

TLE985x

Microcontroller with FastLIN and Power Switches for
Automotive Applications

Automotive Power

Firmware User Manual
Revision 1.0
2019-03-05

http://www.infineon.com

Firmware User Manual 2 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Revision History
 Microcontroller with FastLIN and Power Switches for Automotive Applications

Page or Item Subjects (major changes since last revision)
Revision 1.0, 2019-03-05

Initial release

TLE985x Firmware User Manual

Firmware User Manual 3 Revision 1.0
 2019-03-05

Table of Contents . 3

1 Introduction . 7
1.1 Purpose . 7
1.2 Scope . 7
1.3 Abbreviations and Special Terms . 7

2 Overview . 8
2.1 Firmware Architecture . 8
2.2 Program Structure . 9

3 BootROM Startup procedure . 10
3.1 Startup Program Structure . 10
3.2 Boot Modes . 11
3.3 Debug Support Mode Entry (with SWD port) . 11
3.4 NAC Definition . 12
3.4.1 Unlock BSL Communications . 12
3.4.2 Post User Mode Entry Recommendations . 13
3.5 User and BSL Mode Entry . 13
3.6 Flowcharts for User BSL / Debug Modes . 14
3.7 Reset Types . 15
3.8 Startup Procedure Submodules . 16
3.8.1 Watchdog Configuration . 16
3.8.2 RAM MBIST and RAM Initialization . 17
3.8.3 NVM CBSL Region Size Configuration . 17
3.8.4 RAM Mode Key and NVM Data Mode Key . 17
3.8.5 Analog Module Trimming . 18
3.8.6 ADC1 Core Offset Calibration . 18
3.8.7 Startup Error Handling . 18
3.8.8 No Activity Counter (NAC) Configuration . 19
3.8.9 FastLIN Node Address for Diagnostics (NAD) Configuration . 19

4 Boot Strap Loader (BSL) . 20
4.1 BSL Overview . 20
4.1.1 BSL Interframe Timeout . 20
4.1.2 NVM / RAM Range Access . 20
4.1.3 FastLIN Passphrase and Node Address for Diagnostic (NAD) . 21
4.1.4 BSL Message Parsing & Responses . 22
4.1.5 Command Execution . 24
4.1.6 Timing Constraints . 24
4.1.7 BSL Interframe Timeout Behavior . 25
4.1.8 BSL Host Synchronization . 25
4.2 BSL via FastLIN . 26
4.2.1 FastLIN Protocol . 26
4.2.2 FastLIN . 27
4.2.2.1 Command Frame Format . 27
4.2.2.2 Response Frame Format . 28
4.2.2.3 Checksum . 28

Table of Contents

Firmware User Manual 4 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3 BSL commands - Protocol (Version 2.0) . 29
4.3.1 Command 02H – RAM: Write Data/Program . 32
4.3.2 Command 83H – RAM: Execute . 34
4.3.3 Command 84H – RAM: Read Data . 35
4.3.4 Command 05H – NVM: Write Data/Program . 37
4.3.5 Command 86H – NVM: Execute . 39
4.3.6 Command 87H – NVM: Read Data . 40
4.3.7 Command 88H – NVM: Erase . 42
4.3.8 Command 89H – NVM: Protection Password Set . 44
4.3.9 Command 8AH – NVM: Switch Keys Set . 46
4.3.10 Command 8BH – NVM: Page Checksum Check . 48
4.3.11 Command 0CH – NVM: NVM Checksum Calculation . 49
4.3.12 Command 0DH – NVM: 100TP Write . 51
4.3.13 Command 8EH – NVM: 100TP Read . 53
4.3.14 Command 8FH – BSL: NAC Set . 55
4.3.15 Command 90H – BSL: NAC Get . 56
4.3.16 Command 91H – FastLIN: NAD Set . 57
4.3.17 Command 92H – FastLIN: NAD Get . 58
4.3.18 Command 93H – FastLIN: Set Session Baudrate . 59
4.3.19 Command 97H – NVM 100TP Erase . 60
4.3.20 Command 98H – NVM: Reflash Prepare . 61
4.3.21 Command 99H – NVM: Set CBSL Size . 63
4.3.22 End of Transmission Message (80H) . 65
4.3.23 Acknowledge Response Message (81H) . 66

5 NVM . 67
5.1 NVM Overview . 67
5.1.1 Config Sector Region . 67
5.1.2 USER CODE Region . 67
5.1.3 USER DATA Region . 67
5.1.3.1 Data Mapped Mode . 67
5.1.3.2 Data Linear Mode . 67
5.1.4 NVM Password Protection . 68
5.2 NVM Write . 68
5.3 NVM Fast Write . 69
5.4 Data Flash Initialization . 69

6 User Routines . 71
6.1 List of Supported Features . 71
6.2 Reentrance Capability and Interrupts . 71
6.3 Address Parameters Range Checks . 71
6.4 NVM Region Write Protection Check . 71
6.5 Watchdog Handling When Using NVM Functions . 71
6.6 Interrupts . 72
6.7 Resources used by user API functions . 72
6.8 User API Routines . 74
6.8.1 user_nvm_write_fast_start . 77
6.8.2 user_nvm_write_fast_continue . 79
6.8.3 user_nvm_write_fast_verify . 79

Firmware User Manual 5 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.4 user_nvm_write_fast_end . 80
6.8.5 user_adc1_offset_calibration . 81
6.8.6 user_nvm_page_checksum_check . 81
6.8.7 user_nvm_service_algorithm . 82
6.8.8 user_nvm_mapram_recover . 83
6.8.9 user_nvm_mapram_init . 84
6.8.10 user_nvm_ecc_events_get . 84
6.8.11 user_nvm_ecc_check . 85
6.8.12 user_nac_get . 86
6.8.13 user_nac_set . 87
6.8.14 user_nad_get . 87
6.8.15 user_nad_set . 88
6.8.16 user_nvm_100tp_read . 89
6.8.17 user_nvm_100tp_write . 90
6.8.18 user_nvm_100tp_erase . 91
6.8.19 user_nvm_config_get . 92
6.8.20 user_nvm_protect_get . 93
6.8.21 user_nvm_protect_set . 94
6.8.22 user_nvm_protect_clear . 95
6.8.23 user_nvm_password_set . 96
6.8.24 user_nvm_ready_poll . 97
6.8.25 user_nvm_page_erase . 97
6.8.26 user_nvm_page_erase_branch . 98
6.8.27 user_nvm_sector_erase . 99
6.8.28 user_nvm_write . 100
6.8.29 user_nvm_write_branch . 101
6.8.30 user_ram_mbist . 103
6.8.31 user_nvm_clk_factor_set . 104
6.8.32 user_vbg_temperature_get . 104
6.8.33 user_nvm_page_verify . 105
6.8.34 user_nvm_page_erase_verify . 106
6.8.35 user_nvm_sector_erase_verify . 107
6.8.36 user_dflash_mode . 108
6.9 User API support routines . 108
6.9.1 misc_handle_nvm_segment_data_mode_check . 109
6.9.2 misc_nvm_reflash_prepare . 110
6.9.3 misc_user_nvm_password_set . 111
6.9.4 misc_user_nvm_switch_key_set . 112
6.9.5 handle_segment_protection_get . 113
6.9.6 valid_pointer_ram_range_check . 113
6.9.7 get_nac_from_nvm_cs . 114
6.9.8 misc_user_read_nvm_password_ecc . 114
6.10 NVM Protection API types . 115
6.10.1 user_callback_t . 115
6.11 Data Types and Structure Reference . 115
6.11.1 Enumerator Reference . 115
6.11.1.1 NVM_SWITCH_ID_SELECT_t . 116

Firmware User Manual 6 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.11.1.2 NVM_SWITCH_KEY_SELECT_t . 116
6.11.1.3 NVM_PASSWORD_SEGMENT_t . 117
6.11.1.4 VBG_TEMP_SELECT_t . 117
6.11.1.5 NVM_DFLASH_SECTOR_MODE_t . 118
6.11.2 Constant Reference . 118

Terminology . 120

Appendix A Error Codes . 123
Appendix B Stack usage of user API functions . 128
Appendix C Exported bootROM functions . 130
Appendix D Analog Module Trimming (100TP Pages) . 132
Appendix E Execution time of BootROM User API Functions . 136

Firmware User Manual 7 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Introduction

1 Introduction
This document specifies the BootROM firmware behavior for the TLE985x microcontroller family.
The specification is organized into the following major sections:

1.1 Purpose
The document describes the functionality of the BootROM firmware.

1.2 Scope
The BootROM firmware for the TLE985x family will provide the following features
• Startup procedure for stable operation of TLE985x chip
• Debugger connection for proper code debug
• BSL mode for users to download and run code from NVM and RAM
• NVM operation handling, e.g. program, erase and verify

1.3 Abbreviations and Special Terms
A list of terms and abbreviations used throughout the document is provided in “Terminology” on Page 120.

Table 1-1 Document Content Description
Topic Description

Startup procedure BootROM Startup procedure: An overview on the Startup procedure:
the first steps executed by the BootROM after a reset,

FastLIN BSL features

Boot Strap Loader (BSL): An overview on the BSL: the module used to
download and to run code from NVM and RAM

BSL commands - Protocol (Version 2.0): Details and Commands
description

BSL via FastLIN (UART via Local Interconnected Network)

NVM structure NVM: An overview on the NVM: the module used to initialize and
program the NVM sectors and pages

User Routines description User Routines: User routines description

Firmware User Manual 8 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Overview

2 Overview
This specification includes the description of all firmware features including the operations and tasks defined
to support the general startup behavior and various boot options.

2.1 Firmware Architecture
The BootROM in the TLE985x consists of a firmware image located inside the device’s ROM. It consists of the
startup procedure, the bootstrap loader via FastLIN, NVM user routines and NVM integrity handling routines.
The BootROM in TLE985x is located at the address 00000000H, and so represents the standard reset handler
routine. The BootROM firmware is executed in the ARM Cortex CPU core and uses the SRAM for variables and
software stack.
Figure 2-1 shows the TLE985x components used during execution of the BootROM.

Figure 2-1 Block Diagram of the BootROM and its Interaction with other TLE985x Components

The startup procedure is the first software-controlled operation in the BootROM that is automatically
executed after every reset. Certain startup submodules are skipped depending on the type of reset (more
details are provided in “Reset Types” on Page 15) and the error which might occur (more details are provided
in “Startup Error Handling” on Page 18).
The startup procedure includes the NVM initialization, PLL configuration, enabling of NVM protection,
branching to the different modes and other startup procedure steps.
There are two operation modes in the BootROM :
• BSL mode
• User/Debug mode
The deciding factor will be on the latch values of TMS and P0.0 upon a reset. During reset, these signals are
latched at the rising edge of RESET pin. Details are provided in “Boot Modes” on Page 11.

ARM CORTEX-M0 BootROM
(ROM)SRAMNVM FLASH

Serial Communication
Interfaces

(Fast-LIN with UART
protocol)

Timer GPT12
Watchdog WDT1

Systembus

Chip Environment
(PMU/SCU/PLL)

Firmware User Manual 9 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Overview

2.2 Program Structure
The different sections of the BootROM provide the following basic functionality.

Startup procedure
The startup procedure is the main control program in the BootROM. It is the first software-controlled
operation in the BootROM that is executed after any reset.

User/Debug mode
It is used to support user code execution in the NVM address space. However, if the Bytes at address
11000004H-11000007H are erased (FFFFFFFFH), then device enters sleep mode.
If a valid user reset vector was found at 11000004H (values at 11000004H - 11000007H not equal to FFFFFFFFH)
and a proper No Activity Counter (NAC) value is found then the BootROM proceeds into user mode.
In case an invalid NAC value is found (see also “NAC Definition” on Page 12), the device waits indefinitely for
a FastLIN BSL communication.

BSL mode
The BSL mode is used to support BSL via the FastLIN protocol. Downloading of code/data to RAM and NVM is
supported in this mode.

Firmware User Manual 10 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

3 BootROM Startup procedure
This chapter describes the BootROM startup procedure in TLE985x.
The startup procedure is the first software-controlled operation in the BootROM that is automatically
executed after every reset.
There are 2 operation modes in the BootROM :
• User/BSL mode
• Debug Support mode
The operation modes get selected dependent on the latch values of two (2) pins upon reset. Details are
provided in “Boot Modes” on Page 11.
For each HW module a HW abstraction layer (HAL) is implemented with its associated module specific
firmware functions called by the BootROM startup procedure
Figure 3-1gives an overview by showing the startup code partitioning into firmware modules and the
corresponding dataflow.

Figure 3-1 Startup Procedure Architecture Overview

The startup code performs different device initialization steps.
After initialization, the BootROM either starts BSL communication (according to configuration) or jumps to
user mode code execution.
For user mode, bootROM will execute the startup procedure, redirect the vector table to the beginning of the
NVM in user accessible space and jump to the customer defined reset handler routine (jump to the address
pointed by the address 11000004H) to execute the user program.

3.1 Startup Program Structure
The first task executed by the BootROM startup procedure is to check the reset type.
The BootROM also reads the logical state of certain external Pins (see “Boot Modes” on Page 11) to decide
which initialization sub modules to be executed or to be skipped during the startup sequence.

SWD Debug
Mode

STARTUP_ARCHITECTURE_UM.

Libraries
(used by all
modules)

MBIST

NVM /
CS

NVM HALRAM

Timer
(GPT12)

Watchdog
(WDT1)

Clock / PLL Analog Module
Trimming

Clock / PLL
HAL

Analog Module
HAL

Firmware User Manual 11 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

A list of supported boot mode pin selections is given in “Boot Modes” on Page 11.
Many of the submodule initialization tasks require further configuration parameters which are stored in the
NVM CS (Configuration Sector).

The initialization process differs slightly between each selected boot mode. Each boot mode has a different
set of initialization steps to be performed. For instance, some initialization steps might be skipped for one
mode but carried out for another mode. Some initialization steps are bypassed for hot reset.
The functional blocks are listed in Table 3-1.

Various flowcharts for the different boot modes are shown in “Flowcharts for User BSL / Debug Modes” on
Page 14.

3.2 Boot Modes
The different BootROM-supported boot modes are listed in Table 3-2 “BootROM Boot Modes” on Page 11.
Device enters into a specific bootmode based on pin configuration during reset release. The mode decides
which initialization parts are to be executed by the BootROM.

3.3 Debug Support Mode Entry (with SWD port)
Debug support mode is available for SWD interface. The BootROM starts the overall device initialization as
described in “Startup Program Structure” on Page 10.

Table 3-1 Functional Blocks
 Block Description Reference
Watchdog Disable The WDT1 is disabled, depending on the boot mode. Section 3.8.1
RAM MBIST Performs RAM MBIST (MBIST range depends on RAM mode setting).

Section 3.8.2RAM Init Inits RAM to zero (Init range depends on RAM mode setting).

MapRAM Init Inits MapRAM based on MapBlock data. The dedicated service algorithm
is applied (only executed in NVM data linear mode).

Section 5.4

Analog Module
Trimming

Analog module NVM CS trimming values are configured in the hardware. Section 3.8.5

PLL Init Switch system clock to PLL Section 0.3.8
Start NAC Timer Start a timer which is dedicated to the user mode / BSL “no activity count

timeout” calculation.
Section 3.8.8

BSL BSL communication Chapter 4

Table 3-2 BootROM Boot Modes
TMS /

SWD_IO
P0.0 /

SWD_CLK
Mode / Comment

0 X USER_BSL_MODE User Mode / BSL Mode

1 1 SWD_DEBUG_MODE Debug Support Mode with SWD port

All other values Reserved for internal use

Firmware User Manual 12 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

The BootROM then enters a waiting loop to synchronize with a debugger connected to the Serial Wire Debug
(SWD) interface. After that, the BootROM finishes the boot process and starts to execute user code under
debugger control.
Firmware ensures that jumping to user code in user- or debug mode is performed with the same RAM and SFR
content, except for a WDT1 user code entry.
The watchdog is always disabled in debug support mode, except when the debug error loop is entered after a
boot error.

3.4 NAC Definition
The No Activity Counter (NAC) value defines the time window after reset release, within which the firmware is
able to receive BSL connection messages. If no BSL messages are received during the NAC window and NAC
time has expired the firmware code proceeds to user mode.
The NAC value is a byte value which describes the timeout delay with a granularity of 5 ms. The NAC timeout
supports a maximum of 140 ms, corresponding to NAC=1CH. User API and the BSL command to write the NAC
value check the provided NAC value and discard values too high (limit due to WDT) and too low (limit due to
the fastest possible passphrase sequence). Table 3-3 shows the valid NAC values.

After ending the start up procedure, the program will detect any activity on the FastLIN interface for the
remaining NAC window. When no activity is detected, the program will jump to user mode. “FastLIN
Passphrase and Node Address for Diagnostic (NAD)” on Page 21
In case a valid BSL passphrase is detected during the BSL window the firmware suspend the counting of the
WDT1 in order to avoid that requested BSL communication is broken by a WDT1 reset. The firmware will then
re-enable WDT1 before jumping to user code.
User mode is entered by jumping to the reset handler. This can happen directly from the startup routine, after
the NAC waiting time for possible BSL communication, or as a result of BSL commands. In startup, a jump to
user mode will only occur if the NVM content at 11000004H-11000007H is not FFFFFFFFH, otherwise, the
BootROM executes an endless loop. In BSL execution commands, it jumps to the address specified as an input
through the command itself.

3.4.1 Unlock BSL Communications
The BootROM locks the FastLIN communication after reset to avoid unexpected BSL communication on the
customer side. The host needs to unlock the communication by sending a passphrase sequence to the
BootROM.

Table 3-3 Valid NAC Value
NAC Value Time out behavior
00H the BSL window is closed, no BSL connection is possible and the user mode is entered

without delay.

01H report error (value not supported)

02H-1CH time out delay of NAC*5ms before jumping to user code

1DH-FEH report error (values not supported)

FFH no timeout is used, BootROM code will switch off WDT1 and wait indefinitely for a BSL
connection attempt

Firmware User Manual 13 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

Details about this passphrase and how it influences the NAC timeout are given in “FastLIN Passphrase and
Node Address for Diagnostic (NAD)” on Page 21.

3.4.2 Post User Mode Entry Recommendations
Upon USER MODE entry, it is highly recommended to perform the following checks and actions:
Prior to any NVM operation, it is recommended to implement a test of the bit MRAMINITSTS in the register
SCU_SYS_STRTUP_STS (SCU_SYS_STRTUP_STS.MRAMINITSTS).
If the bit is clear then the data flash mapping is consistent, NVM write/erase operation can be performed. To
see if the Service Algorithm might have been active the user has to check the MEMSTAT register. If the Service
Algorithm was active the user has to expect that expected logical data flash pages are not present anymore.
The user has to take care of this and reconstruct any missing page. Furthermore it might be possible that the
Service Algorithm (Chapter 5.4, Data Flash Initialization) reports an unrecoverable failure inside the Data
Flash, then the same corrective actions shall be applied as described in the following paragraph for the case
that SCU_SYS_STRTUP_STS.MRAMINITSTS is set.
If SCU_SYS_STRTUP_STS.MRAMINITSTS is set, then the data flash mapping is inconsistent, the mapping
might not be complete and any NVM operation like write or erase is not safe and might cause further
inconsistencies inside the data flash. As corrective actions the user might reset the device (cold reset) in order
to give the Service Algorithm a chance to repair the data flash sector. If this attempt fails again, then a sector
erase is needed to reinitialize the data flash sector and to remove any mapping inconsistency. After the data
flash sector has been erased the user has to take care of reconstructing the expected logical data flash pages.
The reset source should get read from the PMU Reset Status Register (PMU_RESET_STS). Clearing
PMU_RESET_STS is strongly recommended in the user startup code, as uncleared bits can cause a wrong reset
source interpretation in the BootROM firmware after the next reset (e.g. handling a warm reset as a cold reset).
The system startup status register SCU_SYS_STRTUP_STS should get checked for any startup fails. See the
TLE985xQX User’s Manual for a detailed register description.

3.5 User and BSL Mode Entry
Entry to user mode is determined by the No Activity Count (NAC) value, see “NAC Definition” on Page 12.
After waiting the time defined by the current NAC value, the startup procedure sets the VTOR register to point
to the beginning of the NVM (11000000H) and starts user code execution at the address vector found at
11000004H (Reset Vector). It is the responsibility of the user to provide a meaningful VTOR table at the
beginning of the NVM.
If NVM double Bit error occurs when reading the NAC value, the system goes into an endless loop waiting for
BSL communication. Before entering User mode (except for Hot Reset, see Figure 3-3 “Flowchart – User BSL
Mode (UM)” on Page 15), the system clock frequency is switched to PLL output and to the max. frequency as
stated in the datasheet. In case PLL has not locked within 1 ms, the clock source fINTOSC/4 (20 MHz) will be
used. After every reset, the user shall check whether the system is running on the low precision clock or on the
PLL output reading SYSCON0.SYSCLKSEL register and e.g. restart the PLL if necessary.

Firmware User Manual 14 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

3.6 Flowcharts for User BSL / Debug Modes

Figure 3-2 Flowchart – Reset (UM)

Figure 3-3 “Flowchart – User BSL Mode (UM)” on Page 15 shows the flow of User BSL mode. This is the
default user entry mode, in which the BootROM configures the device with user device variants. If device init
fails (e.g. due to NVM not available, NVM init error or trimming error), the bootROM protects the complete NVM

Boot mode
select

Start

Cold_ Reset OR
NVM_CS bit0 = 1

RAM MBIST

Disable Watchdog

Enable debug loop

Clear RAM(range
depends on RAM mode)

Warm_Reset?

RAM test OK? RAM test OK?

Loop forever

SWD Debug modeUser BSL mode

Yes

No

No

Yes

Yes

NoNo

Yes

user_mode_entry
(debug = Disabled)

user_mode_entry
(debug = Enabled)

Note: NVM_CS is
CS_NVM_RAM_MBIST

Note: Boot mode selection is
done via TMS and P0.0 pins :
1) 0X = USER_BSL_MODE
2) 11 = SWD_DEBUG_MODE

Enable Watchdog

Firmware User Manual 15 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

region and starts error handling. Otherwise, the BootROM executes a set of sequences before jumping to user
code. BSL mode is entered in case of a cold/warm reset and returns to the main flow in case of a timeout.

Figure 3-3 Flowchart – User BSL Mode (UM)

3.7 Reset Types
The BootROM classifies the different hardware resets according to the following reset types:
• Cold reset
• Warm reset
• Hot reset

Cold reset
The reset events generated from the following sources, are classified as cold resets:
• POR: Power-on reset
• Pin reset
• Watchdog reset

user_mode_entry
(debug)

Hot_Reset?

BSL

User mode error
handling

(NVM init)
OR (NVM Protection)

OR (Analog module Trimm)
Error?

Clk to PLL switch

Clear interrupts

Timer, UART, LIN
registers reset

debug =
Enabled?

Wait for
debugger

Clear RAM

User code addr.
is Valid?

Re-map vector table to NVM

Loop forever
(unprotected code area) Jump to user code

NoYes

Yes

No

YesNo

Device configuration
prepare

Loop forever
(protected code area)

Yes
No

Internal oscillator
variant setting

Init NVM
Apply NVM Protection
Analog module Trim

Firmware User Manual 16 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

• System fail
After a cold reset, all initialization steps, listed in Table 3-1 “Functional Blocks” on Page 11, are processed
in accordance with the boot mode. In user/debug mode, the RAM MBIST & Init range depends on RAM mode
setting.

Warm Reset

The reset events generated from the following sources, are classified as Warm resets:
• Sleep-exit reset
• Stop-exit reset
After a warm reset, the initialization steps, listed in Table 3-1, are processed, except:
• RAM MBIST (only executed if forced by NVM CS configuration, as described in “RAM MBIST and RAM

Initialization” on Page 17)

Hot Reset
The reset events generated from the following sources, are classified as Hot resets:
• Software triggered reset
• Lock-up reset
After a Hot reset, the initialization steps, listed in Table 3-1, are processed, except:
• RAM MBIST & RAM init- (only executed if forced by NVM CS configuration, as described in “RAM MBIST and

RAM Initialization” on Page 17)
• Download of analog module trimming parameters (incl. oscillator and PLL settings)
• Switch system clock to PLL output

Reset priority
In case more than one reset event occur, the post reset initialization procedure with the highest priority type
is executed. The priority is evaluated according to this priority order (where “1” is the highest priority):
1. Cold reset
2. Warm reset
3. Hot reset

Attention: The reset source is read from the PMU Reset Status Register (PMU_RESET_STS). Clearing
PMU_RESET_STS is strongly recommended in the user startup code as uncleared bits can cause
a wrong reset source interpretation in the BootROM firmware after the next reset (e.g.
handling a warm reset as a cold reset).

3.8 Startup Procedure Submodules
Startup submodules are described in this section.

3.8.1 Watchdog Configuration
After a reset, the watchdog WDT1starts with a long open window. WDT1 continues running while waiting for
the first BSL frame. If host synchronisation is completed during the BSL waiting time (defined by NAC), WDT1
is disabled and its status is frozen.

Firmware User Manual 17 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

WDT1 is re-enabled when entering user mode from BSL mode. The watchdog WDT1is disabled before entering
into debug mode.
For all reset types, firmware startup in user mode enables WDT1 before jumping to user code, and the
watchdog cannot be disabled while user code is being executed.

3.8.2 RAM MBIST and RAM Initialization
The firmware depending on the reset type performs test and/or initialization of the RAM. By default, the FW
performs the RAM MBIST only for cold reset while the RAM initialization is executed for cold and warm reset
By default, no RAM MBIST and RAM initialization is performed for hot reset.
Specific user controllable configurations are offered to change the default behavior. By means of the NVM CS
Usage configuration, user can enable the RAM MBIST also for warm and hot reset. .
In addition, user can partially disable the RAM MBIST at cold reset. Refer to Section 3.8.4 for specific
information.
The RAM MBIST consist of a linear write/read algorithm using alternating data on data and parity field and so
it destroys the content and the parity integrity of the tested RAM. For this reason each time a RAM MBIST is
executed, it is followed by a RAM initialization.
RAM initialization writes the target RAM region to zero with the proper parity thus preventing an ECC error
during user code execution.

In case an error is detected in the RAM MBIST or RAM initialization, the appropriate error status is captured and
the device enters an endless loop. As the watchdog is enabled when entering the endless error loop after a
boot in user or debug mode, a WDT1 cold reset is asserted after timeout and the RAM MBIST or RAM
initialization is re-executed.
After five (5) consecutive watchdog resets, the device enters SLEEP mode (by hardware function).

Note: The standard RAM interface is disabled during MBIST test execution.

Note: In case of RAM MBIST or initialization error, SCU_NVM_PROT_STS is untouched.

3.8.3 NVM CBSL Region Size Configuration
During startup, the CBSL configuration is read from the configuration sector (CS), the lower two bits get
programmed into the NVM_PROT_STS register. See the register bit field NVM_PROT_STS.CUS_BSL_SIZE for a
list of values defined. If the value read is FFH or a ECC2 error has occurred, then a default value
CS_CUST_BSLSIZE = 00H is used.

3.8.4 RAM Mode Key and NVM Data Mode Key
The switching key feature provides a way to configure RAM mode (legacy or preserve mode) and NVM mode
(data mapped or data linear mode). Each feature is configured by checking dedicated switch key locations in
the NVM configuration space. In order to avoid mode switching failures due to e.g. read noise, the firmware
evaluates during startup two key locations (one per feature) placed redundantly on 3 different pages. As long
as at least one valid key is detected, the corresponding mode is switched on.The key values are predefined,

Firmware User Manual 18 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

only the presence of that specific key value will enable the corresponding mode switch. The keys can only be
written with a dedicated BSL command. The user can choose to write either a single RAM key, a single NVM key
or both keys at once with one BSL command. The switching key set functionality is effective only when
CS_SWITCH_KEY_CTRL_EN is enabled in the NVM configuration sector. For details about the BSL command
for switch key programming, refer to Chapter 4.3.9, Command 8AH – NVM: Switch Keys Set.

3.8.5 Analog Module Trimming
During analog module trimming, the trimming values of PMU, voltage regulators, FastLIN module,
temperature sensor, oscillator, PLL, bridge driver and other analog modules are read from the NVM
configuration sector and written into the respective SFRs. In case the 100 times programmable pages (100TP
pages) 0 and 1 with data for the trimming process contain CRC errors (no user programming assumed),
predefined SFR values from the third 100TP page are used.
• User 100TP Analog Trimming Data

– The user has eight 100TP pages. The values of the first (page 0) and second (page 1) pages are
automatically copied into the dedicated SFR registers after every cold or warm reset thus replacing the
registers default reset values. The user can check them by reading the dedicated SFRs or by reading
directly the content of the page.

– This procedure allows the user to configure the ADC1 . The complete list of SFRs is provided in “Analog
Module Trimming (100TP Pages)” on Page 132

– In case the first and second 100TP NVM CS (Configuration Sector) pages do not contain valid trimming
data (CRC failure), the BootROM reports error and copies alternative backup trimming values from the
third (page 2) 100TP page.

3.8.6 ADC1 Core Offset Calibration
During device testing, a basic offset calibration step gets performed for each device. However, different
temperatures, supply voltages, board layout or soldering stress in the customer application might impact ADC
accuracy.
In cold or warm reset, the ADC1 core offset calibration can be enabled or disabled via a CS setting. Writing 0x01
in CS_ADC1_STARTUP_CALIBRATION enables ADC1 core calibration in startup. With all other values offset
calibration is skipped.
Offset calibration is also available as a user API function, see Chapter 10.9, API:user_adc1_offset_calibration.
The calibration process requires the measurement core module and ADC1 to be powered on.

3.8.7 Startup Error Handling
To ensure that the device is properly booted, error checking and error handling are added to the startup
procedure.
For USER_BSL_MODE and SWD_DEBUG_MODE, any submodule failure(Chapter 3.8, Startup Procedure
Submodules) brings the startup sequence into an endless loop with WDT1 enabled..
If a startup error occurs – except for double-bit errors for NVM reading – and the boot option is
USER_BSL_MODE, the device is set to a safe mode with limited access to HW resources. The device reboots
with each WDT1 timeout. If the errors persist after five (5) WDT1 triggered timeouts, the device enters SLEEP
mode .

Firmware User Manual 19 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 BootROM Startup procedure

Regardless of the boot mode, the system enters an endless loop in the case of invalid user code address error,
RAM MBIST error or NVM CS pages checksum error.

3.8.8 No Activity Counter (NAC) Configuration
A NAC timeout value is stored in a NVM CS page.

During user mode, this parameter is read from the NVM CS (Configuration Sector). This parameter is provided
as an API parameter when calling the BSL module. For details, refer to Section 3.4.
If the NVM CS does not contain a valid NAC, a “wait forever” NAC (NAC=FFH) is given to the BSL module.
A changed NAC value takes effect only after the next reset.
The BootROM offers 2 user API functions to read and write NAC parameter:
• user_nac_get
• user_nac_set

3.8.9 FastLIN Node Address for Diagnostics (NAD) Configuration
For FastLIN, a NAD value is stored in a NVM CS page.
During user mode, this parameter is read from the NVM CS (Configuration Sector). The parameter is provided
as an API parameter when calling the FastLIN BSL module. For details, please refer to “FastLIN Passphrase
and Node Address for Diagnostic (NAD)” on Page 21.
If the NVM CS (Configuration Sector) does not contain a valid NAD, a “broadcast” NAD (NAD=FFH) is given to the
FastLIN BSL module.
A changed NAD value takes effect only after the next reset.
The BootROM offers user APIs for reading and writing NAD parameter:
• user_nad_get
• user_nad_set

Firmware User Manual 20 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Boot Strap Loader (BSL)

4 Boot Strap Loader (BSL)
The Boot Strap Loader (BSL) module supports handling of message-based command request and response
communication over the FastLIN interface. The received command messages are parsed and executed
according to the FastLIN protocol. The protocol message format is shared by theserial interface. Details about
this message protocol are given in “BSL commands - Protocol (Version 2.0)” on Page 29.
Figure 4-1 shows the various software submodules in the BSL module. The BSL protocol is handled on a single
protocol level that processes all messages described in “BSL commands - Protocol (Version 2.0)” on
Page 29.

Figure 4-1 BSL Architecture

All command messages are encapsulated in an interface-specific frame format. This format includes specified
parameters, such as a checksum calculation and overall message size. .
The BSL protocol layer performs the command execution based on the parsed BSL commands. This results in
programming of the NVM, NVM CS (Configuration Sector), downloading to RAM or execution of NVM/RAM
code. It also includes the aspect that some commands are blocked based on applied hardware protection or
boot mode selection.

4.1 BSL Overview
In this chapter, more details about the BSL mechanisms are provided.

4.1.1 BSL Interframe Timeout

The interframe timeout is a configuration parameter read by BootROM startup code from the NVM CS
(Configuration Sector).
The interframe timeout parameter has the same format as the NAC value (2 = 2x5ms).
The parameter value is set to 0x38, which results in a timeout value of 280ms (0x38 x 5ms).

4.1.2 NVM / RAM Range Access
BSL commands are available to access NVM and RAM.
In particular, BSL commands can access all user NVM, 100TP pages and the RAM area.

BSL Protocol

BSL

FAST-LIN
Protocol

UART
HAL/Drv

Libraries
(used by all
modules)

Timer

NVM /
CS

NVM
HAL

Firmware User Manual 21 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Boot Strap Loader (BSL)

4.1.3 FastLIN Passphrase and Node Address for Diagnostic (NAD)
The BootROM locks the BSL FastLIN communication after reset to avoid unexpected BSL communication on
the customer side. The host needs to unlock the communication by sending a passphrase sequence to the
BootROM.
A passphrase consists of two consecutive frames, where each frame contains a fixed pattern. To unlock the
BSL communication, both passphrase frames have to be sent by the host. Any other received message within
the passphrase sequence stops the unlock sequence. The unlock procedure always restarts on receiving the
first passphrase frame.
The contents of both passphrase frames are described in Figure 4-2.

Figure 4-2 Passphrase Content

BSL communication supports node addressing (NAD).
The first byte of each passphrase frame carries the NAD field (1 byte, all value from 00H to FFH are valid), both
NAD fields need to have the same value. The NAD field specifies the address of the active slave node (only slave
nodes have a NAD address). Table 4-1 lists the BootROM-supported NAD address ranges. The NAD address in
place is set during device programming as a BSL API parameter (for details see also “User and BSL Mode
Entry” on Page 13). The firmware treats a received BSL message with a NAD value of FFH as a 'broadcast'
message. The BSL responds to this no matter which NAD value is stored in the NVM CS.
With FastLIN communication, the passphrase frames are embedded in the BSL-via-FastLIN protocol and
therefore get extended by a checksum byte field. Details about frame encapsulation are given in .
BSL communication only gets unlocked if both NAD fields and the passphrase matches and if the FastLIN
frame checksum was received correctly.
In all other cases the BSL communication remains locked, all frames received get ignored, including FastLIN
frames with valid checksum fields.
Regardless of the result, no response is sent back upon passframe reception.
The NAC timeout stops when the communication is unlocked after receiving the second valid passphrase
frame. For more details about NAC timeout, refer to Section 3.4.

BSL20_PASSPHRASE.

0

NAD

1

0x4C
‚L‘

2 3 4 5 6

0x49
‚I‘

0x4E
‚N‘

0x50
‚P‘

0x41
‚A‘

0x53
‚S‘

Passphrase Frame #1:

0

NAD

1

0x50
‚P‘

2 3 4 5 6

0x48
‚H‘

0x52
‚R‘

0x41
‚A‘

0x53
‚S‘

0x45
‚E‘

Passphrase Frame #2:

Firmware User Manual 22 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Boot Strap Loader (BSL)

4.1.4 BSL Message Parsing & Responses
The BSL protocol provides single message commands and multimessage commands. A message state
machine is implemented, which first collects all command-related messages before executing the command.
It periodically polls the underlying interface protocol layer (e.g. FastLIN protocol layer) to collect all frames
belonging to a BSL command.

Command Message State Machine
Figure 4-3 gives an overview of the BSL command message state machine.

Figure 4-3 BSL Command Message State Machine

The state machine starts to wait for the header block. This could be either a command which consists of a
single header block (the message type MSB bit is set) or a command that consists of multiple messages (the
message type MSB bit is zero).
For multimessage commands, the first message is a header block. The second message data is always
followed by an EOT block message.
The EOT block message reception initiates command parsing and execution.
The command processing includes message validation, where the message parameters are checked for
boundaries, any hardware applied protection and if this message is supported for this boot mode.

Table 4-1 NAD Address Range
NAD Value Description
00H to FEH Valid slave address range for individual slave addressing

FFH Broadcast address for concurrent slave addressing
Default address if NAD value is not programmed

BSL_MSG_PARSE_STATES.

Polling New Messages

(Non Data or EOT Block) ||
(length > message length)

Data Block
EOT Block

Command
processed

Multi
Message

Command

Single
Message

Command

Multi Message Collect Command Process

Non Header
Block

Firmware User Manual 23 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Boot Strap Loader (BSL)

The state machine aborts the multimessage collection if the overall data bytes of all collected messages have
exceeded the maximum message data buffer length of 137 bytes (7 bytes in the header block message +
130 EOT data bytes).
For single message commands, all command-related information is already available in the header block
message. The command parsing and execution start right after receiving the message.
After command execution and after a response has been sent, the state machine returns to the header block
polling state in order to wait for the next command.
Any received message which does not fit the current state or state transmission leads to an exit from the
current state and restarting of the whole state machine.

Response Message State Machine
The command response is specific to the used serial interface. . Further details are described in the interface
specific protocol layer part.
Figure 4-4 gives an overview of the FastLIN response message state machine.

Figure 4-4 FastLIN Response Message State Machine
BSL_MSG_RESPONSE_PARSE_STATES

(Multi Msg Command &
Error occurred) ||
(Single Msg)

Multi msg command &
No error occurred

Response data left
not greater than
EOT msg size

Send EOT Msg Send Response
Msg

Result Response

Command Processed

EOT Response

Firmware User Manual 24 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Boot Strap Loader (BSL)

Some BSL messages request read-out of data from the device. These messages expect EOT block.
Other BSL messages download data or initiate code execution. They do not request reading out of any data.
These messages only reply with a status response message.
A BSL command execution replies with a status response message in the event that the command execution
fails.

Attention: The BootROM responds to each incoming command. The response is either the requested data
or the response block (e.g. success or error code). Only the code execution command does not
reply with a response message.

4.1.5 Command Execution
The command data is checked and validated after all the message data is received. This includes that the
message parameters are checked for boundaries, any hardware-applied protection (e.g. NVM protection) and
if this message is supported for this boot mode.
The following command classes are supported:
• RAM access – RAM accesses are directly done by the BSL protocol without the use of any other submodule.
• NVM access – NVM write accesses are performed using the NVM API, NVM read access can be performed

directly.
• 100TP access – 100TP accesses are performed using the NVM CS (Configuration Sector) API.
•

4.1.6 Timing Constraints
The host needs to add a delay between all sent BSL command header and EOT messages.
The BootROM also requires an additional waiting time to process the full received BSL command. The
BootROM is not able to provide the response messages or able to receive new commands before this period
expires. The host must wait this length of time before sending a new command.
To give the BootROM time to process each byte in a CMD or EOT frame, the byte and frame timing must comply
to the values shown in Table 4-2.

* There are certain BSL commands that need longer processing time. These involve NVM write/erase
operations. The host waiting time is longer before a command response can be requested or before a result is
sent back. Changing a value in an already programmed NVM page, which happens if a setting is changed,
requires the following NVM steps:

Table 4-2 BSL Byte and Frame Timing Limits and Highest Transfer Rate
Delay type FastLIN (µs, min.)
Between bytes 3.7

Between the end of a CMD frame to
the start of an EOT frame

20

Interframe User specified in NVM CS

Host waiting time after response is
received until a new frame can be
sent

20

Firmware User Manual 25 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Boot Strap Loader (BSL)

- Read the full page into the HW assembly buffer
- Update the HW buffer with new data
- Program the page from the HW assembly buffer
- Erase the old page
Total time: 8 ms
The processing time must always be taken into account.

4.1.7 BSL Interframe Timeout Behavior
To keep track of BSL frame transmission violations, interframe timeout is used (described also in
Chapter 4.1.1). This chapter summarizes the different use-case scenarios where BSL frame timeouts are
applied.
BSL frame transmission timeout is handled differently and depends on:
• BSL has not received any valid host synchronization yet. In this case NAC timeout value is used for all

timeout calculations. If timeout is reached this means NAC timer expired.
• BSL has completed host synchronization. All timeouts are based on the interframe timeout value. This

means wait forever for frame start and once frame reception has started, time measurement against
interframe timeout is performed.

4.1.8 BSL Host Synchronization
Valid host synchronization: For FastLIN the full passphrase has been received before NAC expires.

Firmware User Manual 26 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.2 BSL via FastLIN

4.2.1 FastLIN Protocol

FastLIN is a LIN enhancement supporting higher baudrate of up to 230.4 kBd. FastLIN is especially useful
during back-end programming, where fast programming cycles are desirable.
The FastLIN BSL supports baudrate of 38.4 kBd, 115.2 kBd and 230.4 kBd via the internal LIN Tranceiver HW
module.
The FastLIN protocol uses UART data link layer to parse all incoming FastLIN frames, it rejects frames with a
failing checksum calculation result. All received frames are passed on to the BSL transport layer, which
concatenates them to complete commands for BSL application layer. The checksum is always the last field of
FastLIN command- and response frames.
For user mode, the default FastLIN baudrate is 115.2 kBd. The actual session baudrate can be changed with
the BSL command “Command 93H – FastLIN: Set Session Baudrate” on Page 59.
Figure 4-5 shows the FastLIN protocol architecture.

Figure 4-5 FastLIN Protocol Architecture

Figure 4-6 shows the interaction between Hardware and software layers of FastLIN BSL.

.

BSL
Application

Layer

FastLIN
Protocol

UART
HAL

Timer

FASTLIN_PROTOCOL

Firmware User Manual 27 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Figure 4-6 FastLIN BSL Software Hardware Layers

4.2.2 FastLIN
After successful synchronization with the host, the FastLIN communication with the host starts. This section
describes the command frame format that is used for the host communication.
The communication between the host and the FastLIN data link layer is performed by a simple transfer
protocol. The information is sent from the host to the bootROM in blocks. All the blocks follow the specified
block structure.

4.2.2.1 Command Frame Format
This section describes command frames that are sent by the host to initiate a command. This frame format
encapsulates the BSL commond messages, which are described in Section 4.3.

Figure 4-7 FastLIN Command Frame Format

Figure 4-7 shows the FastLIN frame format of frames sent by the host to the BootROM. It contains a BSL
header block or EOT block and an additional checksum byte.
The length of the header / EOT block depends on the BSL messages, which are described in Section 4.3.
Each frame is terminated with the checksum byte. This checksum calculation includes all data bytes of the
header / EOT block. Details are given in “Checksum” on Page 28.

SW

HW
SFRs

 Tx Rx

LIN GND_LIN

LIN Tranceiver

BSL_FAST_LIN_MODE_LAYERS

FASTLIN_FRAME_FORMAT.

Checksum
(1 byte)Header / EOT Block

Firmware User Manual 28 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.2.2.2 Response Frame Format
This section describes response frames that the BootROM sends in reply to a command request. It contains a
BSL EOT block or response block and an additional checksum byte. This frame format encapsulates the BSL
response messages, which are described in Section 4.3.
The length of the EOT / response block depends on the information sent. Some commands request some data,
which are sent by EOT blocks. Other commands do not request data and just the command execution result
is reported. Figure 4-8 shows the FastLIN response frame format:

Figure 4-8 FastLIN Response Frame Format

Each frame is terminated with the checksum byte. This checksum calculation includes all data bytes of the BSL
EOT / response block. Details are given in “Checksum” on Page 28.

4.2.2.3 Checksum
The checksum contains the inverted eight-bit sum with a carry over all data bytes.
Checksum calculation over the data bytes only is referred to as a classic checksum. An eight-bit sum with carry
is equivalent to the sum of all values, subtracted by 255 every time the sum is greater than or equal to 256.
The checksum is the last field of Command and Response FastLIN frames.

FASTLIN_RESPONSE_FORMAT.

Checksum
(1 byte)EOT / Response Block

Firmware User Manual 29 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3 BSL commands - Protocol (Version 2.0)
This section describes the boot strap loader messages that are used by the FastLINprotocol. The physical layer
encapsulation of these messages is described in “BSL via FastLIN” on Page 26.
All commands support acknowledge response message, which contain an error code with the result of the
executed command. Some messages return a response message with the result of the executed command
and some messages also return requested data. For messages that return data, the data should be treated as
a response with no errors and the acknowledge response message will in this case not be sent. The messages
will either return an error code of a detected error or return the requested data. Data response messages are
described together with the command messages. The response and error code messages are described in
“Acknowledge Response Message (81H)” on Page 66.
Some commands do not intend to send any response message. For instance, the code execution command
messages directly jump to the requested code location. These messages will only send a response message if
the requested command could not be executed.
Each incoming message is verified. Inconsistent frames (e.g. invalid checksum or length) are silently rejected.
Unknown messages and message types are also rejected, with response message
ERR_LOG_CODE_MSG_VALIDITY_FAIL.
Whether the host waiting time before response is sent back or whether a response can be asked for is defined
for each of the messages if it deviates from the definition given in Section 4.1.6.
The following BSL commands are supported:
• Command 02H – RAM: Write Data/Program
• Command 83H – RAM: Execute
• Command 84H – RAM: Read Data
• Command 05H – NVM: Write Data/Program
• Command 86H – NVM: Execute
• Command 87H – NVM: Read Data
• Command 88H – NVM: Erase
• Command 89H – NVM: Protection Password Set
• Command 8AH – NVM: Switch Keys Set
• Command 8BH – NVM: Page Checksum Check
• Command 0CH – NVM: NVM Checksum Calculation
• Command 0DH – NVM: 100TP Write
• Command 8EH – NVM: 100TP Read
• Command 8FH – BSL: NAC Set
• Command 90H – BSL: NAC Get
• Command 91H – FastLIN: NAD Set
• Command 92H – FastLIN: NAD Get
• Command 93H – FastLIN: Set Session Baudrate
• Command 97H – NVM 100TP Erase
• Command 98H – NVM: Reflash Prepare
• Command 99H – NVM: Set CBSL Size

Firmware User Manual 30 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Dummy Bytes
Depending on the BSL frame data fill level, some frame data bytes are not used. Those bytes are filled with
dummy bytes, which are set to zero. The BootROM ignores dummy bytes, independent of their values.

Padding Bytes
If the customer adds padding bytes, although this is not regular it is still supported by the firmware. Padding
bytes up to a data field size of 128 bytes are possible. The firmware will accept the real data and will find the
checksum byte after the last padding byte.

RAM Access Limitation
Access to the RAM is limited for the BSL commands Command 84H – RAM: Read Data and Command 02H –
RAM: Write Data/Program. In all boot modes, the full RAM range can be read but global variables/data and
stack area cannot be written to. Trying to write to these areas will result in an error.

RAM and NVM Address Range Check
All BSL commands reading or writing the NVM or RAM check the address range and report an error if the
memory region is exceeded. The number of bytes to be read or written must be greater than zero.

BSL Commands Protection Group
With any command, the BSL module checks NVM protection to determine if the command can be executed.
Details are given specifically with each BSL command description. Basically, all the BSL commands
downloading into NVM/RAM/NVM CS are blocked if any NVM region read protection is set or in case the write
protection is set on the target region. The BSL commands reading from NVM or 100TP are blocked if the region
addressed is read protected. An error is returned upon any access violation. Table 0-1 states which NVM
protection group is checked before a given BSL command is executed.
Definitions of NVM protection groups:
• Group 1: These commands are always allowed to execute, regardless of protection.
• Group 2: These commands are only blocked if the region addressed is read protected.
• Group 3: These commands are blocked if read protection on any region is set.
• Group 4:These commands are blocked if read protection on any region is set or the region addressed is

write protected.

Firmware User Manual 31 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Table 4-3 NVM Protection Check for BSL Commands
NVM prot. group
Group name

BSL Command

Group 1
Protection Ignored

Command 89H – NVM: Protection Password Set
Command 98H – NVM: Reflash Prepare
Command 83H – RAM: Execute
Command 84H – RAM: Read Data
Command 8BH – NVM: Page Checksum Check
Command 0CH – NVM: NVM Checksum Calculation
Command 93H – FastLIN: Set Session Baudrate
Command 90H – BSL: NAC Get
Command 92H – FastLIN: NAD Get

Group 2
Read Protection

Command 87H – NVM: Read Data
Command 8EH – NVM: 100TP Read

Group 3
IP Protection

Command 86H – NVM: Execute
Command 02H – RAM: Write Data/Program

Group 4
IP- and Write
Protection

Command 05H – NVM: Write Data/Program
Command 88H – NVM: Erase
Command 0DH – NVM: 100TP Write
Command 97H – NVM 100TP Erase
Command 8FH – BSL: NAC Set
Command 91H – FastLIN: NAD Set
Command 8AH – NVM: Switch Keys Set 1)

1) Command assigned to IP- and Write protection group for ROM code size optimization although it shall be
blocked by any write/read protection.

Firmware User Manual 32 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.1 Command 02H – RAM: Write Data/Program
Firmware supports downloading of data and code to the device’s internal RAM via command 02H.
The host initiates the RAM download by sending a header block message. This message contains information
about the RAM location (offset address based on RAM start address). With FastLIN, data bytes are sent within
the EOT block message.
This command does not support to write RAM locations which BootROM uses for global variable and stack
storage. This command rejects the write operation if the offset is out of range, or offset plus count is out of
range. .
Details about the NVM access protection are given in “Command 89H – NVM: Protection Password Set” on
Page 44. It returns an error code in the response message.
This message supports downloading of a maximum of 128 bytes into the RAM. Larger memory blocks need to
be split into multiple Command 02H – RAM: Write Data/Program messages.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Table 4-4 “Command 02H – RAM: Write Data/Program” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type RAM write command. Always set to 02H

Address Byte #0 (MSB) 24-bit RAM address offset where to store the download data.
The offset starts counting from the RAM start address 1800.0000HAddress Byte #1

Address Byte #2 (LSB)

Number 8-bit number of data bytes to write with the whole message. The BootROM expects to
receive these bytes in the EOT block.
Maximum supported length: 128 bytes.

BSL20_MODE00_HEADER.

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

ReservedLength

0 1 2 3 4 5

Message
Type Number

6

Firmware User Manual 33 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

EOT Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
- ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
- ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID

Table 4-5 “Command 02H – RAM: Write Data/Program” EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be written, minimum size 1 byte, maximum size 128 bytes

BSL20_MODE_EOT.

0

Length

1 2...129

DataMessage
Type

Firmware User Manual 34 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.2 Command 83H – RAM: Execute
Firmware triggers execution of a RAM user program by the Host via command 83H. This code can be previously
downloaded by the BSL Command 02H – RAM: Write Data/Program.
The host initiates the RAM code execution by sending the header block message. This messages contains the
RAM address offset (offset address based on RAM start address) where to jump for code execution.
This command does not check if any valid code is placed in RAM before jumping to the given code location.
Before jumping to RAM the following steps are done:
• The BootROM configures the stack pointer to 1800.0400H. It is recommended that the RAM code adapts the

stack pointer on demand.
• The system clock is switched to PLL at the device default or user defined frequency from NVM CS settings.
• All interrupts are cleared.
• reenable watchdog
It is not allowed for the RAM code to make a return call. ARM LR register has been set to zero when jumping to
RAM. If BSL should be re-entered a system reset must be performed.
This command does not send any response back to the host, unless an error is detected. It performs the RAM
code execution right after receiving the header block.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
- ERR_LOG_CODE_NVM_RAM_EXEC_PARAMS_INVALID

Table 4-6 “Command 83H – RAM: Execute” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 04H

Message Type RAM execute command. Always set to 83H

Address Byte #0(MSB) 24-bit RAM address offset where to jump for code execution.
The offset starts counting from the RAM start address 1800.0000H
Maximum supported offset: RAM size -4

Address Byte #1

Address Byte #2(LSB)

BSL20_MODE01_HEADER.

0 1 2 3 4

Length Message
Type

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

Firmware User Manual 35 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.3 Command 84H – RAM: Read Data
Firmware supports reading of data from the device’s internal RAM via command 84H.
The host initiates the RAM read by sending a header block message. This message contains information about
the RAM location (offset address based on RAM start address) and the number of bytes read.
BootROM sends back the requested data within the terminating EOT block message.
This command rejects the read operation if the offset is out of range, or offset plus count is out of range. It
returns an error code in the response message.
This message supports reading of a maximum of 128 bytes from the RAM. Larger memory blocks need to be
split into multiple Command 84H – RAM: Read Data messages.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT Block

Table 4-7 “Command 84H – RAM: Read Data” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type RAM read data command. Always set to 84H

Address Byte #0(MSB) 24-bit RAM address offset where to read the data.
The offset starts counting from the RAM start address 1800.0000HAddress Byte #1

Address Byte #2(LSB)

Number 8-bit number of data bytes to read. The BootROM will send these bytes in the EOT
block.
Maximum supported length: 128 bytes.

BSL20_MODE02_HEADER.

Length

0 1 2 3 4 5

Message
Type Reserved Number

6

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

BSL20_MODE_EOT.

0

Length

1 2...129

DataMessage
Type

Firmware User Manual 36 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
- ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID

Table 4-8 “Command 84H – RAM: Read” Data EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be written, minimum size 1 byte, maximum size 128 bytes

Firmware User Manual 37 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.4 Command 05H – NVM: Write Data/Program
Firmware supports programming of data and code to the device’s internal NVM via command 05H.
The host initiates NVM programming by sending a header block message. This message contains information
about the NVM location (offset address based on NVM start address). The data bytes are sent within the EOT
block message.
This command does not support NVM cross page boundary programming. It rejects the page write operation
if the offset is out of range, or offset plus count is out of range. It returns an error code in the response message.
No bytes are programmed if the data does not fit the page size. NVM write supports partial non-page-aligned
programming, preserving the page data not passed as an input.
NVM write supports downloading flexible number of bytes, maximum of 128 bytes, into the NVM. Larger
memory blocks need to be split into multiple Command 05H – NVM: Write Data/Program.
The host waiting time before a response is sent back is 8 ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT Block

Table 4-9 “Command 05H – NVM: Write Data/Program” Header Block Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM write data/program command. Always set to 05H

Address Byte #0(MSB) 24-bit NVM address offset where to store the download data.
The offset starts counting from the NVM start address 1100.0000HAddress Byte #1

Address Byte #2(LSB)

Number 8-bit number of data bytes to write with the whole message. The BootROM expects to
receive these bytes in the EOT block.
Maximum supported length: 128 bytes.

BSL20_MODE03_HEADER.

Length

0 1 2 3 4 5

Message
Type Reserved Number

6

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

BSL20_MODE_EOT.

0

Length

1 2...129

DataMessage
Type

Firmware User Manual 38 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
The remaining error codes returned are the same as for the corresponding user API call,
see “user_nvm_write” on Page 100

Table 4-10 “Command 05H – NVM: Write Data/Program” EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be written, minimum size 1 byte, maximum size 128 bytes

Firmware User Manual 39 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.5 Command 86H – NVM: Execute
Firmware triggers execution of a NVM user program by the Host via command 86H. This code could be
previously downloaded by the BSL Command 05H – NVM: Write Data/Program.
The host initiates the NVM code execution by sending the header block message. This messages contains the
NVM address offset (offset address based on NVM start address) where to jump for code execution.
This command does not check if any valid code is placed in NVM before jumping to the given code location.
Before jumping to NVM the following steps are done:
• The BootROM configures the stack pointer to 1800.0400H. It is recommended that the NVMcode adapts the

stack pointer on demand.
• The system clock is switched to PLL at the device default or user defined frequency from NVM CS settings.
• All interrupts are cleared.
• re-enable watchdog
It is not allowed for the NVM code to make a return call. ARM LR register has been set to zero when jumping to
NVM. If BSL should be re-entered a system reset must be performed.
This command does not send any response back to the host, unless an error is detected. It performs the NVM
code execution right after receiving the header block.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
- ERR_LOG_CODE_NVM_ADDR_RANGE_INVALID
- ERR_LOG_CODE_NVM_RAM_EXEC_PARAMS_INVALID

Table 4-11 “Command 86H – NVM: Execute” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 04H

Message Type NVM execute command. Always set to 86H

Address Byte #0 (MSB) 24-bit NVM address offset where to jump for code execution.
The offset starts counting from the NVM start address 1100.0000H
Maximum supported offset: NVMSIZE-4

Address Byte #1

Address Byte #2 (LSB)

BSL20_MODE04_HEADER.

0 1 2 3 4

Length Message
Type

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

Firmware User Manual 40 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.6 Command 87H – NVM: Read Data
Firmware supports reading of data and code from the device’s internal NVM via command 87H.
The host initiates the NVM read by sending a header block message. This message contains information about
the NVM location (offset address based on NVM start address) and the number of data bytes to read. The
BootROM sends back the requested data within the terminating EOT block message. If reading from an
address which belongs to the non-linear NVM region and the page is not mapped (previously programmed),
the read is rejected. The command protects data read out with ECC2 check.
This command does not support NVM cross page boundary read. It rejects the read operation if the offset is
out of range, or offset plus count is out of range. It returns an error code in the response message.
This message supports reading of a maximum of 128 bytes from the NVM. Larger memory blocks need to be
split into multiple Command 87H – NVM: Read Data messages.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT block

Table 4-12 “Command 87H – NVM: Read Data” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM read data command. Always set to 87H

Address Byte #0(MSB) 24-bit NVM address offset where to read the data.
The offset starts counting from the NVM start address 1100.0000HAddress Byte #1

Address Byte #2(LSB)

Number 8-bit number of data bytes to read. The BootROM will send these bytes in the EOT
block. Maximum supported length: 128 bytes.

BSL20_MODE05_HEADER.

0 1 2 3 4 5

Length Message
Type Reserved Number

6

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

BSL20_MODE_EOT.

0

Length

1 2...129

DataMessage
Type

Firmware User Manual 41 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_SEGMENT_READ_PROTECTED
- ERR_LOG_CODE_NVM_ADDR_RANGE_INVALID
- ERR_LOG_CODE_ADDRESS_RANGE_CROSSING_PAGE_BOUNDARY
- ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID
- ERR_LOG_CODE_NVM_PAGE_NOT_MAPPED
- ERR_LOG_CODE_ECC2READ_ERROR

Table 4-13 “Command 87H – NVM: Read Data” EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be read, minimum size 1 byte, maximum size 128 bytes

Firmware User Manual 42 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.7 Command 88H – NVM: Erase
Firmware supports the erasure of NVM pages, NVM sectors and the overall NVM (mass erase) via command 88H.
The host initiates the NVM erase operation by sending a header block message. This message contains
information about the NVM location (an offset address based on the NVM start address) and selects the erase
granularity.
The command does not erase any NVM CS (Configuration Sector) pages.
The host waiting time required before a response is sent back:
• for page erase (128 bytes) / sector erase (4 KB): 5 ms
• for mass erase of all sectors (except NVM CS): 20 ms

Note: For command execution constraints see “NVM Protection Check for BSL Commands” on
Page HIDDEN

Note: The mass erase operation is rejected if any NVM region is write protected

Attention: The mass erase operation erases multiple sectors in parallel. However, its effectiveness is
affected by aging of memory cells. It is only allowed for engineering purposes or till end of line
programming. It is not allowed to use it in the field.

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED

Table 4-14 “Command 88H – NVM: Erase” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 05H

Message Type NVM erase command. Always set to 88H

Address Byte #0(MSB) 24-bit NVM address offset for page, sector or mass erase selection.
The offset is based on the NVM start address (1100.0000H)Address Byte #1

Address Byte #2(LSB)

Erase Type Supported erase type field values:
• 0 - NVM page erase
• 1 - NVM sector erase
• 2 - NVM mass erase

BSL20_MODE06_HEADER.

Erase
Type

0 1 2 3 4 5

Length Message
Type

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

Firmware User Manual 43 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

- ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
- ERR_LOG_CODE_BSL_RECV_BYTES_MISMATCH
- ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED
- ERR_LOG_CODE_NVM_ERASE_PARAMS_INVALID
- ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
- ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID
- ERR_LOG_CODE_ADDRESS_RANGE_CROSSING_PAGE_BOUNDARY
The remaining error codes returned are the same as for the corresponding user API calls, see:
- “user_nvm_page_erase” on Page 97
- “user_nvm_sector_erase” on Page 99

Firmware User Manual 44 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.8 Command 89H – NVM: Protection Password Set
The command supports setting individual NVM region protection password. The protection becomes active at
the following reset. The regions protected are the customer bootloader NVM region, code region, data linear
region and data mapped region.
NVM region protection includes access protection for read and/or write/erase.
A valid password must not be equal to all ‘1’ or all ‘0’, the password is checked during startup. Only if the
password is valid, the given protection gets applied to the HW. This command only updates the specified NVM
CS region password and does not apply it to the HW. This is done at the next device reset.
Direct password clearing or modification is not supported. It requires a preparatory step (see Command 98H
– NVM: Reflash Prepare) that will erase the complete NVM before erasing all NVM region passwords.
The host waiting time before a response is sent back is 8 ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Table 4-15 “Command 89H – NVM: Protection Set” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM protection set command. Always set to 89H

Password Byte #0(MSB) 32-bit password parameter.

Password Byte #1

Password Byte #2

Password Byte #3(LSB)

Options The options field is described in Table 4-16.

Table 4-16 “Command 89H – NVM: Protection Set” Header Block Options Field Description
Field Bits Description
Res 7:3 Reserved
Password Selector 2:1 Password Selector

Password assignment to NVM region:
00B Customer Bootloader Password,
01B Code Segment Password,
10B Data Mapped Segment Password,
11B Data Linear Segment Password,

Res 0 Reserved

BSL20_MODE07_HEADER.

Password
Byte #0
(MSB)

Password
Byte #1 Options

0 1 2 3 6

Length Message
Type

Password
Byte #2

Password
Byte #3
(LSB)

4 5

Firmware User Manual 45 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
See .“user_nvm_password_set” on Page 96

Firmware User Manual 46 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.9 Command 8AH – NVM: Switch Keys Set
This command allows to change the RAM test mode (see “RAM MBIST and RAM Initialization” on Page 17)
or NVM data mode (see “RAM Mode Key and NVM Data Mode Key” on Page 17) or both by programming
switching keys into the NVM configuration sector. It only allows to write the key value, any other value will be
rejected The switching keys are checked upon device boot-up and dependent on the key settings the device
configuration gets changed.
Also the command itself is protected through the key value, illegal key values will be rejected and the
command will not get executed.
The Key options field is used to:
• select a new configuration setting for RAM test behavior and/or NVM configuration (Switch key ID)
• select in which of 3 possible NVM CS pages the new configuration keys are to be stored (Switch key select)
It is recommended to repeat the command using all switch key selectors available for increased device
robustness, as upon device boot, all available keys will be evaluated. As long as at least one valid key is
installed, the bootROM configures the device in corresponding RAM and/or NVM mode.
The host waiting time before a response is sent back is 8 ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Table 4-17 “Command 8AH – NVM: Switch Keys Set” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM switch keys set command. Always set to 8AH

Key value byte #0(MSB) 0xF1 (Byte 0 of 32-bit switch key value 0xF155E01E)

Key value byte #1 0x55 (Byte 1 of 32-bit switch key value 0xF155E01E)

Key value byte #2 0xE0 (Byte 2 of 32-bit switch key value 0xF155E01E)

Key value byte#3(LSB) 0x1E (Byte 3 of 32-bit switch key value 0xF155E01E)

Key options The key options field is described in Table 4-18.

BSL20_MODE8A_HEADER.

Key value
byte #0
(MSB)

Key value
byte #1

Key
options

0 1 2 3 6

Length Message
Type

Key value
byte #2

Key value
byte #3
(LSB)

4 5

Firmware User Manual 47 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
- ERR_LOG_CODE_USERAPI_CONFIG_SECTOR_WRITE_PROTECTED
- ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED
- ERR_LOG_CODE_SWITCH_KEY_INVALID
- ERR_LOG_CODE_USERAPI_SWITCH_KEY_VALUE_OR_USAGE_INVALID
- ERR_LOG_CODE_ACCESS_AB_MODE_ERROR

Table 4-18 “Command 89H – NVM: Switch Keys Set” Header Block Key Options Field Description
Field Bits Description
Reserved 7:4 Reserved

Switch key select 3:2 Switch key selector
Select which of the keys to write to
00B location SWITCH_KEY_1, is selected
01B location SWITCH_KEY_2, is selected
10B location SWITCH_KEY_3, is selected
11B Reserved, for future use

Switch key ID 1:0 Switch key ID selector
00B RAM_MBIST_RANGE_ID, the selected key ID for RAM test is written to

the location selected by Switch key select
01B NVM_DATA_LINEAR_ID, the selected key ID for NVM data linear is

written to the location selected by Switch key select
10B RAM_MBIST_RANGE_ID and NVM_DATA_LINEAR_ID, the selected key

ID for both RAM test and NVM data linear is written to the location
selected by Switch key select

11B Reserved, For future use

Firmware User Manual 48 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.10 Command 8BH – NVM: Page Checksum Check
This command reads a complete NVM page, calculates the overall checksum and compare it with the stored
checksum for that page. Command returns success if checksum matches. Pages supported are all NVM 100TP
pages and BSL startup page.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_USER_INVALID_NVM_PAGE_NUMBER
- ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED
- ERR_LOG_CODE_CS_PAGE_CHECKSUM
- ERR_LOG_CODE_CS_PAGE_ECC2READ

Table 4-19 “Command 8BH – NVM: Page Checksum Check” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 02H

Message Type NVM calculate and check BSL checksum command. Always set to 8BH

Page Option 8-bit option value with the following meaning:
• 0-7: check one of the corresponding 100TP pages (page 0 to 7)
• 8: check BSL page
• 9-255: reserved

BSL20_MODE8B_HEADER.

Page
Option

0 1 2

Length Message
Type

Firmware User Manual 49 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.11 Command 0CH – NVM: NVM Checksum Calculation
This command calculates a target NVM range checksum using a 16 bit XOR algorithm and compares the result
with a reference checksum provided as a command parameter. The command returns with a pass indication
when the calculated checksum matches the provided reference checksum, otherwise it returns with a fail
indication. The command accepts offset address and number of pages to be checked as input. The command
rejects and reports error if the target range exceed overall NVM linear size. Check on data mapped sector is not
supported.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT Block

Table 4-20 “Command 0CH – NVM: NVM Checksum Calculation” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM calculate and check BSL checksum command. Always set to 0CH

Address Byte #0 (MSB) 24-bit NVM page aligned address offset indicating where to start the checksum
calculation.
Note: The lower 7 bits are ignored to force a page aligned start address

Address Byte #1

Address Byte #2 (LSB)

Reference Checksum
Byte #0 (MSB)

MSB of the user provided 16-bit reference checksum
LSB of the user provided 16-bit reference checksum

Reference Checksum
Byte #1 (LSB)

Table 4-21 “Command 0CH – NVM: NVM Checksum Calculation” EOT Block Field Description
Field Description
Length Number of following bytes in the EOT block. Always set to 03H

Message Type EOT block. Always set to 80H

BSL20_MODE0C_HEADER.

Address
Byte #0
(MSB)

Address
Byte #1

Address
Byte #2
(LSB)

Reference
Checksum

Byte #0
(MSB)

Length

0 1 2 3 4 5

Message
Type

Reference
Checksum

Byte #1
(LSB)

6

BSL20_MODE0C_EOT.

Number of
Pages
(MSB)

0 1 2

Length Message
Type

Number of
Pages
(LSB)

3

Firmware User Manual 50 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_BSL_NVM_CALC_CHECKSUM_MISMATCH
- ERR_LOG_CODE_NVM_ADDR_RANGE_INVALID

Number of Pages
(MSB)

16-bit number indicating the number of pages to be checked. The number must not
exceed the number of NVM pages available in linear regions.
Note: In data mapped mode, NVM page availability ends at the end of the code region
Note: The actual number to be entered has to be decremented by 1

e.g. 0x0000 means 1 page (128 bytes) is checked, 0x00FF means 256 pages (32
kbyte) get checked

Number of Pages
(LSB)

Table 4-21 “Command 0CH – NVM: NVM Checksum Calculation” EOT Block Field Description (cont’d)

Field Description

Firmware User Manual 51 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.12 Command 0DH – NVM: 100TP Write
Firmware supports programming of data in the customer-specific 100TP pages via command 0DH.
The header block message contains parameter about the 100TP page index, the offset inside that page. The
data bytes are sent within the EOT block message.
This command rejects the page write operation if the offset is out of range, or offset plus number is out of
range. It returns an error code in the response message. 100TP write supports partial non-page-aligned
programming, preserving the page data not passed as an input.
Any page programming is rejected if the page specific programming limit (100 times) is exceeded. It supports
downloading flexible number of bytes, maximum of 126 bytes, into the 100TP page. Two bytes stored at the
end of the page are reserved for page write counter and checksum. After successful write operation, the page
write counter and checksum parameter are updated .
The host waiting time before a response is sent back is 8 ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Note: Even if only a partial page gets programmed, always a complete NVM page is required to get pro-
grammed in the background in a read-modify-write sequence. Therefore, it is still possible to get an error
message ERR_LOG_CODE_NVM_VER_ERROR, as also non-modified bytes can cause verification errors.

Header Block

Table 4-22 “Command 0DH – NVM: 100TP Write” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM 100TP write command. Always set to 0DH

100TP Index 100TP Selector, supported range: 0...7

Offset Byte offset within page, valid range 0...125

Number 8-bit number of data bytes to write with the whole message. The BootROM expects to
receive these bytes in the EOT block.
Maximum supported length: 126 bytes.

BSL20_MODE0B_HEADER.

CS
Index Reserved Offset

0 1 2 3 4

Length Message
Type

5

Reserved Number

6

Firmware User Manual 52 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

EOT Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
The remaining error codes returned are the same as for the corresponding user API call, see
“user_nvm_100tp_write” on Page 90

Table 4-23 “Command 0DH – NVM: 100TP Write” EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be written, minimum size 1 byte, maximum size 126 bytes

BSL20_BSL_NVM_100TP_WRITE_EOT.

0

Length

1 2...127

DataMessage
Type

Firmware User Manual 53 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.13 Command 8EH – NVM: 100TP Read
Firmware supports reading of data from the customer-specific 100TP page via command 8EH.
The header block message contains parameter about the 100TP page index, the offset inside that page and
the number of data bytes to read. The BootROM sends the data bytes within the EOT block message.
This command doesn’t support cross page boundary read. It rejects the read operation if the offset is out of
range, or offset plus number is out of range.
The read command allows reading the internal used page programming counter. Those parameters are set
during the write operation. Details can be found in Command 0DH – NVM: 100TP Write.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT Block

Table 4-24 “Command 8EH – NVM: 100TP Read” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM 100TP read command. Always set to 8EH

100TP Index 100TP Selector, supported range: 0...7

Offset Byte offset within page, valid range 0...126.

Number Number of data bytes to read. The BootROM will send these bytes in the EOT block.
Maximum supported data length: 127 bytes.

Table 4-25 “Command 8EH – NVM: 100TP Read” EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be read, minimum size 1 byte, maximum size 127 bytes.

BSL20_MODE8E_HEADER.

CS
Index Offset

0 1 2 3 4 5

Length Message
Type Reserved Number

6

Reserved

BSL20_BSL_NVM_100TP_READ_EOT.

0

Length

1 2...128

DataMessage
Type

Firmware User Manual 54 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Returned error codes
See “user_nvm_100tp_read” on Page 89

Firmware User Manual 55 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.14 Command 8FH – BSL: NAC Set
The Firmware supports NAC data setting with the command 8FH - BSL: NAC Set.
The header block message contains the NAC value, it gets stored in the device NVM CS and is used at the next
startup. The command rejects operation if the given NAC value is out of valid range [0, 2-28]. See also “NAC
Definition” on Page 12.
The BSL NAC value currently in use can be read by the Command 90H – BSL: NAC Get command.
The host waiting time before a response is sent back is 8 ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
The remaining error codes returned are the same as for the corresponding user API call, see “user_nac_set”
on Page 253

Table 4-26 “Command 8FH – BSL: NAC Set” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 03H

Message Type BSL NAC set. Always set to 8FH

Reserved Reserved

NAC Value BSL Timeout before jumping to the User Mode Code execution. The timeout starts
counting from device reset release.
The possible values to set can be seen from “NAC Definition” on Page 12.

BSL20_BSL_NAC_SET_HEADER.

Reserved NAC Value

0 1 2 3

Length Message
Type

Firmware User Manual 56 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.15 Command 90H – BSL: NAC Get
Firmware supports reading the current configured BSL option data from the NVM CS, currently only the BSL
timeout (NAC) value, via command 90H.
The header block message contains the information request. The BootROM sends the information by an EOT
block message. The BSL NAC value can be changed with the Command 8FH – BSL: NAC Set.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT block

Returned error codes
See “user_nac_get” on Page 86

Table 4-27 “Command 90H – BSL: NAC Get” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 01H

Message Type BSL NAC set. Always set to 90H

Table 4-28 “Command 90H – BSL: NAC Get” EOT Block Description
Field Description
Length Number of following bytes in the EOT block. Always set to 03H

Message Type EOT block. Always set to 80H

Reserved Reserved

NAC Value BSL Timeout before jumping to the User Mode Code execution. The timeout starts
counting from device reset release.
The possible values to set can be seen from “NAC Definition” on Page 12.

BSL20_BSL_NAC_GET_HEADER.

0 1

Length Message
Type

BSL20_BSL_NAC_GET_EOT.

Reserved NAC Value

0 1 2 3

Length Message
Type

Firmware User Manual 57 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.16 Command 91H – FastLIN: NAD Set
Firmware supports setting of the FastLIN NAD via command 91H.
The header block message contains as a parameter the FastLIN NAD value. The given NAD address is stored in
the device NVM CS and is used for the next startup. The current NAD value can be read by the Command 92H
– FastLIN: NAD Get command.
The host waiting time before a response is sent back is 8 ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
ERR_LOG_CODE_NVM_IS_READ_PROTECTED
The remaining error codes returned are the same as for the corresponding user API call, see “user_nad_set”
on Page 255

Table 4-29 “Command 91H – FastLIN: NAD Set” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 03H

Message Type BSL NAD set. Always set to 91H

Reserved Reserved

NAD Value New NAD value to be stored in the NVM CS

BSL20_BSL_NAD_SET_HEADER.

Reserved NAD Value

0 1 2 3

Length Message
Type

Firmware User Manual 58 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.17 Command 92H – FastLIN: NAD Get
Firmware supports reading the currently configured FastLIN NAD value via command 92H.
The header block message contains the information request. The BootROM sends the current FastLIN NAD
value within the EOT block message. The given NAD address is read from the NVM CS.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

EOT Block

Returned error codes
See “user_nad_get” on Page 87

Table 4-30 “Command 92H – FastLIN: NAD Get” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 01H

Message Type BSL NAD get. Always set to 92H

Table 4-31 “Command 92H – FastLIN: NAD Get” EOT Block Field Description
Field Description
Length Number of following bytes in the EOT block. Always set to 03H

Message Type EOT block. Always set to 80H

Reserved Reserved

NAD value The configured FastLIN NAD value

BSL20_BSL_NAD_GET_HEADER.

0 1

Length Message
Type

BSL20_BSL_NAD_GET_EOT.

Reserved NAD Value

0 1 2 3

Length Message
Type

Firmware User Manual 59 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.18 Command 93H – FastLIN: Set Session Baudrate
Firmware supports changing the FastLIN baudrate for the current FastLIN BSL session via command 93H.
The header block message contains the new FastLIN baud rate selection, which will be in effect with the next
BSL command. The given parameter is not stored inside the NVM CS, and the FastLIN baud rate prior to the
change is still used for the response sent back to the host.

For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Note: When sending this command, the response to the command will use the old baudrate. The new baudrate
will be set only after the response has been transmitted.

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
- ERR_LOG_CODE_FASTLIN_BAUDRATE_SET_FAIL

Table 4-32 “Command 93H – FastLIN: Set Session Baudrate” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 02H

Message Type BSL Set session baud rate. Always set to 93H

FastLIN Baudrate
Selector

Baud rate to be used, starting with the next BSL command:
• 0 - 38.4 kBd
• 1 - 115.2 kBd
• 2 - 230.4 kBd

BSL20_BSL_FAST_LIN_BAUDRATE_SET_HEADER.

Fast-LIN
Baudrate
Selector

0 1 2

Length Message
Type

Firmware User Manual 60 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.19 Command 97H – NVM 100TP Erase
NVM 100TP Erase function provides a corrective action in case an ECC2 error is found in 100TP page. The
difference to a regular NVM page erase is that the 100TP page counter is preserved. If the page contains an
ECC2 error, the write counter is reconfigured to allow a maximum of 5 more operations.
The operation is rejected if the page write counter limit (100 times) is exceeded.
The header block message contains parameter about the 100TP page index.
After a successful erase operation, the checksum byte is invalidated to avoid copying of invalid data into
customer analog trimming registers.
The host waiting time before a response is sent back is 5ms.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
The remaining error codes returned are the same as for the corresponding user API call, see
“user_nvm_100tp_erase” on Page 258

Table 4-33 “Command 97H – NVM: 100TP Erase” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 02H

Message Type NVM 100TP erase command. Always set to 97H

100TP Index 100TP Selector, supported range: 0...7

BSL20_MODE96_HEADER.

100TP
Index

0 1 2

Length Message
Type

Firmware User Manual 61 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.20 Command 98H – NVM: Reflash Prepare
 The command prepares device for the subsequent reflash steps. If the given password matches the installed
password of the given region, it triggers erasure for all user NVM regions and region passwords.
The command is the only way to remove an already set read protection on any NVM region.
For potential command execution constraints see “NVM Protection Check for BSL Commands” on Page 31

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_USER_NVM_SEGMENT_INVALID
- ERR_LOG_CODE_USER_PROTECT_PWD_INVALID

Table 4-34 “Command 98H – NVM: Reflash Prepare” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 06H

Message Type NVM protection set command. Always set to 98H

Password Byte #0(MSB) 32-bit password parameter.

Password Byte #1

Password Byte #2

Password Byte #3(LSB)

Options The options field is described in Table 4-35.

Table 4-35 “Command 98H – NVM: Reflash Prepare” Header Block Options Field Description
Field Bits Description
Res 7:3 Reserved
Password Selector 2:1 Password Selector

Password assignment to NVM region:
00B Customer Bootloader Password,
01B Code Segment Password,
10B Data Mapped Segment Password,
11B Data Linear Segment Password,

Res 0 Reserved

BSL20_MODE98_HEADER.

Password
Byte #0
(MSB)

Password
Byte #1 Options

0 1 2 3 6

Length Message
Type

Password
Byte #2

Password
Byte #3
(LSB)

4 5

Firmware User Manual 62 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

- ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED
- ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
- ERR_LOG_CODE_NVM_ECC2_DATA_ERROR
- ERR_LOG_CODE_ECC2READ_ERROR
- ERR_LOG_CODE_NVM_VER_ERROR
- ERR_LOG_CODE_USER_PROTECT_PWD_EXISTS
- ERR_LOG_CODE_USER_NVM_SEGMENT_CONFIG_MISMATCH

Firmware User Manual 63 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.21 Command 99H – NVM: Set CBSL Size
With the BSL command “NVM: Set CBSL Size” it is possible to configure the CBSL region size from 0 to 16 kbyte.
Setting the CBSL size to 0 supports the option to have a unique code region in case a CBSL region is not
needed.

Note: this command allows for a one time configuration only, once set, the setting cannot be changed anymore!

Header Block

Returned error codes
The message can return the following error codes:
- ERR_LOG_SUCCESS
- ERR_LOG_CODE_INVALID_CUSTOMER_CONFIG_CBSL_SIZE
- ERR_LOG_CODE_CUSTOMER_CONFIG_CBSL_PROGRAMMED_OR_READ_ERR
- ERR_LOG_CODE_NVM_IS_READ_PROTECTED
- ERR_LOG_CODE_NVM_CONFIG_SECTOR_WRITE_PROTECTED
- ERR_LOG_CODE_NVM_CODE_PROGRAMMED
- ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED
- ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
- ERR_LOG_CODE_NVM_ECC2_DATA_ERROR

Table 4-36 “Command 99H – NVM: Set CBSL Size” Header Block Field Description
Field Description
Length Number of following bytes in the header block. Always set to 02H

Message Type NVM Set CBSL Size command. Always set to 99H

CBSL Size The options field is described in Table 4-37.

Table 4-37 “Command 99H – NVM: Set CBSL Size” Header Block CBSL Size Field Description
Field Description
CBSL Size CBSL Size:

00H 0 kB,
01H 4 kB,
02H 8 kB,
03H 16 kB,

BSL20_MODE99_HEADER.

CBSL Size

0 1 2

Length Message
Type

Firmware User Manual 64 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

- ERR_LOG_CODE_NVM_VER_ERROR
- ERR_LOG_CODE_BSL_RECV_BYTES_MISMATCH
- ERR_LOG_CODE_MSG_VALIDITY_FAIL

Firmware User Manual 65 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.22 End of Transmission Message (80H)
Firmware supports sending an end of transmission (EOT) message (80H), which is used to send back data
requested by a BSL command. The data field in the message can range from 1 to 128 bytes

EOT Block

Table 4-38 EOT Block Field Description
Field Description
Length Number of bytes to follow (Message Type- and Data field)

Message Type EOT block. Always set to 80H

Data Data to be read, minimum size 1 byte, maximum size 128 bytes

BSL20_MODE_EOT.

0

Length

1 2...129

DataMessage
Type

Firmware User Manual 66 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

4.3.23 Acknowledge Response Message (81H)
The firmware supports sending back an acknowledge response message (81H) if the requested BSL command
does not retrieve any data or the requested data cannot be provided. It is also sent if a problem occurred
during processing the requested command data.

Response Block

Table 4-39 Acknowledge Response Block Field Description
Field Description
Length Number of following bytes in the Response Block. Always set to 03H

Message Type Response Block. Always set to 81H

Response Code
Byte #0 (MSB)

Signed 16-bit command response code. The value is set to zero if the requested
command could be executed without any problems.

Response Code
Byte #1 (LSB)

BSL20_MODE_RESPONSE.

Message
Type

0

Response
Code

Byte #0
(MSB)

Response
Code

Byte #1
(LSB)

1 2

Length

3

Firmware User Manual 67 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 NVM

5 NVM

5.1 NVM Overview
The NVM module consists of three regions, the Config Sector, the user code region and the user data region.

5.1.1 Config Sector Region
The Config Sector holds device specific information as well the eight 100TP pages. The Config Sector is not
directly addressable by the user. To access the 100TP pages, dedicated user API functions are provided.

5.1.2 USER CODE Region
The user code region is intended to store the user application and/or constant user configurations. The user
code area is divided into two parts. The first 4KB are called customer BSL region. It is a user code area which
can be protected separately from the remaining user code. The customer BSL region is provided to store a user
defined boot up code. The remaining user code is used to store the user application code. The entire user code
area is directly addressable for read accesses. For writing/erasing data to the user code area dedicated user
API functions are provided.

5.1.3 USER DATA Region
The last 4KB of the NVM module are the user data flash region. It is intended to store dynamical application
data inside this NVM region. Constant data is recommended to be stored inside the user code area. For this
sector an EEPROM emulation is implemented offering two modes of operation, data linear mode and data
mapped mode, which are mutually exclusive to each other and get determined through the Configuration
Sector (CS) switching key evaluation during device boot-up. Using a special BSL command (“Command 8AH
– NVM: Switch Keys Set” on Page 46), the data region mode can get changed with the next reset (applies to
all reset types). The default data region type is data mapped.

5.1.3.1 Data Mapped Mode
Data mapped mode allows to automatically mitigate NVM aging effects as with every page write a page
previously marked as spare page gets mapped in and programmed. In data mapped mode, one NVM sector
(4KByte) is available for data storage.
The EEPROM emulation is being achieved by the implementation of an address translation table, the so called
MapRAM. At all accesses to the data flash, read or write, the user given address (logical) is being translated to
the physical address by using the MapRAM. The data flash is directly addressable for read accessed (through
the MapRAM), but only mapped pages return data. The read access to an unmapped page causes a NMI, to
signal to the user application the attempt of reading not existing data. For writing/erasing data to the user
data area dedicated user API functions are provided.

5.1.3.2 Data Linear Mode
Data linear mode allows direct access to all data words in the NVM data region without any mapping. In data
linear mode, no spare pages are available, therefore the available data region encompasses two NVM sectors
(8 Kbytes).

Firmware User Manual 68 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 NVM

5.1.4 NVM Password Protection
Firmware supports setting and clearing of NVM protection for different NVM regions. These regions are the
customer Bootloader NVM sectors, code and data NVM sectors. NVM region protection includes access
protection for read and/or write/erase. NVM protection passwords are 32-bit in lenght, the two MSBs are
reserved for read/write protection handling.

Figure 5-1 NVM Password Format

See also “Command 89H – NVM: Protection Password Set” on Page 44 for details on how to set or clear the
NVM protection password

5.2 NVM Write
In order to write/modify data to a NVM page inside the user code or user data area, several user API functions
are provided. From a user point of view there is no need to differentiate between the two major user NVM areas
by using the API functions. The called user API functions are identifying by the given address the target user
NVM region.
For writing a NVM page two scenarios are considered:
1.Writing a new page (erased or unmapped)
2.Writing a used page
The handling of these two scenarios, differ slightly between user code area and user data area. All the
following described actions are performed by the user API functions, it does not describe user activities.

Note: It is strongly recommended to the user that no flash operations which modify the content of the flash, like
write and erase, get interrupted at any time.

NVM Code Region and Data Linear Region
For writing a new code or data flash page the assembly buffer (AB) is opened. The AB is a small portion of SRAM
inside the NVM hardware module to buffer the content of a NVM page for write activities. The AB is filled with
0xFF, the content of an erased page. The AB is updated with the data provided by the user along with the
calling of the user API function. Then the content of the AB is written to the erased page addressed by the
address provided by the user as parameter for the user API function.
For writing a used code or data flash area the AB is opened and the data inside the used page is copied into the
assembly buffer. The AB is updated with the data provided by the user along with the calling of the user API
function. The addressed NVM page is being erased afterwards the content of the AB is written to the erased
page.

NVM_PASSWORD_FORM.

PasswordR W

31

Write protection (1: enable protection 0: disable protection)
Read protection (1: enable protection 0: disable protection)

Bit: 30 029

Password value (Bit 29..0)

Firmware User Manual 69 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 NVM

NVM Data Mapped Region
For writing a new data flash page, the user API function checks the content of the MapRAM for the given
address. Since the page is not used, the MapRAM entry is marked unused. An internally maintained spare page
points to a randomly selected erased physical data flash page. The assembly buffer (AB) is opened for the
selected physical data flash page. The AB is updated with the data provided by the user along with the calling
of the user API function. Then the content of the AB is written to the page addresses by the spare page. The
link to the physical page is entered into the MapRAM and a new spare page is randomly selected.
For writing a used data flash page, the user API function checks the content of the MapRAM for the given
address. The AB is opened and the data of the used (still mapped) page is copied into the AB. The AB is updated
with the data provided by the user along with the calling of the user API function. Then the content of the AB
is written to the page addresses by the spare page. The link to the new physical page is entered into the
MapRAM. Now the old data flash page is being erased and a new spare page is randomly selected.

NVM Data Verification
For all NVM data write scenarios the data just written is verified against the content of the AB. The user can
select whether a retry (erase-write) is performed in case the verify failed.
For the data flash along with the enabled retry feature also the Disturb Handling (DH) feature gets enabled.
The goal of the Disturb Handling is to compensate for retention losses of pages long time not updated by the
user. Retry and Disturb Handling are executed exclusively, either of the two can be executed with one user API
call but not both. In case no retry is performed and based on a pseudo-random number generator the DH is
called (in average on every 1000th write operation), a copying of a used page (not the one which was just
written) is triggered. The actions performed by copying a used page inside the data flash sector are the same
as for writing a used data flash page.

5.3 NVM Fast Write
A NVM fast write operation is provided to support timing critical NVM programming operations. It allows to
program a page with reduced retention time by giving the user control over the number of programming
pulses applied.
A complete fast write operation comprises a sequence of 4 mandatory sub-operations. The execution time per
operation is guaranteed to not exceed 400us. The operations are required to be executed in the following
order:
• NVM Fast Write Start: initiates a fast write operation on the target page.
• NVM Fast Write Continue: performs one write pulse on the target page (repeatable).
• NVM Fast Write Verify: performs a verifiy operation on the target page.
• NVM Fast Write End: finalizes the fast write operation
User APIs are provided for the above steps, refer to “User API Routines” on Page 74
The fast write flow provides only a limited margin towards NVM cell readout levels, resulting in a warranted
data retention time of 2 days. If a longer data retention time is required, the user should rewrite the target
page with full margins using the normal NVM write API during non time critical application states.

5.4 Data Flash Initialization
After a reset of the volatile memory, the MapRAM has to be recovered in order to be able to perform the
address translation for data flash accesses. The content of the MapRAM is being recovered out of the
MapBlock, control information stored along with each data flash page. If during the initialization of the

Firmware User Manual 70 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 NVM

MapRAM an error occurred, i.e. a MapBlock of a data flash page contains ECC failures or if two pages are
pointing to the same MapRAM entry (double mapping) then a repair function is called, the Service Algorithm
(SA).
The Service Algorithm (SA) is executed only during startup as part of the MapRAM initialization function and
only if failures occurred during the MapRAM initialization. The Service Algorithm scans the entire data flash
sector and tries to repair as much as possible faulty pages and pages with ECC failures in the MapBlock. The
SA further scans for double mappings, pages which point to the same MapRAM entry. Up to one double
mapping can be resolved by deleting one of the two pages. If more than one double mapping is existent the
SA is not able to repair.
The result of the Service Algorithm is being reflected in the register MEMSTAT. The user shall read this register
upon user code entry. If unrecoverable failures in the data flash are signaled, appropriate data flash recovery
has to be performed by the user, such as erase of the entire data flash sector.

Note: It is not recommended to perform any write/erase action to the data flash memory of the data memory
mapping integrity provided through the MapRAM is not assured.

Firmware User Manual 71 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 User Routines

6 User Routines
The BootROM exports some library functions to the user mode software. These library functions allow to
configure the device boot parameter and access the NVM.

6.1 List of Supported Features
• Read and write the various 100TP pages inside the NVM.
• Read, write and erase the NVM pages and sectors.
• Configure the BSL parameter (e.g. timeout configuration, FastLIN NAD address).
• Retrieve the customer identification number.
• Perform a RAM MBIST test.
• Check for ECC single- and double-errors on NVM and RAM.
All library functions are accessible over a branch table, where the user mode software can directly jump to.
The branch table is stored at a fix location and in return branches to the function implementation.
An API reference to the user routines is given in “User API Routines” on Page 74.

6.2 Reentrance Capability and Interrupts
With the exception of a few functions, no support is provided for reentrance of user API routines – user calls
must be atomic (i.e., they must not be interrupted and reentered before completion). The customer
application must not call these routines from different multitasking levels (e.g. different thread/interrupt
levels). As user API routines are potentially timing dependent, it is recommended to disable interrupts prior to
calling API routines.

6.3 Address Parameters Range Checks
Some of the user API implementations use pointers to exchange data with the API. All pointers must point to
a valid RAM address range. If the address points outside the valid RAM area, an error code is returned.
Other routines support branching or callbacks. If the callback is different from zero, it must point to a valid
NVM or RAM range, otherwise an error is returned. If the callback is equal to zero, it simply behaves like the one
without callback.
The user API functions reading or writing the NVM or RAM check the address range and report an error if the
memory region is exceeded. The number of bytes to be read or written must be greater than zero.

6.4 NVM Region Write Protection Check
The user API functions writing or erasing a page in NVM or NVM CS check for NVM region write protection, and
return an error code if the protection is set for that page.

6.5 Watchdog Handling When Using NVM Functions
The execution of all user API function is given in Appendix E, "Execution time of BootROM User API
Functions" on page 136. The execution time of user API functions has to be observed for watchdog timeout
calculations, especially when NVM operations are involved (programming or erase). Prior to invoking NVM
write routines, it is recommended to do the following:
• Perform a short-open-window trigger to WDT1 before a NVM operation is called
• Invoke NVM write routine

Firmware User Manual 72 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 User Routines

• Reconfigure watchdog for normal operation
Doing this ensures that watchdog will not expire and cause reset in the middle of a longer NVM operation.

6.6 Interrupts
System interrupts are not used by any BootROM functions during startup or when any user APIs are executed.
Interrupts are disabled by default. Customer software must enable interrupts and service system interrupts in
a normal fashion, which means installing interrupt vectors at the correct locations for the system CPU.

6.7 Resources used by user API functions
Listed below is a list of user API functions with what kind of HW resources they use.
The stack usage of the functions is listed in Appendix B, "Stack usage of user API functions" on page 128.

Table 6-1 Resources used by User API functions
User API function Non Re-entrance NVM HW GPT12 timer

user_adc1_offset_calibration

user_nvm_page_checksum_check X X (read)

user_nvm_service_algorithm X X (write)

user_nvm_mapram_recover X

user_nvm_mapram_init X

user_nvm_ecc_events_get

user_nvm_ecc_check X X (read)

user_nac_get X (read)

user_nac_set X X (write)

user_nad_get X (read)

user_nad_set X X (write)

user_nvm_100tp_read X X (read)

user_nvm_100tp_write /
user_nvm_100tp_erase

X X (write)

user_nvm_config_get

user_nvm_protect_get

user_nvm_protect_set /
user_nvm_protect_clear

X X (read)

user_nvm_password_set X X (write)

user_nvm_ready_poll

user_nvm_page_erase /
user_nvm_page_erase_branch /
user_nvm_sector_erase

X X (write)

user_nvm_page_verify /
user_nvm_page_erase_verify /
user_nvm_sector_erase_verify

X X (write)

Firmware User Manual 73 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 User Routines

user_nvm_write /
user_nvm_write_branch /
user_nvm_write_fast /
user_nvm_write_fast_retry /
user_nvm_write_fast_abort /

X X (write)

user_ram_mbist X

user_nvm_clk_factor_set

user_vbg_temperature_get X (read)

user_dflash_mode

Table 6-1 Resources used by User API functions
User API function Non Re-entrance NVM HW GPT12 timer

Firmware User Manual 74 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8 User API Routines
These routines are exported by the BootROM to the customer user mode software.
User API Routines support features like accessing memory resources like NVM and 100TP pages. They also
support to configure some protection mechanism and BSL parameters. The API functions check the valid
parameter range, which is depending on the device.

Table 6-2 User API Routines Function Overview
Name Description
user_adc1_offset_calibration This user API function will perform ADC1 core calibration in

software mode. It updates ADC1_OFFSETCALIB register if the
calibration algorithm is executed successfully. It returns
ERR_LOG_ERROR in case a proper calibration offset value can not
be found.

user_dflash_mode This function returns the current configured NVM data region
mode.

user_nac_get This user API function reads out the NAC value that is currently
configured in the non volatile device configuration memory.

user_nac_set This user API function configures the NAC value in the non volatile
device configuration memory.

user_nad_get This user API function reads out the FASTLIN NAD value that is
currently configured in the non volatile device configuration
memory.

user_nad_set This user API function configures the FASTLIN NAD value in the
non volatile device configuration memory.

user_nvm_100tp_erase This user API function erases all data in one of the 100TP NVM
pages preserving the write counter. The erase operation is not
executed in case the NVM code segment write protection is set
and a dedicated protection error is returned. In case the erase
operation is executed, the page is initialized with a wrong
checksum.

user_nvm_100tp_read This user API function reads data from the customer accessible
configuration pages (100TP). The read address is relative inside
the configuration NVM area (8x one page, 1024 bytes). Invalid
parameters (page number out of range, offset plus count larger
than page boundary, count is 0) returns an error, and no read
operation is performed.

Firmware User Manual 75 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

user_nvm_100tp_write This user API function writes data to the configuration NVM, the
write address is relative inside the configuration NVM area (8x one
page, 1024 bytes). The function supports partial page
programming, preserving the page data not passed as an input.
The function performs an implicit update of the page checksum
and write counter. The write counter is increased by 1 at each
write operation, and when 99 is reached an error is reported. The
function does not allow the customer to change the page
checksum or write counter. Any invalid parameters (page number
out of range, offset plus count larger than page boundary, count
is 0) returns an error, and no write operation is performed. The
function also returns an error in case the NVM code segment is
write protected. The write counter and the page checksum are
located in the last two bytes of the page.

user_nvm_clk_factor_set This user API function sets the SCU_SYSCON0.NVMCLKFAC
divider

user_nvm_config_get This user API function allows to gather the NVM configuration,
this is the number of sectors for customer bsl region, code region
and data region.

user_nvm_ecc_check This user API function checks for single and double ECC checking
over the entire NVM on all NVM linear and NVM non-linear sectors.
The NVM data sector configuration is taken into account. Any
existing ECC errors are cleared before the read starts. Upon exit,
the function will clear the current ECC status in the NVM module.
The API rejects operation in case any read protection is set on the
user NVM.

user_nvm_ecc_events_get This user API function checks if any single or double ECC events
have occurred during runtime. It reports any single or double ECC
event coming from NVM. The corresponding last double ECC
failure address is returned via modified pointer.

user_nvm_mapram_init This user API function triggers NVM FSM mapRAM update
sequence from mapped sector.

user_nvm_mapram_recover This user API function will manually do mapRAM initialization by
extracting mapping info on good mapped pages. This can be
called if NVM SA fails repairing a corrupted mapped data sector. A
request to initialize the mapRAM for a not available sector as well
as for a linearly mapped sector is ignored. Double mapped pages
or more are counted as faulty pages.

user_nvm_page_checksum_check This user API function will perform a checksum check on the
specified NVM page

Table 6-2 User API Routines Function Overview (cont’d)

Name Description

Firmware User Manual 76 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

user_nvm_page_erase This user API function erases a given NVM page (address). In case
of an unsused (new) page in non-linear sector, the function does
nothing and returns success. In case of erasing a page in linear
sector, the function should always perform the erase.

user_nvm_page_erase_branch This user API function erases a given NVM page (address) and
branches to an address (branch_address) for code execution
during the NVM operation.

user_nvm_page_erase_verify This function verifies with HardRead Erased margin on a page to
check that all bits are erased. For linear region the check is done
on the page pointed by the address provided as input. In case the
routine target a mapped page, the check is performed on the
current spare page.

user_nvm_page_verify This function reads the physical page content into the NVM
assembly buffer using Normal Read Margins. The content of the
assembly buffer is then used to check the physical page content
by using the hardread margins erase and written.

user_nvm_password_set This user API function sets password for NVM region individually.
The API does not change the protection state for a region where
password protection is currently installed.

user_nvm_protect_clear This user API function clears write protection for any NVM region
individually, except CBSL. Read protection changes is ignored.
The API changes the protection state for a region, but does not
update the installed password in config sector.

user_nvm_protect_get This user API function checks for the hardware current applied
NVM protection status.

user_nvm_protect_set This user API function sets write protection for any NVM region
individually, except CBSL. The API changes the protection state
for a region, but does not update the installed password in
configuration sector. It is not possible to change read protection
for the segments. It will be silently ignored.

user_nvm_ready_poll This user API function checks for the readiness of the NVM
module. The API is called within the NVM programming or erase
branch callback operation. It checks if the NVM operation has
finished and the callback could return to the NVM routine.

user_nvm_sector_erase This user API function erases the NVM sector-wise. It operates on
user code and NVM data region.

user_nvm_sector_erase_verify This function performs a page-by-page erase check for a full
sector. Each page is checked against Hardread-Margin-Erased.

user_nvm_service_algorithm This user API function will run service algorithm on a mapped
NVM sector. Only if a mapped sector is configured, NVM SA will be
executed.

Table 6-2 User API Routines Function Overview (cont’d)

Name Description

Firmware User Manual 77 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.1 user_nvm_write_fast_start

Description
This user API function starts the NVM faster than normal programming sequence (see also
user_nvm_write_fast_continue, user_nvm_write_fast_verify and user_nvm_write_fast_end). It

user_nvm_write This user API function programs the NVM. It operates on the user
NVM, as well as on the user data NVM. The API shall write a
number of bytes (count) from the source (data) to the NVM
location (address) with the programming options (options). The
options provide parameters like disturb handling and fail
scenario handling.

user_nvm_write_branch This user API function programs the NVM. It operates on the user
NVM, as well as on the user data NVM. The API shall write a
number of bytes (count) from the source (data) to the NVM
location (address) with the programming options (options).
During the NVM operation the program execution branches to a
given SRAM location (branch_address) and continues code
execution from there. The options provide parameters like
disturb handling and fail scenario handling.

user_nvm_write_fast_continue This user API function executes the second step of fast write
sequence.

user_nvm_write_fast_end This user API function executes the last step of fast write
sequence.

user_nvm_write_fast_start This user API function starts the NVM faster than normal
programming sequence (see also
user_nvm_write_fast_continue(), user_nvm_write_fast_verify()
and user_nvm_write_fast_end()). It operates on the NVM code
region, as well as on the NVM data region. The API shall write a
number of bytes (count) from the source (data) to the NVM
location (address). It supports partial non-page-aligned
programming, preserving the page data not passed as an input.
Crossing page boundary is not supported. This function rejects
with an error in case the accessed NVM page is write protected.

user_nvm_write_fast_verify This user API function executes the third step of fast write
sequence.

user_ram_mbist This user API function performs a MBIST on the integrated SRAM.
The range to check is provided as parameter. The function rejects
the call in case the parameter exceeds the RAM address range.

user_vbg_temperature_get This user API function returns the V bandgap temperature hot or
cold. The customer can do temperature compensation in
software based on these values, as the VBG is the reference for
the ADC.

Table 6-2 User API Routines Function Overview (cont’d)

Name Description

Firmware User Manual 78 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

operates on the NVM code region, as well as on the NVM data region. The API shall write a number of bytes
(count) from the source (data) to the NVM location (address). It supports partial non-page-aligned
programming, preserving the page data not passed as an input. Crossing page boundary is not supported. This
function rejects with an error in case the accessed NVM page is write protected.
Failing to start the fast write sequence with user_nvm_write_fast_start will result in the error code
ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE when calling the subsequent fast write functions.

Prototype
int32_t user_nvm_write_fast_start (
uint32_t address
const void * data
uint32_t count

)

Parameters

Return Values

Data Type Name Description Dir
uint32_t address NVM address where to program the data. Range is

0x11000000 + device NVM size.
-

const void * data Pointer to the data where to read the programming data.
Pointer must be within valid RAM range (0x18000000 +
device RAM size) or an error code is returned.

-

uint32_t count Amount of bytes to program. Range from 1-128 bytes. -

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful fast write operation start, otherwise a

negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_PARAM_INVALID,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_ADDRESS_RANGE_CROSSING_PAGE_BOUNDARY,
ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPBLOCK_ERROR,
ERR_LOG_CODE_NVM_MAPRAM_UNKNOWN_TYPE_USAGE,
ERR_LOG_CODE_NVM_FAST_PROG_NOT_ALLOWED

Firmware User Manual 79 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a
reentrant context.

6.8.2 user_nvm_write_fast_continue

Description
This user API function executes the second step of fast write sequence.
It can only be called after successful sequence start by prior call to user_nvm_write_fast_start, otherwise
the operation is rejected returning error ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE.
Calling the API in reentrant context is not allowed. Only when the current step is completed, can the user
execute the next fast write step. Otherwise, the operation is rejected returning
ERR_LOG_CODE_NVM_WRITE_FAST_SEMAPHORE_RESERVED.
Calls to this function can be performed multiple times although upon reaching a certain number it will return
ERR_LOG_CODE_NVM_WRITE_FAST_REACH_MAX_RETRIES, meaning no further NVM write attempts are
being made.

Prototype
int32_t user_nvm_write_fast_continue (void)

Parameters
void

Return Values

6.8.3 user_nvm_write_fast_verify

Description
This user API function executes the third step of fast write sequence.
It can only be called after successful sequence start by prior call to user_nvm_write_fast_continue,
otherwise the operation is rejected returning error ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE.
Calling the API in reentrant context is not allowed. Only when the current step is completed, can the user
execute the next fast write step. Otherwise, the operation is rejected returning
ERR_LOG_CODE_NVM_WRITE_FAST_SEMAPHORE_RESERVED.

Data Type Description
int32_t ERR_LOG_SUCCESS if fast write continue operation was OK, otherwise a negative

value. Returned status code can be one of the following: ERR_LOG_SUCCESS
ERR_LOG_CODE_NVM_WRITE_FAST_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE,
ERR_LOG_CODE_NVM_WRITE_FAST_REACH_MAX_RETRIES

Firmware User Manual 80 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Calls to this function should be placed after the scheduled calls to nvm_write_fast_continue() have been
completed in order to determine current data quality.
To finish the entire process the user must then call user_nvm_write_fast_end.

Prototype
int32_t user_nvm_write_fast_verify (void)

Parameters
void

Return Values

6.8.4 user_nvm_write_fast_end

Description
This user API function executes the last step of fast write sequence.
Calling the API in reentrant context is not allowed, the operation would be rejected returning error
ERR_LOG_CODE_NVM_WRITE_FAST_SEMAPHORE_RESERVED.
It can only be called after successful sequence initially start by prior call to user_nvm_write_fast_verify,
otherwise the operation is rejected returning error ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE.
If called without prior call to user_nvm_write_fast_verify, no data would be written.

Prototype
int32_t user_nvm_write_fast_end (void)

Parameters
void

Data Type Description
int32_t ERR_LOG_SUCCESS if fast write continue operation was OK, otherwise a negative

value. Returned status code can be one of the following: ERR_LOG_SUCCESS
ERR_LOG_CODE_NVM_WRITE_FAST_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE

Firmware User Manual 81 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

6.8.5 user_adc1_offset_calibration

Description
This user API function will perform ADC1 core calibration in software mode. It updates ADC1_OFFSETCALIB
register if the calibration algorithm is executed successfully. It returns ERR_LOG_ERROR in case a proper
calibration offset value can not be found.

Prototype
int32_t user_adc1_offset_calibration (void)

Parameters
void

Return Values

6.8.6 user_nvm_page_checksum_check

Description
This user API function will perform a checksum check on the specified NVM page
This function rejects with an error in case the NVM page is out of range.

Prototype
int32_t user_nvm_page_checksum_check (
uint32_t page_no

)

Data Type Description
int32_t ERR_LOG_SUCCESS if the fast write end was OK, otherwise a negative value.

Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_NVM_WRITE_FAST_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_WRITE_FAST_WRONG_MODE,
ERR_LOG_CODE_NVM_MAPRAM_MANUAL_SPARE_PAGE_FAILED

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been executed successfully, Returned

status code can be one of the following: ERR_LOG_SUCCESS, ERR_LOG_ERROR

Firmware User Manual 82 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Parameters

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context. Upon exit, the function will clear the current ECC status.

6.8.7 user_nvm_service_algorithm

Description
This user API function will run service algorithm on a mapped NVM sector. Only if a mapped sector is
configured, NVM SA will be executed.
This function rejects with an error in case the NVM data mapped region is write protected.

Prototype
int32_t user_nvm_service_algorithm (
uint32_t * sa_result

)

Parameters

Data Type Name Description Dir
uint32_t page_no Page to check, which is one of the 100TP pages (0..7) or

NVM CS page containing BSL (startup) settings (8).
-

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully, otherwise a

negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_INVALID_NVM_PAGE_NUMBER,
ERR_LOG_CODE_CS_PAGE_CHECKSUM, ERR_LOG_CODE_CS_PAGE_ECC2READ,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED

Data Type Name Description Dir
uint32_t * sa_result Pointer where to store the result of the NVM SA run.

Format follows the same layout as lower 8 bits of register
SCU_MEMSTAT, but it doesn't update SCU_MEMSTAT.
Since the API executes SA explicitly, for a completely good
mapped sector, SASTATUS bit field of the returned result
will be 11B, which is not soft error in this context. And
SECTORINFO bit field of the returned result will always be
the mapped sector. Pointer must be located in RAM.

-

Firmware User Manual 83 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.8 user_nvm_mapram_recover

Description
This user API function will manually do mapRAM initialization by extracting mapping info on good mapped
pages. This can be called if NVM SA fails repairing a corrupted mapped data sector. A request to initialize the
mapRAM for a not available sector as well as for a linearly mapped sector is ignored. Double mapped pages or
more are counted as faulty pages.

Prototype
int32_t user_nvm_mapram_recover (void)

Parameters
void

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully, otherwise a

negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_USER_NO_NVM_MAPPED_SECTOR

Data Type Description
int32_t A positive number (including 0) tells the amount of good mapped pages. In case of

other errors, a negative number is returned as an error code. Returned status code
can be one of the following: ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_USER_NO_NVM_MAPPED_SECTOR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR

Firmware User Manual 84 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.9 user_nvm_mapram_init

Description
This user API function triggers NVM FSM mapRAM update sequence from mapped sector.

Prototype
int32_t user_nvm_mapram_init (void)

Parameters
void

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.10 user_nvm_ecc_events_get

Description
This user API function checks if any single or double ECC events have occurred during runtime. It reports any
single or double ECC event coming from NVM. The corresponding last double ECC failure address is returned
via modified pointer.
Pointer must be within valid RAM range (0x18000000 + device RAM size) or an error code is returned.

Prototype
int32_t user_nvm_ecc_events_get (
uint32_t * pNVM_Addr

)

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully, otherwise a

negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_INIT_MAPRAM_SECTOR,
ERR_LOG_CODE_USER_NO_NVM_MAPPED_SECTOR

Firmware User Manual 85 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Parameters

Return Values

Remarks
Upon exit, the function will clear the current ECC status. Any NVM write/erase/verify operation will also clear
the ECC status.

6.8.11 user_nvm_ecc_check

Description
This user API function checks for single and double ECC checking over the entire NVM on all NVM linear and
NVM non-linear sectors. The NVM data sector configuration is taken into account. Any existing ECC errors are
cleared before the read starts. Upon exit, the function will clear the current ECC status in the NVM module. The
API rejects operation in case any read protection is set on the user NVM.

Prototype
int32_t user_nvm_ecc_check (void)

Parameters
void

Data Type Name Description Dir
uint32_t * pNVM_Addr Pointer where to store the ECC2 failing NVM address. This

pointer stays untouched in case no NVM ECC2 errors was
detected. The address format is: NVM area:
0001000100000XXXXXXXXXXXXXXXX000b, where X is the
NVM offset NVM 100TP area: 0x100000XY, where X = 100TP
page number, Y = block offset inside the page Internal NVM
CS area: 0x01000000

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case no single or double ECC event have occurred, A

negative error code for single, double or single and double ECC errors A negative
error code if the NVM semaphore is not free. This function will also fail if NVM is still
busy with another operation. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_SINGLE_ECC_EVENT_OCCURRED,
ERR_LOG_CODE_DOUBLE_ECC_EVENT_OCCURRED,
ERR_LOG_CODE_SINGLE_AND_DOUBLE_ECC_EVENT_OCCURRED,

Firmware User Manual 86 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
This routine does not provide the ECC error address. Please use the user_nvm_ecc_events_get routines to
retrieve the addresses. It is not allowed to be called by NVM callback routines or any interrupt or multi-
threaded environment in a re-entrant context.
Upon exit, the function will clear the current ECC status

6.8.12 user_nac_get

Description
This user API function reads out the NAC value that is currently configured in the non volatile device
configuration memory.

Prototype
int32_t user_nac_get (
uint8_t * nac_value

)

Parameters

Return Values

Data Type Description
int32_t ERR_LOG_SUCCESS in case no single or double ECC event have occurred, otherwise

a negative error code for single, double or single and double ECC errors. Returned
status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_SINGLE_ECC_EVENT_OCCURRED,
ERR_LOG_CODE_DOUBLE_ECC_EVENT_OCCURRED,
ERR_LOG_CODE_SINGLE_AND_DOUBLE_ECC_EVENT_OCCURRED,
ERR_LOG_CODE_NVM_SEGMENT_READ_PROTECTED

Data Type Name Description Dir
uint8_t * nac_value Pointer where to store the BSL NAC value read from the

device configuration sector. Pointer must be located in
RAM. NAC value is the one found in the configuration
memory.

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully, otherwise a

negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,

Firmware User Manual 87 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.13 user_nac_set

Description
This user API function configures the NAC value in the non volatile device configuration memory.
This function rejects with an error in case the NVM code segment is write protected or NAC value is out of valid
range [0, 2-28, 255].

Prototype
int32_t user_nac_set (
uint8_t nac

)

Parameters

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.14 user_nad_get

Description
This user API function reads out the FASTLIN NAD value that is currently configured in the non volatile device
configuration memory.

Prototype
int32_t user_nad_get (
uint8_t * nad_value

Data Type Name Description Dir
uint8_t nac NAC value to be stored in the device configuration

memory.
-

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful write operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_NVM_CONFIG_SECTOR_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NAC_VALUE_INVALID,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR, ERR_LOG_CODE_NVM_VER_ERROR

Firmware User Manual 88 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

)

Parameters

Return Values

6.8.15 user_nad_set

Description
This user API function configures the FASTLIN NAD value in the non volatile device configuration memory.
This function rejects with an error in case the NVM code segment is write protected.

Prototype
int32_t user_nad_set (
uint8_t nad

)

Parameters

Return Values

Data Type Name Description Dir
uint8_t * nad_value Pointer where to store the BSL nad value read from the

device configuration sector. Pointer must be located in
RAM.

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully, otherwise a

negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,

Data Type Name Description Dir
uint8_t nad FASTLIN NAD value to be stored in the device

configuration memory. Valid range is from 0x00-0xFF.
-

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful write operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_NVM_CONFIG_SECTOR_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR, ERR_LOG_CODE_NVM_VER_ERROR

Firmware User Manual 89 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.16 user_nvm_100tp_read

Description
This user API function reads data from the customer accessible configuration pages (100TP). The read address
is relative inside the configuration NVM area (8x one page, 1024 bytes). Invalid parameters (page number out
of range, offset plus count larger than page boundary, count is 0) returns an error, and no read operation is
performed.
A maximum number of 127 bytes can be read by this function (including the page counter).

Prototype
int32_t user_nvm_100tp_read (
uint32_t page_num
uint32_t offset
void * data
uint32_t count

)

Parameters

Return Values

Data Type Name Description Dir
uint32_t page_num Page number where to read from. Valid range: 0 to 7 -

uint32_t offset Byte offset inside the selected page address, where to
start reading from. Maximum is 127 bytes. If count plus
offset is larger than 127, an error code is returned.

-

void * data Data pointer where to store the data read. Pointer plus
valid count must be within valid RAM range or an error
code is returned

-

uint32_t count Amount of data bytes to read. If count is zero, there is no
operation performed and an error code is returned.
Maximum is 127 bytes.

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful read operation, otherwise a negative error

code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_100TP_PAGE_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED

Firmware User Manual 90 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.17 user_nvm_100tp_write

Description
This user API function writes data to the configuration NVM, the write address is relative inside the
configuration NVM area (8x one page, 1024 bytes). The function supports partial page programming,
preserving the page data not passed as an input. The function performs an implicit update of the page
checksum and write counter. The write counter is increased by 1 at each write operation, and when 99 is
reached an error is reported. The function does not allow the customer to change the page checksum or write
counter. Any invalid parameters (page number out of range, offset plus count larger than page boundary,
count is 0) returns an error, and no write operation is performed. The function also returns an error in case the
NVM code segment is write protected. The write counter and the page checksum are located in the last two
bytes of the page.
The maximum value for writing is 126 bytes.

Prototype
int32_t user_nvm_100tp_write (
uint32_t page_num
uint32_t offset
const void * data
uint32_t count

)

Parameters

Data Type Name Description Dir
uint32_t page_num Page number where to write to. Valid range: 0 to 7 -

uint32_t offset Byte offset inside the selected page address, where to
start writing. Maximum is 126 bytes.

-

const void * data Data pointer where to read the data to write. Pointer plus
valid count must be within valid RAM range or an error
code is returned

-

uint32_t count Amount of data bytes to write. If count is zero, there is no
write operation done and an error code is returned.
Maximum is 126 bytes.

-

Firmware User Manual 91 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.18 user_nvm_100tp_erase

Description
This user API function erases all data in one of the 100TP NVM pages preserving the write counter. The erase
operation is not executed in case the NVM code segment write protection is set and a dedicated protection
error is returned. In case the erase operation is executed, the page is initialized with a wrong checksum.
In order to restore the write counter, the routine needs to access the existing data stored into the page. If page
contains ECC2 error, write counter is reconfigured to allow a maximum of 5 more write operations.
To avoid triggering an ECC2 NMI, the write counter read is performed using an special internal read flow

Prototype
int32_t user_nvm_100tp_erase (
uint32_t page_num

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful write operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_NVM_CONFIG_SECTOR_WRITE_PROTECTED,
ERR_LOG_CODE_100TP_PAGE_INVALID,
ERR_LOG_CODE_100TP_WRITE_COUNT_EXCEEDED,
ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR, ERR_LOG_CODE_ECC2READ_ERROR

Data Type Name Description Dir
uint32_t page_num 100TP page number to erase. Valid range: 0 to 7 -

Firmware User Manual 92 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.19 user_nvm_config_get

Description
This user API function allows to gather the NVM configuration, this is the number of sectors for customer bsl
region, code region and data region.
Pointer must be within valid RAM range or an error code is returned.

Prototype
int32_t user_nvm_config_get (
uint32_t * cbsl_nvm_size
uint32_t * code_nvm_size
uint32_t * data_nvm_size

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful write operation, otherwise a negative

error code. Exception is ERR_LOG_CODE_NVM_100TP_PAGE_CNT_ERROR, which
means page is erased OK but ECC2 error was detected while reading write counter.
Write counter is set so it allows 5 more writes to the page. Returned status code can
be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_NVM_100TP_PAGE_CNT_ERROR,
ERR_LOG_CODE_100TP_PAGE_INVALID,
ERR_LOG_CODE_NVM_CONFIG_SECTOR_WRITE_PROTECTED
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR, ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_100TP_WRITE_COUNT_EXCEEDED
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR

Data Type Name Description Dir
uint32_t * cbsl_nvm_size Pointer where to store the retrieved NVM cbsl size. Valid

RAM range is 0x18000000 + device RAM size.
-

Firmware User Manual 93 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

6.8.20 user_nvm_protect_get

Description
This user API function checks for the hardware current applied NVM protection status.

Prototype
uint32_t user_nvm_protect_get (
NVM_PASSWORD_SEGMENT_t segment

)

Parameters

Return Values

uint32_t * code_nvm_size Pointer where to store the retrieved NVM code size. Valid
RAM range is 0x18000000 + device RAM size.

-

uint32_t * data_nvm_size Pointer where to store the retrieved NVM data size. Valid
RAM range is 0x18000000 + device RAM size. The value
returned can reflect either number of mapped or linear
data sectors. NVM configuration is checked inside the
routine.

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful configuration retrieve operation,

otherwise a negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID

Data Type Name Description Dir
NVM_PASSWORD_SEG
MENT_t

segment Which NVM segment to retrieve the current password
protection status

-

Data Type Description
uint32_t Current protection status of the NVM segment selected: Protection disabled:

0x00000000 read protection enabled: 0x80000000 Write protection enabled:
0x40000000 Read and write protection enabled: 0xC0000000 Segment not
recognized: 0xFFFFFFFF

Data Type Name Description Dir

Firmware User Manual 94 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.21 user_nvm_protect_set

Description
This user API function sets write protection for any NVM region individually, except CBSL. The API changes the
protection state for a region, but does not update the installed password in configuration sector. It is not
possible to change read protection for the segments. It will be silently ignored.
A valid password must be provided in case any valid NVM protection password is installed for this region.
Set bit 30 of the password parameter to enable write protection. The bits (0...29) of the password parameter
shall match the password installed before. In case no valid protection password is currently installed, bits
(0...29) are ignored. Bit 31 (read protection) is ignored.
If selected data segment doesn't match the NVM data segment configuration a mismatch error is returned.

Prototype
int32_t user_nvm_protect_set (
uint32_t password
NVM_PASSWORD_SEGMENT_t segment

)

Parameters

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

Data Type Name Description Dir
uint32_t password Protection password to apply on the given segment -

NVM_PASSWORD_SEG
MENT_t

segment Segment which should be password protected -

Data Type Description
int32_t ERR_LOG_SUCCESS in case the password could be successfully applied, otherwise

a negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_NVM_SEGMENT_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD,
ERR_LOG_CODE_USER_NVM_SEGMENT_CONFIG_MISMATCH,
ERR_LOG_CODE_ECC2READ_ERROR

Firmware User Manual 95 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.22 user_nvm_protect_clear

Description
This user API function clears write protection for any NVM region individually, except CBSL. Read protection
changes is ignored. The API changes the protection state for a region, but does not update the installed
password in config sector.
A valid password must be provided in case any valid NVM protection password is installed for this region. Set
bit 30 of the password parameter to disable write protection. The bits (0...29) of the password parameter shall
match the password installed. Bit 31 (read protection) is ignored/not supported.
The password parameter is ignored in case no valid protection password is currently installed.
If selected data segment doesn't match the NVM data segment configuration a mismatch error is returned.

Prototype
int32_t user_nvm_protect_clear (
uint32_t password
NVM_PASSWORD_SEGMENT_t segment

)

Parameters

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

Data Type Name Description Dir
uint32_t password Protection password to apply on the given segment -

NVM_PASSWORD_SEG
MENT_t

segment Segment which should be password protected -

Data Type Description
int32_t ERR_LOG_SUCCESS in case the password could be successfully applied, otherwise

a negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_NVM_SEGMENT_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD,
ERR_LOG_CODE_USER_NVM_SEGMENT_CONFIG_MISMATCH,
ERR_LOG_CODE_ECC2READ_ERROR

Firmware User Manual 96 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.8.23 user_nvm_password_set

Description
This user API function sets password for NVM region individually. The API does not change the protection state
for a region where password protection is currently installed.
The password parameter consists of a 30-bit password (bit 0...29) and two additional protection bits (bit 30 +
bit 31).
A valid password must be different from 0x3FFFFFFF and 0x00000000 (bit 0...29). The two MS bits in the
password contain the protection type, where setting bit 31 activates the read protection and setting bit 30
activates the write protection. A non-compliant password is rejected.
A password can only be applied in case no valid password is currently set for the requested region.
Before updating starts, all interrupts including NMI are temporarily disabled and any NVM and NVM CS
protection is disabled.
If selected data segment doesn't match the NVM data segment configuration a mismatch error is returned.

Prototype
int32_t user_nvm_password_set (
uint32_t password
NVM_PASSWORD_SEGMENT_t segment

)

Parameters

Return Values

Data Type Name Description Dir
uint32_t password Protection password to apply on the given segment -

NVM_PASSWORD_SEG
MENT_t

segment Segment which should be password protected -

Data Type Description
int32_t ERR_LOG_SUCCESS in case the password could be successfully applied, otherwise

a negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_NVM_SEGMENT_INVALID,
ERR_LOG_CODE_USER_PROTECT_PWD_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR, ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_USER_PROTECT_PWD_EXISTS,
ERR_LOG_CODE_USER_NVM_SEGMENT_CONFIG_MISMATCH,
ERR_LOG_CODE_ECC2READ_ERROR, ERR_LOG_CODE_NVM_IS_BUSY

Firmware User Manual 97 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.24 user_nvm_ready_poll

Description
This user API function checks for the readiness of the NVM module. The API is called within the NVM
programming or erase branch callback operation. It checks if the NVM operation has finished and the callback
could return to the NVM routine.

Prototype
bool user_nvm_ready_poll (void)

Parameters
void

Return Values

6.8.25 user_nvm_page_erase

Description
This user API function erases a given NVM page (address). In case of an unsused (new) page in non-linear
sector, the function does nothing and returns success. In case of erasing a page in linear sector, the function
should always perform the erase.
This function rejects with an error in case the accessed NVM page is write protected.

Prototype
int32_t user_nvm_page_erase (
uint32_t address

)

Parameters

Data Type Description
bool True in case the requested NVM operation is already finished, otherwise false.

Data Type Name Description Dir
uint32_t address Address of the NVM page to erase. Non-aligned address is

accepted. Range is 0x11000000 + device NVM size.
-

Firmware User Manual 98 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
This function does not support erasing any 100TP pages.
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.26 user_nvm_page_erase_branch

Description
This user API function erases a given NVM page (address) and branches to an address (branch_address) for
code execution during the NVM operation.
This function rejects with an error in case the accessed NVM page is write protected.

Prototype
int32_t user_nvm_page_erase_branch (
uint32_t address
user_callback_t branch_address

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful erase operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR

Data Type Name Description Dir
uint32_t address Address of the NVM page to erase. Non-aligned address is

accepted. Range is 0x11000000 + device NVM size.
-

user_callback_t branch_address Function callback address where to jump while waiting for
the NVM module to finish the erase operation. Address
must be within valid RAM range (0x18000000 + device RAM
size). RAM end address - 4 is the upper limit.

-

Firmware User Manual 99 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
This function does not support to erase any 100TP pages.
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.27 user_nvm_sector_erase

Description
This user API function erases the NVM sector-wise. It operates on user code and NVM data region.
This function rejects with an error in case the NVM region the address belongs to is write protected.

Prototype
int32_t user_nvm_sector_erase (
uint32_t address

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful erase operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR

Data Type Name Description Dir
uint32_t address Address of the NVM sector to erase. Non-aligned address is

accepted. Range is 0x11000000 + device NVM size.
-

Firmware User Manual 100 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.
In case of non linear sector , the sector erase function has to run mapram init starting from a random position
to get a random spare page (for the next programming).

6.8.28 user_nvm_write

Description
This user API function programs the NVM. It operates on the user NVM, as well as on the user data NVM. The API
shall write a number of bytes (count) from the source (data) to the NVM location (address) with the
programming options (options). The options provide parameters like disturb handling and fail scenario
handling.
Supported option parameters:
• NVM_PROG_CORR_ACT (for linear sector: it enables retry. for mapped sector: it enables retry and disturb

handling)
• NVM_PROG_NO_FAILPAGE_ERASE (only support mapped sector: when program new page verify fails,

without the option, the newly programmed data is erased; with the option, the faulty page will remain.
When program used page verify fails, without the option, the newly programmed data will be erased, the
old page remains; With the option, the old page is erased, the newly programmed faulty page remains and
MapRAM swapped.)

It supports partial non-page-aligned programming, preserving the page data not passed as an input. Crossing
page boundary is not supported.
This function rejects with an error in case the accessed NVM page is write protected.

Prototype
int32_t user_nvm_write (
uint32_t address
const void * data
uint32_t count
uint32_t options

)

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful erase operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_NVM_INIT_MAPRAM_SECTOR
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR

Firmware User Manual 101 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Parameters

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.29 user_nvm_write_branch

Description

This user API function programs the NVM. It operates on the user NVM, as well as on the user data NVM. The API
shall write a number of bytes (count) from the source (data) to the NVM location (address) with the
programming options (options). During the NVM operation the program execution branches to a given SRAM
location (branch_address) and continues code execution from there. The options provide parameters like
disturb handling and fail scenario handling.

Data Type Name Description Dir
uint32_t address NVM address where to program the data. Range is

0x11000000 + device NVM size.
-

const void * data Pointer to the data where to read the programming data.
Pointer must be within valid RAM range (0x18000000 +
device RAM size) or an error code is returned.

-

uint32_t count Amount of bytes to program. Range from 1-128 bytes. -

uint32_t options NVM programming options (e.g. NVM_PROG_CORR_ACT
or NVM_PROG_NO_FAILPAGE_ERASE)

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful write operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_PARAM_INVALID,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_ADDRESS_RANGE_CROSSING_PAGE_BOUNDARY,
ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_MAPRAM_UNKNOWN_TYPE_USAGE,
ERR_LOG_CODE_NVM_ECC2_MAPBLOCK_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR,
ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_NVM_PROG_MAPRAM_INIT_FAIL,
ERR_LOG_CODE_NVM_PROG_VERIFY_MAPRAM_INIT_FAIL

Firmware User Manual 102 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Supported option parameters:
• NVM_PROG_CORR_ACT (for linear sector: it enables retry. for mapped sector: it enables retry and disturb

handling)
• NVM_PROG_NO_FAILPAGE_ERASE (only support mapped sector: when program new page verify fails,

without the option, the newly programmed data is erased; with the option, the faulty page will remain.
When program used page verify fails, without the option, the newly programmed data will be erased, the
old page remains; With the option, the old page is erased, the newly programmed faulty page remains and
MapRAM swapped.)

It supports partial non-page-aligned programming, preserving the page data not passed as an input. Crossing
page boundary is not supported.
This function rejects with an error in case the accessed NVM page is write protected.

Prototype
int32_t user_nvm_write_branch (
uint32_t address
const void * data
uint32_t count
uint32_t options
user_callback_t branch_address

)

Parameters

Data Type Name Description Dir
uint32_t address NVM address where to program the data. Range is

0x11000000 + device NVM size.
-

const void * data Pointer to the data where to read the programming data.
Pointer must be within valid RAM range (0x18000000 +
device RAM size) or an error code is returned.

-

uint32_t count Amount of bytes to program. Range from 1-128 bytes. -

uint32_t options NVM programming options (e.g. NVM_PROG_CORR_ACT
or NVM_PROG_NO_FAILPAGE_ERASE)

-

user_callback_t branch_address Function callback address where to jump while waiting for
the NVM module to finish the program operation. Address
must be within RAM range (0x18000000 + device RAM size).
RAM end address - 4 is the upper limit.

-

Firmware User Manual 103 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.30 user_ram_mbist

Description
This user API function performs a MBIST on the integrated SRAM. The range to check is provided as parameter.
The function rejects the call in case the parameter exceeds the RAM address range.

Prototype
int32_t user_ram_mbist (
uint32_t start_address
uint32_t end_address

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful write operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_PARAM_INVALID,
ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_ADDRESS_RANGE_CROSSING_PAGE_BOUNDARY,
ERR_LOG_CODE_MEM_READWRITE_PARAMS_INVALID,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_MAPRAM_UNKNOWN_TYPE_USAGE,
ERR_LOG_CODE_NVM_ECC2_MAPBLOCK_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR,
ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_NVM_PROG_MAPRAM_INIT_FAIL,
ERR_LOG_CODE_NVM_PROG_VERIFY_MAPRAM_INIT_FAIL,

Data Type Name Description Dir
uint32_t start_address RAM memory address where to start the MBIST test. Range

is 0x18000000 + device RAM size.
-

uint32_t end_address RAM memory address till where to perform the MBIST test.
Range is 0x18000000 + device RAM size.

-

Firmware User Manual 104 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
Customer needs to pay attention: the BootROM stack pointer must not get destroyed.

6.8.31 user_nvm_clk_factor_set

Description
This user API function sets the SCU_SYSCON0.NVMCLKFAC divider

Prototype
void user_nvm_clk_factor_set (
uint8_t clk_factor

)

Parameters

6.8.32 user_vbg_temperature_get

Description
This user API function returns the V bandgap temperature hot or cold. The customer can do temperature
compensation in software based on these values, as the VBG is the reference for the ADC.

Prototype
int32_t user_vbg_temperature_get (
VBG_TEMP_SELECT_t temp_select
uint32_t * temperature

)

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful MBIST execution, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_MBIST_RAM_RANGE_INVALID, ERR_LOG_CODE_MBIST_FAILED,
ERR_LOG_CODE_MBIST_TIMEOUT

Data Type Name Description Dir
uint8_t clk_factor value is shifted and set to the corresponding bit fields of

the register. All the other bit fields are not touched. No
checks are done on the value. It is the responsibility of the
user to know the range based on device technical data
sheet.

-

Firmware User Manual 105 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Parameters

Return Values

6.8.33 user_nvm_page_verify

Description
This function reads the physical page content into the NVM assembly buffer using Normal Read Margins. The
content of the assembly buffer is then used to check the physical page content by using the hardread margins
erase and written.
This function rejects with an error in case the accessed NVM page belongs to a write protected region.

Prototype
int32_t user_nvm_page_verify (
uint32_t address

)

Parameters

Data Type Name Description Dir
VBG_TEMP_SELECT_t temp_select Selects the temperature to read -

uint32_t * temperature Pointer where to store the temperature value read from
the device configuration sector. Pointer must be located
in RAM.

-

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully, otherwise a

negative error code. Returned error code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID,
ERR_LOG_CODE_USERAPI_INVALID_VBG_TEMP_SELECT

Data Type Name Description Dir
uint32_t address Address of the NVM page to check. Non-aligned address is

accepted. Range is 0x11000000 + device NVM size.
-

Firmware User Manual 106 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.34 user_nvm_page_erase_verify

Description
This function verifies with HardRead Erased margin on a page to check that all bits are erased. For linear region
the check is done on the page pointed by the address provided as input. In case the routine target a mapped
page, the check is performed on the current spare page.
This function rejects with an error in case the accessed NVM page belongs to a write protected region.

Prototype
int32_t user_nvm_page_erase_verify (
uint32_t address

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful verify operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_NVM_VER_ERROR, ERR_LOG_CODE_NVM_PAGE_NOT_MAPPED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPBLOCK_ERROR

Data Type Name Description Dir
uint32_t address Address of the NVM page to check. Non-aligned address is

accepted. Range is 0x11000000 + device NVM size.
-

Firmware User Manual 107 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.35 user_nvm_sector_erase_verify

Description
This function performs a page-by-page erase check for a full sector. Each page is checked against Hardread-
Margin-Erased.
This function rejects with an error in case the accessed NVM page belongs to a write protected region.

Prototype
int32_t user_nvm_sector_erase_verify (
uint32_t address

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful verify operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_NVM_PAGE_IS_MAPPED,
ERR_LOG_CODE_NVM_SPARE_PAGE_IS_NOT_MAPPED,
ERR_LOG_CODE_NVM_VER_ERROR, ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR

Data Type Name Description Dir
uint32_t address Address of the NVM sector to check. Non-aligned address

is accepted, as the used sector range will be the sector
where the address belongs. Range is 0x11000000 + device
NVM size.

-

Firmware User Manual 108 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.8.36 user_dflash_mode

Description
This function returns the current configured NVM data region mode.

Prototype
NVM_DFLASH_SECTOR_MODE_t user_dflash_mode (void)

Parameters
void

Return Values

6.9 User API support routines
These routines are only to be used by the user API as support functions.

Data Type Description
int32_t ERR_LOG_SUCCESS in case of successful verify operation, otherwise a negative

error code. Returned status code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_USER_PROTECT_NVM_WRITE_PROTECTED,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID,
ERR_LOG_CODE_NVM_PAGE_IS_MAPPED, ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR

Data Type Description
NVM_DFLASH_SECTOR
_MODE_t

Any of the data sector types defined in

Firmware User Manual 109 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.9.1 misc_handle_nvm_segment_data_mode_check

Description
This function checks the current configured NVM data mode configuration against the provided segment. NVM
data mode has to match or an error is returned.

Prototype
int32_t misc_handle_nvm_segment_data_mode_check (

Table 6-3 User API support routines Function Overview
Name Description
get_nac_from_nvm_cs This user API support function gets the BSL NAC value from NVM

CS.

handle_segment_protection_get This user API support function checks the protection for an
address to NVM. Address must point into valid NVM area as
address it not checked beforehand..

misc_handle_nvm_segment_data_mod
e_check

This function checks the current configured NVM data mode
configuration against the provided segment. NVM data mode has
to match or an error is returned.

misc_nvm_reflash_prepare This function will try to erase a complete segment and password
+ its lower priority segments and related passwords. All segments
are supported. The NVM data mode is checked and an error is
returned in case a wrong NVM data segment is selected. Only if
the selected segments are sucessfully erased, then the
passwords will also be erased. Basically the function will exit at
the first failure.

misc_user_nvm_password_set This function sets a read and/or write protection for any NVM
region individually. The API does not change the protection state
for a region where password protection is currently installed.

misc_user_nvm_switch_key_set This user API function updates the specified switch key in NVM
config sector. Note that the setting in CS_SWITCH_KEY_CTRL_EN
must be configured correctly to enable the use of the function.
The specified key value must match the specified one or it will fail.

misc_user_read_nvm_password_ecc This user API support function reads the specified segment
password and checks for ECC2 errors.

valid_pointer_ram_range_check This user API support function checks for valid pointer range. It
must always point into valid RAM area. Although the valid
address/pointer range for 4KB RAM is from 0x18000000 to
0x18000FFF, this routine actually checks (start_addr + length),
where length is the number of bytes that can be programmed. So
the valid range is 0x18000000 to 0x18001000. Length must be > 0.
If the real address/pointer range shall be checked, start_addr and
end_addr+1 must be provided.

Firmware User Manual 110 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

NVM_PASSWORD_SEGMENT_t segment
)

Parameters

Return Values

6.9.2 misc_nvm_reflash_prepare

Description
This function will try to erase a complete segment and password + its lower priority segments and related
passwords. All segments are supported. The NVM data mode is checked and an error is returned in case a
wrong NVM data segment is selected. Only if the selected segments are sucessfully erased, then the passwords
will also be erased. Basically the function will exit at the first failure.
The function rejects with an error in case a wrong password is provided vs the one installed for the chosen
segment or if no password is installed. Segments and passwords will not be erased for the segments where no
password is installed.

Prototype
int32_t misc_nvm_reflash_prepare (
uint32_t password
NVM_PASSWORD_SEGMENT_t segment

)

Parameters

Data Type Name Description Dir
NVM_PASSWORD_SEG
MENT_t

segment Segment to check the NVM configuration against -

Data Type Description
int32_t ERR_LOG_SUCCESS in case the password could be successfully applied, otherwise

a negative error code.

Data Type Name Description Dir
uint32_t password Current active password for the segment. A valid

password parameter consists of a 30-bit password (bits
0...29), bits 30 and 31 are ignored.

-

NVM_PASSWORD_SEG
MENT_t

segment Segment where password should be cleared -

Firmware User Manual 111 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

6.9.3 misc_user_nvm_password_set

Description
This function sets a read and/or write protection for any NVM region individually. The API does not change the
protection state for a region where password protection is currently installed.
The password parameter consists of a 30-bit password (bit 0...29) and two additional protection bits (bit 30 +
bit 31).
A valid password must be different from 0x3FFFFFFF and 0x00000000 (bit 0...29). The two MS bits in the
password contain the protection type, where setting bit 31 activates the read protection and setting bit 30
activates the write protection. A non-compliant password is rejected.
A password can only be applied in case no valid password is currently set for the requested region.
Before updating starts, all interrupts including NMI are temporarily disabled and any NVM and NVM CS
protection is disabled.
If selected data segment doesn't match the NVM data segment configuration a mismatch error is returned.

Prototype
int32_t misc_user_nvm_password_set (
uint32_t password
NVM_PASSWORD_SEGMENT_t segment

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case the password could be successfully applied, otherwise

a negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_NVM_SEGMENT_INVALID
ERR_LOG_CODE_NO_PASSWORD_EXISTS,
ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD,
ERR_LOG_CODE_NVM_INIT_MAPRAM_SECTOR
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_USER_NVM_SEGMENT_CONFIG_MISMATCH

Data Type Name Description Dir
uint32_t password Protection password to apply on the given segment -

NVM_PASSWORD_SEG
MENT_t

segment Segment which should be password protected -

Firmware User Manual 112 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

Remarks
It is not allowed to be called by NVM callback routines or any interrupt or multi-threaded environment in a re-
entrant context.

6.9.4 misc_user_nvm_switch_key_set

Description
This user API function updates the specified switch key in NVM config sector. Note that the setting in
CS_SWITCH_KEY_CTRL_EN must be configured correctly to enable the use of the function. The specified key
value must match the specified one or it will fail.

Prototype
int32_t misc_user_nvm_switch_key_set (
NVM_SWITCH_ID_SELECT_t switch_id
NVM_SWITCH_KEY_SELECT_t key_select
uint32_t key_value

)

Parameters

Data Type Description
int32_t ERR_LOG_SUCCESS in case the password could be successfully applied, otherwise

a negative error code. Returned status code can be one of the following:
ERR_LOG_SUCCESS, ERR_LOG_CODE_USER_NVM_SEGMENT_INVALID,
ERR_LOG_CODE_USER_PROTECT_PWD_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR,
ERR_LOG_CODE_NVM_ECC2_DATA_ERROR, ERR_LOG_CODE_NVM_VER_ERROR,
ERR_LOG_CODE_USER_PROTECT_PWD_EXISTS,
ERR_LOG_CODE_USER_NVM_SEGMENT_CONFIG_MISMATCH

Data Type Name Description Dir
NVM_SWITCH_ID_SEL
ECT_t

switch_id -

NVM_SWITCH_KEY_SE
LECT_t

key_select -

uint32_t key_value -

Firmware User Manual 113 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Return Values

6.9.5 handle_segment_protection_get

Description
This user API support function checks the protection for an address to NVM. Address must point into valid NVM
area as address it not checked beforehand..

Prototype
uint32_t handle_segment_protection_get (
uint32_t address

)

Parameters

Return Values

6.9.6 valid_pointer_ram_range_check

Description

This user API support function checks for valid pointer range. It must always point into valid RAM area.
Although the valid address/pointer range for 4KB RAM is from 0x18000000 to 0x18000FFF, this routine actually
checks (start_addr + length), where length is the number of bytes that can be programmed. So the valid range
is 0x18000000 to 0x18001000. Length must be > 0. If the real address/pointer range shall be checked,
start_addr and end_addr+1 must be provided.

Data Type Description
int32_t ERR_LOG_SUCCESS in case the function has been called successfully and written

the key value to the selected key. Otherwise a negative error code. Returned status
code can be one of the following: ERR_LOG_SUCCESS,
ERR_LOG_CODE_USERAPI_CONFIG_SECTOR_WRITE_PROTECTED,
ERR_LOG_CODE_SWITCH_KEY_INVALID,
ERR_LOG_CODE_USERAPI_SWITCH_KEY_VALUE_OR_USAGE_INVALID,
ERR_LOG_CODE_NVM_SEMAPHORE_RESERVED,
ERR_LOG_CODE_ACCESS_AB_MODE_ERROR

Data Type Name Description Dir
uint32_t address Address where in NVM to check which protection that is

enabled for the NVM segment.
-

Data Type Description
uint32_t Protection type for the segment (read, write, none). It follows the normal password

format

Firmware User Manual 114 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Prototype
int32_t valid_pointer_ram_range_check (
uint32_t ptr_address
uint32_t length

)

Parameters

Return Values

6.9.7 get_nac_from_nvm_cs

Description
This user API support function gets the BSL NAC value from NVM CS.

Prototype
uint8_t get_nac_from_nvm_cs (void)

Parameters
void

Return Values

6.9.8 misc_user_read_nvm_password_ecc

Description
This user API support function reads the specified segment password and checks for ECC2 errors.

Data Type Name Description Dir
uint32_t ptr_address Start address of RAM range to check. -

uint32_t length Function Length of the RAM range to check -

Data Type Description
int32_t Negative error if range is not valid or length is zero, otherwise ERR_LOG_SUCCESS

Data Type Description
uint8_t The NAC value found in NVM CS

Firmware User Manual 115 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Prototype
int32_t misc_user_read_nvm_password_ecc (
NVM_PASSWORD_SEGMENT_t segment
uint32_t * read_nvm_password

)

Parameters

Return Values

6.10 NVM Protection API types

6.10.1 user_callback_t

Description
User NVM callback function

Prototype
typedef void(* user_callback_t) (void)

6.11 Data Types and Structure Reference
This chapter contains the reference of data types and structures of all modules.

6.11.1 Enumerator Reference
This chapter contains the Enumerator reference.

Data Type Name Description Dir
NVM_PASSWORD_SEG
MENT_t

segment The segment from where the password should be read -

uint32_t * read_nvm_pass
word

Pointer to a location where to store the read password -

Data Type Description
int32_t Negative error if ECC2 error happened, otherwise ERR_LOG_SUCCESS.

Table 6-4 Enumerator Overview
Name Description
NVM_SWITCH_ID_SELECT_t NVM switch ID selection

NVM_SWITCH_KEY_SELECT_t NVM switch keys selection

NVM_PASSWORD_SEGMENT_t NVM protection API password segment

Firmware User Manual 116 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

6.11.1.1 NVM_SWITCH_ID_SELECT_t

Description
NVM switch ID selection

Prototype
typedef enum
{
STARTUP_RAM_MBIST_RANGE_ID,
NVM_DATA_LINEAR_ID,
NVM_DATA_LINEAR_AND_RAM_MBIST_RANGE_ID,

}NVM_SWITCH_ID_SELECT_t;

Parameters

6.11.1.2 NVM_SWITCH_KEY_SELECT_t

Description
NVM switch keys selection

Prototype
typedef enum
{
SWITCH_KEY_1,
SWITCH_KEY_2,
SWITCH_KEY_3,

}NVM_SWITCH_KEY_SELECT_t;

VBG_TEMP_SELECT_t VBG Temperature selection.

NVM_DFLASH_SECTOR_MODE_t User API NVM data region mode

Name Value Description
STARTUP_RAM_MBIST_RANGE_ID RAM MBIST reduced range ID selected

NVM_DATA_LINEAR_ID NVM mapped/linear data sector switch ID
selected

NVM_DATA_LINEAR_AND_RAM_MBIST_R
ANGE_ID

Both NVM data linear and RAM MBIST keys
selected

Table 6-4 Enumerator Overview (cont’d)

Name Description

Firmware User Manual 117 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Parameters

6.11.1.3 NVM_PASSWORD_SEGMENT_t

Description
NVM protection API password segment

Prototype
typedef enum
{
NVM_PASSWORD_SEGMENT_BOOT,
NVM_PASSWORD_SEGMENT_CODE,
NVM_PASSWORD_SEGMENT_DATA,
NVM_PASSWORD_SEGMENT_DATA_LINEAR,
NVM_PASSWORD_SEGMENT_LAST,

}NVM_PASSWORD_SEGMENT_t;

Parameters

6.11.1.4 VBG_TEMP_SELECT_t

Description
VBG Temperature selection.

Prototype
typedef enum
{
VBG_TEMP_HOT,

Name Value Description
SWITCH_KEY_1 Switch key 1 selected

SWITCH_KEY_2 Switch key 2 selected

SWITCH_KEY_3 Switch key 3 selected

Name Value Description
NVM_PASSWORD_SEGMENT_BOOT NVM password for customer segment, used for

customer bootloader

NVM_PASSWORD_SEGMENT_CODE NVM password for customer code segment,
which is not used by the customer bootloader.

NVM_PASSWORD_SEGMENT_DATA NVM password for customer data mapped
segment.

NVM_PASSWORD_SEGMENT_DATA_LINE
AR

NVM password for customer data linear
segment.

NVM_PASSWORD_SEGMENT_LAST Can be ignored and should not be used

Firmware User Manual 118 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

VBG_TEMP_COLD,
}VBG_TEMP_SELECT_t;

Parameters

6.11.1.5 NVM_DFLASH_SECTOR_MODE_t

Description
User API NVM data region mode

Prototype
typedef enum
{
NVM_MAPPED_DATA_SECTOR_MODE,
NVM_LINEAR_DATA_SECTOR_MODE,
NVM_BAD_DATA_SECTOR_MODE,

}NVM_DFLASH_SECTOR_MODE_t;

Parameters

6.11.2 Constant Reference
This chapter contains the Constant reference.

Name Value Description
VBG_TEMP_HOT VBG Temperature selection Hot

VBG_TEMP_COLD VBG Temperature selection Cold

Name Value Description
NVM_MAPPED_DATA_SECTOR_MODE NVM is in mapped data sector mode.

NVM_LINEAR_DATA_SECTOR_MODE NVM is in linear data sector mode.

NVM_BAD_DATA_SECTOR_MODE Bad NVM data sector configuration.

Table 6-5 Constant Overview
Name Value Description
NVM_PASSWORD_PROTECTION_NO
NE

0x00000000u NVM protection API password protection status
NVM segment no protection enabled

NVM_PASSWORD_PROTECTION_RE
AD

0x80000000u NVM segment read protection enabled

NVM_PASSWORD_PROTECTION_WR
ITE

0x40000000u NVM segment write protection enabled

NVM_PROG_FLAG_NULL 0x00u NVM programming options No options provided

Firmware User Manual 119 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

NVM_PROG_CORR_ACT 0x02u Disturb handling and retry enabled (data mapped
mode only)

NVM_PROG_NO_FAILPAGE_ERASE 0x04u Erasing of programmed data on fail enabled (data
linear mode only)

Table 6-5 Constant Overview (cont’d)

Name Value Description

Firmware User Manual 120 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Terminology

#
100-Time
Programming
(100TP)

The BootROM offers eight 100-time programmable pages to the user mode software. The
size of a 100TP page is 128 bytes. The last two bytes of each 100TP page store the
programming counter, followed by the page checksum byte.

A
AB Assembly Buffer

API Application Programming Interface

B
BootROM Device-internal ROM code that the CPU executes directly after reset release

BSL Boot Strap Loader

BSL command
message

The BootROM receives these messages via FastLIN. A message of this kind contains
commands and related data. A complete command could consist of multiple messages.
The BootROM processes and execute these commands.

BSL response
message

The BootROM replies to BSL command messages by BSL response messages. A response
message contains requested data or an error code. The response message format and
content depend on the given command.

C
CS Configuration sector, see also NVM CS

D
Data block Part of the BSL command message. This block follows a header block for data download

commands.A data block could also be part of a BSL response message if the header block
message requests read-out of some data from the device. The last data block is always
followed by an EOT block.

E
EOT block End of Transmission (EOT) block, part of the BSL command message or BSL response

message. This block follows a data block to terminate a larger data download message.

F
FastLIN FastLIN is a LIN enhancement supporting higher baud rates of up 230.4 kBd. This rate is

higher than the standard LIN. This mode is especially useful during back-end
programming, where faster programming time is desirable.

fINTOSC internal oscillator (80MHz)

G

H
HAL Hardware Abstraction Layer. This software layer abstracts all module-specific hardware

registers by API functions. It performs all device hardware register (SFR) accesses, which
includes timing of critical register accesses and polling mechanisms.
This layer exports its functionality to other software modules by means of API functions.

Firmware User Manual 121 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Header block Part of the BSL command message. The host initiates a command by sending the header
block. Some commands require further data transmission, during which the header block
is followed by one or multiple data blocks and a terminating EOT block.

Host The host communicates with the BootROM device over the LIN interface. The host sends
BSL command messages and receives BSL response messages.

I

J

K

L
LIN Local Interconnect Network

M
MBIST Memory Built-In Self-Test (MBIST writes and reads all locations of the RAM to ensure that

its cells are operating correctly)

N
NAC No Activity Counter (millisecond timeout counter polling BSL LIN before jumping to user

mode code execution)

NAD Node Address for Diagnostics (LIN protocol parameter)

NVM Non-Volatile Memory (device-internal)

NVM CS NVM configuration sector. The BootROM uses one NVM sector to store device-specific
calibration and trimming values. It configures such values on the device during startup.
This sector also contains the One Time programmable and 100 Time programmable
sectors, which are offered to the user mode software.
The configuration sector is not directly accessible by user mode software.

O
OSC Oscillator

P
POR Power-On Reset

PLL Phase-Locked Loop

Q

R
Response block Part of the BSL response message, in which the corresponding BSL command message

does not request read-out of data. This block reports the command execution status.

ROM Read Only Memory

S
SA Service Algorithm

SCU System Control Unit

Firmware User Manual 122 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

SFR Special Function Register (CPU memory-mapped device hardware registers)

SWD Serial Wire Debug

T
Tearing Safe
Programming

The mapping mechanism of the NVM module is intended to be used like a log-structured
file system: When a page is programmed in the cell array, the old values are not physically
overwritten, but a different physical page (the spare page) in the same sector is
programmed in fact. If the programming fails (e.g. because of power loss during the erase
or write procedure), either the old values are still present in the cell array or the verified
new values are present in the cell array. The firmware therefore can program a single page
in a tearing safe way.

U
User mode code Customer application code for download and execution in NVM.

UART Universal asynchronous receiver/transmitter

V
VTOR Vector Table Offset Register

W
WDT WatchDog Timer

Firmware User Manual 123 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Appendix A Error Codes
This chapter provides a table that lists all available error codes.

Table A-1 List of Possible Errors during Startup
Error Name Error Code Errors Description
ERR_LOG_ERROR -1D Standard Error

ERR_LOG_CODE_WRONG_BSL_MEDIA
_TYPE

-2D Mismatch in configured BSL protocol media type and
received media type in media driver

ERR_LOG_CODE_NVM_SEGMENT_REA
D_PROTECTED

-3D Trying to read from a NVM segment that is read
protected

ERR_LOG_CODE_MEM_READWRITE_P
ARAMS_INVALID

-4D Invalid parameters to RAM/NVM/NVM_CS read/write
command

ERR_LOG_CODE_BSL_RECV_BYTES_MI
SMATCH

-5D Mismatch in received number of bytes for the BSL
message

ERR_LOG_CODE_NVM_IS_READ_PROT
ECTED

-6D BSL message is not allowed access when NVM is read
protected on any region

ERR_LOG_CODE_NVM_ERASE_PARAM
S_INVALID

-7D Invalid BSL parameters to NVM erase command

ERR_LOG_CODE_INVALID_CUSTOMER
_CONFIG_CBSL_SIZE

-8D Specified customer configured CBSL size is invalid

ERR_LOG_CODE_CUSTOMER_CONFIG
_CBSL_PROGRAMMED_OR_READ_ERR

-9D Customer configured CBSL size already programmed
or read error

ERR_LOG_CODE_NVM_CODE_PROGRA
MMED

-10D Customer configured CBSL size can't be changed
when code is present in NVM

ERR_LOG_CODE_BSL_NVM_CALC_CHE
CKSUM_MISMATCH

-11D BSL: Calculated NVM checksum does not match

ERR_LOG_CODE_FASTLIN_BAUDRATE
_SET_FAIL

-12D Invalid FastLIN baudrate parameter or current BSL
interface is not FASTLIN

ERR_LOG_CODE_BSL_USER_MODE_P
ATCH_NOT_ALLOWED

-13D Patch ID exceeded. Not allowed to execute bootROM
patch in user mode

ERR_LOG_CODE_BSL_PATCH_ID_EXC
EEDED

-14D Max number of patch IDs exceeded

ERR_LOG_CODE_SFR_WRITE_PARAMS
_INVALID

-15D Invalid SFR write parameters

ERR_LOG_CODE_BSL_NVM_UNLOCK_
PASSWD_INVALID

-16D Invalid NVM unlock password received

ERR_LOG_CODE_MSG_VALIDITY_FAIL -17D BSL message validity failed

ERR_LOG_CODE_USER_PATCH_INVALI
D_ADDRESS

-18D Patch execution: Patch address is not within NVM CS,
NVM or RAM range or not programmed

ERR_LOG_CODE_TEST_HTOL_FBI_MA
TH_FAIL

-19D Factory test HTOL functional burn-in math test failed

Firmware User Manual 124 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

ERR_LOG_CODE_TEST_HTOL_FBI_MD
U_FAIL

-20D Factory test HTOL functional burn-in MDU test failed

ERR_LOG_CODE_TEST_HTOL_FBI_RA
M_FAIL

-21D Factory test HTOL functional burn-in XRAM
verification failed

ERR_LOG_CODE_FTEST_BOOTROM_SI
GNATURE_READ

-22D Factory test BootROM signature read error

ERR_LOG_CODE_TEST_HTOL_PWR_L
OW_TEST_FAIL

-23D Factory test power module test, P0.1 was not low

ERR_LOG_CODE_TEST_HTOL_PWR_HI
GH_TEST_FAIL

-24D Factory test power module test, P0.1 was not high

ERR_LOG_CODE_NVM_WRITE_FAST_
WRONG_MODE

-25D NVM is not in fast write mode

ERR_LOG_CODE_NVM_WRITE_FAST_S
EMAPHORE_RESERVED

-26D {

ERR_LOG_CODE_MEM_ADDR_RANGE_
INVALID

-27D Memory address range is invalid

ERR_LOG_CODE_NVM_SEMAPHORE_R
ESERVED

-28D NVM semaphore already reserved

ERR_LOG_CODE_ECC1_READ_ERROR -29D ECC1READ error happened

ERR_LOG_CODE_NVM_PAGE_IS_MAPP
ED

-30D NVM erase page/sector verify: Page is mapped / not
erased

ERR_LOG_CODE_NVM_SPARE_PAGE_I
S_NOT_MAPPED

-31D NVM erase page verify: Spare page is not mapped

ERR_LOG_CODE_ECC2READ_ERROR -32D ECC2READ error generated when reading NVM data

ERR_LOG_CODE_NVM_FAST_PROG_N
OT_ALLOWED

-33D Fast programming option not allowed for used NVM
page

ERR_LOG_CODE_NVM_VER_ERROR -34D 2 or more bit errors detected in NVM page when
verifying NVM data

ERR_LOG_CODE_NVM_PROG_MAPRA
M_INIT_FAIL

-35D NVM mapRAM update failed after mapped page
programming or after execution of DH

ERR_LOG_CODE_NVM_PROG_VERIFY_
MAPRAM_INIT_FAIL

-36D NVM programming and mapRAM init update failed
after mapped page programming

ERR_LOG_CODE_NVM_ECC2_MAPBLO
CK_ERROR

-37D ECC2 mapBlock error generated while reading from a
NVM page

ERR_LOG_CODE_NVM_MAPRAM_UNK
NOWN_TYPE_USAGE

-38D MAPRAM physical page number for a given logical
sector/page is larger than the number of physical
pages in a sector

ERR_LOG_CODE_NVM_ECC2_MAPRAM
_ERROR

-39D ECC2 mapRAM error generated while reading
mapRAM

Table A-1 List of Possible Errors during Startup (cont’d)

Error Name Error Code Errors Description

Firmware User Manual 125 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

ERR_LOG_CODE_NVM_PAGE_NOT_MA
PPED

-40D NVM page is not mapped

ERR_LOG_CODE_NVM_INIT_MAPRAM_
SECTOR

-41D Mapped page has double mapping or ECC2 error
when trying to init mapRAM

ERR_LOG_CODE_NVM_MAPRAM_MAN
UAL_SPARE_PAGE_FAILED

-42D NVM manual spare page selection failed as part of
mapRAM update

ERR_LOG_CODE_NVM_WRITE_FAST_R
EACH_MAX_RETRIES

-43D Reach maximum tries

ERR_LOG_CODE_ACCESS_AB_MODE_
ERROR

-44D Error when setting the assembly buffer to mode 1 or 2

ERR_LOG_CODE_NVM_ECC2_DATA_ER
ROR

-45D ECC2 data error generated while reading from a NVM
page

ERR_LOG_CODE_ADDRESS_RANGE_C
ROSSING_PAGE_BOUNDARY

-46D Attempt to access NVM address range which is
crossing NVM page boundary

ERR_LOG_CODE_100TP_WRITE_COUN
T_EXCEEDED

-47D NVM 100TP page write count was exceeded

ERR_LOG_CODE_100TP_PAGE_INVALI
D

-48D Attempt to access NVM 100TP page address outside of
the valid range

ERR_LOG_CODE_NVM_100TP_PAGE_C
NT_ERROR

-49D NVM 100TP page write counter contains ECC2 error.
Value hardcoded according to documentation

ERR_LOG_CODE_CS_PAGE_CHECKSU
M

-50D NVM config sector checksum calculation failed

ERR_LOG_CODE_CS_PAGE_ECC2READ -51D NVM config sector checksum calculation failure based
on NVM ECC2 error

ERR_LOG_CODE_ANA_TRIM_ADDRESS -52D Analog trimming address check failed

ERR_LOG_CODE_ANA_TRIM_MAGIC -53D Analog trimming data block contains wrong magic
field

ERR_LOG_CODE_ANA_TRIM_NOT_ALI
GNED

-54D Analog trimming data block is not 32-bit aligned

ERR_LOG_CODE_AM_TRIM_INTERNAL
_1

-55D First phase internal analog module trimming failed

ERR_LOG_CODE_AM_TRIM_INTERNAL
_2

-56D Second phase internal analog module trimming
failed

ERR_LOG_CODE_AM_TRIM_CUSTOME
R

-57D Customer analog module trimming phase failed

ERR_LOG_CODE_AM_TRIM_DATA_NOT
_VALID

-58D Analog module trimming data validity check failed

ERR_LOG_CODE_ARM_VECT_HARDFA
ULT_EXCEP

-59D ARM hard fault exception was triggered

Table A-1 List of Possible Errors during Startup (cont’d)

Error Name Error Code Errors Description

Firmware User Manual 126 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

ERR_LOG_CODE_NVM_APPLY_PROTEC
TION_FAIL

-60D Applying of NVM protection from NVM CS failed during
bootup

ERR_LOG_CODE_VIRGIN -61D Device is detected as virgin during startup

ERR_LOG_CODE_NVM_NOT_AVAILABL
E

-62D NVM HW is not available during startup

ERR_LOG_CODE_MBIST_FAILED -63D MBIST test detected an error

ERR_LOG_CODE_MBIST_TIMEOUT -64D MBIST test failed due to timeout

ERR_LOG_CODE_USER_INVALID_NVM
_PAGE_NUMBER

-65D Invalid NVM page number

ERR_LOG_CODE_USER_INVALID_VBG_
TEMP_SELECT

-66D user_vbg_temperature_get(): Wrong selection of vbg
temperature

ERR_LOG_CODE_NAC_VALUE_INVALID -67D NAC value out of range in user_nac_set()

ERR_LOG_CODE_MBIST_RAM_RANGE_
INVALID

-68D user_ram_mbist() RAM range for MBIST is invalid

ERR_LOG_CODE_PARAM_LENGTH -69D user_version_read() the provided length parameter is
to small to store the information.

ERR_LOG_CODE_USER_PATCH_ID_OU
T_OF_RANGE

-70D user_execute_patch() The patch ID is out of range

ERR_LOG_CODE_USER_NO_NVM_MAP
PED_SECTOR

-71D NVM has no configured mapped sectors

ERR_LOG_CODE_USER_NVM_SEGMEN
T_INVALID

-72D Provided NVM segment is invalid

ERR_LOG_CODE_SINGLE_ECC_EVENT
_OCCURRED

-73D user_ecc_events_get()/user_ecc_get() single ECC
event has occurred

ERR_LOG_CODE_DOUBLE_ECC_EVENT
_OCCURRED

-74D user_ecc_events_get()/user_ecc_get() double ECC
event has occurred

ERR_LOG_CODE_SINGLE_AND_DOUBL
E_ECC_EVENT_OCCURRED

-75D user_ecc_events_get()/user_ecc_get() single and
double ECC events have occurred

ERR_LOG_CODE_PARAM_INVALID -76D user_nvm_write/branch(): data parameter is invalid

ERR_LOG_CODE_USER_PROTECT_NV
M_WRITE_PROTECTED

-77D Operation not allowed when NVM is write protected

ERR_LOG_CODE_USER_POINTER_RAM
_RANGE_INVALID

-78D Provided pointer doesn't point to a valid RAM range

ERR_LOG_CODE_USER_NVM_SEGMEN
T_CONFIG_MISMATCH

-79D NVM segment does not match the current configured
NVM region type

ERR_LOG_CODE_NVM_IS_BUSY -80D NVM is busy doing another operation

ERR_LOG_CODE_USER_PROTECT_PW
D_INVALID

-81D user_protect_password_set() provided password not
valid

Table A-1 List of Possible Errors during Startup (cont’d)

Error Name Error Code Errors Description

Firmware User Manual 127 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

ERR_LOG_CODE_USER_PROTECT_PW
D_EXISTS

-82D nvm_protect_password_set() segment password
already exists when trying to set a new one in

ERR_LOG_CODE_NO_PASSWORD_EXIS
TS

-83D Password clear: No password installed when trying to
clear password

ERR_LOG_CODE_USER_PROTECT_WR
ONG_PASSWORD

-84D user_nvm_protect_set(), user_nvm_protect_clear():
wrong password given

ERR_LOG_CODE_NVM_CONFIG_SECT
OR_WRITE_PROTECTED

-85D Not allowed to change values in write protected
config sector

ERR_LOG_CODE_SWITCH_KEY_INVALI
D

-86D User_nvm_switch_key_set() NVM switch key ID is
invalid

ERR_LOG_CODE_USERAPI_SWITCH_K
EY_VALUE_OR_USAGE_INVALID

-87D User_nvm_switch_key_set() NVM switch key value is
invalid, API usage not allowed or selected key invalid

Table A-1 List of Possible Errors during Startup (cont’d)

Error Name Error Code Errors Description

Firmware User Manual 128 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Appendix B Stack usage of user API functions
This chapter provides a table that lists maximum used stack for each user API function.

Table B-1 Maximum used stack for user API functions
User API function Maximum stack usage (bytes)
user_nvm_write_fast_continue 72D

user_nvm_write_fast_verify 64D

user_nvm_write_fast_end 88D

user_adc1_offset_calibration 64D

user_nvm_page_checksum_check 44D

user_nvm_mapram_recover 48D

user_nvm_mapram_init 40D

user_cid_get 24D

user_vbg_temperature_get 32D

user_nvm_ecc_events_get 80D

user_nvm_ecc_check 80D

user_nac_get 32D

user_nac_set 112D

user_nad_get 24D

user_nad_set 112D

user_nvm_100tp_read 64D

user_nvm_100tp_write 136D

user_nvm_100tp_erase 88D

user_nvm_config_get 48D

user_nvm_protect_get 16D

user_nvm_protect_set 80D

user_nvm_protect_clear 80D

user_nvm_password_set 152D

user_nvm_page_erase 120D

user_nvm_page_erase_branch 120D

user_nvm_sector_erase 120D

user_nvm_write_fast_start 240D

user_nvm_write 248D

user_nvm_write_branch 248D

user_ram_mbist 40D

user_nvm_page_verify 96D

user_nvm_page_erase_verify 96D

user_nvm_sector_erase_verify 96D

Firmware User Manual 129 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

user_dflash_mode 8D

user_nvm_service_algorithm 224D

user_nvm_ready_poll 0D

user_nvm_clk_factor_set 0D

Table B-1 Maximum used stack for user API functions (cont’d)

User API function Maximum stack usage (bytes)

Firmware User Manual 130 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Appendix C Exported bootROM functions
This chapter provides a table that lists all exported bootROM functions and its address that can be called by
user code.

Table C-1 Exported user API functions
User API function BootROM thumb address
user_nvm_protect_clear 0x000000a1

user_nvm_protect_set 0x000000a3

user_nvm_protect_get 0x000000a5

user_cid_get 0x000000a7

user_nvm_ecc_events_get 0x000000a9

user_nvm_ecc_check 0x000000ab

user_nac_get 0x000000ad

user_nac_set 0x000000af

user_nad_get 0x000000b1

user_nad_set 0x000000b3

user_nvm_100tp_read 0x000000b5

user_nvm_100tp_write 0x000000b7

user_nvm_config_get 0x000000b9

user_nvm_page_erase 0x000000bb

user_nvm_page_erase_branch 0x000000bd

user_nvm_ready_poll 0x000000bf

user_nvm_sector_erase 0x000000c1

user_nvm_write 0x000000c3

user_nvm_write_branch 0x000000c5

user_ram_mbist 0x000000c7

user_nvm_mapram_init 0x000000cb

user_nvm_clk_factor_set 0x000000cd

user_vbg_temperature_get 0x000000cf

user_nvm_page_verify 0x000000d3

user_nvm_page_erase_verify 0x000000d5

user_nvm_sector_erase_verify 0x000000d7

user_nvm_mapram_recover 0x000000d9

user_dflash_mode 0x000000db

user_nvm_service_algorithm 0x000000dd

user_nvm_page_checksum_check 0x000000df

user_nvm_100tp_erase 0x000000e1

user_adc1_offset_calibration 0x000000e3

Firmware User Manual 131 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

user_nvm_password_set 0x000000e5

user_nvm_write_fast_start 0x000000e7

user_nvm_write_fast_continue 0x000000e9

user_nvm_write_fast_verify 0x000000eb

user_nvm_write_fast_end 0x000000ed

Table C-1 Exported user API functions (cont’d)

User API function BootROM thumb address

Firmware User Manual 132 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Appendix D Analog Module Trimming (100TP Pages)

The TLE985x contains 8 x 100TP (100 Time Programmable) pages and each page has a size of 128 bytes but
only the first 126 Bytes are usable. The last two Bytes of each 100TP page store the programming counter
followed by the page checksum Byte.
User could read and write into the 100TP pages using the user API functions :
- user_nvm_100tp_read
- user_nvm_100tp_write
In case the checksum of any page is incorrect, the whole content of the 100TP pages is ignored and considered
as unsafe. User could call user_nvm_page_checksum_check before performing 100TP read operation.
Each user_nvm_100tp_write page programming operation leads to a programming counter increase.
user_nvm_100tp_write returns with an error in case the user tries to program one page where the counter has
reached 100 programming cycles. Page programming counter range is from 0 - 99.
The first and second 100TP pages contain customer specific analog module trimming values.

Table D-1 100TP page 0 and page 1 : Analog Module Trimming registers

Data
Offset

100 TP Page 0
SFR Registers to TRIM

100 TP Page 1
SFR Register to TRIM

0x00 SCU_ADC1_CLK ADC1_SQ10_11

0x04 ADC1_CAL_CH12_13 ADC1_SQ8_9

0x08 ADC1_SQ12_13 ADC1_SQ6_7

0x0C ADC1_PP_MAP4_7 ADC1_SQ4_5

0x10 ADC1_PP_MAP0_3 ADC1_SQ2_3

0x14 ADC1_IRQEN_2 ADC1_SQ0_1

0x18 ADC1_DUIN_SEL ADC1_CTRL3

0x1C ADC1_MMODE0_7 ADC1_MAX_TIME

0x20 ADC1_DCHCNT1_4_UPPER ADC1_CHX_ESM

0x24 ADC1_CNT4_7_UPPER ADC1_CHX_EIM

0x28 ADC1_CNT0_3_UPPER

0x2C ADC1_DCHCNT1_4_LOWER

0x30 ADC1_CNT4_7_LOWER

0x34 ADC1_CNT0_3_LOWER

0x38 ADC1_DCHTH1_4_UPPER

0x3C ADC1_TH4_7_UPPER

0x40 ADC1_TH0_3_UPPER

0x44 ADC1_DCHTH1_4_LOWER

0x48 ADC1_FILT_UPLO_CTRL

0x4C ADC1_IRQEN_1

Firmware User Manual 133 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

 Example

0x50 ADC1_FILTCOEFF0_13

0x54 ADC1_CAL_CH10_11

0x58 ADC1_CAL_CH8_9

0x5C ADC1_CAL_CH6_7

0x60 ADC1_CAL_CH4_5

0x64 ADC1_CAL_CH2_3

0x68 ADC1_CAL_CH0_1

0x6C ADC1_TH4_7_LOWER

0x70 ADC1_TH0_3_LOWER

0x74 ADC1_OFFSETCALIB

0x78 ADC1_SQ_CH_MAP

Table D-2 100TP Analog Module Trimming example
Code example
#define PAGE0 (uint32_t 0)
#define ADC1_CNT_UPPER_OFFSET (uint32_t 0x24)

#define ADC1_CNT_UPPER_LEN (uint32_t sizeof(ADC1_TRIM_Data_table))

uint32_t ADC1_TRIM_Data_table[]= {0x11111111, 0x12121212};

int32_t User_Trimming_100TP(void)
{
 int32_t status=0;
 status = user_nvm_100tp_write(PAGE0,

 ADC1_CNT_UPPER_OFFSET,
 ADC1_TRIM_Data_table,
 ADC1_CNT_UPPER_LEN);

 return status;
}

Description

This function write into the 100TP page 0 at the offset 0x0C, which correspond to the address allowed for
ADC1_CNT4_7_UPPER. The length of the data to write is 8 bytes, which means 2 words :
ADC1_CNT4_7_UPPER, then ADC1_CNT0_3_UPPER.
This function trims the following registers :
ADC1_CNT4_7_UPPER = 0x11111111
ADC1_CNT0_3_UPPER = 0x12121212

Table D-3 Alternative predefined values to trim in case 100TP page 0 and page 1 CRC is incorrect
100 TP Page 0

Data Offset SFR registers Alternative Back up values

Table D-1 100TP page 0 and page 1 : Analog Module Trimming registers

Firmware User Manual 134 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

0x00 SCU_ADC1_CLK 0x00000000

0x04 ADC1_CAL_CH12_13 0x00000000

0x08 ADC1_SQ12_13 0x00000000

0x0C ADC1_PP_MAP4_7 0x08070604

0x10 ADC1_PP_MAP0_3 0x03020100

0x14 ADC1_IRQEN_2 0x00000000

0x18 ADC1_DUIN_SEL 0x00000000

0x1C ADC1_MMODE0_7 0x00000000

0x20 ADC1_DCHCNT1_4_UPPER 0x00000000

0x24 ADC1_CNT4_7_UPPER 0x00000000

0x28 ADC1_CNT0_3_UPPER 0x00001B1A

0x2C ADC1_DCHCNT1_4_LOWER 0x00000000

0x30 ADC1_CNT4_7_LOWER 0x00000000

0x34 ADC1_CNT0_3_LOWER 0x00001312

0x38 ADC1_DCHTH1_4_UPPER 0x000000FF

0x3C ADC1_TH4_7_UPPER 0xFFFFFFFF

0x40 ADC1_TH0_3_UPPER 0xFFFFC5C0

0x44 ADC1_DCHTH1_4_LOWER 0x00000000

0x48 ADC1_FILT_UPLO_CTRL 0x000000FF

0x4C ADC1_IRQEN_1 0x00000000

0x50 ADC1_FILTCOEFF0_13 0x0AAAAAAA

0x54 ADC1_CAL_CH10_11 0x00000000

0x58 ADC1_CAL_CH8_9 0x00000000

0x5C ADC1_CAL_CH6_7 0x00000000

0x60 ADC1_CAL_CH4_5 0x00000000

0x64 ADC1_CAL_CH2_3 0x00000000

0x68 ADC1_CAL_CH0_1 0x00000000

0x6C ADC1_TH4_7_LOWER 0x00000000

0x70 ADC1_TH0_3_LOWER 0x0000423A

0x74 ADC1_OFFSETCALIB 0x00000000

0x78 ADC1_SQ_CH_MAP 0x00000000

100 TP Page 1
0x00 ADC1_SQ10_11 0x00000000

0x04 ADC1_SQ8_9 0x00000000

0x08 ADC1_SQ6_7 0x00000000

0x0C ADC1_SQ4_5 0x00000000

0x10 ADC1_SQ2_3 0x00000000

Table D-3 Alternative predefined values to trim in case 100TP page 0 and page 1 CRC is incorrect

Firmware User Manual 135 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

0x14 ADC1_SQ0_1 0x00000000

0x18 ADC1_CTRL3 0x00020A01

0x1C ADC1_MAX_TIME 0x00000000

0x20 ADC1_CHX_ESM 0x00000000

0x24 ADC1_CHX_EIM 0x00000000

Table D-3 Alternative predefined values to trim in case 100TP page 0 and page 1 CRC is incorrect

Firmware User Manual 136 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

Appendix E Execution time of BootROM User API Functions
This appendix provides a table that lists the execution time of the BootROM User API functions.

Table E-1 User API execution time
User API Function Execution Time 1) [µs]

user_adc1_offset_calibration 28.8

user_dflash_mode 3.2

user_nac_get 4.8

user_nac_set 6816

user_nad_get 3.2

user_nad_set 6814.4

user_nvm_100tp_erase 6817.6

user_nvm_100tp_read 59.2

user_nvm_100tp_write 6884.8

user_nvm_clk_factor_set 1.6

user_nvm_config_get 9.6

user_nvm_ecc_check 3502.4

user_nvm_ecc_events_get 4.8

user_nvm_mapram_init 12.8

user_nvm_mapram_recover 56

user_nvm_page_checksum_check 14.4

user_nvm_page_erase 3660.8

user_nvm_page_erase_verify 120

user_nvm_page_verify 126.4

user_nvm_password_set 6884

user_nvm_protect_clear 12.8

user_nvm_protect_get 3,2

user_nvm_protect_set 14.4

user_nvm_sector_erase 3665.6

user_nvm_sector_erase_verify 1889.6

user_nvm_service_algorithm 1740.8

user_nvm_write, precondition: written_mapped_sector() 6921.6

user_nvm_write, precondition: erased_mapped_sector() 3328

user_nvm_write_fast_continue() 292

user_nvm_write_fast_end() 17

user_nvm_write_fast_start() 172

user_nvm_write_fast_verifiy() 316

Firmware User Manual 137 Revision 1.0
 2019-03-05

TLE985x Firmware User Manual

user_ram_mbist (4k RAM) 180

user_vbg_temperature_get 3.2
1) Execution time relative to the following conditions : 40MHz, 25°C, 12V

Table E-1 User API execution time (cont’d)
User API Function Execution Time 1) [µs]

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT
Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale.
IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of
Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc.,
USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies,
Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA,
Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Trademarks Update 2014-11-12

Edition 2019-03-05
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2015 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference

Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of non-
infringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).

Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.

www.infineon.com

mailto:erratum@infineon.com
http://www.infineon.com
http://www.infineon.com

	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Abbreviations and Special Terms

	2 Overview
	2.1 Firmware Architecture
	2.2 Program Structure

	3 BootROM Startup procedure
	3.1 Startup Program Structure
	3.2 Boot Modes
	3.3 Debug Support Mode Entry (with SWD port)
	3.4 NAC Definition
	3.4.1 Unlock BSL Communications
	3.4.2 Post User Mode Entry Recommendations

	3.5 User and BSL Mode Entry
	3.6 Flowcharts for User BSL / Debug Modes
	3.7 Reset Types
	3.8 Startup Procedure Submodules
	3.8.1 Watchdog Configuration
	3.8.2 RAM MBIST and RAM Initialization
	3.8.3 NVM CBSL Region Size Configuration
	3.8.4 RAM Mode Key and NVM Data Mode Key
	3.8.5 Analog Module Trimming
	3.8.6 ADC1 Core Offset Calibration
	3.8.7 Startup Error Handling
	3.8.8 No Activity Counter (NAC) Configuration
	3.8.9 FastLIN Node Address for Diagnostics (NAD) Configuration

	4 Boot Strap Loader (BSL)
	4.1 BSL Overview
	4.1.1 BSL Interframe Timeout
	4.1.2 NVM / RAM Range Access
	4.1.3 FastLIN Passphrase and Node Address for Diagnostic (NAD)
	4.1.4 BSL Message Parsing & Responses
	4.1.5 Command Execution
	4.1.6 Timing Constraints
	4.1.7 BSL Interframe Timeout Behavior
	4.1.8 BSL Host Synchronization

	4.2 BSL via FastLIN
	4.2.1 FastLIN Protocol
	4.2.2 FastLIN
	4.2.2.1 Command Frame Format
	4.2.2.2 Response Frame Format
	4.2.2.3 Checksum

	4.3 BSL commands - Protocol (Version 2.0)
	4.3.1 Command 02H – RAM: Write Data/Program
	4.3.2 Command 83H – RAM: Execute
	4.3.3 Command 84H – RAM: Read Data
	4.3.4 Command 05H – NVM: Write Data/Program
	4.3.5 Command 86H – NVM: Execute
	4.3.6 Command 87H – NVM: Read Data
	4.3.7 Command 88H – NVM: Erase
	4.3.8 Command 89H – NVM: Protection Password Set
	4.3.9 Command 8AH – NVM: Switch Keys Set
	4.3.10 Command 8BH – NVM: Page Checksum Check
	4.3.11 Command 0CH – NVM: NVM Checksum Calculation
	4.3.12 Command 0DH – NVM: 100TP Write
	4.3.13 Command 8EH – NVM: 100TP Read
	4.3.14 Command 8FH – BSL: NAC Set
	4.3.15 Command 90H – BSL: NAC Get
	4.3.16 Command 91H – FastLIN: NAD Set
	4.3.17 Command 92H – FastLIN: NAD Get
	4.3.18 Command 93H – FastLIN: Set Session Baudrate
	4.3.19 Command 97H – NVM 100TP Erase
	4.3.20 Command 98H – NVM: Reflash Prepare
	4.3.21 Command 99H – NVM: Set CBSL Size
	4.3.22 End of Transmission Message (80H)
	4.3.23 Acknowledge Response Message (81H)

	5 NVM
	5.1 NVM Overview
	5.1.1 Config Sector Region
	5.1.2 USER CODE Region
	5.1.3 USER DATA Region
	5.1.3.1 Data Mapped Mode
	5.1.3.2 Data Linear Mode

	5.1.4 NVM Password Protection

	5.2 NVM Write
	5.3 NVM Fast Write
	5.4 Data Flash Initialization

	6 User Routines
	6.1 List of Supported Features
	6.2 Reentrance Capability and Interrupts
	6.3 Address Parameters Range Checks
	6.4 NVM Region Write Protection Check
	6.5 Watchdog Handling When Using NVM Functions
	6.6 Interrupts
	6.7 Resources used by user API functions
	6.8 User API Routines
	6.8.1 user_nvm_write_fast_start
	6.8.2 user_nvm_write_fast_continue
	6.8.3 user_nvm_write_fast_verify
	6.8.4 user_nvm_write_fast_end
	6.8.5 user_adc1_offset_calibration
	6.8.6 user_nvm_page_checksum_check
	6.8.7 user_nvm_service_algorithm
	6.8.8 user_nvm_mapram_recover
	6.8.9 user_nvm_mapram_init
	6.8.10 user_nvm_ecc_events_get
	6.8.11 user_nvm_ecc_check
	6.8.12 user_nac_get
	6.8.13 user_nac_set
	6.8.14 user_nad_get
	6.8.15 user_nad_set
	6.8.16 user_nvm_100tp_read
	6.8.17 user_nvm_100tp_write
	6.8.18 user_nvm_100tp_erase
	6.8.19 user_nvm_config_get
	6.8.20 user_nvm_protect_get
	6.8.21 user_nvm_protect_set
	6.8.22 user_nvm_protect_clear
	6.8.23 user_nvm_password_set
	6.8.24 user_nvm_ready_poll
	6.8.25 user_nvm_page_erase
	6.8.26 user_nvm_page_erase_branch
	6.8.27 user_nvm_sector_erase
	6.8.28 user_nvm_write
	6.8.29 user_nvm_write_branch
	6.8.30 user_ram_mbist
	6.8.31 user_nvm_clk_factor_set
	6.8.32 user_vbg_temperature_get
	6.8.33 user_nvm_page_verify
	6.8.34 user_nvm_page_erase_verify
	6.8.35 user_nvm_sector_erase_verify
	6.8.36 user_dflash_mode

	6.9 User API support routines
	6.9.1 misc_handle_nvm_segment_data_mode_check
	6.9.2 misc_nvm_reflash_prepare
	6.9.3 misc_user_nvm_password_set
	6.9.4 misc_user_nvm_switch_key_set
	6.9.5 handle_segment_protection_get
	6.9.6 valid_pointer_ram_range_check
	6.9.7 get_nac_from_nvm_cs
	6.9.8 misc_user_read_nvm_password_ecc

	6.10 NVM Protection API types
	6.10.1 user_callback_t

	6.11 Data Types and Structure Reference
	6.11.1 Enumerator Reference
	6.11.1.1 NVM_SWITCH_ID_SELECT_t
	6.11.1.2 NVM_SWITCH_KEY_SELECT_t
	6.11.1.3 NVM_PASSWORD_SEGMENT_t
	6.11.1.4 VBG_TEMP_SELECT_t
	6.11.1.5 NVM_DFLASH_SECTOR_MODE_t

	6.11.2 Constant Reference

	Terminology
	Appendix A Error Codes
	Appendix B Stack usage of user API functions
	Appendix C Exported bootROM functions
	Appendix D Analog Module Trimming (100TP Pages)
	Appendix E Execution time of BootROM User API Functions

