

TLS202B1

Demonstration Board Manual

Demonstration Board Manual

Rev. 1.0, 2013-06-12

Automotive Power

Introduction

1 Introduction

The TLS202B1 application board is a demonstration of the Infineon low drop out linear voltage post regulator. The TLS202B1 is the ideal IC to supply regulated voltage for general ECU's, safety and infotainment applications. The fixed output voltage makes the TLS202B1 suitable of supplying the majority of standard applications.

This application note contains information for the TLS202B1 Demonstration Board.

1.1 General Description

The TLS202B1 is a monolithic integrated fixed linear voltage post regulator for load currents up to 150 mA. The IC regulates an input voltage $V_{\rm I}$ up to 18 V to a fixed output voltage of 3.3 V with a precision of ± 3 %. The TLS202B1 is especially designed for applications requiring very low standby currents, e.g. with a permanent connection to the preregulators like DCDC converters. The regulator is not designed to operate with a direct connection to the battery. The component can be enabled/disabled via the Enable input. The device is available in a very small surface mounted PG_SCT595 package and is designed for the harsh environment of automotive applications. Therefore it is protected against overload, short circuit and overtemperature conditions by the implemented output current limitation and the overtemperature shutdown circuit. The TLS202B1 can be also used in all other applications requiring a stabilized 3.3 V voltage.

For more detailed information please see also TLS202B1 data sheet [1].

1.2 TLS202B1 Feature List

- Output Voltage: 3.3 V
- Output Voltage Accuracy of ±3 %
- Output Currents up to 150 mA
- Extended Input Voltage Operating Range of 2.7 V to 18 V
- Enable Functionality
- Low Dropout Voltage: typ. 290mV
- Very Low Current Consumption: typ. 50 μA
- Very Low Shutdown Current: typ. 0.01 μA
- Very High PSRR: typ. 63dB at 10 kHz
- Output Current Limitation
- Short Circuit protected
- Overtemperature Shutdown
- Wide Temperature Range From -40 °C up to 150 °C
- Suitable for Use in Automotive Electronics as Post Regulator
- Green Product (RoHS compliant)
- AEC Qualified

Introduction

1.3 Block Diagram

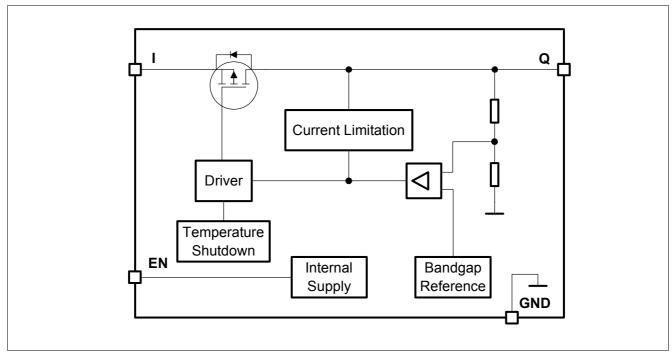


Figure 1 Block Diagram of TLS202B1

Demonstration Board

2 Demonstration Board

The TLS202B1 Demonstration Board is equiped by default with TLS202B1 and all necessary components.

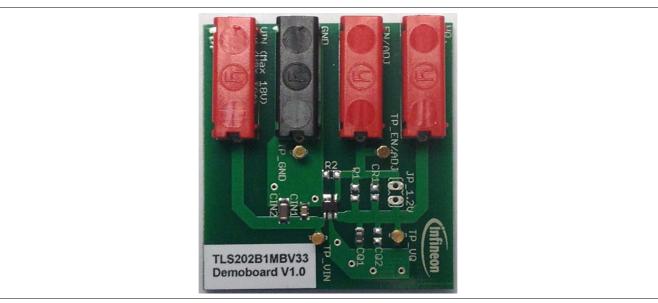


Figure 2 TLS202B1 Demonstration Board

2.1 Operating Conditions

To avoid any electrical damage of the Demonstration Board, the maximum operating range defined in **Table 1** must be followed.

Table 1 Operating Range¹⁾

Parameter	Symbol	Limit Values		Unit	Note
		Min.	Max.		
Board Supply ²⁾	VIN	0	18	V	Power supply
Regulator Output	VQ	0	5.5 ³⁾	V	Regulated output for loads up to 150mA
Enable Signal	EN	0	18	V	Enable signal to switch regulator on
Ground	GND	0	0	V	System GND

- 1) The Demonstration Board operates at ambient temperature of 25°C.
- 2) Functional input voltage range starts from 2.7 V to 18 V.
- 3) Nominal output voltage depends on voltage variant of TLS202B1.

2.2 Signal Adaption

For easy signal adaption e.g. connecting probes for an oscilloscope, test point connectors indicated by "TP_xxx", can be found at the Demonstration Board.

Table 2 Signals

Connector	Accessible Signal
TP_VIN	- I (power supply)
TP_VQ	- Q (output voltage)
TP_EN/ADJ	- EN (enable voltage)
TP_GND	- GND (chip ground connection)

Schematic and Layout

3 Schematic and Layout

3.1 Schematic

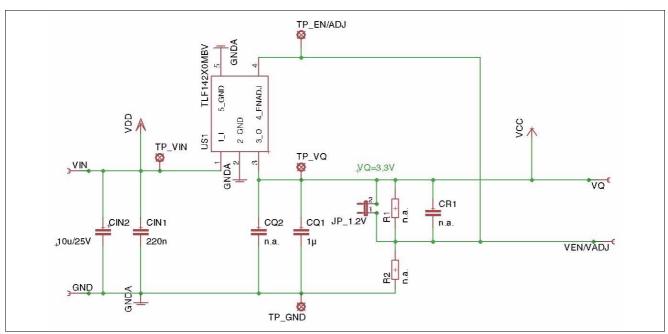


Figure 3 Schematic of TLS202B1 Demonstration Board

3.2 Layout

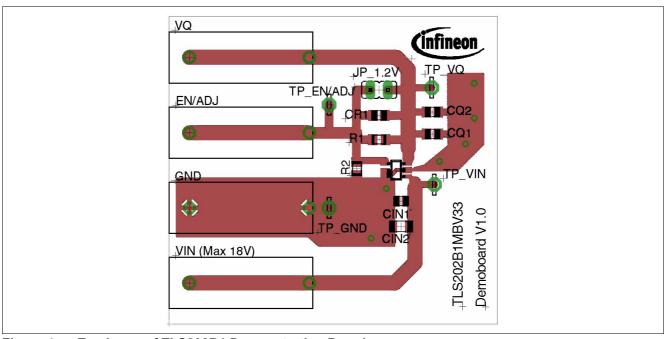


Figure 4 Top Layer of TLS202B1 Demonstration Board

Schematic and Layout

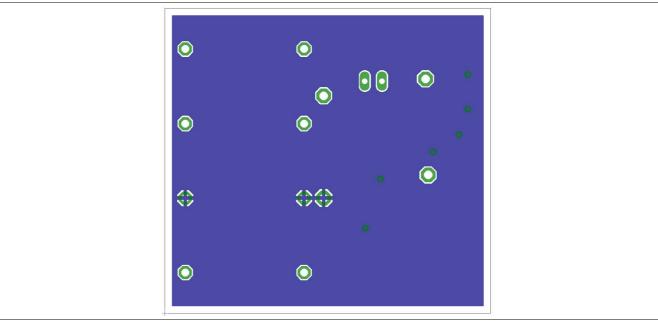


Figure 5 Bottom Layer of TLS202B1 Demonstration Board

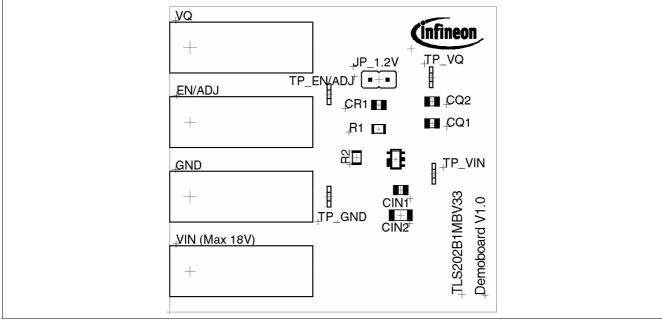


Figure 6 Top Layer components of TLS202B1 Demonstration Board

Bill of Material

4 Bill of Material

Table 3 Bill of Material

Part	Value	Package	
VIN	Banana jack	BABU4MM	
VW	Banana jack	BABU4MM	
EN/ADJ	Banana jack	BABU4MM	
GND	Banana jack	BABU4MM	
R1	not applicable for TLS202B1	R0805	
R2	not applicable for TLS202B1	R0805	
CR1	not applicable for TLS202B1	R0805	
CIN1	220 nF / 25 V (X7R)	C0805	
CIN2	10 μF / 25 V (X7R)	C1206	
CQ1	1 μF / 16 V (X7R)	C0805	
CQ2	not placed	C0805	
TP_VIN			
TP_VQ			
TP_EN/ADJ			
TP_GND			
IC1	TLS202B1MBV33	PG_SCT595	

General Information

5 General Information

5.1 Restrictions

This Application Board is offering limited features allowing you only to evaluate and test the Infineon products. The Demonstration Board is not an end product (or finished appliance), nor is it intended or authorized by Infineon to be integrated into end products. You are not authorized to use the Demonstration Board in any production system.

5.2 Additional Information

[1] TLS202B1 Data Sheet (For further information you may contact http://www.infineon.com/)

5.3 Revision History

Revision	Date	Changes
1.0	2013-05-27	Initial version

Edition 2013-06-12

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.