

Intel[®] Stratix[®] 10 Clocking and PLL User Guide

Updated for Intel[®] Quartus[®] Prime Design Suite: **19.3**

Contents

1. Intel [®] St	ratix [®] 10 Clocking and PLL Overview	4
1.1. C	lock Networks Overview	4
1.2. P	LLs Overview	4
2 Intol Str	atix 10 Clocking and PLL Architecture and Features	F
	lock Networks Architecture and Features	
2.1. C	2.1.1. Clock Network Architecture	
	2.1.2. Clock Resources	
	2.1.2. Clock Resources	
	2.1.4. Clock Control Features	
2.2 P	LLs Architecture and Features	
2.2.1	2.2.1. PLL Features	
	2.2.2. PLL Usage	
	2.2.3. PLL Architecture	
	2.2.4. PLL Control Signals	
	2.2.5. Clock Feedback Modes	
	2.2.6. Clock Multiplication and Division	
	2.2.7. Programmable Phase Shift	
	2.2.8. Programmable Duty Cycle	. 22
	2.2.9. PLL Cascading	. 23
	2.2.10. Clock Switchover	
	2.2.11. PLL Reconfiguration and Dynamic Phase Shift	
	2.2.12. PLL Calibration	29
3. Intel Stra	atix 10 Clocking and PLL Design Considerations	. 31
	atix 10 Clocking and PLL Design Considerations uideline: Clock Switchover	
3.1. G	uideline: Clock Switchover	. 31
3.1. G 3.2. IF		. 31 . 32
3.1. G 3.2. IF 3.3. G	uideline: Clock Switchover ? Core Constraints	. 31 . 32 32
3.1. G 3.2. IF 3.3. G 3.4. G	uideline: Clock Switchover ^o Core Constraints uideline: Resetting the PLL	. 31 . 32 32 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G	uideline: Clock Switchover ^o Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints	. 31 . 32 32 33 . 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G	uideline: Clock Switchover ^o Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance	. 31 . 32 32 . 33 . 33 . 33 . 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G	uideline: Clock Switchover ^o Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration	. 31 . 32 32 . 33 . 33 . 33 . 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G	uideline: Clock Switchover P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating	. 31 . 32 33 . 33 . 33 . 33 . 33 . 34
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra	uideline: Clock Switchover ^o Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating atix 10 Clocking and PLL Implementation Guides	. 31 . 32 32 . 33 . 33 . 33 . 33 . 34 . 35
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra	uideline: Clock Switchover ^o Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating atix 10 Clocking and PLL Implementation Guides. lock Control Intel FPGA IP Core.	. 31 . 32 32 . 33 . 33 . 33 . 33 . 33 . 3
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C	uideline: Clock Switchover ^P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating atix 10 Clocking and PLL Implementation Guides. lock Control Intel FPGA IP Core 4.1.1. Release Information for Clock Control Intel FPGA IP	. 31 . 32 33 . 33 . 33 . 33 . 33 . 34 . 35 35
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C	uideline: Clock Switchover ^P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating atix 10 Clocking and PLL Implementation Guides lock Control Intel FPGA IP Core 4.1.1. Release Information for Clock Control Intel FPGA IP DPLL Intel FPGA IP Core	. 31 . 32 33 . 33 . 33 . 33 . 33 . 34 . 35 . 35 . 35
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C	uideline: Clock Switchover ^P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating atix 10 Clocking and PLL Implementation Guides. lock Control Intel FPGA IP Core 4.1.1. Release Information for Clock Control Intel FPGA IP	. 31 . 32 . 33 . 33 . 33 . 33 . 33 . 33 . 34 . 35 . 35 . 35 . 36
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C	uideline: Clock Switchover P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating Atix 10 Clocking and PLL Implementation Guides lock Control Intel FPGA IP Core 4.1.1. Release Information for Clock Control Intel FPGA IP DPLL Intel FPGA IP Core 4.2.1. Release Information for IOPLL Intel FPGA IP	. 31 . 32 . 33 . 33 . 33 . 33 . 33 . 33 . 34 . 35 . 35 . 35 . 36 . 36
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C	uideline: Clock Switchover ^P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating Atix 10 Clocking and PLL Implementation Guides lock Control Intel FPGA IP Core 4.1.1. Release Information for Clock Control Intel FPGA IP DPLL Intel FPGA IP Core 4.2.1. Release Information for IOPLL Intel FPGA IP 4.2.2mif File Generation	. 31 . 32 32 33 . 33 . 33 . 33 . 33 . 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C 4.2. IC	 uideline: Clock Switchover P Core Constraints uideline: Resetting the PLL uideline: Configuration Constraints uideline: Timing Closure uideline: I/O PLL Reconfiguration uideline: I/O PLL Jitter Performance uideline: Clock Gating atix 10 Clocking and PLL Implementation Guides atix 10 Clocking and PLL Implementation Guides	. 31 . 32 33 . 33 . 33 . 33 . 33 . 34 . 35 . 35 . 35 . 36 . 37 . 38
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C 4.2. IC	 uideline: Clock Switchover	. 31 . 32 32 33 . 33 . 33 . 33 . 33 . 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C 4.2. IC	 uideline: Clock Switchover	. 31 . 32 32 33 . 33 . 33 . 33 . 33 . 33
3.1. G 3.2. IF 3.3. G 3.4. G 3.5. G 3.6. G 3.7. G 3.8. G 4. Intel Stra 4.1. C 4.2. IC	 uideline: Clock Switchover	. 31 . 32 . 33 . 33 . 33 . 33 . 33 . 33 . 33

Contents

5. Clock Control Intel FPGA IP Core References	49
5.1. Clock Control IP Core Parameters	49
5.2. Clock Control IP Core Ports and Signals	
6. IOPLL Intel FPGA IP Core References	51
6.1. IOPLL IP Core Parameters	51
6.1.1. IOPLL IP Core Parameters - PLL Tab	51
6.1.2. IOPLL IP Core Parameters - Settings Tab	53
6.1.3. IOPLL IP Core Parameters - Cascading Tab	
6.1.4. IOPLL IP Core Parameters - Dynamic Reconfiguration Tab	55
6.1.5. IOPLL IP Core Parameters - Advanced Parameters Tab	55
6.2. IOPLL IP Core Ports and Signals	
6.3. Dynamic Phase Shift Ports in the IOPLL IP Core	56
7. IOPLL Reconfig Intel FPGA IP Core References	58
7.1. Avalon-MM Interface Ports in the IOPLL Reconfig IP Core	58
7.2. Address Bus and Data Bus Settings	58
7.2.1. Address Bus and Data Bus Settings for Advanced Mode Reconfiguration 7.2.2. Output Clock and the Corresponding Data Bit Setting for Clock Gating	
Reconfiguration	64
7.2.3. Data Bus Setting for Dynamic Phase Shift for IOPLL Reconfig IP Core	64
8. Intel Stratix 10 Clocking and PLL User Guide Archives	66
9. Document Revision History for the Intel Stratix 10 Clocking and PLL User Guide	67

Send Feedback

1. Intel[®] Stratix[®] 10 Clocking and PLL Overview

1.1. Clock Networks Overview

Intel[®] Stratix[®] 10 devices contain dedicated resources for distributing signals throughout the fabric with balanced delay. These resources are typically used for clock signals and other signals with low-skew requirements. In Intel Stratix 10 devices, these resources are implemented as a programmable clock routing network, which allows for the implementation of low-skew clock trees of various size.

Related Information

Use Global Clock Network Resources, Design Recommendations User Guide (Intel Quartus[®] Prime Pro Edition)

Provides more information about clock assignments in the Intel $\mbox{Quartus}^{\mbox{$\mathbb{R}$}}$ Prime software.

1.2. PLLs Overview

Phase-locked loops (PLLs) provide robust clock management and synthesis for device clock management, external system clock management, and high-speed I/O interfaces.

The Intel Stratix 10 device family contains the following PLLs for core applications:

- fPLLs—can function as fractional PLLs or integer PLLs
- I/O PLLs—can only function as integer PLLs

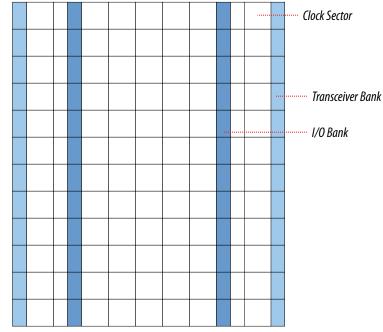
The fPLLs are located adjacent to the transceiver blocks in the transceiver banks. Each transceiver bank contains two fPLLs. You can configure each fPLL independently in either conventional integer mode, or fractional mode. In fractional mode, the fPLL can operate with third-order delta-sigma modulation. You can configure each fPLL to generate either a transmitter (TX) clock for a transceiver or to provide a single clock to the core.

The I/O PLLs are located adjacent to the hard memory controllers and LVDS serializer/ deserializer (SERDES) blocks in the I/O banks. Each I/O bank contains one I/O PLL. The I/O PLLs can operate in conventional integer mode. Each I/O PLL has nine C counter outputs.

Intel Stratix 10 devices have up to 48 fPLLs and 42 I/O PLLs in the largest densities devices.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

2. Intel Stratix 10 Clocking and PLL Architecture and Features


2.1. Clock Networks Architecture and Features

2.1.1. Clock Network Architecture

Each Intel Stratix 10 device is divided into a number of evenly sized clock sectors.

Figure 1. Clock Sector Floorplan for Intel Stratix 10 Devices

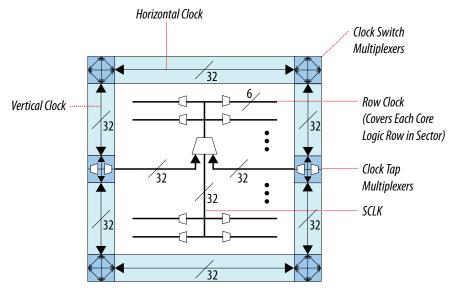
This figure shows an example of the clock sectors in an Intel Stratix 10 device, which is implemented as an array of sectors—12 rows and 9 columns in this example. Clock sectors are vertically aligned to match the height of transceiver and I/O banks. I/O banks are contained within the clock sectors. Transceiver bank interfaces are always located beside the clock sectors, at the left or right side of the device.

2.1.1.1. Clock Network Hierarchy


The Intel Stratix 10 clock network is organized in a hierarchy with 3 levels.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

Figure 2. Clock Network Hierarchy



2.1.1.2. Clock Sector

Each clock sector has dedicated sector clock (SCLK) and row clock network resources that can be accessed by the programmable clock network. Each clock sector is also surrounded by programmable clock network resources. On each side, there is a channel that contains 32 independent bidirectional clock wires. At each corner, there is a set of programmable clock switch multiplexers which can route between these clocks wires.

A signal on a vertical clock wire can enter the sector to its left or right via clock tap multiplexers. The clock tap multiplexer drives a sector clock, which distributes the signal to each row in the clock sector. In each row, there are six row clock resources which connect to all core functional blocks, PLLs, and I/O interfaces in the sector, and to adjacent transceivers.

Figure 3. Dedicated Clock Resources Within a Clock Sector

2.1.1.3. Programmable Clock Routing

The Intel Quartus[®] Prime software automatically configures the clock switch, clock tap, SCLK, and row clock multiplexers to generate skew-balanced clock trees. The resulting routing path distributes the signal from the clock source to all target destinations in one or more clock sectors.



The Intel Quartus Prime software creates efficiently balanced clock trees of various sizes, ranging from a single clock sector to the entire device, as shown in the following figure. By default, the Intel Quartus Prime Software automatically determines the size and location of the clock tree. Alternatively, you can directly constrain the clock tree size and location either with a Clock Region assignment or by Logic Lock Regions.

The total insertion delay for the clock network depends on the number of clock resources needed to implement the clock tree, increasing with the number of clock sectors reached and the distance of the furthest clock destination from the signal source. As delay increases, the worst-case skew for crossing clock sectors using different clock tree branches grows, potentially degrading the maximum performance. For very high-speed clock signals, it is advantageous to reduce the number of clock sectors driven, which reduces the clock skew, and to reduce the distance between the clock source and the furthest destination, which reduces both clock skew and total clock insertion delay.

Figure 4. Examples of Clock Networks Sizes Using Intel Stratix 10 Programmable Clock Routing

2.1.2. Clock Resources

Table 1. Intel Stratix 10 Clock Input Pins Resources

Device	Number of Resources Available	Source of Clock Resource
• TX 400	Transceiver: 9 differential I/O: 32 single-ended or 16 differential	
• GX 400 • SX 400	Transceiver: 24 differential I/O: 32 single-ended or 16 differential	<pre>For Transceiver pins: REFCLK_GXB[L,R][1,4] [C,D,E,F,G,H,I,J,K,L,M,N]_CH[B,T][p,n] For I/O pins: CLK_[2,3][AN]_[0,1][p,n]</pre>
GX 650SX 650	Transceiver: 48 differential I/O: 32 single-ended or 16 differential	
	•	continued

Device	Number of Resources Available
 GX 850 GX 1100 SX 850 SX 1100 	Transceiver: 32 differential I/O: 60 single-ended or 30 differential
TX 850TX 1100	Transceiver: 26 differential I/O: 36 single-ended or 18 differential
• DX 1100	Transceiver: 11 differential I/O: 22 single-ended or 44 differential
 GX 1650 GX 2100 SX 1650 SX 2100 	Transceiver: 32 differential I/O: 56 single-ended or 28 differential
MX 1650MX 2100	Transceiver: 32 differential I/O: 52 single-ended or 26 differential
• TX 1650 • TX 2100	Transceiver: 35 differential I/O: 36 single-ended or 18 differential
• DX 2100	Transceiver: 15 differential I/O: 48 single-ended or 14 differential
• GX 1660 • GX 2110	Transceiver: 16 differential I/O: 56 single-ended or 28 differential
 GX 2500 GX 2800 SX 2500 SX 2800 	Transceiver: 32 differential I/O: 96 single-ended or 48 differential
TX 2500TX 2800	Transceiver: 53 differential I/O: 36 single-ended or 18 differential
• DX 2800	Transceiver: 13 differential I/O: 68 single-ended or 34 differential

Table 2. Intel Stratix 10 Programmable Clock Routing Resources

Device	Number of Resources Available	Source of Clock Resource
All Intel Stratix 10 devices	32 bidirectional programmable clock routing at the boundary of each clock sector	 For transceiver bank: Physical medium attachment (PMA) and physical coding sublayer (PCS) TX and RX clocks per channel PMA and PCS TX and RX divide clocks per channel Hard IP core clock output signals Fractional PLL (fPLL) C counter outputs REFCLK pins Core signals ⁽¹⁾ For I/O bank: I/O PLL C counter outputs I/O PLL M counter outputs for feedback Clock input pins

⁽¹⁾ Core signals drive directly to programmable clock routing through clock switch multiplexers in the clock sector instead of the periphery DCM block.

Device	Number of Resources Available	Source of Clock Resource
		 Core signals ⁽¹⁾ Dynamic phase alignment (DPA) clock output Phase aligner counter outputs

For more information about the clock input pins connections, refer to the pin connection guidelines.

Related Information

Intel Stratix 10 Device Family Pin Connection Guidelines

2.1.3. Programmable Clock Routing Sources

This section describes the sources that can drive the programmable clock routing.

2.1.3.1. Dedicated Clock Input Pins

The sources of dedicated clock input pins are as follows:

- fPLL—REFCLK_GXB[L,R][1,4][C,D,E,F,G,H,I,J,K,L,M,N]_CH[B,T][p,n] from transceiver column
- I/O PLL—CLK_[2,3][A..N]_[0,1][p,n] from I/O column

You can use the dedicated clock input pins for high fan-out control signals, such as asynchronous clears, presets, and clock enables, for protocol signals through the programmable clock routing.

The dedicated clock input pins for an I/O PLL can be either differential clocks or singleended clocks. The dedicated clock input pins for fPLL only support differential clocks and do not support single-ended clocks.

Driving a PLL over programmable clock routing can cause higher jitter at the PLL input, and the PLL is not able to fully compensate for the programmable clock routing. Intel recommends using the dedicated clock input pins for optimal performance to drive the PLLs.

2.1.3.2. Internal Logic

You can route up to eight core signals to each clock switch multiplexer, except the clock switch multiplexers at the right and left edge of the device, and the clock switch multiplexers next to the I/O banks.

2.1.3.3. DPA Clock Outputs

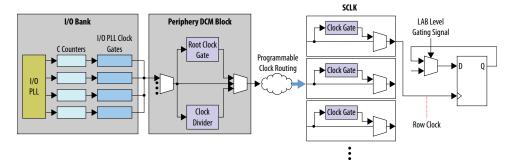
Each DPA clock output can drive the programmable clock routing.

2.1.3.4. Transceiver Clock Outputs

PMA and PCS TX and RX clock outputs can drive the programmable clock routing.

2.1.3.5. PLL Clock Outputs

The fPLL and I/O PLL clock outputs can drive the programmable clock routing.



2.1.4. Clock Control Features

The following figure shows the high level description of the Intel Stratix 10 clock control features—clock gating and clock divider. The clock from the I/O PLL output can be gated dynamically. These clock signals along with other clock sources go to the periphery distributed clock multiplexer (DCM). In the periphery DCM, the clock signal can either pass straight through, be gated by the root clock gate, or be divided by the clock divider.

The Intel Quartus Prime software routes the clock signal on the programmable clock routing to reach each clock sector. The clock signal can be gated in each sector by the SCLK gates. The clock enters the SCLK network followed by the row clock network, and eventually reaches the registers in the core. The LAB registers have a built-in functional clock enable feature, as shown in the following figure.

Figure 5. Clock Gating and Clock Divider in Intel Stratix 10 Clock Network

2.1.4.1. Clock Gating

2.1.4.1.1. Root Clock Gate

There is one root clock gate per I/O bank and transceiver bank. This gate is a part of the periphery DCM and is located close to the clock buffer.

The Intel Stratix 10 root clock gate is intended for limited clock gating scenarios where high insertion delay can be tolerated. When you use a root clock gate, set multicycle of several clock cycles between the generation of the clock gating signal in the core and the gated clock in the periphery to meet the timing requirement. For high frequency clocks that require single-cycle gating, use sector clock gates.

Related Information

Clock Control IP Core Parameters on page 49 Select Clock Enable Type ➤ Root Level in the Clock Control IP core.

2.1.4.1.2. Sector Clock Gate

There are 32 SCLKs in every sector of the device. Each SCLK has a clock gate and bypassable clock gate path. The SCLK gates are controlled by clock enable inputs from the core logic. The Intel Quartus Prime software can route up to eight unique clock enable signals to the 32 SCLKs in a sector.

Intel recommends using the clock gate with a negative latch to provide glitch free gating on the output clock signal (outclk). The clock gate captures the enable signal (clkena) on the next rising edge of the input clock signal (inclk). The following timing diagram shows the relationship of the outclk with respect to inclk and clkena.

Figure 6. Clock Gating Timing Diagram

The clock signal going into the SCLK network in a sector can only reach the core logic in that sector. When you instantiate a SCLK gate in your design, the Intel Quartus Prime software automatically duplicates the SCLK gate to create a clock gate in every sector to which the clock signal is routed.

The SCLK gate is suitable for cycle-specific clock gating for high-frequency clocks. The timing of the enable path to the SCLK gate is analyzed by the Intel Quartus Prime software.

Related Information

- Clock Sector on page 6
 Provides a diagram that shows the dedicated clock resources within a clock sector.
- Clock Control Features on page 10 Provides a diagram that shows the resources within a SCLK.
- Clock Control IP Core Parameters on page 49

Select **Clock Enable Type > Distributed Sector Level** in the Clock Control IP core.

2.1.4.1.3. I/O PLL Clock Gate

You can dynamically gate each output counter of the Intel Stratix 10 I/O PLL. This provides a useful alternative to the root clock gate because the root clock gate can gate only 1 of the 9 output counters.

However, the I/O PLL clock gate is not cycle-specific. When you use the I/O PLL clock gate, expect a delay of several clock cycles between the assertion or deassertion of the clock gate and the corresponding change to the clock signal. The number of delay cycles is non-deterministic because the enable signal must be synchronized into the clock domain of the output clock, ensuring a glitch-free gate.

2.1.4.1.4. LAB Clock Gate

The Intel Stratix 10 LAB register has built-in clock gating functionality. The register clock enable mechanism is a hardened data feedback, as shown in the Clock Gating and Clock Divider in Intel Stratix 10 Clock Network diagram. The LAB clock gate offers no associated power savings because this is a purely functional clock enable.

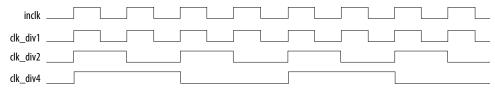
The analysis and synthesis phases of the Intel Quartus Prime software infer a LAB clock gate from a behavioral description of clock gating in the register transfer level (RTL). If a physical clock gate is desired, you must instantiate it explicitly.

Related Information

Clock Control Features on page 10

Provides the Clock Gating and Clock Divider in Intel Stratix 10 Clock Network diagram.

2.1.4.2. Clock Divider


There is one clock divider per I/O bank and transceiver bank. The clock divider is a part of the periphery DCM block and is located close to the root clock gate. The outputs of the clock divider cannot be gated by the root clock gate in the same periphery DCM block. However, this limitation does not apply to the SCLK gate. The clock divider output in the periphery DCM block can drive a SCLK gate after going through the programmable clock routing.

The clock divider has three outputs as follows:

- First output—Passes through the input clock.
- Second output—Divides the input clock by two.
- Third output—Divides the input clock by four.

These three clock outputs are edge-aligned at the output of the clock divider.

Figure 7. Clock Divider Timing Diagram

Related Information

Clock Control Features on page 10

Provides a diagram that shows the root clock gate and clock divider in the periphery DCM block.

2.1.4.3. Dynamic Clock Switchover

Intel Stratix 10 devices do not have hard clock multiplexer blocks for dynamic clock switchover. Thus, the dynamic clock switchover logic is implemented using the soft logic in the core. Optionally, you can make the dynamic clock switchover glitch free using additional external soft logic.

2.2. PLLs Architecture and Features

2.2.1. PLL Features

Table 3. PLL Features in Intel Stratix 10 Devices—Preliminary

Feature	Fractional PLL	I/O PLL
Integer PLL	Yes	Yes
Fractional PLL	Yes	_
Number of C output counter	1	9
M counter divide factor range	In integer mode: 8 to 127 In fractional mode: 11 to 123	4 to 160
N counter divide factor range	1 to 31	1 to 110
C counter divide factor range	1 to 512	1 to 510
L counter divide factors	1, 2, 4, and 8	_
Dedicated external clock outputs	_	Yes
Dedicated clock input pins	Yes	Yes
External feedback input pin	-	Yes
Spread-spectrum input clock tracking ⁽²⁾	Yes	Yes
Source synchronous compensation (3)	_	Yes
Direct compensation	Yes	Yes
Normal compensation ⁽³⁾	-	Yes
Zero-delay buffer compensation	-	Yes
External feedback compensation	-	Yes
LVDS compensation	-	Yes
Voltage-controlled oscillator (VCO) output drives the DPA clock	-	Yes
Phase shift resolution ⁽⁴⁾	-	78.125 ps
Programmable duty cycle	Fixed 50% duty cycle	Yes
Power down mode	Yes	Yes

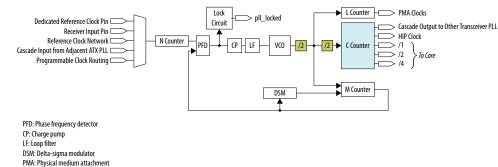
⁽⁴⁾ The smallest phase shift is determined by the VCO period divided by eight (for I/O PLL). For degree increments, the Intel Stratix 10 device can shift all output frequencies in increments of at least 45° (for I/O PLL). Smaller degree increments are possible depending on the frequency and divide parameters.

⁽²⁾ Provided input clock jitter is within input jitter tolerance specifications.

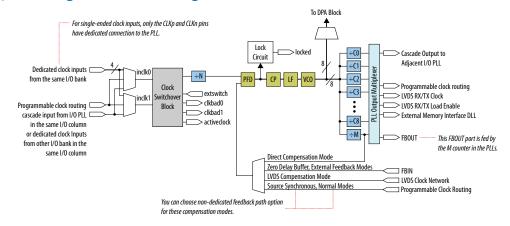
⁽³⁾ Non-dedicated feedback path option is available for this compensation mode.

2.2.2. PLL Usage

fPLLs are optimized for use as transceiver transmit PLLs and for synthesizing reference clock frequencies. You can use the fPLLs to:


- Transmit clocking for transceivers
- Reduce the number of required oscillators on the board

 $\rm I/O$ PLLs are optimized for use with memory interfaces and LVDS SERDES. You can use the $\rm I/O$ PLLs to:


- Reduce the number of required oscillators on the board
- Reduce the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source
- Simplify the design of external memory interfaces and high-speed LVDS interfaces
- Ease timing closure because the I/O PLLs are tightly coupled with the I/Os
- Compensate for clock network delay
- Zero delay buffering

2.2.3. PLL Architecture

Figure 8. Fractional PLL High-Level Block Diagram for Intel Stratix 10 Devices

Figure 9. I/O PLL High-Level Block Diagram for Intel Stratix 10 Devices

2.2.4. PLL Control Signals

You can use the reset signal to control PLL operation and resynchronization, and use the locked signal to observe the status of the PLL.

2.2.4.1. Reset

The reset signal port of the IP core for I/O PLL is reset.

The reset signal is the reset or resynchronization input for each I/O PLL. The device input pins or internal logic can drive these input signals.

When the reset signal is driven high, the I/O PLL counters reset, clearing the I/O PLL output and placing the I/O PLL out-of-lock. The VCO is then set back to its nominal setting. When the reset signal is driven low again, the I/O PLL resynchronizes to its input clock source as it re-locks.

You must assert the reset signal every time the I/O PLL loses lock to guarantee the correct phase relationship between the I/O PLL input and output clocks. You can set up the I/O PLL to automatically reset (self-reset) after a loss-of-lock condition using the Intel Quartus Prime parameter editor.

You must include the reset signal if either of the following conditions is true:

- I/O PLL reconfiguration or clock switchover is enabled in the design.
- Phase relationships between the I/O PLL input and output clocks must be maintained after a loss-of-lock condition.

Note: Reset the I/O PLL after the input clock is stable and within specifications, even when the self-reset feature is enabled, if either one of the following conditions occur:

- The input clock to the I/O PLL is not toggling or is unstable when the FPGA transitions into user mode.
- The I/O PLL is not able to lock to the reference clock after reconfiguring the I/O PLL.

Related Information

PLL Calibration on page 29

2.2.4.2. Locked

The locked signal port of the IP core for each PLL is as follows:

- fPLL—pll_locked
- I/O PLL—locked

The lock detection circuit provides a signal to the core logic. The signal indicates when the feedback clock has locked onto the reference clock both in phase and frequency.

When PLL loses lock, the output of the PLL starts drifting out of the desired frequency. The downstream logic must be held inactive once PLL has lost lock.

2.2.5. Clock Feedback Modes

Clock feedback modes compensate for clock network delays to align the rising edge of the output clock with the rising edge of the PLL's reference clock. Select the appropriate type of compensation for the timing critical clock path in your design.

PLL compensation is not always needed. A PLL should be configured in direct (no compensation) mode unless a need for compensation is identified. Direct mode provides the best PLL jitter performance and avoids expending compensation clocking resources unnecessarily.

The default clock feedback mode is direct compensation mode.

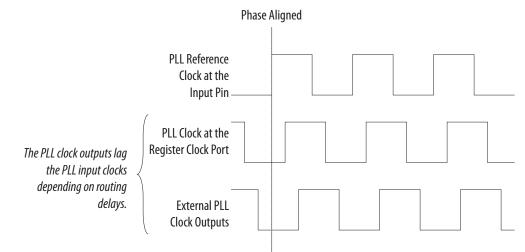
fPLLs support only the direct compensation mode.

I/O PLLs support the following clock feedback modes:

- Direct compensation
- LVDS compensation
- Source synchronous compensation
- Normal compensation
- Zero delay buffer (ZDB) compensation
- External feedback (EFB) compensation

Normal and source synchronous compensation modes compensate for the insertion delay of a routed core clock. For Intel Stratix 10 devices, you can achieve core clock compensation by the following methods:

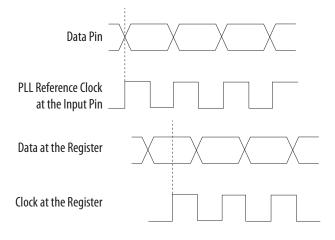
- You can route a dedicated feedback clock from the M counter in the I/O PLL to emulate the insertion delay of the compensated C counter output clock network.
- You can select **Use Nondedicated Feedback Path** from the IOPLL Intel FPGA IP core which routes the compensated C counter output clock back to the I/O PLL.


Intel recommends the non-dedicated feedback mechanism because it utilizes the clock resources most efficiently. The default is dedicated feedback when you choose normal or source synchronous compensation mode in the IOPLL IP core.

2.2.5.1. Direct Compensation Mode

In direct mode, the PLL does not compensate for any clock network delays. This mode provides better jitter performance compared to other compensation modes because the clock feedback into the phase frequency detector (PFD) passes through less circuitry. Both the PLL internal- and external-clock outputs are phase-shifted with respect to the PLL clock input.

Figure 10. Example of Phase Relationship Between the PLL Clocks in Direct Mode

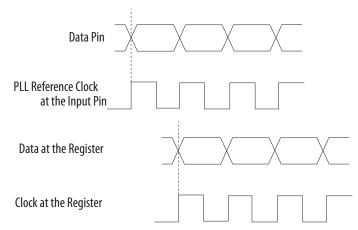

2.2.5.2. LVDS Compensation Mode

The purpose of LVDS compensation mode is to maintain the same data and clock timing relationship seen at the pins of the internal serializer/deserializer (SERDES) capture register, except that the clock is inverted (180° phase shift). Thus, LVDS compensation mode ideally compensates for the delay of the LVDS clock network, including the difference in delay between the following two paths:

- Data pin-to-SERDES capture register
- Clock input pin-to-SERDES capture register

The output counter must provide the 180° phase shift.

Figure 11. Example of Phase Relationship Between the Clock and Data in LVDS Compensation Mode



2.2.5.3. Source Synchronous Compensation Mode

If the data and clock signals arrive at the same time on the input pins, the same phase relationship is maintained at the clock and data ports of any IOE input register. Data and clock signals at the IOE experience similar buffer delays as long as you use the same I/O standard. Only one output clock can be compensated in source synchronous compensation mode.

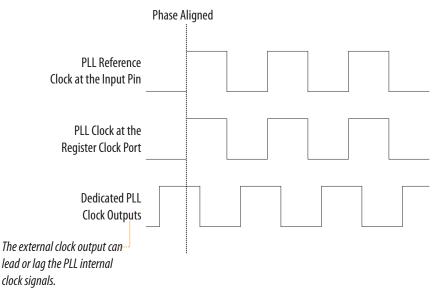
Intel recommends source synchronous mode for source synchronous data transfers.

Figure 12. Example of Phase Relationship Between Clock and Data in Source Synchronous Mode

The source synchronous mode compensates for the delay of the clock network used and any difference in the delay between the following two paths:

- Data pin to the IOE register input
- Clock input pin to the PLL PFD input

The Intel Stratix 10 PLL can compensate multiple pad-to-input-register paths, such as a data bus when it is set to use source synchronous compensation mode.


2.2.5.4. Normal Compensation Mode

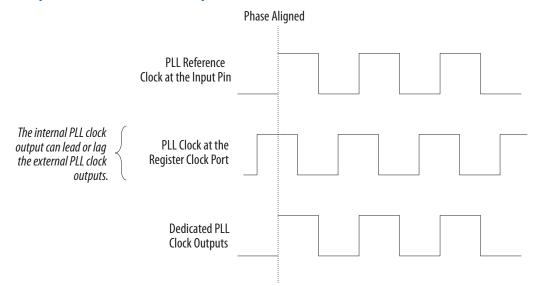
An internal clock in normal compensation mode is phase-aligned to the input clock pin. The external clock output pin has a phase delay relative to the clock input pin if connected in this mode. The Intel Quartus Prime Timing Analyzer reports any phase difference between the two. In normal compensation mode, the delay introduced by the clock network is fully compensated. Only one output clock can be compensated in normal compensation mode.

Figure 13. Example of Phase Relationship Between the PLL Clocks in Normal Compensation Mode

2.2.5.5. Zero-Delay Buffer Mode

In zero-delay buffer (ZDB) mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device.

In this mode, you must use the same I/O standard on the input clocks and clock outputs to guarantee clock alignment at the input and output pins. You cannot use differential I/O standards on the PLL clock input or output pins.

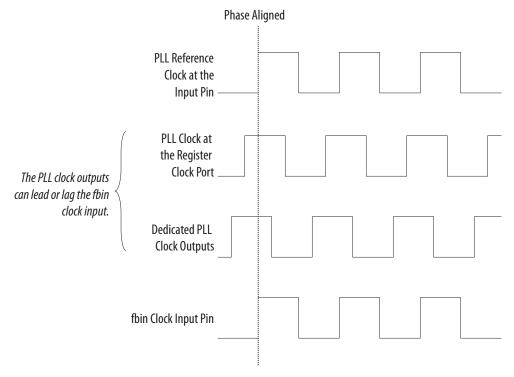

To ensure phase alignment between the clk pin and the external clock output (CLKOUT) pin in ZDB mode, instantiate a bidirectional I/O pin in the design. The bidirectional I/O pin serves as the feedback path connecting the fbout and fbin ports of the PLL. The bidirectional I/O pin must always be assigned a single-ended I/O standard, and must not be globally promoted. The PLL uses this bidirectional I/O pin to mimic and compensate for the output delay from the clock output port of the PLL to the external clock output pin.

Note: To avoid signal reflection when using ZDB mode, do not place board traces on the bidirectional I/O pin.

Figure 14. Example of Phase Relationship Between the PLL Clocks in ZDB Mode

2.2.5.6. External Feedback Mode

In external feedback (EFB) mode, the output of the M counter (fbout) feeds back to the PLL fbin input (using a trace on the board) and becomes part of the feedback loop.


One of the dual-purpose external clock outputs becomes the fbin input pin in this mode. The external feedback input pin, fbin is phase-aligned with the clock input pin. Aligning these clocks allows you to remove clock delay and skew between devices.

In EFB mode, you must use the same I/O standard on the input clock, feedback input, and clock outputs.

Figure 15. Example of Phase Relationship Between the PLL Clocks in EFB Mode

2.2.6. Clock Multiplication and Division

An Intel Stratix 10 PLL output frequency is related to its input reference clock source by the following scale factors:

- $M/(N \times C)$ for I/O PLL
- $M/(N \times C \times 2)$ for fPLL core applications

The input clock is divided by a pre-scale factor, N, and is then multiplied by the M feedback factor. The control loop drives the VCO to match $f_{in} \times (M/N)$. When using non-dedicated feedback path in normal or source synchronous compensation mode, the control loop drives the VCO to match $f_{in} \times ((M \times C_1)/N)$, where C_1 is the compensated outclk C counter value. The Intel Quartus Prime software automatically chooses the appropriate scale factors according to the input frequency, multiplication, and division values entered into the Intel FPGA IP cores for I/O PLL and fPLL.

Pre-Scale Counter, N and Multiply Counter, M

Each PLL has one pre-scale counter, N, and one multiply counter, M. The M and N counters do not use duty-cycle control because the only purpose of these counters is to calculate frequency division.

Post-Scale Counter, C

Each output port has a unique post-scale counter, C. For multiple C counter outputs with different frequencies, the VCO is set to the least common multiple of the output frequencies that meets its frequency specifications. For example, if the output

frequencies required from one I/O PLL are 55 MHz and 100 MHz, the Intel Quartus Prime software sets the VCO frequency to 1.1 GHz (the least common multiple of 55 MHz and 100 MHz within the VCO operating frequency range). Then the post-scale counters, C, scale down the VCO frequency for each output port.

Post-Scale Counter, L

The fPLL has an additional post-scale counter, L. The L counter synthesizes the frequency from its clock source using the $M/(N \times L)$ scale factor. The L counter generates a differential clock pair (0 degree and 180 degree) and drives the transceiver clock network.

Delta-Sigma Modulator

The delta-sigma modulator (DSM), together with the M multiply counter, enable the fPLL to operate in fractional mode. The DSM dynamically changes the M counter factor on a cycle-to-cycle basis. The changes in M counter factors result an average M counter factor that is non-integer.

Fractional Mode

In fractional mode, the M counter value equals the sum of the M feedback factor and the fractional value. The fractional value is equal to $K/2^X$, where K is an integer between 0 and $(2^X - 1)$, and X = 32.

Integer Mode

For a fPLL operating in integer mode, M is an integer value and DSM is disabled.

The I/O PLL can only operate in integer mode.

2.2.7. Programmable Phase Shift

The programmable phase shift feature allows only the I/O PLLs to generate output clocks with a fixed phase offset.

The VCO frequency of the PLL determines the precision of the phase shift. The minimum phase shift increment is 1/8 of the VCO period. For example, if an I/O PLL operates with a VCO frequency of 1000 MHz, phase shift steps of 125 ps are possible.

The Intel Quartus Prime software automatically adjusts the VCO frequency according to the user-specified phase shift values entered into the IOPLL IP core parameter editor.

2.2.8. Programmable Duty Cycle

The programmable duty cycle feature allows I/O PLLs to generate clock outputs with a variable duty cycle. This feature is only supported by the I/O PLL post-scale counters, C. fPLLs do not support the programmable duty cycle feature and only have fixed 50% duty cycle.

The I/O PLL C counter value determines the precision of the duty cycle. The precision is 50% divided by the post-scale counter value. For example, if the C0 counter is 10, steps of 5% are possible for duty-cycle options from 5% to 90%. If the I/O PLL is in external feedback mode, set the duty cycle for the counter driving the fbin pin to 50%.

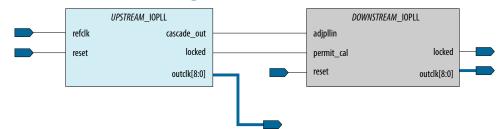
The Intel Quartus Prime software automatically adjusts the VCO frequency according to the required duty cycle that you enter in the IOPLL IP core parameter editor.

Combining the programmable duty cycle with programmable phase shift allows the generation of precise non-overlapping clocks.

2.2.9. PLL Cascading

Intel Stratix 10 devices support PLL-to-PLL cascading. You can cascade a maximum of two PLLs. PLL cascading synthesizes more output clock frequencies than a single PLL.

If you cascade PLLs in your design, the source (upstream) PLL must have a lowbandwidth setting, and the destination (downstream) PLL must have a high-bandwidth setting for I/O PLL and medium-bandwidth setting for fPLL. During cascading, the output of the source PLL serves as the reference clock (input) of the destination PLL. The bandwidth settings of cascaded PLLs must be different. If the bandwidth settings of the cascaded PLLs are the same, the cascaded PLLs may amplify phase noise at certain frequencies.


Intel Stratix 10 devices support the following PLL-to-PLL cascading modes:

- I/O-PLL-to-I/O-PLL cascading via dedicated cascade path—Upstream I/O PLL and downstream I/O PLL must be in the same I/O column.
- I/O-PLL-to-I/O-PLL cascading via core clock fabric—No restriction on locations of upstream and downstream I/O PLL.

The permit_cal input of the downstream I/O PLL must be connected to the locked output of the upstream I/O PLL in both PLL cascading modes.

The following figures show the connectivity required between the upstream and downstream I/O PLL for both the PLL cascading modes.

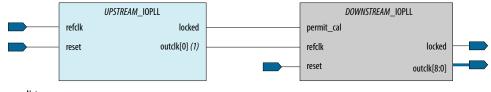

Figure 16. I/O-PLL-to-I/O-PLL Cascading Via Dedicated Cascade Path

Figure 17. I/O-PLL-to-I/O-PLL Cascading Via Core Clock Fabric

Note:

(1) You may connect any of the outclk from the upstream I/O PLL to the refclk port in the downstream I/O PLL when cascading the I/O PLL via core clock fabric.

2.2.10. Clock Switchover

The clock switchover feature allows the I/O PLL to switch between two reference input clocks. Use this feature for clock redundancy or for a dual-clock domain application where a system turns to the redundant clock if the previous clock stops running. The design can perform clock switchover automatically when the clock is no longer toggling or based on a user control signal, extswitch.

Intel Stratix 10 I/O PLLs support the following clock switchover modes:

- Automatic switchover—The clock sense circuit monitors the current reference clock. If the current reference clock stops toggling, the reference clock automatically switches to inclk0 or inclk1 clock.
- Manual clock switchover—Clock switchover is controlled using the extswitch signal. When the extswitch signal goes from logic high to logic low, and stays low for at least three clock cycles for the inclk being switched to, the reference clock to the I/O PLL is switched from inclk0 to inclk1, or vice-versa.
- Automatic switchover with manual override—This mode combines automatic switchover and manual clock switchover. When the extswitch signal goes low, it overrides the automatic clock switchover function. As long as the extswitch signal is low, further switchover action is blocked.

2.2.10.1. Automatic Switchover

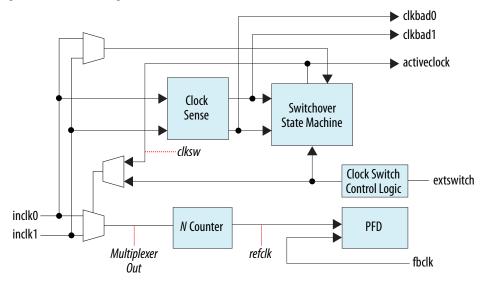

Intel Stratix 10 I/O PLLs support a fully configurable clock switchover capability.

Figure 18. Automatic Clock Switchover Circuit Block Diagram

This figure shows a block diagram of the automatic switchover circuit built into the I/O PLL.

When the current reference clock is not present, the clock sense block automatically switches to the backup clock for I/O PLL reference. You can select a clock source as the backup clock by connecting it to the inclk1 port of the I/O PLL in your design.

The clock switchover circuit sends out three status signals—clkbad0, clkbad1, and activeclock—from the I/O PLL to implement a custom switchover circuit in the logic array.

In automatic switchover mode, the clkbad0 and clkbad1 signals indicate the status of the two clock inputs. When they are asserted, the clock sense block detects that the corresponding clock input has stopped toggling. These two signals are not valid if the frequency difference between inclk0 and inclk1 is greater than 20%.

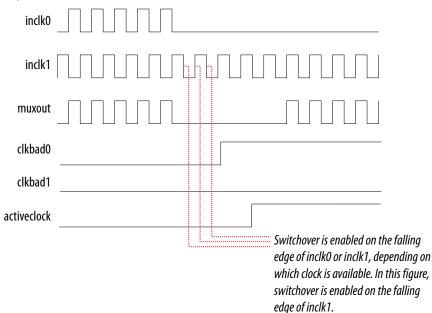
The activeclock signal indicates which of the two clock inputs (inclk0 or inclk1) is being selected as the reference clock to the I/O PLL. When the frequency difference between the two clock inputs is more than 20%, the activeclock signal is the only valid status signal.

Use the switchover circuitry to automatically switch between inclk0 and inclk1 when the current reference clock to the I/O PLL stops toggling. You can switch back and forth between inclk0 and inclk1 any number of times when one of the two clocks fails and the other clock is available.

For example, in applications that require a redundant clock with the same frequency as the reference clock, the switchover state machine generates a signal (clksw) that controls the multiplexer select input. In this case, inclk1 becomes the reference clock for the I/O PLL.

When using automatic clock switchover mode, the following requirements must be satisfied:

- Both clock inputs must be running when the FPGA is configured.
- The period of the two clock inputs can differ by no more than 20%.
- The input clocks must meet the input jitter specifications and I/O standard specifications.


Glitches in the input clock may be seen as a greater than 20% difference in frequency between the input clocks.

If the current clock input stops toggling while the other clock is also not toggling, switchover is not initiated and the clkbad[0..1] signals are not valid. If both clock inputs are not the same frequency, but their period difference is within 20%, the clock sense block detects when a clock stops toggling. However, the I/O PLL may lose lock after the switchover is completed and needs time to relock.

Note: You must reset the I/O PLL using the reset signal to maintain the phase relationships between the I/O PLL input and output clocks when using clock switchover.

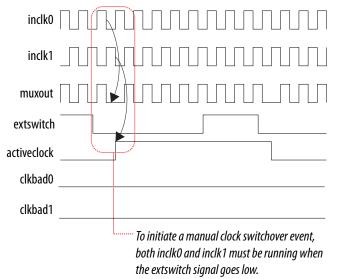
Figure 19. Automatic Switchover After Loss of Clock Detection

This figure shows an example waveform of the switchover feature in automatic switchover mode. In this example, the inclk0 signal is held low. After the inclk0 signal is held low for approximately two clock cycles, the clock sense circuitry drives the clkbad0 signal high. As the reference clock signal (inclk0) is not toggling, the switchover state machine controls the multiplexer through the extswitch signal to switch to the backup clock, inclk1.

2.2.10.2. Automatic Switchover with Manual Override

In automatic switchover with manual override mode, you can use the extswitch signal for user- or system-controlled switch conditions. You can use this mode for same-frequency switchover, or to switch between inputs of different frequencies.

Intel[®] Stratix[®] 10 Clocking and PLL User Guide


For example, if inclk0 is 66 MHz and inclk1 is 200 MHz, you must control switchover using the extswitch signal. The automatic clock-sense circuitry cannot monitor clock input (inclk0 and inclk1) frequencies with a frequency difference of more than 100% (2×).

This feature is useful when the clock sources originate from multiple cards on the backplane, requiring a system-controlled switchover between the frequencies of operation.

You must choose the backup clock frequency and set the M, N, C, L, and K counters so that the VCO operates within the recommended operating frequency range. The Intel Quartus Prime software notifies you if a given combination of inclk0 and inclk1 frequencies cannot meet this requirement.

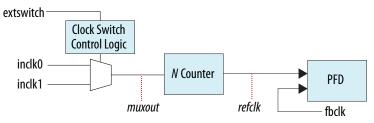
Figure 20. Clock Switchover Using the extswitch (Manual) Control

This figure shows a clock switchover waveform controlled by the extswitch signal. In this case, both clock sources are functional and inclk0 is selected as the reference clock. The switchover sequence starts when the extswitch signal goes low. On the falling edge of inclk0, the counter's reference clock, muxout, is gated off to prevent clock glitching. On the falling edge of inclk1, the reference clock multiplexer switches from inclk0 to inclk1 as the I/O PLL reference. The activeclock signal changes to indicate the clock which is currently feeding the I/O PLL.

In automatic override with manual switchover mode, the activeclock signal inverts after the extswitch signal transitions from logic high to logic low. Since both clocks are still functional during the manual switch, neither clkbad signal goes high. Because the switchover circuit is negative-edge sensitive, the rising edge of the extswitch signal does not cause the circuit to switch back from inclk1 to inclk0. When the extswitch signal goes low again, the process repeats.

The extswitch signal and automatic switch work only if the clock being switched to is available. If the clock is not available, the state machine waits until the clock is available.

2.2.10.3. Manual Clock Switchover


In manual clock switchover mode, the extswitch signal controls whether inclk0 or inclk1 is selected as the input clock to the I/O PLL. By default, inclk0 is selected.

A clock switchover event is initiated when the extswitch signal transitions from logic high to logic low, and is held low for at least three inclk cycles for the inclk clock being switched to.

You must bring the extswitch signal back high again to perform another switchover event. If you do not require another switchover event, you can leave the extswitch signal in a logic low state after the initial switch.

If inclk0 and inclk1 are different frequencies and are always running, the extswitch signal minimum low time must be greater than or equal to three of the slower frequency inclk0 and inclk1 cycles.

Figure 21. Manual Clock Switchover Circuitry in Intel Stratix 10 I/O PLLs

You can delay the clock switchover action by specifying the switchover delay in the Intel FPGA IP cores for the I/O PLL. When you specify the switchover delay, the extswitch signal must be held low for at least three inclk cycles for the inclk being switched to plus the number of the delay cycles that has been specified to initiate a clock switchover.

2.2.11. PLL Reconfiguration and Dynamic Phase Shift

Intel Stratix 10 devices support PLL reconfiguration and dynamic phase shift with the following features:

- PLL reconfiguration—I/O PLL and fPLL are able to reconfigure the M, N, and C counters. Only the fPLL supports reconfiguration of the fractional settings.
- Dynamic phase shift—Only the I/O PLL can perform positive or negative phase shift. Able to shift multiple phase steps each time, where one phase step is equal to 1/8 of the VCO period.

Related Information

- IOPLL Reconfig Intel FPGA IP Core References on page 58
- Reconfiguration Interface and Dynamic Reconfiguration chapter, Intel Stratix 10 Land H-Tile Transceiver PHY User Guide

Provides more information about the fPLL reconfiguration.

2.2.12. PLL Calibration

I/O PLLs include both analog and digital blocks that require calibration to compensate for process, voltage, and temperature (PVT) variations. Intel Stratix 10 uses the I/O manager to perform calibration routines.

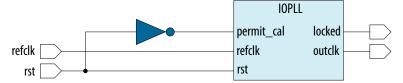
There are two main types of calibration.

- Power-up calibration—Initiates automatically at device power-up and runs during device configuration.
- User calibration—If you perform dynamic reconfiguration or change the reference clock frequency of the I/O PLL, you must perform user recalibration. You must enable the required calibration sequence.

To successfully complete the calibration process, OSC_CLK_1 clocks and all reference clocks driving the I/O PLLs must be stable and free running at the start of FPGA configuration. If clock switchover is enabled, both reference clocks must be present for calibration. During user mode, when the I/O PLL does not detect a reference clock during configuration, calibration attempts continue periodically. After calibration has completed, the I/O PLL is locked automatically.

Related Information

Calibration chapter, Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide Provides more information about the fPLL calibration.


2.2.12.1. Power-Up Calibration

After device power-up, the I/O manager automatically initiates the calibration process. The process continues during device programming.

You must enable the permit_cal signal from the IOPLL IP core to delay the powerup calibration in I/O PLL if the reference clock is not stable before device configuration. Set permit_cal = 0 upon power up until the reference clock is stable and operating at the correct frequency. Then, set permit_cal = 1 to initiate the power-up calibration. You must ensure that the permit_cal signal remains high once asserted.

Figure 22. Example of Power-Up Calibration When PLL Reference Clock is Not Stable Upon Power Up

This is an example on how to set permit_cal = 0 when the PLL reference clock is not stable before device configuration. You can invert the I/O PLL reset signal and connect it to the permit_cal port as shown in this figure. Asserting the reset signal high delays power-up calibration. Deassert the reset signal once the clock driving the I/O PLL is stable to initiate the power-up calibration.

2.2.12.2. User Calibration

The I/O PLL must be recalibrated for any of the following conditions after device power up:

- Dynamic I/O PLL reconfiguration that changes the ${\tt M}$ or ${\tt N}$ counter settings is performed.
- Change of the reference clock frequency to the I/O PLL.

Recalibration is not necessary when using clock switchover to a secondary reference clock with a different frequency than the primary reference clock. The I/O PLL stores the calibration settings for both reference clocks after power-up calibration.

To perform the recalibration of the I/O PLL, you must enable the IOPLL Reconfig Intel FPGA IP core to enable the recalibration mode.

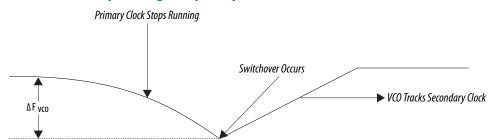
Related Information

- Recalibration Using .mif on page 42
- Calibration chapter, Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide Provides more information about the fPLL calibration.

Send Feedback

3. Intel Stratix 10 Clocking and PLL Design Considerations

3.1. Guideline: Clock Switchover


When implementing clock switchover in Intel Stratix 10 I/O PLLs, refer to the following guidelines:

- Automatic clock switchover requires that the inclk0 and inclk1 frequencies be within 20% of each other. Failing to meet this requirement causes the clkbad0 and clkbad1 signals to not function properly.
- When using manual clock switchover, the difference between inclk0 and inclk1 can be more than 100% (2×). However, differences in frequency, phase, or both, of the two clock sources may cause the I/O PLL to lose lock. Resetting the I/O PLL ensures that you maintain the correct phase relationships between the input and output clocks.
- Both inclk0 and inclk1 must be running when the extswitch signal goes low to initiate the manual clock switchover event. Failing to meet this requirement causes the clock switchover to not function properly.
- Applications that require a clock switchover feature and a small frequency drift must use a low-bandwidth I/O PLL. When referencing input clock changes, the low-bandwidth I/O PLL reacts more slowly than a high-bandwidth I/O PLL. When switchover happens, a low-bandwidth I/O PLL propagates the stopping of the clock to the output more slowly than a high-bandwidth I/O PLL. However, be aware that the low-bandwidth I/O PLL also increases lock time.
- After a switchover occurs, there may be a finite resynchronization period for the I/O PLL to lock onto a new clock. The time it takes for the I/O PLL to relock depends on the I/O PLL configuration.
- If the phase relationship between the input clock to the I/O PLL and the output clock from the I/O PLL is important in your design, assert the reset signal for at least 10 ns after performing a clock switchover. Wait for the locked signal to go high and be stable before re-enabling the output clocks from the I/O PLL.
- The VCO frequency gradually decreases when the current clock is lost and then increases as the VCO locks on to the backup clock, as shown in the following figure.

Figure 23. VCO Switchover Operating Frequency

3.2. IP Core Constraints

To implement the fPLL IP core, you must adhere to the following constraints:

- You must use create_clock constraints on fPLL reference clocks on the project's top-level Synopsys Design Constraints File (.sdc).
- Any SDC design constraints referring to transceiver clocks must be listed after the transceiver Native PHY .sdc file constraints.
- fPLL output clocks have no phase relationship to the reference clock when utilizing the fPLL output clocks for core usage. The fPLL output clocks of the clock divider are still in phase with each other, however.

To implement the IOPLL IP core, you must adhere to the following constraints:

- Any SDC design constraints referring to the I/O PLL clocks must be listed after the SDC constraints for the IOPLL IP core.
- For Intel Quartus Prime software version 18.1 or later, you may see error warning message for design with encrypted IOPLL IP core. The auto-generated .sdc files of the IOPLL IP core are not supported if you use encryption. You must manually create the .sdc file using create_clock and create_generated_clock to replace the auto-generated .sdc file in the design for refclk and output clocks.

3.3. Guideline: Resetting the PLL

To reset the PLL, refer to the following guidelines:

- When changing the M counter, N counter, or loop filter settings, the I/O PLL may lose and regain lock. To maintain the appropriate phase relationship between the reference clock and output clocks, assert the areset signal to reset the I/O PLL after reconfiguration is complete. Intel recommends always resetting the I/O PLL after any reconfiguration operation to the M counter, N counter, or loop filter settings.
- When changing the C counter settings, you may lose the expected phase relationship between the C counters. Assert the areset signal after reconfiguration is complete to restore the expected phase relationship. Reset is not required if the phase relationships are not important to your application.
- Resetting the I/O PLL does not modify the counter or loop filter settings. However, resetting the I/O PLL undoes any dynamic phase shift operations that were performed. After the I/O PLL is reset, the phase shift on the C counters is restored to the originally programmed settings.

3.4. Guideline: Configuration Constraints

The I/O PLL configuration must obey the following constraints:

- The phase frequency detector (PFD) and VCO each have a legal frequency range of operation.
- The loop filter settings must be appropriate for the M counter value and user-selected bandwidth mode.

If any of these configuration constraints are violated, the I/O PLL may fail to lock or may exhibit poor jitter performance.

3.5. Guideline: Timing Closure

For timing closure, refer to the following guidelines:

- Reconfiguring a PLL's counter and loop filter settings changes both the output frequency and the clock uncertainty of that I/O PLL. Dynamic phase shift only affects the output clock phase.
- The Timing Analyzer in the Intel Quartus Prime software performs timing analysis for the initial PLL settings only. You must verify that your design closes timing after dynamic reconfiguration or dynamic phase shift.
- Intel recommends compiling the I/O PLL designs with each intended configuration setting to determine the variation in the clock with the I/O PLL settings.

3.6. Guideline: I/O PLL Reconfiguration

To reconfigure the I/O PLL, refer to the following guidelines:

- If the reference clock frequency changes, you must recalibrate the I/O PLL using the IOPLL Intel FPGA IP core.
- The I/O PLL reconfiguration interface must have a free running mgmt_clk signal. The I/O PLL dynamic phase shift interface must have a free running scanclk signal. These interfaces eliminate the need to precisely control the start and stop of mgmt_clk and scanclk signals.
- The I/O PLL can be reconfigured with .mif streaming mode and advanced mode using the IOPLL Reconfig Intel FPGA IP core. Intel recommends using the .mif streaming mode.
- Use caution when reconfiguring an I/O PLL with a non-zero phase shift setting. Modifying the M counter or N counter settings does not change the relative phase shift (in percent), but alters the absolute phase shift (in picoseconds). Modifying the C counter settings does not change the absolute phase shift, but modifies the relative phase shift.

3.7. Guideline: I/O PLL Jitter Performance

To achieve the Intel Stratix 10 I/O PLL clock output jitter performance as specified in the *Intel Stratix 10 Device Datasheet*, adhere to the maximum allowable number of unterminated simultaneously switching output (SSO) pins, such as LVTTL and LVCMOS, within the I/O bank (where the PLL output clock resides).

Table 4.	Maximum Allowable Number of Unterminated SSO Pins Within an I/O	Bank

SSO Pin Current Strength (mA)	Maximum Allowable Number of SSO Pins
16	17
12	21
10	27
8	36

If you use more than the maximum allowable unterminated SSO pins, additional jitter beyond the PLL clock output jitter specification is induced to the PLL clock output.

Table 5.Jitter Increment per SSO Pin When the Unterminated SSO Pin Utilization of
the Affected I/O Bank Exceeds the Maximum Allowable Number

SSO Pin Current Strength (mA)	Jitter Increment per SSO Pin (ps/pin)
16	8
12	7
10	6
8	4

When you use a combination of different current strength, calculate the maximum allowable number of SSO pins according to the strongest current strength used. The jitter increment value per SSO pin should then be calculated using the strongest current strength setting from the remaining SSO pins (after deducting the maximum allowable number of SSO pins from the total SSO pins). For example, if the design has 19 pins with current strength 16 mA, 5 pins with current strength 12 mA, and 2 pins with current strength 10 mA, the maximum allowable number of SSO pins for this design is 17, and the jitter increment per SSO pin is 8 ps/pin. Total additional jitter induced is equivalent to $[(19 + 5 + 2) - 17] \times 8 = 72$ ps.

Related Information

Intel Stratix 10 Device Datasheet Provides the I/O PLL clock output jitter performance.

3.8. Guideline: Clock Gating

Both sector clock gate and root clock gate have similar skews. To achieve higher performance when transferring between gated and non-gated clocks and vice-versa, refer to the following guidelines:

- Minimize the size of clock region because smaller clock delays have lower skew.
- Ensure that both gated and non-gated clocks have similar sizes.
- Minimize logic on paths between gated and non-gated clocks to achieve better timing margin to compensate for the higher skews.

(intel)

4. Intel Stratix 10 Clocking and PLL Implementation Guides

If you are looking for the fPLL IP core, refer to the *Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide*.

Related Information

Instantiating the fPLL IP Core, Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

Provides more information about the fPLL IP core.

4.1. Clock Control Intel FPGA IP Core

The Clock Control IP core provides clock control features such as enabling entry to the clock network, clock multiplexing, clock gating, and clock division for the Intel Stratix 10 devices.

4.1.1. Release Information for Clock Control Intel FPGA IP

IP versions are the same as the Intel Quartus Prime Design Suite software versions up to v19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP cores have a new IP versioning scheme.

The IP versioning scheme (X.Y.Z) number changes from one software version to another. A change in:

- X indicates a major revision of the IP. If you update your Intel Quartus Prime software, you must regenerate the IP.
- Y indicates the IP includes new features. Regenerate your IP to include these new features.
- Z indicates the IP includes minor changes. Regenerate your IP to include these changes.

Table 6. Clock Control Intel FPGA IP Core Current Release Information

Item	Description
IP Version	19.1.0
Intel Quartus Prime Version	19.3
Release Date	2019.09.30

4.2. IOPLL Intel FPGA IP Core

The IOPLL IP core allows you to configure the settings of the Intel Stratix 10 I/O PLL.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

The IOPLL IP core supports the following features:

- Supports six different clock feedback modes: direct, external feedback, normal, source synchronous, zero delay buffer, and LVDS mode.
- Generates up to nine clock output signals for the Intel Stratix 10 device.
- Switches between two reference input clocks.
- Supports adjacent PLL (adjpllin) input to connect with an upstream PLL in PLL cascading mode.
- Generates the Memory Initialization File (**.mif**) and allows PLL dynamic reconfiguration.
- Supports PLL dynamic phase shift.

4.2.1. Release Information for IOPLL Intel FPGA IP

IP versions are the same as the Intel Quartus Prime Design Suite software versions up to v19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP cores have a new IP versioning scheme.

The IP versioning scheme (X.Y.Z) number changes from one software version to another. A change in:

- X indicates a major revision of the IP. If you update your Intel Quartus Prime software, you must regenerate the IP.
- Y indicates the IP includes new features. Regenerate your IP to include these new features.
- Z indicates the IP includes minor changes. Regenerate your IP to include these changes.

Table 7. IOPLL Intel FPGA IP Core Current Release Information

Item	Description
IP Version	19.3.0
Intel Quartus Prime Version	19.3
Release Date	2019.09.30

4.2.2. .mif File Generation

You can generate the .mif files in the IOPLL IP core parameter editor.

4.2.2.1. Generating a New .mif File

To generate a new .mif file containing a single I/O PLL configuration, follow these steps:

- 1. At the **Dynamic Reconfiguration** tab, select **Enable dynamic reconfiguration** of **PLL**.
- 2. For MIF Generation Options, select Generate New MIF File.
- 3. For **Path of New MIF file**, specify a file name.
- 4. For **Name of Current Configuration**, specify the name of the current configuration of the I/O PLL.
- 5. Click Create MIF File.

Related Information

.mif Streaming Reconfiguration on page 41

4.2.2.2. Adding Configurations to Existing .mif File

You can append new configurations to an existing .mif file. To store more configurations in a .mif file, follow these steps:

- 1. At the **Dynamic Reconfiguration** tab, select **Enable dynamic reconfiguration** of **PLL**.
- 2. For MIF Generation Options, select Add Configuration to Existing MIF File.
- 3. For Path of New MIF file, specify a file name.
- 4. For **Name of Current Configuration**, specify the name of the new configuration of the I/O PLL.
- 5. Click Append to MIF File.

Related Information

.mif Streaming Reconfiguration on page 41

4.2.3. Implementing I/O PLL Dynamic Phase Shift in the IOPLL IP Core

You can use the IOPLL IP core to perform phase shifting directly through the dynamic phase shift ports.

4.2.3.1. I/O PLL Dynamic Phase Shift Operation

To perform dynamic phase shift operation for an I/O PLL in the IOPLL IP core, follow these steps:

- 1. Set the value for updn, cntsel[4..0], and num_phase_shift[2..0] ports.
- 2. Assert phase_en port for at least two scanclk cycles.

Each <code>phase_en pulse indicates one dynamic phase shift operation. The <code>phase_done output goes low to indicate that dynamic phase shift is in progress. You can only assert the <code>phase_en signal after the phase_done signal goes from low to high.</code></code></code>

The updn, cntsel[4..0], and num_phase_shift[2..0] ports are synchronous to the scanclk cycle.

When the phase_done signal transitions from high to low, the phase_done signal is synchronous to the rising edge of the scanclk signal. The transition from low to high is asynchronous to the scanclk signal.

Depending on the VCO and scanclk frequency, the low time of the phase_done signal may be greater than or less than one scanclk cycle.

Related Information

Dynamic Phase Shift Ports in the IOPLL IP Core on page 56

4.2.4. Design Example

You must install the Intel Quartus Prime software version 17.1 or later. The software must be installed on a Windows* or Linux* computer that meets the Intel Quartus Prime software minimum requirements.

4.2.4.1. Design Example: Dynamic Phase Shift Using IOPLL IP Core

This design example uses the same design as "Design Example 3: Dynamic Phase Shift Using IOPLL Reconfig IP Core" without using the IOPLL Reconfig Intel FPGA IP core. This design example demonstrates the implementation of the I/O PLL dynamic phase shift directly through the IOPLL IP core.

To run the test with this design example, perform these steps:

- 1. Download and restore the iopll-dynamic-phase-shift.qar file.
- 2. Change the device and pin assignments of the design example to match your hardware.
- 3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
- 4. Open the AN.stp file and program the device with top.sof.
- 5. Assert a high pulse on reset_SM signal to start the I/O PLL dynamic phase shift reconfiguration operation.

Figure 24. Waveform Example for Dynamic Phase Shift Using IOPLL IP Core Design Example

clk			
updn			
cntsel[4:0]	00h) 01h	00h
m_phase_shifts[2:0]	Oh) <u>1</u> h	Oh
phase_en			
phase_done			

Related Information

Design Example: Dynamic Phase Shift Using IOPLL IP Core Provides the design file for this design example.

4.3. IOPLL Reconfig Intel Stratix 10 FPGA IP Core

You can use Intel Stratix 10 devices to implement phase-locked loop (PLL) reconfiguration and dynamic phase shift for I/O PLLs.

Intel[®] Stratix[®] 10 Clocking and PLL User Guide

nu

The Intel Stratix 10 I/O PLL supports dynamic reconfiguration when the device is in user mode. With the dynamic reconfiguration feature, you can reconfigure the I/O PLL settings in real time. You can change the divide settings of the PLL counters and the PLL bandwidth settings (loop filter setting and charge pump setting) through an Avalon[®] Memory-Mapped (Avalon-MM) interface in the IOPLL Reconfig IP core, without the need to reconfigure the entire FPGA. The Intel Stratix 10 I/O PLL uses divide counters (N, M, and C counters) and a voltage-controlled oscillator (VCO) to synthesize the desired phase and frequency output.

You can use the IOPLL Reconfig IP core as follows:

- Memory Initialization File (.mif) streaming reconfiguration
 - Allows the I/O PLL reconfiguration using predefined settings saved in an onchip ROM. You can store many unique PLL configurations in a single ROM.
 - The .mif file is generated automatically by the IOPLL IP core. Using the generated .mif file during .mif streaming reconfiguration ensures the legality of the new configuration.
 - Intel recommends using this reconfiguration method.
- Advanced mode reconfiguration
 - This method of reconfiguration is for advanced users. You must ensure the reconfigured PLL settings are within the legal range.
 - Enable the Advanced Reconfiguration option from the IOPLL Reconfig IP core to reconfigure the individual I/O PLL registers.
 - This method is error prone and may lead to the I/O PLL being reconfigured into an illegal configuration if the reconfiguration is done incorrectly.
- Recalibration of the I/O PLL using .mif
 - Perform recalibration of the I/O PLL without any reconfiguration.
 - Trigger recalibration if the reference clock frequency changes.
- I/O PLL clock gating
 - Gate and un-gate I/O PLL output clock 0 to output clock 7 of the I/O PLL.

You can perform dynamic phase shift using the IOPLL Reconfig IP core.

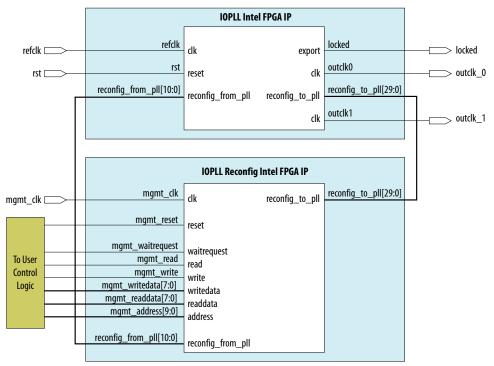
4.3.1. Release Information for IOPLL Reconfig Intel FPGA IP

IP versions are the same as the Intel Quartus Prime Design Suite software versions up to v19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP cores have a new IP versioning scheme.

The IP versioning scheme (X.Y.Z) number changes from one software version to another. A change in:

- X indicates a major revision of the IP. If you update your Intel Quartus Prime software, you must regenerate the IP.
- Y indicates the IP includes new features. Regenerate your IP to include these new features.
- Z indicates the IP includes minor changes. Regenerate your IP to include these changes.

Table 8.	IOPLL Reconfig	j Intel FPGA IP Co	ore Current Release Information


Item	Description
IP Version	19.3.0
Intel Quartus Prime Version	19.3
Release Date	2019.09.30

4.3.2. Implementing I/O PLL Reconfiguration in the IOPLL Reconfig IP Core

You can enable the PLL reconfiguration circuitry for the I/O PLL through the Avalon-MM interface in the IOPLL Reconfig IP core.

4.3.2.1. Connectivity between the IOPLL and IOPLL Reconfig IP Cores

Figure 25. Connectivity between the IOPLL and IOPLL Reconfig IP Cores in the Intel Quartus Prime Software

Related Information

Avalon-MM Interface Ports in the IOPLL Reconfig IP Core on page 58

4.3.2.2. Connecting the IOPLL and IOPLL Reconfig IP Cores

To connect the IOPLL and IOPLL Reconfig IP cores in your design, follow these steps:

- 1. Connect the reconfig_to_pll[29..0] bus on the IOPLL Reconfig IP core to the reconfig_to_pll[29..0] bus on the IOPLL IP core.
- 2. Connect the reconfig_from_pll[10..0] bus on the IOPLL Reconfig IP core to the reconfig_from_pll[10..0] bus on the IOPLL IP core.
- 3. Connect the mgmt_clk port to a valid clock source.
- 4. Connect the mgmt_reset port, mgmt_waitrequest port, mgmt_write port, mgmt_write port, mgmt_readdata[7..0] bus, mgmt_writedata[7..0] bus, and mgmt_address[9..0] bus to user control logic to perform read and write operations.

Related Information

Avalon-MM Interface Ports in the IOPLL Reconfig IP Core on page 58

4.3.3. IOPLL Reconfig IP Core Reconfiguration Modes

The IOPLL Reconfig IP core has four functional reconfiguration modes. The reconfiguration operation mode is based on the setting in the mgmt_address[9:8] bit.

Table 9. IOPLL Reconfig IP Core Reconfiguration Modes

Reconfiguration Mode	<pre>mgmt_address[9:8]</pre>
.mif streaming reconfiguration	2'b 00
Advanced mode reconfiguration	2'b 01
Clock gating reconfiguration	2'b 10
Dynamic phase shift reconfiguration	2'b 11

After performing dynamic reconfiguration on the I/O PLL that changes the M counter, N counter, bandwidth setting, or charge pump current, the I/O PLL must be recalibrated. For .mif streaming reconfiguration, the recalibration is done automatically. For advanced mode reconfiguration, you must manually trigger the recalibration of the I/O PLL. Recalibration is not needed for clock gating and dynamic phase shift reconfiguration.

4.3.3.1. .mif Streaming Reconfiguration

.mif streaming allows you to dynamically reconfigure the I/O PLL through the IOPLL Reconfig IP core using predefined settings saved in an on-chip RAM. You must generate a .mif file containing these pre-defined configurations, up to 32 I/O PLL configurations, from the IOPLL IP core parameter editor.

To perform .mif streaming reconfiguration, follow these steps:

- Set mgmt_address[9:8] = 2'b00 to choose the .mif streaming mode and set mgmt_writedata[4:0] to the index of the desired configuration in the .mif file.
- To start the .mif streaming reconfiguration on the I/O PLL, assert the mgmt_write signal for one mgmt_clk cycle.mgmt_waitrequest is asserted by the IOPLL Reconfig IP core while .mif streaming is in progress.
- 3. After the reconfiguration is complete, the mgmt_waitrequest signal is deasserted.
- 4. In the IOPLL Reconfig IP core parameter editor, select the **Assert waitrequest until IOPLL has locked** option for the I/O PLL to lock. Otherwise, you can wait for the I/O PLL to lock to ensure the I/O PLL reconfiguration is complete.

Recalibration is done automatically for .mif streaming reconfiguration. If you want to manually trigger recalibration using .mif file, follow the steps in the *Recalibration Using .mif* section.

Related Information

- Generating a New .mif File on page 37
- Adding Configurations to Existing .mif File on page 37
- Recalibration Using .mif on page 42

4.3.3.1.1. Recalibration Using .mif

Recalibration using .mif only allows you to recalibrate the I/O PLL but not to reconfigure the I/O PLL. In the IOPLL Reconfig IP core, enable **Recalibration Mode**. When the recalibration is selected, a recalibration.mif file is generated automatically for the recalibration operation.

To perform I/O PLL recalibration using .mif, follow these steps:

- Set mgmt_address[9:8] = 2'b00 to choose the .mif mode and set mgmt_writedata[4:0] = 2'b00.
- To start the recalibration using .mif on the I/O PLL, assert the mgmt_write signal for one mgmt_clk cycle. mgmt_waitrequest is asserted by the IOPLL Reconfig IP core while recalibration is in progress.
- 3. After the recalibration is complete, the mgmt_waitrequest signal is deasserted.

4.3.3.2. Advanced Mode Reconfiguration

In advanced mode, individual I/O PLL setting is reconfigured using the IOPLL Reconfig IP core through the Avalon interface.

Advanced mode reconfiguration is only recommended for advanced users. This reconfiguration mode has several limitations and can cause the I/O PLL to lose lock and can lead to device reliability problems if you set the configuration parameters to the illegal configuration settings. Intel recommends using the .mif streaming reconfiguration.

The limitations of using the advanced mode reconfiguration are as follows:

- You must ensure that the configuration setting is a legal value so that the I/O PLL has a legal configuration. To ensure your configuration is legal, refer to the IOPLL IP Core Parameters - Advanced Parameters Tab table for the correct configuration settings.
- If the value to be reconfigured makes up only a part of one byte in the I/O PLL's internal memory, you must perform a read-modify-write operation to not overwrite the remaining bits of the byte.
- You must manually trigger recalibration of the I/O PLL after the advanced mode reconfiguration.
- **Caution:** PLL may lose lock and can cause reliability problems to your device if you configure with the wrong PLL setting, configure the wrong bit, or overwrite the whole byte for settings that made up just part of one byte.

To perform I/O PLL reconfiguration using advanced mode, follow these steps:

- 1. Enable the **Advanced Reconfiguration** option in the IOPLL Reconfig IP core.
- 2. Set mgmt_address[9:8] = 2'b01 to choose the advanced mode reconfiguration.
- 3. Set the address bus value for mgmt_address[7:0] and the data bus value for mgmt_writedata [7:0] as the desired PLL setting.

For more details, refer to the *Address Bus and Data Bus Settings for Advanced Mode Reconfiguration* table.

- 4. Assert the mgmt_write signal for one mgmt_clk cycle.
- 5. Repeat step 1 until step 3 to set address bus and data bus value for the desired I/O PLL reconfiguration setting.
- 6. After the I/O PLL reconfiguration is complete, you must manually trigger the I/O PLL recalibration.

For more details about the I/O PLL recalibration, refer to the *Recalibration Using Advanced Mode* section.

Related Information

- .mif Streaming Reconfiguration on page 41
- IOPLL IP Core Parameters Advanced Parameters Tab on page 55
- Address Bus and Data Bus Settings for Advanced Mode Reconfiguration on page 58
- Recalibration Using Advanced Mode on page 43

4.3.3.2.1. Recalibration Using Advanced Mode

To perform I/O PLL recalibration using advanced mode, follow these steps:

- 1. Set mgmt_address[9:8] = 2'b01 to choose the advanced mode.
- 2. Set the mgmt_writedata[6] to 1'b1 on mgmt_address[7:0] = 8'b01001001
 by performing the read-modify-write operation.
- 3. Set mgmt_address[7:0] = 8'b01001010 and mgmt_wriredata[7:0] = 8'b00000011 to enable the calibration interface.

4.3.3.3. Clock Gating Reconfiguration

You can gate (disable) and un-gate (enable) I/O PLL output clock 0 to output clock 7 of the I/O PLL. It is easily done by writing one byte to the IOPLL Reconfig IP core, with one bit corresponding to each of the I/O PLL output clocks.

To perform clock gating reconfiguration, follow these steps:

- 1. Set mgmt_address[9:8] to 2'b10 to select clock gating mode and set mgmt_writedata[7:0] to indicate desired output clock to be gated.
- 2. To start the clock gating reconfiguration on the I/O PLL, assert the mgmt_write signal for one mgmt_clk cycle.
- 3. The gating changes may not come into effect for multiple clock cycles after mgmt_waitrequest has been de-asserted.

Related Information

Output Clock and the Corresponding Data Bit Setting for Clock Gating Reconfiguration on page 64

4.3.3.4. Dynamic Phase Shift Reconfiguration

The dynamic phase shifts reconfiguration can determine the number of shifts, the direction of the phase shift and the output clock to be shifted.

To perform dynamic phase shift reconfiguration through the IOPLL Reconfig IP core, follow these steps:

- 1. Set mgmt_address[9:8] to 2'b11 to select dynamic phase shift reconfiguration mode.
- 2. set mgmt_writedata[7:0] to indicate the desired number of phase shift, the direction of phase shift, and the desired counter to be shifted.
- 3. To start the dynamic phase shift reconfiguration on the I/O PLL, assert the mgmt_write signal for one mgmt_clk cycle. This signal is the equivalent of the phase_en signal on the I/O PLL.
- 4. After the dynamic phase shift is complete, the mgmt_waitrequest signal is deasserted.

Related Information

Data Bus Setting for Dynamic Phase Shift for IOPLL Reconfig IP Core on page 64

4.3.4. Design Examples

You must install the Intel Quartus Prime software version 17.1 or later. The software must be installed on a Windows or Linux computer that meets the Intel Quartus Prime software minimum requirements.

4.3.4.1. Design Example 1: .mif Streaming Reconfiguration Using IOPLL Reconfig IP Core

This design example uses a 1SG280LU3F50E2VGS1 device to demonstrate the implementation of the I/O PLL reconfiguration through .mif streaming using the IOPLL Reconfig IP core. This design example consists of the IOPLL IP core, IOPLL Reconfig IP core, and In-System Sources & Probes Intel FPGA IP core.

The I/O PLL synthesizes two output clocks of 400 MHz with 0 ps phase shift and 200 MHz with 0 ps phase shift on counter C0 output and counter C1 output respectively at medium bandwidth. The input reference clock is 50 MHz.

The IOPLL Reconfig IP core connects to a state machine to perform the I/O PLL .mif streaming reconfiguration operation. A high pulse on the reset_SM input through the In-System Sources & Probes IP core triggers the I/O PLL reconfiguration operation. After the I/O PLL reconfiguration operation is complete, the I/O PLL operates in the following configuration at medium bandwidth:

- 100 MHz with 0 ps phase shift on counter C0 output
- 100 MHz with 0 ps phase shift on counter C1 output

To run the test with this design example, perform these steps:

- 1. Download and restore the iopll-reconfig-mif-streaming.qar file.
- 2. Change the device and pin assignments of the design example to match your hardware.
- 3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
- 4. Open the AN.stp file and program the device with top.sof.
- 5. Assert a high pulse on the ${\tt reset_SM}$ signal to start the I/O PLL reconfiguration operation.

Figure 26. Waveform Example for .mif Streaming Reconfiguration Design Example

mgmt_clk		
mgmt_address[9:8]	00b	<u> </u>
mgmt_address[7:0]	00h	
mgmt_writedata[7:0] mgmt_write	00h)()00h)/	<u>\</u>
mgmt_waitrequest		<u></u>

Related Information

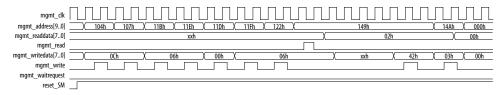
Design Example 1: .mif Streaming Reconfiguration Using IOPLL Reconfig IP Core Provides the design file for this design example.

4.3.4.2. Design Example 2: Advanced Mode Reconfiguration Using IOPLL Reconfig IP Core

This design example uses a 1SX280LU2f50E2VGS2 device to demonstrate the implementation of the I/O PLL reconfiguration in advanced mode using the IOPLL Reconfig IP core. This design example consists of the IOPLL IP core, IOPLL Reconfig IP core, and In-System Sources & Probes IP core.

The I/O PLL synthesizes two output clocks of 400 MHz and 200 MHz on counter C0 output and counter C1 output respectively at medium bandwidth. The input reference clock is 50 MHz.

The IOPLL Reconfig IP core connects to a state machine to perform I/O PLL reconfiguration operation. A high pulse on the reset_SM input through In-System Sources & Probes IP core triggers the I/O PLL reconfiguration operation. After the I/O PLL reconfiguration operation is complete, the I/O PLL operates in the following configuration at medium bandwidth:


- 100 MHz on counter C0 output
- 100 MHz on counter C1 output

The state machine initiates the I/O PLL recalibration process when the I/O PLL reconfiguration operation is complete.

To run the test with this design example, perform these steps:

- 1. Download and restore the iopll-reconfig-advanced-mode.gar file.
- 2. Change the device and pin assignments of the design example to match your hardware.
- 3. Recompile the design example. Ensure that the design example does not contain any timing violation after reconfiguration.
- 4. Open the AN.stp file and program the device with top.sof.
- 5. Assert a high pulse on the mgmt_reset signal to reset the IOPLL Reconfig IP core.
- 6. Assert a high pulse on the reset_SM signal to start the I/O PLL reconfiguration operation.

Figure 27. Waveform Example for Advanced Mode Reconfiguration Design Example

Related Information

Design Example 2: Advanced Mode Reconfiguration Using IOPLL Reconfig IP Core Provides the design file for this design example.

4.3.4.3. Design Example 3: Clock Gating Reconfiguration Using IOPLL Reconfig IP Core

This design example uses a 1SG280LU3F50E2VGS1 device to demonstrate the implementation of the I/O PLL clock gating reconfiguration using the IOPLL Reconfig IP core. This design example consists of the IOPLL IP core, IOPLL Reconfig IP core, and In-System Sources & Probes IP core.

The I/O PLL synthesizes eight output clocks of 200 MHz each. The input reference clock is 50 MHz.

The IOPLL Reconfig IP core connects to a state machine to perform the I/O PLL clock output gating. A high pulse on the reset_SM input through the In-System Sources & Probes IP core triggers the I/O PLL reconfiguration operation. After the I/O PLL reconfiguration operation is complete, outclk0 is ungated and outclk1 is gated.

To run the test with this design example, perform these steps:

- 1. Download and restore the iopll-reconfig-clock-gating.qar file.
- 2. Change the device and pin assignments of the design example to match your hardware.
- 3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
- 4. Open the AN.stp file and program the device with top.sof.
- 5. Assert a high pulse on the reset_SM signal to start the I/O PLL clock gating reconfiguration operation.

Figure 28. Waveform Example for Clock Gating Reconfiguration Design Example

mgmt_clk		»
mgmt_address[9:8]	10b	<u></u>
mgmt_address[7:0]	00h	<u></u>
mgmt_writedata[7:0]	00h / 01h / 00h	<u></u>
mgmt_write		<u></u>
mgmt_waitrequest		»

Related Information

Design Example 3: Clock Gating Reconfiguration Using IOPLL Reconfig IP Core Provides the design file for this design example.

4.3.4.4. Design Example 4: Dynamic Phase Shift Using IOPLL Reconfig IP Core

This design example uses a 1SG280LU3F50E2VGS1 device to demonstrate the implementation of the I/O PLL dynamic phase shift reconfiguration using the IOPLL Reconfig IP core. This design example consists of the IOPLL IP core, IOPLL Reconfig IP core, and In-System Sources & Probes IP core.

The I/O PLL synthesizes two output clocks of 200 MHz with 0 ps phase shift on counter C0 output and counter C1 output at medium bandwidth. The input reference clock is 50 MHz.

The IOPLL Reconfig IP core connect to a state machine to perform the I/O PLL dynamic phase shift operation. A high pulse on the reset_SM input through the In-System Sources & Probes IP core triggers the I/O PLL dynamic phase shift operation. After the I/O PLL dynamic phase shift operation is complete, counter C1 is phase shifted 89 ps for one positive phase shift step.

To run the test with this design example, perform these steps:

- 1. Download and restore the iopll-reconfig-dynamic-phase-shift.qar file.
- 2. Change the device and pin assignments of the design example to match your hardware.
- 3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
- 4. Open the AN.stp file and program the device with top.sof.
- 5. Assert a high pulse on the ${\tt reset_SM}$ signal to start the I/O PLL dynamic phase shift reconfiguration operation.

Figure 29. Waveform Example for Dynamic Phase Shift Using IOPLL Reconfig IP Core Design Example

mgmt_clk		
mgmt_address[9:8]	11b	<u>۸</u>
mgmt_address[7:0]	00h	\$
mgmt_writedata[7:0]	0h (0h ()	<u>s</u>
mgmt_write		<u>\</u>
mgmt_waitrequest		<u>هــــــــــــــــــــــــــــــــــــ</u>

Related Information

Design Example 4: Dynamic Phase Shift Using IOPLL Reconfig IP Core Provides the design file for this design example.

5. Clock Control Intel FPGA IP Core References

5.1. Clock Control IP Core Parameters

Table 10. **Clock Control IP Core Parameters for Intel Stratix 10 Devices**

Parameter	Legal Value	Description
Number of Clock Inputs	1, 2, or 4	Specify the number of input clock sources for the clock control block. You can specify up to four clock inputs. Clock multiplexing in Intel Stratix 10 devices is implemented using soft logic in the core.
Ensure glitch free clock switchover	On or Off	Turn on this option to implement a glitch-free switchover when you use multiple clock inputs. You must ensure the currently selected clock is running before switching to another source. If the selected clock is not running, you cannot switch to the new clock source using the glitch-free switchover implementation. By default, the clkselect port is set to 00. You must apply a clock to inclk0x to read the values on the clkselect ports. This feature will be available in a future release.
Clock Enable	On or Off	Turn on this option if you want to gate your clock output with an enable signal. This option disables the option to use clock division.
Clock Enable Type	Root Level or Distributed Sector Level	Select the clock gates located in the periphery or the gates located in the sector. For more information about the clock gates, refer to the Clock Gating section.
Enable Register Mode	Negative Latch or None	Specify if the enable signal should be latched.
Clock Divider	On or Off	Turn on this option if you want to use the clock division block in the periphery.
Clock Divider Output Ports	Divide 1x, Divide 1x and 2x, or Divide 1x, 2x and 4x	Specify the combination of passing your clock through, dividing your clock by 2, or dividing your clock by 4.

Related Information

Clock Gating on page 10

5.2. Clock Control IP Core Ports and Signals

Table 11. **Clock Control IP Core Ports for Intel Stratix 10 Devices**

Port Name	Description
inclk	Input signal to the clock network.
inclk0x, inclk1x, inclk2x, inclk3x	Input signals to the clock network based on the value selected for the Number of Clock Inputs parameter.
	continued

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Port Name	Description
clkselect[]	Input that dynamically selects the clock source to drive the clock network that is driven by the clock buffer.
	Input port [1 DOWNTO 0] wide.
	The following list shows the signal selection for the clkselect[] value:
	• 2'b00 selects inclk0x
	• 2'b01 selects inclk1x
	• 2'b10 selects inclk2x
	• 2'bl1 selects inclk3x
outclk	Output of the Clock Control IP core when Clock Divider option is not selected.
ena	Clock enable of the clock gate block. This signal is active-high.
clock_div1x, clock_div2x, clock_div4x	Outputs of the Clock Control IP core when the Clock Divider option is selected. The exact combination of ports exposed depends on the value specified for the Clock Divider Output Ports parameter.
	• clock_div1x is the same as inclk
	• clock_div2x divides inclk by 2
	 clock_div4x divides inclk by 4

(intel)

6. IOPLL Intel FPGA IP Core References

6.1. IOPLL IP Core Parameters

The IOPLL IP core parameter editor appears in the PLL category of the IP Catalog.

6.1.1. IOPLL IP Core Parameters - PLL Tab

Table 12. IOPLL IP Core Parameters - PLL Tab for Intel Stratix 10 Devices

Parameter	Legal Value	Description	
Device Family	Intel Stratix 10	Specifies the device family.	
Component	_	Specifies the targeted device.	
Speed Grade	_	Specifies the speed grade for targeted device.	
PLL Mode	Integer-N PLL	Specifies the mode used for the IOPLL IP core. The only legal selection is Integer-N PLL .	
Reference Clock Frequency	_	Specifies the input frequency for the input clock, refclk, in MHz. The default value is 100.0 MHz . The minimum and maximum value is dependent on the selected device.	
My reference clock frequency might change	Turn on or Turn off	Select this option if you expect the reference clock frequency to change at runtime.	
Enable Locked Output Port	Turn on or Turn off	Turn on to enable the locked port.	
Enable physical output clock parameters	Turn on or Turn off	Turn on to enter physical PLL counter parameters instead of specifying a desired output clock frequency.	
Operation Mode	direct, external feedback, normal, source synchronous, zero delay buffer, or lvds	 Specifying a desired output clock frequency. Specifies the operation of the PLL. The default operation is direct mode. If you select the direct mode, the PLL minimizes the length of the feedback path to produce the smallest possible jitter at the PLL output. The internal-clock and external-clock outputs of the PLL are phase-shifted with respect to the PLL clock input. In this mode, the PLL does not compensate for any clock networks. If you select the external feedback mode, you must connect the fbclk input port to an input pin. A board-level connection must connect both the input pin and external clock output port, fboutclk. The fbclk port is aligned with the input clock. If you select the normal mode, the PLL compensates for the delay of the internal clock network used by the clock output. If the PLL is also used to drive an external clock output pin, a corresponding phase shift of the signal on the output pin occurs. 	
		continued	

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

6. IOPLL Intel FPGA IP Core References UG-S10CLKPLL | 2020.03.06

Parameter	Legal Value	Description
		 If you select the source synchronous mode, the clock delay from pin to I/O input register matches the data delay from pin to I/O input register. If you select the zero delay buffer mode, the PLL must feed an external clock output pin and compensate for the delay introduced by that pin. The signal observed on the pin is synchronized to the input clock. The PLL clock output port. If the PLL also drives the internal clock network, a corresponding phase shift of that network occurs. If you select the lvds mode, the same data and clock timing relationship of the pins at the internal SERDES capture register is maintained. The mode compensates for the delays in LVDS clock network, and between the data pin and clock input pin to the SERDES capture register paths.
Compensated Outclk ⁽⁵⁾	0-8	Allows you to select which output clock (outclk) to be compensated. The feedback mode compensates for the clock network delay of the outclk selected. This feedback mode ensures correct phase relationship between I/O PLL input and output clocks only for the selected outclk.
Use Nondedicated Feedback Path ⁽⁵⁾	Turn on or Turn off	Turn on to conserve clock resources and improve timing analysis. However, this feature creates frequency limitations and disables phase shift.
Number of Clocks	1-9	Specifies the number of output clocks required for each device in the PLL design. The requested settings for output frequency, phase shift, and duty cycle are shown based on the number of clocks selected.
Multiply Factor (M-Counter)	4-160	Specifies the multiply factor of M-counter.
Divide Factor (N-Counter) ⁽⁶⁾	1-110	Specifies the divide factor of N-counter.
Specify VCO Frequency	Turn on or Turn off	Allows you to restrict the VCO frequency to the specified value. This is useful when creating a PLL for LVDS external mode, or if a specific dynamic phase shift step size is desired.
VCO Frequency ⁽⁷⁾	-	 When Enable physical output clock parameters is turned on— displays the VCO frequency based on the values for Reference Clock Frequency, Multiply Factor (M-Counter), and Divide Factor (N-Counter). When Enable physical output clock parameters is turned off —allows you to specify the requested value for the VCO frequency. The default value is 600.0 MHz.
Give clock global name	Turn on or Turn off	Allows you to rename the output clock name.
Clock Name	-	The user clock name for Synopsis Design Constraints (SDC).
Divide Factor (C-Counter) ⁽⁶⁾	1-510	Specifies the divide factor for the output clock (C-counter).
	•	continued

⁽⁵⁾ This option is only available when either **normal** or **source synchronous** mode is selected.

⁽⁶⁾ This parameter is only available when **Enable physical output clock parameters** is turned on.

⁽⁷⁾ This parameter is only available when **Enable physical output clock parameters** is turned off.

Parameter	Legal Value	Description
Desired Frequency	_	Specifies the output clock frequency of the corresponding output clock port, $outclk[]$, in MHz. The default value is 100.0 MHz . The minimum and maximum values depend on the device used. The PLL only reads the numerals in the first six decimal places.
Actual Frequency	_	Allows you to select the actual output clock frequency from a list of achievable frequencies. The default value is the closest achievable frequency to the desired frequency.
Phase Shift units	ps or degrees	Specifies the phase shift unit for the corresponding output clock port, <pre>outclk[], in picoseconds (ps) or degrees.</pre>
Desired Phase Shift	_	Specifies the requested value for the phase shift. The default value is 0 ps.
Actual Phase Shift	_	Allows you to select the actual phase shift from a list of achievable phase shift values. The default value is the closest achievable phase shift to the desired phase shift.
Desired Duty Cycle	0.0-100.0	Specifies the requested value for the duty cycle. The default value is 50.0% .
Actual Duty Cycle	_	Allows you to select the actual duty cycle from a list of achievable duty cycle values. The default value is the closest achievable duty cycle to the desired duty cycle.

6.1.2. IOPLL IP Core Parameters - Settings Tab

Table 13. IOPLL IP Core Parameters - Settings Tab for Intel Stratix 10 Devices

Parameter	Legal Value	Description
PLL Bandwidth Preset	Low, Medium, or High	Specifies the PLL bandwidth preset setting. The default selection is Low .
Lock Threshold Setting	Low Lock Time, Medium Lock Time, or High Lock Time	This setting determines the sensitivity of the I/O PLL when detecting lock. This is a tradeoff between the time it takes to lock and the accuracy of the outclk frequency when locked is first asserted. For applications that require the I/O PLL to lock quickly, Low Lock Time is the best option.
		The estimated lock times are $30 \ \mu s + a \times refclk_period$, where <i>a</i> is 100, 2048, and 4095 for Low Lock Time , Medium Lock Time , and High Lock Time respectively.
PLL Auto Reset	Turn on or Turn off	Automatically self-resets the PLL on loss of lock.
Create a second input clk `refclk1'	Turn on or Turn off	Turn on to provide a backup clock attached to your PLL that can switch with your original reference clock.
Second Reference Clock Frequency ⁽⁸⁾	_	Selects the frequency of the second input clock signal. The default value is 100.0 MHz . The minimum and maximum value is dependent on the device used.
Create an 'active_clk' signal to indicate the input clock in use $^{(8)}$	Turn on or Turn off	Turn on to create the activeclk output. The activeclk output indicates the input clock which is in use by the PLL. Output signal low indicates refclk and output signal high indicates refclk1.
Create a 'clkbad' signal for each of the input clocks ⁽⁸⁾	Turn on or Turn off	Turn on to create two clkbad outputs, one for each input clock. Output signal low indicates the clock is working and output signal high indicates the clock is not working.
		continued

⁽⁸⁾ This parameter is only available when **Create a second input clk 'refclk1'** is turned on.

6. IOPLL Intel FPGA IP Core References UG-S10CLKPLL | 2020.03.06

Parameter	Legal Value	Description	
Switchover Mode ⁽⁸⁾	Automatic Switchover, Manual Switchover, or Automatic Switchover with Manual Override	 Specifies the switchover mode for design application. The IP supports three switchover modes: If you select the Automatic Switchover mode, the PLL circuitry monitors the selected reference clock. If one clock stops, the circuit automatically switches to the backup clock in a few clock cycles and updates the status signals, clkbad and activeclk. If you select the Manual Switchover mode, when the control signal, extswitch, changes from logic low to logic high, and stays high for at least three clock cycles, the input clock switches to the other clock. The extswitch can be generated from FPGA core logic or input pin. If you select Automatic Switchover with Manual Override mode, when the extswitch signal is high, it overrides the automatic switch function. As long as extswitch remains high, further switchover action is blocked. To select this mode, your two clocks cannot differ by more than 20%. If both clocks are not on the same frequency, but their period difference is within 20%, the clock loss detection block detects the lost clock. The PLL most likely drops out of lock after the PLL clock input switchover and needs time to lock again. 	
Switchover Delay ⁽⁸⁾	0-7	Adds a specific amount of cycle delay to the switchover process.	
Access to PLL LVDS_CLK/ LOADEN output port	Disabled, Enable LVDS_CLK/ LOADEN 0, or Enable LVDS_CLK/ LOADEN 0 & 1	Select Enable LVDS_CLK/LOADEN 0 or Enable LVDS_CLK/ LOADEN o & 1 to enable the PLL lvds_clk or loaden output port. Enables this parameter in case the PLL feeds an LVDS SERDES block with external PLL. When using the I/O PLL outclk ports with LVDS ports, outclk[03] are used for lvds_clk[0,1] and loaden[0,1] ports, outclk4 can be used for coreclk ports.	
Enable access to the PLL DPA output port	Turn on or Turn off	Turn on to enable the PLL DPA output port.	
Enable access to PLL external clock output port	Turn on or Turn off	Turn on to enable the PLL external clock output port.	
Specifies which outclk to be used as extclk_out[0] source	C0 - C8	Specifies the outclk port to be used as <pre>extclk_out[0]</pre> source.	
Specifies which outclk to be used as extclk_out[1] source	C0 - C8	Specifies the outclk port to be used as <pre>extclk_out[1]</pre> source.	

6.1.3. IOPLL IP Core Parameters - Cascading Tab

Table 14. IOPLL IP Core Parameters - Cascading Tab

Parameter Legal Value		Description	
Create a `cascade out' signal Turn on or Turn to connect with a off downstream PLL		Turn on to create the cascade_out port, which indicates that this PLL is a source and connects with a destination (downstream) PLL.	
Specifies which outclk to be 0-8 used as cascading source		Specifies the cascading source.	
Create an adjpllin or cclk signal to connect with an upstream PLL		Turn on to create an input port, which indicates that this PLL is a destination and connects with a source (upstream) PLL.	
Create a permit_cal signal to connect with an upstream PLL		Turn on to create an input port to enable destination (downstream) PLL power-up calibration. Connect source (upstream) PLL locked signal to this input port.	

6.1.4. IOPLL IP Core Parameters - Dynamic Reconfiguration Tab

Table 15. IOPLL IP Core Parameters - Dynamic Reconfiguration Tab for Intel Stratix 10 Devices Devices

Parameter	Legal Value	Description	
Enable dynamic reconfiguration of PLL	Turn on or Turn off	Turn on to enable the dynamic reconfiguration of this PLL (in conjunction with the IOPLL Reconfig Intel FPGA IP core).	
Enable access to dynamic phase shift ports	Turn on or Turn off	Turn on to enable the dynamic phase shift interface with the PLL.	
MIF Generation Option ⁽⁹⁾	Generate New MIF File, Add Configuration to Existing MIF File, or Create MIF File during IP Generation	Either create a new .mif file containing the current configuration of the I/O PLL by clicking Create MIF File or add this configuration to an existing .mif file by clicking Append to MIF File . A .mif file also can be opted to be generated during IP generation. The generated .mif file contains current PLL profile and a collection of physical parameters—such as M, N, C, K, bandwidth, and charge pump—that defines that PLL. You can use this .mif file during dynamic reconfiguration to reconfigure the I/O PLL to its current settings.	
Path to New/Existing MIF file (9)	_	Enter location and file name of the new .mif file to be created or existing .mif file to be appended.	
Name of Current Configuration ⁽⁹⁾	_	Enter the file name of the existing $.mif$ file you intend to add to.	

6.1.5. IOPLL IP Core Parameters - Advanced Parameters Tab

Table 16.IOPLL IP Core Parameters - Advanced Parameters Tab for Intel Stratix 10
Devices

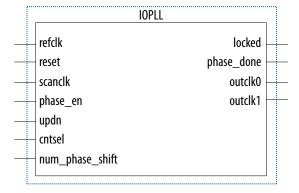
Parameter	Legal Value	Description
Advanced Parameters	_	Displays a table of physical PLL settings that are implemented based on your input.

6.2. IOPLL IP Core Ports and Signals

Table 17. IOPLL IP Core Ports for Intel Stratix 10 Devices

Port Name	Туре	Condition	Description	
refclk	Input	Required	The reference clock source that drives the I/O PLL.	
rst	Input	Required	The asynchronous reset port for the output clocks. Drive this port high to reset all output clocks to the value of 0.	
fbclk	Input	Optional	The external feedback input port for the I/O PLL. The IOPLL IP core creates this port when the I/O PLL is operating in external feedback mode or zero-delay buffer mode. To complete the feedback loop, a board-level connection must connect the fbclk port and the external clock output port of the I/O PLL.	
fboutclk	Output	Optional	The port that feeds the fbclk port through the mimic circuitry.	
	continued			

⁽⁹⁾ This parameter is only available when **Enable dynamic reconfiguration of PLL** is turned on.


6. IOPLL Intel FPGA IP Core References UG-S10CLKPLL | 2020.03.06

Port Name	Туре	Condition	Description	
			The fboutclk port is available only if the I/O PLL is in external feedback mode.	
zdbfbclk	Bidirectional	Optional The bidirectional port that connects to the mimic circuitrr port must connect to a bidirectional pin that is placed on positive feedback dedicated output pin of the I/O PLL. The zdbfbclk port is available only if the I/O PLL is in z delay buffer mode.		
locked	Output	Optional The IOPLL IP core drives this port high when the PLL acquered lock. The port remains high as long as the I/O PLL is lock. The I/O PLL asserts the locked port when the phases are frequencies of the reference clock and feedback clock are same or within the lock circuit tolerance. When the difference tolerance, the I/O PLL loses lock.		
refclk1	Input	Optional	Optional Second reference clock source that drives the I/O PLL for cl switchover feature.	
extswitch	Input	Optional Active low signal. Assert the extswitch signal low (1'b0) at least three clock cycles to manually switch the clock.		
activeclk	Output	Optional	Output signal to indicate which reference clock source is in used by I/O PLL.	
clkbad	Output	Optional	Output signal that indicates the status of reference clock source is good or bad.	
cascade_out	Output	Optional	Output signal that feeds into downstream I/O PLL.	
adjpllin	Input	Optional	Input signal that feeds from upstream I/O PLL.	
outclk_[]	Output	Optional	Output clock from I/O PLL.	
permit_cal	Input	Optional This is an input port for the downstream I/O PLL. Connect permit_cal port to the locked output port of the upstree I/O PLL. Connecting this permit_cal port ensures that the cascaded I/O PLLs are calibrated in the correct order.		

6.3. Dynamic Phase Shift Ports in the IOPLL IP Core

Figure 30. Dynamic Phase Shift Port Ports in the IOPLL IP Core

Port	Direction	Descri	iption	
scanclk	Input	Dynamic phase shift clock that drives the IOPLL IP core dynamic phase shift operation. This port must be connected to a valid clock source. The maximum input clock frequency is 100 MHz.		
phase_en	Input	Active high signal. Asserts to start the dynamic phase shift operation. phase_en can only be asserted 4 clocks after phase_done assertion.		
updn	Input	Determines the direction of dynamic pha in negative direction. When $updn = 1$, pl		
cntsel[40]	Input	Determines the counter to be selected to	perform dynamic phase shift operation.	
		Counter Name	cntsel[40] (Binary)	
		C0	5′b00000	
		C1	5′b00001	
		C2	5′b00010	
		С3	5′b00011	
		C4	5′b00100	
		С5	5′b00101	
		C6	5′b00110	
		C7	5′b00111	
		C8	5′b01000	
		All C counters 5'b01111		
<pre>num_phase_shif t[20]</pre>	Input	Determines the number of phase shifts per dynamic phase shift operation. Up to seven phase shifts per operation are possible. Each phase shift step is equal to 1/8 of I/O PLL VCO period. num_phase_shift must never be set to 0 in DPS mode.		
phase_done	Output	The IOPLL IP core drives this port high for one scanclk cycle after dynamic phase shift operation is complete.		

Table 18. Dynamic Phase Shift Ports in the IOPLL IP Core

7. IOPLL Reconfig Intel FPGA IP Core References

7.1. Avalon-MM Interface Ports in the IOPLL Reconfig IP Core

Table 19.Avalon-MM Interface Ports in the IOPLL Reconfig IP Core for Intel Stratix 10
Devices

Port	Direction	Description
mgmt_clk	Input	Dynamic reconfiguration clock that drives the IOPLL Reconfig IP core. The maximum input clock frequency is 100 MHz. This clock can be an independent clock source. It must be free running, which means it cannot be connected to the output of the I/O PLL being reconfigured.
mgmt_reset	Input	Active high signal. Synchronous reset input to clear all the data in the IOPLL Reconfig IP core.
mgmt_waitrequest	Output	This port goes high when PLL reconfiguration process started and remains high during PLL reconfiguration. After PLL reconfiguration process completed, this port goes low.
mgmt_write	Input	Active high signal. Asserts to indicate a write operation.
mgmt_read	Input	Active high signal. Asserts to indicate a read operation.
mgmt_writedata[70]	Input	Writes data to this port when mgmt_write signal is asserted.
mgmt_readdata[70]	Output	Reads data from this port when $mgmt_read$ signal is asserted.
mgmt_address[90]	Input	Specifies the address of the data bus for a read or write operation.
reconfig_from_pll[100]	Input	Bus that connects to reconfig_from_pll[100] bus in the IOPLL Intel FPGA IP core.
reconfig_to_pll[290]	Output	Bus that connects to reconfig_to_pll[290] bus in the IOPLL IP core.

7.2. Address Bus and Data Bus Settings

Assign a value of "0" for all the unused bits in the address bus and the data bus during reconfiguration operations.

7.2.1. Address Bus and Data Bus Settings for Advanced Mode Reconfiguration

Table 20. Address Bus and Data Bus Settings for Advanced Mode Reconfiguration

Register Name		Address (Binary)	Counter Bit Setting
M Counter	High Count	00000100	• Data[7:0] = high_count
	Low Count	00000111	Data[7:0] = low_counttotal_count = high_count + low_count
			continued

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Reg	ister Name	Address (Binary)	Counter Bit Setting
	Bypass Enable ⁽¹⁰⁾	00000101	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1.
	Odd Division ⁽¹⁰⁾	00000110	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
N Counter	High Count	0000000	• Data[7:0] = high_count
	Low Count	00000010	 Data[7:0] = low_count total_count = high_count + low_count
	Bypass Enable ⁽¹⁰⁾	0000001	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1.
	Odd Division ⁽¹⁰⁾	0000001	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
C0 Counter	High Count	00011011	• Data[7:0] = high_count
	Low Count	00011110	Data[7:0] = low_counttotal_count = high_count + low_count
	Bypass Enable ⁽¹⁰⁾	00011100	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1.
	Odd Division ⁽¹⁰⁾	00011101	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
C1 Counter	High Count	00011111	• Data[7:0] = high_count
	Low Count 00100010	 Data[7:0] = low_count total_count = high_count + low_count 	
	Bypass Enable (10)	00100000	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1.
			continued

⁽¹⁰⁾ Perform a read-modify-write operation to configure this setting. PLL may lose lock and can cause reliability issue to your device if you configure with the wrong PLL setting, configure the wrong bit, or overwrite the whole byte for settings that made up just part of one byte.

Odd Division ⁽¹⁰⁾ 00100001 • Data[7] = 0, dd division is disabled. The selected counter duty cycle = high_count/total_count. C2 Counter High Count 00100011 • Data[7:0] = high_count 0.0 dd division enabled. The selected counter duty cycle = high_count - 0.3 f/total_count. C2 Counter High Count 00100101 • Data[7:0] = high_count • Data[7:0] = high_count C2 Counter High Count 00100100 • Data[7:0] = high_count • Data[7:0] = high_count C3 Counter Bypass Enable ⁽¹⁰⁾ 00100100 • Data[7:0] = high_count • Data[7:0] = high_count C3 Counter High Count 00100101 • Data[7:0] = high_count • Data[7:0] = high_count C3 Counter High Count 00100101 • Data[7:0] = high_count • Data[7:0] = high_count C3 Counter High Count 00101010 • Data[7:0] = high_count • Data[7:0] = high_count C3 Counter High Count 00101010 • Data[7:0] = high_count • Data[7:0] = high_count C4 Counter High Count 00101000 • Data[7:0] = high_count • Data[7:0] = high_count C4 Counter High Count 00101001 • D	Regist	er Name	Address (Binary)	Counter Bit Setting
Image: Construct of the second seco		Odd Division ⁽¹⁰⁾	00100001	 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count -
Low Count OUTOUTD • total_count = high_count + low_count Bypass Enable (10) 00100100 • total_(0] = hypass enable - Data(0) = 1, bypass is enabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00100101 • Data(7) = Odd division • Data(7) = Odd division value = 1. Odd Division (10) 00100101 • Data(7) = 0, odd division is disabled. The selected counter duty cycle = (high_count / total_count. • Data(7) = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count. C3 Counter High Count 00100101 • Data(7) = low_count Low Count 00101010 • Data(7) = low_count Bypass Enable (10) 00101000 • Data(7) = low_count Bypass Enable (10) 00101000 • Data(7) = low_count Odd Division (10) 00101001 • Data(7) = Odd division is disabled. The selected counter division value = 1. Odd Division (10) 00101001 • Data(7) = I, odd division is disabled. The selected counter division value = 1. Odd Division (10) 00101010 • Data(7) = I, bypass is enabled. The selected counter division value = 1. C4 Counter Migh Count 00101101 • Data(7) = I, odd division is disabled. The selected counter division enabled. Th	C2 Counter	High Count	00100011	
Image: Second		Low Count	00100110	
C3 Counter High Count 0010111 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count = 0.5)/total_count Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count = 0.5)/total_count Data[7] = 1, odd division enabled. The selected counter high_count + low_count C3 Counter High Count 0010100 Data[7] = 0, odd division is disabled. The counter is bypass enable Data[0] = hypass is enabled. The counter is bypassed with counter division value = 1. Odd Division ⁽¹⁰⁾ 00101001 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 0, odd division = 0.5)/total_count. Data[7] = low_count Data[7] = low_count C4 Counter High Count 00101011 Data[7] = low_count Data[7] = low_count Data[0] = high_count + low_count C4 Counter High Count 00101101 Data[0] = high_count + low_count Data[0] = high_count + low_count Data[0] = high_count + low_count		Bypass Enable ⁽¹⁰⁾	00100100	— Data[0] = 1, bypass is enabled. The counter
Low Count 00101010 Data [7:0] = low_count Low Count 00101000 • Data [7:0] = low_count Bypass Enable (10) 00101000 • Data [0] = bypass enable - Data [0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101001 • Data [7] = 0 dd division Odd Division (10) 00101001 • Data [7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. C4 Counter High Count 00101011 • Data [7:0] = high_count Low Count 00101101 • Data [7:0] = high_count • Data [7:0] = low_count C4 Counter High Count 00101011 • Data [7:0] = high_count • Data [7:0] = high_count Bypass Enable (10) 00101100 • Data [0] = bypass enable - Data [0] = low_count • Data [0] = bypass enable Odd Division (10) 00101100 • Data [0] = lowpass enable - Data [0] = low_count • Data [7] = 0 dd division is disabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101100 • Data [7] = 0 dd division is disabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101101 • Data [7] = 0, odd division is disabled. The selected counter division		Odd Division ⁽¹⁰⁾	00100101	 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count -
Low Count 0010100 • total_count = high_count + low_count Bypass Enable (10) 00101000 • Data[0] = bypass enable - Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101001 • Data[7] = 0 dd division Odd Division (10) 00101001 • Data[7] = 0, dd division is disabled. The selected counter duty cycle = high_count/ total_count. C4 Counter High Count 00101011 • Data[7:0] = high_count Low Count 00101011 • Data[7:0] = high_count Bypass Enable (10) 00101100 • Data[0] = bypass enable Odd Division (10) 00101100 • Data[0] = high_count Bypass Enable (10) 00101100 • Data[0] = bypass enable Odd Division (10) 00101100 • Data[0] = high_count Odd Division (10) 00101100 • Data[0] = high_count Odd Division (10) 00101100 • Data[7] = 0, odd division is disabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101101 • Data[7] = 0, odd division is disabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101101 • Data[7] = 0, odd division is disabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101101 • Data[7] = 0 di division is disabled. The selected counter duty	C3 Counter	High Count	00100111	• Data[7:0] = high_count
C4 Counter High Count 00101001 • Data[7] = Odd division C4 Counter High Count 00101001 • Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. C4 Counter High Count 00101001 • Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count. C4 Counter High Count 00101101 • Data[7:0] = high_count Bypass Enable (10) 00101100 • Data[0] = tow_count Odd Division (10) 00101100 • Data[0] = high_count + low_count Odd Division (10) 00101101 • Data[7] = 0. odd division value = 1. Odd Division (10) 00101100 • Data[0] = high_count + low_count Odd Division (10) 00101101 • Data[7] = 0. odd division is disabled. The selected counter division value = 1. Odd Division (10) 00101101 • Data[7] = 0. odd division is disabled. The selected counter division value = 1. C5 Counter High Count 00101111 • Data[7] = 1. odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count. C5 Counter High Count 00101111 • Data[7] = 1. odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.		Low Count	00101010	
C4 Counter High Count 00101011 - Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. C4 Counter High Count 00101011 • Data[7:0] = high_count Low Count 00101100 • Data[7:0] = high_count Bypass Enable (10) 00101100 • Data[0] = high_count + low_count Odd Division (10) 00101101 • Data[7] = 0, odd division is disabled. The counter is bypass enable Odd Division (10) 00101100 • Data[0] = high_count + low_count Odd Division (10) 00101101 • Data[7] = 0, odd division C5 Counter High Count 00101111 • Data[7:0] = high_count C5 Counter High Count 00101111 • Data[7:0] = high_count Low Count 00101101 • Data[7:0] = high_count		Bypass Enable ⁽¹⁰⁾	00101000	— Data[0] = 1, bypass is enabled. The counter
Low Count 00101110 • Data[7:0] = low_count Bypass Enable (10) 00101100 • Data[0] = bypass enable - Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101101 • Data[7] = Odd division - Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. - Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count/total_count. C5 Counter High Count 00101111 • Data[7:0] = high_count Low Count 00110010 • Data[7:0] = low_count		Odd Division ⁽¹⁰⁾	00101001	 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count -
Low Count 00101110 • total_count = high_count + low_count Bypass Enable (10) 00101100 • Data[0] = bypass enable - Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1. Odd Division (10) 00101101 • Data[7] = Odd division - Data[7] = 0, odd division - Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. C5 Counter High Count 00101111 Low Count 00101101	C4 Counter	High Count	00101011	• Data[7:0] = high_count
C5 Counter High Count 00101101 • Data[7] = 0, odd division value = 1. C5 Counter High Count 00101111 • Data[7] = 1, odd division is disabled. The selected counter duty cycle = high_count/total_count. C5 Counter High Count 00101101 • Data[7] = high_count Low Count 00101111 • Data[7:0] = high_count • Data[7:0] = low_count		Low Count	00101110	
c5 Counter High Count 00101111 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count. C5 Counter High Count 00101111 Data[7:0] = high_count Data[7:0] = low_count 		Bypass Enable ⁽¹⁰⁾	00101100	— Data[0] = 1, bypass is enabled. The counter
Low Count 00110010 • Data[7:0] = low_count		Odd Division ⁽¹⁰⁾	00101101	 Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count -
	C5 Counter	High Count	00101111	• Data[7:0] = high_count
		Low Count	00110010	_

Regist	ter Name	Address (Binary)	Counter Bit Setting
	Bypass Enable ⁽¹⁰⁾	00110000	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1.
	Odd Division ⁽¹⁰⁾	00110001	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
C6 Counter	High Count	00110011	• Data[7:0] = high_count
	Low Count	00110110	 Data[7:0] = low_count total_count = high_count + low_count
	Bypass Enable ⁽¹⁰⁾	00110100	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1. –
	Odd Division ⁽¹⁰⁾	00110101	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
C7 Counter	High Count	00110111	• Data[7:0] = high_count
	Low Count	00111010	Data[7:0] = low_counttotal_count = high_count + low_count
	Bypass Enable ⁽¹⁰⁾	00111000	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1. —
	Odd Division ⁽¹⁰⁾	00111001	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
C8 Counter	High Count	00111011	• Data[7:0] = high_count
	Low Count	00111110	 Data[7:0] = low_count total_count = high_count + low_count
	Bypass Enable (10)	00111100	 Data[0] = bypass enable Data[0] = 1, bypass is enabled. The counter is bypassed with counter division value = 1.

Register Name		Address (Binary)	Counter Bit Setting
	Odd Division ⁽¹⁰⁾	00111101	 Data[7] = Odd division Data[7] = 0, odd division is disabled. The selected counter duty cycle = high_count/ total_count. Data[7] = 1, odd division enabled. The selected counter duty cycle = (high_count - 0.5)/total_count.
Charge Pump Current ⁽¹⁰⁾	Charge pump setting [2:0]	00000001	 Data[6:4] = Charge Pump Setting [2:0] Configure charge pump setting [2:0] on data bit 4 to 6.
	Charge pump setting [5:3]	00001101	 Data[7:5] = Charge Pump Setting [5:3] Configure charge pump setting [5:3] on data bit 5 to 7.
Bandwidth Setting ⁽¹⁰⁾	-	00001010	 Data[6:3] = Bandwidth Setting — Configure bandwidth setting on data bit 3 to 6.
Ripplecap Setting ⁽¹⁰⁾	-	00001010	 Data[2:1] = Ripplecap Setting — Configure ripplecap setting on data bit 1 and 2.
Calibration ⁽¹⁰⁾	Calibration Request	01001001	 Data[6] = Request Calibration Data[6] = 1, to request calibration
	Calibration Enable	01001010	 Data[7:0] = Enable Calibration Data[7:0] = 8'b00000011, to enable calibration

7.2.1.1. Data Bus Setting for Bandwidth Control and Charge Pump

Table 21.Data Bus Setting for Bandwidth Control and Charge Pump (For Low
Bandwidth)

Multiply Factor ⁽¹¹⁾	Low Bandwidth			
	Bandwidth Control Setting Data [6:3]	Charge Pump Setting [2:0] Address = 00000001 Data [6:4]	Charge Pump Setting [5:3] Address = 00001101 Data [7:5]	
4-5	4'b0011	3'b011	3'b000	
6-15	4'b0011	3'b100	3'b000	
16-23	4'b0011	3'b100	3'b000	
24-43	4'b0100	3'b100	3'b000	
44-64	4'b0101	3'b100	3'b000	
65-124	4'b0110	3'b100	3'b000	
>124	4'b0110	3'b110	3'b000	

⁽¹¹⁾ If you select the Use Nondedicated Feedback Path option under the Normal or Source Synchronous compensation mode, the Multiply Factor is M x C_i, where M is M counter value while C_i is the Compensated Outclk C counter value. Else, the Multiply Factor is only the M counter value.

Table 22.	Data Bus Setting for Bandwidth Control and Charge Pump (For Medium
	Bandwidth)

Multiply Factor ⁽¹¹⁾	Medium Bandwidth			
	Bandwidth Control Setting Data [6:3]	Charge Pump Setting [2:0] Address = 00000001 Data [6:4]	Charge Pump Setting [5:3] Address = 00001101 Data [7:5]	
4-5	4'b0011	3'b100	3'b000	
6-15	4'b0011	3'b111	3'b000	
16-23	4'b0011	3'b000	3'001	
24-43	4'b0100	3'b000	3'001	
44-64	4'b0101	3'b000	3'001	
65-124	4'b0101	3'b000	3'001	
>124	4'b0110	3'b000	3'001	

Table 23.Data Bus Setting for Bandwidth Control and Charge Pump (For High
Bandwidth)

Multiply Factor ⁽¹¹⁾	High Bandwidth			
	Bandwidth Control Setting Data [6:3]	Charge Pump Setting [2:0] Address = 00000001 Data [6:4]	Charge Pump Setting [5:3] Address = 00001101 Data [7:5]	
4-5	4'b0011	3'b101	3'b000	
6-15	4'b0011	3'b010	3'b001	
16-23	4'b0011	3'b100	3'b001	
24-43	4'b0100	3'b100	3'b001	
44-64	4'b0100	3'b100	3'b001	
65-124	4'b0101	3'b100	3'b001	
>124	4'b0101	3'b100	3'b001	

7.2.1.2. Data Bus Setting for Ripplecap

Table 24.Data Bus Setting for Ripplecap

Multiply Factor ⁽¹²⁾	Ripplecap Setting Address = 00001010 Data [2:1]
4-5	2'b00
6-15	2'b00
16-23	2'b10
	continued

⁽¹²⁾ If you select the Use Nondedicated Feedback Path option under the Normal or Source Synchronous compensation mode, the Multiply Factor is M x C_i, where M is M counter value while C_i is the Compensated Outclk C counter value. Else, the Multiply Factor is only the M counter value.

Multiply Factor ⁽¹²⁾	Ripplecap Setting Address = 00001010 Data [2:1]
24-43	2'b00
44-64	2'b10
65-124	2'b10
>124	2'b10

7.2.2. Output Clock and the Corresponding Data Bit Setting for Clock Gating Reconfiguration

Table 25.Output Clock and the Corresponding Data Bit Setting for Clock Gating
Reconfiguration

Output Clock	Data Bus Bit Setting (Binary)	
C0	data[0]	Gated = 1'b0
C1	data[1]	Ungated = 1'b1
C2	data[2]	
C3	data[3]	
C4	data[4]	
C5	data[5]	
C6	data[6]	
C7	data[7]	

7.2.3. Data Bus Setting for Dynamic Phase Shift for IOPLL Reconfig IP Core

Table 26. Data Bus Setting for Dynamic Phase Shift for IOPLL Reconfig IP Core

Write Data Bus Setting	Description		
data[2:0]	Determines the number of phase shifts per dynamic phase shift operation. Up to seven phase shifts per operation are possible. Each phase shift step is equal to 1/8 of I/O PLL VCO period.		
data[3]	Determines the direction of dynamic phase shift. When $data[3] = 0$, phase shift is in negative direction. When $data[3] = 1$, phase shift is in positive direction.		
data[7:4]	Determines the counter to be selected to perform	n dynamic phase shift operation.	
	Counter Name	data[7:4]	
	CO	4′b0000	
		continued	

⁽¹²⁾ If you select the **Use Nondedicated Feedback Path** option under the **Normal** or **Source Synchronous** compensation mode, the Multiply Factor is $M \times C_i$, where M is M counter value while C_i is the Compensated Outclk C counter value. Else, the Multiply Factor is only the M counter value.

Write Data Bus Setting	Description		
	Counter Name	data[7:4]	
	C1	4′b0001	
	C2	4′b0010	
	C3	4′b0011	
	C4	4′b0100	
	C5	4′b0101	
	C6	4′b0110	
	C7	4′b0111	
	C8	4′b1000	
	All C counters	4′b1111	

8. Intel Stratix 10 Clocking and PLL User Guide Archives

Intel Quartus Prime Version	User Guide
19.2	Intel Stratix 10 Clocking and PLL User Guide
18.1	Intel Stratix 10 Clocking and PLL User Guide
18.0	Intel Stratix 10 Clocking and PLL User Guide
17.1	Intel Stratix 10 Clocking and PLL User Guide

If the table does not list a software version, the user guide for the previous software version applies.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

9. Document Revision History for the Intel Stratix 10 Clocking and PLL User Guide

2110.	Document Version	Intel Quartus Prime Version	Changes
2019.10.17 19.3 • Updated the Intel Stratix 10 Clock Input Pins Resources table. - Added Intel Stratix 10 TX 400, DX 1100, DX 2100, and DX 2800. - Updated the number of resources available for Intel Stratix 10 GX 1650, GX 2100, SX 1650, and SX 2100. • Updated Nc counter divide factor range for fractional PLL from '1 to 32' to '1 to 31' in the PLL Features in Intel Stratix 10 Devices table. • Updated Clock Control Intel FPGA IP core to version 19.1.0. - Updated Clock Control Intel FPGA IP core. • Added release information for each IP core. • Added release information for each IP core. • Updated the Intel Stratix 10 Clock Input Pins Resources table. - Updated the Intel Stratix 10 Clock Input Pins Resources table. • Updated the Intel Stratix 10 Clock Input Pins Resources table. - Added release information for each IP core. • Added Intel Stratix 10 devices: TX 850, TX 1100, GX 1660, and GY 2110. - Removed unsupported Intel Stratix 10 devices: MX 1100, GX 4500 GX 5500, SX 4500, and SX 5500. - Updated the comber of resources available for Intel Stratix 10 TX 1650 and TX 2100. • Updated the description in the Root Clock Gate section. • Added new guideline topics:	2020.03.06	19.3	
 Added Intel Stratix 10 TX 400, DX 1100, DX 2100, and DX 2800. Updated Intel Stratix 10 TX 400, DX 1100, DX 2100, and DX 2800. Updated the number of resources available for Intel Stratix 10 GX 1650, GX 2100, SX 1650, and SX 2100. Updated N counter divide factor range for fractional PLL from '1 to 32' to '1 to 31' in the <i>PLL Features in Intel Stratix 10 Devices</i> table. Updated Clock Control Intel FPGA IP core to version 19.1.0. Updated IP name from Clock Control Intel Stratix 10 FPGA IP core to Clock Control Intel FPGA IP core. Added release information for each IP core. Added release information for each IP core. Added Intel Stratix 10 devices: TX 850, TX 1100, GX 1660, and GY 2110. Removed unsupported Intel Stratix 10 devices: MX 1100, GX 4500 GX 5500, SX 4500, and TX 2100. Updated the description in the <i>Root Clock Gate</i> section. Added new guideline topics: Guideline: I/O PLL Jitter Performance Guideline: I/O PLL Jitter Performance Guideline: I/O PLL High-Level Block Diagram for Intel Stratix 10 Devices. Updated the Power-Up Calibration section. Added the constraints for 10PLL IP core in the IP Core Constraints 	2019.12.10	19.3	
 Added Intel Stratix 10 devices: TX 850, TX 1100, GX 1660, and GY 2110. Removed unsupported Intel Stratix 10 devices: MX 1100, GX 4500 GX 5500, SX 4500, and SX 5500. Updated the number of resources available for Intel Stratix 10 TX 1650 and TX 2100. Updated the description in the <i>Root Clock Gate</i> section. Added new guideline topics: <i>Guideline: I/O PLL Jitter Performance</i> <i>Guideline: Clock Gating</i> 2018.12.24 18.1 Updated the <i>I/O PLL High-Level Block Diagram for Intel Stratix 10 Devices</i>. Updated the <i>Power-Up Calibration</i> section. Added the constraints for IOPLL IP core in the <i>IP Core Constraints</i> 	2019.10.17	19.3	 Added Intel Stratix 10 TX 400, DX 1100, DX 2100, and DX 2800. Updated the number of resources available for Intel Stratix 10 GX 1650, GX 2100, SX 1650, and SX 2100. Updated N counter divide factor range for fractional PLL from '1 to 32' to '1 to 31' in the <i>PLL Features in Intel Stratix 10 Devices</i> table. Updated Clock Control Intel FPGA IP core to version 19.1.0. Updated IP name from Clock Control Intel Stratix 10 FPGA IP core to Clock Control Intel FPGA IP core.
 Devices. Updated the Power-Up Calibration section. Added the constraints for IOPLL IP core in the IP Core Constraints 	2019.07.01	19.2	 Added Intel Stratix 10 devices: TX 850, TX 1100, GX 1660, and GX 2110. Removed unsupported Intel Stratix 10 devices: MX 1100, GX 4500, GX 5500, SX 4500, and SX 5500. Updated the number of resources available for Intel Stratix 10 TX 1650 and TX 2100. Updated the description in the <i>Root Clock Gate</i> section. Added new guideline topics: <i>Guideline: I/O PLL Jitter Performance</i>
	2018.12.24	18.1	 Devices. Updated the Power-Up Calibration section. Added the constraints for IOPLL IP core in the IP Core Constraints

*Other names and brands may be claimed as the property of others.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Document Version	Intel Quartus Prime Version	Changes
		 Added information on advanced mode reconfiguration in the following sections:
		— Guideline: I/O PLL Reconfiguration
		— IOPLL Reconfig Intel Stratix 10 FPGA IP Core
		 IOPLL Reconfig IP Core Reconfiguration Modes
		Updated the steps to perform I/O PLL reconfiguration using advanced mode in the Advanced Mode Reconfiguration section.
		Added Design Example 2: Advanced Mode Reconfiguration Using IOP Reconfig IP Core.
2018.08.03	18.0	Added diagrams on PLL cascading connectivity in the <i>PLL Cascading</i> section.
2018.05.07	18.0	• Added a link to the <i>Design Recommendations User Guide</i> for details or clock assignments in the Intel Quartus Prime software.
		• Clarified that the dynamic clock switchover can be optionally made glitch free using additional external soft logic.
		• Added note about the non-dedicated feedback path for the source synchronous compensation mode and normal compensation mode in the <i>PLL Features in Intel Stratix 10 Devices</i> table.
		 Added note about the non-dedicated feedback path for the source synchronous compensation mode and normal compensation mode in the <i>I/O PLL High-Level Block Diagram for Intel Stratix 10 Devices</i> diagram.
		 Updated the core clock compensation methods in the Clock Feedback Modes section.
		• Updated the Direct Compensation Mode section.
		 Added information on non-dedicated feedback path in normal or sour synchronous compensation mode in the Clock Multiplication and Division section.
		Updated the <i>PLL Cascading</i> section.
		• Updated the description in the following sections to mention that the mgmt_clk and scanclk signals must be free running.
		— Guideline: I/O PLL Reconfiguration
		 Avalon-MM Interface Ports in the IOPLL Reconfig IP Core for Intel Stratix 10 Devices
		Added information on advanced mode configuration.
		 Added the advanced mode configuration in the IOPLL Reconfig IP Core Reconfiguration Modes table.
		 Added new section: Advanced Mode Reconfiguration. Added new tables. Address Bus and Data Bus Cattings for Advanced
		 Added new table: Address Bus and Data Bus Settings for Advance Mode Reconfiguration. Added new table: Data Bus Setting for Bandwidth Control and
		 Added new table: Data Bus Setting for Bandwidth Control and Charge Pump. Added new table: Data Bus Setting for Ripplecap.
		 Added a note on recalibration for .mif streaming reconfiguration in the .mif Streaming Reconfiguration section.
		Corrected step 3 in the <i>Dynamic Phase Shift Reconfiguration</i> section.
		 Corrected the waveforms for mgmt_address[7:0] and mgmt_writedata[7:0] in the Waveform Example for .mif Streamin
		 <i>Reconfiguration Design Example</i> diagram. Removed the dynamic phase shift feature for fPLL in the following continue:
		 sections: Removed phase shift resolution for fPLL and updated the note to phase shift resolution in the PLL Features in Intel Stratix 10 Devic table.
		 Removed description on fPLL in the <i>Programmable Phase Shift</i> section.
		 Removed description on fPLL in the PLL Reconfiguration and Dynamic Phase Shift section.

Document Version	Intel Quartus Prime Version	Changes
		• Added Compensated Outclk and Use Nondedicated Feedback Path parameters in the <i>IOPLL IP Core Parameters - PLL Tab for Intel Stratix 10 Devices</i> table.
		 Added Create a permit_cal signal to connect with an upstream PLL parameter in the IOPLL IP Core Parameters - Cascading Tab table.
		• Added permit_cal port in the <i>IOPLL Ports for Intel Stratix 10 Devices</i> table.
		Renamed the following IP cores as per Intel rebranding:
		 Renamed Intel FPGA IOPLL Reconfig IP core to IOPLL Reconfig Intel FPGA IP core.
		 Renamed Intel FPGA IOPLL IP core to IOPLL Intel FPGA IP core.
		 Renamed Stratix 10 Clock Control IP core to Clock Control Intel Stratix 10 FPGA IP core.

Date	Version	Changes
December 2017	2017.12.07	 Updated the Dedicated Clock Resources Within a Clock Sector diagram. Updated description in the Programmable Clock Routing section. Updated Intel Stratix 10 Clock Input Pins Resources table. Added resources for Intel Stratix 10 TX and MX devices. Updated resources for the following devices: GX 1650 SX 1650 SX 2100 GX 2500 GX 2800 SX 2800 Added note to core signals in Intel Stratix 10 Programmable Clock Routing Resources table. Updated Clock Gating and Clock Divider in Intel Stratix 10 Clock Network diagram. Added links and updated description in the Root Clock Gate section. Added links and updated description in the Sector Clock Gate section. Updated the Clock Gating Timing Diagram. Updated description in the Clock Divider section. Updated the Clock Gating Timing Diagram. Updated the clock Gating Timing Diagram. Updated the note to phase shift resolution and updated the phase shift resolution for fPLL. Updated the Reset section. Updated the note about the conditions to reset the I/O PLL. Removed description in the following sections. Clock Feedback Modes Direct Compensation Mode Source Synchronous Compensation Mode Normal Compensation Mode Updated description in the PLL Cascading section. Added a requirement for automatic clock switchover mode. Updated description in the Manual Clock Switchover section. Added a requirement for automatic clock switchover section. Added description in the Manual Clock Switchover section. Added description in the Manual Clock Switchover section.

Date	Version	Changes
		 Updated port names in the <i>Connectivity between the IOPLL and IOPLL Reconfig IP Cores in the Intel Quartus Prime Software</i> diagram. Updated reconfig_from_pll[90] to reconfig_from_pll[100] in the following sections: <i>Connectivity between the IOPLL and IOPLL Reconfig IP Cores in the Intel Quartus Prime Software</i> diagram <i>Connecting the IOPLL and IOPLL Reconfig IP Cores section</i> <i>Avalon-MM Interface Ports in the IOPLL Reconfig IP Core section</i> Added a note to the <i>IOPLL Reconfig IP Core Reconfiguration Modes</i> table. Updated the <i>Clock Control IP Core Parameters for Intel Stratix 10 Devices</i> table. Updated Ensure glitch free clock switchover description. Updated Ensure glitch free clock switchover description. Updated Multiply Factor (M-Counter) legal value in the <i>IOPLL IP Core Parameters - PLL Tab for Intel Stratix 10 Devices</i> table. Updated <i>IOPLL IP Core Parameters - Settings Tab for Intel Stratix 10 Devices</i> table. Updated parameter from Enable access to PLL LVDS_CLK/LOADEN output port to Access to PLL LVDS_CLK/LOADEN output port to access to PLL LVDS_CLK/LOADEN output port to data[3] and data[7:4] in the <i>Data Bus Setting for Dynamic Phase Shift for IOPLL Reconfig IP Core</i> table. Updated descriptions for data[3] and data[7:4] in the <i>Data Bus Setting for Dynamic Phase Shift for IOPLL Reconfig IP Core</i> table. Updated the following terms: Changed Altera IOPLL to IOPLL Changed Altera IOPLL Reconfig to IOPLL Reconfig Changed Altera IOPLL Reconfig to IOPLL Reconfig C
May 2017	2017.05.26	 Updated the following sections: Clock Sector Programmable Clock Routing Internal Logic Zero-Delay Buffer Mode External Feedback Mode User Calibration Updated the default feedback mode for normal and source synchronous compensation modes. Updated scale factor for Post-Scale Counter, L in Clock Multiplication and Division section. Updated minimum phase shift increment for fPLL in the following sections: Programmable Phase Shift PLL Reconfiguration and Dynamic Phase Shift Changed CLKUSR to OSC_CLK_1 in PLL Calibration section. Updated IOPLL IP core. Added Intel Stratix 10 Clocking and PLL Design Considerations chapter. Added IOPLL Reconfig IP core.

