
Intel® Stratix® 10 Device Security
User Guide

Updated for Intel® Quartus® Prime Design Suite: 19.3

Subscribe
Send Feedback

UG-S10SECURITY | 2020.01.15
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=ndq1483601370898
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-security.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/ndq1483601370898.html

Contents

1. Intel® Stratix® 10 Device Security Overview...4
1.1. Intel Stratix 10 Secure Device Manager (SDM).. 6
1.2. Enabling Intel Stratix 10 Security Features..7

1.2.1. Side Channel Mitigation.. 7
1.3. Owner Security Keys and Programming.. 8

1.3.1. Owner Root Public Key Hash Programming.. 9
1.3.2. AES Root Key Programming.. 9

1.4. Planned Security Features...9
1.4.1. Physically Unclonable Function (PUF) Overview.. 9
1.4.2. Anti-Tampering.. 10
1.4.3. Black Key Provisioning..10

2. Design Authentication...11
2.1. The Configuration Bitstream ... 11
2.2. Signature Block... 13

2.2.1. Canceling Intel Firmware ID.. 16
2.2.2. Authentication for HPS Software.. 17

3. Using the Authentication Feature..18
3.1. Step 1: Creating the Root Key... 19
3.2. Step 2: Creating the Design Signing Key...19
3.3. Step 3: Appending the Design Signature Key to the Signature Chain...........................20
3.4. Step 4: Signing the Bitstream..21
3.5. Step 4a: Signing the Bitstream Using the Programming File Generator........................21
3.6. Step 4b: Signing the Bitstream Using the quartus_sign Command.............................. 23
3.7. Step 5: Programming the Owner Root Public Key for Authentication............................24
3.8. Step 5a: Programming the Owner Root Public Key..24
3.9. Step 5b: Calculating the Owner Root Public Key Hash... 26

4. Co-Signing Device Firmware Overview..27
4.1. Using the Co-Signing Feature.. 27

4.1.1. Prerequisites for Co-Signing Device Firmware.. 28
4.1.2. Generating the Owner Firmware Signing Key... 28
4.1.3. Co-Signing the Firmware ..29
4.1.4. Powering On In JTAG Mode After Implementing Co-Signed Firmware...............29

5. HPS Debug Using a Certificate.. 30
5.1. Enabling HPS JTAG Debugging .. 31

6. Signing Command Detailed Description.. 33
6.1. Generate Private PEM Key... 34
6.2. Generate Public PEM Key...34
6.3. Generate Root Signature Chain..34
6.4. Append Key to Signature Chain..35
6.5. Sign the Bitstream, Firmware, or Debug Certificate.. 36
6.6. Calculate Root Public Key Hash from QKY..36

7. Encryption and Decryption Overview.. 37
7.1. Using the Encryption Feature...39

Contents

Intel® Stratix® 10 Device Security User Guide Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1. Step 1: Preparing the Owner Image and AES Key File................................... 39
7.1.2. Step 2a: Generating Programming Files Using the Programming File

Generator... 40
7.1.3. Step 2b: Generating Programming Files Using the Command Line Interface 41
7.1.4. Step 3a: Specifying Keys and Configuring the Encrypted Image Using the

Intel Quartus Prime Programmer ...41
7.1.5. Step 3b: Programming the AES Key and Configuring the Encrypted Image

Using the Command Line.. 44
7.1.6. Storing the AES Key AES in Physical eFuses...45
7.1.7. Storing the AES Key in BBRAM using the JTAG Mailbox..................................45

8. Encryption Command Detailed Description... 46
8.1. Make AES Key... 46
8.2. Encrypt the Bitstream...47

9. Using eFuses ..48
9.1. Fuse Programming Input Files... 50

9.1.1. Fuse File Format.. 51
9.1.2. Programming eFuses ... 51
9.1.3. Canceling eFuses... 53
9.1.4. Converting Key, Encryption, and Fuse Files to Jam Staple File Formats............ 53

10. Document Revision History for Intel Stratix 10 Device Security User Guide................55

Contents

Send Feedback Intel® Stratix® 10 Device Security User Guide

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® Stratix® 10 Device Security Overview
Intel® Stratix® 10 devices provide flexible and robust security features to help protect
sensitive data, intellectual property, and the device itself under both remote and
physical attacks.

Intel Stratix 10 devices provide two main categories of security features:
authentication and encryption.

Authentication helps to ensure that both the firmware and the configuration bitstream
are from a trusted source. Authentication is fundamental to Intel Stratix 10 security.
You cannot enable any other Intel Stratix 10 security features without enabling owner
authentication.

Encryption helps to protect confidential information such as intellectual property or
sensitive data from being extracted from the owner configuration bitstream.

Here are the specific security features that Intel Stratix 10 devices provide:

Authentication Category

• Elliptic Curve Digital Signature Algorithm (ECDSA) Based Public-Key
Authentication: Intel Stratix 10 devices always require firmware authentication for
all Intel firmware that loads into silicon. The ECDSA authentication of firmware
implements this requirement. Intel is the only source that provides the primary
firmware for the Secure Device Manager (SDM) and all other firmware that runs
on other configuration processors in the Intel Stratix 10 device.

Intel Stratix 10 devices do not require authentication for configuration bitstreams.
You may enable configuration bitstream authentication by programming the hash
of your root public key into eFuses. This process establishes you as the owner of
the device. After you enable configuration bitstream authentication, you must
create a valid signature chain based on your root key for each configuration
bitstream. Your Intel Stratix 10 device completes configuration after successful
validation of your signature chain.

• Anti-tampering security feature: Anti-tampering addresses physical attacks on
silicon. There are two categories of anti-tampering features: passive and active
anti-tampering.

— The passive anti-tampering feature enforces physical security features using
redundancy and interlocking systems. Passive anti-tampering is always
running on Intel Stratix 10 devices. Passive anti-tampering functions do not
operate in response to a particular function.

— Active anti-tampering responds when the silicon detects physical attacks from
the outside. By default, all active anti-tampering functions are off. When the
active anti-tampering function is on, you can select which detection functions
and responses to enable. Active anti-tampering is planned for a future release.
Refer to Anti-Tampering on page 10 for more information.

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Encryption Category

• Advanced Encryption Standard (AES)-256 encryption: This feature helps protect
the confidentiality of intellectual property (IP) or sensitive data in the owner
configuration bitstream. AES-CTR (counter) mode is the base for bitstream
encryption. To reduce AES key exposure AES decryption only operates on data
that has already passed public key authentication.

• Side channel protection: This feature helps to protect the AES Key and confidential
data from extraction through non-intrusive attacks. Intel Stratix 10 devices
include the following functions to minimize any potential side channel leakage:

— The authentication first flow helps to protect against encrypted bitstream
modifications that reveal an encryption key.

— A key update function reduces the amount of bitstream data encrypted with a
single key.

— Long route data line scrambling reduces the exposure of decrypted
configuration data on the chip-wide configuration network.

— A 256-bit wide direct key bus loading minimizes the transmission time of
sensitive key material.

— Key scrambling limits any potential side-channel exposure when you store the
AES root key in eFuses.

• Multiple AES root key choices: Intel Stratix 10 devices currently support two
different locations for root AES keys: eFuse and BBRAM. In addition, physically
unclonable function (PUF) is planned for a future release. Refer to Physically
Unclonable Function (PUF) Overview on page 9 for more information.

These security features are available in Intel Stratix 10 devices that support advanced
security. The following table lists the security features that Intel Stratix 10 devices
support.

Intel Stratix 10 Authentication Advanced Security

GX Yes -AS suffix devices

SX Yes -AS suffix devices

MX Yes -AS suffix devices

TX Yes -AS suffix devices

DX Yes Yes

Related Information

• Intel Stratix 10 Device Security User Guide Archives

• Intel Quartus® Prime Pro Edition User Guide Programmer
Describes operation of the Intel Quartus® Prime Pro Edition Programmer which
allows you to configure Intel FPGA devices and program CPLD and
configuration devices via connection with an Intel FPGA download cable.

• Intel Stratix 10 Device Feature Status
For more information about the status of planned Intel Stratix 10 device
security features.

1. Intel® Stratix® 10 Device Security Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

5

https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/documentation/2018/intel--stratix--10-sx-device-features.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1. Intel Stratix 10 Secure Device Manager (SDM)

The Secure Device Manager (SDM) is a triple-redundant processor-based module that
manages the configuration and security features of Intel Stratix 10 devices. The SDM
authenticates and decrypts configuration data.

Figure 1. Secure Device Manager

Configuration
Sector

Configuration
Sector

Configurable Network Interface

SDM Pins

Secure Device Manager

Dual Purpose I/O

Intel Stratix 10 FPGA

Intel Stratix 10 Blocks
(All Family Variants)

Configuration
Sector

Configuration
Sector

Configuration Network

Local Sector
Manager (LSM)

Local Sector
Manager (LSM)

Local Sector
Manager (LSM)

Local Sector
Manager (LSM)

Figure 2. Secure Device Manager

Secure configuration includes the following steps:

• If you have enabled authentication, the SDM checks that a trusted source, the
device owner, has authorized the configuration bitstream.

• The SDM always performs an integrity check over the bitstream using SHA-256 or
SHA-384. This integrity check protects against intentional attacks and against
accidental corruption of the bitstream, such as a bad write to flash.

• If the configuration bitstream authenticates and you have enabled AES Encryption,
the SDM decrypts the data. The SDM drives the decrypted data on the
configuration network to Local Sector Managers (LSM) on the configuration
network. Each LSM parses the sector configuration block data and configures the
logic elements in the sector that it manages.

Related Information

Intel Stratix 10 Configuration User Guide: Secure Device Manager

1. Intel® Stratix® 10 Device Security Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

6

https://www.intel.com/content/www/us/en/programmable/documentation/sss1439972793861.html#sss1440053381228
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Enabling Intel Stratix 10 Security Features

Enabling any of the Intel Stratix 10 device security features first requires you to
program the owner root public key hash into eFuse storage. Programming the hash of
the root public key enables authentication, after which your configuration bitstreams
must be signed. In addition, other security features, such as bitstream encryption, are
available. Intel Stratix 10 devices support both virtual and physical eFuse
programming. Before you program any security eFuse, Intel recommends that you use
the virtual eFuse programming to test that the values being programmed are correct.

Caution: Incorrect programming of security eFuses can permanently prevent the device from
configuring.

The fusing process automatically computes the hash of the owner root public key.
When you program the owner root key hash, the programmer automatically programs
the hash value, not the full key.

You can enable the following additional security options to further enhance the
security level:

• Advanced Encryption Standard (AES) Encryption protects your IP and secures your
data. This option includes multiple sub-options relating to side channel mitigation.

• Configuration firmware joint signature capability specifies that you, in addition to
Intel, must sign the version of configuration firmware that runs on your device. If
you enable the joint signature capability, the device only loads firmware signed by
both Intel and by you, the device owner. An eFuse on the Intel Stratix 10 device
enables this feature. For a full list of available eFuse security options, refer to
Using eFuses.

eFuse programming sets a minimum-security strength. All eFuse enforced security
options are permanent.

In contrast to permanent security features, Intel Stratix 10 devices include some
dynamic security options that you can control without using eFuses. Disabling HPS
debugging is one example of a dynamic security feature. You control dynamic security
options by setting optional fields in the configuration bitstream. The Intel Stratix 10
device enforces dynamic security options beginning with bitstream configuration,
instead of at power-on, providing additional flexibility.

Related Information

Using eFuses on page 48

1.2.1. Side Channel Mitigation

Side channel mitigation technology helps prevent secret leakage from the
Intel Stratix 10 device. Side channel mitigation is not limited to the AES engine. Any
circuit which could transport secret key material has its associated mitigation.

1. Intel® Stratix® 10 Device Security Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following side channel mitigation features are available in Intel Stratix 10 devices:

• Authentication first: The device authenticates the bitstream before decrypting it.
Attackers cannot perform differential attacks on the AES encrypted data without
breaking authentication.

• Key update: Limits the amount of encrypted data per key to 1024 bytes.

• Direct key loading: Uses a 256-bit point-to-point key bus to reduce emissions.

• Data scrambling: Scrambles data on long wires within the configuration network
on a chip (NoC).

1.3. Owner Security Keys and Programming

Intel Stratix 10 devices support two types of security keys:

• Owner root public key hash: Programming this key enables the owner
configuration bitstream authentication. Configuration bitstream authentication is
the fundamental security feature. You must enable configuration bitstream
authentication before you can enable other security features. The Intel Stratix 10
device stores the SHA-256 or SHA-384 hash of this key in physical eFuses or
virtual eFuses. This hash validates the integrity of the root public key, which is the
first step in the process to authenticate the configuration bitstream.

• Owner AES key: This optional key decrypts the encrypted owner image during the
configuration process. You can store the AES key in virtual eFuses, physical
eFuses, or a BBRAM. PUF support for AES key handling is planned for a future
release.

In contrast to eFuse (non-volatile) storage, BBRAM storage is reprogrammable.
The BBRAM key vault holds a single key. Programming a new key deletes the
previously programmed key. The BBRAM key vault includes a built-in function to
perform periodic key flipping to prevent key imprinting. The BBRAM has its own
power supply. VCCBAT powers the BBRAM AES key. The voltage range is 1.2V -
1.8V. For more information about required voltage ranges refer to the Intel Stratix
10 Device Family Pin Connection Guidelines.

You program both the root public key hash and the AES key using JTAG. The
configuration bitstream specifies the owner AES key location. For extra security,
you can program fuses to disable some of the key storage locations. For example,
if your design stores the AES key in eFuses, you can program the BBRAM root key
disable fuse for additional security.

Intel Stratix 10 devices support both red key (unencrypted) and black key
(encrypted) provisioning (transport). JTAG transmits keys in an unencrypted
format. Encrypting the AES key reduces the risk of disclosing the key during the
manufacturing process. Refer to Black Key Provisioning on page 10 for more
information about programming an encrypted AES key.

Note: You program or blow eFuses by flowing a large current for a specific amount of time.
This process is irreversible.

Related Information

• Recommended Operating Conditions for VCCBAT in Stratix 10 Device Datasheet

• Intel Stratix 10 Device Family Pin Connection Guidelines

1. Intel® Stratix® 10 Device Security Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

8

https://www.intel.com/content/www/us/en/programmable/documentation/mcn1441092958198.html#mcn1441263863993
https://www.intel.com/content/www/us/en/programmable/documentation/lod1484643014646.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.1. Owner Root Public Key Hash Programming

You can store the owner root public key hash in virtual eFuses (volatile) or physical
eFuses (non-volatile).

You specify either virtual or physical eFuses when you program your device. Once you
program the physical eFuse key, you cannot change or reprogram the key.

1.3.2. AES Root Key Programming

You specify the storage option for the AES root key on the Security page of the
Assignments ➤ Device ➤ Device and Pin Options. In the current release, you can
select Battery Backup RAM (BBRAM) or eFuses. When you generate the SRAM
Object File .sof the Intel Quartus® Prime Pro Edition Software records the key you
specify to partially encrypt the configuration bitstream.

Figure 3. Specify Storage Location for Encryption Key

Specify Quartus
Prime Key File
Select Key
Storage Location

The Intel Quartus Prime Programmer also includes an Encryption Key Select option
with two choices: Battery Backup RAM or eFuses. This option is available for Intel
Stratix 10 and later devices that include the SDM when you program a Intel Quartus
Prime encryption key .qek.

1.4. Planned Security Features

Some Intel Stratix 10 advanced security features are not currently supported, but are
planned to be supported in a future release. These features include support for a PUF,
anti-tampering, and black key provisioning.

1.4.1. Physically Unclonable Function (PUF) Overview

The Intel Stratix 10 device provides access to the PUF as part of the device
configuration process. The PUF generates device-unique, unclonable keys based on
SRAM initialization patterns. You can use the PUF to assist with AES root key
encryption. Encrypting an AES key is also called key wrapping. You store the wrapped
AES root key in external flash memory. Using the PUF also requires storing PUF helper
data in the external flash memory.

Note: To enable the PUF function, you must negotiate a license agreement with Intrinsic ID.

1. Intel® Stratix® 10 Device Security Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

9

https://www.intrinsic-id.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel Stratix 10 Device Feature Status
For more information about the status of planned Intel Stratix 10 device security
features.

1.4.2. Anti-Tampering

Anti-tampering features help detect and respond to certain physical attacks on silicon.

The SDM monitors operating conditions such as input clocks, voltage, and temperature
to detect device tampering. Changes in these conditions may indicate a tampering
event. You can choose an appropriate response to a detected event. Possible
responses include but are not limited to the following actions:

• Device reset

• Device reset with configuration data zeroization

• BBRAM AES key destruction

You enable anti-tampering features during the design process. The configuration
bitstream includes the resulting data.

Related Information

Intel Stratix 10 Device Feature Status
For more information about the status of planned Intel Stratix 10 device security
features.

1.4.3. Black Key Provisioning

AES encryption helps protect confidential information or sensitive data in a
configuration bitstream. When you enable AES encryption you must protect the AES
key during programming, or provisioning, the AES key to the device. Typically, AES
key provisioning occurs at a trusted facility at increased cost.

Black key provisioning creates a direct secure channel between your hardware security
module (HSM) and the Intel Stratix 10 device. This secure channel ensures that your
HSM can provision the AES key and other confidential information without exposure to
an intermediate party. Black key provisioning can reduce or eliminate the need to
program the AES key at a trusted facility.

Related Information

Intel Stratix 10 Device Feature Status
For more information about the status of planned Intel Stratix 10 device security
features.

1. Intel® Stratix® 10 Device Security Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

10

https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/documentation/2018/intel--stratix--10-sx-device-features.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/documentation/2018/intel--stratix--10-sx-device-features.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/documentation/2018/intel--stratix--10-sx-device-features.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Design Authentication
FPGA designs may exhibit unintended behavior if an unauthorized client modifies the
configuration bitstream. Intel Stratix 10 FPGAs include a feature to authenticate the
bitstream, which helps to ensure that the bitstream is from a trusted source.
Authentication uses ECDSA signatures to validate the content of a bitstream.
Authentication helps to prevent the Intel Stratix 10 FPGA from configuring with an
unauthorized configuration bitstream.

When you use authentication, your manufacturing process programs the hash digest
of the ECDSA root public key into FPGA eFuses. The configuration bitstream contains
the full root public key. The SDM computes the hash digest of the root public key and
compares the computed hash digest to the hash digest stored in eFuses. The SDM
only proceeds to authenticate the bitstream if the values match.

Intel Stratix 10 devices support 256- or 384-bit key length for authentication. Intel
strongly recommends that you use 384-bit authentication of all new designs. If you
select 384-bit authentication, the Intel Stratix 10 device uses SHA-384 with ECDSA
secp384r1. If you select 256-bit authentication, the Intel Stratix 10 device uses uses
SHA-256 with ECDSA prime256v1. You cannot change the root key or the
authentication key length after you program the eFuses. Choose 256-bit
authentication only if you have legacy hardware, such as an HSM, that cannot handle
384 bit keys.

SHA-384 generates a bitstream that is larger than SHA-256. SHA-384 hashes result in
longer configuration times.

2.1. The Configuration Bitstream

The figure below shows an Intel Stratix 10 configuration bitstream that includes an
FPGA and HPS. The firmware implements many functions including the functions listed
here:

• FPGA configuration

• Voltage regulator configuration

• Temperature measurements

• HPS software load

• HPS reset

• Read, erase, and program flash memory

• Device security, including authentication and encryption

The SDM always authenticates the firmware section of the configuration bitstream.
The SDM authenticates the SDM firmware section using an Intel keychain. You may
also choose to sign the SDM firmware by programming the Co-signed Firmware eFuse

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

on the device. When you enable co-signed firmware you must co-sign the firmware
before generating bitstreams. The SDM validates both the Intel signature and your
signature before loading and running the SDM firmware.

Figure 4. Example of an Intel Stratix 10 Configuration Bitstream Structure

Firmware Section
Firmware section

Quartus Prime
version dependent

Design Section
(IO Configuration)

Design Section
(FPGA Core Configuration)

Design Section
(HPS boot code)

The I/O, HPS, and FPGA sections are dynamic and contain the device configuration
information based on your design. Each dynamic section of the configuration bitstream
stores information in the same format. Each section begins with a 4 kilobyte (KB)
header block, followed by a signature block, hash blocks, and data.

2. Design Authentication

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Configuration Bitstream Layout

Header Block

Hash for Hash Block 0Hash in the
Header Block

validates
Hash Block 0

Hash and signature
over Header Block

Signature Block

Hash Block 0 (SHA-384 or SHA-256)

Data Block 0

Data Block 1

Data Block 83 or 125

Hash Block 1 (SHA-384 or SHA-256)

Data Block 83 or 125

Hash Block N

Data Block 0

Data Block 1

Hash Block 0
validates

Hash Block 1,
and so on

The header block contains a hash which validates hash block 0. Each hash block
contains up to 125 SHA-256 hashes or 83 SHA-384 hashes. These hashes validate
subsequent data blocks. A modification to any part of a section invalidates the
signature. The modification results in configuration failure before the SDM processes
the modified data.

2.2. Signature Block

The signature block validates the contents of the header block. After successfully
validating the signatures, the SDM processes the data based on the signatures
provided.

Figure 6. Signature Block Format
In this figure the Root Key is the same in all signature chains.

SHA-384 hash over Header Block 1st Signature Chain

2nd Signature Chain

3rd Signature Chain

4th Signature Chain

Root Key

Public Key Entry 1 (Recommended)

Public Key Entry 2 (Optional)

Header Block Entry

Offset to signature chains

Up to 4 Signature Chains

Dynamic Sector Pointers

32-bit CRC

Public Key Entry 3 (Optional)

2. Design Authentication

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about how the quartus_sign command appends the public
keys to the root key to create a signature chain refer to Figure 8 on page 18.

Note: The Intel Quartus Prime Pro Edition Software GUI only supports one signature chain.
You can use the quartus_sign command to create multiple signature chains for a
Raw Binary File .rbf.

Table 1. Signature Block

Block Description

SHA-384 hash of
header block

This hash function checks for accidental changes in the preceding block of the configuration
bitstream, typically the header block.

Signature chains Zero or more signature chains. Each signature chain can include up to 4 keys, including the owner
public root key. You can assign the other 3 keys reduced permissions so that the keys can only sign
a specific section of the configuration bitstream.
The Intel Quartus Prime Software supports 2 keychains for firmware signing and up to 4 keychains
for the configuration bitstream. Multiple keychains provide some flexibility.

Dynamic sector
pointers

Locate the design sections for the remainder of the image when you store the image in flash
memory.

32-bit CRC Protects the block from accidental modification. The CRC does not provide security. Software tools
can check the CRC to identify accidental modifications.

Signature Chain Details

Intel Stratix 10 FPGAs support up to four signature chains. If a signature chain is
invalid, it is ignored. The FPGA starts validating the next signature chain. To pass
authentication, at least one signature keychain must pass.

Table 2. Signature Chain Content

Content Description

Root Key
Entry

The Root Entry anchors the chain to a root key known to the device. The SDM calculates the hash of the
root entry and checks if the it matches the expected hash. You store the root key hash in eFuses.

Public Key
Entry

Signature chains enable flexible key management. Intel recommends one public key entry in each signature
chain. The previous public key signs the new public key. The public key entry provides following capabilities:
• Key permission bit field to limit the sections of the configuration bitstream a public key entry can sign.

The bits grant permissions for a public signing key:
— Bit 0: Firmware
— Bit 1: FPGA I/O, core and PR sections
— Bit 2: HPS I/O and first stage bootloader (FSBL) sections
— Bit 3: HPS debug certificate

• For the quartus_sign command, specify these permissions as the equivalent hexadecimal value, 0x1,
0x2, 0x4, or 0x8. If more than one bit field is on, the key can sign more than one type of section. For
example, if both bits 1 and 2 are on the permission value is 0x6 and the key can sign the FPGA I/O,
core, PR, HPS I/O, and FSBL sections of the design.

• Cancellation ID: Specifies the number that cancels a key that is no longer valid. Intel Stratix 10 devices
support 32 cancellation IDs. Cancellation IDs 0-31 cancel owner keys. Once you cancel a key, any
previous designs signed by the canceled key are unusable. You can use this feature to prevent older
designs from running on a device or as part of recovery from a compromised key. Refer to
Understanding Permissions and Cancellation IDs on page 15 for more information about how to
manage cancellation IDs.

Second- or third-level keys typically sign data. Intel Stratix 10 devices support signature chains containing
up to 4 keys, including up to 3 public key entries.

Header
Block Entry

The final entry in a signature chain signs the actual data. The Header Block Entry authenticates the first
block of the section, and thus authenticates the whole section.

2. Design Authentication

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Understanding Permissions and Cancellation IDs

You use permissions to specify the types of sections that a key can sign. You can use
the same or different keys for different sections. When you create a key you assign it
permissions and a cancellation ID which is an integer in the range -1-31. Cancellation
ID -1 is for an uncancellable key. Uncancellable keys are useful as second- or third-
level keys. You can use this key to for two purposes:

• To sign other keys with the same or fewer permissions

• To sign sections directly

If you use the same cancellation ID for more than one key, canceling any key with
that cancellation ID cancels all keys using that cancellation ID. For example, if you
assign the same cancellation ID to both the FPGA and HPS keys, canceling the HPS
key also invalidates the FPGA key. You can revalidate subsequent uncanceled keys
with a signature from another key.

You cannot cancel the root key. Consequently, the root key does not have a
cancellation ID. However, you can cancel a signature chain that includes two or more
signature levels. Intel strongly recommends that you create a signature chain with at
least two levels to retain the ability to update your signature keychain.

A good signature chain includes the following components:

• Root key which is not cancellable on Intel Stratix 10 devices.

• First-level public key with a cancellation ID and restricted permissions.

• Optional second- and third-level public keys. Normally, these keys are not
cancellable and have same permissions as the first-level key which signed them. If
you can cancel one key in a key chain you can conserve cancellation IDs by using
keys that are not cancellable for the optional second- and third-level keys.

Here are some reasons that you may need to cancel a signature key:

• A private key is accidentally released.

• You find a vulnerability in your design.

• You find a bug in the design after having created the signed configuration
bitstream.

• You want to update the current design as part of a normal release cycle.

The Programmer performs a logical AND to determine which sections of a design a key
can sign. Consequently, to create separate permissions for Core, I/O and PR logic and
the HPS and FSBL, you must create two first-level keychains as shown in the following
figure.

2. Design Authentication

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Create Separate Signature Chains for Different Permissions

Create 1st Level
Signature Chain Signature Chain

Root Keychain

Permission = 2 (Core, I/O, PR)
 Cancellation ID = 0

 1st Level Core, I/O, PR

Create 1st Level
Signature Chain Signature Chain

Root Keychain

Permission = 4 (HPS, FSBL)
 Cancellation ID = 1

 1st Level HPS, FSBL

 Level Public Key1st

1st Level Public Key

2.2.1. Canceling Intel Firmware ID

If you are using device security features, Intel recommends that you update your
configuration firmware to the latest available release. Additionally, Intel recommends
canceling the cancellation of IDs for older versions of firmware to help ensure the
device can only loads the most current firmware. This section describes when and how
Intel firmware IDs are canceled.

As of Intel Quartus Prime Pro Edition Version 19.3, Intel has used the following
firmware IDs.

Table 3. Intel Firmware IDs

Firmware ID Firm Release

0-3 Early versions of firmware

4 Intel Quartus Prime Pro Edition 19.1 and 19.2

5 Intel Quartus Prime Pro Edition 19.3

When you program the owner root public key hash into a device the firmware also
cancels ID eFuses to prevent older firmware from running. For example, if you use the
19.3 firmware to program the public key hash, this firmware automatically cancels IDs
0 to 4. The only situation where firmware automatically programs cancellation eFuses
is during owner public key hash programming. In all other circumstances you must
use the Intel Quartus Prime Programmer or mailbox commands to program eFuses.

After you have upgraded to a new version of the firmware you should prevent older
versions of firmware from running by following these steps:

2. Design Authentication

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Upgrade all bitstreams stored in flash to use the new firmware version. You do not
need to recompile your designs. You can recreate them by using the new version
of Programmer or quartus_pfg to convert the .sof into a programming file
such as .rbf or Programmer Object File .pof. You can then program the
upgraded firmware into flash memory.

2. If using RSU, follow the instructions in the Updates with the Factory Update Image
topic in the Intel Stratix 10 Configuration User Guide to upgrade the decision
firmware and factory images in the system to the latest version. The RSU upgrade
procedure protects itself against disruptions such as power failure which could
interrupt the upgrade.

3. Send commands to the device to tell it to cancel the old Intel cancellation eFuses.
You can use the Intel Quartus Prime Pro Edition Programmer to accomplish this
task.

The firmware does not automatically program cancellation eFuses in any case except
programming the root public key hash. Consequently, you can upgrade the images in
flash memory before programming the cancellation eFuses.

Intel recommends adopting the following practices:

• Use the newest available firmware in your configuration bitstreams.

• Program cancellation eFuses to prevent older firmware from running on the
device.

Related Information

• PCNs, PDNs, and Advisories
For a listing of Advisories for Intel FPGAs and Programmable Devices.

• Updates with the Factory Update Image
For the steps to update flash memory with a new factory image and the
associated decision firmware and decision firmware data.

2.2.2. Authentication for HPS Software

If you are using an SoC device, the HPS Boot Code is part of the bitstream that is
authenticated by the SDM during configuration.

After you successfully load the HPS Boot Code on the Intel Stratix 10 device, you may
need to ensure that the following boot stages of the HPS Software are also
authenticated.

The Rocketboards web page includes an example that uses U-boot to authenticate
the subsequent boot stages of the HPS software.

Related Information

Intel Stratix 10 SoC Secure Boot Demo Design

2. Design Authentication

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

17

https://www.intel.com/content/www/us/en/programmable/support/quality-and-reliability/pcns-and-advisories.html
https://www.intel.com/content/www/us/en/programmable/documentation/sss1439972793861.html#cwh1553280745419
https://rocketboards.org/foswiki/Documentation/S10SecureBootDemoDesign
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Using the Authentication Feature
To authenticate an Intel Stratix 10 FPGA configuration bitstream, you prepare an
authentication signature chain which includes root and public keys.

Starting with version 18.1 of the Intel Quartus Prime software, you can use the
quartus_sign command to create a signature chain.

The following figure provides an overview of the steps to create an authentication
signature chain. It shows the steps for the following operations:

1. make_root (light yellow)

2. fuse_info (darker yellow)

3. append_key (light blue)

4. sign (light gray)

The make_private_pem and make_public_pem (top right of figure) prepare the
public and private keys that are inputs to the four operations listed above.

Figure 8. Steps to Create a Signature Chain

Operation: fuse_info
Operation: sign

Operation: make_private_pem

Operation: make_public_pem

Operation: append_keyOperation: make_root Signed
Bitstream

Write Hash
to Fuses

Create Root
Signature Chain

Create 1st Level
Signature Chain

1st Level
Signature Chain

2nd Level
Signature Chain

Create 2nd Level
Signature Chain

Bitstream

Add Signature
to Bitstream

2nd Level
Public Key

1st Level
Public Key

Root
Keychain

2nd Level
Private Key

Root
Public Key

Root
Private Key

1st Level
Private Key

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1. Step 1: Creating the Root Key

The root key includes public and private components. These keys are in the Privacy
Enhanced Mail Certificate (PEM) format and have the .pem extension.

Complete the following steps to generate the root private and public keys:

1. Bring up a Nios® II command shell.

Option Description

Windows On the Start menu, point to Programs ➤ Intel FPGA ➤ Nios II EDS ➤
<version> and click Nios II <version> Command Shell.

Linux In a command shell change to the <install_dir>/nios2eds and run the
following command:

./nios2_command_shell.sh

2. In the Nios II command shell, change to the directory that includes your .sof file.

3. Run the following command to create the private key which you use to generate
the root public key.

Note: You can create the private key with or without passphrase protection. The
passphrase encrypts the private key. Intel recommends following industry
best practices to use a strong, random passphrase on all private key files.
Intel also recommends changing the permissions on the private .pem file to
read-only for the owner.

Option Description

With passphrase quartus_sign --family=stratix10 --operation=make_private_pem --
curve=<prime256v1 or secp384r1> <root_private.pem>
Enter the passphrase when prompted to do so.

Without passphrase quartus_sign --family=stratix10 --operation=make_private_pem --
curve=<prime256v1 or secp384r1> --no_passphrase <root_private.pem>

4. Run the following command to create the root public key. The
root_private.pem you generated in the previous step is an input to this
command. You do not need to protect the root public key.

quartus_sign --family=stratix10 --operation=make_public_pem
<root_private.pem> <root_public.pem>

5. Convert the root public key to the Intel Quartus Prime key file format (.qky). You
use the Intel Quartus Prime Programmer or the quartus_pgm command to
program the root public key into a Intel Stratix 10 device. The .qky file is a few
hundred bytes in size.

quartus_sign --family=stratix10 --operation=make_root <root public.pem>
<root_public.qky>

3.2. Step 2: Creating the Design Signing Key

You may need one or more design signing keys. You can create separate signing keys
for the HPS and FPGA in Intel Stratix 10 SX devices. Creating multiple keys gives you
the flexibility to cancel keys if you detect an error, uncover a vulnerability, or need to
update the design.

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Run the following command to create the first design signature private key. You
use the design signature private key to create the design signature public key.

Note: Intel recommends following industry best practices to use a strong, random
passphrase on all private key files. The curve argument in this command
must be the same has the one you specified for the root key.

Option Description

With passphrase quartus_sign --family=stratix10 --operation=make_private_pem --
curve=<prime256v1 or secp384r1> <design0_sign_private.pem>
Enter the passphrase when prompted to do so.

Without passphrase quartus_sign --family=stratix10 --operation=make_private_pem --
curve=<prime256v1 or secp384r1> --no_passphrase
<design0_sign_private.pem>

2. Run the following command to create the design signature public key.

quartus_sign --family=stratix10 --operation=make_public_pem
<design0_sign_private.pem> <design0_sign_public.pem>

Enter your passphrase when prompted to do so.

3.3. Step 3: Appending the Design Signature Key to the Signature
Chain

This step appends design signing keys to the signature chain. The append command
implements the following operations:

• Appends the 1st Level Public Key (design0_sign_public.pem) to the Root
Public Key (root_public.qky) and generates the 1st Level Signature Chain
(design0_sign_public.qky) that includes the root public key and design0
public key.

• Signs the new 1st Level Signature Chain (design0_sign_chain.qky) using the
Root Private Key (root_private.pem).

1. Run the following command to append the first design signature key to the root
key, creating a two-level signature chain:

Setting the permission argument to 6 creates a signature that can sign the
FPGA I/O, core, PR, and HPS sections. Setting the permission argument to 2 or
4 creates a signature that can sign only FPGA or HPS sections, respectively.
Setting the cancellation argument to 0 means that eFuse0 can cancel this
signature. eFuses 0-31 are available for owner cancellation.

quartus_sign --family=stratix10 --operation=append_key \
 --previous_pem=<root_private.pem> --previous_qky=<root_public.qky> \
 --permission=6 --cancel=0 <design0_sign_public.pem> \
 <design0_sign_chain.qky>

2. Use append_key again to create a three-level signature chain:

a. Repeat the commands in Step 1 on page 20, to generate both
design1_sign_private.pem and design1_sign_public.pem.

b. Append design1_sign_public.pem to the signature chain.

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting the cancellation argument to 1, means that the second available
cancellation eFuse, eFuse 1, cancels this signature.

quartus_sign --family=stratix10 --operation=append_key \
 --previous_pem=<design0_sign_private.pem> \ --
previous_qky=<design0_sign_chain.qky> --permission=6 \
 --cancel=1 <design1_sign_public.pem> <design1_sign_chain.qky>

Enter the passphrase when prompted to do so.

3. If you are generating separate keychains for HPS and FPGA signing, repeat steps 1
and 2 with different PEM files. The FPGA signing chain should have
permission=2. The HPS signing chain should have permission=4.

3.4. Step 4: Signing the Bitstream

Once you generate the private PEM and .qky files, you are ready to sign the
bitstream. There are two options for bitstream signing:

• You use Intel Quartus Prime Programming File Generator to generate the signed
bitstream from a .sof file. You specify the required format for your configuration
scheme. The JTAG Indirect Configuration File (.jic) and Raw Programming Data
File (.rpd) formats are available for Active Serial (AS) configuration. The
Programmer Object File .pof and .rbf are available for Avalon® Streaming
(Avalon-ST) configuration.

• Alternatively, you can use quartus_sign command to sign the bitstream. This
command requires the .rbf as the input to generate a signed .rbf file.

Note: If you are using the Jam* Standard Test and Programming Language (STAPL) Player
to program over JTAG the following command converts an .rbf file to the .jam
format that the Jam STAPL Player requires:

quartus_pfg -c signed_bitstream.rbf signed_bitstream.jam

3.5. Step 4a: Signing the Bitstream Using the Programming File
Generator

The Programming File Generator requires the private key file (.pem) to sign the
configuration bitstream. You append the generated signature chain (.qky) to your
compiled design .sof. Attaching the signature chain to your .sof does not require
you to recompile your design.

Complete the following steps to append the signature chain key file to the .sof file
and generate the signed bitstream using the Programming File Generator.

1. Choose one of the following options to append the signature chain key file the
configuration bitstream:

— Specify the .qky file using the Intel Quartus Prime software. On the
Assignment tab, select Device ➤ Device and Pin Options ➤ Security ➤
Quartus Key File. Then browse to your signature key chain file.

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Specifying the Quartus Key File

Specify Quartus Key File

Security Category

— Alternatively, you can add the following assignment statement to your Intel
Quartus Prime Settings File (.qsf):

set_global_assignment -name QKY_FILE design1_sign_keychain.qky

2. To generate a .sof that includes design1_sign_keychain.qky select
Processing ➤ Start ➤ Start Assembler.
The new .sof includes the design1_sign_keychain.qky signature chain.

3. On the Intel Quartus Prime file menu, select File ➤ Programming File
Generator.

Figure 10. Programming File Generator

4. For Device family, select Intel Stratix 10

5. For Configuration mode, select the configuration mode you plan to use. This
example uses AVST x16.

6. For Output directory click Browse and navigate to your output files directory.

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. On the Output Files tab, select Raw Binary File (.rbf).

8. On the Input Files tab, click Add Bitstream then browse and select your .sof
file.

Figure 11. Input File Properties

Properties
(for .sof)

Add
Bitstream

9. On the Input Files tab, click Add Bitstream and then browse to your bitstream.

10. On the Input Files tab, click Properties… and make the following selections
under Signing tool settings:

a. Select On for Enable signing tool.

b. For Private key file, select the final private signing key. For example, Figure
6 Figure 8 on page 18 Steps to Create a Signature Chain shows a root private
key and two private keys. For this key chain, you would select the second-
level private .pem file.

Note: If your .pem is password-protected, the GUI opens a dialog box to enter
the password.

3.6. Step 4b: Signing the Bitstream Using the quartus_sign
Command

The quartus_sign command takes the signature chain (.qky), a private signing key
(.pem), and the unsigned raw binary file (.rbf) as inputs to generate the
signed .rbf.

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can generate the unsigned bitstream in .rbf format using the following
command:

quartus_pfg -c design.sof unsigned_bitstream.rbf

1. Run the following command to sign the bitstream using a command-line
command:

> quartus_sign --family=stratix10 --operation=sign \
--qky=design1_sign_keychain.qky --pem=design1_sign_private.pem \
 unsigned_bitstream.rbf signed_bitstream.rbf

Related Information

Generating Secondary Programming Files with Programming File Generator

3.7. Step 5: Programming the Owner Root Public Key for
Authentication

Your manufacturing process programs the hash of the owner root public key,
root_public.qky, into eFuses available on the Intel Stratix 10 device. Programming
the hash value into actual eFuses on the device is irreversible. During development,
you can validate the hash value by programming this value into virtual eFuses. The
virtual eFuses are volatile. Values stored in eFuses clear each time you power cycle
the Intel Stratix 10 device.

You can use the Intel Quartus Prime Software to program the public root key for
authentication. Alternatively, you can use a command-line command to accomplish
this task.

3.8. Step 5a: Programming the Owner Root Public Key

1. On the Tools menu, select Programmer.

2. Right click the image of the Intel Stratix 10 device and select Edit ➤ Add
QKY/QEK/Fuse file

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

24

https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html#oth1521565512481
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Right-Click the
Stratix 10 Device

Add QKY File

3. Browse to the owner root public key file and click Open.

Note: Once you have specified the QKY file, the programmer displays the
compatible version of firmware that you use to program the device. The
version of the Intel Quartus Prime Programmer and the firmware must
match.

4. You can choose to program the non-volatile eFuses or simulate the actual
hardware using virtual eFuses.

Caution: Incorrect fuse programming can make your device unusable. Intel
recommends that you test all eFuse programming sequences using
virtual fusing before you program physical eFuses on your first device.

— To select virtual eFuses, on the Programmer Tools menu, select Options. Turn
on Enable device security using a volatile security key if this option is
not already on. By default this option is on. Then, select OK.

Volatile
eFuses

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— To select the actual non-volatile eFuses, on the Programmer Tools menu,
select Options. Turn off the Enable device security using a volatile
security key option.

5. To verify that the fuse value and the hash value of the owner root public key
match, turn on the Verify option in the Intel Quartus Prime software.

Verify QKY File

3.9. Step 5b: Calculating the Owner Root Public Key Hash

1. Use the quartus_sign command with the operation set to the fuse_info
operation to generate the hash of the root public key, as follows:

quartus_sign --family=stratix10 --operation=fuse_info \
 public_root.qky hash_fuse.txt

To validate the owner root public key hash, you can compare the value of
hash_fuse.txt to the value you observe when turn on the Examine option
while configuring the Intel Stratix 10 device in the Intel Quartus Prime Pro Edition
Programmer.

Related Information

Using eFuses on page 48

3. Using the Authentication Feature

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Co-Signing Device Firmware Overview
Intel programs each Intel Stratix 10 device with an Intel root public key hash during
the manufacturing process. Boot code stored in read-only memory in the Intel Stratix
10 SDM uses this hash to validate an Intel signature chain. This process helps to
ensure that only firmware that Intel has approved can run on the device. Intel only
signs firmware after a rigorous audit process.

The Intel Quartus Prime Software supports co-signing device firmware. Co-signing
adds another layer of protection for device firmware. The joint signature capability
allows you to sign device firmware with an owner signing key that you generate. You
enable the co-signature by programming the owner root public key hash and the co-
signed firmware eFuses. Once you program these security fuses, loading new firmware
requires both Intel and owner signatures.

4.1. Using the Co-Signing Feature

The following figure provides an overview of the steps to create an signature chain to
co-sign the device firmware.

Firmware Co-Signing Design Flow

Operation: append_key

Quartus
Programmer

Quartus
Sign

Unsigned FW
 nadder.zip

Owner Root
Public Key .qky

Owner Root
Private Key .pem

Owner FW
Public .pem

Owner FW
Key .qky

Quartus
Sign

Owner FW
Private .pem

Signed FW

signed.zip)
(nadder_

Operation: sign

Owner.fuse

Co-Signed
Firmware

Generate Co-Signed Key File for Firmware Program Fuses with Co-Signed Key File

It shows the steps for the following operations:

1. Generating an owner firmware key and appending this key owner FW public .pem)
to the existing owner keychain (owner FW key.qky).

2. Co-signing the firmware. Add the owner signature to nadder.zip using the new
keychain and the Owner FW Private .pem file.

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Note: The nadder.zip file is available in the <install_dir>/quartus/
common/devinfo/programmer/firmware/ directory. This file includes
the SDM firmware.

3. Programming the Co-Signed Firmware eFuses in the the Intel Stratix 10 device
using the signed firmware (Signed FW signed_nadder.zip) and owner.fuse
as inputs.

Note: You must power cycle your board after programming the fuses.

4.1.1. Prerequisites for Co-Signing Device Firmware

Before completing the steps to co-sign device firmware, you must generate an owner
root key and program the owner root public key hash eFuse in the eFuses on your
Intel Stratix 10 device.

To generate the owner root key follow the instructions in Using the Authentication
Feature Step 1: Creating the Root Key or by using your own custom hardware security
module.

Then program the owner root public key hash into eFuses. By default, the
quartus_pgm command programs the root public key hash into virtual (volatile)
eFuses. You can use the optional --non_volatile_key argument to specify physical
eFuses on the Intel Stratix 10 device. Here are both versions of the quartus_pgm
command: :

//For physical (non_volatile) eFuses on the Intel Stratix 10 device
quartus_pgm -c 1 -m jtag -o "p;root_public.qky" --non_volatile_key

//For virtual (volatile) eFuses
quartus_pgm -c 1 -m jtag -o "p;root_public.qky"

Alternatively, you can use the Intel Quartus Prime Programmer to program the owner
root key as described in Step 5: Programming the Owner Public Root Key for
Authentication.

Related Information

• Step 5: Programming the Owner Root Public Key for Authentication on page 24

• Step 1: Creating the Root Key on page 19

4.1.2. Generating the Owner Firmware Signing Key

You use the Intel Quartus Prime Signing Tool operation=append_key to append a
firmware signing key to the owner root public key. The permission is set to 1 for
firmware.

The first two steps generate required inputs to the operation=append_key
command shown in Step 3.

1. Run the following command to generate a private key you use to sign the
firmware.

quartus_sign --family=stratix10 --operation=make_private_pem --
curve=prime256v1 or <secp384r1> owner_fw_private.pem

4. Co-Signing Device Firmware Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Run the following command to generate the corresponding firmware public key
from owner_fw_private.pem.

quartus_sign --family=stratix10 --operation=make_public_pem
owner_fw_private.pem owner_fw_public.pem

3. Run the following command to append the owner_fw_public.pem to the owner
root keychain

quartus_sign --family=stratix10 --operation=append_key \
--previous_pem=owner_root_private.pem --previous_qky=owner_root_public.qky
 --permission=0x1 --cancel=1 owner_fw_public.pem owner_fw_key.qky

4.1.3. Co-Signing the Firmware

You use the Intel Quartus Prime Signing Tool operation=sign to sign the firmware
with your private firmware key.

1. Run the following command to co-sign the firmware file. The firmware file is
nadder.zip. The Intel Quartus Prime Software writes this file to the
<install_dir>/ quartus/common/devinfo/programmer/firmware/
directory.

quartus_sign --family=stratix10 --operation=sign --qky=owner_fw_key.qky \
--pem=owner_fw_private.pem nadder.zip nadder_signed.zip

Refer to Programming eFuses on page 51 for instructions on programming eFuses.

4.1.4. Powering On In JTAG Mode After Implementing Co-Signed
Firmware

After you program the co-signed firmware eFuse, the Intel Stratix 10 FPGA requires all
configuration bitstreams to include co-signed firmware on every subsequent power-on.
The existing helper image containing the SDM firmware is now out-of-date because it
does not specify co-signed firmware. You must regenerate a new
signed_helper_image.rbf file that specifies co-signed firmware.

Use the co-signed signed_nadder_signed.zip to regenerate the
signed_helper_image.rbf. Load the .rbf then, program the .fuse file.

1. Generate a signed helper image for eFuse programming.

quartus_pfg --helper_image -o helper_device=1SG280HN2 -o subtype=FUSE \
 -o fw_source=signed_nadder.zip signed_helper_image.rbf

2. Configure your Intel Stratix 10 device with the signed_helper_image.rbf file
you just created.

quartus_pgm -c 1 -m jtag -o “p;signed_helper_image.rbf”

4. Co-Signing Device Firmware Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. HPS Debug Using a Certificate
For Intel Stratix 10 SX devices, you can require an HPS debug certificate before
permitting access to the JTAG interface for HPS debugging. An HPS debug certificate is
a one-time certificate that is valid until you power down the SDM or reconfigure the
device. Restarting the HPS does not invalidate the HPS debug certificate.

Signing a configuration bitstream with the HPS debug access port (DAP) available
without a debug certificate enables that configuration bitstream to load
unauthenticated software to the HPS. In response, the Intel Quartus Prime Pro Edition
Software generates critical warnings. Intel recommends careful consideration before
using this option. Intel strongly recommends canceling the signing key ID after this
configuration bitstream is no longer needed.

Note: You can debug the HPS without a certificate by turning on the Allow HPS debug
without certificate on the Assignments ➤ Device ➤ Device and Pin Options ➤
Configuration menu.

Using an HPS debug certificate includes the following steps:

1. Requesting the certificate from a configured device.

2. Signing the certificate using a keychain with HPS debug permissions.

3. Programming the signed certificate back into the device.

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

You can create an HPS debug certificate when the following conditions are true:

• You have selected either HPS or SDM pins to access the HPS.

Figure 12. Specify Either HPS or SDM Pins for the HPS DAP

HPS debug access port (DAP)

• You have not disabled the HPS DAP.

• You have programmed the FPGA with an owner root key. Refer to Step 5:
Programming the Owner Public Root Key for Authenticationfor more information.

• You have programmed the device with a signed bitstream with the HPS and FSBL
permission set to true. (permission=4 for HPS and FSBL)

• You have not permanently disabled HPS debugging on the device by programming
the JTAG disable eFuse. For more information about the available eFuses refer to
the Owner Programmable eFuses table in the Using eFuses topic.

• You have not programmed the FPGA with a design that disables HPS debug. HPS
debug certificates do not override the setting to disable HPS debug for a given
bitstream.

Related Information

• Step 1: Creating the Root Key on page 19

• Using eFuses on page 48

5.1. Enabling HPS JTAG Debugging

Use this procedure to enable HPS JTAG debugging after configuring the
Intel Stratix 10 SX device with a signed bitstream.

You should already have created a first-level signature chain by completing the
instructions in the following topics:

1. Step 2: Creating the Design Signing Key on page 19.

2. Step 3: Appending the Design Signature Key to the Signature Chain on page 20.
Be sure to specify permission=4 for the HPS and FSBL.

5. HPS Debug Using a Certificate

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Completing these commands results in <design0_sign_chain.qky> and
<design0_sign_private.pem> files that are inputs the quartus_sign command
the creates the signed HPS debug certificate.

1. To create the HPS debug certificate, you must provide a <device> argument to
the quartus_pgm command. Use the Intel Quartus Prime Programmer Device
name list to determine the proper <device> argument by completing the
following steps:

a. Find the list of Intel Stratix 10 devices, in the Intel Quartus Prime
Programmer, by select Add Device.

b. In the Device family list, select Intel Stratix 10. In the Device name list,
find the part number that matches your device.

Figure 13. User the Programmer to Determine the helper_device Argument

Possible Values
for

helper_device

Add Device

2. Generate an unsigned secure HPS debug certificate from the programmed device.
The <device> argument is the Device name you identified in the previous step.

quartus_pgm -c 1 -m jtag -o “ei;unsigned_hps_debug.cert;<device>”

3. Sign the HPS debug certificate using the quartus_sign command:

quartus_sign --family=stratix10 --operation=sign \
--qky=design0_sign_chain.qky --pem=design0_sign_private.pem \
unsigned_hps_debug.cert signed_hps_debug.cert

4. Send the signed HPS debug certificate to the device to enable HPS debugging.

quartus_pgm -c 1 -m jtag -o “p;signed_hps_debug.cert"

5. HPS Debug Using a Certificate

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Signing Command Detailed Description

The signing command, quartus_sign, supports the following functions:

• Generates the private and public PEM files

• Generates the signature chain starting with the root public key

• Appends additional public keys to the signature chain

• Signs a bitstream, firmware, or debug certificate

• Calculates the root public key hash from the signature chain file .qky file

The quartus_sign command always specifies the FPGA device family and operation.
Here is the general format of the command:

quartus_sign --family=stratix10 --operation=<type of operation> [additional
arguments]

The following table summarizes all the quartus_sign operations. "Creates a new
Quartus keychain .qky file with a given public key .pem in the root entry" (eg, this
command does not generate a new key)

Table 4. Signing Command Argument Summary

Argument Options Description

operation make_private_pem Generates a private key in .pem format such as
root_private.pem.

make_public_pem Generates a public key in .pem format from the private .pem
such as root_public.pem.

make_root Creates a new Intel Quartus Prime keychain .qky file with a
given public key .pem in the root entry such as
root_public.qky.

append_key Signs, appends, and sets the permissions and cancellation ID of
an additional public key to an existing signature chain in the
Intel Quartus Prime keychain .qky format.

sign Signs the bitstream with the .pem private key and key chain.

fuse_info Calculates the root public key hash from the .qky file.

The following topics provide details on each operation. The operations are listed in the
order that you normally run them to create a signature chain, sign the bitstream, and
calculate the root public key hash.

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

6.1. Generate Private PEM Key

The first step in generating the signature chain is creating the private PEM.

Command quartus_sign --family=stratix10 --operation=make_private_pem
 --curve=<prime256v1 or secp384r1> <output private PEM file>

or:

quartus_sign --family=stratix10 --operation=make_private_pem
 --curve=<prime256v1 or secp384r1> --no_passphrase
 <output private PEM file>

Input file None

Output file Private PEM file

Arguments This command includes 1 required argument and 1 optional argument:
• curve: Selects the Elliptic Curve Digital Signature Algorithm (EDCSA) 256 or 384. Intel

recommends using secp384r1 if possible because prime256v1 may be vulnerable to attacks
within the next 20 years.

• no_passphrase: By default the make_private_pem command encrypts the private key. You
can add the optional --no_passphrase argument to create a plain text key. Intel
recommends following industry best practices to use a strong, random passphrase on all
private key files.

6.2. Generate Public PEM Key

The second step in generating the signature chain is generating the public PEM file
from the private PEM file.

Command quartus_sign --family=stratix10 --operation=make_public_pem
<input private PEM file> <output public PEM file>

Input file input private PEM file: This is the file that the make_private_pem generates.

Output file output public PEM file: make_public_pem generates this file.

Arguments This command has no additional arguments.

6.3. Generate Root Signature Chain

The third step in generating the signature chain makes the root public key by
converting the public key PEM file to the Intel Quartus Prime key format.

Command quartus_sign --family=stratix10 --operation=make_root
 <input root public PEM file> <output root public qky file>

Input file input public PEM file: This is the file that the make_public_pem generates.

Output file output root public qky file: make_root generates this file.

Arguments This command has no additional arguments.

6. Signing Command Detailed Description

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4. Append Key to Signature Chain

The append command implements the following functions:

• Uses the private part of the last-appended public key to sign the new public key

• Appends the specified design signing key to the root public Intel Quartus Prime
keychain

• Assigns specified permissions and cancellation ID to the appended public key

Command quartus_sign --family=stratix10 --operation=append_key
--previous_pem==<private PEM for the public key of last entry
 in input QKY> --previous_qky=<input QKY>
--permission=<permission value to authenticate> --cancel=<cancel ID>
 <public PEM for new entry> <output QKY>

Input files The append_key command has 3 input files:
• previous_pem: The private PEM file that is input to the make_public_pem operation. This

private PEM is from the previous entry in the input signature chain.
• previous_qky: Intel Quartus Prime .qky format keychain to which the the quartus_sign

command appends the new public key.

Output file The append_key outputs 1 file:
• output_key: This is the new signature chain with one additional entry.

Arguments This command includes 2 arguments:
• permission: Sets the signing key permission value. These bits are positional. Each bit grants

permission to sign a particular type of data. To allow a key to sign more than one type of data,
you can add the permissions for the data types. For example, a permission value of 6 can sign
all data types that permissions 2 and 4 can sign. The following values are valid:
— 0: To sign firmware
— 2: To sign FPGA I/O, core sections, and PR sections
— 4: To sign HPS I/O and the FSBL
— 8: To sign an HPS debug certificate

• cancel: Specifies the cancellation ID to cancel this signature. The valid range is 0-31. The
special value of -1 is for keys that are uncancellable.

6. Signing Command Detailed Description

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.5. Sign the Bitstream, Firmware, or Debug Certificate

The sign operation takes an unsigned image.rbf, firmware.zip, debug.cert as
input. The sign operation generates a signed output file, either signed_image.rbf,
signed_firmware.zip, or signed_debug.cert.

For .rbf generation, you convert the .sof to an .rbf using either the Intel Quartus
Prime File ➤ Programming File Generator dialog box or the quartus_pfg
command-line command.

Command quartus_sign --family=stratix10 --operation=sign --qky=<qky file>
--pem=<private PEM for the public key of last entry in the input QKY>
<unsigned rbf, unsigned nadder file, unsigned debug certificate> <signed rbf, nadder file,
or signed debug certificate>

Input file The sign operation supports the following 3 input file types:
• unsigned rbf file: This is the .rbf that you generate from the .sof
• unsigned nadder file: quartus/common/devinfo/programmer/firmware/

nadder.zip. This file contains the SDM firmware.
• unsigned debug certificate file: This is the unsigned debug certificate you create

from the programmed device by running the following command: quartus_pgm -c 1 -m
jtag -o “ei;hps_unsigned.cert;<device>"

Output file signed rbf file, signed nadder file, or signed certificate file: This file is the
output of the sign operation.

Arguments This command has 2 additional arguments:
• qky: This is the .qky file generated by the previous append_key or make_root operation.
• pem: This is the private PEM for the previous public key of the input QKY.

Refer to Step 4: Signing the Bitstream for the steps to sign the bitstream using the
Programing File Generator tool.

Related Information

Step 4: Signing the Bitstream on page 21

6.6. Calculate Root Public Key Hash from QKY

The fuse_info operation returns the hash of the root public key.

Command quartus_sign --family=stratix10 --operation=fuse_info <input QKY>
<fuse output text>

Input file input QKY: This is the root public key.

Output file fuse output text: Manufacturing uses this text file to program the specified eFuses of the Intel
Stratix 10 device.

Arguments This command has no additional arguments.

6. Signing Command Detailed Description

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Encryption and Decryption Overview
A single AES root key under owner control encrypts the dynamic blocks of the Intel
Stratix 10 configuration bitstream.

Encryption Process

You can store the owner AES Root key in virtual eFuses, physical eFuses, BBRAM, or a
PUF-wrapped key. Using the PUF to wrap the AES root key for storage in flash is
planned in a future release. To prevent overuse of the AES root key, the root key
encrypts a chain of intermediate keys. The root key encrypts the first intermediate
key, which encrypts the second intermediate key, and so on. The last intermediate key
encrypts the section keys.

Encryption supports up to 20 intermediate keys. By default, the encryption function
uses three intermediate keys. These keys mitigate side channel attack risk by limiting
the exposure of the final key to encrypt a given section of the bitstream.

Intel recommends that you limit the amount of data encrypted with the same key
using AES update mode. You enabled AES update mode by setting the Assignments
➤ Device ➤ Device and Pin Options ➤ Security ➤ Encryption Update Ratio
parameter to 31:1. When enabled, the Intel Quartus Prime Pro Edition Software
inserts keys to limit the amount of data encrypted by a given key to the specified
ratio. For example, the 31:1 ratio inserts a new key every 31 * 32 bytes. Different
ratios may become available in a future release.

Figure 14. Security Tab: AES Encryption Key Update Ratio and Enable Scrambling

Encryption Update Ratio
Enable Scrambling

Figure 15. AES Update Mode

N+1 256-bit Block

KeySub-root Key Data DataData

N+1 256-bit Block

KeyData DataData

For (N +1), N = the data block count, 1 = the key bock

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Decryption Process

The section key decrypts the keys block which contains up to 128 keys. Each key is
256 bits and decrypts subsequent encrypted data or another keys block.

Figure 16. Bitstream Decryption

Header Block Intel Stratix 10

IVs & Intermediate Keys Owner AES Root Key

Section Key of Header
Block decrypts

Keys Block 0

Keys in Keys
Block 0 decrypt the

adjacent blocks
including Keys Block N

Total of 128 items decrypted
by keys stored in Keys

Block 0

Owner AES Root Key decrypts first
Intermediate Key that decrypts
next Intermediate Key. The last

Intermediate Key decrypts
the Section Key.

Signature Block

Initialization Vector (IV) for Keys Block 0

IVs for Subsequence Encrypted Data

Encrypted Data 1

IV & Section Key

Keys Block 0 (up to 128 keys)

IV for Keys Block N

Keys Block N(Up to 128 keys)

Encrypted Data 2

Encrypted Data 126

The initialization vector (IV) is unencrypted data that is an input to the decryption
function.

Understanding Partially Encrypted Configuration Bitstreams

A partially encrypted configuration bitstream has no intermediate keys. The section
key is in plaintext. The encryption finalization step creates intermediate keys and
replaces the plaintext section key with an encrypted version.

Enable Scrambling

The Enable Scrambling parameter helps to limit any potential side-channel exposure
of decrypted configuration data during the configuration process. Enabling this option
places a command in the configuration bitstream that the SDM processes at
configuration time. The Enable Scrambling parameter does not affect the encryption
or decryption process.

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1. Using the Encryption Feature

Encrypting the owner image includes the following three steps:

• Step 1: Preparing the owner image and AES key files

• Step 2: Generating the programming files

• Step 3: Programming the AES key and configuring the encrypted owner image

The following flow diagram shows the processes required for each step.

Figure 17. Design Flow for Owner Image Encryption in Intel Stratix 10 Devices

Stage #1
Prepare SOF and QEK

Stage #2
Programming File Generation

Password-
protected.qek

.sof with Encryption
Enable and

Key Select Option

PFG Encryption Option:
Use Factory Script

(stratix10_encrypt.py)
or Custom Script

Encrypted
.rbf/.jic/.pof/.rpd Programmer

Stage #3
Program owner AES root key
(.qek) to the device (physical

eFUSE/Virtual eFUSE/
BBRAM), and then configure

device with encrypted
bitstream

Device

quartus_encrypt
(stratix10_encrypt.py)

7.1.1. Step 1: Preparing the Owner Image and AES Key File

Before you generate the owner image and AES key file, you must specify
authentication settings on the Security page of the Device and Pin Options.

1. On the Security page (Assignments ➤ Device ➤ Device and Pin Options ➤
Security), for Quartus Key File specify your root key file or signature key chain,
which has the .qky file type.

2. Turn on the Enable Programming Bitstream Encryption option.

3. Specify the key storage location from Encryption Key Select drop-down list.

4. Generate the AES key using the quartus_encrypt command:

This example of the quartus_encrypt command specfies the optional
--aes_key parameter and provides the 8-word key value rather than
allowing the quartus_encrypt command to derive the aes_key from
the base_key

quartus_encrypt --family=stratix10 --operation=make_aes_key \
--aes_key=mykey.txt --ik_count=4 --max_key_use=32 <output.qek>

As an example, for the quartus_encrypt command shown above, the
mykey.txt file contains the following 8 words:

0xD6971FC7 0x28932CB0 0x5097E5A7 0x16968C52 0x7BB0AE8E 0x5C2F59E6
0x35B69453 0xC8E357BA

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2. Step 2a: Generating Programming Files Using the Programming File
Generator

You can use the Programming File Generator to encrypt and sign the owner image.
The Programming File Generator supports the following signed and encrypted output
file types:

• Raw Binary File (.rbf)

• JTAG Indirect Configuration File (.jic)

• Programmer Object File (.pof)

• Raw Programming Data File (.rpd)

1. On the Intel Quartus Prime File menu select Programming File Generator.

2. On the Output Files tab, specify the output file type for your configuration
scheme.

Figure 18. Output File Specification

Output file type

Configuration scheme

Output file tab

3. On the Input Files tab, click Add Bitstream and browse to your .sof.

4. To specify encryption and authentication options select the .sof and click
Properties.

a. Turn Enable signing tool on.

b. For Private key file select your signing key private .pem file.

c. Turn Finalize encryption on.

d. For Encryption key file, select your AES .qek file.

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Input (.sof) File Properties for Authentication and Encryption

Specify encryption key

Enable authentication

Enable encryption

Specify private root .pem

5. To generate the signed and encrypted bitstream, on the Input Files tab, click
Generate.
The password dialog box prompts you to input your passphrase for the .qek. The
programming file generator generates top.rbf if the passphrase is correct.

7.1.3. Step 2b: Generating Programming Files Using the Command Line
Interface

For JTAG or Avalon-ST configuration schemes, you can use the quartus_pfg script to
generate the signed and encrypted output file.

1. In your output files directory, run the following command:

quartus_pfg -c encryption_enabled.sof top.rbf -o finalize_encryption=ON \
-o qek_file=aes.qek -o signing=ON -o pem_file=design0_sign_private.pem

The password dialog box prompts you to input your passphrase for the aes.qek.
The programming file generator generates top.rbf if the passphrase is correct.

7.1.4. Step 3a: Specifying Keys and Configuring the Encrypted Image
Using the Intel Quartus Prime Programmer

You should already have specified a storage location for your .qek on the Security
page of the Assignments ➤ Device ➤ Device and Pin Options. In the current
release, you can select Battery Backup RAM (BBRAM) or eFuses. After you make
this selection, the Intel Quartus Prime Pro Edition Software identifies the .sof file as
encryption enabled and records your settings for the Encryption key select and
Encryption update ratio.

Note: If you intend to program your AES root key into physical eFuses, you must first follow
the procedure in section Storing the AES Root Key in Physical eFuses.

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Specify Storage Location for Encryption Key

Specify Quartus
Prime Key File
Select Key
Storage Location

1. Bring up the Intel Quartus Prime Programmer.

2. Right click the Intel Stratix 10 device and select Add QKY/QEK/FUSE File file.
Navigate to your .qky file and select it.

Figure 21. Adding .qky, .qek or .fuse files

3. Enable the Program/Configure option for the .qky file. Disable the Program/
Configure for any other files that may be selected. Click Start to program the
authentication key into your Intel Stratix 10 device.

Figure 22. Program/Configure A Key File

Program/
Configure

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Right click the Intel Stratix 10 device and select Add QKY/QEK/FUSE File.
Navigate to your .qek file and select it.

5. Enable the Program/Configure option for the .qek file. Disable the Program/
Configure for any other files that may be selected. Click Start. The Passphrase
dialog box appears. Enter your passphrase. The encryption key programs into the
BBRAM, virtual eFuses or physical eFuses on the Intel Stratix 10 device.

6. With the keys programmed, you can load the signed and encrypted .rbf
bitstream image.

Option Description

Using the Intel Quartus Prime Programmer: Enable the Program/Configure option for
the .rbf file. Disable the Program/Configure
for any other files that may be selected. Click
Start.

Using a Intel MAX® 10 device or other external
host:

Instruct the configuration hardware to configure
the Intel Stratix 10 device from the flash memory.

If you previously programmed the authentication key into physical eFuses, it is
important to remove this directive until you intend to do additional physical eFuse
programming. Select Tools ➤ Options ➤ Programmer to restore the Enable device
security using a volatile security key setting. Having volatile security selected
ensures that you do not program physical eFuses unintentionally.

Related Information

Storing the AES Key AES in Physical eFuses on page 45

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5. Step 3b: Programming the AES Key and Configuring the Encrypted
Image Using the Command Line

You use the Intel Quartus Prime Programmer to program the owner AES key into the
device. Then, configure the device using the encrypted bitstream.

You should already have specified a storage location for your .qek as explained in
Step 3a: Using the Intel Quartus Prime Programmer to Specify Keys and Configure the
Device. You can also specify this parameter using the --key_storage argument to
the quartus_pgm command.

Note: If you intend to program your AES root key into physical eFuses, you must first follow
the procedure in section Storing the AES Root Key in Physical eFuses.

1. You can program the key file using the quartus_pgm command:

Caution: Incorrect programming of security eFuses can permanently prevent the
device from configuring. Intel strongly recommends before programming
any security eFuse that you test using the virtual eFuses to ensure that
the values being programmed are correct.

// For BBRAM
quartus_pgm -c 1 -m jtag -o "pi;aes.qek" --key_storage "BBRAM"

// For virtual eFuses
 quartus_pgm -c 1 -m jtag -o "pi;aes.qek" --key_storage "Virtual eFuses"

// For physical eFuses
 quartus_pgm -c 1 -m jtag -o "pi;aes.qek" --key_storage "Real eFuses"

The command arguments specify the following information:

• -c: cable number

• -m: mode

• -o: operation. The argument to operation is enclosed in quotes. The letters
specify the following operations:

— p: program

— i: load a helper image which loads the SDM firmware so that it can
program the aes.qek

— ;: the argument following the ; specifies the programming file

• --key_storage: specifies the location for the encryption key. The following
values are available: BBRAM, Virtual eFuses, physical eFuses.

2. Now program the signed encrypted bitstream using the following commands:

quartus_pgm -c 1 -m jtag -o "p;encrypted.rbf"

Related Information

Storing the AES Key AES in Physical eFuses on page 45

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6. Storing the AES Key AES in Physical eFuses

Beginning in version 19.3, the Intel Quartus Prime Pro Edition Software supports
storing the AES root key in physical eFuses. In order to help protect the AES root key
from extraction via physical examination of the fuses, the SDM firmware wraps the
AES root key and stores the wrapped value in eFuses. You must upgrade to version
19.3 and cancel all prior Intel Firmware IDs in order to store your AES root key in
physical eFuses.

After upgrading to 19.3, complete the following tasks:

1. Power on your design in version 19.3 of the Intel Quartus Prime Pro Edition
Software.

2. Program Intel cancellation IDs 0-4 by programming the corresponding fuses.

3. Power cycle your system.

4. Program the AES key eFuses.
The Intel Stratix 10 wraps the AES key.

7.1.7. Storing the AES Key in BBRAM using the JTAG Mailbox

You can use the JTAG Mailbox VOLATILE_AES_WRITE and VOLATILE_AES_ERASE
commands to write the AES Key to BBRAM and erase the AES key from BBRAM.

For more information about using these commands, refer to the How can I write or
erase the Intel Stratix 10 AES BBRAM encryption key using the Mailbox Client Intel
FPGA IP interface and System Console?.

7. Encryption and Decryption Overview

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

45

https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/component/2019/how-can-i-write-or-erase-the-intel--stratix-10-aes-bbram-encrypt.html?cq_ck=1578296830911
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/component/2019/how-can-i-write-or-erase-the-intel--stratix-10-aes-bbram-encrypt.html?cq_ck=1578296830911
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/component/2019/how-can-i-write-or-erase-the-intel--stratix-10-aes-bbram-encrypt.html?cq_ck=1578296830911
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Encryption Command Detailed Description
The encryption command supports the following functions:

• Making an AES key

• Encrypting the configuration bitstream

Table 5. Signing Command Argument Summary

Argument Options Description

operation make_aes_key Generates an .qek file. Takes 6 optional arguments.

encrypt Completes the encryption process. When you enable encryption,
the Bitstream Assembler always generates a partially-encrypted
owner configuration bitstream (.rbf) from the .sof input file.

8.1. Make AES Key

You can use the six optional arguments to the quartus_encrypt command to
customize encryption.

Command quartus_encrypt --family=stratix10 --operation=make_aes_key <output .qek>

Input file None

Output file .qek

Arguments This command includes the following 6 optionals arguments:
• ik_count: Specifies the number of intermediate keys to encrypt the owner configuration

bitstream. The default value is 3.
• max_key_use: Specifies the maximum number of keys to use to encrypt the owner

configuration bitstream. The default value is 128. The following restriction applies to the total
number of encryption keys:

log2(max_key_use) * (ik_count + 1) < 64

• passphrase: Specifies an optional file path that contains a passphrase to protect the .qek. If
you do not specify this argument, the quartus_encrypt command prompts you to enter the
passphrase.

• base_key: Specifies a binary file as the base_key to generate a root key if you do not specify
an aes_key or key derivation key. If you do not specify a base_key, quartus_encrypt uses
random data.

• aes_key: Specifies an AES key in hexadecimal words. If you do not specify an aes_key, the
quartus_encrypt command derives the aes_key from the base_key.

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

8.2. Encrypt the Bitstream

You enable encryption on the Security page of the Assignments ➤ Device ➤
Device and Pin Options ➤ Security tab. When you enable encryption, the Bitstream
Assembler always generates a partially-encrypted owner configuration bitstream. A
partially encrypted configuration bitstream has no intermediate keys. The section key
is in plaintext. The encryption finalization step creates intermediate keys and replaces
the plaintext section key with an encrypted version. The quartus_encrypt
command completes the encryption process.

Command quartus_encrypt --family=stratix10 --operation=encrypt --Key=<output .qek> \
<partially-encrypted .rbf> <fully encrypted .rbf>

Input file Partially encrypted .rbf file.

Output file Fully encrypted .rbf file.

Arguments This command includes the following 2 required arguments:
• key: Specifies a .qek file.
• passphrase: Specifies an optional file path that a contains passphrase to protect the .qek. If

you do not specify this argument, the quartus_encrypt command prompts you to enter the
passphrase.

8. Encryption Command Detailed Description

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Using eFuses
Intel Quartus Prime Pro Edition devices use eFuses to permanently store device and
security information. Owner eFuse fields are quadruple-redundant. The Intel Quartus
Prime Pro Edition Programmer programs eFuses using a JTAG interface. eFuse
programming is an irreversible process in which a large amount of electrical current
passes through a small chip feature until the feature is destroyed.

You can set many of the eFuses using the More Options button of the Security
category on the Assignments ➤ Device ➤ Device and Pin Options menu as
shown.

Figure 23. Setting Security Options Using eFuses

The following table describes all available owner eFuses.

Table 6. Owner Programmable eFuses

eFuse Name Legal Values Description

Intel FPGA public key hash 384-bit hex Read-only.

Intel FPGA public key cancellation 32-bit hex 32 Intel cancellation IDs are available. Each bit corresponds
to the cancellation ID.

continued...

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

eFuse Name Legal Values Description

Co-signed firmware 1-bit boolean When you program this fuse, both you and Intel must sign
the device firmware. Intel signs the device firmware with the
root public key during the manufacturing process.

Device not secure 1-bit boolean If you receive a device and this fuse is programmed do not
use the device and contact Intel.

Owner encryption key program
done

1-bit boolean

The Programmer programs the owner AES key into eFuses.
Owner encryption key program
start

1-bit boolean

Owner key cancellation 32-bit hex 0-31. The Intel Stratix 10 device has 4 redundant
cancellation bits of with each fuse. The Programmer
programs all 4 copies when you cancel the corresponding
fuse.

Owner root public key hash 384-bit hex Stores the hash value of the owner root public key.

Owner public key size [0, 256, 384] Specifies owner public key size. Intel recommends using 384-
bit keys if possible.

JTAG disable 1-bit boolean When set, disables JTAG command and configuration. Setting
this eFuse eliminates JTAG as mode of attack, but also
eliminates boundary scan.

Force SDM clock to Internal
Oscillator

1-bit boolean When set, disables an external clock source for the SDM for
bitstream configuration. Forcing the SDM to use an internal
oscillator helps to limit potential interruptions or attacks by
modifying an external clock during configuration.

Force encryption key update 1-bit boolean When set, all encrypted bitstreams must specify the
Encryption Update Ratio on the Intel Quartus Prime
Assignments ➤ Device and Pin Options ➤ Security
menu.

Disable virtual eFuses 1-bit boolean When set, disables the eFuse virtual programming capability.

Lock security eFuses 1-bit boolean Programming this fuse prevents the future programming of
any owner-accessible security policy fuses, not including key
cancellation ID fuses.

Disable HPS debug 1-bit boolean When set, permanently disables debugging using JTAG to
access the HPS.

eFuse key disable 1-bit boolean When set, the device does not use an AES key stored in
eFuses.

BBRAM key disable 1-bit boolean When set, the device does not use AES key stored in BBRAM.

Simulating the Public Key Hash Virtual eFuses

Because eFuses are non-volatile, Intel recommends validating eFuse programming
before programming physical eFuses on the Intel Stratix 10 device.

9. Using eFuses

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This example provides the steps to validate the public key hash. First, you program
the public key hash value into in virtual eFuses. Then, you compare that value to the
value that the Examine function stores in hash_fuse.txt:

1. Turn on Enable device security using a volatile security key in the Intel
Quartus Prime Programmer. When you select this option the Intel Quartus Prime
Pro Edition stores the eFuse values in firmware registers.

2. In the Intel Quartus Prime Programmer click Add File and browse to your signed
bitstream.

3. In the Intel Quartus Prime Programmer turn on the Program/Configure and
Examine options.

4. Click Start.

5. After programming completes, the Programmer displays the hash value of the
signature key stored in firmware. You can now compare that value to the value
you generate by creating a hash_fuse.txt file using the quartus_sign
command with the operation set to fuse_info.

Related Information

Step 5b: Calculating the Owner Root Public Key Hash on page 26

9.1. Fuse Programming Input Files

The Intel Quartus Prime Programmer supports the following three input file types for
fuse programming. Intel Quartus Prime key file (.qky), the Intel Quartus Prime
encryption key (.qek), and the .fuse file.

The files provide the following information to the Intel Quartus Prime Programmer:

• .qky: Provides the owner public root key for authentication and the second-level
key for firmware authentication. Use this file for the following functions:

— To program and verify the public root key fuses

— To sign the owner configuration bitstream

— To sign the device firmware

— To sign the HPS debug certificate

• .qek: Provides the AES key for encryption. Use this file for the following
functions:

— To program the AES key fuses

— To encrypt the owner configuration bitstream

• .fuse: Specifies all owner fuses. Also includes the public root key which is read-
only. Use this file for the following functions:

— To program and verify security fuses

— To program owner-defined fuses

9. Using eFuses

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9.1.1. Fuse File Format

The .fuse file contains a list of fuse name-value pairs. The value specifies whether
the fuse has been programmed (blown) and its cancellation ID.

The following example shows the format of the .fuse file.

Comment
<fuse name> = <value>
<fuse name> = <value>
<fuse name> = <value>

You can use the Intel Quartus Prime Programmer Examine option to read all currently
programmed fuses in the Intel Stratix 10 device and store this information in a .fuse
file.

9.1.2. Programming eFuses

You can program eFuses to enable or disable device security features. Before
programming eFuses you must check the current state of eFuse programming for your
device. This procedure ensures that you add the new eFuse commands to the existing
eFuse programming commands, if any.

The example commands specify the helper_device 1SX280LH2. If you are using a
different Intel Stratix 10 device, provide the appropriate ordering code for that device
up to the speed grade designation. Helper images are necessary for flash and fuse
programming using the Intel Quartus Prime Programmer. The helper image programs
the SDM firmware.

1. To find the list of helper devices, in the Intel Quartus Prime Programmer, select
Add Device.

2. In the Device family list, select Intel Stratix 10. In the Device name list,
identify the find the part number that matches your device.

9. Using eFuses

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. User the Programmer to Determine the helper_device Argument

Possible Values
for

helper_device

Add Device

3. Generate an unsigned helper image for eFuse programming.

quartus_pfg --helper_image -o helper_device=1SG280HN2 -o subtype=FUSE \
 -o fw_source=nadder.zip unsigned_helper_image.rbf

4. Configure your Intel Stratix 10 device with the helper_image.rbf file you just
created.

quartus_pgm -c 1 -m jtag -o “p;unsigned_helper_image.rbf”

5. Generate the current device fuse status file, programming_file.fuse.

quartus_pgm -c 1 -m jtag -o “e;programming_file.fuse;1SX280LH2”

6. Edit programming_file.fuse to add the required eFuses. There are four copies
of eFuses. Programming changes all 4 copies from 0 to 1. Add the following
command to programming_file.fuse.

<fuse_name> = "0xF"

7. Program the eFuses:

//For physical (non-volatile) eFuses
quartus_pgm -c 1 -m jtag -o "p;programming_file.fuse" --non_volatile_key

//For virtual (volatile) eFuses
quartus_pgm -c 1 -m jtag -o "p;programming_file.fuse"

Related Information

Intel Stratix 10 GX/SX Device Overview
For an explanation of Intel Stratix 10 device ordering codes.

9. Using eFuses

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

52

https://www.intel.com/content/www/us/en/programmable/documentation/joc1442261161666.html#joc1442354754966
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9.1.3. Canceling eFuses

If you have already programmed the owner root key hash into eFuses, you must
manually cancel IDs 0, 2, and 3 in the FPGA. When you programmed the owner root
key hash into eFuses, ID 1 was automatically canceled.

Follow these steps to cancel eFuses that specify SDM firmware versions that are no
longer valid.

1. Extract the existing fuse information by running the following command-line
command:

quartus_pgm -c 1 -m jtag -o "ie;my_fuse.fuse;1SX280LH2"

This command generates a my_fuse.fuse text file.

Sample contents of my_fuse.fuse:

Co-signed firmware = "0xF"
Device not secure = "0x0"
Intel key cancellation = ""
Owner fuses =
"0x000
00
00
00
000"
Owner key cancellation = ""
Owner public key hash =
"0x000000000000000000000000000000000CE520B15B082E67ACEBCB8545CE239FDBB8CDE60
83F6DF9D3BF542932EA5039"
Owner public key size = "0xF"
QSPI start up delay = "0x0"
SDMIO0 is I2C = "0x0"

2. Using a text editor, update my_fuse.fuse to specify the keys to cancel. Change:

#Intel key cancellation = ""

to:

Intel key cancellation = "0,1,2,3,4"

Note: Be sure to remove the initial #.

3. Run the following command to program the cancellation ID eFuses:

//For physical (non-volatile) eFuses
quartus_pgm -c 1 -m jtag -o "p;my_fuse.fuse" --non_volatile_key

//For virtual (volatile) eFuses
quartus_pgm -c 1 -m jtag -o "p;my_fuse.fuse"

9.1.4. Converting Key, Encryption, and Fuse Files to Jam Staple File
Formats

You can use the quartus_pfg command-line command to convert .qky, .qek,
and .fuse files to Jam Standard Test and Programming Language (STAPL) Format File
(.jam) and Jam Byte Code File (.jbc). You can use these files to program Intel
FPGAs using the Jam STAPL Player and the Jam STAPL Byte-Code Player, respectively.

9. Using eFuses

UG-S10SECURITY | 2020.01.15

Send Feedback Intel® Stratix® 10 Device Security User Guide

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A single .jam or .jbc contains several functions including a firmware helper image
and program, blank check, and verification of key and fuse programming.

Caution: When you convert the AES .qek file to .jam format, the .jam file contains the AES
key in plaintext but obfuscated form. Consequently, you must protect the .jam file
when storing the AES key. You can protect the .jam file by provisioning the AES key
in a secure environment.

quartus_pfg Conversion Commands

Here are examples of quartus_pfg conversion commands:

quartus_pfg -c -o helper_device=1SX280LH2 root.qky RootKey.jam
quartus_pfg -c -o helper_device=1SX280LH2 root.qky RootKey.jbc
quartus_pfg -c -o helper_device=1SX280LH2 nd.qek nd_qek.jam
quartus_pfg -c -o helper_device=1SX280LH2 nd.qek nd_qek.jbc
quartus_pfg -c -o helper_device=1SX280LH2 cancel_id.fuse nd_fuse.jam
quartus_pfg -c -o helper_device=1SX280LH2 cancel_id.fuse nd_fuse.jbc

For more information about the using the Jam STAPL Player for device programming
refer to AN 425: Using the Command-Line Jam STAPL Solution for Device
Programming.

Using the .jam Files to Program Root Key and AES Encryption Key

The run the following commands to program the owner root public key and AES
encryption key:

// To load the helper bitstream into the FPGA.
// The helper bitstream include SDM firmware
quartus_jli -c 1 -a CONFIGURE RootKey.jam

// To program the owner root public key into virtual eFuses
auartus_jli -c 1 -a PUBKEY_PROGRAM RootKey.jam

//To program the owner root public key into physical eFuses
quartus_jli -c 1 -a PUBKEY_PROGRAM -e DO_UNI_ACT_DO_EFUSES_FLAG RootKey.jam

// To program the AES Encryption key into BBRAM
quartus_jli -c 1 -a AESKEY_PROGRAM -e DO_UNI_ACT_DO_BBRAM_FLAG EncKey.jam

Related Information

AN 425: Using the Command-Line Jam STAPL Solution for Device Programming

9. Using eFuses

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

54

https://www.intel.com/content/www/us/en/programmable/documentation/sam1403762199737.html#sam1403767244052
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10. Document Revision History for Intel Stratix 10 Device
Security User Guide

Document Version Intel Quartus
Prime Version

Changes

2020.01.15 19.3 Corrected the pem_file argument in 7.1.3. Step 2b: Generating
Programming Files Using the Command Line. The correct command uses
pem_file=design0_sign_private.pem:

quartus_pfg -c encryption_enabled.sof top.rbf \
-o finalize_encryption=ON -o qek_file=aes.qek \
 -o signing=ON -o pem_file=design0_sign_private.pem

2020.01.06 19.3 Made the following changes:
• Corrected the quartus_encrypt command in the Step 1: Preparing

the Owner Image and AES Key Filetopic. The ik_count and
max_key_use arguments must be preceded by --.

• Added command showing how to convert an .rbf to .jam format in
the Step 4: Signing the Bitstream topic.

• Added the following note to the Converting Key, Encryption, and Fuse
Files to Jam Staple File Formats topic:
Caution: When you convert the AES .qek file to .jam format,

the .jam file contains the AES key in plaintext but
obfuscated form. Consequently, you must protect the .jam
file when storing the AES key. You can protect the .jam file
by provisioning the AES key in a secure environment.

• Added a link to the How can I write or erase the Intel Stratix 10 AES
BBRAM encryption key using the Mailbox Client Intel FPGA IP interface
and System Console? article in Storing the AES Key in BBRAM using the
JTAG Mailbox.

2019.10.30 19.3 Added the following new security features:
• Added support for physical (non-volatile) eFuses.
• Changed the way you specify virtual (volatile) or physical (non-volatile)

eFuses. The --non_volatile_key parameter is now an argument to
the quartus_pgm command. Consequently, you no longer need to
recompile to change the eFuse storage location.

• Increased the number of public keys entries supported from 2 to 3.
• Added support for a signed secure HPS debug certificate to prevent

unauthorized remote or physical access to the HPS.
• Decreased the encryption update ratio from 127:1 to 31:1.
• Revised description the Using the Authentication Feature example. The

example now specifies permission 6 to allow the key to sign both the
Core (permission=2) and HPS (permission=4) sections of the
configuration bitstream. You must create separate key chains to limit
the permissions to either Core or HPS.

• Added support for 10 additional eFuses described in the Owner
Programmable eFuses table.

• Added examples of advanced security features.
• Added descriptions of side-channel mitigation features.

continued...

UG-S10SECURITY | 2020.01.15

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/component/2019/how-can-i-write-or-erase-the-intel--stratix-10-aes-bbram-encrypt.html?cq_ck=1578296830911
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/component/2019/how-can-i-write-or-erase-the-intel--stratix-10-aes-bbram-encrypt.html?cq_ck=1578296830911
https://www.intel.com/content/altera-www/global/en_us/index/support/support-resources/knowledge-base/component/2019/how-can-i-write-or-erase-the-intel--stratix-10-aes-bbram-encrypt.html?cq_ck=1578296830911
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version Intel Quartus
Prime Version

Changes

• Added the following topics:
— Step 4a: Protecting the AES Key when Storing the AES in eFuses
— Step 4b: Protecting the AES Key when Storing the AES Key in

BBRAM
— Encryption Command Detailed Description
— Make AES Key
— Encrypt the Bitstream
— Programming eFuses
— Canceling eFuses

• Added examples of .jam commands under the Using the .jam Files to
Program Root Key and AES Encryption Key heading.

• Corrected AES Update Mode figure. The number of data bits in a data
block is 256, not 128.

• Corrected the cancellation ID Numbers in Figure 5: Three-Key
Signature Chain. The cancellation IDs are 0 and 1.

• Removed recommendation to use separate signing keys for core and
HPS in Intel Stratix 10 SX devices. Changed Using the Authentication
Feature example to set permissions to 6 which can sign both the core
and HPS.

• Revised Anti-Tampering topic.
• Revised theUsing eFuses topic.
• Corrected minor errors and typos.

2019.05.30 19.1 Made the following corrections:
• Corrected the Signing Command Argument Summary table. The

references to .key format should say .qky format.

2019.05.10 19.1 Made the following corrections:
• Removed spaces before the fuse programming file name in the

quartus_pgm commands in Step 3b: Programming the AES Key and
Configuring the Encrypted Image Using the Command Line.

• Changed file name argument to -o "p;my_fuse.fuse" in Step 4 of
Canceling Non-Volatile eFuses.

2019.05.07 19.1 Initial release.

10. Document Revision History for Intel Stratix 10 Device Security User Guide

UG-S10SECURITY | 2020.01.15

Intel® Stratix® 10 Device Security User Guide Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Stratix%2010%20Device%20Security%20User%20Guide%20(UG-S10SECURITY%202020.01.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Stratix 10 Device Security User Guide
	Contents
	1. Intel® Stratix® 10 Device Security Overview
	1.1. Intel Stratix 10 Secure Device Manager (SDM)
	1.2. Enabling Intel Stratix 10 Security Features
	1.2.1. Side Channel Mitigation

	1.3. Owner Security Keys and Programming
	1.3.1. Owner Root Public Key Hash Programming
	1.3.2. AES Root Key Programming

	1.4. Planned Security Features
	1.4.1. Physically Unclonable Function (PUF) Overview
	1.4.2. Anti-Tampering
	1.4.3. Black Key Provisioning

	2. Design Authentication
	2.1. The Configuration Bitstream
	2.2. Signature Block
	2.2.1. Canceling Intel Firmware ID
	2.2.2. Authentication for HPS Software

	3. Using the Authentication Feature
	3.1. Step 1: Creating the Root Key
	3.2. Step 2: Creating the Design Signing Key
	3.3. Step 3: Appending the Design Signature Key to the Signature Chain
	3.4. Step 4: Signing the Bitstream
	3.5. Step 4a: Signing the Bitstream Using the Programming File Generator
	3.6. Step 4b: Signing the Bitstream Using the quartus_sign Command
	3.7. Step 5: Programming the Owner Root Public Key for Authentication
	3.8. Step 5a: Programming the Owner Root Public Key
	3.9. Step 5b: Calculating the Owner Root Public Key Hash

	4. Co-Signing Device Firmware Overview
	4.1. Using the Co-Signing Feature
	4.1.1. Prerequisites for Co-Signing Device Firmware
	4.1.2. Generating the Owner Firmware Signing Key
	4.1.3. Co-Signing the Firmware
	4.1.4. Powering On In JTAG Mode After Implementing Co-Signed Firmware

	5. HPS Debug Using a Certificate
	5.1. Enabling HPS JTAG Debugging

	6. Signing Command Detailed Description
	6.1. Generate Private PEM Key
	6.2. Generate Public PEM Key
	6.3. Generate Root Signature Chain
	6.4. Append Key to Signature Chain
	6.5. Sign the Bitstream, Firmware, or Debug Certificate
	6.6. Calculate Root Public Key Hash from QKY

	7. Encryption and Decryption Overview
	7.1. Using the Encryption Feature
	7.1.1. Step 1: Preparing the Owner Image and AES Key File
	7.1.2. Step 2a: Generating Programming Files Using the Programming File Generator
	7.1.3. Step 2b: Generating Programming Files Using the Command Line Interface
	7.1.4. Step 3a: Specifying Keys and Configuring the Encrypted Image Using the Intel Quartus Prime Programmer
	7.1.5. Step 3b: Programming the AES Key and Configuring the Encrypted Image Using the Command Line
	7.1.6. Storing the AES Key AES in Physical eFuses
	7.1.7. Storing the AES Key in BBRAM using the JTAG Mailbox

	8. Encryption Command Detailed Description
	8.1. Make AES Key
	8.2. Encrypt the Bitstream

	9. Using eFuses
	9.1. Fuse Programming Input Files
	9.1.1. Fuse File Format
	9.1.2. Programming eFuses
	9.1.3. Canceling eFuses
	9.1.4. Converting Key, Encryption, and Fuse Files to Jam Staple File Formats

	10. Document Revision History for Intel Stratix 10 Device Security User Guide

