation:30V; Lamp Base Type:W2 x 4,6D; Puissance:1W; Durée de vie moyenne de la lampe:1000h; Couleur:Clear; Courant:0.04A; Dimension de la lentille:5mm; Durée de vie:1000h; Longueur/hauteur:20mm; Tension:30V; Tension c.a.:30V LAMPE UNIVERSELLE POUR MACHINE WD211; Tension, alimentation:230V; Puissance:11W; Light Source:Fluorescente; Longueur:810mm; Couleur:Light grey RAL7035; IP / NEMA Rating:IP54; Tension d'alimentation Vac:230V LAMPE UNIVERSELLE 36W SN136; Tension, alimentation:230V; Puissance:36W; Light Source:Fluorescente; Longueur:830mm; Couleur:Light grey RAL7035; IP / NEMA Rating:IP20; Tension d'alimentation Vac:230V LAMPE TUBE ETANCHE RL70CE-124 24V; Tension, alimentation:24V; Puissance:24W; Light Source:Fluorescente; Longueur:639mm; IP / NEMA Rating:IP67; Tension, alimentation c.c.:24V LAMPE LOUPE 22W RLL122; Tension, alimentation:230V; Puissance:22W; Light Source:Fluorescente; Longueur:873mm; Diamètre, lentille:120mm; Couleur:Light grey RAL7035; Tension d'alimentation Vac:230V LAMPE LOUPE 9W ESD SNL319 A; Tension, alimentation:230V; Lamp Base Type:3 x fluocompact 9W; Puissance:9W; Light Source:Fluorescente; Longueur:830mm; Diamètre, lentille:162.11mm; Couleur:Mat black; Tension d'alimentation Vac:230V AMPOULE 50W 12V CAPSULE GY6.35; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:50W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Intensité lumineuse, max..:910lm; Tension, alimentation c.c.:12V INDICATEUR CORPS CARREE; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BEAB / CSA / UL / VDE; Contact Material:Argent; Courant de contact max.:6A; Dimension de la lentille:T-1 3/4; Durée de vie, mécanique:1000000; IP / NEMA Rating:IP65; Largeur (externe):18mm; Longueur/hauteur:18mm; Profondeur:42mm; Résistance d'isolement:50Mohm; Résistance, contact:10mohm; Température de fonctionnement max..:55°C; Température d'utilisation min:-20°C INDICATEUR CORPS ROND; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BEAB / CSA / UL / VDE; Contact Material:Argent; Courant de contact max.:6A; Diamètre, encadrement:18mm; Dimension de la lentille:T-1 3/4; Durée de vie, mécanique:1000000; IP / NEMA Rating:IP65; Profondeur:42mm; Résistance d'isolement:50Mohm; Résistance, contact:10mohm; Température de fonctionnement max..:55°C; Température d'utilisation min:-20°C LAMPE TUBE ETANCHE RL70 136H; Tension, alimentation:230V; Puissance:36W; Light Source:Fluorescente; Longueur:585mm; Tension, alimentation c.a. max..:230V; Tension, alimentation c.a. min:110V LAMPE LOUPE + LENTILLE RLL122; Tension, alimentation:230V; Lamp Base Type:T-R29; Puissance:22W; Light Source:Fluorescente; Longueur:873mm; Diamètre, lentille:120mm AMPOULE 50W 24V CAPSULE GY6.35; Tension, alimentation:24V; Lamp Base Type:GY6,35; Puissance:50W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Tension, alimentation c.c.:24V BLOC D'ANGLE NOIR; Light Source:ES GLS 60W; Longueur:265mm; Largeur:95mm; Profondeur:95mm; SVHC:No SVHC (19-Dec-2011); Couleur:Noir; Hauteur:265mm; IP / NEMA Rating:IP44; Lamp Base Type:ES 60W; Matière:Cast Aluminium; Puissance:60W; Tension, alimentation:230V; Tension d'alimentation Vac:230V INDICATEUR CORPS RECTANGULAIRE; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Contact Material:Argent; Courant de contact max.:6A; Dimension de la lentille:T-1 3/4; Durée de vie, mécanique:1000000; IP / NEMA Rating:IP65; Largeur (externe):24mm; Longueur/hauteur:18mm; Profondeur:42mm; Résistance d'isolement:50Mohm; Résistance, contact:10mohm; Température de fonctionnement max..:55°C; Température d'utilisation min:-20°C SUPPORT POUR TUBE FLUO + DIFFUSEUR 36W; Tension, alimentation:230V; Lamp Base Type:T8; Puissance:36W; Longueur:1.23m; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:95mm; IP / NEMA Rating:IP20; Largeur (externe):55mm; Light Source:Fluorescente; Longueur/hauteur:1235mm; Matière:Pressed Steel/Polycarbonate; Tension d'alimentation Vac:230V LAMPE SPOT FLEXIBLE 20W 12V IP21; Tension, alimentation:12V; Lamp Base Type:Vis; Puissance:20W; Light Source:Halogène; Longueur:700mm; Diamètre, lentille:70mm; Couleur:Black; Diamètre, extérieur:70mm; IP / NEMA Rating:IP21; Longueur (max..):700mm; Longueur/hauteur:700mm; Tension, alimentation c.c.:12V INDICATEUR METAL DIA. 29; Courant:16A; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BEAB / CSA / UL / VDE; Diamètre, extérieur:29mm; IP / NEMA Rating:IP65; Longueur/hauteur:60mm; Profondeur, derrière panneau:38mm; Température de fonctionnement max..:85°C; Température d'utilisation min:-20°C; Tension c.a.:250V; Type de borne:vis; peur, découpe panneau:22.5mm BLOC AVEC VENTILATION; Light Source:BC 40W; Longueur:100mm; Largeur:231mm; Profondeur:72mm; SVHC:No SVHC (19-Dec-2011); Couleur:Noir; Hauteur:100mm; IP / NEMA Rating:IP44; Lamp Base Type:BC rond max. 45 mm 40W; Matière:Cast Aluminium; Puissance:40W; Tension, alimentation:230V; Tension d'alimentation Vac:230V BLOC DE SECURITE NOIR; Light Source:BC GLS 100W; Longueur:240mm; Largeur:133mm; Profondeur:102mm; SVHC:No SVHC (19-Dec-2011); Couleur:Noir; Hauteur:240mm; IP / NEMA Rating:IP65; Lamp Base Type:BC; Matière:Polycarbonate; Puissance:100W; Tension, alimentation:230V; Tension d'alimentation Vac:230V ENCASTRE BASSE TENSION CHROME POLI; Largeur:70mm; Profondeur:27mm; SVHC:No SVHC (19-Dec-2011); Couleur:Polished Chrome; Diamètre de découpe panneau:61mm; Diamètre, extérieur:70mm; IP / NEMA Rating:IP20; Lamp Base Type:G4 (M47) 20W; Largeur (externe):70mm; Light Source:Tungstène halogène; Longueur cordon:2.4m; Longueur/hauteur:27mm; Matière:Pressed Steel; Profondeur, derrière panneau:27mm; Puissance:20W; Tension, alimentation:12V; Tension, alimentation c.c.:12V ENCASTRE BASSE TENSION NICKEL; Largeur:70mm; Profondeur:27mm; SVHC:No SVHC (19-Dec-2011); Couleur:Brushed Nickel; Diamètre de découpe panneau:61mm; Diamètre, extérieur:70mm; IP / NEMA Rating:IP20; Lamp Base Type:G4 (M47) 20W; Largeur (externe):70mm; Light Source:Tungstène halogène; Longueur cordon:2.4m; Longueur/hauteur:27mm; Matière:Pressed Steel; Profondeur, derrière panneau:27mm; Puissance:20W; Tension, alimentation:12V; Tension, alimentation c.c.:12V ENCASTRE BASSE TENSION BLANC; Largeur:70mm; Profondeur:27mm; SVHC:No SVHC (19-Dec-2011); Couleur:White; Diamètre de découpe panneau:61mm; Diamètre, extérieur:70mm; IP / NEMA Rating:IP20; Lamp Base Type:G4 (M47) 20W; Largeur (externe):70mm; Light Source:Tungstène halogène; Longueur cordon:2.4m; Longueur/hauteur:27mm; Matière:Pressed Steel; Profondeur, derrière panneau:27mm; Puissance:20W; Tension, alimentation:12V; Tension, alimentation c.c.:12V LAMPE; Largeur (externe):160mm; Longueur d'onde, crête:360nm; Longueur/hauteur:24mm; Profondeur:53mm; Puissance lumineuse:O.3W/cmË› 50mm; Tailles de batterie acceptées:4 x AA (not supplied) SUPPORT POUR TUBE FLUO + DIFFUSEUR 58W; Tension, alimentation:230V; Lamp Base Type:T8; Puissance:58W; Longueur:1.53m; SVHC:No SVHC (19-Dec-2011); Couleur:White; Hauteur:95mm; IP / NEMA Rating:IP20; Largeur (externe):55mm; Light Source:Fluorescente; Longueur/hauteur:1535mm; Matière:Pressed Steel/Polycarbonate; Tension d'alimentation Vac:230V LED GU10 240V T/C BLANC; Lamp Base Type:GU10; Couleur de LED:Blanc; Puissance:1.8W; Tension, alimentation:240V; Angle du faisceau:15°; Durée de vie moyenne de la lampe:30000h; Couleur:White; Couleur:Blanc; Couleur, LED:Blanc; Tension, Vf max..:240V; Tension d'alimentation Vac:240V AMPOULE FLUO POUR RETROECLAIRAGE B22 25W; Tension, alimentation:230V; Puissance:25W; Longueur:140mm; Longueur/hauteur:140mm LED MIN GROOVE 12V JAUNE; Lamp Base Type:Midget Groove; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:63mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:30mA; Courant, fonctionnement c.a.:30mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumineuse typique LED MID GROOVE 24VAC/DC VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:910mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur, LED:Vert; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumin LED BA9S 28VAC/DC ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:350mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:13mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:350mcd; LED BA9S 130VAC BLANC CLAIR; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:250mcd; Taille de lampe:10mm; Tension, alimentation:130V; Courant:5mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:5mA; Courant, fonctionnement c.a.:5mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:250mcd; Température de fonctionnement:-20°C +60°C; Température d LED BA9S 230VAC VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:200mcd; Taille de lampe:10mm; Tension, alimentation:230V; Courant:3mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur, LED:Vert; Courant, direct, If:3mA; Courant, fonctionnement c.a.:3mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:200mcd; Longueur d'onde, crête:525nm; Températu LED BA9S 230VAC BLANC CLAIR; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:150mcd; Taille de lampe:10mm; Tension, alimentation:230V; Courant:3mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:3mA; Courant, fonctionnement c.a.:3mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:150mcd; Température de fonctionnement:-20°C +60°C; Température d LAMPE BA9S HALOGENE 12V; Tension, alimentation:12V; Lamp Base Type:BA9s; Puissance:10W; Longueur:33mm; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:BA9s; Durée de vie:240h; Durée de vie moyenne de la lampe:240h; Emission lumineuse, totale:200lm; Intensité lumineuse, max..:200lm; MSCP:15.9; Taille de lampe:BA9s; Tension c.a.:12V LAMPE P13.5S 3.6V 0.3A; Tension, alimentation:3.6V; Lamp Base Type:P13,5s; Taille de lampe:11.5mm; MSCP:0.79; Durée de vie moyenne de la lampe:30h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.3A; Dimension de la lentille:P13.5S; Durée de vie:30h; Emission lumineuse, totale:10lm; Longueur/hauteur:32mm; Tension:3.6V; Tension c.a.:3.6V LAMPE E10 2.4V 300MA; Tension, alimentation:2.4V; Lamp Base Type:E10; Taille de lampe:11.5mm; Durée de vie moyenne de la lampe:4h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.3A; Dimension de la lentille:11mm; Durée de vie:4h; Emission lumineuse, totale:6lm; Longueur/hauteur:24mm; Tension:2.4V; Tension c.a.:2.4V LED MBC 24VAC/DC VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:567nm; Intensité lumineuse:170mcd; Taille de lampe:T-10; Tension, alimentation:24V; Courant:19mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Vert; Couleur, LED:Vert; Courant, direct, If:15mA; Courant, fonctionnement c.a.:19mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Durée de vie:60000h; In LED MIN GROOVE 12V ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:635nm; Intensité lumineuse:36mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:30mA; Courant, fonctionnement c.a.:30mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumineuse typique:36 LED MID GROOVE 24VAC/DC BLANC DF; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumineuse typique:700mcd; L LED MID GROOVE 28VAC/DC VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:910mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur, LED:Vert; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumin LED BA9S 24VAC/DC VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:1000mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur, LED:Vert; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:1000mcd LED BA9S 24VAC/DC BLANC CLAIR; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:750mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:750mcd; Température de fonc LED BA9S 28VAC/DC BLANC CLAIR; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:750mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:13mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:750mcd; Température de fonc LED BA9S 230VAC BLANC DIFF; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:75mcd; Taille de lampe:10mm; Tension, alimentation:230V; Courant:3mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:3mA; Courant, fonctionnement c.a.:3mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:75mcd; Température de fonctionnement:-20°C +60°C; Température de f LED MBC 24VAC/DC ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:620nm; Intensité lumineuse:110mcd; Taille de lampe:T-10; Tension, alimentation:24V; Courant:19mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Rouge; Couleur, LED:Rouge; Courant, direct, If:15mA; Courant, fonctionnement c.a.:19mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Durée de vie:60000h LED MBC 24VAC/DC JAUNE; Lamp Base Type:BA9s; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:120mcd; Taille de lampe:T-10; Tension, alimentation:24V; Courant:19mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Jaune; Couleur, LED:Jaune; Courant, direct, If:15mA; Courant, fonctionnement c.a.:19mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Durée de vie:60000h LED MIN GROOVE 24V ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:620nm; Intensité lumineuse:36mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:14mA; Courant, fonctionnement c.a.:14mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumine LED MIN GROOVE 24V VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:567nm; Intensité lumineuse:90mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:14mA; Courant, fonctionnement c.a.:14mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumineu LED MIN GROOVE 28V JAUNE; Lamp Base Type:Midget Groove; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:63mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:14mA; Courant, fonctionnement c.a.:14mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lum LED MID GROOVE 12VAC/DC BLANC DF; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:350mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumineuse typique:350mcd; T LED MID GROOVE 24VAC/DC BLEU; Lamp Base Type:Midget Groove; Couleur de LED:Bleu; Longueur d'onde typ.:470nm; Intensité lumineuse:350mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Blue; Couleur, LED:Bleu; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumine LED MID GROOVE 24VAC/DC BLANC CL; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumineuse typique:700mcd; T LED MID GROOVE 28VAC/DC ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:330mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumi LED MID GROOVE 28VAC/DC JAUNE; Lamp Base Type:Midget Groove; Couleur de LED:Jaune; Longueur d'onde typ.:587nm; Intensité lumineuse:280mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité l LED MID GROOVE 28VAC/DC BLANC CL; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumineuse typique:700mcd; T LED BA9S 28VAC/DC VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:1000mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:13mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur, LED:Vert; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:1000mcd LED BA9S 130VAC JAUNE; Lamp Base Type:BA9s; Couleur de LED:Jaune; Longueur d'onde typ.:587nm; Intensité lumineuse:100mcd; Taille de lampe:10mm; Tension, alimentation:130V; Courant:5mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:5mA; Courant, fonctionnement c.a.:5mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:100mcd; Longueur d'onde, crête:587nm; Tempé LED BA9S 230VAC ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:70mcd; Taille de lampe:10mm; Tension, alimentation:230V; Courant:3mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:3mA; Courant, fonctionnement c.a.:3mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:70mcd; Longueur d'onde, crête:630nm; Températur LAMPE P13.5S HALOGENE 6.0V; Tension, alimentation:6V; Lamp Base Type:P13,5s; Longueur:32mm; SVHC:No SVHC (19-Dec-2011); Courant:1A; Dimension de la lentille:P13.5S; Durée de vie:100h; Durée de vie moyenne de la lampe:100h; Emission lumineuse, totale:100lm; Intensité lumineuse, max..:100lm; MSCP:7.95; Taille de lampe:P13.5S; Tension c.a.:6V LAMPE P13.5S 3.6V 0.5A; Tension, alimentation:3.6V; Lamp Base Type:P13,5s; Taille de lampe:11.5mm; MSCP:1.59; Durée de vie moyenne de la lampe:30h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.5A; Dimension de la lentille:11.5mm; Durée de vie:30h; Emission lumineuse, totale:17lm; Longueur/hauteur:32mm; Tension:3.6V; Tension c.a.:3.6V LAMPE E10 HALOGENE 5.2V; Tension, alimentation:5.2V; Lamp Base Type:E10; Longueur:32mm; SVHC:No SVHC (19-Dec-2011); Courant:0.85A; Dimension de la lentille:T9; Durée de vie:25h; Durée de vie moyenne de la lampe:25h; Emission lumineuse, totale:90lm; Intensité lumineuse, max..:90lm; MSCP:7.15; Taille de lampe:T-9; Tension c.a.:5.2V LAMPE BA9S HALOGENE 12V; Tension, alimentation:12V; Lamp Base Type:BA9s; Puissance:20W; Longueur:33mm; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:BA9s; Durée de vie:240h; Durée de vie moyenne de la lampe:240h; Emission lumineuse, totale:200lm; Intensité lumineuse, max..:200lm; MSCP:15.9; Taille de lampe:BA9s; Tension c.a.:12V LAMPE P13.5S 5.5V 0.3A; Tension, alimentation:5.4V; Lamp Base Type:P13,5s; Taille de lampe:11.5mm; MSCP:3; Durée de vie moyenne de la lampe:15h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.54A; Dimension de la lentille:P13.5S; Durée de vie:15h; Emission lumineuse, totale:38lm; Longueur/hauteur:32mm; Tension:5.4V; Tension c.a.:5.4V LAMPE E10 2.2V 250MA; Tension, alimentation:2.2V; Lamp Base Type:E10; Taille de lampe:9mm; Durée de vie moyenne de la lampe:10h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.25A; Dimension de la lentille:9mm; Durée de vie:10h; Emission lumineuse, totale:4lm; Longueur/hauteur:24mm; Tension:2.2V; Tension c.a.:2.2V LAMPE T3.1/4 12V 5W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:5W; MSCP:4.77; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.37A; Dimension de la lentille:T-1 3/4; Durée de vie:1000h; Emission lumineuse, totale:50lm; Longueur/hauteur:26.8mm; Tension:12V; Tension c.a.:12V INDICATEUR NEON ROUGE; Tension, alimentation:230V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:12.7mm; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:12.7mm; Longueur/hauteur:31.5mm; Tension d'alimentation Vac:230V INDICATEUR NEON VERT; Tension, alimentation:230V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:12.7mm; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:vert; Diamètre de découpe panneau:12.7mm; Longueur/hauteur:31.5mm; Tension d'alimentation Vac:230V LED E10 - ROUGE 12VDC; Lamp Base Type:E10; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:1050mcd; Taille de lampe:T-3 1/4; Tension, alimentation:14V; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Catégorie de tension:12V dc; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:15mA; Diamètre, extérieur:9.25mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse typique:1050mcd; Longueur d'onde, crête:630nm; Longueur, lentille:15.65m LED BA9S 24VDC ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:1050mcd; Taille de lampe:T-3 1/4; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Catégorie de tension:24V dc; Couleur:Rouge; Couleur, LED:Rouge; Courant, direct, If:15mA; Diamètre, extérieur:9mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse typique:1050mcd; Longueur d'onde, crête:630nm; Longueur, lentille:15.65mm; Longueur/hauteur:28.75mm; LAMPE BA9S 12V 4W; Tension, alimentation:12V; Lamp Base Type:BA9s; Puissance:4W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:8.8mm; Longueur/hauteur:28mm; Normes:BS233; Style de code:BA9s; Tension:12V; Tension c.a.:12V LAMPE BA9S 24V 4W; Tension, alimentation:24V; Lamp Base Type:BA9s; Puissance:4W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:8.8mm; Longueur/hauteur:21.5mm; Normes:BS249; Style de code:BA9s; Tension:24V; Tension c.a.:24V LAMPE BA9S 6.5V 2W; Tension, alimentation:6.5V; Lamp Base Type:BA9s; Taille de lampe:T-2; Puissance:2W; MSCP:0.95; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Dimension de la lentille:T-3 1/4; Durée de vie:4000h; Emission lumineuse, totale:12lm; Longueur/hauteur:28mm; Style de code:BA9s; Tension:6.5V; Tension c.a.:6.5V LAMPE FESTOON 12V 10W; Tension, alimentation:12V; Lamp Base Type:Festoon; Taille de lampe:11mm x 38mm; Puissance:10W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:11 x 38mm; Normes:BS272; Style de code:Navette; Tension:12V; Tension c.a.:12V LAMPE G3.1/2 MBC/MCC 12V 2.2W; Tension, alimentation:12V; Lamp Base Type:BA9s; Taille de lampe:G-3 1/2; Puissance:2.2W; MSCP:1.52; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.183A; Dimension de la lentille:G3 1/2; Durée de vie:3000h; Emission lumineuse, totale:11lm; Longueur/hauteur:25mm; Tension:12V; Tension c.a.:12V LAMPE G3.1/2 MES 6.5V 0.975W; Tension, alimentation:6.5V; Lamp Base Type:E10; Taille de lampe:G-3 1/2; Puissance:975mW; MSCP:0.57; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.15A; Dimension de la lentille:G3 1/2; Durée de vie:3000h; Emission lumineuse, totale:6lm; Longueur/hauteur:24mm; Tension:6.5V; Tension c.a.:6.5V LAMPE H3 HALOGENE 12V 55W; Tension, alimentation:12V; Puissance:55W; Longueur:42mm; SVHC:No SVHC (19-Dec-2011); Normes:BS453; Style de code:H3; Tension c.a.:12V LAMPE H4 XENON 12V 60/55W; Tension, alimentation:12V; Puissance:60W; Taille de lampe:17mm; Longueur:92mm; Lamp Base Type:P43t; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:17mm; Longueur/hauteur:92mm; Normes:BS472X; Style de code:H4; Tension c.a.:12V LAMPE NEON DEUX BROCHES 4MM; Tension, alimentation:65V; Lamp Base Type:Bi-broche; Courant:300è¾A; SVHC:No SVHC (19-Dec-2011); Courant max.:0.25mA; Dimension de la lentille:T-1 1/4; Longueur cordon:6.85mm; Longueur/hauteur:14mm; Résistance, série, 100V:220K 1/10W; Résistance, série, 240V:560K 1/10W; Taille de lampe:T-1 1/4; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON MCC; Tension, alimentation:120V; Lamp Base Type:BA9s; Courant:2.5mA; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge - Ambre; Dimension de la lentille:T-3 1/4; Longueur/hauteur:28mm; Taille de lampe:10mm / T-3 1/4; Tension, alimentation c.a. max..:120V; Tension, alimentation c.a. min:100V; Tension, attaque c.a.:90V; Tension, attaque c.c.:90V LAMPE NEON MCC; Tension, alimentation:250V; Lamp Base Type:BA9s; Courant:1.2mA; SVHC:No SVHC (19-Dec-2011); Couleur:Vert; Dimension de la lentille:T-3 1/4; Longueur/hauteur:28mm; Taille de lampe:10mm / T-3 1/4; Tension, alimentation c.a. max..:250V; Tension, alimentation c.a. min:220V; Tension, attaque c.a.:85V; Tension, attaque c.c.:85V LAMPE NEON T1.1/4 W/E; Tension, alimentation:250V; Lamp Base Type:A fil; Courant:300è¾A; SVHC:No SVHC (19-Dec-2011); Courant max.:0.27mA; Courant min.:0.22mA; Dimension de la lentille:T-1 1/4; Longueur cordon:25mm; Longueur/hauteur:10mm; Résistance, série, 100V:220K 1/4W; Résistance, série, 240V:750K 1/4W; Taille de lampe:T-1 1/4; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T2 W/E; Tension, alimentation:250V; Lamp Base Type:A fil; Courant:1.8mA; SVHC:No SVHC (19-Dec-2011); Courant max.:2.5mA; Courant min.:1.8mA; Dimension de la lentille:T2; Longueur cordon:30mm; Longueur/hauteur:16mm; Résistance, série, 100V:33K 1/4W; Résistance, série, 240V:100K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:95V; Tension, attaque c.c.:35V LED MIN GROOVE 24V JAUNE; Lamp Base Type:Midget Groove; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:63mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:14mA; Courant, fonctionnement c.a.:14mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lum LED MIN GROOVE 28V VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:567nm; Intensité lumineuse:90mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:14mA; Courant, fonctionnement c.a.:14mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumineu LED 24V JAUNE; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:63mcd; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Courant:15mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Diamètre, extérieur:5.8mm; Dimension de la lentille:T5.5; Durée de vie:60000h; Intensité lumi LED MID GROOVE 24VAC/DC ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:330mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:3.8mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumi LED MID GROOVE 12VAC/DC ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:330mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumi LED MID GROOVE 12VAC/DC JAUNE; Lamp Base Type:Midget Groove; Couleur de LED:Jaune; Longueur d'onde typ.:587nm; Intensité lumineuse:280mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité l LED MID GROOVE 24VAC/DC JAUNE; Lamp Base Type:Midget Groove; Couleur de LED:Jaune; Longueur d'onde typ.:587nm; Intensité lumineuse:280mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité l LED MID GROOVE 28VAC/DC BLANC DF; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumineuse typique:700mcd; L LED BA9S 24VAC/DC ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:350mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:350mcd; LED BA9S 24VAC/DC BLANC DIFF; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:750mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:750mcd; Longueur/hauteur:25m LED BA9S 28VAC/DC JAUNE; Lamp Base Type:BA9s; Couleur de LED:Jaune; Longueur d'onde typ.:587nm; Intensité lumineuse:300mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:13mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Courant, fonctionnement c.c.:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:300m LAMPE NEON T2 W/E; Tension, alimentation:250V; Lamp Base Type:A fil; Courant:1.8mA; SVHC:No SVHC (19-Dec-2011); Courant max.:2.5mA; Courant min.:1.8mA; Dimension de la lentille:T2; Longueur cordon:50mm; Longueur/hauteur:16mm; Résistance, série, 100V:33K 1/4W; Résistance, série, 240V:100K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:95V; Tension, attaque c.c.:135V LAMPE S5.7S 6MM 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.3; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 3/4; Durée de vie:10000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:15.9mm; Tension:28V; Tension c.a.:28V LAMPE SBC BA15D 12V 21W; Tension, alimentation:12V; Lamp Base Type:BA15d; Taille de lampe:25mm; Puissance:21W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:25mm; Normes:BS335; Style de code:BA15d; Tension:28V; Tension c.a.:12V LAMPE SBC BA15D 12V 5W; Tension, alimentation:12V; Lamp Base Type:BA15d; Taille de lampe:18mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS209; Style de code:BA15d; Tension c.a.:12V LAMPE SBC BA15D 24V 5W HD; Tension, alimentation:24V; Lamp Base Type:BA15d; Taille de lampe:18mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS247; Style de code:BA15d; Tension:24V; Tension c.a.:24V LAMPE SCC BA15S 24V 21W; Tension, alimentation:24V; Lamp Base Type:BA15s; Taille de lampe:25mm; Puissance:21W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:25mm; Normes:BS241; Style de code:BA15s; Tension:24V; Tension c.a.:24V LAMPE SX6S 6MM 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.38; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 3/4; Durée de vie:4000h; Emission lumineuse, totale:4.5lm; Longueur/hauteur:16.1mm; Tension:28V; Tension c.a.:28V LAMPE T1 DEUX BROCHES 12V 0.72W; Tension, alimentation:12V; Taille de lampe:T-1; Puissance:720mW; MSCP:0.15; Durée de vie moyenne de la lampe:16000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T1; Durée de vie:16000h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.4mm; Longueur/hauteur:9.65mm; Pas:2.54mm; Tension:12V; Tension c.a.:12V LAMPE T1 W/E 12V 0.72W; Tension, alimentation:12V; Taille de lampe:T-1; Puissance:720mW; MSCP:0.15; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.72W; Courant:0.06A; Courant max.:0.06A; Dimension de la lentille:T1; Durée de vie:5000h; Emission lumineuse, totale:1.9lm; Longueur:6.35mm; Longueur cordon:25mm; Longueur/hauteur:6.35mm; Quantité par paquet:10; Tension:12V; Tension c.a.:12V LAMPE T1 W/E 28V 0.672W; Tension, alimentation:28V; Taille de lampe:T-1; Puissance:670mW; MSCP:0.15; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.67W; Courant:0.024A; Courant max.:0.03A; Dimension de la lentille:T1; Durée de vie:1000h; Emission lumineuse, totale:1.9lm; Longueur:6.35mm; Longueur cordon:25mm; Longueur/hauteur:6.35mm; Quantité par paquet:10; Tension:28V; Tension c.a.:28V LAMPE T1.1/2 LES 6V 0.36W; Tension, alimentation:6V; Lamp Base Type:LES (E5); Taille de lampe:T-1 1/2; Puissance:360mW; MSCP:0.07; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:1lm; Longueur/hauteur:16mm; Tension:6V; Tension c.a.:6V LAMPE T1.1/2 W/E 24V 0.96W; Tension, alimentation:24V; Taille de lampe:T-1 1/2; Puissance:960mW; MSCP:0.22; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.96W; Courant:0.05A; Courant max.:0.04A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:2.8lm; Longueur:13.2mm; Longueur cordon:25mm; Longueur/hauteur:13.5mm; Quantité par paquet:10; Tension:24V; Tension c.a.:24V LAMPE T1.1/2 12V 1.2W ROUGE; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:1.2W; MSCP:0.55; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge; Couleur:Red; Courant:0.1A; Dimension de la lentille:T-1 1/2; Durée de vie:3000h; Emission lumineuse, totale:7lm; Longueur/hauteur:18mm; Tension:12V; Tension c.a.:12V LAMPE T1.1/2 24V 0.72W; Tension, alimentation:24V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:720mW; MSCP:0.1; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.03A; Dimension de la lentille:T-1 1/2; Durée de vie:5000h; Emission lumineuse, totale:1.25lm; Longueur/hauteur:18mm; Tension:24V; Tension c.a.:24V LAMPE T1.3/4 DEUX BROCHES 28V 1.12W; Tension, alimentation:28V; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.42; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 3/4; Durée de vie:4000h; Emission lumineuse, totale:4.3lm; Longueur cordon:6.85mm; Longueur/hauteur:15.8mm; Pas:3.17mm; Tension:28V; Tension c.a.:28V LAMPE T1.3/4 MID.FLANGE 28V 1.1W; Tension, alimentation:28V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.35; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Courant, fonctionnement c.c.:0.40A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:10000h; Emission lumineuse, totale:4.02lm; Longueur/hauteur:13.3mm; Tension:28V; Tension c.a.:28V; Tension, alimentation c.c.:28V LAMPE T1.3/4 MID.GROOVE 14V 1.12W; Tension, alimentation:14V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.38; Durée de vie moyenne de la lampe:15000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Courant, fonctionnement c.c.:0.08A; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:15000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:15.9mm; Tension:14V; Tension c.a.:14V; Tension, alimentation c.c.:14V LAMPE T1.3/4 MID.GROOVE 48V 1.2W; Tension, alimentation:48V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.2W; MSCP:0.26; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.025A; Courant, fonctionnement c.c.:0.03A; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:5000h; Emission lumineuse, totale:4.3lm; Longueur/hauteur:15.9mm; Tension:48V; Tension c.a.:48V; Tension, alimentation c.c.:48V LAMPE T1.3/4 14V 1.12W; Tension, alimentation:14V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:1.12W; MSCP:0.3; Durée de vie moyenne de la lampe:15000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Dimension de la lentille:T-1 3/4; Durée de vie:15000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:20.3mm; Tension:14V; Tension c.a.:14V LAMPE T3.1/4 MBC/MCC 12V 2.2W; Tension, alimentation:12V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:2W; MSCP:1.07; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.17A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:9.4lm; Longueur/hauteur:30mm; Tension:12V; Tension c.a.:12V LAMPE T3.1/4 MBC/MCC 130V 2.6W; Tension, alimentation:130V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:3.2W; MSCP:0.31; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.02A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:4.5lm; Longueur/hauteur:30mm; Tension c.a.:130V LAMPE T3.1/4 MBC/MCC 28V 2.24W; Tension, alimentation:28V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:2.24W; MSCP:0.62; Durée de vie moyenne de la lampe:7500h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Dimension de la lentille:T-3 1/4; Durée de vie:7500h; Emission lumineuse, totale:7.8lm; Longueur/hauteur:30mm; Tension c.a.:28V LAMPE T3.1/4 MBC/MCC 6.3V 1.575W; Tension, alimentation:6.3V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:1.57W; MSCP:0.9; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.25A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:11.3lm; Longueur/hauteur:30mm; Tension c.a.:6.3V LAMPE T3.1/4 24V 5W; Tension, alimentation:24V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:5W; MSCP:2.4; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.21A; Dimension de la lentille:T-1 3/4; Durée de vie:1000h; Emission lumineuse, totale:50lm; Longueur/hauteur:26.8mm; Tension:24V; Tension c.a.:24V LAMPE T6.8 EMISSION LATERALE 30V 1.2W; Tension, alimentation:30V; Taille de lampe:T-6 4/5; Puissance:1.2W; MSCP:0.3; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T6.8; Durée de vie:5000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:46.5mm; Tension c.a.:30V LAMPE WE 3MM 5V 0.3W; Tension, alimentation:5V; Taille de lampe:T-1; Puissance:300mW; MSCP:0.04; Durée de vie moyenne de la lampe:40000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T1; Durée de vie:40000h; Emission lumineuse, totale:0.6lm; Longueur/hauteur:6.35mm; Tension:5VDC; Tension c.a.:5V LED T10 BLANC 24V AC/DC; Lamp Base Type:Culot Wedge; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-10; Tension, alimentation:24V; Courant:14mA; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Intensité lumineuse typique:700mcd; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60°C; Température d'utilisation min:-20°C; Tension VDC:24V; Tension, Vf LED MBC 130VAC VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:565nm; Intensité lumineuse:130mcd; Puissance:490mW; Taille de lampe:T-10; Tension, alimentation:130V; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Vert; Couleur, LED:Vert; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Durée de vie:60000h; Intensité lumineuse typique:130mcd; Longueur d'onde, crête:565nm; Nombre de LED:8; Puissance, Pt LED MIN GROOVE 12V VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:567nm; Intensité lumineuse:90mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:30mA; Courant, fonctionnement c.a.:30mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumineuse typique:90m LED T1 DEUX BROCHES 24V ROUGE; Lamp Base Type:Bi-broche; Couleur de LED:Rouge; Longueur d'onde typ.:635nm; Intensité lumineuse:19mcd; Taille de lampe:T-1; Tension, alimentation:24V; Courant:12mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:12mA; Courant, fonctionnement c.a.:12mA; Diamètre, extérieur:4.5mm; Dimension de la lentille:T1; Durée de vie:60000h; Intensité lumineuse typiq LED T5 BLANC 24V AC/DC; Lamp Base Type:Culot Wedge; Couleur de LED:Blanc; Intensité lumineuse:600mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:12mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:600mcd; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60°C; Température d'uti LAMPE P13.5S HALOGENE 5.2V; Tension, alimentation:5.2V; Lamp Base Type:P13,5s; Longueur:32mm; SVHC:No SVHC (19-Dec-2011); Courant:0.85A; Dimension de la lentille:P13.5S; Durée de vie:25h; Durée de vie moyenne de la lampe:25h; Emission lumineuse, totale:85lm; Intensité lumineuse, max..:85lm; MSCP:6.76; Taille de lampe:P13.5S; Tension c.a.:5.2V LAMPE P13.5S 4.75V 0.5A; Tension, alimentation:4.75V; Lamp Base Type:P13,5s; Taille de lampe:11.5mm; MSCP:2.54; Durée de vie moyenne de la lampe:20h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.5A; Dimension de la lentille:11.5mm; Durée de vie:20h; Emission lumineuse, totale:32lm; Longueur/hauteur:32mm; Tension:4.8V; Tension c.a.:4.75V LAMPE P13.5S 7.5V 0.5A; Tension, alimentation:4.8V; Lamp Base Type:P13,5s; Taille de lampe:11.5mm; MSCP:1.98; Durée de vie moyenne de la lampe:15h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.5A; Dimension de la lentille:11.5mm; Durée de vie:15h; Emission lumineuse, totale:25lm; Longueur/hauteur:32mm; Tension:4.8V; Tension c.a.:4.8V LED MES 230VAC BLANC DIFF; Lamp Base Type:E10; Couleur de LED:Blanc; Intensité lumineuse:75mcd; Taille de lampe:10mm; Tension, alimentation:230V; Courant:3mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:3mA; Courant, fonctionnement c.a.:3mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:75mcd; Température de fonctionnement:-20°C +60°C; Température de fon LED BA9S - BLANC 12VDC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:825mcd; Taille de lampe:T-3 1/4; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Catégorie de tension:12V dc; Couleur:White; Couleur, LED:Blanc; Courant, direct, If:15mA; Diamètre, extérieur:9mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse typique:825mcd; Longueur, lentille:15.65mm; Longueur/hauteur:28.75mm; Température de fonctionnement:-30°C +85°C; Température LAMPE BA9S 12V 2.2W; Tension, alimentation:12V; Lamp Base Type:BA9s; Taille de lampe:T-2; Puissance:2.2W; MSCP:0.87; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.183A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:11lm; Longueur/hauteur:28mm; Style de code:BA9s; Tension:12V; Tension c.a.:12V LAMPE BA9S 24V 2.9W; Tension, alimentation:24V; Lamp Base Type:BA9s; Taille de lampe:T-2; Puissance:2.8W; MSCP:0.95; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.12A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:12lm; Longueur/hauteur:28mm; Style de code:BA9s; Tension:24V; Tension c.a.:24V LAMPE G3.1/2 MES 12V 1.2W; Tension, alimentation:12V; Lamp Base Type:E10; Taille de lampe:G-3 1/2; Puissance:1.2W; MSCP:0.47; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.1A; Dimension de la lentille:G3 1/2; Durée de vie:5000h; Emission lumineuse, totale:5lm; Longueur/hauteur:24mm; Tension:12V; Tension c.a.:12V LAMPE G3.1/2 MES 12V 2.19W; Tension, alimentation:12V; Lamp Base Type:E10; Taille de lampe:G-3 1/2; Puissance:2.2W; MSCP:1.52; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.18A; Dimension de la lentille:G3 1/2; Durée de vie:3000h; Emission lumineuse, totale:9.4lm; Longueur/hauteur:24mm; Tension:12V; Tension c.a.:12V LAMPE G3.1/2 MES 24V 2.8W; Tension, alimentation:24V; Lamp Base Type:E10; Taille de lampe:G-3 1/2; Puissance:2.8W; MSCP:1.35; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.12A; Dimension de la lentille:G3 1/2; Durée de vie:3000h; Emission lumineuse, totale:10.7lm; Longueur/hauteur:24mm; Tension:24V; Tension c.a.:24V LAMPE H1 HALOGENE 24V 70W; Tension, alimentation:24V; Lamp Base Type:P14,5s; Puissance:70W; Longueur:67.5mm; SVHC:No SVHC (19-Dec-2011); Normes:BS466; Style de code:H1; Tension c.a.:24V LAMPE LES 5MM 24V 0.96W; Tension, alimentation:24V; Taille de lampe:T-1 3/4; Puissance:960mW; MSCP:0.24; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:3lm; Longueur/hauteur:16mm; Tension:24V; Tension c.a.:24V LAMPE MES 6.5V 2W; Tension, alimentation:6.5V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:2W; MSCP:0.95; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Dimension de la lentille:T-3 1/4 MES; Durée de vie:4000h; Emission lumineuse, totale:12lm; Longueur/hauteur:28mm; Tension:6.5V LAMPE NEON T1.1/4 W/E; Tension, alimentation:240V; Lamp Base Type:A fil; Courant:550è¾A; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Courant max.:0.55mA; Dimension de la lentille:T-1 1/4; Longueur cordon:23mm; Longueur/hauteur:10.5mm; Résistance, série, 100V:100K 1/4W; Résistance, série, 240V:330K 1/4W; Taille de lampe:T-1 1/4; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T2 W/E; Lamp Base Type:A fil; Courant:500è¾A; SVHC:No SVHC (19-Dec-2011); Courant max.:0.55mA; Courant min.:0.35mA; Dimension de la lentille:T2; Longueur cordon:30mm; Longueur/hauteur:16mm; Résistance, série, 100V:100K 1/4W; Résistance, série, 240V:330K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T2 W/E; Tension, alimentation:240V; Lamp Base Type:A fil; Courant:4.5mA; SVHC:No SVHC (19-Dec-2011); Courant max.:4.5mA; Dimension de la lentille:T2; Longueur cordon:30mm; Longueur/hauteur:16mm; Résistance, série, 100V:12K 1/4W; Résistance, série, 240V:39K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:95V; Tension, attaque c.c.:135V LAMPE P13.5S XENON; Tension, alimentation:2.4V; Taille de lampe:11.5mm; Courant:500mA; Longueur:32mm; Lamp Base Type:P13,5s; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:11.5mm; Durée de vie:10h; Durée de vie moyenne de la lampe:10h; Emission lumineuse, totale:10lm; Intensité lumineuse, max..:16.5lm; Longueur/hauteur:32mm; MSCP:1.31; Tension c.a.:2.4V LAMPE PCB 24V 1.2W GREY; Tension, alimentation:24V; Taille de lampe:5mm; Puissance:1.2W; SVHC:No SVHC (19-Dec-2011); Couleur:Grey; Dimension de la lentille:5mm; Longueur/hauteur:22mm; Normes:BS508T; Style de code:Sur CI; Tension:24V; Tension c.a.:24V LAMPE SBC BA15D 24V 5W; Tension, alimentation:24V; Lamp Base Type:BA15d; Taille de lampe:18mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS150; Style de code:BA15d; Tension:24V; Tension c.a.:24V LAMPE SCC BA15S 12V 21W; Tension, alimentation:12V; Lamp Base Type:BA15s; Taille de lampe:25mm; Puissance:21W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:25mm; Normes:BS382; Style de code:BA15s; Tension:12V; Tension c.a.:12V LAMPE SCC BA15S 12V 5W; Tension, alimentation:12V; Lamp Base Type:BA15s; Taille de lampe:18mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS207; Style de code:BA15s; Tension:12V; Tension c.a.:12V LAMPE SCC BA15S 24V 5W HD; Tension, alimentation:24V; Lamp Base Type:BA15s; Taille de lampe:18mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS248; Style de code:BA15s; Tension:24V; Tension c.a.:24V LAMPE T1 DEUX BROCHES 18V 0.47W; Tension, alimentation:18V; Taille de lampe:T-1; Puissance:470mW; MSCP:0.01; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.026A; Dimension de la lentille:T1; Durée de vie:5000h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.4mm; Longueur/hauteur:9.65mm; Pas:2.54mm; Tension:18V; Tension c.a.:18V LAMPE T1 DEUX BROCHES 28V 0.67W; Tension, alimentation:28V; Taille de lampe:T-1; Puissance:670mW; MSCP:0.15; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.024A; Dimension de la lentille:T1; Durée de vie:4000h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.4mm; Longueur/hauteur:9.65mm; Pas:2.54mm; Tension:28V; Tension c.a.:28V LAMPE T1 DEUX BROCHES 5V 0.3W; Tension, alimentation:5V; Taille de lampe:T-1; Puissance:300mW; MSCP:0.03; Durée de vie moyenne de la lampe:40000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Diamètre, extérieur:3.3mm; Dimension de la lentille:T1; Durée de vie:40000h; Emission lumineuse, totale:0.38lm; Longueur cordon:6.85mm; Longueur/hauteur:9.65mm; Pas:1.27mm; Tension:5V; Tension c.a.:5V LAMPE T1.1/2 LES 24V 0.96W; Tension, alimentation:24V; Lamp Base Type:LES (E5); Taille de lampe:T-1 1/2; Puissance:960mW; MSCP:0.23; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.96W; Courant:0.04A; Courant max.:0.04A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:3lm; Longueur/hauteur:16mm; Tension:24V; Tension c.a.:24V LAMPE T1.1/2 12V 0.36W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:360mW; MSCP:0.08; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.03A; Dimension de la lentille:T-1 1/2; Durée de vie:3000h; Emission lumineuse, totale:0.7lm; Longueur/hauteur:18mm; Tension:12V; Tension c.a.:12V LAMPE T1.1/2 12V 1.2W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:1.2W; MSCP:0.56; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.1A; Dimension de la lentille:T-1 1/2; Durée de vie:1000h; Emission lumineuse, totale:7.2lm; Longueur/hauteur:18mm; Tension:12V; Tension c.a.:12V LAMPE T1.1/2 24V 0.96W; Tension, alimentation:24V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:960mW; MSCP:0.24; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:3lm; Longueur/hauteur:18mm; Tension c.a.:24V LAMPE T1.1/2 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:1.12W; MSCP:0.3; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:18mm; Tension c.a.:28V LAMPE T1.3/4 MID.GROOVE 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.42; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Courant, fonctionnement c.c.:0.04A; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:4000h; Emission lumineuse, totale:4.3lm; Longueur/hauteur:15.9mm; Tension:28V; Tension c.a.:28V; Tension, alimentation c.c.:28V LAMPE T1.3/4 MID.GROOVE 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.38; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Courant, fonctionnement c.c.:0.04A; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:10000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:15.9mm; Tension:28V; Tension c.a.:28V; Tension, alimentation c.c.:28V LAMPE T3.1/4 MBC/MCC 24V 2.88W; Tension, alimentation:24V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:2.88W; MSCP:1.24; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.12A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:12lm; Longueur/hauteur:28mm; Tension:24V; Tension c.a.:24V LAMPE T3.1/4 MBC/MCC 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:1.1W; MSCP:0.34; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:4.3lm; Longueur/hauteur:30mm; Tension c.a.:28V LAMPE T3.1/4 MES 12V 0.25W; Tension, alimentation:12V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:3W; MSCP:1.19; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.25A; Dimension de la lentille:T-3 1/4; Durée de vie:4000h; Emission lumineuse, totale:12.5lm; Longueur/hauteur:30mm; Tension c.a.:12V LAMPE T3.1/4 MES 12V 2.2W; Tension, alimentation:12V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:2.2W; MSCP:0.9; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.183A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:11lm; Longueur/hauteur:3mm; Tension c.a.:12V LAMPE T3.1/4 12V 2.16W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:2.16W; MSCP:2.1; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.18A; Dimension de la lentille:T-1 3/4; Durée de vie:3000h; Emission lumineuse, totale:12.6lm; Longueur/hauteur:26.8mm; Tension:12V; Tension c.a.:12V LAMPE T3.1/4 24V 3W; Tension, alimentation:24V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:3W; MSCP:1; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.13A; Dimension de la lentille:T-1 3/4; Durée de vie:1000h; Emission lumineuse, totale:22lm; Longueur/hauteur:26.8mm; Tension:24V; Tension c.a.:24V LAMPE T3.8 AXIAL W/E 15V 0.6W; Tension, alimentation:15V; Lamp Base Type:A fil axial; Taille de lampe:T-1 1/5; Puissance:600mW; MSCP:0.19; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.055A; Dimension de la lentille:T3.8; Durée de vie:5000h; Emission lumineuse, totale:2.3lm; Longueur cordon:15mm; Longueur/hauteur:20mm; Tension:15V; Tension c.a.:15V; Tension, alimentation max..:15V; Tension, alimentation min.:10V LAMPE T6.2 AXIAL W/E 15V 1.3W; Tension, alimentation:15V; Lamp Base Type:A fil axial; Taille de lampe:T-6 1/2; Puissance:1.3W; MSCP:0.69; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.11A; Dimension de la lentille:T6.2; Durée de vie:5000h; Emission lumineuse, totale:7lm; Longueur cordon:15mm; Longueur/hauteur:28mm; Tension:15V; Tension c.a.:15V; Tension, alimentation max..:15V; Tension, alimentation min.:10V LAMPE T6.8 EMISSION LATERALE 24V 1.2W; Tension, alimentation:24V; Taille de lampe:T-6 4/5; Puissance:1.2W; MSCP:0.27; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T6.8; Durée de vie:5000h; Emission lumineuse, totale:3.5lm; Longueur/hauteur:46.5mm; Tension:24V; Tension c.a.:24V LAMPE T6.8 EMISSION LATERALE 60V 1.2W; Tension, alimentation:60V; Taille de lampe:T-6 4/5; Puissance:1.2W; MSCP:0.17; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.02A; Dimension de la lentille:T6.8; Durée de vie:5000h; Emission lumineuse, totale:2.2lm; Longueur/hauteur:46.5mm; Tension c.a.:60V LED EMISSION LATERALE 24V VERT; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Vert; Longueur d'onde typ.:567nm; Intensité lumineuse:90mcd; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Courant:15mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:15mA; Courant, fonctionnement c.a.:15mA; Diamètre, extérieur:5.8mm; Dimension de la lentille:T5.5; Durée de vie:60000h; LED T1 DEUX BROCHES 24V JAUNE; Lamp Base Type:Bi-broche; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:32mcd; Taille de lampe:T-1; Tension, alimentation:24V; Courant:12mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:12mA; Courant, fonctionnement c.a.:12mA; Diamètre, extérieur:4.5mm; Dimension de la lentille:T1; Durée de vie:60000h; Intensité lumineuse ty LED T1 DEUX BROCHES 28V ROUGE; Lamp Base Type:Bi-broche; Couleur de LED:Rouge; Longueur d'onde typ.:635nm; Intensité lumineuse:19mcd; Taille de lampe:T-1; Tension, alimentation:28V; Courant:12mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:12mA; Courant, fonctionnement c.a.:12mA; Diamètre, extérieur:4.5mm; Dimension de la lentille:T1; Durée de vie:60000h; Intensité lumineuse typiq LED T10 BLANC 12V AC/DC; Lamp Base Type:Culot Wedge; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:10mm; Tension, alimentation:12V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Intensité lumineuse typique:700mcd; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60°C; Température d'utilisatio LED T5 BLANC 28V AC/DC; Lamp Base Type:Culot Wedge; Couleur de LED:Blanc; Intensité lumineuse:600mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:12mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:600mcd; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60°C; Température d'uti LED BA9S - AMBRE 24VDC; Lamp Base Type:BA9s; Couleur de LED:Jaune; Longueur d'onde typ.:592nm; Intensité lumineuse:1275mcd; Taille de lampe:T-3 1/4; Tension, alimentation:28V; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Catégorie de tension:24V dc; Couleur:Amber; Couleur, LED:Ambre; Courant, direct, If:15mA; Diamètre, extérieur:9mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse typique:1275mcd; Longueur d'onde, crête:592nm; Longueur, lentille:15.65 LAMPE FESTOON 24V 5W; Tension, alimentation:24V; Lamp Base Type:Festoon; Taille de lampe:11mm x 38mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:11 x 38mm; Normes:BS242; Style de code:Navette; Tension c.a.:24V LAMPE G3.1/2 MES 6V 0.36W; Tension, alimentation:6V; Lamp Base Type:E10; Taille de lampe:G-3 1/2; Puissance:360mW; MSCP:0.09; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:G3 1/2; Durée de vie:10000h; Emission lumineuse, totale:1lm; Longueur/hauteur:24mm; Tension:6V; Tension c.a.:6V LAMPE H4 HALOGENE 12V 60/55W; Tension, alimentation:12V; Puissance:60W; Longueur:92mm; SVHC:No SVHC (19-Dec-2011); Normes:BS472; Style de code:H4; Tension c.a.:12V LAMPE MES 24V 2.9W; Tension, alimentation:24V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:2.9W; MSCP:0.95; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.12A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:12lm; Longueur/hauteur:28mm; Tension:24V; Tension c.a.:24V LAMPE NEON MES; Tension, alimentation:250V; Lamp Base Type:E10; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge - Ambre; Diamètre, extérieur:10.3mm; Dimension de la lentille:T-3 1/4; Longueur/hauteur:30mm; Résistance, série, 240V:68Kohm; Taille de lampe:10mm / T-3 1/4; Tension, alimentation c.a. max..:250V; Tension, alimentation c.a. min:220V; Tension, attaque c.a.:230V LAMPE NEON T1.1/4 W/E; Tension, alimentation:250V; Lamp Base Type:A fil; Courant:1.2mA; SVHC:No SVHC (19-Dec-2011); Courant max.:0.7mA; Courant min.:0.5mA; Dimension de la lentille:T-1 1/4; Longueur cordon:25mm; Longueur/hauteur:10mm; Résistance, série, 100V:ne convient pas; Résistance, série, 240V:220K 1/4W; Taille de lampe:T-1 1/4; Tension, attaque c.a.:95V; Tension, attaque c.c.:135V LAMPE NEON T1.1/4 W/E; Tension, alimentation:240V; Lamp Base Type:A fil; Courant:1.8mA; SVHC:No SVHC (19-Dec-2011); Courant max.:1.8mA; Dimension de la lentille:T-1 1/4; Longueur cordon:23mm; Longueur/hauteur:10.5mm; Résistance, série, 100V:33K 1/4W; Résistance, série, 240V:100K 1/4W; Taille de lampe:T-1 1/4; Tension, attaque c.a.:95V; Tension, attaque c.c.:135V LAMPE NEON T2 W/E; Tension, alimentation:250V; Lamp Base Type:A fil; Courant:500è¾A; SVHC:No SVHC (19-Dec-2011); Courant max.:0.55mA; Courant min.:0.35mA; Dimension de la lentille:T2; Longueur cordon:50mm; Longueur/hauteur:16mm; Résistance, série, 100V:100K 1/4W; Résistance, série, 240V:330K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T2 W/E; Tension, alimentation:240V; Lamp Base Type:A fil; Courant:800è¾A; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Courant max.:0.8mA; Dimension de la lentille:T2; Longueur cordon:30mm; Longueur/hauteur:12.5mm; Résistance, série, 100V:68K 1/4W; Résistance, série, 240V:220K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T2 W/E; Tension, alimentation:240V; Lamp Base Type:A fil; Courant:550è¾A; SVHC:No SVHC (19-Dec-2011); Courant max.:0.55mA; Dimension de la lentille:T2; Longueur cordon:30mm; Longueur/hauteur:16mm; Résistance, série, 100V:100K 1/4W; Résistance, série, 240V:330K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T5.5 230V ROUGE; Tension, alimentation:230V; Lamp Base Type:Ampoule de téléphonie; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge - Ambre; Courant max.:2.6mA; Dimension de la lentille:T5.5; Longueur/hauteur:31mm; Taille de lampe:T-5.5; Tension, attaque c.a.:95V LAMPE SCC BA15S 24V 5W; Tension, alimentation:24V; Lamp Base Type:BA15s; Taille de lampe:18mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS149; Style de code:BA15s; Tension c.a.:24V LAMPE T1 DEUX BROCHES 6V 0.69W; Tension, alimentation:6V; Taille de lampe:T-1; Puissance:690mW; MSCP:0.01; Durée de vie moyenne de la lampe:25000h; SVHC:No SVHC (19-Dec-2011); Courant:0.115A; Dimension de la lentille:T1; Durée de vie:25000h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.4mm; Longueur/hauteur:9.65mm; Pas:2.54mm; Tension:6V; Tension c.a.:6V LAMPE T1 W/E 5V 0.3W; Tension, alimentation:5V; Taille de lampe:T-1; Puissance:300mW; MSCP:0.04; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.3W; Courant:0.06A; Courant max.:0.06A; Dimension de la lentille:T1; Durée de vie:20000h; Emission lumineuse, totale:0.6lm; Longueur:6.35mm; Longueur cordon:25mm; Longueur/hauteur:6.35mm; Quantité par paquet:10; Tension:5V; Tension c.a.:5V LAMPE T1.1/2 LES 12V 0.96W; Tension, alimentation:12V; Lamp Base Type:LES (E5); Taille de lampe:T-1 1/2; Puissance:960mW; MSCP:0.15; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:2lm; Longueur/hauteur:16mm; Tension:12V; Tension c.a.:12V LAMPE T1.1/2 W/E 14V 0.7W; Tension, alimentation:14V; Taille de lampe:T-1 1/2; Puissance:700mW; MSCP:0.03; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T-1 1/2; Durée de vie:1000h; Emission lumineuse, totale:3lm; Longueur cordon:19mm; Longueur/hauteur:13.5mm; Tension:14V; Tension c.a.:14V LAMPE T1.1/4 DEUX BROCHES 12V 0.36W; Tension, alimentation:12V; Taille de lampe:T-1 1/4; Puissance:360mW; MSCP:0.07; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.03A; Diamètre, extérieur:4.75mm; Dimension de la lentille:T-1 1/4; Durée de vie:3000h; Emission lumineuse, totale:0.7lm; Longueur cordon:6.85mm; Longueur/hauteur:14mm; Pas:2.54mm; Tension c.a.:12V LAMPE T1.1/4 DEUX BROCHES 28V 1.12W; Tension, alimentation:28V; Taille de lampe:T-1 1/4; Puissance:1.12W; MSCP:0.39; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Diamètre, extérieur:4.75mm; Dimension de la lentille:T-1 1/4; Durée de vie:1000h; Emission lumineuse, totale:4lm; Longueur cordon:6.85mm; Longueur/hauteur:14mm; Pas:2.54mm; Tension:28V; Tension c.a.:28V LAMPE T1.3/4 MID.FLANGE 12V 1.2W; Tension, alimentation:12V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.47; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.09A; Courant, fonctionnement c.c.:0.10A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:5000h; Emission lumineuse, totale:4.4lm; Longueur/hauteur:16mm; Tension:12V; Tension c.a.:12V; Tension, alimentation c.c.:12V LAMPE T1.3/4 MID.FLANGE 14V 1.1W; Tension, alimentation:14V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.62; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Courant, fonctionnement c.c.:0.08A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:1000h; Emission lumineuse, totale:6.28lm; Longueur/hauteur:13.3mm; Tension:14V; Tension c.a.:14V; Tension, alimentation c.c.:14V LAMPE T1.3/4 MID.FLANGE 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.24; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Courant, fonctionnement c.c.:0.04A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:20000h; Emission lumineuse, totale:2.5lm; Longueur/hauteur:16mm; Tension:28V; Tension c.a.:28V; Tension, alimentation c.c.:28V LAMPE T1.3/4 MID.FLANGE 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.38; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Courant, fonctionnement c.c.:0.04A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:10000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:16mm; Tension c.a.:28V; Tension, alimentation c.c.:28V LAMPE T1.3/4 MID.FLANGE 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.42; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Courant, fonctionnement c.c.:0.04A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:4000h; Emission lumineuse, totale:4.3lm; Longueur/hauteur:16mm; Tension:28V; Tension c.a.:28V; Tension, alimentation c.c.:28V LAMPE T1.3/4 MID.GROOVE 14V 1.12W; Tension, alimentation:14V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.62; Durée de vie moyenne de la lampe:750h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Courant, fonctionnement c.c.:0.08A; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:750h; Emission lumineuse, totale:6.3lm; Longueur/hauteur:15.9mm; Tension:14V; Tension c.a.:14V; Tension, alimentation c.c.:14V LAMPE T1.3/4 MID.GROOVE 6.3V 1.26W; Tension, alimentation:6.3V; Lamp Base Type:Midget Groove, S5,7s; Taille de lampe:T-1 3/4; Puissance:1.26W; MSCP:0.49; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011); Courant:0.2A; Courant, fonctionnement c.c.:0.20A; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:20000h; Emission lumineuse, totale:5lm; Longueur/hauteur:15.9mm; Tension:6.3V; Tension c.a.:6.3V; Tension, alimentation c.c.:6.3V LAMPE T2 BAYONET 24V 1W; Tension, alimentation:24V; Lamp Base Type:BA7s; Taille de lampe:T-2; Puissance:1W; MSCP:0.25; Durée de vie moyenne de la lampe:7000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T2; Durée de vie:7000h; Emission lumineuse, totale:3lm; Longueur/hauteur:20.7mm; Tension:5V; Tension c.a.:24V LAMPE T3.1/4 MBC/MCC 28V 1.96W; Tension, alimentation:28V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:1.96W; MSCP:1; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.07A; Dimension de la lentille:T-3 1/4; Durée de vie:1000h; Emission lumineuse, totale:12.6lm; Longueur/hauteur:30mm; Tension:28V; Tension c.a.:28V LAMPE T3.1/4 MBC/MCC 6.3V 0.945W; Tension, alimentation:6.3V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:945mW; MSCP:0.33; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011); Courant:0.15A; Dimension de la lentille:T-3 1/4; Durée de vie:20000h; Emission lumineuse, totale:4.1lm; Longueur/hauteur:30mm; Tension c.a.:6.3V LAMPE T3.1/4 MBC/MCC 6V 1.2W; Tension, alimentation:6V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:1.2W; MSCP:0.38; Durée de vie moyenne de la lampe:15000h; SVHC:No SVHC (19-Dec-2011); Courant:0.2A; Dimension de la lentille:T-3 1/4; Durée de vie:15000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:28mm; Tension c.a.:6V LAMPE T3.1/4 MES 24V 2.8W; Tension, alimentation:24V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:2.8W; MSCP:1.24; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.12A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:10.7lm; Longueur/hauteur:28mm; Tension c.a.:24V LAMPE T3.1/4 MES 6.5V 1.95W; Tension, alimentation:6.5V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:1.95W; MSCP:1.11; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Dimension de la lentille:T-3 1/4; Durée de vie:4000h; Emission lumineuse, totale:12lm; Longueur/hauteur:30mm; Tension:6.5V; Tension c.a.:6.5V LAMPE T3.1/4 24V 1.92W; Tension, alimentation:24V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:1.92W; MSCP:0.63; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Dimension de la lentille:T-1 3/4; Durée de vie:5000h; Emission lumineuse, totale:8lm; Longueur/hauteur:26.8mm; Tension:24V; Tension c.a.:24V LAMPE T6.8 EMISSION LATERALE 28V 1.12W; Tension, alimentation:28V; Taille de lampe:T-6 4/5; Puissance:1.12W; MSCP:0.27; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T6.8; Durée de vie:5000h; Emission lumineuse, totale:4.5lm; Longueur/hauteur:46.5mm; Tension:28V; Tension c.a.:28V LAMPE WE 3MM 28V 0.672W; Tension, alimentation:28V; Taille de lampe:T-1; Puissance:672mW; MSCP:0.15; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.024A; Dimension de la lentille:T1; Durée de vie:4000h; Emission lumineuse, totale:1.9lm; Longueur/hauteur:6.35mm; Tension:28V; Tension c.a.:28V LED BA9S 48VAC/DC BLANC CLAIR; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:400mcd; Taille de lampe:10mm; Tension, alimentation:48V; Courant:8mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:8mA; Courant, fonctionnement c.a.:8mA; Courant, fonctionnement c.c.:8mA; Diamètre, extérieur:10mm; Dimension de la lentille:10mm; Durée de vie:100000h; Intensité lumineuse typique:400mcd; Température de fonction LED MBC 230VAC VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:565nm; Intensité lumineuse:130mcd; Puissance:490mW; Taille de lampe:T-10; Tension, alimentation:230V; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Vert; Couleur, LED:Vert; Diamètre, extérieur:10mm; Dimension de la lentille:T10; Durée de vie:60000h; Intensité lumineuse typique:130mcd; Longueur d'onde, crête:565nm; Nombre de LED:8; Puissance, Pt LED MID GROOVE 12VAC/DC BLANC CL; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-1 3/4; Tension, alimentation:12V; Courant:14mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:14mA; Courant, fonctionnement c.a.:7mA; Courant, fonctionnement c.c.:14mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:100000h; Intensité lumineuse typique:700mcd; T LED MIN FLANGE 24V ROUGE; Lamp Base Type:Midget Flange; Couleur de LED:Rouge; Longueur d'onde typ.:620nm; Intensité lumineuse:1000mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:14mA; Courant, fonctionnement c.c.:14mA; Diamètre, tête:6.1mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumineuse LED T1 DEUX BROCHES 24V VERT; Lamp Base Type:Bi-broche; Couleur de LED:Vert; Longueur d'onde typ.:567nm; Intensité lumineuse:44mcd; Taille de lampe:T-1; Tension, alimentation:24V; Courant:12mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:12mA; Courant, fonctionnement c.a.:12mA; Diamètre, extérieur:4.5mm; Dimension de la lentille:T1; Durée de vie:60000h; Intensité lumineuse typiqu LED BA9S - BLANC 24VDC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:825mcd; Taille de lampe:T-3 1/4; Courant:15mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Catégorie de tension:28V dc; Couleur:White; Couleur, LED:Blanc; Courant, direct, If:15mA; Diamètre, extérieur:9mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse typique:825mcd; Longueur, lentille:15.65mm; Longueur/hauteur:28.75mm; Température de fonctionnement:-30°C +85°C; Température LAMPE FESTOON 12V 5W; Tension, alimentation:12V; Lamp Base Type:Festoon; Taille de lampe:11mm x 38mm; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:11 x 38mm; Normes:BS239; Style de code:Navette; Tension:12V; Tension c.a.:12V LAMPE G3.1/2 MBC/MCC 6.5V 1.95W; Tension, alimentation:6.5V; Lamp Base Type:BA9s; Taille de lampe:G-3 1/2; Puissance:1.95W; MSCP:1.11; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Dimension de la lentille:G3 1/2; Durée de vie:4000h; Emission lumineuse, totale:12lm; Longueur/hauteur:25mm; Tension:6.5V; Tension c.a.:6.5V LAMPE H1 HALOGENE 12V 55W; Tension, alimentation:12V; Lamp Base Type:P14,5s; Puissance:55W; Longueur:67.5mm; SVHC:No SVHC (19-Dec-2011); Normes:BS448; Style de code:H1; Tension c.a.:12V LAMPE H3 HALOGENE 24V 70W; Tension, alimentation:24V; Lamp Base Type:PK22s; Puissance:70W; Longueur:42mm; SVHC:No SVHC (19-Dec-2011); Normes:BS460; Style de code:H3; Tension c.a.:24V LAMPE LES 5MM 14V 0.7W; Tension, alimentation:14V; Taille de lampe:T-1 1/2; Puissance:700mW; MSCP:0.23; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T-1 1/2; Durée de vie:1000h; Emission lumineuse, totale:3lm; Longueur/hauteur:16mm; Tension:14V; Tension c.a.:14V LAMPE MES 12V 2.2W; Tension, alimentation:12V; Lamp Base Type:E10; Puissance:2.2W; MSCP:0.87; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Courant:0.183A; Dimension de la lentille:G3 1/2; Durée de vie:4000h; Emission lumineuse, totale:11lm; Longueur/hauteur:11mm; Tension:12V; Tension c.a.:12V LAMPE MES 24V 1.2W; Tension, alimentation:24V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:1.2W; MSCP:0.31; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T-3 1/4; Durée de vie:5000h; Emission lumineuse, totale:4lm; Longueur/hauteur:28mm; Tension:24V; Tension c.a.:24V LAMPE NEON MCC; Tension, alimentation:250V; Lamp Base Type:BA9s; Courant:2.5mA; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge - Ambre; Dimension de la lentille:T-3 1/4; Longueur/hauteur:28mm; Taille de lampe:10mm / T-3 1/4; Tension, alimentation c.a. max..:250V; Tension, alimentation c.a. min:220V; Tension, attaque c.a.:85V; Tension, attaque c.c.:90V LAMPE NEON T1.1/4 W/E; Tension, alimentation:240V; Lamp Base Type:A fil; Courant:550è¾A; SVHC:No SVHC (19-Dec-2011); Courant max.:0.55mA; Dimension de la lentille:T-1 1/4; Longueur cordon:23mm; Longueur/hauteur:10.5mm; Résistance, série, 100V:100K 1/4W; Résistance, série, 240V:330K 1/4W; Taille de lampe:T-1 1/4; Tension, attaque c.a.:65V; Tension, attaque c.c.:90V LAMPE NEON T2 W/E; Tension, alimentation:95V; Lamp Base Type:A fil; Courant:1.8mA; SVHC:No SVHC (19-Dec-2011); Courant max.:1.2mA; Courant min.:0.85mA; Dimension de la lentille:T2; Longueur cordon:25mm; Longueur/hauteur:12.5mm; Résistance, série, 100V:56K 1/4W; Résistance, série, 240V:180K 1/4W; Taille de lampe:6mm / T-2; Tension, attaque c.a.:95V; Tension, attaque c.c.:135V LAMPE SCC BA15S 12V 10W; Tension, alimentation:12V; Lamp Base Type:BA15s; Taille de lampe:18mm; Puissance:10W; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:18mm; Longueur/hauteur:30mm; Normes:BS245; Style de code:BA15s; Tension:12V; Tension c.a.:12V LAMPE SMF 3MM 28V 0.672W; Tension, alimentation:28V; Taille de lampe:T-1; Puissance:672mW; MSCP:0.12; Durée de vie moyenne de la lampe:4000h; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Courant:0.024A; Dimension de la lentille:T1; Durée de vie:4000h; Emission lumineuse, totale:1.6lm; Longueur/hauteur:9.53mm; Tension:28V; Tension c.a.:28V LAMPE SX6S 6MM 28V 1.12W; Tension, alimentation:28V; Lamp Base Type:SX6s; Taille de lampe:T-3 1/4; Puissance:1.12W; MSCP:0.31; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 3/4; Durée de vie:10000h; Emission lumineuse, totale:4lm; Longueur/hauteur:16.1mm; Tension:28V; Tension c.a.:28V LAMPE T1 DEUX BROCHES 12V 0.72W; Tension, alimentation:12V; Taille de lampe:T-1; Puissance:720mW; MSCP:0.01; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T1; Durée de vie:10000h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.4mm; Longueur/hauteur:9.65mm; Pas:2.54mm; Tension:12V; Tension c.a.:12V LAMPE T1 DEUX BROCHES 24V 0.58W; Tension, alimentation:24V; Taille de lampe:T-1; Puissance:580mW; MSCP:0.01; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.024A; Dimension de la lentille:T1; Durée de vie:5000h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.4mm; Longueur/hauteur:9.65mm; Pas:2.54mm; Tension:24V; Tension c.a.:24V LAMPE T1 W/E 5V 0.3W; Tension, alimentation:5V; Taille de lampe:T-1; Puissance:300mW; MSCP:0.03; Durée de vie moyenne de la lampe:25000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T1; Durée de vie:25000h; Emission lumineuse, totale:0.4lm; Longueur cordon:35mm; Longueur/hauteur:6.35mm; Tension:5V; Tension c.a.:5V LAMPE T1 W/E 5V 0.575W; Tension, alimentation:5V; Taille de lampe:T-1; Puissance:560mW; MSCP:0.12; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.56W; Courant:0.115A; Courant max.:0.12A; Dimension de la lentille:T1; Durée de vie:20000h; Emission lumineuse, totale:1.5lm; Longueur:6.35mm; Longueur cordon:25mm; Longueur/hauteur:6.35mm; Quantité par paquet:10; Tension:5V; Tension c.a.:5V LAMPE T1.1/2 W/E 14V 0.56W; Tension, alimentation:14V; Taille de lampe:T-1 1/2; Puissance:560mW; MSCP:0.15; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-1 1/2; Durée de vie:5000h; Emission lumineuse, totale:2lm; Longueur cordon:19mm; Longueur/hauteur:13.5mm; Tension:14V; Tension c.a.:14V LAMPE T1.1/2 W/E 6V0.36W; Tension, alimentation:6V; Taille de lampe:T-1 1/2; Puissance:360mW; MSCP:0.07; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T-1 1/2; Durée de vie:10000h; Emission lumineuse, totale:1lm; Longueur cordon:19mm; Longueur/hauteur:13.5mm; Tension:6V; Tension c.a.:6V LAMPE T1.1/2 12V 1W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:1W; MSCP:0.24; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Dimension de la lentille:T-1 1/2; Durée de vie:5000h; Emission lumineuse, totale:3lm; Longueur/hauteur:18mm; Tension:12V; Tension c.a.:12V LAMPE T1.1/2 12V 2W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:2W; MSCP:0.59; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.166A; Dimension de la lentille:T-1 1/2; Durée de vie:1000h; Emission lumineuse, totale:7.5lm; Longueur/hauteur:18mm; Tension:12V; Tension c.a.:12V LAMPE T1.1/2 24V 1.2W; Tension, alimentation:24V; Lamp Base Type:Culot Wedge; Taille de lampe:T-1 1/2; Puissance:1.2W; MSCP:0.5; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T-1 1/2; Durée de vie:1000h; Emission lumineuse, totale:6.3lm; Longueur/hauteur:18mm; Tension:24V; Tension c.a.:24V LAMPE T1.1/4 DEUX BROCHES 24V 1.12W; Tension, alimentation:24V; Taille de lampe:T-1 1/4; Puissance:840mW; MSCP:0.19; Durée de vie moyenne de la lampe:7500h; SVHC:No SVHC (19-Dec-2011); Courant:0.035A; Dimension de la lentille:T-1 1/4; Durée de vie:7500h; Emission lumineuse, totale:1.9lm; Longueur cordon:6.85mm; Longueur/hauteur:14mm; Pas:2.54mm; Tension:24V; Tension c.a.:24V LAMPE T1.1/4 DEUX BROCHES 6V 0.36W; Tension, alimentation:6V; Taille de lampe:T-1 1/4; Puissance:360mW; MSCP:0.15; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T-1 1/4; Durée de vie:3000h; Emission lumineuse, totale:1.6lm; Longueur cordon:6.85mm; Longueur/hauteur:14mm; Pas:2.54mm; Tension:6V; Tension c.a.:6V LAMPE T1.3/4 DEUX BROCHES 14V 1.12W; Tension, alimentation:14V; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.38; Durée de vie moyenne de la lampe:15000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Diamètre, extérieur:6.0mm; Dimension de la lentille:T-1 3/4; Durée de vie:15000h; Emission lumineuse, totale:3.8lm; Longueur cordon:6.85mm; Longueur/hauteur:15.8mm; Pas:3.17mm; Tension:14V; Tension c.a.:14V LAMPE T1.3/4 MID.FLANGE 14V 1.12W; Tension, alimentation:14V; Lamp Base Type:Midget Flange, SX6s; Taille de lampe:T-1 3/4; Puissance:1.12W; MSCP:0.38; Durée de vie moyenne de la lampe:15000h; SVHC:No SVHC (19-Dec-2011); Courant:0.08A; Courant, fonctionnement c.c.:0.08A; Diamètre, extérieur:7.37mm; Dimension de la lentille:T-1 3/4; Durée de vie:15000h; Emission lumineuse, totale:3.77lm; Longueur/hauteur:13.3mm; Tension:14V; Tension c.a.:14V; Tension, alimentation c.c.:14V LAMPE T3.1/4 MBC/MCC 24V 1.2W; Tension, alimentation:24V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:1.2W; MSCP:0.39; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T-3 1/4; Durée de vie:5000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:30mm; Tension:24V; Tension c.a.:24V LAMPE T3.1/4 MBC/MCC 24V 1.96W; Tension, alimentation:24V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:2W; MSCP:0.46; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.07A; Dimension de la lentille:T-3 1/4; Durée de vie:10000h; Emission lumineuse, totale:6.3lm; Longueur/hauteur:30mm; Tension:24V; Tension c.a.:24V LAMPE T3.1/4 MBC/MCC 24V 2W; Tension, alimentation:24V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:2W; MSCP:0.62; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.083A; Dimension de la lentille:T-3 1/4; Durée de vie:10000h; Emission lumineuse, totale:6.3lm; Longueur/hauteur:28mm; Tension c.a.:24V LAMPE T3.1/4 MBC/MCC 30V 2W; Tension, alimentation:30V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:2W; MSCP:0.65; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.07A; Dimension de la lentille:T-3 1/4; Durée de vie:5000h; Emission lumineuse, totale:6.3lm; Longueur/hauteur:30mm; Tension c.a.:30V LAMPE T3.1/4 MBC/MCC 48V 1.92W; Tension, alimentation:48V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:1.92W; MSCP:0.65; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.04A; Dimension de la lentille:T-3 1/4; Durée de vie:5000h; Emission lumineuse, totale:6.3lm; Longueur/hauteur:28mm; Tension:48V; Tension c.a.:48V LAMPE T3.1/4 MBC/MCC 6.5V 0.97W; Tension, alimentation:6.5V; Lamp Base Type:BA9s; Taille de lampe:T-3 1/4; Puissance:970mW; MSCP:0.59; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:0.15A; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Emission lumineuse, totale:6lm; Longueur/hauteur:28mm; Tension:6.5V; Tension c.a.:6.5V LAMPE T3.1/4 MES 24V 1.2W; Tension, alimentation:24V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:1.2W; MSCP:0.39; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.05A; Dimension de la lentille:T-3 1/4; Durée de vie:5000h; Emission lumineuse, totale:3.8lm; Longueur/hauteur:28mm; Tension c.a.:24V LAMPE T3.1/4 MES 24V 1.96W; Tension, alimentation:24V; Lamp Base Type:E10; Taille de lampe:T-3 1/4; Puissance:1.96W; MSCP:0.46; Durée de vie moyenne de la lampe:25000h; SVHC:No SVHC (19-Dec-2011); Courant:0.07A; Dimension de la lentille:T-3 1/4; Durée de vie:25000h; Emission lumineuse, totale:4.5lm; Longueur/hauteur:30mm; Tension:24V; Tension c.a.:24V LAMPE T3.1/4 12V 1.2W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:1.2W; MSCP:0.4; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.1A; Dimension de la lentille:T-1 3/4; Durée de vie:5000h; Emission lumineuse, totale:5lm; Longueur/hauteur:26.8mm; Tension c.a.:12V LAMPE T3.1/4 12V 2W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:2W; MSCP:0.8; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.166A; Dimension de la lentille:T-1 3/4; Durée de vie:1000h; Emission lumineuse, totale:13lm; Longueur/hauteur:26.8mm; Tension:12V; Tension c.a.:12V LAMPE T3.1/4 12V 3W; Tension, alimentation:12V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:3W; MSCP:1.11; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.22A; Dimension de la lentille:T-1 3/4; Durée de vie:1000h; Emission lumineuse, totale:22lm; Longueur/hauteur:26.8mm; Tension:12V; Tension c.a.:12V LAMPE T3.8 AXIAL W/E 8V 0.6W; Tension, alimentation:8V; Lamp Base Type:A fil axial; Taille de lampe:T-3 4/5; Puissance:600mW; MSCP:0.23; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (19-Dec-2011); Courant:0.1A; Dimension de la lentille:T3.8; Durée de vie:5000h; Emission lumineuse, totale:1.9lm; Longueur cordon:15mm; Longueur/hauteur:20mm; Tension c.a.:8V; Tension, alimentation max..:8V; Tension, alimentation min.:5V LAMPE WE 3MM 12V 0.72W; Tension, alimentation:12V; Taille de lampe:T-1; Puissance:720mW; MSCP:0.15; Durée de vie moyenne de la lampe:16000h; SVHC:No SVHC (19-Dec-2011); Courant:0.06A; Dimension de la lentille:T1; Durée de vie:16000h; Emission lumineuse, totale:1.9lm; Longueur/hauteur:6.35mm; Tension c.a.:12V LED T1 DEUX BROCHES 12VAC/DC BLANC CL; Lamp Base Type:Bi-broche; Couleur de LED:Blanc; Intensité lumineuse:600mcd; Taille de lampe:T-1; Tension, alimentation:12V; Courant:12mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:12mA; Courant, fonctionnement c.a.:6mA; Courant, fonctionnement c.c.:12mA; Diamètre, extérieur:3.8mm; Dimension de la lentille:T1; Durée de vie:100000h; Intensité lumineuse typique:600mcd; Températu LED T1 DEUX BROCHES 28VAC/DC BLANC CL; Lamp Base Type:Bi-broche; Couleur de LED:Blanc; Intensité lumineuse:500mcd; Taille de lampe:T-1; Tension, alimentation:28V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:10mA; Courant, fonctionnement c.a.:5mA; Courant, fonctionnement c.c.:10mA; Diamètre, extérieur:3.8mm; Dimension de la lentille:T1; Durée de vie:100000h; Intensité lumineuse typique:500mcd; Températu LAMPE DEUX BROCHES 28V; Tension, alimentation:28V; Durée de vie moyenne de la lampe:16000h; SVHC:No SVHC (19-Dec-2011); Courant:24mA; Durée de vie:16000h; Tension:28V; Tension c.a.:28V; Tension, fonctionnement nom.:28V NEON LAMPE VERT 110V; Tension, alimentation:110V; Lamp Base Type:Bi-broche; Courant:1.5mA; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur:Vert; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Tension c.a.:110V AMPOULES 2.4V 0.7A PQT DE 2; Tension, alimentation:2.4V; MSCP:1.3; Durée de vie moyenne de la lampe:15h; SVHC:No SVHC (19-Dec-2011); Courant:0.7A; Durée de vie:15h; Longueur/hauteur:165mm; Tension:2.4V TUBE INCASSABLE T8; Tension, alimentation:230V; Puissance:18W; Longueur:600mm; Diamètre de l'ampoule:26mm; SVHC:No SVHC (19-Dec-2011); Couleur:CW; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:20000h; Durée de vie moyenne de la lampe:20000h; Longueur/hauteur:600mm; Tension d'alimentation Vac:230V NEON LAMPE VERT 250V; Tension, alimentation:220V; Lamp Base Type:Bi-broche; Courant:1.5mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Couleur:Vert; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Tension c.a.:220V TUBE INCASSABLE T8; Tension, alimentation:230V; Puissance:36W; Longueur:1.2m; Diamètre de l'ampoule:26mm; SVHC:No SVHC (19-Dec-2011); Couleur:CW; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:20000h; Durée de vie moyenne de la lampe:20000h; Longueur/hauteur:1200mm; Tension d'alimentation Vac:230V KIT DE DEMARRAGE TUBE 8W; Longueur:420mm; Largeur:175mm; Profondeur:90mm; Working Area:159mm x 229mm; SVHC:No SVHC (20-Jun-2011) LAMPE DEUX BROCHES 5V; Tension, alimentation:5V; Durée de vie moyenne de la lampe:3000h; SVHC:No SVHC (19-Dec-2011); Courant:60mA; Durée de vie:3000h; Tension:5V; Tension c.a.:5V; Tension, fonctionnement nom.:5V LAMPE DEUX BROCHES 14V; Tension, alimentation:14V; Durée de vie moyenne de la lampe:16000h; SVHC:No SVHC (19-Dec-2011); Courant:40mA; Durée de vie:16000h; Tension:14V; Tension c.a.:14V; Tension, fonctionnement nom.:14V NEON LAMPE ROUGE 110V; Tension, alimentation:110V; Lamp Base Type:Bi-broche; Courant:1.5mA; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur:Rouge; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Tension c.a.:110V NEON LAMPE ROUGE 220V; Tension, alimentation:220V; Lamp Base Type:Bi-broche; Courant:1.5mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Couleur:Rouge; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Tension c.a.:220V AMPOULES 2.2V 0.47A PQT DE 2; Tension, alimentation:2.2V; Durée de vie moyenne de la lampe:15h; SVHC:No SVHC (19-Dec-2011); Courant:0.47A; Durée de vie:15h; Longueur/hauteur:31mm; Tension:2.2V LAMPE XENON CULOT T10 12V 6W; Tension, alimentation:12V; Puissance:3W; Taille de lampe:T-3 1/4; Courant:444mA; Longueur:26.8mm; Lamp Base Type:Wedge; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:10.3mm; Dimension de la lentille:T-3 1/4; Durée de vie:1000h; Durée de vie moyenne de la lampe:1000h; Intensité lumineuse, max..:102lm; Longueur/hauteur:20.7mm; Normes:T10; Tension, alimentation c.c. max..:12V; Type de boîtier:10.3 x 26.8mm LED. BA9S 130V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:500mcd; Tension, alimentation:130V; Courant:5mA; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:5mA; Courant, fonctionnement c.a.:5mA; Dimension de la lentille:BA9s; Intensité lumineuse typique:500mcd; Nombre de LED:3; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:130V; Tension, alimentation c.a. max..:130V; Tension, direct If:130VAC; Tension d'alimentation LED. BA9S 230V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:300mcd; Tension, alimentation:230V; Courant:3mA; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:3mA; Courant, fonctionnement c.a.:3mA; Dimension de la lentille:BA9s; Intensité lumineuse typique:300mcd; Nombre de LED:3; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:230V; Tension, alimentation c.a. max..:230V; Tension, direct If:230VAC; Tension d'alimentation INDICATEUR MININEUX CARRE; SVHC:No SVHC (19-Dec-2011); Couleur:Noir; Epaisseur, panneau max..:4.75mm; Epaisseur, panneau min.:1.52mm; Largeur (externe):18.92mm; Largeur, biseau:20.3mm; Largeur, corps:18.92mm; Longueur/hauteur:36mm; Profondeur:18.92mm; Profondeur, biseau:20.3mm; Température de fonctionnement max..:55°C; Température d'utilisation min:0°C; Type de borne:Solder or Quick Connect LAMPE XENON CULOT T10 12V 5W; Tension, alimentation:12V; Puissance:5W; Taille de lampe:T-3 1/4; Courant:370mA; Longueur:26.8mm; Lamp Base Type:Wedge; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:10.3mm; Dimension de la lentille:T-3 1/4; Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:60lm; Longueur/hauteur:26.8mm; Normes:T10; Tension, alimentation c.c. max..:12V; Type de boîtier:10.3 x 26.8mm KIT DE DEMARRAGE TUBE 15W; Longueur:515mm; Largeur:400mm; Profondeur:120mm; Working Area:260mm x 330mm; SVHC:No SVHC (20-Jun-2011) LAMPE NEON 110V; Tension, alimentation:110V; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Diamètre, extérieur:4.5mm; Dimension de la lentille:T-1 3/4; Longueur:14mm; Longueur/hauteur:14mm; Taille de lampe:5mm / T-1 3/4; Tension d'alimentation Vac:110V AMPOULE GU10 XENON 20W; Tension, alimentation:240V; Puissance:20W; Longueur:50mm; Lamp Base Type:GU10; Couleur:Clear; Couleur:Clair; Diamètre, extérieur:50mm; Dimension de la lentille:GU10; Durée de vie:5000h; Durée de vie moyenne de la lampe:5000h; Longueur/hauteur:50mm; Tension d'alimentation Vac:240V AMPOULE DOUBLE D. 16W. 4PIN. 3500K; Tension, alimentation:230V; Lamp Base Type:GR10q; Puissance:16W; Flux lumineux:1050lm; Longueur:132mm; Température, couleur:3500K; Couleur:White; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:1050lm; Intensité lumineuse, max..:1050lm; Largeur (externe):132mm; Longueur/hauteur:132mm; Nombre de broches:4 AMPOULE CAPSULE 240V G9 25W; Tension, alimentation:240V; Lamp Base Type:G9; Puissance:25W; Longueur:40mm; Base Type:G9; Couleur:Clear; Dimension de la lentille:G9; Durée de vie:4000h; Durée de vie moyenne de la lampe:4000h; Taille de lampe:G9; Tension d'alimentation Vac:240V AMPOULE VERTE REFLECTRICE 60W 240V; Tension, alimentation:240V; Taille de lampe:80mm; Puissance:60W; Angle:80°; Couleur:Vert; Diamètre, extérieur:80mm; Dimension de la lentille:80mm; Longueur/hauteur:109mm; Tension c.a.:240V; Tension d'alimentation Vac:240V AMPOULE BASSE ENERGIE GU10. 11W. 2700K; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:11W; Flux lumineux:360lm; Longueur:75mm; Diamètre de l'ampoule:50mm; Température, couleur:2700K; Diamètre, extérieur:50mm; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Emission lumineuse, totale:360lm; Flux lumineux typique:360lm; Longueur/hauteur:75mm; Tension d'alimentation Vac:240V AMPOULE LED. GU10. 3W. BLANCHE; Lamp Base Type:GU10; Couleur de LED:Blanc; Puissance:3W; Tension, alimentation:240V; Durée de vie moyenne de la lampe:50000h; Couleur:Blanc; Couleur:White; Diamètre, extérieur:51mm; Diamètre, réflecteur:51mm; Durée de vie:50000h; Longueur:58mm; Longueur/hauteur:58mm; Tension, direct If:240V; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 110V. 500W. 118MM; Tension, alimentation:110V; Lamp Base Type:R7s; Puissance:500W; Longueur:118mm; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:110V AMPOULE DOUBLE D. 28W. 4PIN. 3500K; Tension, alimentation:230V; Lamp Base Type:GR10q; Puissance:28W; Flux lumineux:2250lm; Longueur:196mm; Température, couleur:3500K; Couleur:White; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:2250lm; Intensité lumineuse, max..:2250lm; Largeur (externe):196mm; Longueur/hauteur:196mm; Nombre de broches:4 AMPOULE DOUBLE D. 38W. 4PIN. 3500K; Tension, alimentation:230V; Lamp Base Type:GR10q; Puissance:38W; Flux lumineux:3000lm; Longueur:198mm; Température, couleur:3500K; Couleur:White; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:3000lm; Intensité lumineuse, max..:3000lm; Largeur (externe):198mm; Longueur/hauteur:198mm; Nombre de broches:4 AMPOULE CAPSULE 12V 20W G4; Tension, alimentation:12V; Lamp Base Type:G4; Puissance:20W; Longueur:33mm; Base Type:G4; Couleur:Clear; Dimension de la lentille:G4; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Taille de lampe:G4; Tension, alimentation c.c.:12V AMPOULE CAPSULE 240V G9 40W FROST; Tension, alimentation:240V; Lamp Base Type:G9; Puissance:40W; Longueur:40mm; Base Type:G9; Couleur:Frosted; Dimension de la lentille:G9; Durée de vie:4000h; Durée de vie moyenne de la lampe:4000h; Taille de lampe:G9; Tension d'alimentation Vac:240V AMPOULE LUMIERE DU JOUR 6400K. 18W. E27; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:18W; Flux lumineux:875lm; Longueur:113mm; Diamètre de l'ampoule:45mm; Température, couleur:6400K; Diamètre, extérieur:45mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:113mm; Puissance GLS équivalente:100W; Tension d'alimentation Vac:240V AMPOULE LED. GU10. 3W. W-BLANCHE; Lamp Base Type:GU10; Couleur de LED:Blanc chaud; Puissance:3W; Tension, alimentation:240V; Durée de vie moyenne de la lampe:50000h; Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:51mm; Diamètre, réflecteur:51mm; Durée de vie:50000h; Longueur:58mm; Longueur/hauteur:58mm; Tension, direct If:240V; Tension d'alimentation Vac:240V BLOC IP65 POLYCARBONATE BLANC PRIS. 28W; Largeur:286mm; Profondeur:81mm; Couleur:Blanc; Puissance:28W; Tension, alimentation:230V BLOC IP65 POLYCARBONATE PRIS. 28W; Largeur:286mm; Profondeur:81mm; Couleur:Noir; Puissance:28W; Tension, alimentation:230V AMPOULE LUMIERE DU JOUR 6400K. 18W. B22; Tension, alimentation:240V; Puissance:18W; Flux lumineux:875lm; Longueur:113mm; Diamètre de l'ampoule:45mm; Température, couleur:6400K; Diamètre, extérieur:45mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:113mm; Puissance GLS équivalente:100W; Tension d'alimentation Vac:240V AMPOULE BASSE ENERGIE GU10. 11W. 4000K; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:11W; Flux lumineux:360lm; Longueur:75mm; Diamètre de l'ampoule:50mm; Température, couleur:4000K; Diamètre, extérieur:50mm; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Emission lumineuse, totale:360lm; Flux lumineux typique:360lm; Longueur/hauteur:75mm; Tension d'alimentation Vac:240V AMPOULE ECONOMIQUE R63. 7W. E27; Tension, alimentation:240V; Lamp Base Type:ES; Puissance:7W; Longueur:125mm; Diamètre de l'ampoule:63mm; Température, couleur:2700K; Diamètre, extérieur:63mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:125mm; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 240V. 150W. 80MM; Tension, alimentation:240V; Lamp Base Type:R7s; Puissance:150W; Longueur:80mm; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 240V. 200W. 80MM; Tension, alimentation:240V; Lamp Base Type:R7s; Puissance:200W; Longueur:80mm; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:240V LAMPE 40W SE27 TRANSPARENT; Tension, alimentation:240V; Puissance:40W; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Diamètre, extérieur:25mm; Durée de vie:1000h; Longueur/hauteur:82mm; Tension:230V; Tension c.a.:240V LAMPE GU10 50W 30DEG ALU; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:50W; Diamètre, réflecteur:50mm; SVHC:No SVHC (20-Jun-2011); Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension c.a.:240V LAMPE CAPSULE 12V 20W G5; Tension, alimentation:12V; Lamp Base Type:G4; Puissance:20W; Longueur:31mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:320lm; Tension, alimentation c.c.:12V LAMPE CAPSULE 12V 20W GY6.36; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:20W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:300lm; Tension, alimentation c.c.:12V LAMPE CAPSULE 24V 100W GY6.36; Tension, alimentation:24V; Lamp Base Type:GY6,35; Puissance:100W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:2200lm; Tension, alimentation c.c.:24V LAMPE 13.8V 25W GZ5; Tension, alimentation:13.8V; Lamp Base Type:GZ4; Puissance:25W; Diamètre, réflecteur:35mm; SVHC:No SVHC (20-Jun-2011); Diamètre, extérieur:35mm; Tension, alimentation c.c.:13.8V LAMPE 12V 100W GZ6.36; Tension, alimentation:12V; Lamp Base Type:GZ6,35; Puissance:100W; Longueur:42mm; Diamètre, réflecteur:50mm; SVHC:No SVHC (20-Jun-2011); Diamètre, extérieur:50mm; Tension, alimentation c.c.:12V LAMPE 12V 100W G6.36; Tension, alimentation:12V; Lamp Base Type:G 6,35; Puissance:100W; Longueur:44mm; SVHC:No SVHC (20-Jun-2011); Tension, alimentation c.c.:12V LAMPE 15V 150W GY6.36; Tension, alimentation:15V; Lamp Base Type:GY6,35; Puissance:150W; Longueur:44mm; SVHC:No SVHC (20-Jun-2011); Tension, alimentation c.c.:15V LAMPE T8 18W 600MM 3500K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:18W; Flux lumineux:1350lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:3500K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc; Couleur:White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:1350lm; Intensité lumineuse, max..:1350lm; Longueur/hauteur:600mm; Tension d'alimentation Vac:240V LAMPE T8 30W 900MM 4000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:30W; Flux lumineux:2400lm; Longueur:900mm; Diamètre de l'ampoule:26mm; Température, couleur:4000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:2400lm; Intensité lumineuse, max..:2400lm; Longueur/hauteur:900mm; Tension d'alimentation Vac:240V LAMPE T8 36W 1200MM 6500K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:36W; Flux lumineux:3250lm; Longueur:1.2m; Diamètre de l'ampoule:26mm; Température, couleur:6500K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:3250lm; Intensité lumineuse, max..:3250lm; Longueur/hauteur:1200mm; Tension d'alimentation Vac:240V LED BA15D 24V BLANC; Lamp Base Type:BA15d; Couleur de LED:Blanc; Intensité lumineuse:1500mcd; Tension, alimentation:24V; Courant:45mA; SVHC:No SVHC (19-Dec-2011); Couleur:White; Couleur, LED:Blanc; Courant, direct, If:45mA; Courant, fonctionnement c.a.:45mA; Courant, fonctionnement c.c.:45mA; Dimension de la lentille:BA15d; Intensité lumineuse typique:1500mcd; Nombre de LED:9; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60°C; Température, stockage max..:80°C; LED. BA9S 6V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:245mcd; Tension, alimentation:6V; Courant:75mA; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:470mW; Couleur:White; Couleur, LED:Blanc; Courant, direct, If:75mA; Courant, fonctionnement c.c.:75mA; Dimension de la lentille:BA9s; Intensité lumineuse typique:245mcd; Nombre de LED:1; Température de fonctionnement:-20°C +65°C; Température de fonctionnement max..:65°C; Température, couleur:6500K; Température, LAMPE 15W SE27 TRANSPARENT; Tension, alimentation:240V; Puissance:15W; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Diamètre, extérieur:22mm; Durée de vie:1000h; Longueur/hauteur:50mm; Température de fonctionnement max..:300°C; Tension:240V; Tension c.a.:240V LAMPE CAPSULE 12V 10W G5; Tension, alimentation:12V; Lamp Base Type:G4; Puissance:10W; Longueur:31mm; Température, couleur:2850K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:140lm; Tension, alimentation c.c.:12V LAMPE CAPSULE 24V 20W G5; Tension, alimentation:24V; Lamp Base Type:G4; Puissance:20W; Longueur:32mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:300lm; Tension, alimentation c.c.:24V LAMPE CAPSULE 12V 75W GY6.36; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:75W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:1595lm; Tension, alimentation c.c.:12V LAMPE 24V 150W GY6.36; Tension, alimentation:24V; Lamp Base Type:GY6,35; Puissance:150W; SVHC:No SVHC (20-Jun-2011); Intensité lumineuse, max..:5200lm; Tension, alimentation c.c.:24V LAMPE 36V 400W GY6.36; Tension, alimentation:36V; Lamp Base Type:GY6,35; Puissance:400W; Longueur:60mm; SVHC:No SVHC (20-Jun-2011); Tension, alimentation c.c.:36V LAMPE T8 18W 600MM 4000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:18W; Flux lumineux:1350lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:4000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:1350lm; Intensité lumineuse, max..:1350lm; Longueur/hauteur:600mm; Tension d'alimentation Vac:240V LAMPE T8 36W 1200MM 3000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:36W; Flux lumineux:3350lm; Longueur:1.2m; Diamètre de l'ampoule:26mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:3350lm; Intensité lumineuse, max..:3350lm; Longueur/hauteur:1200mm; Tension d'alimentation Vac:240V LAMPE T8 36W 1200MM 4000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:36W; Flux lumineux:3350lm; Longueur:1.2m; Diamètre de l'ampoule:26mm; Température, couleur:4000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:3350lm; Intensité lumineuse, max..:3350lm; Longueur/hauteur:1200mm; Tension d'alimentation Vac:240V LAMPE T8 58W 1500MM 2700K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:58W; Flux lumineux:5200lm; Longueur:1.5m; Diamètre de l'ampoule:26mm; Température, couleur:2700K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc; Couleur:White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:5200lm; Intensité lumineuse, max..:5200lm; Longueur/hauteur:1500mm; Tension d'alimentation Vac:240V LAMPE T8 58W 1500MM 3000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:58W; Flux lumineux:5200lm; Longueur:1.5m; Diamètre de l'ampoule:26mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:5200lm; Intensité lumineuse, max..:5200lm; Longueur/hauteur:1500mm; Tension d'alimentation Vac:240V LAMPE T8 58W 1500MM 6500K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:58W; Flux lumineux:5000lm; Longueur:1.5m; Diamètre de l'ampoule:26mm; Température, couleur:6500K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:5000lm; Intensité lumineuse, max..:5000lm; Longueur/hauteur:1500mm; Tension d'alimentation Vac:240V LAMPE 25W SE27 TRANSPARENT; Tension, alimentation:240V; Puissance:25W; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Diamètre, extérieur:25mm; Durée de vie:1000h; Longueur/hauteur:55mm; Température de fonctionnement max..:300°C; Tension:240V; Tension c.a.:240V LAMPE IR 250W E27; Tension, alimentation:240V; Lamp Base Type:E27; Taille de lampe:R-125; Puissance:250W; Durée de vie moyenne de la lampe:5000h; SVHC:No SVHC (20-Jun-2011); Diamètre, extérieur:125mm; Durée de vie:5000h; Tension:250V; Tension c.a.:240V; Tension, alimentation c.a. max..:250V LAMPE 12V 75W GZ6.36; Tension, alimentation:12V; Lamp Base Type:GZ6,35; Puissance:75W; Longueur:42mm; Diamètre, réflecteur:50mm; SVHC:No SVHC (20-Jun-2011); Diamètre, extérieur:50mm; Tension, alimentation c.c.:12V LAMPE 12V 50W G6.36; Tension, alimentation:12V; Lamp Base Type:G 6,35; Puissance:50W; Longueur:44mm; SVHC:No SVHC (20-Jun-2011); Tension, alimentation c.c.:12V LAMPE T8 18W 600MM 2700K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:18W; Flux lumineux:1350lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:2700K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc; Couleur:White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:1350lm; Intensité lumineuse, max..:1350lm; Longueur/hauteur:600mm; Tension d'alimentation Vac:240V LAMPE T8 30W 900MM 3000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:30W; Flux lumineux:2400lm; Longueur:900mm; Diamètre de l'ampoule:26mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc chaud; Couleur:Warm White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:2400lm; Intensité lumineuse, max..:2400lm; Longueur/hauteur:900mm; Tension d'alimentation Vac:240V LAMPE NEON 220V; Tension, alimentation:220V; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Diamètre, extérieur:4.5mm; Dimension de la lentille:T-1 3/4; Longueur:14mm; Longueur/hauteur:14mm; Taille de lampe:5mm / T-1 3/4; Tension d'alimentation Vac:220V LAMPE NEON BA9S 230V ROUGE; Tension, alimentation:230V; Lamp Base Type:BA9s; Courant:2.4mA; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge; Diamètre, extérieur:10mm; Dimension de la lentille:BA9s; Longueur/hauteur:28.3mm; Taille de lampe:BA9s; Température de fonctionnement max..:60°C; Température d'utilisation min:-20°C; Tension c.a.:230V; Tension, alimentation c.a. min:95V; Tension, attaque c.a.:95V LAMPE T3.1/4 MES 3.7V 1.11W; Tension, alimentation:3.7V; Lamp Base Type:MES (E10 / 13); Taille de lampe:T-3 1/4; Puissance:1.11W; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Dimension de la lentille:T-3 1/4 MES; Longueur/hauteur:24mm; Tension:3.7V LAMPE P13.5S 6V 4.5W; Tension, alimentation:6V; Lamp Base Type:B-3 1/2; Taille de lampe:B-3 1/2; Puissance:4.5W; MSCP:5.96; SVHC:No SVHC (19-Dec-2011); Courant:0.75A; Diamètre, extérieur:13.5mm; Dimension de la lentille:B-3 1/2; Emission lumineuse, totale:75lm; Longueur/hauteur:31.8mm; Tension:6V LAMPE HALOGENE P13.5S 6V 4.2W; Tension, alimentation:6V; Lamp Base Type:MES (E10 / 13); Puissance:4.2W; Longueur:30mm; SVHC:No SVHC (19-Dec-2011); Courant:0.7A; Tension, alimentation c.c.:6V LAMPE HALOGENE MES 6V 4.2W; Tension, alimentation:6V; Lamp Base Type:MES (E10 / 13); Puissance:4.2W; Longueur:30mm; SVHC:No SVHC (19-Dec-2011); Courant:0.7A; Tension, alimentation c.c.:6V LED MF T1 3/4 24VDC JAUNE; Lamp Base Type:Midget Flange; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:59mcd; Taille de lampe:6mm; Tension, alimentation:24V; Courant:14mA; SVHC:No SVHC (19-Dec-2011); Couleur:Jaune; Couleur, LED:Jaune; Courant, direct, If:14mA; Diamètre, extérieur:6.35mm; Dimension de la lentille:6mm; Intensité lumineuse typique:59mcd; Longueur d'onde dominante typ.:585nm; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60° INDICATEUR A NEON M14 230V VERT; Tension, alimentation:230V; Lamp Base Type:Fil; Intensité lumineuse:26mcd; Couleur:Vert; Diamètre trou de fixation:14mm; Courant:1.5mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Vert; Diamètre, extérieur:16mm; IP / NEMA Rating:IP67; Intensité lumineuse typique:26mcd; Matière:Satin Chrome Bezel; Taille du filetage:M14 thread; Température de fonctionnement max..:60°C; Température d'utilisation min:-20°C; Tension c.a.:230V LED T5.5K 24VAC/DC BLANC; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Courant:14mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Couleur, LED:Blanc; Courant, direct, If:14mA; Dimension de la lentille:3; Intensité lumineuse typique:700mcd; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:24V; Tension, direct If:24V LED T10X25 BA9S BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:750mcd; Taille de lampe:T-3 1/4; Tension, alimentation:12V; Courant:16mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc diffus; Couleur, LED:Blanc; Courant, direct, If:16mA; Diamètre, extérieur:10mm; Dimension de la lentille:T-3 1/4; Durée de vie:100000h; Intensité lumineuse, max..:750mcd; Longueur/hauteur:25mm; Température de fonctionnement max..:+60°C; Température d'utili AMPOULE DOUBLE D. 16W. 2PIN. 3500K; Tension, alimentation:230V; Lamp Base Type:GR8; Puissance:16W; Flux lumineux:1050lm; Longueur:132mm; Température, couleur:3500K; Couleur:White; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Flux lumineux typique:1050lm; Intensité lumineuse, max..:1050lm; Largeur (externe):132mm; Longueur/hauteur:132mm; Nombre de broches:2 AMPOULE GU10 XENON 50W; Tension, alimentation:240V; Puissance:50W; Longueur:50mm; Lamp Base Type:GU10; Couleur:Clear; Couleur:Clair; Diamètre, extérieur:50mm; Dimension de la lentille:GU10; Durée de vie:5000h; Durée de vie moyenne de la lampe:5000h; Longueur/hauteur:50mm; Tension d'alimentation Vac:240V AMPOULE CAPSULE 12V 10W G4; Tension, alimentation:12V; Lamp Base Type:G4; Puissance:10W; Longueur:33mm; Base Type:G4; Couleur:Clear; Dimension de la lentille:G4; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Taille de lampe:G4; Tension, alimentation c.c.:12V AMPOULE CAPSULE 240V G9 40W; Tension, alimentation:240V; Lamp Base Type:G9; Puissance:40W; Longueur:40mm; Base Type:G9; Couleur:Clear; Dimension de la lentille:G9; Durée de vie:4000h; Durée de vie moyenne de la lampe:4000h; Taille de lampe:G9; Tension d'alimentation Vac:240V SPOT A LED AVEC FLEXIBLE EURO; Tension, alimentation:240V; Puissance:10W; Light Source:LED; Longueur:655mm; Diamètre, lentille:45mm; Fréquence, alimentation max..:60Hz; IP / NEMA Rating:IP67; Longueur (max..):600mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:100V; Tension d'alimentation Vac:240V LAMPE T3.1/4 MES 2.5V 0.75W; Tension, alimentation:2.5V; Lamp Base Type:MES (E10 / 13); Taille de lampe:T-3 1/4; Puissance:750mW; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Dimension de la lentille:T-3 1/4 MES; Longueur/hauteur:21mm; Tension:2.5V LAMPE P13.5S 12V 3W; Tension, alimentation:12V; Lamp Base Type:B-3 1/2; Taille de lampe:B-3 1/2; Puissance:3W; MSCP:2.7; SVHC:No SVHC (19-Dec-2011); Courant:0.25A; Diamètre, extérieur:13.5mm; Dimension de la lentille:B-3 1/2; Emission lumineuse, totale:34lm; Longueur/hauteur:31.8mm; Tension:12V LAMPE HALOGENE MES 4V 3.4W; Tension, alimentation:4V; Lamp Base Type:MES (E10 / 13); Puissance:3.4W; Longueur:30mm; SVHC:No SVHC (19-Dec-2011); Courant:0.85A; Tension, alimentation c.c.:4V INDICATEUR A NEON M14 230V ROUGE; Tension, alimentation:230V; Lamp Base Type:Fil; Intensité lumineuse:33mcd; Couleur:Rouge; Diamètre trou de fixation:14mm; Courant:2.3mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Rouge; Diamètre, extérieur:16mm; IP / NEMA Rating:IP67; Intensité lumineuse typique:33mcd; Matière:Satin Chrome Bezel; Taille du filetage:M14 thread; Température de fonctionnement max..:60°C; Température d'utilisation min:-20°C; Tension c.a.:230V INDICATEUR A NEON M14 240V AMB; Tension, alimentation:230V; Lamp Base Type:Fil; Intensité lumineuse:61mcd; Couleur:Ambre; Diamètre trou de fixation:14mm; Courant:2.2mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Diamètre, extérieur:16mm; IP / NEMA Rating:IP67; Intensité lumineuse typique:61mcd; Matière:Black Chrome Bezel; Taille du filetage:M14 thread; Température de fonctionnement max..:60°C; Température d'utilisation min:-20°C; Tension c.a.:240V LED T5.5K 24VDC U/VERT; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:2100mcd; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Courant:14mA; SVHC:No SVHC (19-Dec-2011); Couleur:Vert; Couleur, LED:Vert; Courant, direct, If:14mA; Dimension de la lentille:3; Intensité lumineuse typique:2100mcd; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:24V; Tension, direct If:24V LED E10 T10X25 12V BLANC; Lamp Base Type:E10; Couleur de LED:Blanc; Intensité lumineuse:800mcd; Taille de lampe:T-3 1/4; Tension, alimentation:12V; Courant:16mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc diffus; Couleur, LED:Blanc; Courant, direct, If:16mA; Diamètre, extérieur:10mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse, max..:800mcd; Longueur/hauteur:25mm; Température de fonctionnement max..:-20°C; Température d'utilisation min:+60°C; Tension, direct If:12V; Tolérance, tensio AMPOULE BASSE ENERGIE FLAMME B15 3W; Tension, alimentation:240V; Puissance:3W; Longueur:120mm; Diamètre de l'ampoule:42mm; Température, couleur:2700K; Couleur:Warm White; Couleur:Blanc chaud; Diamètre, extérieur:42mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:120mm; Puissance GLS équivalente:20W; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:19mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:250V SUPPORT DE LAMPE; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:19mm; Diamètre, lentille:17mm; Dimension de la lentille:E10; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:54.8mm; Matière:Corps en plastique avec lunette d'encadrement chromée; Profondeur, lentille:16mm; Tension c.a.:50V; Type de borne:Cosses 6.35mm VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Rouge; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Rouge / Noir; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.75mm; Tension d'alimentation Vac:250V LAMPE T3.1/4 MES 2.2V 0.55W; Tension, alimentation:2.2V; Lamp Base Type:MES (E10 / 13); Taille de lampe:T-3 1/4; Puissance:550mW; SVHC:No SVHC (19-Dec-2011); Courant:0.25A; Dimension de la lentille:T-3 1/4 MES; Longueur/hauteur:21mm; Tension:2.2V LED T6.8 24VAC/DC; Lamp Base Type:Ampoule de téléphonie, T6,8; Couleur de LED:Blanc; Intensité lumineuse:850mcd; Taille de lampe:7.1mm; Tension, alimentation:24V; Courant:17mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Couleur, LED:Blanc; Courant, direct, If:17mA; Dimension de la lentille:7.1mm; Intensité lumineuse typique:850mcd; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:24V; Tension, direct If:24V LED T6.8 28VAC/DC BLANC; Lamp Base Type:Ampoule de téléphonie, T6,8; Couleur de LED:Blanc; Intensité lumineuse:850mcd; Taille de lampe:7.1mm; Tension, alimentation:28V; Courant:17mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Couleur, LED:Blanc; Courant, direct, If:17mA; Dimension de la lentille:7.1mm; Intensité lumineuse typique:850mcd; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:28V; Tension, direct If:28V LED T10X28 BA9S LED 24V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:1400mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:14mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Couleur, LED:Blanc; Courant, direct, If:14mA; Dimension de la lentille:10; Intensité lumineuse typique:1400mcd; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:24V; Tension, direct If:24V LAMPE XENON 2.3V 0.3A; Tension, alimentation:2.3V; Courant:300mA; SVHC:No SVHC (19-Dec-2011); Consommation de courant:0.3A; Durée de vie:30h; Durée de vie moyenne de la lampe:30h; Emission lumineuse, totale:15lm; Intensité lumineuse, max..:15lm; Tension, alimentation c.c.:2.3V AMPOULE LUMIERE DU JOUR 6400K. 30W. B22; Tension, alimentation:240V; Puissance:30W; Flux lumineux:1535lm; Longueur:170mm; Diamètre de l'ampoule:55mm; Température, couleur:6400K; Diamètre, extérieur:55mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:170mm; Puissance GLS équivalente:150W; Tension d'alimentation Vac:240V AMPOULE ECONOMIQUE GLS 15W B22; Tension, alimentation:240V; Puissance:15W; Flux lumineux:610lm; Longueur:135mm; Diamètre de l'ampoule:60mm; Température, couleur:2700K; Diamètre, extérieur:60mm; Longueur/hauteur:135mm; Puissance GLS équivalente:75W; Tension d'alimentation Vac:240V AMPOULE BASSE ENERGIE GU10. 7W. 2700K; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:7W; Flux lumineux:200lm; Longueur:55mm; Diamètre de l'ampoule:50mm; Température, couleur:2700K; Diamètre, extérieur:50mm; Durée de vie:10000h; Durée de vie moyenne de la lampe:10000h; Emission lumineuse, totale:200lm; Flux lumineux typique:200lm; Longueur/hauteur:55mm; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 240V. 100W. 80MM; Tension, alimentation:240V; Lamp Base Type:R7s; Puissance:100W; Longueur:80mm; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 240V. 200W. 118MM; Tension, alimentation:240V; Lamp Base Type:R7s; Puissance:200W; Longueur:118mm; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 240V. 500W. 118MM; Tension, alimentation:240V; Lamp Base Type:R7s; Puissance:500W; Longueur:118mm; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:240V BLOC GU10 240V 20W PROLITE TRANSPARENT; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:20W; Longueur:56mm; Diamètre, réflecteur:50mm; Angle:36°; Diamètre, extérieur:50mm; Intensité lumineuse, max..:400cd; Tension d'alimentation Vac:240V BLOC GU10 240V 50W PROLITE TRANSPARENT; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:50W; Longueur:56mm; Diamètre, réflecteur:50mm; Angle:36°; Diamètre, extérieur:50mm; Intensité lumineuse, max..:1000cd; Tension d'alimentation Vac:240V BLOC IP65 POLYCARBONATE BLANC OPAQUE; Largeur:286mm; Profondeur:81mm; Couleur:Blanc; Puissance:28W; Tension, alimentation:230V ENCASTRE BASSE TENSION MOULE FIXE CHROME; Profondeur:116mm; Diamètre, extérieur:80mm; Largeur (externe):80mm; Light Source:Halogène; Longueur/hauteur:116mm; Puissance:50W; Tension, alimentation:12V LAMPE 11W; Tension, alimentation:230V; Lamp Base Type:G23; Puissance:11W; Light Source:Strip; Longueur:480mm; SVHC:No SVHC (19-Dec-2011); Couleur, base:Black; IP / NEMA Rating:IP44; Longueur (max..):480mm; Longueur cordon:5m; Poids:0.7kg; Tension d'alimentation Vac:230V LAMPE 40W SE27 TRANSPARENT; Tension, alimentation:240V; Puissance:40W; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Diamètre, extérieur:45mm; Durée de vie:1000h; Longueur/hauteur:75mm; Température de fonctionnement max..:300°C; Tension:240V; Tension c.a.:240V LAMPE CAPSULE 12V 35W GY6.36; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:35W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:600lm; Tension, alimentation c.c.:12V LAMPE CAPSULE 12V 50W GY6.36; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:50W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:905lm; Tension, alimentation c.c.:12V LAMPE CAPSULE 12V 100W GY6.36; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:100W; Longueur:44mm; Température, couleur:3000K; SVHC:No SVHC (20-Jun-2011); Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:2200lm; Tension, alimentation c.c.:12V LAMPE 24V 250W GX5.4; Tension, alimentation:24V; Lamp Base Type:GX5,3; Puissance:250W; Longueur:45mm; Diamètre, réflecteur:50mm; SVHC:No SVHC (20-Jun-2011); Diamètre, extérieur:50mm; Tension, alimentation c.c.:24V LAMPE 230V 500W GY9.6; Tension, alimentation:230V; Lamp Base Type:GY9,5; Puissance:500W; Température, couleur:3200K; SVHC:No SVHC (20-Jun-2011); Tension c.a.:230V LAMPE T8 70W 1800MM 4000K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:70W; Flux lumineux:6200lm; Longueur:1.8m; Diamètre de l'ampoule:26mm; Température, couleur:4000K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:6200lm; Intensité lumineuse, max..:6200lm; Longueur/hauteur:1800mm; Tension d'alimentation Vac:240V VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:6.3mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:6.35mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:250V VOYANT NEON ROUGE; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:19mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:130V SUPPORT DE LAMPE; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:19mm; Diamètre, lentille:17mm; Dimension de la lentille:E10; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:51mm; Matière:Corps en plastique avec lunette d'encadrement chromée; Profondeur, lentille:12mm; Tension c.a.:50V; Type de borne:Cosses 6.35mm LAMPE DE SIGNALISATION; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:250V SUPPORT DE LAMPE; Taille de lampe:E5/8 or S6/8; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:Bleu; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Dimension de la lentille:E5/8 or S6/8; Epaisseur, panneau max..:9.6mm; Longueur/hauteur:30.5mm; Matière, lentille:Polycarbonate; Profondeur, lentille:9.5mm; Tension c.a.:50V SUPPORT DE LAMPE; Taille de lampe:E5/8 or S6/8; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:Clair; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Dimension de la lentille:E5/8 or S6/8; Epaisseur, panneau max..:9.6mm; Longueur/hauteur:30.5mm; Matière, lentille:Polycarbonate; Profondeur, lentille:9.5mm; Tension c.a.:50V VOYANT NEON ROUGE; Taille de lampe:7.6mm; Tension, alimentation:130V; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; Diamètre de découpe panneau:6.35mm; Dimension de la lentille:7.6mm; Epaisseur, panneau max..:6.35mm; Longueur/hauteur:14.5mm; Tension d'alimentation Vac:130V SUPPORT DE LAMPE; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:19mm; Diamètre, lentille:17mm; Dimension de la lentille:E10; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:54.8mm; Matière:Corps en plastique avec lunette d'encadrement chromé; Profondeur, lentille:16mm; Tension c.a.:50V; Type de borne:Cosses 6.35mm SUPPORT DE LAMPE; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; Diamètre de découpe panneau:19mm; Diamètre, lentille:17mm; Dimension de la lentille:E10; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:54.8mm; Matière:Corps en plastique avec lunette d'encadrement chromée; Profondeur, lentille:16mm; Tension c.a.:50V; Type de borne:Cosses 6.35mm SUPPORT DE LAMPE; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:19mm; Diamètre, lentille:17mm; Dimension de la lentille:E10; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:51mm; Matière:Corps en plastique avec lunette d'encadrement chromée; Profondeur, lentille:12mm; Tension c.a.:50V; Type de borne:Cosses 6.35mm SUPPORT DE LAMPE; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; Diamètre de découpe panneau:19mm; Diamètre, lentille:17mm; Dimension de la lentille:E10; Epaisseur, panneau max..:6.3mm; Longueur/hauteur:51mm; Matière:Corps en plastique avec lunette d'encadrement chromé; Profondeur, lentille:12mm; Tension c.a.:50V; Type de borne:Cosses 6.35mm VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:2 broches; Couleur:Rouge; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge / Noir; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.75mm; Tension d'alimentation Vac:250V; Type de terminaison:Faston Tab SUPPORT MAGNETIQUE POUR PROJECTEUR AMPOULE ECONOMIE D'ENERGIE 11W ES; Tension, alimentation:230V; Lamp Base Type:ES; Puissance:11W; Flux lumineux:600lm; Diamètre de l'ampoule:48mm; Température, couleur:6400K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:48mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h AMPOULE ECONOMIE D'ENERGIE 13W GX23; Tension, alimentation:230V; Lamp Base Type:GX23; Puissance:13W; Flux lumineux:600lm; Température, couleur:6400K; SVHC:No SVHC (19-Dec-2011); Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h PORTE LAMPE BLEU IP67; Taille de lampe:14.7mm; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Coating:Lunette de chrome; Couleur:Bleu; Diamètre de découpe panneau:12.7mm; Dimension de la lentille:14.7mm; IP / NEMA Rating:IP67 TUBE CIRCULAIRE DAYLIGHT T5 22W; Tension, alimentation:230V; Lamp Base Type:G10q; Puissance:22W; Flux lumineux:1350lm; Diamètre de l'ampoule:16mm; Température, couleur:6400K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h LED LAMP, 12V, MR16, WHITE, 20 LED; Lamp Base Type:GX5.3 / GU5.3; Couleur de LED:Blanc; Puissance:1.5W; Taille de lampe:50mm; Tension, alimentation:12V; Durée de vie moyenne de la lampe:50000h; Consommation de puissance:1.5W; Couleur:Blanc; Couleur, LED:Blanc; Diamètre, extérieur:50mm; Dimension de la lentille:50mm; Durée de vie:50000h; Longueur/hauteur:40mm; Nombre de LED:20; Tension, Vf max..:12V; Tension, alimentation c.c.:12V; Tension, direct If:12V LED LAMP, 12V, MR16, WHITE, 20 LED; Lamp Base Type:GX5.3 / GU5.3; Couleur de LED:Blanc; Puissance:1.5W; Taille de lampe:50mm; Tension, alimentation:12V; Durée de vie moyenne de la lampe:50000h; Consommation de puissance:1.5W; Couleur:Blanc; Couleur, LED:Blanc; Diamètre, extérieur:50mm; Dimension de la lentille:50mm; Durée de vie:50000h; Longueur/hauteur:40mm; Nombre de LED:20; Tension, Vf max..:12V; Tension, alimentation c.c.:12V; Tension, direct If:12V LED LAMP, GU10, WHITE, 18 LED; Lamp Base Type:GU10; Couleur de LED:Blanc; Puissance:1.5W; Taille de lampe:50mm; Tension, alimentation:230V; Durée de vie moyenne de la lampe:50000h; Consommation de puissance:1.5W; Couleur:Blanc; Couleur, LED:Blanc; Diamètre, extérieur:50mm; Dimension de la lentille:50mm; Durée de vie:50000h; Longueur/hauteur:48mm; Nombre de LED:18; Tension, Vf max..:230V; Tension, direct If:230V; Tension d'alimentation Vac:230V LAMPE P13.5S 7.2V 5.4W; Tension, alimentation:7.2V; Lamp Base Type:B-3 1/2; Taille de lampe:B-3 1/2; Puissance:5.4W; MSCP:7.95; SVHC:No SVHC (19-Dec-2011); Courant:0.75A; Diamètre, extérieur:13.5mm; Dimension de la lentille:B-3 1/2; Emission lumineuse, totale:100lm; Longueur/hauteur:31.8mm; Tension:7.2V LED T5 WB 24VAC/DC JAUNE; Lamp Base Type:Wedge; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:42mcd; Taille de lampe:5mm; Tension, alimentation:24V; Courant:10mA; SVHC:No SVHC (19-Dec-2011); Couleur:Jaune; Couleur, LED:Jaune; Courant, direct, If:10mA; Diamètre, extérieur:6.1mm; Dimension de la lentille:5mm; Intensité lumineuse typique:42mcd; Longueur d'onde dominante typ.:585nm; Température de fonctionnement:-20°C +60°C; Température de fonctionnement max..:60°C; Tempéra LAMPE HALOGENE BA9S T10 12V; Tension, alimentation:12V; Puissance:5W; Longueur:30mm; SVHC:No SVHC (19-Dec-2011); Courant:0.417A; Tension, alimentation c.c.:12V LED T1 3/4 MG 48V BLANC; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Intensité lumineuse:700mcd; Taille de lampe:T-1 3/4; Tension, alimentation:48V; Courant:8mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Couleur, LED:Blanc; Courant, direct, If:8mA; Dimension de la lentille:5; Intensité lumineuse typique:700mcd; Température de fonctionnement:-20°C +60°C; Tension, Vf max..:48V; Tension, direct If:48V LED E10 T10X25 24V BLANC; Lamp Base Type:E10; Couleur de LED:Blanc; Intensité lumineuse:750mcd; Taille de lampe:T-3 1/4; Tension, alimentation:24V; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc diffus; Couleur, LED:Blanc; Courant, direct, If:15mA; Diamètre, extérieur:10mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse, max..:750mcd; Longueur/hauteur:25mm; Température de fonctionnement max..:-20°C; Température d'utilisation min:+60°C; Tension, direct If:24V; Tolérance, tensio VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:250V VOYANT NEON ROUGE; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:13.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:13.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:37.5mm; Tension d'alimentation Vac:130V SUPPORT DE LAMPE; Taille de lampe:E5/8 or S6/8; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:Ambre; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Dimension de la lentille:E5/8 or S6/8; Epaisseur, panneau max..:9.6mm; Longueur/hauteur:30.5mm; Matière, lentille:Polycarbonate; Profondeur, lentille:9.5mm; Tension c.a.:50V SUPPORT DE LAMPE; Taille de lampe:E5/8 or S6/8; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:vert; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Dimension de la lentille:E5/8 or S6/8; Epaisseur, panneau max..:9.6mm; Longueur/hauteur:30.5mm; Matière, lentille:Polycarbonate; Profondeur, lentille:9.1mm; Tension c.a.:50V SUPPORT DE LAMPE; Taille de lampe:E5/8 or S6/8; Tension, alimentation:50V; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Dimension de la lentille:E5/8 or S6/8; Epaisseur, panneau max..:9.6mm; Longueur/hauteur:30.5mm; Matière, lentille:Polycarbonate; Profondeur, lentille:9.5mm; Tension c.a.:50V LED MID-GRV 24V BLANC CHAUD; Lamp Base Type:Midget Groove, S5,7s; Couleur de LED:Blanc chaud; Intensité lumineuse:9200mcd; Puissance:500mW; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc ton chaud; Couleur, lentilles:Water Clear; Courant, fonctionnement c.c.:20mA; Diamètre, extérieur:5.6mm; Diamètre, lentille:4.9mm; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:9200mcd; Largeur (externe):25mm VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:15.9mm; Epaisseur, panneau max..:1.5mm; Epaisseur, panneau min.:0.8mm; Longueur/hauteur:35mm; Tension d'alimentation Vac:250V AMPOULE DICHROIQUE 35W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:35W; Longueur:29mm; Diamètre, réflecteur:34.7mm; Température, couleur:3100K; SVHC:No SVHC (19-Dec-2011); Angle:38°; Couleur:Cool White; Diamètre, extérieur:51mm; Intensité lumineuse, max..:1100cd AMPOULE DICHROIQUE 50W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:50W; Longueur:44.5mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Angle:38°; Couleur:Cool White; Diamètre, extérieur:51mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension c.a.:12V; Tension d'alimentation Vac:12V LAMPE DULUX S 7W FROIDE; Tension, alimentation:47V; Lamp Base Type:2 broches; Puissance:7W; Flux lumineux:400lm; Longueur:137mm; Diamètre de l'ampoule:19.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:19.5mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Emission lumineuse, totale:400lm; Flux lumineux typique:400lm; Largeur (externe):34mm; Longueur/hauteur:138mm; Profondeur:19.5mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. m LAMPE DULUX D 10W CHAUD; Tension, alimentation:64V; Lamp Base Type:2 broches; Puissance:10W; Flux lumineux:600lm; Longueur:110mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Emission lumineuse, totale:600lm; Flux lumineux typique:600lm; Largeur (externe):34mm; Longueur/hauteur:118mm; Profondeur:34mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V TUBE FLUO 600MM BLANC CHAUD T8; Lamp Base Type:T8; Puissance:18W; Flux lumineux:1350lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc chaud; Diamètre, extérieur:26mm; Longueur/hauteur:600mm; Profondeur:26mm AMPOULE DULUX EL7W B22; Tension, alimentation:240V; Lamp Base Type:B22; Puissance:7W; Flux lumineux:400lm; Longueur:129mm; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:45mm; Durée de vie:15000h; Durée de vie moyenne de la lampe:15000h; Flux lumineux typique:400lm; Intensité lumineuse, max..:400cd; Longueur/hauteur:129mm; Puissance GLS équivalente:35W; Tension d'alimentation Vac:240V LAMPE DULUX L 18W INTERNA; Tension, alimentation:58V; Puissance:18W; Flux lumineux:1150lm; Longueur:217mm; Diamètre de l'ampoule:17.5mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Couleur:Interna; Diamètre, extérieur:17.5mm; Flux lumineux typique:1200lm; Longueur/hauteur:217mm; Nombre de broches:4 LAMPE DULUX L 24W INTERNA; Tension, alimentation:87V; Puissance:24W; Flux lumineux:1750lm; Longueur:317mm; Diamètre de l'ampoule:17.5mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Couleur:Interna; Diamètre, extérieur:17.5mm; Flux lumineux typique:1800lm; Longueur/hauteur:317mm; Nombre de broches:4 LAMPE DULUX L 55W BLANC FROID; Tension, alimentation:101V; Puissance:55W; Flux lumineux:4800lm; Longueur:533mm; Diamètre de l'ampoule:17.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:17.5mm; Flux lumineux typique:4800lm; Longueur/hauteur:533mm; Nombre de broches:4 LAMPE DULUX DE HF 18W BLANC FROID; Tension, alimentation:80V; Lamp Base Type:G24q; Puissance:18W; Flux lumineux:1150lm; Longueur:146mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:1200lm; Longueur/hauteur:146mm; Nombre de broches:4 LAMPE DULUX S/E 7W INTERNA; Tension, alimentation:230V; Lamp Base Type:2G7; Puissance:6.5W; Flux lumineux:400lm; Longueur:114mm; Diamètre de l'ampoule:21mm; Température, couleur:5000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:21mm AMPOULE DECOSTAR 10W LARGE FAISCEAU; Tension, alimentation:12V; Lamp Base Type:GU4; Puissance:10W; Longueur:37mm; Diamètre, réflecteur:35mm; Température, couleur:3100K; SVHC:No SVHC (19-Dec-2011); Angle:38°; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Intensité lumineuse, max..:300cd; Tension, alimentation c.c.:12V; Type de faisceau:Wide Flood LAMPE SODIUM TUBULAIRE 250W; Longueur:257mm; Température, couleur:21000K; Courant:3A; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:46mm; Intensité lumineuse, max..:27000lm; Lamp Base Type:E40; Longueur/hauteur:257mm; Puissance:250W; Tension, alimentation:240V LAMPE SODIUM SON+ TUBULAIRE 70W; Longueur:156mm; Température, couleur:2000K; Courant:980mA; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:37mm; Intensité lumineuse, max..:6500lm LAMPE A DECHARGE NEUTRE 70W; Longueur:114.2mm; Diamètre de l'ampoule:20mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Neutre; Intensité lumineuse:5.5cd; Lamp Base Type:RX7; Puissance:70W; Tension, alimentation:85V AMPOULE POUR SPOT 51S 35W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:35W; Longueur:45mm; Diamètre, réflecteur:50mm; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:10° AMPOULE POUR SPOT 51S 50W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:50W; Longueur:45mm; Diamètre, réflecteur:51mm; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:38°; Intensité lumineuse, max..:1450cd VOYANT NEON ROUGE; Tension, alimentation:230V; Lamp Base Type:2 broches; Couleur:Rouge; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge / Noir; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.75mm; Type de terminaison:Faston Tab VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Rouge; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Epaisseur, panneau max..:3mm; Epaisseur, panneau min.:0.75mm; Tension d'alimentation Vac:250V LAMPE DULUX S 11W FROIDE; Tension, alimentation:91V; Lamp Base Type:2 broches; Puissance:11W; Flux lumineux:900lm; Longueur:237mm; Diamètre de l'ampoule:19.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:19.5mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Emission lumineuse, totale:900lm; Flux lumineux typique:900lm; Largeur (externe):34mm; Longueur/hauteur:238mm; Profondeur:19.5mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. TUBE FLUO 600MM BLANC FROID T8; Lamp Base Type:T8; Puissance:18W; Flux lumineux:1350lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Diamètre, extérieur:26mm; Longueur/hauteur:600mm; Profondeur:26mm TUBE FLUO 1800MM BLANC STANDARD T8; Lamp Base Type:T8; Puissance:70W; Flux lumineux:6550lm; Longueur:1.8m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre, extérieur:26mm; Longueur/hauteur:1800mm; Profondeur:26mm LAMPE DULUX L 24W BLANC FROID; Tension, alimentation:87V; Puissance:24W; Flux lumineux:1750lm; Longueur:317mm; Diamètre de l'ampoule:17.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:17.5mm; Flux lumineux typique:1800lm; Longueur/hauteur:317mm; Nombre de broches:4 LAMPE DULUX L 40W BLANC FROID; Tension, alimentation:126V; Puissance:40W; Flux lumineux:3500lm; Longueur:533mm; Diamètre de l'ampoule:17.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:17.5mm; Flux lumineux typique:3500lm; Longueur/hauteur:533mm; Nombre de broches:4 LAMPE DULUX DE HF 10W BLANC FROID; Tension, alimentation:51V; Lamp Base Type:G24q; Puissance:10W; Flux lumineux:600lm; Longueur:103mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:600lm; Longueur/hauteur:103mm; Nombre de broches:4 LAMPE DULUX DE HF 13W BLANC FROID; Tension, alimentation:77V; Lamp Base Type:G24q; Puissance:13W; Flux lumineux:850lm; Longueur:131mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:900lm; Longueur/hauteur:131mm; Nombre de broches:4 LAMPE DULUX DE HF 26W BLANC FROID; Tension, alimentation:80V; Lamp Base Type:G24q; Puissance:26W; Flux lumineux:1750lm; Longueur:165mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:1800lm; Longueur/hauteur:165mm; Nombre de broches:4 LAMPE DULUX T/E 26W CW; Tension, alimentation:80V; Puissance:26W; Flux lumineux:1750lm; Longueur:131mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:1800lm; Longueur/hauteur:131mm LAMPE DULUX T/E 42W CW; Tension, alimentation:230V; Puissance:42W; Flux lumineux:3200lm; Longueur:168mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:3200lm; Longueur/hauteur:168mm AMPOULE DECOSTAR 20W SPOT; Tension, alimentation:12V; Lamp Base Type:GU4; Puissance:20W; Longueur:37mm; Diamètre, réflecteur:35mm; Température, couleur:3100K; SVHC:No SVHC (19-Dec-2011); Angle:10°; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Intensité lumineuse, max..:5000cd; Tension, alimentation c.c.:12V; Type de faisceau:Spot AMPOULE DECOSTAR 20W LARGE FAISCEAU; Tension, alimentation:12V; Lamp Base Type:GU4; Puissance:20W; Longueur:37mm; Diamètre, réflecteur:35mm; Température, couleur:3100K; SVHC:No SVHC (19-Dec-2011); Angle:38°; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Intensité lumineuse, max..:680cd; Tension, alimentation c.c.:12V; Type de faisceau:Wide Flood AMPOULE DECOSTAR 35W SPOT; Tension, alimentation:12V; Lamp Base Type:GU4; Puissance:35W; Longueur:37mm; Diamètre, réflecteur:35mm; Température, couleur:3100K; SVHC:No SVHC (19-Dec-2011); Angle:10°; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Intensité lumineuse, max..:6500cd; Tension, alimentation c.c.:12V; Type de faisceau:Spot AMPOULE DECOSTAR 35W LARGE FAISCEAU; Tension, alimentation:12V; Lamp Base Type:GU4; Puissance:35W; Longueur:37mm; Diamètre, réflecteur:35mm; Température, couleur:3100K; SVHC:No SVHC (19-Dec-2011); Angle:38°; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Intensité lumineuse, max..:1100cd; Tension, alimentation c.c.:12V; Type de faisceau:Wide Flood LAMPE SODIUM ELLIPSOIDALE 70W; Longueur:156mm; Température, couleur:2000K; Courant:980mA; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:70mm; Intensité lumineuse, max..:5600lm; Lamp Base Type:E27; Longueur/hauteur:156mm; Puissance:70W; Tension, alimentation:240V LAMPE DULUX EL ECO 16W BC; Tension, alimentation:240V; Puissance:16W; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:52mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Flux lumineux typique:600lm; Longueur/hauteur:140mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V AMPOULE POUR SPOT 51S 20W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:20W; Longueur:45mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:10°; Intensité lumineuse, max..:3000cd AMPOULE POUR SPOT 51S 35W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:35W; Longueur:45mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:36°; Intensité lumineuse, max..:6000cd AMPOULE POUR SPOT 51S 50W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:50W; Longueur:45mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:10°; Intensité lumineuse, max..:7800cd LAMPE LED 28V JAUNE; Lamp Base Type:Midget Flange; Couleur de LED:Jaune; Longueur d'onde typ.:592nm; Intensité lumineuse:775mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Jaune; Couleur, LED:Jaune; Courant, direct, If:10mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:775mcd; Température de fonctionnement:-40°C +80°C; Tension, Vf max..:28VDC; Tension, direct If:28V LAMPE FLUO 16W 2D; Tension, alimentation:240V; Lamp Base Type:2 broches 2D; Puissance:16W; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011) AMPOULE DICHROIQUE 50W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:50W; Longueur:44.5mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Angle:24°; Couleur:Cool White; Diamètre, extérieur:51mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension c.a.:12V; Tension d'alimentation Vac:12V AMPOULE HALOPIN TRANSPRTE 25W 240V HP25C; Tension, alimentation:240V; Lamp Base Type:G9; Puissance:25W; Longueur:43mm; Température, couleur:2800K; SVHC:No SVHC (19-Dec-2011); Intensité lumineuse, max..:260lm AMPOULE HALOPIN TRANSPRTE 40W 240V HP40C; Tension, alimentation:240V; Lamp Base Type:G9; Puissance:40W; Longueur:43mm; Température, couleur:2800K; SVHC:No SVHC (19-Dec-2011); Intensité lumineuse, max..:490lm TUBE FLUO 1200MM BLANC STANDARD T8; Lamp Base Type:T8; Puissance:36W; Flux lumineux:3350lm; Longueur:1.2m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Flux lumineux typique:3350lm; Longueur/hauteur:1200mm; Profondeur:26mm TUBE FLUO 1500MM BLANC STANDARD T8; Lamp Base Type:T8; Puissance:58W; Flux lumineux:5200lm; Longueur:1.5m; Diamètre de l'ampoule:26mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Flux lumineux typique:5200lm; Longueur/hauteur:1500mm; Profondeur:26mm LAMPE SODIUM TUBULAIRE 150W; Longueur:211mm; Température, couleur:2000K; Courant:1.8A; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:46mm; Intensité lumineuse, max..:14500lm LAMPE SODIUM TUBULAIRE 400W; Longueur:285mm; Température, couleur:2000K; Courant:4.4A; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:46mm; Intensité lumineuse, max..:48000lm; Lamp Base Type:E40; Longueur/hauteur:285mm; Puissance:400W; Tension, alimentation:240V AMPOULE POUR SPOT 51S 50W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:50W; Longueur:45mm; Diamètre, réflecteur:51mm; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:24°; Intensité lumineuse, max..:4000cd LED BA9 28V BLANC CHAUD; Lamp Base Type:BA9; Couleur de LED:Blanc chaud; Intensité lumineuse:9200mcd; Taille de lampe:T-3 1/4; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc ton chaud; Couleur, lentilles:Water Clear; Courant, fonctionnement c.c.:20mA; Diamètre, lentille:4.9mm; Dimension de la lentille:T-3 1/4; Intensité lumineuse typique:9200mcd; Largeur (externe):26mm; Longueur/hauteur:9.2mm; Température de fonctionne VOYANT NEON ROUGE; Tension, alimentation:130V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:12.7mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:12.7mm; Diamètre, lentille:14mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:40mm; Tension d'alimentation Vac:130V LAMPE LED 14V ROUGE; Lamp Base Type:Midget Flange; Couleur de LED:Rouge; Longueur d'onde typ.:639nm; Intensité lumineuse:775mcd; Taille de lampe:T-1 3/4; Tension, alimentation:14V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Rouge; Couleur, LED:Rouge; Courant, direct, If:10mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:775mcd; Température de fonctionnement:-40°C +80°C; Tension, Vf max..:14VDC; Tension, direct If:14V LAMPE LED 28V VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:520nm; Intensité lumineuse:600mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Couleur:Vert; Couleur, LED:Vert; Courant, direct, If:10mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:600mcd; Température de fonctionnement:-40°C +80°C; Tension, Vf max..:28VDC; Tension, direct If:28V STRIPLIGHT, LED, 300MM COLD CLEAR; Light Source:LED; Longueur:320mm; Largeur:47mm; Profondeur:22mm; Couleur:Transparent; Couleur:Blanc froid; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):47mm; Longueur/hauteur:300mm; Profondeur:22mm; Puissance:3.5VA; Taille de lampe:T-4; Température de couleur proximale:7500K; Tension, alimentation:230V STRIPLIGHT, LED, 400MM PURE PEARL; Light Source:40 x LED; Longueur:420mm; Largeur:20mm; Profondeur:44mm; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:420mm; Profondeur:44mm; Puissance:6VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, 500MM PURE PEARL; Light Source:52 x LED; Longueur:520mm; Largeur:20mm; Profondeur:44mm; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:520mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, 700MM COLD CLEAR; Light Source:76 x LED; Longueur:720mm; Largeur:20mm; Profondeur:44mm; Couleur:Transparent; Couleur:Blanc froid; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:720mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:7500K; Tension, alimentation:230V STRIPLIGHT, LED, 800MM COLD PEARL; Light Source:88 x LED; Longueur:820mm; Largeur:20mm; Profondeur:44mm; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:820mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:7500K; Tension, alimentation:230V STRIPLIGHT, LED, ULP 400MM PUR PRL; Light Source:44 x LED; Longueur:420mm; Largeur:16mm; Profondeur:16mm; Couleur de LED:Blanc; Courant:400mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:420mm; Profondeur:16mm; Puissance:4.8VA; Température de couleur proximale:5000K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 600MM CLD CLR; Light Source:68 x LED; Longueur:620mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc froid; Couleur de LED:Blanc; Courant:610mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:620mm; Profondeur:16mm; Puissance:7.3VA; Température de couleur proximale:7500K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 800MM PUR CLR; Light Source:92 x LED; Longueur:820mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc pur; Couleur de LED:Blanc; Courant:830mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:820mm; Profondeur:16mm; Puissance:9.9VA; Température de couleur proximale:5000K; Tension, alimentation:12V LED T5.5 48V BLANC; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Blanc; Intensité lumineuse:850mcd; Taille de lampe:6mm; Tension, alimentation:48V; Courant:7mA; Angle du faisceau:110°; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Courant, direct, If:7mA; Dimension de la lentille:6mm; Tension, direct If:48V AMPOULE DICHROIQUE 20W; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:20W; Longueur:44.5mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Angle:38°; Couleur:Cool White; Diamètre, extérieur:51mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension c.a.:12V; Tension d'alimentation Vac:12V LAMPE DULUX S 5W FROIDE; Tension, alimentation:35V; Lamp Base Type:2 broches; Puissance:5W; Flux lumineux:250lm; Longueur:108mm; Diamètre de l'ampoule:19.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:19.5mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Emission lumineuse, totale:250lm; Flux lumineux typique:250lm; Largeur (externe):34mm; Longueur/hauteur:108mm; Profondeur:19.5mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. m LAMPE DULUX S 9W FROIDE; Tension, alimentation:60V; Lamp Base Type:2 broches; Puissance:9W; Flux lumineux:600lm; Longueur:167mm; Diamètre de l'ampoule:19.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:19.5mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Emission lumineuse, totale:600lm; Flux lumineux typique:600lm; Largeur (externe):34mm; Longueur/hauteur:168mm; Profondeur:19.5mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. m LAMPE DULUX D 13W INTERNA; Tension, alimentation:220V; Lamp Base Type:G24d-1; Puissance:13W; Flux lumineux:900lm; Longueur:138mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Emission lumineuse, totale:900lm; Largeur (externe):34mm; Longueur/hauteur:153mm; Profondeur:34mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V TUBE FLUO 600MM BLANC STANDARD T8; Lamp Base Type:T8; Puissance:18W; Flux lumineux:1350lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Flux lumineux typique:1350lm; Longueur/hauteur:600mm; Profondeur:26mm TUBE FLUO 1200MM BLANC CHAUD T8; Lamp Base Type:T8; Puissance:36W; Flux lumineux:3350lm; Longueur:1.2m; Diamètre de l'ampoule:26mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc chaud; Diamètre, extérieur:26mm; Longueur/hauteur:1200mm; Profondeur:26mm TUBE FLUO 1500MM BLANC CHAUD T8; Lamp Base Type:T8; Puissance:58W; Flux lumineux:5200lm; Longueur:1.5m; Diamètre de l'ampoule:26mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc chaud; Diamètre, extérieur:26mm; Longueur/hauteur:1500mm; Profondeur:26mm TUBE FLUO 1500MM BLANC FROID T8; Lamp Base Type:T8; Puissance:58W; Flux lumineux:5200lm; Longueur:1.5m; Diamètre de l'ampoule:26mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Diamètre, extérieur:26mm; Longueur/hauteur:1500mm; Profondeur:26mm LAMPE DULUX F 24W; Tension, alimentation:87V; Lamp Base Type:2G10; Puissance:24W; Flux lumineux:1650lm; Longueur:165mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:1700lm; Longueur/hauteur:165mm; Nombre de broches:4 LAMPE DULUX F 36W; Tension, alimentation:106V; Lamp Base Type:2G10; Puissance:36W; Flux lumineux:2800lm; Longueur:217mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Flux lumineux typique:2800lm; Longueur/hauteur:217mm LAMPE DULUX L 36W CW; Tension, alimentation:106V; Puissance:36W; Flux lumineux:2900lm; Longueur:411mm; Diamètre de l'ampoule:17.5mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:17.5mm; Flux lumineux typique:2900lm; Longueur/hauteur:411mm; Nombre de broches:4 LAMPE DULUX L 36W INTERNA; Tension, alimentation:106V; Puissance:36W; Flux lumineux:2900lm; Longueur:411mm; Diamètre de l'ampoule:17.5mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Couleur:Interna; Diamètre, extérieur:17.5mm; Flux lumineux typique:2900lm; Longueur/hauteur:411mm; Nombre de broches:4 LAMPE DULUX S/E 7W BLANC FROID; Tension, alimentation:37V; Lamp Base Type:2G7; Puissance:7W; Flux lumineux:400lm; Longueur:114mm; Diamètre de l'ampoule:21mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:21mm; Flux lumineux typique:400lm; Longueur/hauteur:114mm LAMPE DULUX S/E 9W BLANC FROID; Tension, alimentation:230V; Lamp Base Type:2G7; Puissance:8W; Flux lumineux:600lm; Longueur:144mm; Diamètre de l'ampoule:21mm; Température, couleur:5000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:21mm LAMPE DULUX S/E 11W BLANC FROID; Tension, alimentation:75V; Lamp Base Type:2G7; Puissance:11W; Flux lumineux:850lm; Longueur:214mm; Diamètre de l'ampoule:21mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:21mm; Flux lumineux typique:900lm; Longueur/hauteur:214mm LAMPE DULUX S/E 11W INTERNA; Tension, alimentation:75V; Lamp Base Type:2G7; Puissance:11W; Flux lumineux:850lm; Longueur:214mm; Diamètre de l'ampoule:21mm; Température, couleur:5000K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:21mm; Flux lumineux typique:900lm; Longueur/hauteur:214mm LAMPE DULUX T 13W BLANC FROID; Tension, alimentation:230V; Lamp Base Type:2 broches; Puissance:13W; Flux lumineux:900lm; Longueur:113mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Longueur/hauteur:113mm LAMPE DULUX T 18W BLANC FROID; Tension, alimentation:230V; Lamp Base Type:2 broches; Puissance:18W; Flux lumineux:1200lm; Longueur:123mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Longueur/hauteur:123mm LAMPE DULUX T 26W BLANC FROID; Tension, alimentation:80V; Lamp Base Type:2 broches; Puissance:26W; Flux lumineux:1800lm; Longueur:138mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:1800lm; Longueur/hauteur:138mm LAMPE DULUX T/E 26W I; Tension, alimentation:80V; Puissance:26W; Flux lumineux:1750lm; Longueur:131mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Couleur:Interna; Flux lumineux typique:1800lm; Longueur/hauteur:131mm AMPOULE HALOPAR16 240V 50W ALUMINISE; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:50W; Longueur:55mm; Diamètre, réflecteur:50.7mm; Température, couleur:2800K; SVHC:No SVHC (19-Dec-2011); Intensité lumineuse, max..:900cd LAMPE SODIUM ELLIPSOIDALE 400W; Longueur:290mm; Température, couleur:2000K; Courant:4.45A; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:120mm; Intensité lumineuse, max..:47000lm LAMPE SODIUM ELLIPSOIDALE 400W; Température, couleur:2000K; Courant:4.45A; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:120mm; Intensité lumineuse, max..:47000lm; Lamp Base Type:E40; Longueur/hauteur:290mm; Puissance:400W; Tension, alimentation:240V LAMPE A DECHARGE BLANC SOLEIL 250W; Longueur:225mm; Diamètre de l'ampoule:46mm; Température, couleur:5300K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc soleil; Intensité lumineuse:20cd; Lamp Base Type:ES(E40); Puissance:250W; Tension, alimentation:100V LAMPE A DECHARGE BLANC SOLEIL 400W; Longueur:275mm; Diamètre de l'ampoule:46mm; Température, couleur:3700K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc soleil; Lamp Base Type:ES(E40); Puissance:400W; Tension, alimentation:125V LAMPE DULUX EL ECO 12W BC; Tension, alimentation:240V; Puissance:12W; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:45mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Flux lumineux typique:400lm; Longueur/hauteur:138mm; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V AMPOULE POUR SPOT 51S 20W SPOT; Tension, alimentation:12V; Lamp Base Type:GU5,3; Puissance:20W; Longueur:45mm; Diamètre, réflecteur:51mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Divergence du faisceau:10°; Intensité lumineuse, max..:3000cd AMPOULE HQI-T NSI POWERSTAR 400W N; Longueur:248mm; Diamètre de l'ampoule:57mm; Température, couleur:3700K; SVHC:No SVHC (19-Dec-2011); Couleur:Transparent; Lamp Base Type:E40; Puissance:400W AMPOULE SON-T PLUS 4Y 250W E27/E27; Longueur:257mm; Diamètre de l'ampoule:46mm; Température, couleur:2000K; SVHC:No SVHC (19-Dec-2011); Couleur:Transparent; Lamp Base Type:E40; Puissance:250W AMPOULE. GU10. HALOGENEE. 20W 230V; Tension, alimentation:230V; Lamp Base Type:GU10; Puissance:20W; Longueur:50mm; Diamètre, réflecteur:50mm; Température, couleur:2800K; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:230V AMPOULE. GU10. HALOGENEE. 50W 230V; Tension, alimentation:230V; Lamp Base Type:GU10; Puissance:50W; Longueur:50mm; Diamètre, réflecteur:50mm; Température, couleur:2800K; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:230V AMPOULE MR16 HALOGENE BASSE TENSION 35W; Tension, alimentation:12V; Lamp Base Type:GX5,3 / GU5,3; Puissance:35W; Diamètre, réflecteur:50mm; Température, couleur:2800K; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension, alimentation c.c.:12V AMPOULE. GU10. ECONOMIQUE 9W; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:9W; Flux lumineux:432lm; Longueur:73mm; Diamètre de l'ampoule:50mm; Température, couleur:2700K; Diamètre, extérieur:50mm; Durée de vie:8000h; Puissance GLS équivalente:45W TUBE DE LED BLANC CHAUD 61CM; Couleur de LED:Blanc chaud; Température de couleur proximale:3500K; Puissance:5.76W; Tension, alimentation:24V; Courant:240mA; Angle du faisceau:80°; Durée de vie moyenne de la lampe:50000h; Angle:80°; Consommation de puissance:2.76W; Couleur:Chaud; Courant, direct, If:240mA; Largeur (externe):33mm; Longueur:2ft; Longueur/hauteur:27mm; Tension, direct If:24V LAMPE HALOGENE; Tension, alimentation:21V; Lamp Base Type:GX5,3; Puissance:150W; Longueur:44.5mm; Diamètre, réflecteur:51mm; Intensité lumineuse, max..:80mcd STRIPLIGHT, LED, 300MM PURE CLEAR; Light Source:LED; Longueur:320mm; Largeur:47mm; Profondeur:22mm; Couleur:Transparent; Couleur:Blanc pur; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):47mm; Longueur/hauteur:320mm; Profondeur:22mm; Puissance:3.5VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, 300MM PURE PEARL; Light Source:LED; Longueur:320mm; Largeur:47mm; Profondeur:22mm; Couleur:Perle; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):47mm; Longueur/hauteur:300mm; Profondeur:22mm; Puissance:3.5VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:220V STRIPLIGHT, LED, 500MM COLD CLEAR; Light Source:52 x LED; Longueur:520mm; Largeur:20mm; Profondeur:44mm; Couleur:Transparent; Couleur:Blanc froid; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:520mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:7500K; Tension, alimentation:230V STRIPLIGHT, LED, 600MM PURE PEARL; Light Source:64 x LED; Longueur:620mm; Largeur:20mm; Profondeur:44mm; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:620mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, 800MM COLD CLEAR; Light Source:88 x LED; Longueur:820mm; Largeur:20mm; Profondeur:44mm; Couleur:Transparent; Couleur:Blanc froid; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:820mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:7500K; Tension, alimentation:230V STRIPLIGHT, LED, ULP 300MM CLD PRL; Light Source:32 x LED; Longueur:320mm; Largeur:16mm; Profondeur:16mm; Couleur de LED:Blanc; Courant:290mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:320mm; Profondeur:16mm; Puissance:3.5VA; Température de couleur proximale:7500K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 300MM PUR CLR; Light Source:32 x LED; Longueur:320mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc pur; Couleur de LED:Blanc; Courant:290mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:320mm; Profondeur:16mm; Puissance:3.5VA; Température de couleur proximale:5000K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 800MM CLD CLR; Light Source:92 x LED; Longueur:820mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc froid; Couleur de LED:Blanc; Courant:830mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:820mm; Profondeur:16mm; Puissance:9.9VA; Température de couleur proximale:7500K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 800MM PUR PRL; Light Source:92 x LED; Longueur:820mm; Largeur:16mm; Profondeur:16mm; Couleur de LED:Blanc; Courant:830mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:820mm; Profondeur:16mm; Puissance:9.9VA; Température de couleur proximale:5000K; Tension, alimentation:12V AMPOULE SON-T PLUS 4Y 100W E27/E27; Longueur:210mm; Diamètre de l'ampoule:46mm; Température, couleur:2000K; SVHC:No SVHC (19-Dec-2011); Couleur:Transparent; Lamp Base Type:E40; Puissance:100W AMPOULE. REFLECTEUR R63. 5W. B22; Tension, alimentation:240V; Lamp Base Type:B22; Puissance:5W; Longueur:131mm; Diamètre de l'ampoule:65mm; Diamètre, extérieur:65mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:131mm TUBE DE LED BLANC CHAUD 30.5CM; Couleur de LED:Blanc chaud; Température de couleur proximale:3500K; Puissance:2.88W; Tension, alimentation:24V; Courant:120mA; Angle du faisceau:80°; Durée de vie moyenne de la lampe:50000h; Angle:80°; Consommation de puissance:2.88W; Couleur:Chaud; Courant, direct, If:120mA; Largeur (externe):33mm; Longueur:1ft; Longueur/hauteur:27mm; Tension, direct If:24V STRIPLIGHT, LED, 400MM PURE CLEAR; Light Source:40 x LED; Longueur:420mm; Largeur:20mm; Profondeur:44mm; Couleur:Transparent; Couleur:Blanc pur; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:420mm; Profondeur:44mm; Puissance:6VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, ULP 300MM CLD CLR; Light Source:32 x LED; Longueur:320mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc froid; Couleur de LED:Blanc; Courant:290mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:320mm; Profondeur:16mm; Puissance:3.5VA; Température de couleur proximale:7500K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 300MM PUR PRL; Light Source:32 x LED; Longueur:320mm; Largeur:16mm; Profondeur:16mm; Couleur de LED:Blanc; Courant:290mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:320mm; Profondeur:16mm; Puissance:3.5VA; Température de couleur proximale:5000K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 400MM CLD CLR; Light Source:44 x LED; Longueur:420mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc froid; Couleur de LED:Blanc; Courant:400mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:420mm; Profondeur:16mm; Puissance:4.8VA; Température de couleur proximale:7500K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 400MM PUR CLR; Light Source:44 x LED; Longueur:420mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc pur; Couleur de LED:Blanc; Courant:400mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:420mm; Profondeur:16mm; Puissance:4.8VA; Température de couleur proximale:5000K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 700MM PUR CLR; Light Source:80 x LED; Longueur:720mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc pur; Couleur de LED:Blanc; Courant:720mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:720mm; Profondeur:16mm; Puissance:8.6VA; Température de couleur proximale:5000K; Tension, alimentation:12V AMPOULE HCI-T POWERBALL 70W WDL; Longueur:100mm; Diamètre de l'ampoule:19mm; Température, couleur:3000K; SVHC:No SVHC (19-Dec-2011); Couleur:Warm White; Lamp Base Type:G12; Puissance:72W AMPOULE. GU10. HALOGENEE. 35W 230V; Tension, alimentation:230V; Lamp Base Type:GU10; Puissance:35W; Longueur:50mm; Diamètre, réflecteur:50mm; Température, couleur:2800K; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:230V AMPOULE MR16 HALOGENE BASSE TENSION 50W; Tension, alimentation:12V; Lamp Base Type:GX5,3 / GU5,3; Puissance:50W; Diamètre, réflecteur:50mm; Température, couleur:2800K; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension, alimentation c.c.:12V AMPOULE MR16 HALOGENE BASSE TENSION 50W; Tension, alimentation:12V; Lamp Base Type:GX5,3 / GU5,3; Puissance:50W; Diamètre, réflecteur:50mm; Température, couleur:2800K; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension, alimentation c.c.:12V AMPOULE. PAR16 E14 JAUNE; Tension, alimentation:240V; Lamp Base Type:E14; Puissance:40W; Diamètre de l'ampoule:50mm; Couleur:Yellow; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Longueur/hauteur:85mm; Taille de lampe:Parabolique, PAR16, 50 mm; Tension:240VAC AMPOULE. GU10. ECONOMIQUE 11W; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:11W; Flux lumineux:528lm; Longueur:73mm; Diamètre de l'ampoule:50mm; Température, couleur:2700K; Diamètre, extérieur:50mm; Durée de vie:8000h; Puissance GLS équivalente:55W AMPOULE. BUG. 9W B22; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:9W; Longueur:142mm; Diamètre de l'ampoule:64mm; Diamètre, extérieur:64mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur/hauteur:142mm LAMPE MES G3.1/2 11MM; Tension, alimentation:3.5V; Lamp Base Type:E10; Puissance:1W; MSCP:0.59; Durée de vie moyenne de la lampe:1000h; SVHC:No SVHC (19-Dec-2011); Courant:0.3A; Diamètre, extérieur:9.5mm; Dimension de la lentille:G3 1/2; Durée de vie:1000h; Emission lumineuse, totale:6lm; Longueur/hauteur:24mm; Tension:3.5V; Tension c.a.:3.5V TUBE DE LED LUM. DU JOUR 30.5CM; Couleur de LED:Blanc; Température de couleur proximale:6500K; Puissance:2.88W; Tension, alimentation:24V; Courant:120mA; Angle du faisceau:80°; Durée de vie moyenne de la lampe:50000h; Angle:80°; Consommation de puissance:2.88W; Couleur:Lumière du jour; Courant, direct, If:120mA; Largeur (externe):33mm; Longueur:1ft; Longueur/hauteur:27mm; Tension, direct If:24V TUBE DE LED LUM. DU JOUR 61CM; Couleur de LED:Blanc; Température de couleur proximale:6500K; Puissance:5.76W; Tension, alimentation:24V; Courant:240mA; Angle du faisceau:80°; Durée de vie moyenne de la lampe:50000h; Angle:80°; Consommation de puissance:5.76W; Couleur:Lumière du jour; Courant, direct, If:240mA; Largeur (externe):33mm; Longueur:2ft; Longueur/hauteur:27mm; Tension, direct If:24V TUBE DE LED LUM. DU JOUR 91.5CM; Couleur de LED:Blanc; Température de couleur proximale:6500K; Puissance:8.64W; Tension, alimentation:24V; Courant:360mA; Angle du faisceau:80°; Durée de vie moyenne de la lampe:50000h; Angle:80°; Consommation de puissance:8.64W; Couleur:Lumière du jour; Courant, direct, If:360mA; Longueur:3ft; Tension, direct If:24V TUBE DE LED T5 LUM. DU JOUR 61CM; Couleur de LED:Blanc; Température de couleur proximale:6500K; Puissance:5.76W; Taille de lampe:T-5; Tension, alimentation:24V; Courant:240mA; Angle du faisceau:60°; Angle:60°; Consommation de puissance:5.76W; Couleur:Lumière du jour; Courant, direct, If:240mA; Diamètre, extérieur:16mm; Dimension de la lentille:T5; Longueur:2ft; Température de fonctionnement max..:+40°C; Température d'utilisation min:-20°C; Tension, direct If:24V LAMP, LED 6 W 100-240 V; Puissance:4W; Light Source:LED; Longueur:633mm; Diamètre, lentille:72mm; Safety Category:II BLOC DE SECURITE 2 PROJECTEURS 2X20W; Longueur:310mm; Largeur:310mm; Profondeur:70mm; IP / NEMA Rating:IP20; SVHC:No SVHC (19-Dec-2011); Hauteur:310mm; Lamp Base Type:BA 15S 12V 20W ; Largeur (externe):310mm; Longueur/hauteur:310mm; Matière:Steel Box; Profondeur:70mm; Puissance:40W; Tension, alimentation:230V; Tension d'alimentation Vac:230V TUBE FLUORESCENT T4 6W; Lamp Base Type:T4; Puissance:6W; Longueur:220mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Emission lumineuse, totale:550lm; Flux lumineux typique:300lm; Longueur/hauteur:220mm; Matière:Opal Glass LED SX6S MIDGET FLA.28VA/DC CWHT; Lamp Base Type:Midget Flange; Couleur de LED:Blanc froid; Température de couleur proximale:7000K; Intensité lumineuse:480mcd; Puissance:336mW; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:12mA; Angle du faisceau:160°; Durée de vie moyenne de la lampe:50000h; SVHC:No SVHC (19-Dec-2011); Angle, vision:160°; Couleur, LED:Blanc froid; Courant, direct, If:12mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:480mcd; Nombre de LED:1; Tempé LAMPE U.V; Puissance:4.6W; Courant, alimentation:162mA; Longueur:134.5mm; Diamètre de l'ampoule:15.5mm; Lamp Base Type:G5; SVHC:No SVHC (19-Dec-2011); Base Type:G5; Courant:0.162A; Diamètre, extérieur:15mm; Durée de vie:6000h; Durée de vie moyenne de la lampe:6000h; Longueur d'onde, crête:253.7nm; Longueur/hauteur:134mm; Tension, alimentation:30V BLOC DE SECURITE 8W; Longueur:345mm; Largeur:120mm; Profondeur:75mm; IP / NEMA Rating:IP65; SVHC:No SVHC (19-Dec-2011); Lamp Base Type:Fluorescent T5 300 mm; Largeur (externe):120mm; Longueur/hauteur:345mm; Matière:Polycarbonate; Profondeur:75mm; Puissance:8W; Tension, alimentation:230V; Tension d'alimentation Vac:230V TUBE FLUORESCENT T4 10W; Lamp Base Type:T4; Puissance:10W; Longueur:341mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Emission lumineuse, totale:550lm; Flux lumineux typique:500lm; Longueur/hauteur:341mm; Matière:Opal Glass BLOC DE SECURITE 8W; Longueur:345mm; Largeur:120mm; Profondeur:75mm; IP / NEMA Rating:IP65; SVHC:No SVHC (19-Dec-2011); Lamp Base Type:Fluorescent T5 300 mm; Largeur (externe):120mm; Longueur/hauteur:345mm; Matière:Polycarbonate; Profondeur:75mm; Puissance:8W; Tension, alimentation:230V; Tension d'alimentation Vac:230V TUBE FLUORESCENT T4 16W; Lamp Base Type:T4; Puissance:16W; Longueur:468mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Emission lumineuse, totale:550lm; Flux lumineux typique:880lm; Longueur/hauteur:479mm; Matière:Opal Glass TUBE FLUORESCENT T4 20W; Lamp Base Type:T4; Puissance:20W; Longueur:567mm; Température, couleur:3400K; SVHC:No SVHC (19-Dec-2011); Emission lumineuse, totale:550lm; Flux lumineux typique:1200lm; Longueur/hauteur:567mm; Matière:Opal Glass DOWNLIGHT KIT, 35W, GU5.3, NICKEL, SQR; Longueur:91mm; Largeur:91mm; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Largeur (externe):91mm; Light Source:Halogène DOWNLIGHT KIT, 35W, GU5.3, WHITE, IP24; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:91mm; Light Source:Halogène DOWNLIGHT KIT,35W,GU5.3,NICKEL,IP24; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:91mm; Light Source:Halogène DOWNLIGHT KIT, 35W, GU5.3, WHITE, IP24; Longueur:91mm; Largeur:91mm; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Largeur (externe):91mm; Light Source:Halogène LED BA9 BAYN 24V AC/DC WARM WHITE; Lamp Base Type:BA9s; Couleur de LED:Blanc chaud; Intensité lumineuse:1180mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:18mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc chaud; Courant, direct, If:18mA; Dimension de la lentille:10mm; Intensité lumineuse typique:1180mcd; Nombre de LED:1; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:24V LED BA9 BAYN 28V AC/DC WARM WHITE; Lamp Base Type:BA9s; Couleur de LED:Blanc chaud; Intensité lumineuse:1180mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:18mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc chaud; Courant, direct, If:18mA; Dimension de la lentille:10mm; Intensité lumineuse typique:1180mcd; Nombre de LED:1; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:28V LED BA9 BAYN 28V AC/DC 3 CHIP WHITE; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:3500mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:19mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc; Courant, direct, If:19mA; Dimension de la lentille:10mm; Intensité lumineuse typique:3500mcd; Nombre de LED:3; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:28V LED BA9 BAYN 28V AC/DC WRM WHT; Lamp Base Type:BA9s; Couleur de LED:Blanc chaud; Intensité lumineuse:3500mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:19mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc chaud; Courant, direct, If:19mA; Dimension de la lentille:10mm; Intensité lumineuse typique:3500mcd; Nombre de LED:3; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:28V TUBE ULTRA VIOLET; Puissance:14.7W; Courant, alimentation:300mA; Longueur:436mm; Diamètre de l'ampoule:25.5mm; Lamp Base Type:G13; SVHC:No SVHC (19-Dec-2011); Base Type:G13; Courant:0.3A; Diamètre, extérieur:25mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Longueur d'onde, crête:253.7nm; Longueur/hauteur:436mm; Tension, alimentation:55V LAMPE U.V; Puissance:7.9W; Courant, alimentation:170mA; Longueur:287mm; Diamètre de l'ampoule:15.5mm; Lamp Base Type:G5; SVHC:No SVHC (19-Dec-2011); Base Type:G5; Courant:0.17A; Diamètre, extérieur:15mm; Durée de vie:6000h; Durée de vie moyenne de la lampe:6000h; Longueur d'onde, crête:253.7nm; Longueur/hauteur:287mm; Tension, alimentation:56V LED JAUNE POUR SERIE AML; Couleur de LED:Jaune; Courant:50mA; SVHC:No SVHC (19-Dec-2011); Couleur:Jaune; Courant, direct, If:50mA; Tension, direct If:4V BLOC DE SECURITE A LED. ARGENT; Longueur:545mm; Profondeur:370mm; IP / NEMA Rating:IP20; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:Argent; Distance, visible max..:30m; Durée de vie (fonctionnement):3 Heures; Matière:Aluminium; Tension, batterie:3.6V LAMPE; Tension, alimentation:20V; Lamp Base Type:GX5,3; Puissance:150W; Durée de vie moyenne de la lampe:500h; Durée de vie:500h; Longueur/hauteur:44.5mm; Tension:20V STRIPLIGHT, LED, 600MM PURE CLEAR; Light Source:64 x LED; Longueur:620mm; Largeur:20mm; Profondeur:44mm; Couleur:Transparent; Couleur:Blanc pur; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:620mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, 800MM PURE PEARL; Light Source:88 x LED; Longueur:820mm; Largeur:20mm; Profondeur:44mm; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:820mm; Profondeur:44mm; Puissance:12VA; Taille de lampe:T-4; Température de couleur proximale:5000K; Tension, alimentation:230V STRIPLIGHT, LED, ULP 500MM PUR CLR; Light Source:56 x LED; Longueur:520mm; Largeur:16mm; Profondeur:16mm; Couleur:Blanc pur; Couleur de LED:Blanc; Courant:500mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:520mm; Profondeur:16mm; Puissance:6VA; Température de couleur proximale:5000K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 500MM PUR PRL; Light Source:56 x LED; Longueur:520mm; Largeur:16mm; Profondeur:16mm; Couleur de LED:Blanc; Courant:500mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:520mm; Profondeur:16mm; Puissance:6VA; Température de couleur proximale:5000K; Tension, alimentation:12V STRIPLIGHT, LED, ULP 800MM CLD PRL; Light Source:92 x LED; Longueur:820mm; Largeur:16mm; Profondeur:16mm; Couleur de LED:Blanc; Courant:830mA; Durée de vie moyenne de la lampe:50000h; Largeur (externe):16mm; Longueur/hauteur:820mm; Profondeur:16mm; Puissance:9.9VA; Température de couleur proximale:7500K; Tension, alimentation:12V LED E14 24V BLANC; Lamp Base Type:Vis miniature, E14; Couleur de LED:Blanc; Intensité lumineuse:2500mcd; Taille de lampe:T-5; Tension, alimentation:24V; Courant:17mA; Angle du faisceau:110°; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Courant, direct, If:17mA; Dimension de la lentille:T5; Intensité lumineuse, max..:2500mcd; Tension, direct If:24V; Tolérance, tension d'alimentation c.a.+:10%; Tolérance, tension d'alimentation, c.c. +:10% ULTRA SLIM ESD MAGNIFIER PRISE UK; Puissance:28W; Light Source:Fluorescente; Longueur:950mm; Diamètre, lentille:175mm; SVHC:No SVHC (19-Dec-2011) TUBE ECONOMIE ENERGIE. 9W; Tension, alimentation:230V; Puissance:9W; Température, couleur:6400K TUBE CIRCULAIRE ES. 12W; Tension, alimentation:230V; Puissance:12W; Température, couleur:6400K AMPOULE. 2D - 2 BROCHE 16W; Tension, alimentation:240V; Lamp Base Type:2 broches 2D; Puissance:16W; Flux lumineux:960lm; Longueur:138mm; Diamètre de l'ampoule:135mm; Température, couleur:6400K; Diamètre, extérieur:135mm; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Flux lumineux typique:960lm; Intensité lumineuse, max..:960lm; Largeur (externe):135mm; Longueur/hauteur:138mm AMPOULE. MR11 HALOGENEE 20W 30 DEGREE27; Tension, alimentation:12V; Lamp Base Type:GZ4; Puissance:20W; Diamètre, réflecteur:37mm; Divergence du faisceau:30° AMPOULE. PAR16 E14 VERT; Tension, alimentation:240V; Lamp Base Type:E14; Puissance:40W; Diamètre de l'ampoule:50mm; Couleur:Green; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Longueur/hauteur:85mm; Taille de lampe:Parabolique, PAR16, 50 mm; Tension:240VAC AMPOULE. PAR16 E14 BLEU; Tension, alimentation:240V; Lamp Base Type:E14; Puissance:40W; Diamètre de l'ampoule:50mm; Couleur:Blue; Diamètre, extérieur:50mm; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Longueur/hauteur:85mm; Taille de lampe:Parabolique, PAR16, 50 mm; Tension:240VAC TUBE DE LED T5 LUM. DU JOUR 30.5CM; Couleur de LED:Blanc; Température de couleur proximale:6500K; Puissance:2.88W; Taille de lampe:T-5; Tension, alimentation:24V; Courant:120mA; Angle du faisceau:60°; Angle:60°; Consommation de puissance:2.88W; Couleur:Lumière du jour; Courant, direct, If:120mA; Diamètre, extérieur:16mm; Dimension de la lentille:T5; Longueur:1ft; Température de fonctionnement max..:+40°C; Température d'utilisation min:-20°C; Tension, direct If:24V DOWNLIGHT, LED, 12DEG, WHITE; Couleur de LED:Blanc; SVHC:No SVHC (19-Dec-2011); Couleur:Warm White; Diamètre, extérieur:80mm; Light Source:LED; Profondeur:103mm DOWNLIGHT KIT, LED, 4.5W, ROUND; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:91mm; Light Source:LED; Profondeur:90mm DOWNLIGHT KIT, LED, 4.5W, SQUARE; SVHC:No SVHC (19-Dec-2011); Largeur (externe):91mm; Light Source:LED; Longueur:91mm; Profondeur:90mm DOWNLIGHT KIT, 35W, GU5.3, WHITE, RND; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:91mm; Light Source:Halogène LAMPE TORCHE RECHARGEABLE. LED. JAUNE; Longueur:189mm; Largeur:112mm; Profondeur:128.5mm; Largeur (externe):112mm; Light Source:LED DETECTEUR INFRA ROUGE 360° FM BLANC; Angle de faisceau:360°; Longueur:71mm; Largeur:84mm; Profondeur:84mm; Couleur:Blanc; Distance de détection max..:6m; IP / NEMA Rating:IP44; Lamp Base Type:Incandescent / Halogène; Largeur (externe):84mm; Longueur/hauteur:71mm; Profondeur:84mm; Puissance:2kW; Tension, alimentation:230V DOWNLIGHT, LED, 36DEG, WHITE; Couleur de LED:Blanc; SVHC:No SVHC (19-Dec-2011); Couleur:Cool White; Diamètre, extérieur:80mm; Light Source:LED; Profondeur:99mm DOWNLIGHT KIT, 35W, GU5.3, NICKEL, RND; Largeur:91mm; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:91mm; Light Source:Halogène DOWNLIGHT KIT, 35W, GU5.3, WHITE, SQR; Longueur:91mm; Largeur:91mm; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Largeur (externe):91mm; Light Source:Halogène BANDE LUMINEUSE A LED 24-48VDC. VIS; Puissance:5W; Light Source:LED; Longueur:351mm; Diamètre, lentille:32mm; SVHC:No SVHC (20-Jun-2011) LED FESTOON 0.5W WARM BLANC 12X42; Lamp Base Type:T-3 3/4; Couleur de LED:Blanc chaud; Température de couleur proximale:3000K; Puissance:500mW; Tension, alimentation:12VDC; Courant:40mA; Angle du faisceau:110°; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011) BANDE LUMINEUSE A LED 100-240VAC. AIMANT; Lamp Base Type:Vis; Puissance:5W; Light Source:LED; Longueur:351mm; Diamètre, lentille:32mm; SVHC:No SVHC (20-Jun-2011) STATION DE TRAVAIL ESD LAMPE - UK; Puissance:18W; Light Source:Fluorescente; Longueur:900mm; SVHC:No SVHC (19-Dec-2011) LED FESTOON 0.5W WARM BLANC 12X42; Lamp Base Type:T-3 3/4; Couleur de LED:Blanc chaud; Température de couleur proximale:3000K; Puissance:500mW; Tension, alimentation:24VDC; Courant:20mA; Angle du faisceau:110°; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011) LED FESTOON 1W WARM BLANC 12X42; Lamp Base Type:T-3 3/4; Couleur de LED:Blanc chaud; Température de couleur proximale:3200K; Puissance:1W; Tension, alimentation:12VDC; Courant:80mA; Angle du faisceau:120°; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011) LED FESTOON 1W WARM BLANC 12X42; Lamp Base Type:T-3 3/4; Couleur de LED:Blanc chaud; Température de couleur proximale:3200K; Puissance:1W; Tension, alimentation:24VDC; Courant:40mA; Angle du faisceau:120°; Durée de vie moyenne de la lampe:20000h; SVHC:No SVHC (19-Dec-2011) LED S5.7S MIDG-GRO 24V AC/DC WHT; Lamp Base Type:S5,7s; Couleur de LED:Blanc; Intensité lumineuse:1100mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:17mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc; Courant, direct, If:17mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:1100mcd; Nombre de LED:1; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:24V LED S5.7S MIDG-GRO 28V AC/DC WHT; Lamp Base Type:S5,7s; Couleur de LED:Blanc; Intensité lumineuse:900mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc; Courant, direct, If:14mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:900mcd; Nombre de LED:1; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:28V LED S5.7S MIDG-GRO 24V AC/DC WM WHT; Lamp Base Type:S5,7s; Couleur de LED:Blanc chaud; Intensité lumineuse:1100mcd; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:17mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc chaud; Courant, direct, If:17mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:1100mcd; Nombre de LED:1; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:24V LED BA9 BAYN 28V AC/DC WHITE; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:1180mcd; Taille de lampe:10mm; Tension, alimentation:28V; Courant:18mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc; Courant, direct, If:18mA; Dimension de la lentille:10mm; Intensité lumineuse typique:1180mcd; Nombre de LED:1; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:28V LED BA9 BAYN 24V AC/DC 3 CHIP WHITE; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:3700mcd; Taille de lampe:10mm; Tension, alimentation:24V; Courant:20mA; Angle du faisceau:115°; SVHC:No SVHC (19-Dec-2011); Couleur, LED:Blanc; Courant, direct, If:20mA; Dimension de la lentille:10mm; Intensité lumineuse typique:3700mcd; Nombre de LED:3; Température de fonctionnement:-25°C +60°C; Tension, Vf max..:24V LED SX6S MIDGET FLA.28VA/DC WWHT; Lamp Base Type:Midget Flange; Couleur de LED:Blanc chaud; Température de couleur proximale:3300K; Intensité lumineuse:525mcd; Puissance:360mW; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:13mA; Angle du faisceau:160°; Durée de vie moyenne de la lampe:50000h; SVHC:No SVHC (19-Dec-2011); Angle, vision:160°; Couleur, LED:Blanc chaud; Courant, direct, If:13mA; Dimension de la lentille:T-1 3/4; Intensité lumineuse typique:525mcd; Nombre de LED:1; Tempé AMPOULE 57W. GX24Q-5; Lamp Base Type:GX24q-5; Puissance:57W; Longueur:188mm; Température, couleur:6400K; SVHC:No SVHC (19-Dec-2011); Couleur:White; Largeur (externe):44mm; Light Source:CFL LAMPE T-1 3/4 28V POUR AML SERIES; Tension, alimentation:28V; Lamp Base Type:Wedge; Taille de lampe:T-3 1/4; Puissance:1.12W; MSCP:0.3; Durée de vie moyenne de la lampe:7000h; SVHC:No SVHC (19-Dec-2011) DOWNLIGHT, LED, 12DEG, WHITE; Couleur de LED:Blanc; SVHC:No SVHC (19-Dec-2011); Couleur:Cool White; Diamètre, extérieur:80mm; Light Source:LED; Profondeur:103mm DOWNLIGHT KIT,35W,GU5.3,NICKEL,IP24; Longueur:91mm; Largeur:91mm; Profondeur:150mm; SVHC:No SVHC (19-Dec-2011); Largeur (externe):91mm; Light Source:Halogène LED LIGHT, DOT-IT, BLACK; SVHC:No SVHC (19-Dec-2011); Largeur (externe):67mm; Light Source:LED; Longueur:67mm; Profondeur:22mm LED LIGHT, DOT-IT, PLATINUM; SVHC:No SVHC (19-Dec-2011); Largeur (externe):67mm; Light Source:LED; Longueur:67mm; Profondeur:22mm LAMPE DE BUREAU 30W 230V; Lamp Base Type:Pince; Puissance:250W; Light Source:3 x tube économie d'énergie 14W; SVHC:No SVHC (19-Dec-2011) LAMPE HALOGENE 6V 300MA; Tension, alimentation:6V; Lamp Base Type:B-3 1/2 bride; Puissance:1.44W; Température, couleur:3000K; Courant:0.3A; Durée de vie:500h; Durée de vie moyenne de la lampe:500h; Intensité lumineuse, max..:50000cd; Tension c.a.:6V T1 MF SX3S BASE ROUGE LED 28VDC; Couleur de LED:Rouge; Intensité lumineuse:39mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:11mA; Tension, direct If:28V T1 MF SX3S BASE BLEU LED 28VDC; Couleur de LED:Bleu; Intensité lumineuse:128mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:11mA; Tension, direct If:28V T1 MF SX3S BASE WHITE LED 12VDC; Couleur de LED:Blanc froid; Intensité lumineuse:414mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:12mA; Tension, direct If:12V T1 MF SX3S BASE WHITE LED 28VDC; Couleur de LED:Blanc froid; Intensité lumineuse:414mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:11mA; Tension, direct If:28V T6.8 SLIDE BASE BLEU 12VDC; Couleur de LED:Bleu; Longueur d'onde typ.:470nm; Intensité lumineuse:7cd; Puissance:625mW; Taille de lampe:T-6 4/5; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V LAMP, 12V, 10W; Tension, alimentation:12V; Puissance:10W; Tension c.a.:12V T1 MF SX3S BASE JAUNE LED 12VDC; Couleur de LED:Jaune; Intensité lumineuse:87mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V T6.8 SLIDE BASE WARM WHITE 12VDC; Couleur de LED:Blanc chaud; Intensité lumineuse:9.2cd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V WORK LIGHT, 230/12V, 700MM; Tension, alimentation:230V; Puissance:20W; Light Source:Halogène; Longueur:700mm; Couleur:Noir; Diamètre, base:60mm; IP / NEMA Rating:IP20; Longueur (max..):960mm; Longueur/hauteur:960mm; Matière:Polycarbonate; Tension, alimentation c.a. max..:230V; Tension, alimentation c.c. max..:12V LED ROUGE 24V; Lamp Base Type:BA15d; Couleur de LED:Rouge; Tension, alimentation:24V; SVHC:No SVHC (19-Dec-2011); Couleur:Red; Couleur, LED:Rouge; Température de fonctionnement:-25°C +50°C; Tension VDC:24V; Tension, Vf max..:24V; Tension, Vf typ.:24V; Tension, direct If:24V; Type de boîtier:Zamak; Type de boîtier opto:Zamak LAMPE BA15D 12V; Tension, alimentation:12V; Lamp Base Type:BA15d; Puissance:10W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Tension:12V; Tension c.a.:12V LED MONTAGE AVANT 18-30VAC/DC. BLANC; Lamp Base Type:BA9s; Tension, alimentation:30V; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:55°C; Température d'utilisation min:-25°C LED MONTAGE ARRIERE 18-30VAC/DC. ROUGE; Tension, alimentation:30V; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:55°C; Température d'utilisation min:-25°C LED MONTAGE ARRIERE 85-264VAC. BLANC; Tension, alimentation:264V; Puissance:330mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C LAMPE UVA 609MM 20W; Puissance:20W; Longueur:610mm; Lamp Base Type:Bi-broche; SVHC:No SVHC (19-Dec-2011); Base Type:Bi-broche; Longueur/hauteur:610mm; Température de fonctionnement max..:50°C; Température d'utilisation min:-25°C LAMPE POUR MAGLITE AA ET AAA; Taille de lampe:8mm; Puissance:900mW; Dimension de la lentille:8mm; Quantité par paquet:2 LAMPE ES50 50W 240V GU10 25; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:50W; Longueur:55mm; Diamètre, réflecteur:51mm; Température, couleur:2750K; Diamètre, extérieur:51mm; Durée de vie:2500h; Durée de vie moyenne de la lampe:2500h; Intensité lumineuse, max..:1150cd; Tension c.a.:240V LAMPE 63 50W 240V E27 25; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:50W; Longueur:88mm; Diamètre, réflecteur:65mm; Température, couleur:2900K; Diamètre, extérieur:63mm; Divergence du faisceau:25°; Durée de vie:2500h; Durée de vie moyenne de la lampe:2500h; Intensité lumineuse, max..:1000cd; Tension c.a.:240V; Tension d'alimentation Vac:240V LAMPE 80 50W 240V E27 10; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:50W; Longueur:108mm; Diamètre, réflecteur:81mm; Température, couleur:2900K; Diamètre, extérieur:80mm; Divergence du faisceau:10°; Durée de vie:2500h; Durée de vie moyenne de la lampe:2500h; Intensité lumineuse, max..:4000cd; Tension c.a.:240V; Tension d'alimentation Vac:240V LAMPE 80 75W 240VE27 25; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:75W; Longueur:108mm; Diamètre, réflecteur:81mm; Température, couleur:2900K; Diamètre, extérieur:80mm; Divergence du faisceau:25°; Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:1300cd; Tension c.a.:240V; Tension d'alimentation Vac:240V LAMPE 95 75W 240V E27 30; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:75W; Longueur:91mm; Diamètre, réflecteur:97mm; Température, couleur:2900K; Diamètre, extérieur:95mm; Divergence du faisceau:30°; Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:2200cd; Tension c.a.:240V; Tension d'alimentation Vac:240V LAMPE 95 100W 240V E27 30; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:100W; Longueur:91mm; Diamètre, réflecteur:97mm; Température, couleur:2900K; Diamètre, extérieur:95mm; Divergence du faisceau:30°; Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:3500cd; Tension c.a.:240V; Tension d'alimentation Vac:240V TUBE FLUO MINIATURE T5 4W; Tension, alimentation:29V; Lamp Base Type:G5; Puissance:4W; Flux lumineux:140lm; Longueur:136mm; Diamètre de l'ampoule:16mm; Température, couleur:3500K; Couleur:White; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Flux lumineux typique:145lm; Intensité lumineuse, max..:145lm; Longueur/hauteur:150mm TUBE FLUO T5 FHE 21W BLANC CHAUD; Tension, alimentation:123V; Lamp Base Type:G5; Puissance:21W; Flux lumineux:1910lm; Longueur:849mm; Diamètre de l'ampoule:16mm; Température, couleur:3000K; Couleur:Blanc chaud; Couleur:Warm White; Courant:170mA; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:16000h; Durée de vie moyenne de la lampe:16000h; Flux lumineux typique:2100lm; Intensité lumineuse, max..:2100lm; Longueur/hauteur:850mm TUBE FLUO T5 FHE 28W BLANC CHAUD; Tension, alimentation:167V; Lamp Base Type:G5; Puissance:28W; Flux lumineux:2640lm; Longueur:1.15m; Diamètre de l'ampoule:16mm; Température, couleur:3000K; Couleur:Blanc chaud; Couleur:Warm White; Courant:170mA; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:16000h; Durée de vie moyenne de la lampe:16000h; Flux lumineux typique:2900lm; Intensité lumineuse, max..:2900lm; Longueur/hauteur:1150mm TUBE FLUO T5 FHE 35W BLANC CHAUD; Tension, alimentation:209V; Lamp Base Type:G5; Puissance:35W; Flux lumineux:3320lm; Longueur:1.45m; Diamètre de l'ampoule:16mm; Température, couleur:3000K; Couleur:Blanc chaud; Couleur:Warm White; Courant:170mA; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:16000h; Durée de vie moyenne de la lampe:16000h; Flux lumineux typique:3650lm; Intensité lumineuse, max..:3650lm; Longueur/hauteur:1450mm AMPOULE POUR LAMPE TORCHE T4 (PQ2); Tension, alimentation:2.4V; Taille de lampe:T-4; Courant:700mA; SVHC:No SVHC (19-Dec-2011); Dimension de la lentille:T-4; Durée de vie:50h; Durée de vie moyenne de la lampe:50h; Intensité lumineuse, max..:15lm LAMPE TORCHE (PQ2); Tension, alimentation:4.8V; Lamp Base Type:B-3 1/2; Taille de lampe:11mm; Couleur:Clear; Courant:0.75A; Diamètre, extérieur:11mm; Dimension de la lentille:11mm; Longueur/hauteur:29mm; Quantité par paquet:2; Tension:4.8V; Tension c.a.:4.8V AMPOULE POUR TORCHE PQ2; Couleur:Clear; Quantité par paquet:2 AMPOULE POUR MAG-LITE 2 PILES PQ2; Tension, alimentation:2.4V; Durée de vie moyenne de la lampe:36h; Courant:0.67A; Durée de vie:36h; Quantité par paquet:2; Tension:2.4V WORK LAMP, MAGNETIC MOUNT; Tension, alimentation:12V; Lamp Base Type:H3; Puissance:55W; Light Source:H3 55W; Longueur:240mm; Diamètre, lentille:162mm; SVHC:No SVHC (19-Dec-2011); Calibre du Fusible:8A; Courant:4.6A; Courant, fonctionnement c.c.:4.6A; Diamètre, câble min.:1mm; Largeur (externe):162mm; Longueur (max..):240mm; Longueur/hauteur:239mm; Matière:Polypropylène et polycarbonate; Matière, lentille:Polycarbonate; Profondeur:92mm; Taille de fil, mm2 min.:1mmË›; Tension, alimentation c.c.:12V LAMPE DULUX DE HF 10W INTERNA; Tension, alimentation:51V; Lamp Base Type:G24q; Puissance:10W; Flux lumineux:600lm; Longueur:103mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Couleur:Interna; Flux lumineux typique:600lm; Intensité lumineuse, max..:600lm; Longueur/hauteur:103mm; Nombre de broches:4 AMPOULE DE RECHANGE; SVHC:No SVHC (19-Dec-2011) LAMPE SODIUM SON+ TUBULAIRE 150W; Température, couleur:2000K; Courant:1.8A; SVHC:No SVHC (19-Dec-2011); Diamètre, extérieur:46mm; Intensité lumineuse, max..:17500lm; Lamp Base Type:ES(E40); Longueur/hauteur:211mm; Puissance:150W; Tension, alimentation:240V LAMP, DICHRORIC, 12V, 10W; Tension, alimentation:12V; Puissance:10W LED VERTE 24V; Lamp Base Type:BA15d; Couleur de LED:Vert; Tension, alimentation:24V; SVHC:No SVHC (19-Dec-2011); Couleur:Green; Couleur, LED:Vert; Température de fonctionnement:-25°C +50°C; Tension VDC:24V; Tension, Vf max..:24V; Tension, Vf typ.:24V; Tension, direct If:24V; Type de boîtier:Zamak; Type de boîtier opto:Zamak LED MONTAGE AVANT 12-30VAC/DC. VERT; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C; Tension, alimentation c.a. max..:30V; Tension, alimentation c.a. min:12V; Tension, alimentation c.c. max..:30V; Tension, alimentation c.c. min.:12V; Type de terminaison: visser LED MONTAGE AVANT 18-30VAC/DC. BLEU; Tension, alimentation:30V; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Bleu; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:55°C; Température d'utilisation min:-25°C LED MONTAGE AVANT 85-264VAC. ROUGE; Tension, alimentation:264V; Puissance:330mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C LED. F/FXG. 85V-264VAC. VERT; Tension, alimentation:264V; Puissance:330mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C AMPOULE 12V; Tension, alimentation:12V; Lamp Base Type:BA15d; Puissance:4.8W; Durée de vie moyenne de la lampe:2000h; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Courant:0.43A; Dimension de la lentille:BA15d; Durée de vie:2000h; Tension:12V; Tension c.a.:12V AMPOULE 24V; Tension, alimentation:24V; Lamp Base Type:BA15d; Taille de lampe:BA15d; Puissance:4.8W; Durée de vie moyenne de la lampe:2000h; SVHC:No SVHC (20-Jun-2011); Courant:0.21A; Dimension de la lentille:BA15d; Durée de vie:2000h; Tension c.a.:24V LAMPE LOUPE MAGNIFIQUE BLANCHE; Puissance:18W; Longueur:1.05m; Longueur (max..):1050mm; Longueur/hauteur:1050mm LAMPE UVA 304MM 8W; Puissance:8W; Longueur:305mm; Lamp Base Type:Bi-broche; SVHC:No SVHC (19-Dec-2011); Base Type:Bi-broche; Longueur/hauteur:305mm; Température de fonctionnement max..:50°C; Température d'utilisation min:-25°C LAMPE UVA 457MM 15W; Puissance:15W; Longueur:457mm; Lamp Base Type:Bi-broche; SVHC:No SVHC (19-Dec-2011); Base Type:Bi-broche; Longueur/hauteur:457mm; Température de fonctionnement max..:50°C; Température d'utilisation min:-25°C BLOC D'ECLAIRAGE B22 100W TRANSP; Light Source:BC GLS 100W; Longueur:240mm; Largeur:117mm; Profondeur:140mm; Couleur:Clear; Puissance:100W; Tension, alimentation:230V BLOC D'ECLAIRAGE GLS 100W VERRE TRANSP; Light Source:BC GLS 100W; Longueur:240mm; Largeur:117mm; Profondeur:140mm; Couleur:Clear; Puissance:100W; Tension, alimentation:230V INDICATEUR NEON ROUGE; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:8mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Rouge; Couleur, lentilles:Rouge; Diamètre de découpe panneau:8mm; Diamètre de découpe panneau:8.0mm; Diamètre, extérieur:9.5mm; Durée de vie:25000h; Durée de vie moyenne de la lampe:25000h; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.8mm; Longueur:37mm; Longueur/hauteur:37mm; Tensi LAMPE BA5D 230V 7W; Tension, alimentation:230V; Lamp Base Type:BA15d; Puissance:7W; SVHC:No SVHC (19-Dec-2011); IP / NEMA Rating:IP65; Light Source:Å” incandescence; Longueur:52mm; Matière:Polycarbonate LAMPE 50 40W 240V E14 25; Tension, alimentation:240V; Lamp Base Type:E14; Puissance:40W; Longueur:79mm; Diamètre, réflecteur:50mm; Température, couleur:2700K; Diamètre, extérieur:50mm; Divergence du faisceau:25°; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Intensité lumineuse, max..:950cd; Tension c.a.:240V; Tension d'alimentation Vac:240V TUBE FLUO MINIATURE T5 8W; Tension, alimentation:56V; Lamp Base Type:G5; Puissance:8W; Flux lumineux:400lm; Longueur:288mm; Diamètre de l'ampoule:16mm; Température, couleur:3500K; Couleur:White; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Flux lumineux typique:400lm; Longueur/hauteur:300mm FLEXIBLE LAMP, HM, 12V, 700MM, 35W; Tension, alimentation:12V; Puissance:35W; Longueur:910mm; Longueur (max..):700mm AMPOULE POUR H-4DCA; Tension, alimentation:4.8V; Puissance:2.4W; Diamètre, réflecteur:100mm; SVHC:No SVHC (19-Dec-2011); Courant:0.5A; Divergence du faisceau:3.5°; Durée de vie:20h; Durée de vie moyenne de la lampe:20h; Intensité lumineuse, max..:37lm; MSCP:2.94; Tension c.a.:4.8V LAMPE BA15D 7W 120V PAQUET DE 10; Tension, alimentation:120V; Lamp Base Type:BA15d; Puissance:7W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Quantité par paquet:10; Taille:BA15d; Tension:120V; Tension c.a.:120V AMPOULE POUR MAG-LITE 3 PILES PQ2; Tension, alimentation:3.8V; Durée de vie moyenne de la lampe:38h; Courant:0.6A; Durée de vie:38h; Quantité par paquet:2; Tension:3.8V AMPOULE DE REMPLACEMENT POUR 3535678; Puissance:15W; Flux lumineux:900lm; Longueur:760mm; Température, couleur:6500K; SVHC:No SVHC (19-Dec-2011); Longueur/hauteur:76cm T6.8 SLIDE BASE JAUNE 12VDC; Couleur de LED:Jaune; Longueur d'onde typ.:591nm; Intensité lumineuse:16cd; Puissance:625mW; Taille de lampe:T-6 4/5; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V T6.8 SLIDE BASE WHITE 12VDC; Couleur de LED:Blanc froid; Température de couleur proximale:8000K; Intensité lumineuse:14cd; Puissance:625mW; Taille de lampe:T-6 4/5; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V LAMPE HALOGENE 2.5V 0.5A; Tension, alimentation:4V; Courant:0.5A VOYANT NEON ROUGE; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:10mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:10mm; Diamètre, lentille:13.2mm; Epaisseur, panneau max..:12mm; Longueur/hauteur:57.8mm; Tension d'alimentation Vac:130V AMPOULE POUR PENLIGHT 742 PQ2; Lamp Base Type:Vis; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Tension:2.25V; Tension c.a.:2.25V; Tension, alimentation:2.25V SUPPORT FLUORESCENT T5. 13W; Tension, alimentation:230V; Lamp Base Type:Fluorescent T5 525 mm 13W; Puissance:13W; Longueur:570mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011) T1 MF SX3S BASE ROUGE LED 12VDC; Couleur de LED:Rouge; Intensité lumineuse:39mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V T1 MF SX3S BASE VERT LED 12VDC; Couleur de LED:Vert; Intensité lumineuse:576mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V T1 MF SX3S BASE JAUNE LED 28VDC; Couleur de LED:Jaune; Intensité lumineuse:87mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:11mA; Tension, direct If:28V T1 MF SX3S BASE BLEU LED 12VDC; Couleur de LED:Bleu; Intensité lumineuse:128mcd; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V T6.8 SLIDE BASE ROUGE12VDC; Couleur de LED:Rouge; Longueur d'onde typ.:643nm; Intensité lumineuse:11cd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:12V T6.8 SLIDE BASE ROUGE28VDC; Couleur de LED:Rouge; Longueur d'onde typ.:643nm; Intensité lumineuse:11cd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Courant, direct, If:20mA; Tension, direct If:28V AMPOULE 12V SX3S S6/8 3MM; Tension, alimentation:12V; Lamp Base Type:Sub-Midget Flange SX4s; Taille de lampe:T-1; Puissance:700mW; Durée de vie moyenne de la lampe:16000h; Courant:0.06A; Dimension de la lentille:T1; Durée de vie:16000h; Emission lumineuse, totale:1.9lm; Longueur/hauteur:14mm; Tension c.a.:12V LAMPE DULUX DE HF 18W INTERNA; Tension, alimentation:80V; Lamp Base Type:G24q; Puissance:18W; Flux lumineux:1200lm; Longueur:130mm; Température, couleur:2700K; SVHC:No SVHC (19-Dec-2011); Couleur:Interna; Flux lumineux typique:1200lm; Intensité lumineuse, max..:1200lm; Longueur/hauteur:146mm; Nombre de broches:4 LED MIDGET 28V BLANC; Lamp Base Type:Midget Groove, S5,7s; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:500mW; Taille de lampe:4.8mm; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:17mA; Courant, direct, If:17mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonc LED MIDGET 12V BLANC; Lamp Base Type:Midget Flange; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Taille de lampe:4.8mm; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionnement:-40°C +80°C LED BA9 12V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionnement:-40°C LED BA9 24V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Température de couleur proximale:8000K; Intensité lumineuse:3000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Temp LED A BAYONNETTE BA9 VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Taille de lampe:4.8mm; Tension, alimentation:50V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:Green; Couleur, LED:Vert; Courant, If moy.:10mA; Courant, If, intensité lumineuse:20mA; Courant, direct, If:10mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typiq LED A BAYONNETTE BA9 BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Taille de lampe:4.8mm; Tension, alimentation:50V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:10mA; Courant, If, intensité lumineuse:20mA; Courant, direct, If:10mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Tempéra LED MIDGET ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:660nm; Intensité lumineuse:2750mcd; Taille de lampe:4.8mm; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Rouge; Couleur, LED:Rouge; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:5.6mm; Dimension de la lentille:4.8mm; Intensité lumineuse typique:2750mcd; Longueur d'onde, cr HALOGEN LAMP, 12V, 50W; Tension, alimentation:12V; Lamp Base Type:Bi-broche; Puissance:50W; Tension, alimentation c.c.:12V LED MIDGET VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Taille de lampe:4.8mm; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Vert; Couleur, LED:Vert; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:5.6mm; Dimension de la lentille:4.8mm; Intensité lumineuse typique:6000mcd; Longueur d'onde, crête: LED MIDGET VERT; Lamp Base Type:Midget Groove; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Taille de lampe:4.8mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Vert; Couleur, LED:Vert; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:5.6mm; Dimension de la lentille:4.8mm; Intensité lumineuse typique:6000mcd; Longueur d'onde, crête: LED A BAYONNETTE BA9 VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Puissance:625mW; Taille de lampe:4.6mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Green; Couleur, LED:Vert; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:9.2mm; Dimension de la lentille:4.6mm; Intensité lumineuse typique:6000mcd; Long LED T5.5 12V VERT; Lamp Base Type:Ampoule de téléphonie; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Green; Couleur, LED:Vert; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:4.8mm; Dimension de la lentille:T5.5; Intensité lumineuse typique:600 LED T5.5 28V JAUNE; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Jaune; Longueur d'onde typ.:590nm; Intensité lumineuse:4500mcd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Yellow; Couleur, LED:Jaune; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:4.8mm; Dimension de la lentille:T5.5; Intensité lumineuse t LAMPE BA15D 230V; Tension, alimentation:230V; Lamp Base Type:BA15d; Puissance:25W; SVHC:No SVHC (19-Dec-2011); Tension:230VAC; Tension c.a.:230V LAMPE BA15D 24V; Tension, alimentation:24V; Lamp Base Type:BA15d; Puissance:4W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Tension:24V; Tension c.a.:24V LED MONTAGE AVANT 85-264VAC. BLANC; Tension, alimentation:264V; Puissance:330mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C LED MONTAGE AVANT 85-264VAC. BLEU; Tension, alimentation:264V; Puissance:330mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Bleu; Courant, direct, If:15mA; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement:-25°C +70°C; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C; Tension, Vf max..:264VAC LED MONTAGE ARRIERE 85-264VAC. ROUGE; Tension, alimentation:264V; Puissance:330mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:70°C; Température d'utilisation min:-25°C TETE DE LAMPE TEMOIN JAUNE BA9S; Lamp Base Type:BA9s; SVHC:No SVHC (19-Dec-2011); Couleur:Jaune; Diamètre de découpe panneau:22mm TETE DE LAMPE TEMOIN BLEU BA9S; Lamp Base Type:BA9s; SVHC:No SVHC (19-Dec-2011); Couleur:Bleu; Diamètre de découpe panneau:22mm LAMPE BA15D 24V 7W; Tension, alimentation:24V; Lamp Base Type:BA15d; Puissance:7W; SVHC:No SVHC (19-Dec-2011); IP / NEMA Rating:IP65; Light Source:Å” incandescence; Longueur:52mm; Matière:Polycarbonate LAMPE ES50 50W 240V GU10 50; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:50W; Longueur:55mm; Diamètre, réflecteur:51mm; Température, couleur:2750K; Diamètre, extérieur:51mm; Durée de vie:2500h; Durée de vie moyenne de la lampe:2500h; Intensité lumineuse, max..:500cd; Tension c.a.:240V LAMPE 120 100W 240V E27 30; Tension, alimentation:240V; Lamp Base Type:E27; Puissance:100W; Longueur:136mm; Diamètre, réflecteur:124mm; Température, couleur:2900K; Diamètre, extérieur:120mm; Divergence du faisceau:30°; Durée de vie:3000h; Durée de vie moyenne de la lampe:3000h; Intensité lumineuse, max..:3500cd; Tension c.a.:240V; Tension d'alimentation Vac:240V TUBE FLUO MINIATURE T5 6W; Tension, alimentation:42V; Lamp Base Type:G5; Puissance:6W; Flux lumineux:280lm; Longueur:212mm; Diamètre de l'ampoule:16mm; Température, couleur:3500K; Couleur:White; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Flux lumineux typique:280lm; Longueur/hauteur:225mm TUBE FLUO T5 FHE 35W BLANC FROID; Tension, alimentation:209V; Lamp Base Type:G5; Puissance:35W; Flux lumineux:3320lm; Longueur:1.45m; Diamètre de l'ampoule:16mm; Température, couleur:4000K; Couleur:Blanc froid; Couleur:Cool White; Courant:170mA; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:16000h; Durée de vie moyenne de la lampe:16000h; Flux lumineux typique:3650lm; Intensité lumineuse, max..:3650lm; Longueur/hauteur:1450mm TUBE FLUO T5 FHO 24W BLANC FROID; Tension, alimentation:75V; Lamp Base Type:G5; Puissance:24W; Flux lumineux:1700lm; Longueur:549mm; Diamètre de l'ampoule:16mm; Température, couleur:4000K; Couleur:Blanc froid; Couleur:Cool White; Courant:300mA; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:16000h; Durée de vie moyenne de la lampe:16000h; Flux lumineux typique:2000lm; Intensité lumineuse, max..:2000lm; Longueur/hauteur:550mm AMPOULE DE REMPLACEMENT H1 70W; Tension, alimentation:24V; Puissance:70W; Tension, alimentation c.c.:24V LAMPE DULUX L 18W BLANC FROID; Tension, alimentation:58V; Puissance:18W; Flux lumineux:1200lm; Longueur:217mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Couleur:Cool White; Flux lumineux typique:1200lm; Intensité lumineuse, max..:1200lm; Longueur/hauteur:217mm; Nombre de broches:4 AMPOULE FLUO T5 14W BLANC FROID; Tension, alimentation:230V; Lamp Base Type:T5; Puissance:14W; Flux lumineux:1350lm; Longueur:550mm; Diamètre de l'ampoule:16mm; Température, couleur:4000K; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc froid; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:20000h; Durée de vie moyenne de la lampe:20000h; Flux lumineux typique:1350lm; Intensité lumineuse, max..:1350lm; Longueur/hauteur:550mm LAMP, 12V, 2W; Tension, alimentation:12V; Puissance:2W; Tension:12V; Tension c.a.:12V HALOGEN LAMP, 12V, 20W; Tension, alimentation:12V; Lamp Base Type:Bi-broche; Puissance:20W; Tension, alimentation c.c. max..:12V LAMPE BA15D 230V; Tension, alimentation:230V; Lamp Base Type:BA15d; Puissance:5W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Tension:230V; Tension c.a.:230V LED MONTAGE AVANT 18-30VAC/DC. ROUGE; Tension, alimentation:30V; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:55°C; Température d'utilisation min:-25°C LED MONTAGE ARRIERE 18-30VAC/DC. BLANC; Tension, alimentation:30V; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:55°C; Température d'utilisation min:-25°C LED MONTAGE ARRIERE 18-30VAC/DC. VERT; Tension, alimentation:30V; Puissance:260mW; Courant:15mA; SVHC:No SVHC (19-Dec-2011); Couleur:vert; IP / NEMA Rating:IP20; Résistance de choc:>30; Taille en mm2 max.. du fil rigide:2.5mmË›; Taille en mm2 max.. du fil tressé:1.5mmË›; Température de fonctionnement max..:55°C; Température d'utilisation min:-25°C TETE DE LAMPE TEMOIN BLANC BA9S; Lamp Base Type:BA9s; SVHC:No SVHC (19-Dec-2011); Couleur:Blanc; Diamètre de découpe panneau:22mm LED T5.5 12V BLANC; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:T5.5; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température d LED T6.8 24V BLANC; Lamp Base Type:Ampoule de téléphonie; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Taille de lampe:T-6 4/5; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:T6.8; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionnement:-40°C +80°C; Tempé LED A BAYONNETTE BA9 ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:660nm; Intensité lumineuse:2750mcd; Taille de lampe:4.8mm; Tension, alimentation:50V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:Rouge; Couleur, LED:Rouge; Courant, If moy.:10mA; Courant, If, intensité lumineuse:20mA; Courant, direct, If:10mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse ty LED T5.5 24V VERT; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Green; Couleur, LED:Vert; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:4.8mm; Dimension de la lentille:T5.5; Intensité lumineuse typique:6000mcd; Lo PROJECTEUR PAR INFRAROUGE 150W; Angle de faisceau:140°; Longueur:180mm; Largeur:130mm; Profondeur:170mm; Couleur:Noir; Distance de détection max..:12m; IP / NEMA Rating:IP44; Largeur (externe):130mm; Longueur/hauteur:170mm; Profondeur:140mm; Puissance:150W; Tension, alimentation:230V; Tension, alimentation c.a. max..:240V; Tension, alimentation c.a. min:220V AMPOULE POUR LAMPE TORCHE ANTIDEFLAGRANT; SVHC:No SVHC (19-Dec-2011); Tension:4.5V LED BLEU; Longueur d'onde typ.:470nm; Intensité lumineuse:450mcd; Couleur:Blue; Couleur, LED:Bleu; Courant, direct, If:15mA; Intensité lumineuse typique:450mcd; Tension, Vf typ.:24V LED VERT; Lamp Base Type:Bi-broche; Couleur de LED:Vert; Longueur d'onde typ.:560nm; Intensité lumineuse:33mcd; Taille de lampe:T-1; Tension, alimentation:2V; Courant:10mA; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:10mA; Dimension de la lentille:T-1; Intensité lumineuse typique:33mcd; Tension, Vf max..:2V; Tension, Vf typ.:2V; Tension, direct If:2V; Type de boîtier:Radial; Type de boîtier opto:Radial LED JAUNE; Lamp Base Type:Bi-broche; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:52mcd; Taille de lampe:T-1; Tension, alimentation:2V; Courant:10mA; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:10mA; Dimension de la lentille:T-1; Intensité lumineuse typique:52mcd; Tension, Vf max..:2V; Tension, Vf typ.:2V; Tension, direct If:2V; Type de boîtier:Radial; Type de boîtier opto:Radial AMPOULE POUR MAG-LITE 4 PILES PQ2; Tension, alimentation:4.8V; Durée de vie moyenne de la lampe:38h; Courant:0.6A; Durée de vie:38h; Quantité par paquet:2; Tension:4.8V LED VERT; Lamp Base Type:BA9s; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:1000mcd; Tension, alimentation:24V; Courant:15mA; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:15mA; Intensité lumineuse typique:1000mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V; Tension, direct If:24V LED JAUNE; Longueur d'onde typ.:592nm; Intensité lumineuse:250mcd; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:15mA; Intensité lumineuse typique:250mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V LED BLANC; Lamp Base Type:Wedge, W2x4.6d; Couleur de LED:Blanc; Intensité lumineuse:400mcd; Tension, alimentation:24V; Courant:12mA; Couleur:White; Couleur, LED:Blanc; Courant, direct, If:12mA; Intensité lumineuse typique:400mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V; Tension, direct If:24V LED ROUGE BASE T 4.5; Lamp Base Type:Ampoule de téléphonie, T4.5; Couleur de LED:Rouge; Longueur d'onde typ.:635nm; Intensité lumineuse:52mcd; Tension, alimentation:3V; Courant:10mA; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:10mA; Dimension de la lentille:T 4.5; Intensité lumineuse typique:52mcd; Tension, Vf max..:3V; Tension, Vf typ.:3V; Tension, direct If:3V LED VERT BASE T 4.5; Lamp Base Type:Ampoule de téléphonie, T4.5; Couleur de LED:Vert; Longueur d'onde typ.:560nm; Intensité lumineuse:33mcd; Tension, alimentation:3V; Courant:10mA; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:10mA; Dimension de la lentille:T 4.5; Intensité lumineuse typique:33mcd; Tension, Vf max..:3V; Tension, Vf typ.:3V; Tension, direct If:3V LAMPE ES63 75W 240V GU10 50; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:75W; Longueur:62mm; Diamètre, réflecteur:64mm; Température, couleur:2800K; Diamètre, extérieur:64mm; Durée de vie:2500h; Durée de vie moyenne de la lampe:2500h; Intensité lumineuse, max..:1000cd; Tension d'alimentation Vac:240V TUBE FLUO MINIATURE T5 13W; Tension, alimentation:95V; Lamp Base Type:G5; Puissance:13W; Flux lumineux:880lm; Longueur:517mm; Diamètre de l'ampoule:16mm; Température, couleur:3500K; Couleur:White; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Flux lumineux typique:880lm; Intensité lumineuse, max..:880lm; Longueur/hauteur:525mm TUBE FLUO T5 FHE 14W BLANC CHAUD; Tension, alimentation:82V; Lamp Base Type:T5; Puissance:14W; Longueur:550mm; Diamètre de l'ampoule:16mm; Température, couleur:3000K; Couleur:Blanc chaud; Couleur:Warm White; Courant:170mA; Diamètre, extérieur:16mm; Diamètre, tube fluorescent:16mm; Durée de vie:16000h; Durée de vie moyenne de la lampe:16000h; Longueur/hauteur:550mm CAPSULE BULB FOR HM, 12V, 35W; Tension, alimentation:12V; Puissance:35W AMPOULE POUR LAMPE TORCHE STYLO; Tension, alimentation:2.25V; Puissance:1.2W; MSCP:0.39; Durée de vie moyenne de la lampe:5h; SVHC:No SVHC (19-Dec-2011); Courant:0.25A; Durée de vie:5h; Tension:2.25V TUBE A INCANDESCENCE 250W SON +LAMPE; Longueur:460mm; Largeur:360mm; Profondeur:132mm; IP / NEMA Rating:IP65; SVHC:No SVHC (19-Dec-2011); Couleur:Black; Lamp Base Type:GES / E40; Largeur (externe):360mm; Light Source:HPS 250W; Longueur/hauteur:460mm; Matière:Aluminium; Poids:9kg; Profondeur:132mm; Puissance:250W; Tension, alimentation:230V; Tension d'alimentation Vac:230V TUBE A INCANDESCENCE 400W MH +LAMPE; Longueur:460mm; Largeur:360mm; Profondeur:132mm; IP / NEMA Rating:IP65; SVHC:No SVHC (19-Dec-2011); Couleur:Black; Lamp Base Type:GES / E40; Largeur (externe):360mm; Light Source:Halogénures métalliques; Longueur/hauteur:460mm; Matière:Aluminium; Poids:9kg; Profondeur:132mm; Puissance:400W; Tension, alimentation:230V; Tension d'alimentation Vac:230V HALOGEN LAMP, 12V, 50W; Tension, alimentation:12V; Lamp Base Type:Bi-broche; Puissance:50W; Tension c.a.:12V VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:9.5mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:9.5mm; Diamètre, lentille:12mm; Epaisseur, panneau max..:2.8mm; Longueur/hauteur:59.2mm; Tension d'alimentation Vac:250V AMPOULE 130V; Tension, alimentation:130V; Lamp Base Type:BA15d; Puissance:4.8W; Durée de vie moyenne de la lampe:2000h; SVHC:No SVHC (20-Jun-2011); Couleur:Clear; Dimension de la lentille:BA15d; Durée de vie:2000h; Tension:130V; Tension c.a.:130V VOYANT NEON ROUGE; Tension, alimentation:130V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:12mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:12mm; Diamètre, lentille:13.6mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:38.2mm; Tension d'alimentation Vac:130V VOYANT NEON ROUGE; Tension, alimentation:125V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:8mm; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:8mm; Longueur/hauteur:37.9mm; Tension d'alimentation Vac:125V VOYANT NEON ROUGE; Tension, alimentation:125V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:6.4mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Red; Diamètre de découpe panneau:6.4mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:125V VOYANT NEON ROUGE; Tension, alimentation:240V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:6.4mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:Red; Diamètre de découpe panneau:6.4mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:240V AMPOULE DE RECHANGE; Tension, alimentation:3V; Puissance:1.8W; Courant:600mA; SVHC:No SVHC (19-Dec-2011); Durée de vie:20h; Durée de vie moyenne de la lampe:20h; Intensité lumineuse, max..:8.8lm LAMPE TORCHE STABEX MINI; SVHC:No SVHC (19-Dec-2011); Normes:EEx ia e IIC T4 LAMPE HALOGENE POUR 4715731; Tension, alimentation:4.5V; Puissance:2.4W; Intensité lumineuse, max..:35lm VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:8mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Borne souder; Couleur:rouge; Diamètre de découpe panneau:8mm; Longueur/hauteur:37.9mm; Tension d'alimentation Vac:250V VOYANT NEON ROUGE; Tension, alimentation:250V; Lamp Base Type:Borne souder; Couleur:Rouge; Diamètre trou de fixation:13mm; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:rouge; Diamètre, extérieur:13mm; Diamètre, lentille:11.5mm; Epaisseur, panneau max..:4mm; Epaisseur, panneau min.:1.5mm; Longueur/hauteur:28.5mm; Tension d'alimentation Vac:250V VOYANT A FILAMENT ROUGE; Taille de lampe:6.7mm; Tension, alimentation:6V; Courant:40mA; SVHC:No SVHC (19-Dec-2011); Couleur:rouge; Diamètre de découpe panneau:6.4mm; Dimension de la lentille:6.7mm; Epaisseur, panneau max..:3.5mm; Epaisseur, panneau min.:0.5mm; Longueur/hauteur:30mm; Température de fonctionnement max..:70°C; Tension d'alimentation Vac:6V BLOC D'ECLAIRAGE DOUBLE PL9 TRANSP; Longueur:240mm; Largeur:117mm; Profondeur:140mm; Couleur:Clear; Tension, alimentation:230V INDICATEUR NEON AMBRE; Tension, alimentation:230V; Lamp Base Type:Borne souder; Couleur:Ambre; Diamètre trou de fixation:8mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Borne souder; Couleur:Ambre; Couleur, lentilles:Ambre; Diamètre de découpe panneau:8mm; Diamètre de découpe panneau:8.0mm; Diamètre, extérieur:9.5mm; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.8mm; Longueur:37mm; Longueur/hauteur:37mm; Tension, alimentation c.a. max..:250V; Tension, alimentation c.a. m INDICATEUR NEON ROUGE; Tension, alimentation:230V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:9mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Rouge; Couleur, lentilles:Rouge; Diamètre de découpe panneau:9mm; Diamètre de découpe panneau:9.0mm; Diamètre, extérieur:10.0mm; Durée de vie:25000h; Durée de vie moyenne de la lampe:25000h; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.8mm; Longueur:26mm; Longueur cordon:200mm; Longueur/hauteur:26mm; Ten INDICATEUR NEON AMBRE; Tension, alimentation:230V; Lamp Base Type:Fil; Couleur:Ambre; Diamètre trou de fixation:9mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Ambre; Couleur, lentilles:Ambre; Diamètre de découpe panneau:9mm; Diamètre de découpe panneau:9.0mm; Diamètre, extérieur:10.0mm; Durée de vie:25000h; Durée de vie moyenne de la lampe:25000h; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.8mm; Longueur:26mm; Longueur cordon:200mm; Longueur/hauteur:26mm; Ten LAMPE D'INSPECTION 11W/110V; Tension, alimentation:110V; Lamp Base Type:G23; Puissance:11W; Longueur:480mm; Type de fiche d'alimentation:UK; SVHC:No SVHC (19-Dec-2011); Longueur (max..):48cm; Longueur/hauteur:48cm; Tension d'alimentation Vac:110V BLOC D'ECLAIRAGE B22 100W ROUGE; Light Source:BC GLS 100W; Longueur:240mm; Largeur:117mm; Profondeur:140mm; Couleur:Red; Puissance:100W; Tension, alimentation:230V VOYANT NEON ROUGE; Tension, alimentation:240V; Lamp Base Type:Fil; Couleur:Rouge; Diamètre trou de fixation:10mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Base Type:Fil; Couleur:rouge; Diamètre de découpe panneau:10mm; Epaisseur, panneau max..:2mm; Longueur/hauteur:31mm; Température de fonctionnement max..:180°C INDICATEUR NEON VERT; Tension, alimentation:230V; Lamp Base Type:Fil; Couleur:Vert; Diamètre trou de fixation:9mm; Courant:20mA; SVHC:No SVHC (19-Dec-2011); Base Type:Fil; Couleur:Vert; Couleur, lentilles:Vert; Diamètre de découpe panneau:9mm; Diamètre de découpe panneau:9.0mm; Diamètre, extérieur:10.0mm; Durée de vie:25000h; Durée de vie moyenne de la lampe:25000h; Epaisseur, panneau max..:2.5mm; Epaisseur, panneau min.:0.8mm; Longueur:26mm; Longueur cordon:200mm; Longueur/hauteur:26mm; Tension TUBE FLUORESCENT; Tension, alimentation:230V; Puissance:28W; SVHC:No SVHC (19-Dec-2011); Light Source:Fluorescente LAMPE BA15D 7W 230V PAQUET DE 10; Tension, alimentation:230V; Lamp Base Type:BA15d; Puissance:7W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Quantité par paquet:10; Taille:BA15d; Tension:230V; Tension c.a.:230V LED T5.5 24V BLANC; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:T5.5; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionneme LED 24V BLANC; Lamp Base Type:E10; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionnement:-40°C +80°C; Température LED BA15D 24V BLANC; Lamp Base Type:BA15d; Couleur de LED:Blanc; Température de couleur proximale:8000K; Intensité lumineuse:3000mcd; Taille de lampe:16mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:15°; Angle, vision:30°; Couleur, LED:Blanc; Courant, If moy.:25mA; Courant, direct, If:25mA; Dimension de la lentille:16mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Nombre de LED:6; Température de fonc LED BA15D 28V BLANC; Lamp Base Type:BA15d; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:225mW; Taille de lampe:16mm; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:15°; Angle, vision:30°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:17mA; Courant, direct, If:17mA; Dimension de la lentille:16mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Nombre de LED:6; Température de foncti LED A BAYONNETTE BA9 BLEU; Lamp Base Type:BA9s; Couleur de LED:Bleu; Longueur d'onde typ.:470nm; Intensité lumineuse:2000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:48V; Courant:10mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:Bleu; Couleur, LED:Bleu; Courant, If moy.:10mA; Courant, If, intensité lumineuse:20mA; Courant, direct, If:10mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité LED MIDGET ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:660nm; Intensité lumineuse:2750mcd; Taille de lampe:4.8mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Rouge; Couleur, LED:Rouge; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:5.6mm; Dimension de la lentille:4.8mm; Intensité lumineuse typique:2750mcd; Longueur d'onde, cr LED T6.8 24V ROUGE; Lamp Base Type:Ampoule de téléphonie; Couleur de LED:Rouge; Longueur d'onde typ.:660nm; Intensité lumineuse:2750mcd; Taille de lampe:T-6 4/5; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Red; Couleur, LED:Rouge; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:7.0mm; Dimension de la lentille:T6.8; Intensité lumineuse typique:2750mcd; Longueur d'onde, crête:6 LED T6.8 24V JAUNE; Lamp Base Type:Ampoule de téléphonie; Couleur de LED:Jaune; Longueur d'onde typ.:590nm; Intensité lumineuse:4500mcd; Taille de lampe:T-6 4/5; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Yellow; Couleur, LED:Jaune; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:7.0mm; Dimension de la lentille:T6.8; Intensité lumineuse typique:4500mcd; Longueur d'onde, crêt LED ROUGE; Longueur d'onde typ.:630nm; Intensité lumineuse:70mcd; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:12mA; Intensité lumineuse typique:70mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V LED VERT; Lamp Base Type:Wedge, W2x4.6d; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:600mcd; Tension, alimentation:24V; Courant:12mA; Couleur:Green; Couleur, LED:Vert; Courant, direct, If:12mA; Intensité lumineuse typique:600mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V; Tension, direct If:24V LED BLEU; Longueur d'onde typ.:470nm; Intensité lumineuse:300mcd; Couleur:Blue; Couleur, LED:Bleu; Courant, direct, If:12mA; Intensité lumineuse typique:300mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V LED ROUGE; Lamp Base Type:Bi-broche; Couleur de LED:Rouge; Longueur d'onde typ.:635nm; Intensité lumineuse:52mcd; Taille de lampe:T-1; Tension, alimentation:2V; Courant:10mA; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:10mA; Dimension de la lentille:T-1; Intensité lumineuse typique:52mcd; Tension, Vf max..:2V; Tension, Vf typ.:2V; Tension, direct If:2V; Type de boîtier:Radial; Type de boîtier opto:Radial LED JAUNE BASE T 4.5; Lamp Base Type:Ampoule de téléphonie, T4.5; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:52mcd; Tension, alimentation:3V; Courant:10mA; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:10mA; Dimension de la lentille:T 4.5; Intensité lumineuse typique:52mcd; Tension, Vf max..:3V; Tension, Vf typ.:3V; Tension, direct If:3V LED MIDGET 12V BLANC; Lamp Base Type:Midget Groove; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Taille de lampe:4.8mm; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionnement:-40°C +80°C LED MIDGET 24V BLANC; Lamp Base Type:Midget Groove; Couleur de LED:Blanc; Température de couleur proximale:8000K; Intensité lumineuse:3000mcd; Taille de lampe:4.8mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Températu LED MIDGET 24V BLANC; Lamp Base Type:Midget Flange; Couleur de LED:Blanc; Température de couleur proximale:8000K; Intensité lumineuse:3000mcd; Taille de lampe:4.8mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Températu LED BA9 28V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc froid; Intensité lumineuse:14000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:14000mcd; Température de fonctionnement:-40°C LED BA9 48V BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Température de couleur proximale:8000K; Intensité lumineuse:3000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:48V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:12mA; Courant, direct, If:12mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fon LED 12V BLANC; Lamp Base Type:E10; Couleur de LED:Blanc froid; Intensité lumineuse:3000mcd; Puissance:625mW; Taille de lampe:4.8mm; Tension, alimentation:12V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:60°; Angle, vision:120°; Couleur:White; Couleur, LED:Blanc; Courant, If moy.:20mA; Courant, direct, If:20mA; Dimension de la lentille:4.8mm; Durée de vie:100000h; Intensité lumineuse typique:3000mcd; Température de fonctionnement:-40°C +80°C LED T1 BI-PIN 28V ROUGE; Lamp Base Type:Bi-broche; Couleur de LED:Rouge; Longueur d'onde typ.:630nm; Intensité lumineuse:14mcd; Puissance:500mW; Taille de lampe:T-1; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:12mA; Courant, fonctionnement c.a.:12mA; Diamètre, extérieur:4.2mm; Dimension de la lentille:T1; Durée de vie:60000h; Intensité lumi LED T1 BI-PIN 28V JAUNE; Lamp Base Type:Bi-broche; Couleur de LED:Jaune; Longueur d'onde typ.:585nm; Intensité lumineuse:18mcd; Puissance:500mW; Taille de lampe:T-1; Tension, alimentation:28V; Courant:20mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Yellow; Couleur, LED:Jaune; Courant, direct, If:12mA; Courant, fonctionnement c.a.:12mA; Diamètre, extérieur:4.2mm; Dimension de la lentille:T1; Durée de vie:60000h; Intensité l LED A BAYONNETTE BA9 ROUGE; Lamp Base Type:BA9s; Couleur de LED:Rouge; Longueur d'onde typ.:660nm; Intensité lumineuse:3000mcd; Puissance:625mW; Taille de lampe:4.6mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Red; Couleur, LED:Rouge; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:9.2mm; Dimension de la lentille:4.6mm; Intensité lumineuse typique:3000mcd; Lon LED A BAYONNETTE BA9 JAUNE; Lamp Base Type:BA9; Couleur de LED:Jaune; Longueur d'onde typ.:590nm; Intensité lumineuse:2500mcd; Puissance:625mW; Taille de lampe:4.6mm; Tension, alimentation:24V; Courant:20mA; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Yellow; Couleur, LED:Jaune; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:9.2mm; Dimension de la lentille:4.6mm; Intensité lumineuse typique:2500mcd; L LED T5.5 24V ROUGE; Lamp Base Type:Ampoule de téléphonie, T5,5; Couleur de LED:Rouge; Longueur d'onde typ.:660nm; Intensité lumineuse:2750mcd; Puissance:500mW; Taille de lampe:T-5 1/2; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Red; Couleur, LED:Rouge; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:4.8mm; Dimension de la lentille:T5.5; Intensité lumineuse typique:2750mcd; L LED ROUGE; Longueur d'onde typ.:621nm; Intensité lumineuse:250mcd; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:15mA; Intensité lumineuse typique:250mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V LED BLEU; Longueur d'onde typ.:470nm; Intensité lumineuse:450mcd; Couleur:Blue; Couleur, LED:Bleu; Courant, direct, If:15mA; Intensité lumineuse typique:450mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V LED BLANC; Lamp Base Type:BA9s; Couleur de LED:Blanc; Intensité lumineuse:600mcd; Tension, alimentation:24V; Courant:15mA; Couleur:White; Couleur, LED:Blanc; Courant, direct, If:15mA; Intensité lumineuse typique:600mcd; Tension, Vf max..:24V; Tension, Vf typ.:24V; Tension, direct If:24V BLOC DE SECURITE GRIS; Light Source:BC GLS 100W; Longueur:235mm; Largeur:117mm; Profondeur:102mm; SVHC:No SVHC (19-Dec-2011); Couleur:Gris; Hauteur:235mm; IP / NEMA Rating:IP65; Lamp Base Type:BC 100W; Matière:Metal Base/Polycarbonate Diffuser; Puissance:100W; Tension, alimentation:230V; Tension d'alimentation Vac:230V AMPOULE POUR MC 1 RECHARGEABLE METAL D; Puissance:5.5W; SVHC:No SVHC (19-Dec-2011); Courant, sortie:1A; Tension c.a.:5.5V AMPOULE CAPSULE 12V 50W GY6.35; Tension, alimentation:12V; Lamp Base Type:GY6,35; Puissance:50W; Longueur:44mm; Base Type:GY6,35; Couleur:Clear; Dimension de la lentille:GY6.35; Durée de vie:8000h; Durée de vie moyenne de la lampe:8000h; Taille de lampe:GY6.35; Tension, alimentation c.c.:12V BLOC DE SECURITE CHROME; Longueur:410mm; Largeur:125mm; Profondeur:90mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:Polished Chrome; Lamp Base Type:Fluorescent T5 8W; Matière:Steel; Tension, alimentation:240V BLOC DE SECURITE BLANC; Longueur:410mm; Largeur:125mm; Profondeur:90mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:White; Lamp Base Type:Fluorescent T5 8W; Matière:Steel; Tension, alimentation:240V MODULE 0.72W. 9 LED; Largeur:35mm; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:0.72W; Largeur (externe):35mm; Longueur/hauteur:270mm; Puissance:720mW BLOC DE SECURITE A LED. BLANC; Longueur:545mm; Profondeur:370mm; IP / NEMA Rating:IP20; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Couleur:Blanc; Distance, visible max..:30m; Durée de vie (fonctionnement):3 Heures; Matière:Aluminium; Tension, batterie:3.6V BLOC INDICATEUR; SVHC:No SVHC (19-Dec-2011); Diamètre de découpe panneau:16mm; Profondeur:35mm INDICATEUR CORPS 18X24; Taille de lampe:T-1 3/4; Lamp Base Type:Midget Groove; SVHC:No SVHC (19-Dec-2011); Approval Bodies:CSA / SEV / UL / VDE; Diamètre de découpe panneau:16mm; Dimension de la lentille:T-1 3/4; Largeur (externe):24mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:23.5mm AMPOULE DE REMPLACEMENT TUBE XENON; Tension, alimentation:230V; Puissance:15W CORPS POUR INDICATEUR; Taille de lampe:T-1 3/4; Tension, alimentation:24V; Courant:6A; SVHC:No SVHC (19-Dec-2011); Approval Bodies:CSA / SEV / UL / VDE; Diamètre de découpe panneau:22.5mm; Dimension de la lentille:T-1 3/4; IP / NEMA Rating:IP65; Longueur, axe:50mm; Profondeur, derrière panneau:48mm LED T6.8 24V VERT; Lamp Base Type:Ampoule de téléphonie; Couleur de LED:Vert; Longueur d'onde typ.:525nm; Intensité lumineuse:6000mcd; Taille de lampe:T-6 4/5; Tension, alimentation:24V; Durée de vie moyenne de la lampe:100000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:42.5°; Angle, vision:85°; Couleur:Green; Couleur, LED:Vert; Courant, If moy.:20mA; Courant, direct, If:20mA; Diamètre, extérieur:7.0mm; Dimension de la lentille:T6.8; Intensité lumineuse typique:6000mcd; Longueur d'onde, crête:52 INDICATEUR CORPS 18X18; Taille de lampe:T-1 3/4; Lamp Base Type:Midget Groove; SVHC:No SVHC (19-Dec-2011); Diamètre de découpe panneau:16mm; Dimension de la lentille:T-1 3/4; Largeur (externe):18mm; Longueur/hauteur:18mm; Profondeur, derrière panneau:23.5mm BLOC D'ECLAIRAGE POLY. GLS 100W; Light Source:BC GLS 100W; Longueur:240mm; Largeur:117mm; Profondeur:140mm; Couleur:Clear; Puissance:100W; Tension, alimentation:230V LED MIN GROOVE 28V ROUGE; Lamp Base Type:Midget Groove; Couleur de LED:Rouge; Longueur d'onde typ.:620nm; Intensité lumineuse:36mcd; Taille de lampe:T-1 3/4; Tension, alimentation:28V; Courant:14mA; Durée de vie moyenne de la lampe:60000h; SVHC:No SVHC (19-Dec-2011); Angle, moitié:70°; Angle, vision:140°; Couleur:Red; Couleur, LED:Rouge; Courant, direct, If:14mA; Courant, fonctionnement c.a.:14mA; Diamètre, extérieur:5.85mm; Dimension de la lentille:T-1 3/4; Durée de vie:60000h; Intensité lumine LAMPE T3.1/4 6.3V 1.575W; Tension, alimentation:6.3V; Lamp Base Type:Culot Wedge; Taille de lampe:T-3 1/4; Puissance:1.57W; MSCP:0.65; Durée de vie moyenne de la lampe:10000h; SVHC:No SVHC (19-Dec-2011); Courant:0.25A; Dimension de la lentille:T-1 3/4; Durée de vie:10000h; Emission lumineuse, totale:8.2lm; Longueur/hauteur:26.8mm; Tension:6.3V; Tension c.a.:6.3V AMPOULE GU10 XENON 35W; Tension, alimentation:240V; Puissance:35W; Longueur:50mm; Lamp Base Type:GU10; Couleur:Clear; Couleur:Clair; Diamètre, extérieur:50mm; Dimension de la lentille:GU10; Durée de vie:5000h; Durée de vie moyenne de la lampe:5000h; Longueur/hauteur:50mm; Tension d'alimentation Vac:240V BLOC GU10 240V 35W PROLITE TRANSPARENT; Tension, alimentation:240V; Lamp Base Type:GU10; Puissance:35W; Longueur:56mm; Diamètre, réflecteur:50mm; Diamètre, extérieur:50mm; Intensité lumineuse, max..:600cd; Tension d'alimentation Vac:240V LAMPE T8 18W 600MM 6500K; Tension, alimentation:240V; Lamp Base Type:G13; Puissance:18W; Flux lumineux:1300lm; Longueur:600mm; Diamètre de l'ampoule:26mm; Température, couleur:6500K; SVHC:No SVHC (20-Jun-2011); Couleur:Blanc froid; Couleur:Cool White; Diamètre, extérieur:26mm; Diamètre, tube fluorescent:26mm; Durée de vie:17500h; Durée de vie moyenne de la lampe:17500h; Flux lumineux typique:1300lm; Intensité lumineuse, max..:1300lm; Longueur/hauteur:600mm; Tension d'alimentation Vac:240V AMPOULE DOUBLE CULOTS 240V. 300W. 118MM; Tension, alimentation:240V; Lamp Base Type:R7s; Puissance:300W; Longueur:118mm; Température, couleur:2900K; Couleur:Clear; Durée de vie:2000h; Durée de vie moyenne de la lampe:2000h; Tension d'alimentation Vac:240V MODULE 1.2W. 15 LED; Largeur:35mm; SVHC:No SVHC (19-Dec-2011); Consommation de puissance:1.2W; Largeur (externe):35mm; Longueur/hauteur:395mm; Puissance:1.2W MODULE 2.15W. 27 LED; Largeur:35mm; SVHC:No SVHC (19-Dec-2011); Approval Bodies:BS / EN; Consommation de puissance:2.15W; Couleur:Blanc; IP / NEMA Rating:IP20; Largeur (externe):35mm; Longueur/hauteur:620mm; Matière:Polycarbonate; Puissance:2.15W STRIPLIGHT, LED, 400MM COLD CLEAR; Light Source:40 x LED; Longueur:420mm; Largeur:20mm; Profondeur:44mm; Couleur:Transparent; Couleur:Blanc froid; Couleur de LED:Blanc; Durée de vie moyenne de la lampe:50000h; Largeur (externe):20mm; Longueur/hauteur:420mm; Profondeur:44mm; Puissance:6VA; Taille de lampe:T-4; Température de couleur proximale:7500K; Tension, alimentation:230V PROJECTEUR LED; Longueur:306mm; Largeur:2583mm; Profondeur:457mm; Largeur (externe):258mm; Light Source:LED BANDE LUMINEUSE A LED 24-48VDC. AIMANT; Lamp Base Type:Vis; Puissance:5W; Light Source:LED; Longueur:351mm; Diamètre, lentille:32mm; SVHC:No SVHC (20-Jun-2011) SUPPORT FLUORESCENT T5. 28W; Tension, alimentation:230V; Lamp Base Type:Fluorescent T5 1 150 mm 28W; Puissance:28W; Longueur:1.2m; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011) LAMPE BA15D 230V; Tension, alimentation:230V; Lamp Base Type:BA15d; Puissance:10W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Tension:230V; Tension c.a.:230V SUPPORT FLUORESCENT T5. 21W; Tension, alimentation:230V; Lamp Base Type:T5 Fluorescent 850 mm 21W; Puissance:21W; Longueur:900mm; Température, couleur:3500K; SVHC:No SVHC (19-Dec-2011) LAMPE BA15D 7W 12V PAQUET DE 10; Tension, alimentation:12V; Lamp Base Type:BA15d; Puissance:7W; SVHC:No SVHC (19-Dec-2011); Couleur:Clear; Quantité par paquet:10; Taille:BA15d; Tension:12V; Tension c.a.:12V