
Intel® Quartus® Prime Pro Edition
User Guide
Platform Designer

Updated for Intel® Quartus® Prime Design Suite: 19.1

Subscribe
Send Feedback

UG-20130 | 2020.01.31
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=zcn1513987282935
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-platform-designer.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html

Contents

1. Creating a System with Platform Designer..10
1.1. Platform Designer Interface Support...11
1.2. Platform Designer System Design Flow... 12
1.3. Creating or Opening a Platform Designer System... 14

1.3.1. Specifying the Target Intel FPGA Device for a System................................... 15
1.3.2. Specifying Additional Application Memory..16
1.3.3. Synchronizing IP File References.. 16
1.3.4. Converting Incompatible Components...17

1.4. Viewing a Platform Designer System...17
1.4.1. Viewing the System Hierarchy... 18
1.4.2. Filtering the System View..19
1.4.3. Viewing System Connections... 21
1.4.4. Viewing Clock and Reset Domains.. 21
1.4.5. Viewing Avalon Memory-Mapped Domains in a System..................................25
1.4.6. Viewing the System Schematic.. 26
1.4.7. Customizing the Platform Designer Layout...26

1.5. Adding IP Components to a System..28
1.5.1. Modifying IP Parameters... 29
1.5.2. Applying Preset Parameters for Specific Applications..................................... 31
1.5.3. Adding Third-Party IP Components... 33
1.5.4. Specifying IP Component Instantiation Options.. 35
1.5.5. Creating or Opening an IP Core Variant...37

1.6. Connecting System Components..38
1.6.1. Platform Designer 64-Bit Addressing Support...40
1.6.2. Connecting Masters and Slaves..41
1.6.3. Changing a Conduit to a Reset...42
1.6.4. Wire-Level Connectivity.. 42
1.6.5. Previewing the System Interconnect...47

1.7. Specifying Interconnect Parameters..49
1.7.1. Interconnect Parameters...50

1.8. Specifying Signal and Interface Boundary Requirements..51
1.8.1. Interface Requirements Tab Fields..52
1.8.2. Editing Exported Interface Signal Names...53

1.9. Configuring Platform Designer System Security..54
1.9.1. System Security Options...56
1.9.2. Specifying a Default Slave...56
1.9.3. Accessing Undefined Memory Regions...58

1.10. Upgrading Outdated IP Components in Platform Designer.. 58
1.11. Synchronizing System Component Information.. 59

1.11.1. System Info Tab Fields..60
1.12. Validating System Integrity... 61

1.12.1. Validating the System Integrity of Individual Components............................62
1.13. Generating a Platform Designer System.. 62

1.13.1. Generation Dialog Box Options...63
1.13.2. Specifying the Generation ID... 64
1.13.3. Disabling or Enabling Parallel IP Generation... 65
1.13.4. Files Generated for Intel FPGA IP Cores and Platform Designer Systems........ 67

Contents

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.13.5. Generating System Testbench Files...70
1.13.6. Generating Example Designs for IP Components...73
1.13.7. Incremental System Generation Example.. 74
1.13.8. Generating the HPS IP Component System View Description File..................74
1.13.9. Generating Header Files for Master Components...75

1.14. Simulating a Platform Designer System...76
1.14.1. Adding Assertion Monitors for Simulation...77
1.14.2. Simulating Software Running on a Nios II Processor....................................77

1.15. Adding a System to an Intel Quartus Prime Project... 78
1.16. Managing Hierarchical Platform Designer Systems.. 79

1.16.1. Adding a Subsystem to a Platform Designer System....................................79
1.16.2. Viewing and Traversing Subsystem Contents..80
1.16.3. Editing a Subsystem...81
1.16.4. Changing a Component's Hierarchy Level.. 82
1.16.5. Saving a Subsystem... 82

1.17. Saving, Archiving, and Restoring Platform Designer Systems................................... 83
1.18. Running System Scripts.. 84
1.19. Creating a System with Platform Designer Revision History......................................86

2. Creating Platform Designer Components.. 89
2.1. Platform Designer Components..89

2.1.1. Platform Designer Interface Support...90
2.1.2. Component Structure... 91
2.1.3. Component File Organization...91
2.1.4. Component Versions...92

2.2. Design Phases of an IP Component.. 93
2.3. Create IP Components in the Platform Designer Component Editor............................. 94

2.3.1. Save an IP Component and Create the _hw.tcl File....................................... 95
2.3.2. Edit an IP Component with the Platform Designer Component Editor...............96

2.4. Specify IP Component Type Information..96
2.5. Create an HDL File in the Platform Designer Component Editor.................................. 98
2.6. Create an HDL File Using a Template in the Platform Designer Component Editor..........98
2.7. Specify Synthesis and Simulation Files in the Platform Designer Component Editor..... 100

2.7.1. Specify HDL Files for Synthesis in the Platform Designer Component Editor....101
2.7.2. Analyze Synthesis Files in the Platform Designer Component Editor...............102
2.7.3. Name HDL Signals for Automatic Interface and Type Recognition in the

Platform Designer Component Editor...103
2.7.4. Specify Files for Simulation in the Component Editor...................................104
2.7.5. Include an Internal Register Map Description in the .svd for Slave

Interfaces Connected to an HPS Component.. 105
2.8. Add Signals and Interfaces in the Platform Designer Component Editor..................... 106
2.9. Specify Parameters in the Platform Designer Component Editor................................ 107

2.9.1. Valid Ranges for Parameters in the _hw.tcl File...110
2.9.2. Types of Platform Designer Parameters... 110
2.9.3. Declare Parameters with Custom _hw.tcl Commands...................................112
2.9.4. Validate Parameter Values with a Validation Callback...................................114

2.10. Declaring SystemVerilog Interfaces in _hw.tcl...114
2.11. User Alterable HDL Parameters in _hw.tcl.. 116
2.12. Scripting Wire-Level Expressions.. 118
2.13. Control Interfaces Dynamically with an Elaboration Callback...................................118
2.14. Control File Generation Dynamically with Parameters and a Fileset Callback............. 119

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.15. Create a Composed Component or Subsystem... 120
2.16. Add Component Instances to a Static or Generated Component..............................122

2.16.1. Static IP Components..122
2.16.2. Generated Components...124
2.16.3. Design Guidelines for Adding Component Instances.................................. 126

2.17. Adding a Generic Component to the Platform Designer System...............................126
2.17.1. Creating Custom Interfaces in a Generic Component................................. 128
2.17.2. Instantiating RTL in a System as a Generic Component131
2.17.3. Implementing Generic Components Using High Level Synthesis Files........... 132
2.17.4. Creating System Template for a Generic Component................................. 137
2.17.5. Exporting a Generic Component... 139

2.18. Creating Platform Designer Components Revision History.......................................139

3. Platform Designer Interconnect..141
3.1. Memory-Mapped Interfaces... 142

3.1.1. Platform Designer Packet Format..143
3.1.2. Interconnect Domains...146
3.1.3. Master Network Interfaces...148
3.1.4. Slave Network Interfaces.. 151
3.1.5. Arbitration...153
3.1.6. Memory-Mapped Arbiter..157
3.1.7. Datapath Multiplexing Logic...159
3.1.8. Width Adaptation... 159
3.1.9. Burst Adapter.. 161
3.1.10. Waitrequest Allowance Adapter.. 163
3.1.11. Read and Write Responses...164
3.1.12. Platform Designer Address Decoding... 165

3.2. Avalon Streaming Interfaces..166
3.2.1. Avalon-ST Adapters.. 168

3.3. Interrupt Interfaces..176
3.3.1. Individual Requests IRQ Scheme.. 176
3.3.2. Assigning IRQs in Platform Designer... 177

3.4. Clock Interfaces...179
3.4.1. (High Speed Serial Interface) HSSI Clock Interfaces................................... 180

3.5. Reset Interfaces...185
3.5.1. Single Global Reset Signal Implemented by Platform Designer......................186
3.5.2. Reset Controller... 186
3.5.3. Reset Bridge..187
3.5.4. Reset Sequencer.. 187

3.6. Conduits... 198
3.7. Interconnect Pipelining... 198

3.7.1. Manually Control Pipelining in the Platform Designer Interconnect.................201
3.8. Error Correction Coding (ECC) in Platform Designer Interconnect..............................202
3.9. AMBA 3 AXI Protocol Specification Support (version 1.0)... 202

3.9.1. Channels...202
3.9.2. Cache Support...203
3.9.3. Security Support.. 204
3.9.4. Atomic Accesses.. 204
3.9.5. Response Signaling.. 204
3.9.6. Ordering Model.. 204
3.9.7. Data Buses..205

Contents

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9.8. Unaligned Address Commands... 205
3.9.9. Avalon and AXI Transaction Support... 205

3.10. AMBA 3 APB Protocol Specification Support (version 1.0)....................................... 206
3.10.1. Bridges... 206
3.10.2. Burst Adaptation.. 207
3.10.3. Width Adaptation..207
3.10.4. Error Response.. 207

3.11. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0).................................207
3.11.1. Burst Support.. 207
3.11.2. QoS..207
3.11.3. Regions...208
3.11.4. Write Response Dependency.. 208
3.11.5. AWCACHE and ARCACHE... 208
3.11.6. Width Adaptation and Data Packing in Platform Designer........................... 208
3.11.7. Ordering Model.. 208
3.11.8. Read and Write Allocate.. 209
3.11.9. Locked Transactions..209
3.11.10. Memory Types..209
3.11.11. Mismatched Attributes...209
3.11.12. Signals..209

3.12. AMBA 4 AXI Streaming Interface Support (version 1.0)... 209
3.12.1. Connection Points...209
3.12.2. Adaptation...210

3.13. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)................................. 210
3.13.1. AMBA 4 AXI-Lite Signals..211
3.13.2. AMBA 4 AXI-Lite Bus Width..211
3.13.3. AMBA 4 AXI-Lite Outstanding Transactions...211
3.13.4. AMBA 4 AXI-Lite IDs... 211
3.13.5. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite...........212
3.13.6. AMBA 4 AXI-Lite Response Merging...212

3.14. Port Roles (Interface Signal Types)... 212
3.14.1. AXI Master Interface Signal Types...212
3.14.2. AXI Slave Interface Signal Types.. 214
3.14.3. AMBA 4 AXI Master Interface Signal Types... 215
3.14.4. AMBA 4 AXI Slave Interface Signal Types...216
3.14.5. AMBA 4 AXI-Stream Master and Slave Interface Signal Types..................... 218
3.14.6. ACE-Lite Interface Signal Roles.. 218
3.14.7. APB Interface Signal Types.. 218
3.14.8. Avalon Memory-Mapped Interface Signal Roles... 219
3.14.9. Avalon Streaming Interface Signal Roles..222
3.14.10. Avalon Clock Source Signal Roles..223
3.14.11. Avalon Clock Sink Signal Roles... 223
3.14.12. Avalon Conduit Signal Roles... 223
3.14.13. Avalon Tristate Conduit Signal Roles.. 223
3.14.14. Avalon Tri-State Slave Interface Signal Types... 225
3.14.15. Avalon Interrupt Sender Signal Roles...226
3.14.16. Avalon Interrupt Receiver Signal Roles...226

3.15. Platform Designer Interconnect Revision History...226

4. Optimizing Platform Designer System Performance..228
4.1. Designing with Avalon and AXI Interfaces..228

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.1.1. Designing Streaming Components.. 229
4.1.2. Designing Memory-Mapped Components... 229

4.2. Using Hierarchy in Systems... 230
4.3. Using Concurrency in Memory-Mapped Systems... 233

4.3.1. Implementing Concurrency With Multiple Masters....................................... 234
4.3.2. Implementing Concurrency With Multiple Slaves...235
4.3.3. Implementing Concurrency with DMA Engines..237

4.4. Inserting Pipeline Stages to Increase System Frequency..238
4.5. Using Bridges.. 238

4.5.1. Using Bridges to Increase System Frequency... 239
4.5.2. Using Bridges to Minimize Design Logic... 242
4.5.3. Using Bridges to Minimize Adapter Logic..244
4.5.4. Considering the Effects of Using Bridges..245

4.6. Increasing Transfer Throughput..251
4.6.1. Using Pipelined Transfers...252
4.6.2. Arbitration Shares and Bursts.. 253

4.7. Reducing Logic Utilization..257
4.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization............................257
4.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces.................. 258
4.7.3. Reducing Logic Utilization With Multiple Clock Domains................................260
4.7.4. Duration of Transfers Crossing Clock Domains ... 262

4.8. Reducing Power Consumption.. 263
4.8.1. Reducing Power Consumption With Multiple Clock Domains..........................263
4.8.2. Reducing Power Consumption by Minimizing Toggle Rates............................266
4.8.3. Reducing Power Consumption by Disabling Logic.. 267

4.9. Reset Polarity and Synchronization in Platform Designer..268
4.10. Optimizing Platform Designer System Performance Design Examples.......................272

4.10.1. Avalon Pipelined Read Master Example.. 272
4.10.2. Multiplexer Examples.. 274

4.11. Optimizing Platform Designer System Performance Revision History........................ 275

5. Platform Designer System Design Components...276
5.1. Bridges...276

5.1.1. Clock Bridge Intel FPGA IP...277
5.1.2. Avalon-MM Clock Crossing Bridge Intel FPGA IP..278
5.1.3. Avalon-MM Pipeline Bridge Intel FPGA IP... 280
5.1.4. Avalon-MM Unaligned Burst Expansion Bridge Intel FPGA IP......................... 281
5.1.5. Bridges Between Avalon and AXI Interfaces... 284
5.1.6. AXI Bridge Intel FPGA IP... 285
5.1.7. AXI Timeout Bridge Intel FPGA IP...290
5.1.8. Address Span Extender Intel FPGA IP..294

5.2. Error Response Slave Intel FPGA IP.. 299
5.2.1. Error Response Slave Parameters... 300
5.2.2. Error Response Slave CSR Registers... 301
5.2.3. Designating a Default Slave...304

5.3. Tri-State Components... 305
5.3.1. Generic Tri-State Controller Intel FPGA IP.. 307
5.3.2. Tri-State Conduit Pin Sharer Intel FPGA IP... 307
5.3.3. Tri-State Conduit Bridge Intel FPGA IP...308

5.4. Avalon Data Pattern Generator and Checker Intel FPGA IP....................................... 308
5.4.1. Avalon Data Pattern Generator Intel FPGA IP... 309

Contents

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.2. Avalon Data Pattern Checker Intel FPGA IP.. 310
5.4.3. Avalon Data Pattern Generator and Checker IP Software Programming Model. 312
5.4.4. Avalon Data Pattern Generator IP API... 316
5.4.5. Avalon Data Pattern Checker IP API.. 321

5.5. Avalon-ST Splitter Intel FPGA IP...328
5.5.1. Avalon-ST Splitter Intel FPGA IP Backpressure... 329
5.5.2. Avalon-ST Splitter Intel FPGA IP Interfaces.. 329
5.5.3. Avalon-ST Splitter Intel FPGA IP Parameters.. 330

5.6. Avalon-ST Delay Intel FPGA IP... 330
5.6.1. Avalon-ST Delay Intel FPGA IP Reset Signal... 331
5.6.2. Avalon-ST Delay Intel FPGA IP Interfaces.. 331
5.6.3. Avalon-ST Delay Intel FPGA IP Parameters...331

5.7. Avalon-ST Round Robin Scheduler Intel FPGA IP...332
5.7.1. Avalon-ST Round Robin Scheduler IP Almost-Full Status Interface.................332
5.7.2. Avalon-ST Round Robin Scheduler IP Request Interface...............................333
5.7.3. Avalon-ST Round Robin Scheduler IP Operation..333
5.7.4. Avalon-ST Round Robin Scheduler IP Parameters..334

5.8. Avalon Packets to Transactions Converter Intel FPGA IP...334
5.8.1. Avalon Packets to Transactions Converter IP Interfaces................................335
5.8.2. Avalon Packets to Transactions Converter IP Operation................................ 335

5.9. Avalon-ST Pipeline Stage Intel FPGA IP... 337
5.10. Avalon Streaming Multiplexer and Demultiplexer Intel FPGA IP............................... 338

5.10.1. Avalon Streaming Multiplexer and Demultiplexer Software Programming
Model... 338

5.10.2. Avalon-ST Multiplexer Intel FPGA IP.. 338
5.10.3. Avalon-ST Demultiplexer Intel FPGA IP..340

5.11. Avalon-ST Single-Clock and Dual-Clock FIFO Intel FPGA IP.....................................342
5.11.1. Interfaces Implemented in FIFO Cores.. 343
5.11.2. Avalon-ST FIFO IP Operating Modes.. 344
5.11.3. Avalon-ST FIFO IP Buffer Fill Level.. 344
5.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow and

Underflow... 345
5.11.5. Avalon-ST Single-Clock and Dual-Clock FIFO IP Parameters........................345
5.11.6. Avalon-ST Single-Clock FIFO IP Registers.. 346

5.12. Platform Designer System Design Components Revision History..............................347

6. Platform Designer Command-Line Utilities..349
6.1. Run the Platform Designer Editor with qsys-edit... 349
6.2. Scripting IP Core Generation..351

6.2.1. qsys-generate Command-Line Options.. 352
6.3. Display Available IP Components with ip-catalog.. 353
6.4. Create an .ipx File with ip-make-ipx..354
6.5. Generate Simulation Scripts.. 355
6.6. Generate a Platform Designer System with qsys-script.. 356
6.7. Parameterizing an Instantiated IP Core after save_system Command........................ 358
6.8. Validate the Generic Components in a System with qsys-validate..............................359
6.9. Generate an IP Component or Platform Designer System with quartus_ipgenerate...... 359
6.10. Generate an IP Variation File with ip-deploy... 361
6.11. Archive a Platform Designer System with qsys-archive.. 362
6.12. Platform Designer Scripting Command Reference..363

6.12.1. System... 364

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2. Subsystems...377
6.12.3. Domains and Interfaces.. 385
6.12.4. Instances.. 390
6.12.5. Instantiations...423
6.12.6. Components.. 462
6.12.7. Connections...488
6.12.8. Top-level Exports..500
6.12.9. Validation..514
6.12.10. Miscellaneous...525
6.12.11. Wire-Level Connection Commands.. 535

6.13. Platform Designer Scripting Property Reference.. 539
6.13.1. Connection Properties... 540
6.13.2. Design Environment Type Properties... 541
6.13.3. Direction Properties.. 542
6.13.4. Element Properties... 543
6.13.5. Instance Properties...544
6.13.6. Interface Properties.. 545
6.13.7. Message Levels Properties... 546
6.13.8. Module Properties...547
6.13.9. Parameter Properties.. 548
6.13.10. Parameter Status Properties...550
6.13.11. Parameter Type Properties... 551
6.13.12. Port Properties... 552
6.13.13. Project Properties... 553
6.13.14. System Info Type Properties...554
6.13.15. Units Properties..556
6.13.16. Validation Properties... 557
6.13.17. Interface Direction..558
6.13.18. File Set Kind.. 559
6.13.19. Access Type... 560
6.13.20. Instantiation HDL File Properties...561
6.13.21. Instantiation Interface Duplicate Type..562
6.13.22. Instantiation Interface Properties..563
6.13.23. Instantiation Properties... 564
6.13.25. VHDL Type...566

6.14. Platform Designer Command-Line Interface Revision History.................................. 566

7. Component Interface Tcl Reference.. 567
7.1. Platform Designer _hw.tcl Command Reference..567

7.1.1. Interfaces and Ports... 568
7.1.2. Parameters..586
7.1.3. Interconnect Parameters... 595
7.1.4. Display Items.. 599
7.1.5. Module Definition... 606
7.1.6. Composition.. 618
7.1.7. Fileset Generation.. 638
7.1.8. Miscellaneous.. 649
7.1.9. SystemVerilog Interface Commands..654
7.1.10. Wire-Level Expression Commands.. 660

7.2. Platform Designer _hw.tcl Property Reference.. 664
7.2.1. Script Language Properties..665

Contents

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.2. Interface Properties..666
7.2.3. SystemVerilog Interface Properties... 666
7.2.4. Instance Properties.. 668
7.2.5. Parameter Properties.. 669
7.2.6. Parameter Type Properties...671
7.2.7. Parameter Status Properties.. 672
7.2.8. Port Properties...673
7.2.9. Direction Properties.. 675
7.2.10. Display Item Properties... 676
7.2.11. Display Item Kind Properties.. 677
7.2.12. Display Hint Properties..678
7.2.13. Module Properties...679
7.2.14. Fileset Properties..681
7.2.15. Fileset Kind Properties...682
7.2.16. Callback Properties... 683
7.2.17. File Attribute Properties...684
7.2.18. File Kind Properties...685
7.2.19. File Source Properties... 686
7.2.20. Simulator Properties... 687
7.2.21. Port VHDL Type Properties... 688
7.2.22. System Info Type Properties.. 689
7.2.23. Design Environment Type Properties... 691
7.2.24. Units Properties..692
7.2.25. Operating System Properties..693
7.2.26. Quartus.ini Type Properties.. 694

7.3. Component Interface Tcl Reference Revision History... 695

8. Intel Quartus Prime Pro Edition User Guide: Platform Designer Document Archives...697

A. Intel Quartus Prime Pro Edition User Guides.. 698

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Creating a System with Platform Designer
The Intel® Quartus® Prime software includes the Platform Designer system integration
tool. Platform Designer simplifies the task of defining and integrating custom IP
components (IP cores) into your FPGA design.

Platform Designer automatically creates interconnect logic from high-level connectivity
that you specify. The interconnect automation eliminates the time-consuming task of
specifying system-level HDL connections.

Figure 1. Platform Designer GUI

System View Tab - View Hierarchy and Make Connections

IP Catalog - Parameterize and Instantiate IP

Filter Tab - Filter Display of Interfaces and Subsystems

System and Generation Messages

Platform Designer allows you to specify interface requirements and integrate IP
components within a graphical representation of the system. The Intel Quartus Prime
software installation includes the Intel FPGA IP library available from the IP Catalog in
Platform Designer.

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

You can integrate optimized and verified Intel FPGA IP cores into a design to shorten
design cycles and maximize performance. Platform Designer also supports integration
of IP cores from third-parties, or custom components that you define.

Platform Designer supports a hierarchical framework that offers fast response times
for interconnecting large systems and blackbox entities. Platform Designer supports a
variety of design entry methods, such as register transfer level (RTL) and schematic
entry. Platform Designer supports the creation of your own custom components, as
well as generic components that define only the interface and signal connections to
the rest of the system.

Platform Designer provides support for the following:

• Create and reuse components—define and reuse custom parameterizable
components in a Hardware Component Definition File (_hw.tcl) that describes
and packages IP components.

• Define generic IP components—instantiate generic IP components without an HDL
implementation.

• Incremental generation—optimize and generate IP components incrementally.

• Avalon® to AXI interconnect—Platform Designer generates appropriate types of
interconnect logic to handle protocol differences.

• Hierarchical system support—generates a separate .ip file that isolates the
system from the IP component parameterization. Change parameters of a single
IP component without regeneration of other IP components.

• Command-line support—optionally use command-line utilities and scripts to
perform functions available in the Platform Designer GUI.

• Up to 64-bit addressing.

• Optimization of interconnect and pipelining within the system and auto-adaptation
of data widths and burst characteristics.

• Inter-operation between standard protocols.

Related Information

• Platform Designer Command-Line Utilities on page 349

• Introduction to Intel FPGA IP Cores

• Intel Quartus Prime Pro Edition User Guide: Getting Started

• Platform Designer System Design Flow on page 12

1.1. Platform Designer Interface Support

Platform Designer is most effective when you use standard interfaces available in the
IP Catalog to design custom IP. Standard interfaces operate efficiently with Intel FPGA
IP components, and you can take advantage of the bus functional models (BFMs),
monitors, and other verification IP that the IP Catalog provides.

Platform Designer supports the following interface specifications:

• Intel FPGA Avalon Memory-Mapped and Streaming

• Arm* AMBA* 3 AXI (version 1.0)

• Arm AMBA 4 AXI (version 2.0)

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

11

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960636914.html#mwh1409958250601
https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html#mwh1409958212952
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Arm AMBA 4 AXI-Lite (version 2.0)

• Arm AMBA 4 AXI-Stream (version 1.0)

• Arm AMBA 3 APB (version 1.0)

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 1. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master devices can
be processors and DMAs, while slave memory devices can be RAMs, ROMs, and control
registers. Data transfers between master and slave may be uni-directional (read only or write
only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data, as
well as high-bandwidth, low-latency IP components. Streaming creates datapaths for
unidirectional traffic, including multichannel streams, packets, and DSP data. The Avalon-ST
interconnect is flexible and can implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet, Interlaken, and video.
You can define bus widths, packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately.

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that you export from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection. Alternatively, you can export conduit
interfaces and bring the interfaces to the top-level of the system as top-level system I/O. You
can use conduits to connect to external devices, for example external DDR SDRAM memory,
and to FPGA logic defined outside of the Platform Designer system.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

1.2. Platform Designer System Design Flow

You can use the Platform Designer GUI to quickly create and customize a Platform
Designer system for integration with an Intel Quartus Prime project. Alternatively, you
can perform many of the functions available in the Platform Designer GUI at the
command-line, as Platform Designer Command-Line Utilities on page 349 describes.

When you create a system in the GUI, Platform Designer creates a .qsys file that
represents the system in your Intel Quartus Prime software project.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

12

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Platform Designer System Design Flow

No

Yes

Unit-Level
Simulation

Debug Design

Expected
Results?

Complete System
Connections and

Define Memory Map

1

2

3

4

 Connection or
Instantiation

Errors?

Update System
 Information

No

Debug Design

Run System-Level
Simulation

Generate
System

Yes No Modify Design or
Constraints

System
Implementation

Complete

Download .sof
to FPGA

7

8

9

 Validate SystemYes

No

5

System Info
Match?

No Yes
6

Yes

Yes

Create System and
Add Components

Expected
Results?

Constrain, Compile,
Generate .sof

Expected
Results?

Add System to
Project

Platform Designer Intel Quartus® Prime Software

10

The circled numbers in the diagram correspond with the following topics in this
chapter:

1. Creating or Opening a Platform Designer System on page 14

2. Adding IP Components to a System on page 28

3. Connecting System Components on page 38

4. Specifying Interconnect Parameters on page 49

5. Specifying Signal and Interface Boundary Requirements on page 51

6. Synchronizing System Component Information on page 59

7. Validating System Integrity on page 61

8. Generating a Platform Designer System on page 62

9. Simulating a Platform Designer System on page 76

10. Adding a System to an Intel Quartus Prime Project on page 78

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Creating or Opening a Platform Designer System

You can launch Platform Designer from the Intel Quartus Prime software to create or
open a Platform Designer system.

When you create or open a system, Platform Designer requires that you specify the
Intel Quartus Prime project to contain this system. If this project does not yet exist,
you can define a new project from within Platform Designer. Alternatively, you can
specify an existing project. When you launch Platform Designer with an Intel Quartus
Prime project open, Platform Designer automatically specifies that project by default.

After specifying the project, you select an existing system to open, or specify the
name of a new system to create.

Follow these steps to create or open a Platform Designer system:

1. In the Intel Quartus Prime software, click File ➤ Open Project to open the Intel
Quartus Prime project that you want to include the Platform Designer system. You
can optionally skip this step and launch Platform Designer in view-only mode
without opening a project.(1)

2. Click Tools ➤ Platform Designer. Platform Designer launches and displays the
Open Project dialog box automatically.

3. Specify the Quartus project. If you have a project open, this project name
appears automatically. Otherwise, browse for an existing project, or click the
Create New Quartus Project button and specify a new project name. Selecting
None for Quartus project opens Platform Designer in view-only mode.

Figure 3. Platform Designer Open System Dialog Box

Create New Project

Create New System

4. Specify any of the following options:

(1) View-only mode does not allow creating new systems or IP, adding or removing IP, or
executing system scripts.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Revision—optionally select a specific revision of your project, or click the
Create New Revision button and define a new project revision.

• Device family—when defining a new project, allows you to specify the target
Intel FPGA device family. Otherwise this field is non-editable and displays the
Quartus project target device family. Click Retrieve Values to populate the
fields.

• Device part—when defining a new project, allows you to specify the target
Intel FPGA device part number. Otherwise this field is non-editable and
displays the Quartus project target device part number.

5. Select the Platform Designer system, or click the Create New Platform
Designer System button and specify the name of a new system.

6. Change the project associated with a Platform Designer system at any time by
clicking File ➤ Select Quartus Project in Platform Designer.

1.3.1. Specifying the Target Intel FPGA Device for a System

You can specify the target device when you create a new project or system. The
generation output is specific to the target Intel FPGA Device family that you specify.
The available IP components, parameters, and output options for your system vary
according to the Device family that you specify.

Figure 4. Device Family Tab

Specifies the Target Device for the
Platform Designer System

Click to expand
Device Family Tab

You can modify the target Device family setting for your system at any time on the
Platform Designer Device Family tab. If you specify a target Device family that is
different from the project target device family, Platform Designer updates the target
device family for the project to match the Device family specification.

Platform Designer prompts you to upgrade any IP components that are incompatible
with the Device family that you specify.

Related Information

Upgrading Outdated IP Components in Platform Designer on page 58

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2. Specifying Additional Application Memory

If your Platform Designer system requires more than the default memory to run
efficiently, you can increase the amount of application memory allocated to run
Platform Designer.

• If you are using Platform Designer from within the Intel Quartus Prime software,
increase memory for your Platform Designer system, by clicking Tools ➤ Options
➤ IP Settings, and then specifying the amount of memory with the Maximum
Platform Designer memory usage option.

Figure 5. Specifying Additional Application Memory for Platform Designer

• If you are using Platform Designer from the command-line, you can add an option
to increase the memory. For example, the following qsys-edit command allows
you to open Platform Designer with 2 gigabytes of memory.

qsys-edit --jvm-max-heap-size=2g

1.3.3. Synchronizing IP File References

When you open a system containing IP components, Platform Designer confirms that
the list of IP files in your Platform Designer system matches the list of IP files included
in the corresponding Intel Quartus Prime project.

The IP Synchronization Result dialog box automatically displays any discrepancies
between these IP file references in the system.

To manually start a check for IP reference mismatches between the system and
corresponding Intel Quartus Prime project:

1. In Platform Designer, click File ➤ Synchronize IP File References.

2. View the results of the synchronization. Platform Designer identifies the following
types of mismatches with the IP synchronization:

Table 2. IP Synchronization Results

Mismatch Type Description

Duplicate IP files The IP files references in the Platform Designer system and the associated Intel
Quartus Prime project match. These IP files contain the same name, but are present
in different locations. In such cases, the IP files referenced in the Intel Quartus
Prime project takes precedence. Platform Designer replaces the IP file reference in
the system with the one in the Intel Quartus Prime project during compilation.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mismatch Type Description

Note: If the Intel Quartus Prime project contains more than one IP of the same file
name, Platform Designer retains the first instance and removes all other
occurrences of the IP file with the specific name.

Missing IP files Lists the IP file references missing from Platform Designer system and the
corresponding Intel Quartus Prime project. In such cases, Platform Designer allows
you to specify the active IP file.

Missing Platform Designer IP
files

Lists the IP file references missing from your Platform Designer system that the Intel
Quartus Prime project references. If Platform Designer locates a valid reference in
the Intel Quartus Prime project, it replaces the missing reference in the Platform
Designer system with IP file reference from the Intel Quartus Prime project.

Missing Quartus IP files Lists the IP file references missing from your Intel Quartus Prime project that the
Platform Designer system references. Platform Designer adds the missing IP file
reference to the Intel Quartus Prime project. If the project's .qsf file already
contains reference to the missing IP file, but the file cannot be located in the
specified path, Platform Designer removes the reference in the .qsf file, and adds
the reference to the IP file in the Platform Designer system.

1.3.4. Converting Incompatible Components

If you open a Platform Designer system with incompatible components, Platform
Designer prompts you to convert these components to the current Platform Designer
format. On conversion, the Platform Designer Conversion Results dialog box
appears, listing all the converted system and IP source files.

Platform Designer stores the converted .ip files inside an ip folder, relative to the
Platform Designer system file (.qsys) location. Platform Designer prefixes the system
name to the .ip file name. Platform Designer automatically adds these converted files
to the associated Intel Quartus Prime project. Ensure that you maintain these .ip
files, along with your system files.

1.4. Viewing a Platform Designer System

Platform Designer allows you to visualize all aspects of your system. By default,
Platform Designer displays the contents of your system in the System View whenever
you open a system. You can also access other panels that allow you to view and
modify various elements of the system.

When you select or edit an item in one Platform Designer tab, all other tabs update to
reflect your selection or edit. For example, if you select the cpu_0 in the Hierarchy
tab, the Parameters tab immediately updates to display cpu_0 parameters.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Platform Designer GUI

System Warnings and Errors Synch & Validate SystemCreate & Add Components

System Hierarchy System Connections System Components

Click the View menu to interact with the elements of your system in various tabs.

• The System View, Address Map, Interconnect Requirements, and Details
tabs display in the main frame.

• By default, the IP Catalog, Hierarchy, and the Device Family tabs appear to
the left of the main frame.

• Parameters, System Info, and Component Instantiation tabs appear to the
right of the main frame.

• The System Messages and Generation Messages tabs display in the lower
portion of Platform Designer.

The Platform Designer GUI is fully customizable. You can arrange and display Platform
Designer GUI elements that you most commonly use, and then save and reuse useful
GUI layouts.

1.4.1. Viewing the System Hierarchy

The Hierarchy tab hierarchically displays the modules, connections, and exported
signals in the current system. You can expand and traverse though the system
hierarchy, zoom in for detail, and locate to elements in other Platform Designer panes.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Hierarchy tab provides the following information and functionality:

• Lists connections between components.

• Lists names of signals in exported interfaces.

• Right-click to connect, edit, add, remove, or duplicate elements in the hierarchy.

• Displays internal connections of Platform Designer subsystems that you include as
IP components. By contrast, the System View tab displays only the exported
interfaces of Platform Designer subsystems.

Expanding the System Hierarchy

Click the + icon to expand any interface in the Hierarchy tab to view sub-
components, associated elements, and signals for the interface. The Hierarchy tab
displays a unique icon for each element type in the system. In the example below, the
ram_master selection appears selected in both the System View and Hierarchy
tabs.

Figure 7. Expanding System View in the Hierarchy Tab

Clock Selected in Hierarchy
Highlighted in System View

1.4.2. Filtering the System View

You can easily filter the display of your system in the System View by component,
interface type, instance name, or other custom properties that you define. Filtering
the view allows you to simplify the display and focus only on the items you want.

For example, you can click the Filter button to display only instances that include
memory-mapped interfaces, or display only instances that connect to a particular
Nios® II processor. Conversely, you can temporarily hide clock and reset interfaces to
further simplify the display.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Filter Icon and Filters Dialog Box

Filter Control

Select one or more components on the Filter tab (View ➤ Filter) to display only the
selected component in the System View tab.

Figure 9. Filter Tab

Select to display in
System View

Related Information

Filters Dialog Box

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

20

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#system/qsys/qsys_db_filter.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.3. Viewing System Connections

The Connections tab allows you to connect or un-connect every connection in the
Platform Designer system.

Click View ➤ Connections to display this tab.

If you connect or unconnect modules on the Connections tab, the connection
immediately updates in the System View tab. You can also make connections in the
System View tab directly.

Figure 10. Connections tabs in Platform Designer

1.4.4. Viewing Clock and Reset Domains

The Platform Designer Clock Domains and Reset Domains tabs list the clock and
reset domains in the Platform Designer system, respectively.

Click View ➤ Clock Domains or click View ➤ Reset Domains to display these tabs.

Platform Designer determines clock and reset domains by the associated clocks and
resets. This information displays when you hover over interfaces in your system.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Clock Domains, Reset Domains, and System View Tabs

Highlights Clock
or Reset Domains

The Clock Domains and Reset Domains tabs also allow you to locate system
performance bottlenecks. The tabs indicate connection points where Platform Designer
automatically inserts clock-crossing adapters and reset synchronizers during system
generation. View the following information on these tabs to create optimal connections
between interfaces:

• The number of clock and reset domains in the system

• The interfaces and modules that each clock or reset domain contains

• The locations of clock or reset crossings

• The connection point of automatically inserted clock or reset adapters

• The proper location for manual insertion of a clock or reset adapter

1.4.4.1. Viewing Clock Domains in a System

On the Clock Domains tab, you can filter the System View tab to display a single
clock domain, or multiple clock domains. You can further filter your view with the
Filter control. When you select an element in the Clock Domains tab, the
corresponding selection appears highlighted in the System View tab.

Follow these steps to filter and highlight clock domains in the System View:

1. Click View ➤ Clock Domains.

2. Select any clock or reset domain in the list to view associated interfaces. The
corresponding selection appears in the System View tab.

3. To highlight clock domains in the System View tab, click Show clock domains
in the system table or at the bottom of the System View tab.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Shows Clock Domains in the System Table

Show Clock Domains

Filter By Interface Type

4. To view a single clock domain, or multiple clock domains and their modules and
connections, select the clock name or names in the Clock Domains tab. The
modules for the selected clock domain or domains and connections highlight in the
System View tab. Detailed information for the current selection appears in the
clock domain details pane.

Figure 13. Selected Clock in Clock Domains and System View Tabs

Note: If a connection crosses a clock domain, the connection circle appears as a
red dot in the System View tab

5. To view interfaces that cross clock domains, expand the Clock Domain
Crossings icon in the Clock Domains tab, and select each element to view its
details in the System View tab.

Platform Designer lists the interfaces that cross clock domains under Clock
Domain Crossings. As you click through the elements, detailed information
appears in the clock domain details pane. Platform Designer also highlights the
selection in the System View tab.

1.4.4.2. Viewing Reset Domains in a System

On the Reset Domains tab, you can filter the System View tab to display a single
reset domain, or multiple reset domains. When you select an element in the Reset
Domains tab, the corresponding selection appears in the System View tab.

Follow these steps to filter and highlight reset domains in the System View:

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To open the Reset Domains tab, click View ➤ Reset Domains.

2. To show reset domains in the System View tab, click the Show reset domains
in the system table icon in the System View tab.

Figure 14. Show Reset Domains in the System Table

3. To view a single reset domain, or multiple reset domains and their modules and
connections, click the reset names in the Reset Domain tab.

Figure 15. Selected Reset Signal in Reset Domains and System View Tabs

Platform Designer displays your selection according to the following rules:

• When you select multiple reset domains, the System View tab shows
interfaces and modules in both reset domains.

• When you select a single reset domain, the other reset domains are grayed
out, unless the two domains have interfaces in common.

• Reset interfaces appear black when connected to multiple reset domains.

• Reset interfaces appear gray when they are not connected to all of the
selected reset domains.

• If an interface is contained in multiple reset domains, the interface is grayed
out.

Detailed information for your selection appears in the reset domain details pane.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Red dots in the Connections column between reset sinks and sources
indicate auto insertions by Platform Designer during system generation, for
example, a reset synchronizer. Platform Designer decides when to display a
red dot with the following protocol, and ends the decision process at first
match.

• Multiple resets fan into a common sink.

• Reset inputs are associated with different clock domains.

• Reset inputs have different synchronicity.

1.4.5. Viewing Avalon Memory-Mapped Domains in a System

The Domains tab displays a list of all the Avalon-MM domains in the system, allowing
you to specify interconnect parameters. When you select a domain in the Domains
tab, the corresponding selection highlights in the System View tab.

Click View ➤ Domains to display this tab.

Figure 16. Domains Tab

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Filter the System View tab to display a single Avalon domain, or multiple
domains. Further filter your view with selections in the Filters dialog box.

• To rename an Avalon memory-mapped domain, double-click the domain name.
Detailed information for the current selection appears in the Avalon domain details
pane.

• On the Domain tab, specify interconnect parameters, as Specifying Interconnect
Parameters on page 49 describes.

• To enable and disable the highlighting of the Avalon domains in the System View
tab, click the domain control tool at the bottom of the System View tab.

1.4.6. Viewing the System Schematic

The Schematic tab displays a schematic representation of the current Platform
Designer system. You can zoom into a component or connection to view more details.
You can use the image handles in the right panel to resize the schematic image.

Click View ➤ Schematic to display this tab.

If your selection is a subsystem, You can use the Move to the top of the hierarchy
Move up one level of hierarchy, and Drill into a subsystem to explore its
contents buttons to traverse the schematic of a hierarchical system.

Figure 17. Schematic Tab

Controls for Traversing

Zoom In or Out

Related Information

Editing a Subsystem on page 81

1.4.7. Customizing the Platform Designer Layout

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can arrange your workspace by dragging and dropping, and then grouping tabs in
an order appropriate to your design development, or close or dock tabs that you are
not using.

Dock tabs in the main frame as a group, or individually by clicking the tab control in
the upper-right corner of the main frame. Tool tips on the upper-right corner of the
tab describe possible workspace arrangements, for example, restoring or
disconnecting a tab to or from your workspace.

When you save your system, Platform Designer also saves the current workspace
configuration. When you re-open a saved system, Platform Designer restores the last
saved workspace.

The Reset to System Layout command on the View menu restores the workspace to
its default configuration for Platform Designer system design. The Reset to IP
Layout command restores the workspace to its default configuration for defining and
generating single IP cores.

Follow these steps to customize and save the Platform Designer layout:

1. Click items on the View menu to display and then optionally dock the tabs.
Rearrange the tabs to suit your preferences.

2. To save the current Platform Designer window configuration as a custom layout,
click View ➤ Custom Layouts ➤ Save. Platform Designer saves your custom
layout in your project directory, and adds the layout to the custom layouts list,
and the layouts.ini file. The layouts.ini file determines the order of layouts
in the list.

Figure 18. Platform Designer View Menu and Layouts

3. Use any of the following methods to revert to another layout:

• To revert the layout to the default system design layout, click View ➤ Reset
to System Layout. This layout displays the System View, Address Map,
Interconnect Requirements, and Messages tabs in the main pane, and the
IP Catalog and Hierarchy tabs along the left pane.

• To revert the layout to the default system design layout, click View ➤ Reset
to IP Layout. This layout displays the Parameters and Messages tabs in
the main pane, and the Details, Block Symbol, and Presets tabs along the
right pane.

• To reset your Platform Designer window configuration to a previously saved
layout, click View ➤ Custom Layouts, and then select the custom layout.

• Press Ctrl+3 to quickly change the Platform Designer layout.

4. To manage your saved custom layouts, click View ➤ Custom Layouts. The
Manage Custom Layouts dialog box opens and allows you to apply a variety of
functions that facilitate custom layout management. For example, you can import
or export a layout from or to a different directory.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. Adding IP Components to a System

You can quickly add Intel FPGA IP components to a system from the IP Catalog in
Platform Designer. The IP Catalog launches a parameter editor that allows you to
specify options and add the component to your system. Your Platform Designer
system can contain a single instance of an IP component, or multiple, individually
parameterized variations of multiple or the same IP components.

When you first add an Intel FPGA IP components to a system from the IP Catalog,
Platform Designer automatically adds the IP as a generic component for all IP except
the Intel FPGA HPS IP components. Generic components allow you to define only the
interface and signal connections to the rest of the system, without immediartely
defining the HDL implementation.

Follow these steps to locate, parameterize, and instantiate an IP component in a
Platform Designer system:

1. To locate a component by name, type some or all of the component’s name in the
IP Catalog search box. For example, type memory to locate memory-mapped IP
components. You can also find components by category.

Figure 19. Platform Designer IP Catalog

2. Double-click any component to launch the component's parameter editor and
specify options for the component. The Parameterization Messages tab displays
any parameterization errors.

For some IP components, you can select and Apply a pre-defined set of
parameters values for specific applications from the Presets list.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Parameter Editor

IP Component’s
Block Diagram

IP Component’s
Parameters

Preset Parameters
for Specific Applications

3. After you specify all parameters, click Finish to instantiate the component in the
system. The IP component appears in the System View and Component
Instantiation tabs. Platform Designer creates a corresponding .ip file for the IP
component on instantiation, and stores the file in the <ip> folder in the project
directory.

Platform Designer instantiates a generic component in place of the actual IP core with
a reference to the HDL entity name, module and interface assignments, compilation
library, HDL ports, interfaces, and system-info parameters.

1.5.1. Modifying IP Parameters

The Parameters tab allows you to view and edit the current parameter settings for IP
components in your system.

To display a components parameters on the Parameters tab:

1. click View ➤ Parameters.

2. Select the component in the System View or Hierarchy tabs..

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Parameters tab provides the following functionality:

• Parameters field—adjust the parameters to align with your design requirements,
including changing the name of the top-level instance.

• Component Banner—displays the hierarchical path for the component and allows
you to enable display of internal names. Below the hierarchical path, the
parameter editor shows the HDL entity name and the IP file path for the selected
IP component. Right-click in the banner to display internal parameter names for
use with scripted flows.

• Read/Write Waveforms—displays the interface timing and the corresponding
read and write waveforms.

• Details—displays links to detailed information about the component.

• Parameterization Messages—displays parameter warning and error messages
about the IP component.

Figure 21. Platform Designer Parameters Tab

Selected Component

Right-Click Banner to
Display Internal Names

Modify Parameters of Selected Component

Reports Parameter Errors

Changes that you make in the Parameters tab affect your entire system, and
dynamically update other open tabs in Platform Designer. Any change that you make
on the Parameters tab, automatically updates the corresponding .ip file that stores
the component's parameterization.

If you create your own custom IP components, you can use the Hardware Component
Description File (_hw.tcl) to specify configurable parameters.

Note: If you use the ip-deploy or qsys-script commands rather than the Platform
Designer GUI, you must use internal parameter names with these parameters.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1.1. Viewing Component or Parameter Details

The Details tab provides information for a component or parameter that you select.
Platform Designer updates the information in the Details tab as you select different
components.

To view a component's details:

1. Click the parameters for a component in the parameter editor, Platform Designer
displays the description of the parameter in the Details tab.

2. To return to the complete description for the component, click the header in the
Parameters tab.

1.5.1.2. Viewing a Component's Block Symbol

The Block Symbol tab displays a symbolic representation of any component you
select in the Hierarchy or System View tabs. The block symbol shows the
component's port interfaces and signals. The Show signals option allows you to turn
on or off signal graphics.

Figure 22. Block Symbol Tab

The Block Symbol tab appears by default in the parameter editor when you add a
component to your system. When the Block Symbol tab is open in your workspace, it
reflects changes that you make in other tabs.

1.5.2. Applying Preset Parameters for Specific Applications

The Preset tab displays the names of any available preset settings for an IP
component. The preset preserves a collection of parameter setting that may be
appropriate for a specific protocol or application. Not all IP components include preset
parameters. Double-click the preset parameter name to apply the preset parameter
values to a component you are defining.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Selecting Preset Parameters

Filter the List of
Presets by Name

1.5.2.1. Creating IP Custom Preset Parameters Settings

You can optionally define and save a custom set of parameter settings for an IP
component, and then apply the preset settings whenever you add an instance of the
IP component to any system.

Follow these steps to save custom preset parameter settings:

1. In IP Catalog, double-click any component to launch the parameter editor.

2. To search for a specific preset for the initial settings, type a partial preset name in
the search box.

3. In the Presets tab, click New to specify the Preset name and Preset
description.

4. Under Select parameters to include in the preset, enable or disable the
parameters you want to include in the preset.

5. Specify the path for the Preset file that preserves the collection of parameter
settings.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. Create New Preset

If the file location that you specify is not already in the IP search path, Platform
Designer adds the location of the new preset file to the IP search path.

6. Click Save.

7. To apply the preset to an IP component, click Apply. Preset parameter values that
match the current parameter settings appear in bold.

1.5.3. Adding Third-Party IP Components

You can add third-party IP components created by Intel partners to your Platform
Designer system. Third-party partner IP components have interfaces that Platform
Designer supports, such as Avalon-MM or AMBA AXI. Third-party partner IP
components can also include timing and placement constraints, software drivers,
simulation models, and reference designs.

To locate supported third-party IP components on the Intel web page, follow these
steps:

1. From the Intel website, navigate to the Find IP page, and then click Find IP on the
tool.

2. Use the Search box and the End Market, Technology, Devices or Provider
filters to locate the IP that you want to use.

3. Click Enter.

4. Sort the table of results for the Platform Designer Compliant column. You
cannot use non-compliant components in Platform Designer.

5. Click the IP name to view information, request evaluation, or request download.

6. After you download the IP files, add the IP location to the IP search path to add
the IP to IP Catalog, as IP Search Path Recursive Search on page 34 describes.

Related Information

Find Intel FPGA and Partner IP

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

33

https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.3.1. IP Search Path Recursive Search

The Intel Quartus Prime software automatically searches and identifies IP components
in the IP search path. The search is recursive for some directories, and only to a
specific depth for others. During a recursive descent search, whenever search finds a
_hw.tcl or .ipx file, search does not descend further.

In the following list of search locations, ** indicates a recursive descent.

Table 3. IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Intel Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory of the Intel
Quartus Prime project directory.

1.5.3.1.1. IP Search Path Precedence

If the Intel Quartus Prime software recognizes two IP cores with the same name, the
following search path precedence rules determine the resolution of files:

1. Project directory.

2. Project database directory.

3. Project IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment for the current project revision.

4. Global IP search path specified in IP Search Locations, or with the
SEARCH_PATH assignment in the quartus2.ini file.

5. Quartus software libraries directory, such as <Quartus Installation>
\libraries.

1.5.3.1.2. IP Component Description Files

The Intel Quartus Prime software identifies parameterizable IP components in the IP
search path for the following files:

• Component Description File (_hw.tcl)—defines a single IP core.

• IP Index File (.ipx)—each .ipx file indexes a collection of available IP cores. This
file specifies the relative path of directories to search for IP cores. In
general, .ipx files facilitate faster searches.

1.5.3.2. Defining the IP Search Path with Index Files

You can create an IP Index File (.ipx) to specify a path that Platform Designer
searches for IP components.

You can optionally specify the search path in a user_components.ipx file, in
addition to Tools ➤ Options ➤ IP Catalog Search Locations. The
user_components.ipx file allows you to add locations independent of the default
search path.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A <path> element in a .ipx file specifies a directory where Platform Designer can
search for IP components. A <component> entry specifies the path to a single
component. <path> elements allow wildcards in definitions. An asterisk matches any
file name. If you use an asterisk as a directory name, it matches any number of
subdirectories.

Example 1. Path Element in an .ipx File

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <component> element in an .ipx file contains several attributes to define a
component. If you provide the required details for each component in an .ipx file,
the startup time for Platform Designer is less than if Platform Designer must discover
the files in a directory.

Example 2. Component Element in an .ipx File

The example shows two <component> elements. Note that the paths for file names
are specified relative to the .ipx file.

<library>
 <component
 name="A Platform Designer Component"
 displayName="Platform Designer FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"
 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

Note: You can verify that IP components are available with the ip-catalog command.

Related Information

Create an .ipx File with ip-make-ipx on page 354

1.5.4. Specifying IP Component Instantiation Options

When you instantiate an Intel FPGA IP component in a system, Platform Designer
instantiates the IP as a generic component that contains references to the HDL entity
name, module and interface assignments, compilation library, HDL ports, interfaces,
and system-info parameters. You can specify options that control the appearance of a
component in the system.

To specify options that control the appearance of IP details and symbol in the system,
follow these steps:

1. To open the Component Instantiation tab, click View ➤ Component
Instantiation.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Component Instantiation Tab

2. For Implementation Type, select the IP (Default), HDL, Blackbox, or HLS
type. Component Implementation Type Options on page 37 defines these types.

3. Under Compilation Info, specify the HDL Entity name and HDL compilation
library name for the implementation. These values are fixed for the IP
Implementation Type.

4. In the Signals & Interfaces tab, define the port boundary of the component.
Click <<add interface>> or <<add signal>> to add the interfaces and signals.

5. Optionally, click the Block symbol tab to visualize the signals and interfaces
added in the Signals & Interfaces tab.

6. In the System Information tab, specify the address map of the interfaces, input
clock rate, and other necessary system information associated with the
component.

7. Optionally, in the Implementation Templates tab, export implementation
templates in the form of a pre-populated HDL entity, or a template Platform
Designer system that contains the boundary information (signals and interfaces)
as interface requirements.

8. Optionally, in the Export tab you can export the signals and interfaces of an IP
component as an IP-XACT file or a _hw.tcl file.

Note: Platform Designer supports importing and exporting files in IP-XACT 2009
format and exporting IP-XACT files in 2014 format.

Related Information

• Component Implementation Type Options on page 37

• Adding a Generic Component to the Platform Designer System on page 126

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.4.1. Component Implementation Type Options

Table 4. Component Implementation Type Options

Implementation Type Description

IP The default implementation type for any new component. The Implementation Type
directs. Platform Designer reads the IP Implementation Type to perform the following
functions:
• Runs background checks against the port widths between the IP component and

the .ip file to ensure continuity.
• Scans the .ip file for the error flag to determine if any component has

parameterization errors.
• Checks for system-info mismatches between the IP file and the IP component in the

system, and prompts resolution with IP instantiation warnings in the Instantiation
Messages tab.

HDL Allows you to define a component in your system from existing RTL. You can populate the
signals and interfaces parameters of the generic component from an RTL file.

Blackbox Defines a component that represents only the signal and interface boundary of an entity,
without providing the component's implementation. You then provide the implementation of
the component for processing with the Intel Quartus Prime software or an RTL simulator.

HLS Allows you to adds an existing high level synthesis (HSL) file as a component, compile an
HLS file, import a previously compiled HLS file, perform verification on an HLS project, or
display the resulting compilation report.

1.5.5. Creating or Opening an IP Core Variant

In addition to creating a system, Platform Designer allows you to define a stand-alone
IP core variant that you can add to your Intel Quartus Prime project or to a Platform
Designer system.

Follow these steps to define an IP core variant in Platform Designer:

1. In Platform Designer, click File ➤ New IP Variant.

2. On the IP Variant tab, specify the Quartus project to contain the IP variant.

Figure 26. Platform Designer IP Variant Tab

3. Specify any of the following options:

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Revision—optionally select a specific revision of a project.

• Device family—when defining a new project or None, allows you to specify
the target Intel FPGA device family. Otherwise this field is non-editable and
displays the Quartus project target device family. Click Retrieve Values to
populate the fields.

• Device part—when defining a new project or None, allows you to specify the
target Intel FPGA device part number. Otherwise this field is non-editable and
displays the Quartus project target device part number.

4. Specify the IP variant name, or browse for an existing IP variant.

5. For Component type, click Select and select the IP component from the IP
Catalog.

6. Click Create. The IP parameter editor appears. Specify the parameter values that
you want for the IP variant.

7. To generate the IP variant synthesis and optional simulation files, click Generate
HDL, specify Generation Options, and click Generate. Refer to Generation
Dialog Box Options on page 63 for generation options.

1.6. Connecting System Components

You must appropriately connect the components in your Platform Designer system.
The System View and Connections tabs allow you to connect and configure IP
components quickly. Platform Designer supports connections between interfaces of
compatible types and opposite directions.

For example, you can connect a memory-mapped master interface to a slave
interface, and an interrupt sender interface to an interrupt receiver interface. You can
connect any interfaces exported from a Platform Designer system within a parent
system.

Platform Designer uses the high-level connectivity you specify to instantiate a suitable
HDL fabric to perform the needed adaptation and arbitration between components.
Platform Designer generates and includes this interconnect fabric in the RTL system
output.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Connections Column in the System Contents Tab

Component
Connections

Potential connections between interfaces appear as gray interconnect lines with an
open circle icon at the intersection of the potential connection.

Figure 28. Potential and Implemented Connections in System View

Potential
Connection
(empty circle)

Implemented
Connection
(filled circle)

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To implement a connection, follow these steps:

1. Click inside an open connection circle to implement the connection between the
interfaces. When you make a connection, Platform Designer changes the
connection line to black, and fills the connection circle. Clicking a filled-in circle
removes the connection.

2. to display the list of current and possible connections for interfaces in the
Hierarchy or System View tabs, click View ➤ Connections.

Figure 29. Connection Display for Exported Interfaces

3. Perform any of the following to modify connections:

• On the Connections tab, enable or disable the Connected column to enable
or disable any connection. The Clock Crossing, Data Width, and Burst
columns provide interconnect information about added adapters that can
result in slower fMAX or increased area utilization.

• On the System View tab, right-click in the Connection column and disable
or enable Allow Connection Editing.

• On the Connections tab view and make connections for exported interfaces.
Double-click an interface in the Export column to view all possible
connections in the Connections column as pins. To restore the representation
of the connections, and remove the interface from the Export column, click
the pin.

1.6.1. Platform Designer 64-Bit Addressing Support

Platform Designer interconnect supports up to 64-bit addressing for all Platform
Designer interfaces and IP components, with a range of: 0x0000 0000 0000 0000
to 0xFFFF FFFF FFFF FFFF, inclusive.

The address parameters appear in the Base and End columns in the System View
tab, on the Address Map tab, in the parameter editor, and in validation messages.
Platform Designer displays as many digits as needed in order to display the top-most
set bit, for example, 12 hex digits for a 48-bit address.

A Platform Designer system can have multiple 64-bit masters, with each master
having its own address space. You can share slaves between masters, and masters
can map slaves to different addresses. For example, one master can interact with
slave 0 at base address 0000_0000_0000, and another master can see the same
slave at base address c000_000_000.

Intel Quartus Prime debugging tools provide access to the state of an addressable
system via the Avalon-MM interconnect. These tools are also 64-bit compatible, and
process within a 64-bit address space, including a JTAG to Avalon master bridge.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer supports auto base address assignment for Avalon-MM components.
In the Address Map tab, click Auto Assign Base Address.

Related Information

• Address Map Tab Help

• Address Span Extender Intel FPGA IP on page 294

• auto_assign_base_addresses on page 526

1.6.1.1. Support for Avalon-MM Non-Power of Two Data Widths

Platform Designer requires that you connect all multi point Avalon-MM connections to
interfaces with data widths that are equal to powers of two.

Platform Designer issues a validation error if an Avalon-MM master or slave interface
on a multi point connection is parameterized with a non-power of two data width.

Note: Avalon-MM point-to-point connections between an Avalon-MM master and an Avalon-
MM slave are an exception, you can set their data widths to a non-power of two.

1.6.2. Connecting Masters and Slaves

Specify connections between master and slave components in the Address Map tab.
This tab allows you to specify the address range that each memory-mapped master
uses to connect to a slave in a Platform Designer system.

The Address Map tab shows the slaves on the left, the masters across the top, and
the address span of the connection in each cell. If there is no connection between a
master and a slave, the table cell is empty. In this case, use the Address Map tab to
view the individual memory addresses for each connected master.

Platform Designer enables you to design a system where two masters access the same
slave at different addresses. If you use this feature, Platform Designer labels the Base
and End address columns in the System View tab as "mixed" rather than providing
the address range.

To create or edit a connection between master and slave IP components:

1. In Platform Designer, click the Address Map tab.

2. Locate the table cell that represents the connection between the master and slave
component pair.

3. Either type in a base address, or update the current base address in the cell. The
base address of a slave component must be a multiple of the address span of the
component. This restriction is a requirement of the Platform Designer
interconnect, which provides an efficient address decoding logic, which in turn
allows Platform Designer to achieve the best possible fMAX.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

41

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#system/qsys/qsys_tab_add_map.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Address Map Tab for Connection Masters and Slaves

Slave to Master Address Mapping

Assigns Base Address

Related Information

• Address Map Tab Help

• Platform Designer 64-Bit Addressing Support on page 40

• auto_assign_base_addresses on page 526

1.6.3. Changing a Conduit to a Reset

1. In the IP Catalog search box, locate IOPLL Intel FPGA IP and double-click to
add the component to your system.

2. In the System View tab, select the PLL component.

3. Click View ➤ Component Instantiation and open the Component
Instantiation tab for the selected component.

4. In the Signals & Interfaces tab, select the locked conduit interface.

5. Change the Type from Conduit to Reset Input, and the Synchronous edges
from Deassert to None.

6. Select the locked [1] signal below the locked interface.

7. Change the Signal Type from export to reset_n. Change the Direction from
output to input.

8. Click Apply.

The conduit interface changes to reset for the instantiated PLL component.

1.6.4. Wire-Level Connectivity

Wire-level connectivity enables you to manipulate wire-level connections in the system
level view of Platform Designer. For example, you can enter a Verilog style syntax
expression to drive an input port of an IP component. You can implement wire-level
connectivity with the Platform Designer GUI or with the qsys-script utility.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

42

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#system/qsys/qsys_tab_add_map.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After applying the expression, the port you specify moves from the current interface
into a Wire-Level Endpoint interface. The new interface name appends _wirelevel
to the existing interface name. If you remove the wire-level expression, the port
restores to the original interface. However, not all interfaces are restorable to legal
interfaces after certain ports change. Moving a port from its original interface might
result in validation errors on the original interface.

After you move a port to a Wire-Level Endpoint interface, wire-level expressions
must drive all bits in the vector. You cannot connect ports contained within this new
interface type to any other interfaces.

The following general rules apply to wire-level expressions:

• Wire-level connectivity is only available on optional input ports.

• The wire-level expression can consist of input, output, and bi-directional ports,
constant values, and logic terms using standard Verilog syntax.

• Wire-level expressions can only consist of ports within the same level of hierarchy.
If you require elements from a higher or lower hierarchy, you must export the
appropriate elements to the same hierarchical context so that they are available
for use in wire-level expressions at the same hierarchy level.

• You can apply multiple expressions to a single input port unless they collide or
cause bus contention.

• You must resolve validation errors occurring on the original interface for the
interface to function correctly.

Platform Designer validates the wire-level expressions and provides messages for
syntax, port existence, and other systematic errors. This validation includes the
following:

• Validation of Verilog syntax.

• Warning if any sub-operator elements don’t match bit size.

• Warning if resulting combined bit size does not match the driven input port.

• Validation that all module and port names exist.

• Validation that all ports in a wire-level interface are input ports.

• Validation that all wire-level expressions drive each input port within a wire-level
interface.

• Validation of no bus-contention, meaning that no one wire is driven by more than
one expression.

• In a composed _hw.tcl module, validation that all ports driven by wire-level
expressions are not in any connection.

• In a composed _hw.tcl module, validation that all ports driven by wire-level
expressions are not exported.

After you define wire-level expressions for your system and resolve any errors, you
next generate the system to create the Verilog files. When you apply the wire-level
connections in the Platform Designer GUI, or with the qsys-script utility, the wire-
level expression is inserts in the Verilog wrapper file that generates for your system.
When you apply the wire-level connections with composed _hw.tcl commands, the
wire-level expression inserts in the Verilog wrapper file that generates for the specified
IP component.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Wire-Level Connection Commands on page 535

• set_wirelevel_expression on page 536

• get_wirelevel_expressions on page 536

• remove_wirelevel_expressions on page 537

1.6.4.1. Editing Wire-Level Expressions

After you add a wire-level expression to an optional input port, you can add, edit, or
remove wire-level expressions and connections in the Platform Designer GUI.

Follow these steps to edit wire-level expressions in the Platform Designer GUI:

1. To specify a new wire-level expression, right-click an input port in the Hierarchy
tab and click Add Wire-Level Expression. The Edit Wire-Level Expression
dialog box appears.

Figure 31. Edit Wire-Level Expression Dialog Box

2. To construct the expression, drag operators or ports from the list of operators or
ports, and drop them into the expression field. Refer to Wire-Level Expression
Syntax on page 45 for a list of legal operators.

3. Click the text field at the top of the Edit Wire-Level Expression dialog box and
press the Down Arrow key to enable the expression assistant. The assistant
provides a context sensitive list of available operators at the cursor position.

4. Modify the elements of the expression in the workspace:

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To add a value to an expression, right-click a node and select Insert Value.

• Double-click on a value to enter a numeric value or port name.

• Click an operator node to change the operator type.

• Reorder nodes or move nodes between operators by dragging them.

5. To manage all wire-level expressions, click View ➤ Wire-Level Expression
Editor. The Wire-Level Expression Editor allows you to add new wire-level
expressions, edit, or remove existing wire-level expressions.

Figure 32. Wire-Level Expression Editor

1.6.4.2. Wire-Level Expression Syntax

The wire-level expression derives from Verilog syntax. The following is an example
and list of legal operators and elements that you can use for wire-level expressions.

Example Expressions:

foo1.port1[5:0] = foo2.port1[5:0]
foo3.port1[8:4] = foo5.port1[4:0] & 5’b10101
foo6.port1[0] = ‘b1
foo7.port1 = foo8.port1
foo9.port1[0] = ~foo10.port1[0]
foo10.port1[3:0] = foo11.port2[1:0] + 4’b1100
foo12:port1[3:0] = {4{0}}
foo13.port1[7:0] = {foo14.port1[3:0], 4’b0011}

Table 5. Ports

Port Description

<instance_name>.<port_name> Whole port

<instance_name>.<port_name>[x] Wire x of port

<instance_name>.<port_name>[y:x] Wires x to y of port. Port ranges must be in decreasing
order, for example a[1:0].

<constant base x values> For example: 1, ’b1, 4’hf, 4’o7, 32’d9

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Operators (Bitwise)

Operator Description

~ Negation

& AND

| OR

~& NAND

~| NOR

^ XOR

~^ XNOR

Table 7. Operators (Logical)

Operator Description

? Conditional

! Negation

&& AND

|| OR

Table 8. Operators (Relational, Equality, and Shift)

Operator Description

> Greater Than

< Less Than

>= Greater Than or Equal To

<= Less Than or Equal To

== Equal To

!= Not Equal To

<< Shift Left

>> Shift Right

Table 9. Operators (Mathematical)

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10. Operators (Other)

Operator Description

{integer {x}} Replication of x

{x, y, ...} Concatenation

1.6.4.3. Adding or Removing Ports from Wire-Level Endpoint Interfaces

You can quickly add or remove ports from wire-level interfaces.

Follow these steps to add or remove ports from wire-level endpoint interfaces:

1. To move the port to a wire-level endpoint interface, in the Hierarchy tab, right-
click a port and then click Move Port to Wire-Level Interface. After you move a
port to a wire-level endpoint interface, you can view and edit it in the Component
Instantiation tab.

2. To remove the port from a wire-level endpoint interface, in the Hierarchy tab,
right-click a port and then click Remove Port from Wire-Level Interface.

1.6.4.4. Scripting Wire-Level Expressions

Platform Designer supports system scripting commands to apply wire-level
expressions to input ports in IP components.

The following commands function with the qsys-script utility or in a _hw.tcl file
to set, retrieve, or remove an expression on a port:

set_wirelevel_expression <instance_or_port_bit> <expression>
get_wirelevel_expressions <instance_or_port_bit>
remove_wirelevel_expressions <instance_or_port_bit

These commands require a string that you compose from the left-handed and right-
handed components of the expression. Platform Designer reports errors in syntax,
existence, or system hierarchy.

Related Information

• Wire-Level Connection Commands on page 535

• set_wirelevel_expression on page 536

• get_wirelevel_expressions on page 536

• remove_wirelevel_expressions on page 537

1.6.5. Previewing the System Interconnect

You can review a graphical representation of the Platform Designer interconnect before
you generate the system. The System with Platform Designer Interconnect window
shows how Platform Designer converts connections between interfaces to interconnect
logic during system generation.

To open the System with Platform Designer Interconnect window, click System ➤
Show System With Platform Designer Interconnect, or click the Show System
With Interconnect button in the Domains tab.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The System with Platform Designer Interconnect window has the following tabs:

• System Contents—displays the original instances in your system, as well as the
inserted interconnect instances. Connections between interfaces are replaced by
connections to interconnect where applicable.

• Schematic—displays a schematic representation that shows the multiple
interconnects together as a complete system.

• Hierarchy—displays a system hierarchical navigator, expanding the system
contents to show modules, interfaces, signals, contents of subsystems, and
connections.

• Parameters—displays the parameters for the selected element in the Hierarchy
tab.

• Memory-Mapped Interconnect—allows you to select a memory-mapped
interconnect module and view its internal command and response networks. You
can also insert pipeline stages to achieve timing closure.

Figure 33. System with Platform Designer Interconnect window

The System Contents, Hierarchy, and Parameters tabs are read-only. Edits that
you apply on the Memory-Mapped Interconnect tab are automatically reflected on
the Interconnect Requirements tab.

The Memory-Mapped Interconnect tab in the System with Platform Designer
Interconnect window displays a graphical representation of command and response
datapaths in your system. Datapaths allow you precise control over pipelining in the
interconnect. Platform Designer displays separate figures for the command and
response datapaths. You can access the datapaths by clicking their respective tabs in
the Memory-Mapped Interconnect tab.

Each node element in a figure represents either a master or slave that communicates
over the interconnect, or an interconnect sub-module. Each edge is an abstraction of
connectivity between elements, and its direction represents the flow of the commands
or responses.

Click Highlight Mode (Path, Successors, Predecessors) to identify edges and
datapaths between modules. Turn on Show Pipelinable Locations to add greyed-out
registers on edges where pipelining is allowed in the interconnect.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You must select more than one module to highlight a path.

1.7. Specifying Interconnect Parameters

Specify system-wide or domain-specific interconnect parameters on the Domains tab.
Interconnect parameters allow you to customize the implementation of the system
interconnection.

Figure 34. Domains Tab

The Domains tab displays the Avalon-MM interfaces in your system, and allows you to
specify legal values for available system-level or interface parameters. While
specifying parameters, you can click Show System with Interconnect to view a
schematic preview of the Platform Designer complete system interconnect.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to specify interconnect parameters:

1. Open or create a Platform Designer system.

2. Click View ➤ Domains.

3. Under Avalon Memory Mapped Domains, select one or more domains.

4. On the Domain tab, specify values for interconnect parameter settings, as
Interconnect Parameters on page 50 describes.

5. To view a preview of the Platform Designer complete system interconnect, click
Show System with Interconnect. Refer to Previewing the System Interconnect
on page 47 for detailed description of this preview.

Related Information

• Platform Designer Interconnect on page 141

• Reset Interfaces on page 185

• Domains and Interfaces on page 385

1.7.1. Interconnect Parameters

The following parameters are available on the Domains tab:

Table 11. Interconnect Parameters

Option Description

Limit interconnect
pipeline stages to

Specifies the maximum number of pipeline stages that Platform Designer can insert in each
command and response path to increase the fMAX at the expense of additional latency.
You can specify between 0 and 4 pipeline stages, where 0 means that the interconnect has a
combinational datapath.
This setting is specific for each Platform Designer system or subsystem.

Clock crossing
adapter type

Specifies the default implementation for automatically inserted clock crossing adapters:

Handshake This adapter uses a simple handshaking protocol to propagate
transfer control signals and responses across the clock boundary.
This methodology uses fewer hardware resources because each
transfer is safely propagated to the target domain before the next
transfer can begin. The Handshake adapter is appropriate for
systems with low throughput requirements

FIFO This adapter uses dual-clock FIFOs for synchronization. The latency
of the FIFO-based adapter is a couple of clock cycles more than the
handshaking clock crossing component. However, the FIFO-based
adapter can sustain higher throughput because it supports multiple
transactions at any given time. FIFO-based clock crossing adapters
require more resources. The FIFO adapter is appropriate for
memory-mapped transfers requiring high throughput across clock
domains.

Auto If you select Auto, Platform Designer specifies the FIFO adapter for
bursting links, and the Handshake adapter for all other links.

Automate default
slave insertion

Directs Platform Designer to automatically insert a default slave for undefined memory region
accesses during system generation.

Enable
instrumentation

When you set this option to TRUE, Platform Designer enables debug instrumentation in the
Platform Designer interconnect, which then monitors interconnect performance in the system
console.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Interconnect reset
source

Select Default or a specific reset signal in your design.

Burst adapter
implementation

Allows you to choose the converter type that Platform Designer applies to each burst.

Generic converter
(slower, lower area)

Default. Controls all burst conversions with a single converter
that is able to adapt incoming burst types. This results in an
adapter that has lower fMAX, but smaller area.

Per-burst-type converter
(faster, higher area)

Controls incoming bursts with a particular converter,
depending on the burst type. This results in an adapter that
has higher fMAX, but higher area. This setting is useful when
you have AXI masters or slaves and you want a higher fMAX.

Width adapter
implementation Generic converter

(slower, lower area)
Default. Controls all burst conversions with a single converter
that is able to adapt incoming burst types. This results in an
adapter that has lower fMAX, but smaller area.

Optimized converter
(faster, higher area)

Controls incoming bursts with a particular converter,
depending on the burst type. This results in an adapter that
has higher fMAX, but higher area. This setting is useful when
you have AXI masters or slaves and you want a higher fMAX.

Enable ECC protection Specifies the default implementation for ECC protection for memory elements.

FALSE Default. Disables ECC protection for memory elements in the
Platform Designer interconnect.

TRUE Enables ECC protection for memory elements. Platform Designer
interconnect sends uncorrectable errors arising from memory as
DECODEERROR (DECERR) on the Avalon response bus.

For more information about Error Correction Coding (ECC), refer to Error Correction Coding
(ECC) in Platform Designer Interconnect on page 202.

Use synchronous
reset

When set to True, all registers in the interconnect use synchronous reset. Assert the reset for
at least 16 cycles and start transactions 16 cycles after deassertion of the reset. This period
allows all the IP components to reset and come out of the reset state. To avoid deadlocks in the
interconnect, reset masters and slaves simultaneously. If masters and slaves have different
resets, slaves must reset only after responding to all necessary transactions. The Use
synchronous reset option is enabled by default for Intel Stratix® 10 devices, but is disabled
by default for all other devices. Enabling synchronous reset for the interconnect does not
enable synchronous reset for IP components in the system. You must separately enable the
synchronous reset parameter for any component.

1.8. Specifying Signal and Interface Boundary Requirements

If you export an interface that does not match the interface requirements of the
system, Platform Designer generates component instantiation errors. You must match
all the exported interfaces with the interface requirements of the system.

The Interface Requirements tab allows you to assign a component's top-level HDL
module signals to an interface, specify the expected signal and interface boundary
requirements for the interface, and to resolve any interface requirement mismatches.
You can also modify the signal names in an exported interface.

1. To open the Interface Requirements tab, click View ➤ Interface
Requirements.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Interface Requirements Tab

2. To load the interface requirements from a Platform Designer system, click Import
Interface Requirements in the Interface Requirements table. In the dialog
box that appears, select the .ipxact representation of the Platform Designer
system.

3. To manually add new interface or signal requirements, click <<add interface>> or
<<add signal>> in the Interface Requirements table.

4. To correct the mismatches, select the missing or mismatched interface or signal in
the Current System table and click >>.

Note: Platform Designer highlights the mismatches between the system and
interface requirements in blue, and highlights the missing interfaces and
signals in green.

5. To rename an exported signal or interface, use any of the following methods:

• Double-click the signal or interface in Current System table.

• Select the signal or interface in the Current System table and press F2.

• Select the signal or interface in the Current System table and rename from
the Current Parameters pane at the bottom of the tab. The Current
Parameters pane displays all the parameters of the selected interface or
signal.

Related Information

Editing Exported Interface Signal Names on page 53

1.8.1. Interface Requirements Tab Fields

The Platform Designer Interface Requirements tab contains the following fields.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 12. Interface Requirements Tab Fields

Name Description

Current System Displays all the exported interfaces in the current Platform Designer system. Add
or remove the interfaces in the Current System by adding or removing
components from the System View tab.

Interface Requirements This table shows all the interface requirements set for the current Platform
Designer system.

Parameter Differences This table lists the Parameter Name, Current System Value, and Interface
Requirement Value for the selected mismatched interface.
Note: The Interface Requirements tab highlights in blue the signals and

interfaces that are the same, but have different parameter values.
Selecting a blue item populates the Parameter Differences table.

Import Interface Requirements This button allows you to populate the Interface Requirements table from an
IP-XACT(2) file representing a generic component or an entire Platform Designer
system.

Parameters This table lists the signal and interface parameters for the selected interface.
You can view the table as Current Parameters when you select an interface or
signal from the Current System table, and as Required Parameters when you
select the signal or interface from Interface Requirements table.
You can modify the name of the exported signal or interface from this table. For
more information about how to edit the name of an exported signal or interface,
refer to Edit the Name of Exported Interfaces and Signals.

Related Information

• Specifying Signal and Interface Boundary Requirements on page 51

• Creating System Template for a Generic Component on page 137

1.8.2. Editing Exported Interface Signal Names

To rename an exported signal or interface:

• Double-click the signal or interface in Current System table.

• Select the signal or interface in the Current System table. The Current
Parameters pane allows you to edit the parameters of the selected interface or
signal.

Note: All other parameters in the Current Parameters except Name are read-only for the
current system.

Figure 36. Editing the Name of Exported Interfaces and Signals

(2) Platform Designer supports importing and exporting files in IP-XACT 2009 format and
exporting IP-XACT files in 2014 format.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9. Configuring Platform Designer System Security

Specify system-wide or interconnect-specific Security requirements on the Domains
tab.

Platform Designer interconnect supports the Arm TrustZone* security extension. The
Platform Designer Arm TrustZone security extension includes secure and non-secure
transaction designations, and a protocol for processing between the designations, as
Table 14 on page 57 describes.

The AXI AxPROT protection signal specifies a secure or non-secure transaction. When
an AXI master sends a command, the AxPROT signal specifies whether the command
is secure or non-secure. When an AXI slave receives a command, the AxPROT signal
determines whether the command is secure or non-secure. Determining the security
of a transaction while sending or receiving a transaction is a run-time protocol.

AXI masters and slaves can be TrustZone-aware. All other master and slave interfaces,
such as Avalon-MM interfaces, are non-TrustZone-aware.

The Avalon specification does not include a protection signal. Consequently, when an
Avalon master sends a command, there is no embedded security and Platform
Designer recognizes the command as non-secure. Similarly, when an Avalon slave
receives a command, the slave always accepts the command and responds.

Follow these steps to set compile-time security support for non-TrustZone-aware
components:

1. To begin creating a secure system, add masters and slaves to your system, as
Adding IP Components to a System on page 28 describes.

2. Make connections between the masters and slaves in your system, as Connecting
Masters and Slaves on page 41 describes.

3. Click View ➤ Domains.

4. To specify security requirements for an interconnect, click the Interface tab under
Interconnect Parameters,

5. Click the Add button.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. Security Settings in Domains Tab

6. In the Identifier column, select the interconnect in the new_target cell.

7. In the Setting column, select Security.

8. In the Value column, select the appropriate Secure, Non-Secure, Secure
Ranges, or TrustZone-aware security for the interface. Refer to System
Security Options on page 56 for details of each option.

9. After setting compile-time security options for non-TrustZone-aware master and
slave interfaces, you must identify those masters that require a default slave
before generation, as Specifying a Default Slave on page 56.

Related Information

• Platform Designer Interconnect on page 141

• Platform Designer System Design Components on page 276

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.1. System Security Options

Table 13. Security Options

Option Description

Secure Master sends only secure transactions, and the slave receives only secure transactions.
Platform Designer treats transactions from a secure master as secure. Platform
Designer blocks non-secure transactions to a secure slave and routes to the default
slave.

Non-Secure The master sends only non-secure transactions, and the slave receives any transaction,
secure or non-secure. Platform Designer treats transactions from a non-secure master
as non-secure. Platform Designer allows all transactions, regardless of security status,
to reach a non-secure slave.

Secure Ranges Applies to only the slave interface. Allows you to specify secure memory regions for a
slave. Platform Designer blocks non-secure transactions to secure regions and routes to
the default slave. The specified address ranges within the slave's address span are
secure, all other address ranges are not. The format is a comma-separated list of
inclusive-low and inclusive-high addresses, for example, 0x0:0xfff,0x2000:0x20ff

TrustZone-aware TrustZone-aware masters have signals that control the security status of their
transactions. TrustZone-aware slaves can accept these signals and handle security
independently.
The following applies to secure systems that mix secure and non-TrustZone-aware
components:
• All AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite masters are TrustZone-aware.
• You can set AXI, AMBA 3 AXI, and AMBA 3 AXI-Lite slaves as TrustZone-aware,

secure, non-secure, or secure range ranges.
• You can set non-AXI master interfaces as secure or non-secure.
• You can set non-AXI slave interfaces as secure, non-secure, or secure address

ranges.

1.9.2. Specifying a Default Slave

If a master issues "per-access" or "not allowed" transactions, your design must
contain a default slave. Per-access refers to the ability of a TrustZone-aware master to
allow or disallow access or transactions.

You can achieve an optimized secure system by partitioning your design and carefully
designating secure or non-secure address maps to maintain reliable data. Avoid a
design that includes a non-secure master that initiates transactions to a secure slave
resulting in unsuccessful transfers, within the same hierarchy.

A transaction that violates security is rerouted to the default slave and subsequently
responds to the master with an error. The following rules apply to specifying a default
slave:

• You can designate any slave as the default slave.

• You can share a default slave between multiple masters.

• Have one default slave for each interconnect domain.

• An interconnect domain is a group of connected memory-mapped masters and
slaves that share the same interconnect. The altera_error_response_slave
component includes the required TrustZone features.

To designate a slave interface as the default slave for non TrustZone-aware interfaces,
follow these steps:

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Specify interconnect security settings, as Configuring Platform Designer System
Security on page 54 describes.

2. In the System View, right-click any column and turn on the Security and
Default Slave columns.

3. In the System View tab, turn on the Default Slave option for the slave
interface. A master can have only one default slave.

Figure 38. Security and Default Slave Columns

Table 14. Secure and Non-Secure Access Between Master, Slave, and Memory
Components

Transaction Type TrustZone-aware
Master

Non-TrustZone-aware
Master
Secure

Non-TrustZone-aware
Master

Non-Secure

TrustZone-aware slave/memory OK OK OK

Non-TrustZone-aware slave (secure) Per-access OK Not allowed

Non-TrustZone-aware slave (non-
secure)

OK OK OK

Non-TrustZone-aware memory
(secure region)

Per-access OK Not allowed

Non-TrustZone-aware memory (non-
secure region)

OK OK OK

Related Information

• Error Response Slave Intel FPGA IP on page 299

• Designating a Default Slave on page 304

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.3. Accessing Undefined Memory Regions

Access to an undefined memory region occurs when a transaction from a master
targets a memory region unspecified in the slave memory map. To ensure predictable
response behavior when this condition occurs, you must specify a default slave, as
Specifying a Default Slave on page 56 describes.

You can designate any memory-mapped slave as a default slave. Have only one
default slave for each interconnect domain in your system. Platform Designer then
routes undefined memory region accesses to the default slave, which terminates the
transaction with an error response.

Note: If you do not specify the default slave, Platform Designer automatically assigns the
slave at the lowest address within the memory map for the master that issues the
request as the default slave.

Accessing undefined memory regions can occur in the following cases:

• When there are gaps within the accessible memory map region that are within the
addressable range of slaves, but are not mapped.

• Accesses by a master to a region that does not belong to any slaves that is
mapped to the master.

• When a non-secured transaction is accessing a secured slave. This applies to only
slaves that are secured at compilation time.

• When a read-only slave is accessed with a write command, or a write-only slave is
accessed with a read command.

1.10. Upgrading Outdated IP Components in Platform Designer

When you open a Platform Designer system containing outdated IP components, you
can retain and use the RTL of previously generated IP components within the Platform
Designer system. If Platform Designer is unable to locate the IP core’s original version,
you cannot re-parametrize the IP core without upgrading the IP core to the latest
version. However, Platform Designer allows you to view the parametrization of the
original IP component without upgrading.

To upgrade individual IP components in your Platform Designer system:

1. Click View ➤ Parameters.

2. Select the outdated IP component in the Hierarchy or the System View tab.

3. Click the Parameters tab. This tab displays information on the current version, as
well as the installed version of the selected IP component.

4. Click Upgrade. Platform Designer upgrades the IP component to the installed
version, and deletes all the RTL files associated with the IP component.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Upgrade IP Component in your Platform Designer System

To upgrade an IP component from the command-line, type the following:

qsys-generate --upgrade-ip-cores <ip_file>

To upgrade all the IP components in your Platform Designer system, open the
associated project in the Intel Quartus Prime software, and click Project ➤ Upgrade
IP Components.

1.11. Synchronizing System Component Information

When a component instantiation values do match the component's corresponding .ip
file, Platform Designer reports these mismatches as Component Instantiation
Warnings in the System Messages tab.

You must synchronize any mismatches between the component instantiation, and the
component's corresponding .ip prior to system generation.

Follow these steps to synchronize one or more components in your system:

1. Select the mismatched signal or interface in the System View tab, and then and
click View ➤ System Info. Alternatively, you can double-click the corresponding
Component Instantiation Warning in the System Messages tab.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. System Info Tab

Compares Component
Instantiation Values
with IP File Values

Synchs All Values
for Selected Component

Displays Specific
Value Comparison

Synchs All Values
for Entire System

Automatically Synchs
 Current Component

2. View any component mismatches in the System Info tab. Select individual
interfaces, signals, or parameters to view the specific value differences in the
Component and IP file columns. Value mismatches between the Component
Instantiation and the IP file appear in blue. Missing elements appear in green.

3. To synchronize the Component Instantiation and IP file .ip values in the
system, perform one or more of the following:

• Select a specific mismatched parameter, interface, or signal and click >> to
synchronize the items.

• Click Sync All to synchronize all values for the current component.

• Click Sync All System Info to synchronize all IP components in the current
system at once.

1.11.1. System Info Tab Fields

Table 15. System Info Tab Fields

Name Description

Component Instantiation Lists the signals and interfaces for the selected component with respect to the
component instantiation. Value mismatches between the Component Instantiation
and the IP file appear in blue. Missing elements appear in green.

IP file Lists the signal and interface information with respect to the .ip file. Value
mismatches appear in blue. Missing elements appear in green.

Component Column Displays the selected interface parameter value with respect to the Component
Instantiation.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

IP File Value Displays the selected interface parameter value with respect to the IP file.

>> Manually synchronizes the selected mismatch between signals and interfaces in the
Component Instantiation and the IP file.

Sync All Synchronizes Component Instantiation and IP file mismatches in the current
system.

1.12. Validating System Integrity

You can use any of the following methods to validate Platform Designer system
integrity.

• To perform system integrity check for the entire system, click the Validate
System Integrity button at the bottom of main Platform Designer window. If
validation finds errors, click Reload and Update All Components to reload
signal and interface values from the corresponding IP component file.

Figure 41. Validating System Integrity

• View any errors and warnings on the System Messages tab. Double-click the
warning or error messages to locate the issue in the System View or
Parameters tab to correct the issue. Platform Designer generates the following
types of system validation errors and warnings:

Table 16. System Messages Types in Platform Designer

System Messages Types Description

Component Instantiation Warning Indicates the mismatches between system information parameters or IP core
parameterization errors. A system information parameters mismatch refers to the
mismatch between an IP component's system parameter expectations and the
component's saved system information parameters in the corresponding .ip file.
For example:
• Interface types do not match
• Interface is missing
• Port has been moved to another interface

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Messages Types Description

• Port role has changed
• Interface assignment is mismatched
• Interface assignment is missing

Component Instantiation Error Indicates the mismatches between HDL entity name, compilation library, or ports
which results in downstream compilation errors. The component instantiation
errors always indicate the fundamental mismatches between generated system
and interconnect fabric RTL. For example:
• Port is missing from the ip file
• Port is missing from instantiation
• Port direction has changed
• Port HDL type has changed
• Port width has changed
• Interface Parameter is mismatched
• Interface Parameter is missing

System Connectivity Warning Platform Designer system connectivity warnings.

System Connectivity Error Platform Designer system connectivity errors.

1.12.1. Validating the System Integrity of Individual Components

To validate the system integrity for your IP components:

1. Select the IP component in the System View tab.

2. Right-click and select Validate Component Footprint to check for any
mismatches between the IP component and its .ip file representation.

3. If there are any errors, click Reload Component Footprint to reload the signals
and interfaces for the component from the .ip file.

1.13. Generating a Platform Designer System

Platform Designer system generation creates the interconnect between IP
components, and generates files for Intel Quartus Prime synthesis and simulation in
supported third-party tools.

Follow these steps to generate a Platform Designer system:

1. Open a system in Platform Designer.

2. Consider whether to specify a unique generation ID, as Specifying the Generation
ID on page 64 describes.

3. Click the Generate HDL button. The Generation dialog box appears.

4. Specify options for generation of Synthesis, Simulation, and testbench files, as
Generation Dialog Box Options on page 63 describes.

5. Consider whether to specify options for Parallel IP Generation, as Disabling or
Enabling Parallel IP Generation on page 65 describes.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 42. Platform Designer Generation Dialog Box

6. To start system generation, click Generate.

Note: Platform Designer may add unique suffixes (hashes) to ip component files
during generation to ensure uniqueness of the file. The uniqueness of the
files is necessary because the IP component is dynamic. The RTL generates
during runtime, according to the input parameters. This methodology
ensures no collisions between the multiple variants of the same IP. The hash
derives from the parameter values that you specify. A given set of
parameter values produces the same hash for each generation.

1.13.1. Generation Dialog Box Options

Platform Designer system generation creates files for Intel Quartus Prime synthesis
and supported third-party simulators. The Generation dialog box appears when you
click Generate HDL, or when you attempt to close a system prior to generation.

By default, the synthesis and simulation files generate into the Platform Designer
project directory.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify the following system generation options in the Generation dialog
box:

Table 17. Generation Dialog Box Options

Option Description

Create HDL design files for synthesis Allows you to specify Verilog or VHDL file type generation for the
system's top-level definition and child instances. Select None to skip
generation of synthesis files.

Create timing and resource estimates for
each IP in your system to be used with
third-party synthesis tools

Generates a non-functional Verilog Design File (.v) for use by supported
third-party EDA synthesis tools. Estimates timing and resource usage for
the IP component. The generated netlist file name is
<ip_component_name>_syn.v.

Create Block Symbol File (.bsf) Generates a Block Symbol File (.bsf) for use in a larger system
schematic Block Diagram File (.bdf).

IP-XACT Generates an IP-XACT file for the system, and adds the file to the IP
Catalog.
Note: Platform Designer supports importing and exporting files in IP-

XACT 2009 format and exporting IP-XACT files in 2014 format.

Generate IP Core Documentation Generates the IP user guide documentation for the components in your
system (when available).

Create simulation model Allows you to generate Verilog HDL or VHDL simulation model and
simulation script files.
Note: ModelSim* - Intel FPGA Edition supports native, mixed-language

(VHDL/Verilog/SystemVerilog) simulation. Therefore, Intel
simulation libraries may not be compatible with single language
simulators. If you have a VHDL-only license, some versions of
ModelSim simulators may not support simulation for IPs written in
Verilog. As a workaround, you can use ModelSim - Intel FPGA
Edition, or purchase a mixed language simulation license from
Mentor.

Clear output directories for selected
generation targets

Clears previous synthesis and simulation file generation data for the
current system.

Use multiple processors for faster IP
generation (when available)

Disables or enables parallel IP generation for faster IP generation using
multiple processors when available in your system.

Note: For a list of Intel-supported simulators, refer to Simulating Intel Designs in the Intel
Quartus Prime Pro Edition User Guide: Third-Party Simulation.

Related Information

• Editing Wire-Level Expressions on page 44

• List of Supported Simulators

1.13.2. Specifying the Generation ID

You can specify the Generation ID to uniquely identify that specific system
generation. This parameter allows system tools, such as Nios II or HPS (Hard
Processor System), to verify software-build compatibility with a specific Platform
Designer system.

The Generation ID parameter is a unique integer value that derives from the
timestamp during Platform Designer system generation. You can optionally modify this
value to a value of your choosing to identify the system.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

64

https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html#mwh1409960615330
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify the Generation ID parameter:

1. In the Hierarchy tab, select the top-level system.

2. Click View ➤ Parameters.

3. Under System Identifier, view or edit the value of Generation ID.

Figure 43. Generation ID in Parameters Tab

1.13.3. Disabling or Enabling Parallel IP Generation

By default, the Intel Quartus Prime software and Platform Designer use multiple
processors if available in your PC or workstation for faster IP generation. IP generation
for large systems can be time consuming. The use of parallel IP generation can
potentially reduce the total IP generation time for designs with large numbers of IP.

The qsys-generate command line utility similarly uses parallel IP generation by
default when multiple processors are available. You can disable or enable the use of
parallel IP generation for the current IP generation, for the current project, or for all
projects. You can also specify the maximum number of processors to use for parallel
IP generation.

Disabling or Enabling Parallel IP Generation for the Current IP Generation

1. Open a system or IP component in Platform Designer, and click Generate HDL.

2. In the Generation dialog box, turn on or off Use multiple processors for
faster IP generation (when available). Platform Designer retains this setting
for subsequent generations.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Disables or Enables Parallel IP Generation for the Current IP Generation

Disabling or Enabling Parallel IP Generation for a Single Project

1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤
Compilation Process Settings.

2. Under Parallel IP Generation, select Disable parallel generation of current
Quartus project IPs to disable parallel IP generation for the current project.
Select Enable parallel generation of current Quartus project IPs to enable
parallel IP generation for the current project.

Figure 45. Enables or Disables Parallel IP Generation for a Single Project

Alternatively, you can disable or enable parallel IP generation for a project with the
following line in the project .qsf file:

set_global_assignment -name PROJECT_IP_GEN_PARALLEL_ENABLED <off|on>

Disabling or Enabling Parallel IP Generation for all Projects

1. In the Intel Quartus Prime software, click Tools ➤ Options ➤ IP Settings.

2. Under Parallel IP Generation, enable or disable the Enable parallel
generation of Quartus IPs in all projects option. When enabled, the Intel
Quartus Prime software uses multiple processors (if available in your system) for
faster IP generation.

Figure 46. Enables or Disables Parallel IP Generation for all Projects

Alternatively, you can disable or enable parallel IP generation for all projects by adding
the following line to the quartus2.ini file:

ENABLE_PARALLEL_IP_GEN=<off|on>

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying the Maximum Number of Processors

Parallel IP generation derives the maximum number of processors to use from the
Maximum processors allowed Compiler setting. If you specify no value for this
setting, the Intel Quartus Prime software selects an appropriate number based on the
available processors, and the number of tasks the processors can execute in parallel.

1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤
Compilation Process Settings.

2. Under Parallel compilation, specify the Maximum processors allowed for
processing designs.

Alternatively, you can you can set the number of processors with the following line in
the project .qsf file:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <number>

For the qsys-generate command line utility, you can use the --
parallel[=<number>] argument, where <number> indicates the target number of
processors.

Related Information

• Compilation Process Settings Help

• qsys-generate Command-Line Options on page 352

1.13.4. Files Generated for Intel FPGA IP Cores and Platform Designer
Systems

The Intel Quartus Prime Pro Edition software generates the following output file
structure for IP cores and Platform Designer systems. Platform Designer automatically
adds the generated .ip and .qsys files to your Intel Quartus Prime project.

For generated IP components, Platform Designer appends unique suffixes (hashes) to
the IP component’s RTL file name to ensure uniqueness of the RTL file and IP
component file. The uniqueness of the files is necessary because a system can have
multiple instances of the same IP, each with different parameterizations, resulting in
multiple variances of the IP component. The hash derives from the parameterization
that you specify for the IP component. This methodology ensures no collisions
between the multiple variants of the same IP.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

67

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#comp/comp/comp_tab_mode.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 47. Files generated for IP cores and Platform Designer Systems

<Project Directory>

<your_ip> _inst.v or .vhd - Lists file for IP core synthesis

<your_ip> .qip - Lists files for IP core synthesis

<your_ip> .debuginfo - Post-generation debug data

<your_ip> _generation.rpt - IP generation report

<your_ip> .bsf - Block symbol schematic file

<your_ip> .ppf - XML I/O pin information file
<your_ip> .html - Memory map data

<your_ip> .cmp - VHDL component declaration

<your_ip> .sip - NativeLink simulation integration file

<your_ip> .spd - Combines individual simulation startup scripts

<your_system>.qsys - System File
<your_subsystem> .qsys - Subsystem File
<your_system_directory>
<your_subsystem_directory>

<your_ip>.ipxact - IP XACT File

 _files.tcl

sim - IP simulation files

<simulator vendor>

<simulator vendor>

 - Simulator setup scripts

<your_ip> .v or vhd - Top-level simulation file

synth - IP synthesis files

<your_ip> .v or .vhd - Top-level IP synthesis file

ip - IP files

<your_system> - - Your system directory

 <your_system> .ip - Parameter file for system IP component

<your_subsystem> - Your Subsystem directory

 <your_subsystem> .ip - Parameter file for subsystem IP component

<your_ip> _bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qgsimc - Simulation caching file
<your_ip>.qgsynthc - Synthesis caching file

common - IP simulation script files

Table 18. IP Core and Platform Designer Simulation Files

File Name Description

<my_system>.qsys The Platform Designer system.

<my_subsystem>.qsys The Platform Designer subsystem.

ip/ Contains the parameter files for the IP components in the system and
subsystems.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<my_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you can use in VHDL design files.

<my_ip>_generation.rpt IP or Platform Designer generation log file. A summary of the messages during
IP generation.

<my_ip>.qgsimc Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<my_ip>.qgsynth Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<my_ip>.qip Contains all the required information about the IP component to integrate and
compile the IP component in the Intel Quartus Prime software.

<my_ip>.csv Contains information about the upgrade status of the IP component.

<my_ip>.bsf A Block Symbol File (.bsf) representation of the IP variation for use in Block
Diagram Files (.bdf).

<my_ip<>.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation, along with information about memories that you can initialize.

<my_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components created for use with the Pin Planner.

<my_ip>_bb.v Use the Verilog black box (_bb.v) file as an empty module declaration for use
as a black box.

<my_ip>.sip Contains information required for NativeLink simulation of IP components. Add
the .sip file to your Intel Quartus Prime Standard Edition project to enable
NativeLink for supported devices. The Intel Quartus Prime Pro Edition software
does not support NativeLink simulation.

<my_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<my_ip>.regmap If the IP contains register information, the Intel Quartus Prime software
generates the .regmap file. The .regmap file describes the register map
information of master and slave interfaces. This file complements
the .sopcinfo file by providing more detailed register information about the
system. This file enables register display views and user customizable statistics
in System Console.

<my_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
During synthesis, the Intel Quartus Prime software stores the .svd files for
slave interface visible to the System Console masters in the .sof file in the
debug session. System Console reads this section, which Platform Designer can
query for register map information. For system slaves, Platform Designer can
access the registers by name.

<my_ip>.v <my_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation.

aldec/ Contains a Riviera-PRO* script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to
set up and run a VCS MX simulation.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

/xcelium Contains a shell script xcelium_setup.sh and other setup files to set up and
run a Xcelium* simulation.

/common Contains a set of Tcl files, <simulator>_files.tcl, which provide all design
related simulation information required by a corresponding simulation script.
The Tcl file contains designs from current system-level hierarchy, and
references to sub-systems and IP components.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ For each generated IP submodule directory, Platform Designer generates /
synth and /sim sub-directories.

1.13.5. Generating System Testbench Files

Platform Designer can generate testbench files that instantiate the current Platform
Designer system and add Bus Functional Models (BFMs) to drive the top-level
interfaces. BFMs interact with the system in the simulator.

You can generate a standard or simple testbench system with BFM or Mentor
Verification IP (for AMBA 3 AXI or AMBA 4 AXI) components that drive the external
interfaces of the system. Platform Designer generates a Verilog HDL or VHDL
simulation model for the testbench system to use in the simulation tool.

First generate a testbench system, and then modify the testbench system in Platform
Designer before generating the simulation model. Typically, you select only one of the
simulation model options.

Follow these steps to generate system testbench files:

1. Open and configure a system in Platform Designer.

2. Click Generate ➤ Generate Testbench System. The Generation dialog box
appears.

3. Specify options for the test bench system:

Table 19. Testbench Generation Options

Option Description

Create testbench Platform
Designer system

Specifies a simple or standard testbench system:

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

• Standard, BFMs for standard Platform Designer Interconnect—Creates a
testbench Platform Designer system with BFM IP components attached to
exported Avalon and AMBA 3 AXI or AMBA 3 AXI interfaces. Includes any
simulation partner modules specified by IP components in the system. The
testbench generator supports AXI interfaces and can connect AMBA 3 AXI or
AMBA 3 AXI interfaces to Mentor Graphics AMBA 3 AXI or AMBA 3 AXI master/
slave BFMs. However, BFMs support address widths only up to 32-bits.

• Simple, BFMs for clocks and resets—Creates a testbench Platform Designer
system with BFM IP components driving only clock and reset interfaces. Includes
any simulation partner modules specified by IP components in the system.

Create testbench simulation
model

Specifies Verilog HDL or VHDL simulation model files and simulation scripts for the
testbench. Use this option if you do not need to modify the Platform Designer-
generated testbench before running the simulation.

Output directory Specifies the path for output of generated testbench files. Turn on Clear output to
remove any previously generated content from the location.

Parallel IP Generation Turn on Use multiple processors for faster IP generation (when available) to
generate IP using multiple CPUs when available in your system.

4. Click Generate. The testbench files generate according to your specifications.

5. Open the testbench system in Platform Designer. Make changes to the BFMs, as
needed, such as changing the instance names and VHDL ID value. For example,
you can modify the VHDL ID value in the Avalon Interrupt Source Intel FPGA
IP component.

6. If you modify a BFM, regenerate the simulation model for the testbench system.

7. Compile the system and load the Platform Designer system and testbench into
your simulator, and then run the simulation.

1.13.5.1. Platform Designer Testbench Simulation Output Directories

Platform Designer generates the following testbench files.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 48. Platform Designer Simulation Testbench Directory Structure

<system>.qsys

<system>.sopcinfo

<system>_tb

 <system>.html

 <system>.ipx

 <system>.regmap

 <system>_generation.rpt

 <system>_tb.html

 <system>_tb.qsys

 <system>_tb

 <system>_tb.csv

 <system>_tb.spd

 sim

 <HDL files>

 aldec

 cadence

 synopsys

 xcelium

 <Child IP core>

 sim

 <HDL files>

Output Directory Structure

 mentor

 common

1.13.5.2. Platform Designer Testbench Files

Platform Designer generates the following testbench files.

Table 20. Platform Designer Testbench Files

File Name or Directory Name Description

<system>_tb.qsys The Platform Designer testbench system.

<system>_tb.v

or
<system>_tb.vhd

The top-level testbench file that connects BFMs to the top-level interfaces of
<system>_tb.qsys.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name or Directory Name Description

<system>_tb.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files generated for
simulation and information about memory that you can initialize.

<system>.html

and
<system>_tb.html

A system report that contains connection information, a memory map showing
the address of each slave with respect to each master to which it is connected,
and parameter assignments.

<system>_generation.rpt Platform Designer generation log file. A summary of the messages that Platform
Designer issues during testbench system generation.

<system>.ipx The IP Index File (.ipx) lists the available IP components, or a reference to
other directories to search for IP components.

<system>.svd Allows HPS System Debug tools to view the register maps of peripherals
connected to HPS within a Platform Designer system.
Similarly, during synthesis the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section. System
Console reads this section, which Platform Designer can query for register map
information. For system slaves, Platform Designer can access the registers by
name.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a simulation

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS simulation.
Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to set
up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and run
an NCSIM simulation.

/xcelium Contains a shell script xcelium_setup.sh and other setup files to set up and
run an Xcelium simulation.

/common Contains a set of Tcl files, <simulator>_files.tcl, which provide all design
related simulation information required by a corresponding simulation script. The
Tcl file contains designs from current system-level hierarchy, and references to
sub-systems and IP components.

/submodules Contains HDL files for the submodule of the Platform Designer testbench system.

<child IP cores>/ For each generated child IP core directory, Platform Designer testbench
generates /synth and /sim subdirectories.

1.13.6. Generating Example Designs for IP Components

Some Platform Designer IP components include example designs that you can use or
modify to replicate similar functionality in your own system. You must generate the
examples to view or use them.

Use any of the following methods to generate example designs for IP components:

• Double-click the IP component in the Platform Designer IP Catalog or System
View tab. The parameter editor for the component appears. If available, click the
Example Design button in the parameter editor to generate the example design.
The Example Design button only appears in the parameter editor if an example
is available.

• For some IP components, click Generate ➤ Generate Example Design to
access an example design. This command only enables when a design example is
available.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following Platform Designer system example designs demonstrate various design
features and flows that you can replicate in your Platform Designer system.

Related Information

Intel FPGA Design Example Web Page

1.13.7. Incremental System Generation Example

You can modify the parameters of an IP component and regenerate the RTL for just
that particular IP component.

The following example demonstrates incremental generation of a Platform Designer
System:

1. Create a new Platform Designer system, as Creating or Opening a Platform
Designer System on page 14 describes.

2. Use the IP Catalog to locate and add the On-Chip Memory (RAM or ROM)
Reset Bridge, and Clock Bridge components to the system, as Adding IP
Components to a System on page 28 describes.

3. Make the necessary system connections between the IP components added to the
system, as Connecting System Components on page 38 describes.

4. To save and close the system without generating, click File ➤ Save and close
Platform Designer.

5. In the Intel Quartus Prime software, click File ➤ Open Project.

6. Select the Intel Quartus Prime project associated with your saved Platform
Designer system. The Intel Quartus Prime software opens the project and the
associated Platform Designer system.

7. To start the compilation of the Intel Quartus Prime project, click Processing ➤
Start Compilation.

8. After compilation completes, in Platform Designer, click File ➤ Open.

9. Select the .ip file for any one of the IP components in your saved system.

10. Modify some parameter in this .ip file.

Note: Make sure your modifications do not affect the parent system, requiring a
system update by running Validate System Integrity from within the
Platform Designer system after loading the parent system, or by running
qsys-validate from the command-line.

11. To save the IP file, click File ➤ Save.

12. To restart the compilation of the same Intel Quartus Prime project with modified
Platform Designer system, click Processing ➤ Start Compilation in the Intel
Quartus Prime software. Platform Designer generates the RTL only for the
modified IP component, skipping the generation of the other components in the
system.

1.13.8. Generating the HPS IP Component System View Description File

Platform Designer systems that contain an HPS IP component generate a System View
Description (.svd) file that lists peripherals connected to the Arm processor.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

74

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The .svd (or CMSIS-SVD) file format is an XML schema specified as part of the Cortex
Microcontroller Software Interface Standard (CMSIS) that Arm provides. The .svd file
allows HPS system debug tools (such as the DS-5 Debugger) to view the register
maps of peripherals connected to HPS in a Platform Designer system.

Related Information

• Component Interface Tcl Reference on page 567

• CMSIS - Cortex Microcontroller Software

1.13.9. Generating Header Files for Master Components

You can use the sopc-create-header-files command from the Nios II command
shell to create header files for any master component in your Platform Designer
system. The Nios II tool chain uses this command to create the processor's system.h
file. You can also use this command to generate system level information for a hard
processing system (HPS) in Intel's SoC devices or other external processors. The
header file includes address map information for each slave, relative to each master
that accesses the slave. Different masters may have different address maps to access
a particular slave component. By default, the header files are in C format and have
a .h suffix. You can select other formats with appropriate command-line options.

Table 21. sopc-create-header-files Command-Line Options

Option Description

<sopc> Path to Platform Designer .sopcinfo file, or the file directory. If you omit
this option, the path defaults to the current directory. If you specify a
directory path, you must make sure that there is a .sopcinfo file in the
directory.

--separate-masters Does not combine a module's masters that are in the same address space.

--output-dir[=<dirname>] Allows you to specify multiple header files in dirname. The default output
directory is '.'

--single[=<filename>] Allows you to create a single header file, filename.

--single-prefix[=<prefix>] Prefixes macros from a selected single master.

--module[=<moduleName>] Specifies the module name when creating a single header file.

--master[=<masterName>] Specifies the master name when creating a single header file.

--format[=<type>] Specifies the header file format. Default file format is .h.

--silent Does not display normal messages.

--help Displays help for sopc-create-header-files.

By default, the sopc-create-header-files command creates multiple header
files. There is one header file for the entire system, and one header file for each
master group in each module. A master group is a set of masters in a module in the
same address space. In general, a module may have multiple master groups.
Addresses and available devices are a function of the master group.

Alternatively, you can use the --single option to create one header file for one
master group. If there is one CPU module in the Platform Designer system with one
master group, the command generates a header file for that CPU's master group. If
there are no CPU modules, but there is one module with one master group, the
command generates the header file for that module's master group.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

75

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the --module and --master options to override these defaults. If your
module has multiple master groups, use the --master option to specify the name of
a master in the desired master group.

Table 22. Supported Header File Formats

Type Suffix Uses Example

h .h C/C++ header files #define FOO 12

m4 .m4 Macro files for m4 m4_define("FOO", 12)

sh .sh Shell scripts FOO=12

mk .mk Makefiles FOO := 12

pm .pm Perl scripts $macros{FOO} = 12;

Note: You can use the sopc-create-header-files command when you want to generate
C macro files for DMAs that have access to memory that the Nios II does not have
access to.

1.14. Simulating a Platform Designer System

You can simulate a Platform Designer system in a supported third-party simulator to
verify and debug operation. Platform Designer generates the simulation models for
your system, along with optional scripts to set up the simulation environment for
specific, supported third-party simulators.

Platform Designer generates simulation scripts for all .ip and .qsys files of a system
and places the files in the simulation script output folder (<top-level system
name>/sim/<simulator name>).

Platform Designer always generates the simulation scripts from the currently loaded
system down. Alternatively, you can open a subsystem to generate a simulation script
just for that subsystem.

You can use scripts to compile the required device libraries and system design files in
the correct order and elaborate or load the top-level system for simulation.

Table 23. Simulation Script Variables
The simulation scripts provide variables that allow flexibility in your simulation environment.

Variable Description

TOP_LEVEL_NAME If the testbench Platform Designer system is not the top-level instance in your simulation
environment because you instantiate the Platform Designer testbench within your own top-
level simulation file, set the TOP_LEVEL_NAME variable to the top-level hierarchy name.

QSYS_SIMDIR If the simulation files generated by Platform Designer are not in the simulation working
directory, use the QSYS_SIMDIR variable to specify the directory location of the Platform
Designer simulation files.

QUARTUS_INSTALL_DIR Points to the Quartus installation directory that contains the device family library.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3. Top-Level Simulation HDL File for a Testbench System

The example below shows the pattern_generator_tb generated for a Platform
Designer system called pattern_generator. The top.sv file defines the top-level
module that instantiates the pattern_generator_tb simulation model, as well as a
custom SystemVerilog test program with BFM transactions, called test_program.

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

1.14.1. Adding Assertion Monitors for Simulation

You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to
verify protocol and test coverage with a simulator that supports SystemVerilog
assertions.

Note: ModelSim - Intel FPGA Edition does not support SystemVerilog assertions. If you want
to use assertion monitors, you must use a supported third-party simulator. For more
information, refer to Introduction to Intel FPGA IP Cores.

Figure 49. Inserting an Avalon-MM Monitor Between an Avalon-MM Master and Slave
Interface
This example demonstrates the use of a monitor with an Avalon-MM monitor between the pcie_compiler
bar1_0_Prefetchable Avalon-MM master interface, and the dma_0 control_port_slave Avalon-MM
slave interface.

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink
interfaces.

1.14.2. Simulating Software Running on a Nios II Processor

To simulate the software in a system driven by a Nios II processor, generate the
simulation model for the Platform Designer testbench system with the following steps:

1. Click Generate ➤ Generate Testbench System.

2. In the Generation dialog box, select Simple, BFMs for clocks and resets.

3. For Create testbench simulation model, select Verilog or VHDL.

4. Click Generate.

5. Open the Nios II Software Build Tools for Eclipse.

6. Set up an application project and board support package (BSP) for the
<system>.sopcinfo file.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. To simulate, right-click the application project in Eclipse, and then click Run as ➤
Nios II ModelSim. This command prepares the ModelSim simulation
environment, and compiles and loads the Nios II software simulation.

8. To run the simulation in ModelSim, type run -all in the ModelSim transcript
window.

9. Set the ModelSim settings and select the Platform Designer Testbench Simulation
Package Descriptor (.spd) file, < system >_tb.spd. The .spd file generates
with the testbench simulation model for Nios II designs, and specifies the files you
require for Nios II simulation.

Related Information

Nios II Gen2 Software Developer's Handbook

1.15. Adding a System to an Intel Quartus Prime Project

Platform Designer requires that you to specify an associated Intel Quartus Prime
project at time of system creation. After you specify the associated project, Platform
Designer automatically adds any system or IP component that you generate to that
project. You can also manually add a Platform Designer system or component to a
project.

To add a Platform Designer system or component to an Intel Quartus Prime project,
perform one or more of the following steps:

1. In Platform Designer, specify the associated Quartus project when you create a
system, or click File ➤ Select Quartus Project to change this setting. Platform
Designer automatically adds any system or IP component that you generate to the
associated Intel Quartus Prime project.

2. To manually add a Platform Designer system or component to your project,
generate the system or component, and then click Project ➤ Add/Remove Files
in Project in the Intel Quartus Prime software.

3. Select and add the .qsys files to your project. The Intel Quartus Prime Project
Navigator Files tab lists all system and component files that you or Platform
Designer add to your project.

Figure 50. Platform Designer System Files in Project

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

78

https://www.intel.com/content/www/us/en/programmable/documentation/lro1419794938488.html#mwh1416946583818
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.16. Managing Hierarchical Platform Designer Systems

Platform Designer supports hierarchical systems that include one or more Platform
Designer subsystems within another Platform Designer system. Platform Designer
allows you to create, explore, and edit systems and subsystems together in the same
Platform Designer window. Platform Designer generates the complete system
hierarchy during the top-level system’s generation.

All hierarchical Platform Designer systems appear in the IP Catalog under Project ➤
System. You select the system from the IP Catalog to reuse the system across
multiple designs. In a team-based hierarchical design flow, you can divide large
designs into subsystems and allow team members develop subsystems
simultaneously.

Related Information

Viewing the System Hierarchy on page 18

1.16.1. Adding a Subsystem to a Platform Designer System

You can add a Platform Designer system as a subsystem (child) of another Platform
Designer system (parent), at any level in the parent system hierarchy.

Follow these steps to add a subsystem to a Platform Designer system:

1. Create a Platform Designer system to use as the subsystem.

2. Open a Platform Designer system to contain the subsystem.

3. On the System View tab, use any of the following methods to add the
subsystem:

• Right-click anywhere in the System View and click Add a new subsystem
to the current system.

• Click the Add a new subsystem to the current system button on the
toolbar.

• Press Ctrl+Shift+N.

4. In the Confirm New System Name dialog box, confirm or specify the new
system file name and click OK. The system appears as a new subsystem in the
System View.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 51. Adding a Subsystem

1.16.2. Viewing and Traversing Subsystem Contents

You can view and traverse the elements and connections within subsystems in a
hierarchical Platform Designer system.

Note: You can only view and traverse the contents of subsystems that you define in a .qsys
file, not parameterizable Platform Designer systems or _hw.tcl files.

Follow these steps to view and traverse subsystem contents:

1. Open a Platform Designer system that contains a subsystem.

2. Use any of the following methods to view the subsystem contents:

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Double-click a subsystem in the Hierarchy tab. The subsystem opens in the
System View.

• Right-click a system in the System View or Schematic tabs, and then select
Drill into Subsystem. The subsystem opens in the System View.

• Press Ctrl+Shift+D in the System View tab.

3. Use any of the following System View or Schematic tab toolbar buttons to
traverse the system and subsystems:

Table 24. System View and Schematic Tab Navigation Buttons

Button Description

Move to the top of the hierarchy—navigates to the top-level (parent) .qsys file for
the system.

Move up one level of hierarchy—navigates up one hierarchy level from the current
selection.

Drill into a subsystem to explore its contents—opens the subsystem you select in
the System View.

Note: In the System View tab, you can press Ctrl+Shift+U to navigate up one
level, and Ctrl+Shift+D to drill into a system.

Figure 52. Traversing Subsystem Contents

Drill into

Up One Level

Top Level

1.16.3. Editing a Subsystem

You can double-click a Platform Designer subsystem in the Hierarchy tab to edit its
contents in any tab. When you make a change, open tabs refresh their content to
reflect your edit. You can change the level of a subsystem, or push the system into
another subsystem with commands in the System View tab.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can only edit subsystems that a writable .qsys file preserves. You cannot edit
systems that you create from composed _hw.tcl files, or systems that define
instance parameters.

Follow these steps to edit a Platform Designer subsystem:

1. Open a Platform Designer system that contains a subsystem.

2. In the System View or Schematic tabs, use the Move Up, Move Down, Move
to Top, and Move to Bottom toolbar buttons to navigate the system level you
want to edit. Platform Designer updates to reflect your selection.

3. To edit a system, double-click the system in the Hierarchy tab. The system opens
and is available for edit in all Platform Designer views.

4. In the System View tab, you can rename any element, add, remove, or duplicate
connections, and export interfaces, as appropriate.

Note: Changes to a subsystem affect all instances. Platform Designer identifies
unsaved changes to a subsystem with an asterisk next to the subsystem in
the Hierarchy tab.

1.16.4. Changing a Component's Hierarchy Level

You can change the hierarchical level of components in your system.

You can lower the hierarchical level of a component, even into its own subsystem,
which can simplify the top-level system view. You can also raise the level of a
component or subsystem to share the component or subsystem between two unique
subsystems. Management of hierarchy levels facilitates system optimization and can
reduce complex connectivity in your subsystems.

Follow these steps to change a component's hierarchy level:

1. Open a Platform Designer system that contains a subsystem.

2. In the System View tab, to group and change the hierarchy level of multiple
components that share a system-level component, multi-select the components,
right-click, and then click Push down into new subsystem. Platform Designer
pushes the components into their own subsystem and re-establishes the exported
signals and connectivity in the new location.

3. In the System View tab, to pull a component up out of a subsystem, select the
component, and then click Pull up. Platform Designer pulls the component up out
of the subsystem and re-establishes the exported signals and connectivity in the
new location.

1.16.5. Saving a Subsystem

When you save a subsystem as part of a Platform Designer system, Platform Designer
confirms the new subsystem name in the Confirm New System Filenames dialog
box. By default, Platform Designer suggests the same name as the subsystem .qsys
file and saves in the project’s /ip directory.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to save a subsystem:

1. Open a Platform Designer system that contains a subsystem.

2. Click File ➤ Save to save your Platform Designer design.

3. In the Confirm New System Filenames dialog box, click OK to accept the
subsystem file names.

Note: If you have not yet saved your top-level system, or multiple subsystems,
you can type a new name, and then press Enter, to move to the next un-
named system.

4. In the Confirm New System Filenames dialog box, to edit the name of a
subsystem, click the subsystem, and then type the new name.

1.17. Saving, Archiving, and Restoring Platform Designer Systems

Platform Designer allows you to save or archive your system. When you archive the
system, Platform Designer saves the bundled system in .zip format. The
archive .zip file preserves all files that you need to restore the system.

Saving a Platform Designer System

Follow these steps to save a Platform Designer system:

1. Open a Platform Designer system, as .

2. Use any of the following methods to save Platform Designer system files:

• To save a Platform Designer system, click File ➤ Save.

• To save the system as a Platform Designer script, click File ➤ Export System
as qsys script (.tcl). You can restore this system by executing the .tcl
script from the System Scripting tab.

• To create a copy of the standalone .ip file, click File ➤ Save As.

Archiving and Restoring a Platform Designer System

Follow these steps to archive and restore a system:

1. In Platform Designer, click File ➤ Archive System. The Archive System dialog
box appears.

2. Specify the Archive file name.

3. Enable or disable Collect to common directory. When enabled, Platform
Designer collects all the .qsys files in the root directory of the archive, and all
the .ip files to a single ip directory, while updating all the references to match.
Disable this option to maintain the current system directory structure for the
archive.

4. Click OK. Platform Designer generates the archive.

5. To restore the archived system, click File ➤ Restore Archive System. Select the
Archive file name, and Destination folder to extract the restored files.

After restoration is complete, Platform Designer automatically launches the Open
System dialog box, with the extracted project preloaded.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Archive a Platform Designer System with qsys-archive on page 362

1.18. Running System Scripts

The System Scripting tab allows you to enter, save, and execute Tcl scripts on your
Platform Designer system. The tab includes a selection of provided scripts, as well as
support for storage and retrieval of your own scripts.

Follow these steps to enter, save, and execute Tcl scripts on your Platform Designer
system:

1. To open the System Scripting tab, click View ➤ System Scripting.

Figure 53. System Scripting Tab

2. For User Scripts or Project Scripts, click <<add script>> to add a new script
file to this entry. You can drag items between the Project Scripts and User
Scripts fields.

3. To add additional commands to run before the script, right-click the column header
and enable Additional Commands. Selecting this option displays a third column,
in addition to File and Description. Double-click the entry in this field to add
commands to execute before running your script. Alternatively, you can add the
additional commands to your script, directly through the display pane in the
middle, in the specified section.

The System Scripting tab provides the following fields:

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 25. System Scripting Tab Options

Name Description

Platform Designer Built-in Scripts Lists non-editable scripts that Platform Designer provides.

User Scripts You can add your own scripts to this entry. Platform Designer saves these scripts
to your user preference file, available in your home directory. The scripts that
you add to this entry are available every time you open Platform Designer.

Project Scripts You can add your own scripts to this entry. Platform Designer saves these scripts
to your current system. The scripts that you add to this entry are available only
when you open this specific Platform Designer system.

Edit File Selecting the script in the File field displays the script in the pane below. Click
Edit File to edit the script.

Revert File Discards all your changes to the edited file.

Save File Saves your changes to the edited file.

Run Script Executes the selected script.

System Scripting Messages Displays the warning and error messages when running the script.

Related Information

Platform Designer Command-Line Utilities on page 349

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.19. Creating a System with Platform Designer Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2020.01.31 19.1.0 • Removed obsolete "Implementing Performance Monitoring" topic.

2019.10.02 19.1.0 • Updated location of interconnect parameters security setting in
"Configuring Platform Designer System Security" topic.

2019.09.30 19.1.0 • Removed reference to obsolete Bus Analyzer Toolkit from
"Implementing Performance Monitoring" topic.

2019.06.24 19.1.0 • Removed obsolete Interconnect Type parameter from "Interconnect
Parameters" topic.

2019.04.30 19.1.0 • Corrected typographical error in "Interconnect Parameters" topic.

2019.04.01 19.1.0 • Described new Domains tab for specifying system-wide or domain-
specific interconnect parameters.

• Described new default use of synchronous reset option for Intel Stratix
10 designs in "Interconnect Parameters."

• Described new Schematic tab in "Previewing the System Interconnect."

2018.12.15 18.1.0 • Replaced references to System Contents tab with new System View
tab.

• Described new Filter tab in Filtering the "Filtering the System View."
• Updated "Disabling or Enabling Parallel IP Generation" to indicate

option is now on by default and describe optional settings.
• Moved command-line utility information into new "Platform Designer

Command-Line Interface" chapter.
• Removed "Creating a Combined Simulation Script" topic that does not

apply to Platform Designer.
• Revised headings and re-organized content into user task-based

sections.
• Updated screenshots for latest version.

2018.09.24 18.1.0 • Removed duplicated topic: Manually Control Pipelining in the Platform
Design Interconnect. The topic is now in the Platform Design
Interconnect chapter.

• Added statement about supported standards for IP-XACT.
• Divided topic: Specify Implementation Type for IP Components into

Configure the System Representation of an IP Core and
Implementation Type.

• Reorganized information about associating Intel Quartus Prime projects
to Platform Designer systems.

• Grouped information regarding definition and management of IP cores
in Platform Designer under topic: IP Cores in Platform Designer, and
updated contents.

• Expanded description of parallel IP generation.
• In topic 64-Bit Addressing Support, added link to information about the

auto base assignment feature.

2018.06.15 18.0.0 • Updated description of Enable ECC protection in table: System-Wide
Interconnect Requirements.

• Updated example in topic: Generate a Platform Design System with
qsys-script.

2018.05.07 18.0.0 • Added support for hierarchical simscripts, and the Xcelium Parallel
Simulator in .

• Added support for --debug command used with qsys-edit.
• Added support for wire-level expressions and connectivity.
• Added _hw.tcl commands to support wire-level expressions.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer

2017.05.06 17.0.0 • Updated the topic - Create/Open Project in Qsys Pro
• Updated the topic - Modify the Target Device
• Updated the topic - Modify the IP Search Path
• Added new topic - Save your System
• Added new topic - Archive your System
• Added new topic - Synchronize IP File References
• Updated the topic - Upgrade Outdated IP Components in Qsys Pro.
• Added new topic - Run System Scripts
• Added new topic - View Avalon Memory Mapped Domains in Your Qsys

Pro System
• Updated the topic - Qsys Pro Scripting Command Reference for new Tcl

scripting commands
• Updated the topic - Qsys Pro Scripting Property Reference for new Tcl

scripting property

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.
• Integrated Qsys Pro chapter with Qsys.
• Added command-line options for qsys-archive.
• Added command-line options for quartus_ipgenerate.
• Updated the Qsys Pro scripting commands.
• Added topic on Qsys Pro design conversion.

2016.05.03 16.0.0 • Qsys Command-Line Utilities updated with latest supported command-
line options.

• Added: Generate Header Files

2015.11.02 15.1.0 • Added: Troubleshooting IP or Qsys Pro System Upgrade.
• Added: Generating Version-Agnostic IP and Qsys Pro Simulation

Scripts.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • New figure: Avalon-MM Write Master Timing Waveforms in the
Parameters Tab.

• Added Enable ECC protection option, Specify Qsys Interconnect
Requirements.

• Added External Memory Interface Debug Toolkit note, Generate a Qsys
System.

• Modelsim-Altera now supports native mixed-language (VHDL/Verilog/
SystemVerilog) simulation, Generating Files for Synthesis and
Simulation.

December 2014 14.1.0 • Create and Manage Hierarchical Qsys Systems.
• Schematic tab.
• View and Filter Clock and Reset Domains.
• File ➤ Recent Projects menu item.
• Updated example: Hierarchical System Using Instance Parameters

August 2014 14.0a10.0 • Added distinction between legacy and standard device generation.
• Updated: Upgrading Outdated IP Components.
• Updated: Generating a Qsys System.
• Updated: Integrating a Qsys System with the Quartus II Software.
• Added screen shot: Displaying Your Qsys System.

June 2014 14.0.0 • Added tab descriptions: Details, Connections.
• Added Managing IP Settings in the Quartus II Software.
• Added Upgrading Outdated IP Components.
• Added Support for Avalon-MM Non-Power of Two Data Widths.

continued...

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2013 13.1.0 • Added Integrating with the .qsys File.
• Added Using the Hierarchy Tab.
• Added Managing Interconnect Requirements.
• Added Viewing Qsys Interconnect.

May 2013 13.0.0 • Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BFM ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS Component.
• Added VHDL language support options.

November 2012 12.1.0 • Added AMBA AXI4 support.

June 2012 12.0.0 • Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

November 2011 11.1.0 • Added Synopsys VCS and VCS MX Simulation Shell Script.
• Added Cadence Incisive Enterprise (NCSIM) Simulation Shell Script.
• Added Using Instance Parameters and Example Hierarchical System

Using Parameters.

May 2011 11.0.0 • Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

December 2010 10.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Creating a System with Platform Designer

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

88

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Creating Platform Designer Components

You can create a Hardware Component Definition File (_hw.tcl) to describe and
package IP components for use in a Platform Designer system.

Note: Intel now refers to Qsys Pro as Platform Designer.

A _hw.tcl describes IP components, interfaces and HDL files. Platform Designer
provides the Component Editor to help you create a simple _hw.tcl file.

Refer to the Demo AXI Memory example on the Design Examples page for full code
examples that appear in this chapter.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Platform Designer allows you to establish connections between Avalon and AXI
interface by generating an interconnect logic. This logic enables you to handle the
protocol difference. Platform Designer creates the interconnect logic by converting all
the protocols to a proprietary packet format. Then, the tool routes the packet through
network switches to the appropriate slaves. Here, the packet converts to the slave's
protocol.

Related Information

• Avalon Interface Specifications

• Protocol Specifications

• Demo AXI Memory Example

2.1. Platform Designer Components

A Platform Designer component includes the following elements:

• Information about the component type, such as name, version, and author.

• HDL description of the component’s hardware, including SystemVerilog, Verilog
HDL, or VHDL files.

• A Synopsys* Design Constraints File .sdc that defines the component for
synthesis and simulation.

• A .ip file that defines the component's parameters.

• A component’s interfaces, including I/O signals.

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1.1. Platform Designer Interface Support

Platform Designer is most effective when you use standard interfaces available in the
IP Catalog to design custom IP. Standard interfaces operate efficiently with Intel FPGA
IP components, and you can take advantage of the bus functional models (BFMs),
monitors, and other verification IP that the IP Catalog provides.

Platform Designer supports the following interface specifications:

• Intel FPGA Avalon Memory-Mapped and Streaming

• Arm AMBA 3 AXI (version 1.0)

• Arm AMBA 4 AXI (version 2.0)

• Arm AMBA 4 AXI-Lite (version 2.0)

• Arm AMBA 4 AXI-Stream (version 1.0)

• Arm AMBA 3 APB (version 1.0)

IP components (IP Cores) can have any number of interfaces in any combination. Each
interface represents a set of signals that you can connect within a Platform Designer
system, or export outside of a Platform Designer system.

Platform Designer IP components can include the following interface types:

Table 26. IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master devices can
be processors and DMAs, while slave memory devices can be RAMs, ROMs, and control
registers. Data transfers between master and slave may be uni-directional (read only or write
only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data, as
well as high-bandwidth, low-latency IP components. Streaming creates datapaths for
unidirectional traffic, including multichannel streams, packets, and DSP data. The Avalon-ST
interconnect is flexible and can implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet, Interlaken, and video.
You can define bus widths, packets, and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Platform Designer supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines which IRQ has
highest priority, then responds appropriately.

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source
connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a particular
positive-edge or negative-edge synchronized reset, Platform Designer inserts a reset controller
to create the appropriate reset signal. If you design a system with multiple reset inputs, the
reset controller ORs all reset inputs and generates a single reset output.

Conduits Connects point-to-point conduit interfaces, or represent signals that you export from the
Platform Designer system. Platform Designer uses conduits for component I/O signals that are
not part of any supported standard interface. You can connect two conduits directly within a
Platform Designer system as a point-to-point connection. Alternatively, you can export conduit
interfaces and bring the interfaces to the top-level of the system as top-level system I/O. You
can use conduits to connect to external devices, for example external DDR SDRAM memory,
and to FPGA logic defined outside of the Platform Designer system.

Related Information

• Avalon Interface Specifications

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

90

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• AMBA Protocol Specifications

2.1.2. Component Structure

Intel provides components automatically installed with the Intel Quartus Prime
software. You can obtain a list of Platform Designer-compliant components provided
by third-party IP developers on Altera's Intellectual Property & Reference
Designs page by typing: qsys certified in the Search box, and then selecting IP
Core & Reference Designs. Components are also provided with Intel development
kits, which are listed on the All Development Kits page.

Every component is defined with a <component_name>_hw.tcl file, a text file
written in the Tcl scripting language that describes the component to Platform
Designer. When you design your own custom component, you can create the _hw.tcl
file manually, or by using the Platform Designer Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a
file that you can edit outside of the Component Editor to add advanced procedures.
When you edit a previously saved _hw.tcl file, Platform Designer automatically backs
up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so
that other users can use the component in their systems. The _hw.tcl file contains
relative paths to the other files, so if you move an _hw.tcl file, you should also move
all the HDL and other files associated with it.

There are four component types:

• Static— static components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

• Generated—generated component's fileset callback allows an instance of the
component to create unique HDL design files based on the instance's parameter
values.

• Composed—composed components are subsystems constructed from instances of
other components. You can use a composition callback to manage the subsystem
in a composed component.

• Generic—generic components allow instantiation of IP components without an
HDL implementation. Generic components enable hierarchical isolation between
system interconnect and IP components.

Related Information

• Create a Composed Component or Subsystem on page 120

• Add Component Instances to a Static or Generated Component on page 122

2.1.3. Component File Organization

A typical component uses the following directory structure where the names of the
directories are not significant:

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

91

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd
files that contain the top-level module, along with any required constraint files.

• <component_name> _hw.tcl—The component description file.

• <component_name> _sw.tcl—The software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component, when
required.

• <software>/—Contains software drivers or libraries related to the component.

Note: Refer to the Nios II Software Developer’s Handbook for information about writing a
device driver or software package suitable for use with the Nios II processor.

Related Information

Nios II Software Developer’s Handbook
Refer to the "Nios II Software Build Tools" and "Overview of the Hardware
Abstraction Layer" chapters.

2.1.4. Component Versions

Platform Designer systems support multiple versions of the same component within
the same system; you can create and maintain multiple versions of the same
component.

If you have multiple _hw.tcl files for components with the same NAME module
properties and different VERSION module properties, both versions of the component
are available.

If multiple versions of the component are available in the IP Catalog, you can add a
specific version of a component by right-clicking the component, and then selecting
Add version <version_number>.

2.1.4.1. Upgrade IP Components to the Latest Version

When you open a Platform Designer design, if Platform Designer detects IP
components that require regeneration, the Upgrade IP Cores dialog box appears and
allows you to upgrade outdated components.

Components that you must upgrade in order to successfully compile your design
appear in red. Status icons indicate whether a component is currently being
regenerated, the component is encrypted, or that there is not enough information to
determine the status of component. To upgrade a component, in the Upgrade IP
Cores dialog box, select the component that you want to upgrade, and then click
Upgrade. The Intel Quartus Prime software maintains a list of all IP components
associated with your design on the Components tab in the Project Navigator.

Related Information

Upgrade IP Components Dialog Box
In Intel Quartus Prime Help

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

92

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_regenerate_ip.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2. Design Phases of an IP Component

When you define a component with the Platform Designer Component Editor, or a
custom _hw.tcl file, you specify the information that Platform Designer requires to
instantiate the component in a Platform Designer system and to generate the
appropriate output files for synthesis and simulation.

The following phases describe the process when working with components in Platform
Designer:

• Discovery—During the discovery phase, Platform Designer reads the _hw.tcl
file to identify information that appears in the IP Catalog, such as the component's
name, version, and documentation URLs. Each time you open Platform Designer,
the tool searches for the following file types using the default search locations and
entries in the IP Search Path:

— _hw.tcl files—Each _hw.tcl file defines a single component.

— IP Index (.ipx) files—Each .ipx file indexes a collection of available
components, or a reference to other directories to search.

• Static Component Definition—During the static component definition phase,
Platform Designer reads the _hw.tcl file to identify static parameter declarations,
interface properties, interface signals, and HDL files that define the component. At
this stage of the life cycle, the component interfaces may be only partially defined.

• Parameterization—During the parameterization phase, after an instance of the
component is added to a Platform Designer system, the user of the component
specifies parameters with the component’s parameter editor.

• Validation—During the validation phase, Platform Designer validates the values
of each instance's parameters against the allowed ranges specified for each
parameter. You can use callback procedures that run during the validation phase
to provide validation messages. For example, if there are dependencies between
parameters where only certain combinations of values are supported, you can
report errors for the unsupported values.

• Elaboration—During the elaboration phase, Platform Designer queries the
component for its interface information. Elaboration is triggered when an instance
of a component is added to a system, when its parameters are changed, or when
a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based
on the values of parameters. For example, interfaces defined with static
declarations can be enabled or disabled during elaboration. When elaboration is
complete, the component's interfaces and design logic must be completely
defined.

• Composition—During the composition phase, a component can manipulate the
instances in the component's subsystem. The _hw.tcl file uses a callback
procedure to provide parameterization and connectivity of sub-components.

• Generation—During the generation phase, Platform Designer generates synthesis
or simulation files for each component in the system into the appropriate output
directories, as well as any additional files that support associated tools

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. Create IP Components in the Platform Designer Component
Editor

The Platform Designer Component Editor allows you to create and package an IP
component. When you use the Component Editor to define a component, Platform
Designer writes the information to an _hw.tcl file.

The Platform Designer Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.

• Specify the SystemVerilog, Verilog HDL, VHDL files, and constraint files that define
the component for synthesis and simulation.

• Create an HDL template to define a component interfaces, signals, and
parameters.

• Set parameters on interfaces and signals that can alter the component's structure
or functionality.

If you add the top-level HDL file that defines the component on Files tab in the
Platform Designer Component Editor, you must define the component's parameters
and signals in the HDL file. You cannot add or remove them in the Component Editor.

If you do not have a top-level HDL component file, you can use the Platform Designer
Component Editor to add interfaces, signals, and parameters. In the Component
Editor, the order in which the tabs appear reflects the recommended design flow for
component development. You can use the Prev and Next buttons to guide you
through the tabs.

In a Platform Designer system, the interfaces of a component are connected in the
system, or exported as top-level signals from the system.

If the component is not based on an existing HDL file, enter the parameters, signals,
and interfaces first, and then return to the Files tab to create the top-level HDL file
template. When you click Finish, Platform Designer creates the component _hw.tcl
file with the details that you enter in the Component Editor.

When you save the component, it appears in the IP Catalog.

If you require custom features that the Platform Designer Component Editor does not
support, for example, an elaboration callback, use the Component Editor to create the
_hw.tcl file, and then manually edit the file to complete the component definition.

Note: If you add custom coding to a component, do not open the component file in the
Platform Designer Component Editor. The Platform Designer Component Editor
overwrites your custom edits.

Example 4. Platform Designer Creates an _hw.tcl File from Entries in the Component
Editor

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

connection point slave

add_interface slave axi end
set_interface_property slave associatedClock clock
set_interface_property slave associatedReset reset
set_interface_property slave readAcceptanceCapability 1
set_interface_property slave writeAcceptanceCapability 1
set_interface_property slave combinedAcceptanceCapability 1
set_interface_property slave readDataReorderingDepth 1
set_interface_property slave ENABLED true

add_interface_port slave axs_awid awid Input AXI_ID_W
...
add_interface_port slave axs_rresp rresp Output 2

Related Information

Component Interface Tcl Reference on page 567

2.3.1. Save an IP Component and Create the _hw.tcl File

You save a component by clicking Finish in the Platform Designer Component Editor.
The Component Editor saves the component as <component_name> _hw.tcl file.

Intel recommends that you move _hw.tcl files and their associated files to an ip/
directory within your Intel Quartus Prime project directory. You can use IP components
with other applications, such as the C compiler and a board support package (BSP)
generator.

Refer to Creating a System with Platform Designer for information on how to search
for and add components to the IP Catalog for use in your designs.

Related Information

• Creating a System with Platform Designer on page 10

• Publishing Component Information to Embedded Software
In Nios II Gen 2 Software Developer’s Handbook

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

95

https://www.intel.com/content/www/us/en/programmable/documentation/lro1419794938488.html#mwh1416946964569
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Publishing Component Information to Embedded Software (Nios II Software
Developer’s Handbook)

• Creating a System with Platform Designer on page 10

2.3.2. Edit an IP Component with the Platform Designer Component
Editor

In Platform Designer, you make changes to a component by right-clicking the
component in the System View tab, and then clicking Edit. After making changes,
click Finish to save the changes to the _hw.tcl file.

You can open an _hw.tcl file in a text editor to view the hardware Tcl for the
component. If you edit the _hw.tcl file to customize the component with advanced
features, you cannot use the Component Editor to make further changes without over-
writing your customized file.

You cannot use the Component Editor to edit components installed with the Intel
Quartus Prime software, such as Intel-provided components. If you edit the HDL for a
component and change the interface to the top-level module, you must edit the
component to reflect the changes you make to the HDL.

2.4. Specify IP Component Type Information

The Component Type tab in the Platform Designer Component Editor allows you to
specify the following information about the component:

• Name—Specifies the name used in the _hw.tcl filename, as well as in the top-
level module name when you create a synthesis wrapper file for a non HDL-based
component.

• Display name—Identifies the component in the parameter editor, which you use
to configure and instance of the component, and also appears in the IP Catalog
under Project and on the System View tab.

• Version—Specifies the version number of the component.

• Group—Represents the category of the component in the list of available
components in the IP Catalog. You can select an existing group from the list, or
define a new group by typing a name in the Group box. Separating entries in the
Group box with a slash defines a subcategory. For example, if you type
Memories and Memory Controllers/On-Chip, the component appears in the IP
Catalog under the On-Chip group, which is a subcategory of the Memories and
Memory Controllers group. If you save the component in the project directory,
the component appears in the IP Catalog in the group you specified under
Project. Alternatively, if you save the component in the Intel Quartus Prime
installation directory, the component appears in the specified group under IP
Catalog.

• Description—Allows you to describe the component. This description appears
when the user views the component details.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

96

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Created By—Allows you to specify the author of the component.

• Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png
format) that represents the component and appears as the header in the
parameter editor for the component. The default image is the Intel FPGA IP
function icon.

• Documentation—Allows you to add links to documentation for the component,
and appears when you right-click the component in the IP Catalog, and then select
Details.

— To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

— To specify a file in the file system, begin your path with file:/// for Linux,
and file://// for Windows; for example (Windows): file:////
company_server/datasheets my_memory_controller.pdf.

Figure 54. Component Type Tab in the Component Editor
The Display name, Group, Description, Created By, Icon, and Documentation entries are optional.

When you use the Component Editor to create a component, it writes this basic
component information in the _hw.tcl file. The package require command
specifies the Intel Quartus Prime software version that Platform Designer uses to
create the _hw.tcl file, and ensures compatibility with this version of the Platform
Designer API in future ACDS releases.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 5. _hw.tcl Created from Entries in the Component Type Tab

The component defines its basic information with various module properties using the
set_module_property command. For example, set_module_property NAME
specifies the name of the component, while set_module_property VERSION allows
you to specify the version of the component. When you apply a version to the
_hw.tcl file, it allows the file to behave exactly the same way in future releases of
the Intel Quartus Prime software.

request TCL package from ACDS 14.0

package require -exact qsys 14.0

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon-ST port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

Related Information

Component Interface Tcl Reference on page 567

2.5. Create an HDL File in the Platform Designer Component Editor

If you do not have an HDL file for your component, you can use the Platform Designer
Component Editor to define the component signals, interfaces, and parameters of your
component, and then create a simple top-level HDL file.

You can then edit the HDL file to add the logic that describes the component's
behavior.

1. In the Platform Designer Component Editor, specify the information about the
component in the Signals & Interfaces, and Interfaces, and Parameters tabs.

2. Click the Files tab.

3. Click Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified signals, interfaces,
and parameters, and the .v file appears in the Synthesis File table.

Related Information

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 100

2.6. Create an HDL File Using a Template in the Platform Designer
Component Editor

You can use a template to create interfaces and signals for your Platform Designer
component

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In Platform Designer, click New Component in the IP Catalog.

2. On the Component Type tab, define your component information in the Name,
Display Name, Version, Group, Description, Created by, Icon, and
Documentation boxes.

3. Click Finish.
Your new component appears in the IP Catalog under the category that you define
for "Group".

4. In Platform Designer, right-click your new component in the IP Catalog, and then
click Edit.

5. In the Platform Designer Component Editor, click any interface from the Templates
drop-down menu.
The Component Editor fills the Signals and Interfaces tabs with the component
interface template details.

6. On the Files tab, click Create Synthesis File from Signals.

7. Do the following in the Create HDL Template dialog box as shown below:

a. Verify that the correct files appears in File path, or browse to the location
where you want to save your file.

b. Select the HDL language.

c. Click Save to save your new interface, or Cancel to discard the new interface
definition.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create HDL Template Dialog Box

8. Verify the <component_name>.v file appears in the Synthesis Files table on
the Files tab.

Related Information

Specify Synthesis and Simulation Files in the Platform Designer Component Editor on
page 100

2.7. Specify Synthesis and Simulation Files in the Platform Designer
Component Editor

The Files tab in the Platform Designer Component Editor allows you to specify
synthesis and simulation files for your custom component.

If you already have an HDL file that describes the behavior and structure of your
component, you can specify those files on the Files tab.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you do not yet have an HDL file, you can specify the signals, interfaces, and
parameters of the component in the Component Editor, and then use the Create
Synthesis File from Signals option on the Files tab to create the top-level HDL file.
The Component Editor generates the _hw.tcl commands to specify the files.

Note: After you analyze the component's top-level HDL file (on the Files tab), you cannot
add or remove signals or change the signal names on the Signals & Interfaces tab.
If you need to edit signals, edit your HDL source, and then click Create Synthesis
File from Signals on the Files tab to integrate your changes.

A component uses filesets to specify the different sets of files that you can generate
for an instance of the component. The supported fileset types are: QUARTUS_SYNTH,
for synthesis and compilation in the Intel Quartus Prime software, SIM_VERILOG, for
Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In an _hw.tcl file, you can add a fileset with the add_fileset command. You can
then list specific files with the add_fileset_file command. The
add_fileset_property command allows you to add properties such as
TOP_LEVEL.

You can populate a fileset with a fixed list of files, add different files based on a
parameter value, or even generate an HDL file with a custom HDL generator function
outside of the _hw.tcl file.

Related Information

• Create an HDL File in the Platform Designer Component Editor on page 98

• Create an HDL File Using a Template in the Platform Designer Component Editor
on page 98

2.7.1. Specify HDL Files for Synthesis in the Platform Designer Component
Editor

In the Platform Designer Component Editor, you can add HDL files and other support
files with options on the Files tab.

A component must specify an HDL file as the top-level file. The top-level HDL file
contains the top-level module. The Synthesis Files list may also include supporting
HDL files, such as timing constraints, or other files required to successfully synthesize
and compile in the Intel Quartus Prime software. The synthesis files for a component
are copied to the generation output directory during Platform Designer system
generation.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 55. Using HDL Files to Define a Component
In the Synthesis Files section on the Files tab in the Platform Designer Component Editor, the
demo_axi_memory.sv file should be selected as the top-level file for the component.

2.7.2. Analyze Synthesis Files in the Platform Designer Component Editor

After you specify the top-level HDL file in the Platform Designer Component Editor,
click Analyze Synthesis Files to analyze the parameters and signals in the top-level,
and then select the top-level module from the Top Level Module list. If there is a
single module or entity in the HDL file, Platform Designer automatically populates the
Top-level Module list.

Once analysis is complete and the top-level module is selected, you can view the
parameters and signals on the Parameters and Signals & Interfaces tabs. The
Component Editor may report errors or warnings at this stage, because the signals
and interfaces are not yet fully defined.

Note: At this stage in the Component Editor flow, you cannot add or remove parameters or
signals created from a specified HDL file without editing the HDL file itself.

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type
QUARTUS_SYNTH in the _hw.tcl file created by the Component Editor. The top-level
module is used to specify the TOP_LEVEL fileset property. Each synthesis file is
individually added to the fileset. If the source files are saved in a different directory
from the working directory where the _hw.tcl is located, you can use standard fixed
or relative path notation to identify the file location for the PATH variable.

Example 6. _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Specify HDL Files for Synthesis in the Platform Designer Component Editor on
page 101

• Component Interface Tcl Reference on page 567

2.7.3. Name HDL Signals for Automatic Interface and Type Recognition in
the Platform Designer Component Editor

If you create the component's top-level HDL file before using the Component Editor,
the Component Editor recognizes the interface and signal types based on the signal
names in the source HDL file. This auto-recognition feature eliminates the task of
manually assigning each interface and signal type in the Component Editor.

To enable auto-recognition, you must create signal names using the following naming
convention:

<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one
interface of each type in the component definition. For interfaces with only one signal,
such as clock and reset inputs, the <interface type prefix> is also optional.

Table 27. Interface Type Prefixes for Automatic Signal Recognition
When the Component Editor recognizes a valid prefix and signal type for a signal, it automatically assigns an
interface and signal type to the signal based on the naming convention. If no interface name is specified for a
signal, you can choose an interface name on the Signals & Interfaces tab in the Component Editor.

Interface Prefix Interface Type

asi Avalon-ST sink (input)

aso Avalon-ST source (output)

avm Avalon-MM master

avs Avalon-MM slave

axm AXI master

axs AXI slave

apm APB master

aps APB slave

coe Conduit

csi Clock Sink (input)

cso Clock Source (output)

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

rsi Reset sink (input)

continued...

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Prefix Interface Type

rso Reset source (output)

tcm Avalon-TC master

tcs Avalon-TC slave

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the
signal types available for each interface type.

Related Information

• Avalon Interface Specifications

• Protocol Specifications

2.7.4. Specify Files for Simulation in the Component Editor

To support Platform Designer system generation for your custom component, you
must specify VHDL or Verilog simulation files.

You can choose to generate Verilog or VHDL simulation files. In most cases, these files
are the same as the synthesis files. If there are simulation-specific HDL files or
simulation models, you can use them in addition to, or in place of the synthesis files.
To use your synthesis files as your simulation files, click Copy From Synthesis Files
on the Files tab in the Platform Designer Component Editor.

Note: The order that you add files to the fileset determines the order of compilation. For
VHDL filesets with VHDL files, you must add the files bottom-up, adding the top-level
file last.

Figure 56. Specifying the Simulation Output Files on the Files Tab

You specify the simulation files in a similar way as the synthesis files with the fileset
commands in a _hw.tcl file. The code example below shows SIM_VERILOG and
SIM_VHDL filesets for Verilog and VHDL simulation output files. In this example, the
same Verilog files are used for both Verilog and VHDL outputs, and there is one
additional SystemVerilog file added. This method works for designers of Verilog IP to

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

104

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

support users who want to generate a VHDL top-level simulation file when they have a
mixed-language simulation tool and license that can read the Verilog output for the
component.

Example 7. _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Related Information

Component Interface Tcl Reference on page 567

2.7.5. Include an Internal Register Map Description in the .svd for Slave
Interfaces Connected to an HPS Component

Platform Designer supports the ability for IP component designers to specify register
map information on their slave interfaces. This allows components with slave
interfaces that are connected to an HPS component to include their internal register
description in the generated .svd file.

To specify their internal register map, the IP component designer must write and
generate their own .svd file and attach it to the slave interface using the following
command:

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside
the .svd file. You can dynamically modify the character data of the .svd file by using
the CMSIS_SVD_VARIABLES property.

Example 8. Setting the CMSIS_SVD_VARIBLES Interface Property

For example, if you set the CMSIS_SVD_VARIABLES in the _hw tcl file, then in
the .svd file if there is a variable {width} that describes the element <size>$
{width}</size>, it is replaced by <size>23</size> during generation of
the .svd file. Note that substitution works only within character data (the data
enclosed by <element>...</element>) and not on element attributes.

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Component Interface Tcl Reference on page 567

• CMSIS - Cortex Microcontroller Software

2.8. Add Signals and Interfaces in the Platform Designer
Component Editor

In the Platform Designer Component Editor, the Signals & Interfaces tab allows you
to add signals and interfaces for your custom IP component.

As you select interfaces and associated signals, you can customize the parameters.
Messages appear as you add interfaces and signals to guide you when customizing the
component. In the parameter editor, a block diagram displays for each interface.
Some interfaces display waveforms to show the timing of the interface. If you update
timing parameters, the waveforms update automatically.

1. In Platform Designer, click New Component in the IP Catalog.

2. In the Platform Designer Component Editor, click the Signals & Interfaces tab.

3. To add an interface, click <<add interface>> in the left pane.
A drop-down list appears where you select the interface type.

4. Select an interface from the drop-down list.
The selected interface appears in the parameter editor where you can specify its
parameters.

5. To add signals for the selected interface click <<add signal>> below the selected
interface.

6. To move signals between interfaces, select the signal, and then drag it to another
interface.

7. To rename a nsignal or interface, select the element, and then press F2.

8. To remove a signal or interface, right-click the element, and then click Remove.
Alternatively, to remove an signal or interface, you can select the element, and
then press Delete. When you remove an interface, Platform Designer also
removes all of its associated signals.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

106

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 57. Platform Designer Signals & Interfaces tab

2.9. Specify Parameters in the Platform Designer Component Editor

Components can include parameterized HDL, which allow users of the component
flexibility in meeting their system requirements. For example, a component with a
configurable memory size or data width, allows using one HDL implementation in
different systems, each with unique parameters values.

The Parameters tab allows you specify the parameters that are used to configure
instances of the component in a Platform Designer system. You can specify various
properties for each parameter that describe how to display and use the parameter. You
can also specify a range of allowed values that are checked during the validation
phase. The Parameters table displays the HDL parameters that are declared in the
top-level HDL module. If you have not yet created the top-level HDL file, the top-level
synthesis file template created from the Files tab include the parameters that you
create on the Parameters tab.

When the component includes HDL files, the parameters match those defined in the
top-level module, and you cannot add or remove them on the Parameters tab. To
add or remove the parameters, edit your HDL source, and then re-analyze the file.

If you create a top-level template HDL file for synthesis with the Component Editor,
you can remove the newly-created file from the Synthesis Files list on the Files tab,
make your parameter changes, and then re-analyze the top-level synthesis file.

You can use the Parameters table to specify the following information about each
parameter:

• Name—specifies the parameter name.

• Default Value—sets the default value for new instances of the component.

• Editable—specifies if the user can edit the parameter value.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Type—defines the parameter type as string, integer, boolean, std_logic, logic
vector, natural, or positive.

• Group—groups parameters in the parameter editor.

• Tooltip—adds a description of the parameter that appears when the user of the
component points to the parameter in the editor.

Figure 58. Parameters Tab in the Platform Designer Components Editor

On the Parameters tab, you can click Preview the GUI at any time to see how the
declared parameters appear in the parameter editor. Parameters with their default
values appear with checks in the Editable column. Editable parameters cannot
contain computed expressions. You can group parameters under a common heading or
section in the editor with the Group column, and a tooltip helps users of the
component understand the function of the parameter. Various parameter properties
allow you to customize the component’s parameter editor, such as specifying
parameter option controls, or displaying an image.

Example 9. _hw.tcl Created from Entries in the Parameters Tab

In this example, the first add_parameter command includes commonly-specified
properties. The set_parameter_property command specifies each property
individually. The Tooltip column on the Parameters tab maps to the DESCRIPTION
property, and there is an additional unused UNITS property created in the code. The
HDL_PARAMETER property specifies that the value of the parameter is specified in the
HDL instance wrapper when creating instances of the component. The Group column
in the Parameters tab maps to the display items section with the
add_display_item commands.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If a parameter <n> defines the width of a signal, the signal width must follow the
format <n-1> : 0.

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

Note: If an AXI slave's ID bit width is smaller than required for your system, the AXI slave
response may not reach all AXI masters. The formula of an AXI slave ID bit width is
calculated as follows:

maximum_master_id_width_in_the_interconnect + log2
(number_of_masters_in_the_same_interconnect)

For example, if an AXI slave connects to three AXI masters and the maximum AXI
master ID length of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is
calculated as follows:

5 bits + 2 bits (log2(3 masters)) = 7

Platform Designer refers to AXI interface parameters to build AXI interconnect. If
these parameter settings are incompatible with the component's HDL behavior,
Platform Designer interconnect and transactions may not work correctly. To prevent
unexpected interconnect behavior, you must set the AXI component parameters.

Table 28. AXI Master Parameters

AXI Master Parameters Description

readIssuingCapability The maximum number of outstanding read transactions for a master.

writeIssuingCapability The maximum number of outstanding write transactions for a master.

combinedIssuingCapability The maximum number of outstanding transactions for a master.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 29. AXI Slave Parameters

AXI Slave Parameters Description

readAcceptanceCapability The maximum number of outstanding read commands that a slave can accept.

writeAcceptanceCapability The maximum number of outstanding write transactions that a slave can accept.

combinedAcceptanceCapability The maximum number of outstanding transactions that a slave can accept.

readDataReorderingDepth The number of outstanding read transactions for which a slave interface can
transmit data. If readDataReorderingDepth = 1, the slave processes all
transactions in order.

Related Information

Component Interface Tcl Reference on page 567

2.9.1. Valid Ranges for Parameters in the _hw.tcl File

In the _hw.tcl file, you can specify valid ranges for parameters.

Platform Designer validation checks each parameter value against the
ALLOWED_RANGES property. If the values specified are outside of the allowed ranges,
Platform Designer displays an error message. Specifying choices for the allowed
values enables users of the component to choose the parameter value from controls in
the parameter editor GUI, instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single
value, or a range of values defined by a start and end value.

Table 30. ALLOWED_RANGES Property

ALLOWED_RANGES Property Values

{a b c} a, b, or c

{"No Control" "Single Control" "Dual Controls"} Unique string values. Quotation marks are required if the
strings include spaces .

{1 2 4 8 16} 1, 2, 4, 8, or 16

{1:3} 1 through 3, inclusive.

{1 2 3 7:10} 1, 2, 3, or 7 through 10 inclusive.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 112

2.9.2. Types of Platform Designer Parameters

Platform Designer uses the following parameter types: user parameters, system
information parameters, and derived parameters.

Platform Designer User Parameters on page 111

Platform Designer System Information Parameters on page 111

Platform Designer Derived Parameters on page 112

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 112

2.9.2.1. Platform Designer User Parameters

User parameters are parameters that users of a component can control, and appear in
the parameter editor for instances of the component. User parameters map directly to
parameters in the component HDL. For user parameter code examples, such as
AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to Declaring Parameters with
Custom hw.tcl Commands.

2.9.2.2. Platform Designer System Information Parameters

A SYSTEM_INFO parameter is a parameter whose value is set automatically by the
Platform Designer system. When you define a SYSTEM_INFO parameter, you provide
an information type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a
clock input for your component. To do this, define the parameter as SYSTEM_INFO of
type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

2.9.2.2.1. Obtaining Device Trait Information Using PART_TRAIT System Information
Parameter

Within Platform Designer, an IP core can obtain information on the particular traits of
a device using the PART_TRAIT system info parameter. This system info parameter
takes an argument corresponding to the desired part trait. The requested trait must
match the trait name as specified in the device database.

Note: Using this API declares your IP core as dependent on the requested trait.

To get the part number setting of Platform Designer system, use the value DEVICE,
with the SYSTEM_INFO_ARG parameter property:

add_parameter part_trait_device string ""
set_parameter_property part_trait_device SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_device SYSTEM_INFO_ARG DEVICE

To get the base device of the part number setting of Platform Designer system, use
the value BASE_DEVICE, with the SYSTEM_INFO_ARG parameter property:

add_parameter part_trait_bd string ""
set_parameter_property part_trait_bd SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_bd SYSTEM_INFO_ARG BASE_DEVICE

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To get the device speed-grade of the part number setting of Platform Designer
system, use the value DEVICE_SPEEDGRADE, with the SYSTEM_INFO_ARG parameter
property:

add_parameter part_trait_sg string ""
set_parameter_property part_trait_sg SYSTEM_INFO_TYPE PART_TRAIT
set_parameter_property part_trait_sg SYSTEM_INFO_ARG DEVICE_SPEEDGRADE

2.9.2.3. Platform Designer Derived Parameters

Derived parameter values are calculated from other parameters during the Elaboration
phase, and are specified in the hw.tcl file with the DERIVED property. Derived
parameter values are calculated from other parameters during the Elaboration phase,
and are specified in the hw.tcl file with the DERIVED property. For example, you can
derive a clock period parameter from a data rate parameter. Derived parameters are
sometimes used to perform operations that are difficult to perform in HDL, such as
using logarithmic functions to determine the number of address bits that a component
requires.

Related Information

Declare Parameters with Custom _hw.tcl Commands on page 112

2.9.2.3.1. Parameterized Parameter Widths

Platform Designer allows a std_logic_vector parameter to have a width that is
defined by another parameter, similar to derived parameters. The width can be a
constant or the name of another parameter.

2.9.3. Declare Parameters with Custom _hw.tcl Commands

The example below illustrates a custom _hw.tcl file, with more advanced parameter
commands than those generated when you specify parameters in the Component
Editor. Commands include the ALLOWED_RANGES property to provide a range of values
for the AXI_ADDRESS_W (Address Width) parameter, and a list of parameter values
for the AXI_DATA_W (Data Width) parameter. This example also shows the
parameter AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED
property. In addition, these commands illustrate the use of the GROUP property, which
groups some parameters under a heading in the parameter editor GUI. You use the
ENABLE_STREAM_OUTPUT_GROUP (Include Avalon streaming source port)
parameter to enable or disable the optional Avalon-ST interface in this design, and is
displayed as a check box in the parameter editor GUI because the parameter is of type
BOOLEAN. Refer to figure below to see the parameter editor GUI resulting from these
hw.tcl commands.

Example 10. Parameter Declaration

In this example, the AXI_NUMBYTES parameter is derived during the Elaboration
phase based on another parameter, instead of being assigned to a specific value.
AXI_NUMBYTES describes the number of bytes in a word of data. Platform Designer
calculates the AXI_NUMBYTES parameter from the DATA_WIDTH parameter by
dividing by 8. The _hw.tcl code defines the AXI_NUMBYTES parameter as a derived

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

parameter, since its value is calculated in an elaboration callback procedure. The
AXI_NUMBYTES parameter value is not editable, because its value is based on another
parameter value.

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Slave Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon-ST source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 59. Resulting Parameter Editor GUI from Parameter Declarations

Related Information

• Control Interfaces Dynamically with an Elaboration Callback on page 118

• Component Interface Tcl Reference on page 567

2.9.4. Validate Parameter Values with a Validation Callback

You can use a validation callback procedure to validate parameter values with more
complex validation operations than the ALLOWED_RANGES property allows. You define
a validation callback by setting the VALIDATION_CALLBACK module property to the
name of the Tcl callback procedure that runs during the validation phase. In the
validation callback procedure, the current parameter values is queried, and warnings
or errors are reported about the component's configuration.

Example 11. Demo AXI Memory Example

If the optional Avalon streaming interface is enabled, then the control registers must
be wide enough to hold an AXI RAM address, so the designer can add an error
message to ensure that the user enters allowable parameter values.

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Information

• Component Interface Tcl Reference on page 567

• Demo AXI Memory Example

2.10. Declaring SystemVerilog Interfaces in _hw.tcl

Platform Designer supports interfaces written in SystemVerilog.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

114

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example is _hw.tcl for a module with a SystemVerilog interface. The
sample code is divided into parts 1 and 2.

Part 1 defines the normal array of parameters, Platform Designer interface, and ports

Example 12. Example Part 1: Parameters, Platform Designer Interface, and Ports in
_hw.tcl

request TCL package from ACDS 17.1
#
package require -exact qsys 17.1

#
module ram_ip_sv_ifc_hw
#
set_module_property DESCRIPTION ""
set_module_property NAME ram_ip_sv_ifc_hw
set_module_property VERSION 1.0
set_module_property INTERNAL false
set_module_property OPAQUE_ADDRESS_MAP true
set_module_property AUTHOR ""
set_module_property DISPLAY_NAME ram_ip_hw_with_SV_d0
set_module_property INSTANTIATE_IN_SYSTEM_MODULE true
set_module_property EDITABLE true
set_module_property REPORT_TO_TALKBACK false
set_module_property ALLOW_GREYBOX_GENERATION false
set_module_property REPORT_HIERARCHY false

Part 1 – Add parameter, platform designer interface and ports
Adding parameter
add_parameter my_interface_parameter STRING "" "I am an interface parameter"

Adding platform designer interface clk
add_interface clk clock end
set_interface_property clk clockRate 0
Adding ports to clk interface
add_interface_port clk clk clk Input 1

Adding platform designer interface reset
add_interface reset reset end
set_interface_property reset associatedClock clk
#Adding ports to reset interface
add_interface_port reset reset reset Input 1

Adding platform designer interface avalon_slave
add_interface avalon_slave avalon end
set_interface_property avalon_slave addressUnits WORDS
Adding ports to avalon_slave interface
add_interface_port avalon_slave address address Input 10
add_interface_port avalon_slave write write Input 1
add_interface_port avalon_slave readdata readdata Output 32
add_interface_port avalon_slave writedata writedata Input 32
set_interface_property avalon_slave associatedClock clk
set_interface_property avalon_slave associatedReset reset

#Adding ram_ip files
add_fileset synthesis_fileset QUARTUS_SYNTH
set_fileset_property synthesis_fileset TOP_LEVEL ram_ip
add_fileset_file ram_ip.sv SYSTEM_VERILOG PATH ram_ip.sv

Part 2 defines the interface name, ports, and parameters of the SystemVerilog
interface.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 13. Example Part 2: SystemVerilog Interface Parameters in _hw.tcl

Part 2 – Adding SV interface and its properties.
Adding SV interface
add_sv_interface bus mem_ifc

Setting the parameter property to add SV interface parameters
set_parameter_property my_interface_parameter SV_INTERFACE_PARAMETER bus

Setting the port properties to add them to SV interface port
set_port_property clk SV_INTERFACE_PORT bus
set_port_property reset SV_INTERFACE_PORT bus

Setting the port properties to add them as signals inside SV interface
set_port_property address SV_INTERFACE_SIGNAL bus
set_port_property write SV_INTERFACE_SIGNAL bus
set_port_property writedata SV_INTERFACE_SIGNAL bus
set_port_property readdata SV_INTERFACE_SIGNAL bus

#Adding the SV Interface File
add_fileset_file mem_ifc.sv SYSTEM_VERILOG PATH mem_ifc.sv
SYSTEMVERILOG_INTERFACE

Related Information

SystemVerilog Interface Commands on page 654

2.11. User Alterable HDL Parameters in _hw.tcl

Platform Designer supports the ability to reconfigure features of parameterized
modules, such as data bus width or FIFO depth. Platform Designer creates an HDL
wrapper when you perform Generate HDL. By modifying your _hw.tcl files to
specify parameter attributes and port properties, you can use Platform Designer to
generate reusable RTL.

1. To define an alterable HDL parameter, you must declare the following two
attributes for the parameter:

• set_parameter_property <parameter_name> HDL_PARAMETER true

• set_parameter_property <parameter_name> AFFECTS_GENERATION
false

2. To have parameterized ports created in the instantiation wrapper, you can either
set the width expression when adding a port to an interface, or set the width
expression in the port property in _hw.tcl:

• To set the width expression when adding a port:

add_interface_port <interface> <port> <signal_type> <direction>
<width_expression>

• To set the width expression in the port property:

set_port_property <port> WIDTH_EXPR <width_expression>

3. To create and generate the IP component in Platform Designer editor, click the
Open System ➤ IP Variant tab, specify the new IP variant name in the IP
Variant field and choose the _hw.tcl file that defines user alterable HDL
parameters in the Component type field.

4. Click Generate HDL to generate the IP core. Platform Designer generates a
parameterized HDL module for you directly.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To instantiate the IP component in your HDL file, click Generate ➤ Show
Instantiation Template in the Platform Designer editor to display an instantiation
template in Verilog or VHDL. Now you can instantiate the IP core in your top-level
design HDL file with the template code.

Figure 60. Instantiation Template Dialog Box

The following sample contains _hw.tcl to set exportable width values:

Example 14. Sample _hw.tcl Component with User Alterable Expressions

package require -exact qsys 17.1

set_module_property NAME demo
set_module_property DISPLAY_NAME "Demo"
set_module_property ELABORATION_CALLBACK elaborate

add exportable hdl parameter RECONFIG_DATA_WIDTH
add_parameter RECONFIG_DATA_WIDTH INTEGER 48
set_parameter_property RECONFIG_DATA_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_DATA_WIDTH HDL_PARAMETER true

add exportable hdl parameter RECONFIG_ADDR_WIDTH
add_parameter RECONFIG_ADDR_WIDTH INTEGER 32
set_parameter_property RECONFIG_ADDR_WIDTH AFFECTS_GENERATION false
set_parameter_property RECONFIG_ADDR_WIDTH HDL_PARAMETER true

add non-exportable hdl parameter
add_parameter l_addr INTEGER 32
set_parameter l_addr HDL_PARAMETER false

add interface
add_interface s0 conduit end

proc elaborate {} {
 add_interface_port s0 rdata readdata output "reconfig_data_width*2 + l_addr"
 add_interface_port s0 raddr readaddress output [get_parameter_value
RECONFIG_ADDR_WIDTH]
 set_port_property raddr WIDTH_EXPR "RECONFIG_ADDR_WIDTH"
}

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.12. Scripting Wire-Level Expressions

Platform Designer supports system scripting commands to apply wire-level
expressions to input ports in IP components.

The following commands function with the qsys-script utility or in a _hw.tcl file
to set, retrieve, or remove an expression on a port:

set_wirelevel_expression <instance_or_port_bit> <expression>
get_wirelevel_expressions <instance_or_port_bit>
remove_wirelevel_expressions <instance_or_port_bit

These commands require a string that you compose from the left-handed and right-
handed components of the expression. Platform Designer reports errors in syntax,
existence, or system hierarchy.

Related Information

• Wire-Level Connection Commands on page 535

• set_wirelevel_expression on page 536

• get_wirelevel_expressions on page 536

• remove_wirelevel_expressions on page 537

2.13. Control Interfaces Dynamically with an Elaboration Callback

You can allow user parameters to dynamically control your component's behavior with
a an elaboration callback procedure during the elaboration phase. Using an elaboration
callback allows you to change interface properties, remove interfaces, or add new
interfaces as a function of a parameter value. You define an elaboration callback by
setting the module property ELABORATION_CALLBACK to the name of the Tcl callback
procedure that runs during the elaboration phase. In the callback procedure, you can
query the parameter values of the component instance, and then change the
interfaces accordingly.

Example 15. Avalon-ST Source Interface Optionally Included in a Component Specified
with an Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon- ST data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{
 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Information

• Declare Parameters with Custom _hw.tcl Commands on page 112

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Validate Parameter Values with a Validation Callback on page 114

• Component Interface Tcl Reference on page 567

2.14. Control File Generation Dynamically with Parameters and a
Fileset Callback

You can use a fileset callback to control which files are created in the output
directories during the generation phase based on parameter values, instead of
providing a fixed list of files. In a callback procedure, you can query the values of the
parameters and use them to generate the appropriate files. To define a fileset
callback, you specify a callback procedure name as an argument in the add_fileset
command. You can use the same fileset callback procedure for all of the filesets, or
create separate procedures for synthesis and simulation, or Verilog and VHDL.

Example 16. Fileset Callback Using Parameters to Control Filesets in Two Different Ways

The RAM_VERSION parameter chooses between two different source files to control
the implementation of a RAM block. For the top-level source file, a custom Tcl routine
generates HDL that optionally includes control and status registers, depending on the
value of the CSR_ENABLED parameter.

During the generation phase, Platform Designer creates a top-level Platform Designer
system HDL wrapper module to instantiate the component top-level module, and
applies the component's parameters, for any parameter whose parameter property
HDL_PARAMETER is set to true.

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {
 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

Related Information

• Specify Synthesis and Simulation Files in the Platform Designer Component Editor
on page 100

• Component Interface Tcl Reference on page 567

2.15. Create a Composed Component or Subsystem

A composed component is a subsystem containing instances of other components.
Unlike an HDL-based component, a composed component's HDL is created by
generating HDL for the components in the subsystem, in addition to the Platform
Designer interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

With a composition callback, you can also instantiate and parameterize sub-
components as a function of the composed component’s parameter values. You define
a composition callback by setting the COMPOSITION_CALLBACK module property to
the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the
subsystem is generated by generating all of the sub-components and the top-level
that combines them.

To connect instances of your component, you must define the component's interfaces.
Unlike an HDL-based component, a composed component does not directly specify the
signals that are exported. Instead, interfaces of submodules are chosen as the
external interface, and each internal interface's ports are connected through the
exported interface.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exporting an interface means that you are making the interface visible from the
outside of your component, instead of connecting it internally. You can set the
EXPORT_OF property of the externally visible interface from the main program or the
composition callback, to indicate that it is an exported view of the submodule's
interface.

Exporting an interface is different than defining an interface. An exported interface is
an exact copy of the subcomponent’s interface, and you are not allowed to change
properties on the exported interface. For example, if the internal interface is a 32-bit
or 64-bit master without bursting, then the exported interface is the same. An
interface on a subcomponent cannot be exported and also connected within the
subsystem.

When you create an exported interface, the properties of the exported interface are
copied from the subcomponent’s interface without modification. Ports are copied from
the subcomponent’s interface with only one modification; the names of the exported
ports on the composed component are chosen to ensure that they are unique.

Figure 61. Top-Level of a Composed Component

Reset
Bridge

clk

rst

slave
my_regs_microcore my_phy_microcore

pins

my_component

Clock
Bridge

Example 17. Composed _hw.tcl File that Instantiates Two Sub-Components

Platform Designer connects the components, and also connects the clocks and resets.
Note that clock and reset bridge components are required to allow both sub-
components to see common clock and reset inputs.

package require -exact qsys 14.0
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface slave avalon slave
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_property_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property slave EXPORT_OF regs.slave
 set_interface_property pins EXPORT_OF phy.pins

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset
 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Information

Component Interface Tcl Reference on page 567

2.16. Add Component Instances to a Static or Generated
Component

You can create nested components by adding component instances to an existing
component. Both static and generated components can create instances of other
components. You can add child instances of a component in a _hw.tcl using
elaboration callback.

With an elaboration callback, you can also instantiate and parameterize sub-
components with the add_hdl_instance command as a function of the parent
component's parameter values.

When you instantiate multiple nested components, you must create a unique variation
name for each component with the add_hdl_instance command. Prefixing a
variation name with the parent component name prevents conflicts in a system. The
variation name can be the same across multiple parent components if the generated
parameterization of the nested component is exactly the same.

Note: If you do not adhere to the above naming variation guidelines, Platform Designer
validation-time errors occur, which are often difficult to debug.

Related Information

• Static IP Components on page 122

• Generated Components on page 124

2.16.1. Static IP Components

Static IP components always generate the same output, regardless of their
parameterization. Components that instantiate static components must have only
static children.

A design file that is static between all parameterizations of a component can only
instantiate other static design files. Since static IPs always render the same HDL
regardless of parameterization, Platform Designer generates static IPs only once
across multiple instantiations, meaning they have the same top-level name set.

Example 18. Typical Usage of the add_hdl_instance Command for Static Components

package require -exact qsys 14.0

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

Example 19. Top-Level HDL Instance and Wrapper File Created by Platform Designer

In this example, Platform Designer generates a wrapper file for the instance name
specified in the _hw.tcl file.

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 14.0

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.16.2. Generated Components

A generated component's fileset callback allows an instance of the component to
create unique HDL design files based on the instance's parameter values. For example,
you can write a fileset callback to include a control and status interface based on the
value of a parameter. The callback overcomes a limitation of HDL languages, which do
not allow run-time parameters.

Generated components change their generation output (HDL) based on their
parameterization. If a component is generated, then any component that may
instantiate it with multiple parameter sets must also be considered generated, since
its HDL changes with its parameterization. This case has an effect that propagates up
to the top-level of a design.

Since generated components are generated for each unique parameterized
instantiation, when implementing the add_hdl_instance command, you cannot use
the same fixed name (specified using instance_name) for the different variants of
the child HDL instances. To facilitate unique naming for the wrapper of each unique
parameterized instantiation of child HDL instances, you must use the following
command so that Platform Designer generates a unique name for each wrapper. You
can then access this unique wrapper name with a fileset callback so that the instances
are instantiated inside the component's top-level HDL.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

Note: You can only use this command with a generated component in the global
context, or in an elaboration callback.

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

Note: You can only use this command with a fileset callback. This command
returns the value of the auto-generated fixed name, which you can then use
to instantiate inside the top-level HDL.

Example 20. Typical Usage of the add_hdl_instance Command for Generated Components

Platform Designer generates a wrapper file for the instance name specified in the
_hw.tcl file.

package require -exact qsys 14.0
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 # instruct Platform Designer to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \
 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \
 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 21. Top-Level HDL Instance and Wrapper File Created By Platform Designer

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Information

• Control File Generation Dynamically with Parameters and a Fileset Callback on
page 119

• Intellectual Property & Reference Designs

2.16.3. Design Guidelines for Adding Component Instances

In order to promote standard and predictable results when generating static and
generated components, Intel recommends the following best-practices:

• For two different parameterizations of a component, a component must never
generate a file of the same name with different instantiations. The contents of a
file of the same name must be identical for every parameterization of the
component.

• If a component generates a nested component, it must never instantiate two
different parameterizations of the nested component using the same instance
name. If the parent component's parameterization affects the parameters of the
nested component, the parent component must use a unique instance name for
each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the
potential to cause problems in the following cases:

— Different file names with the same entity names, results in same entity
conflicts at compilation-time

— Different contents with the same file name results in overwriting other
instances of the component, and in either file, compile-time conflicts or
unexpected behavior.

• Generated components that generate files not based on the output name and that
have different content results in either compile-time conflicts, or unexpected
behavior.

2.17. Adding a Generic Component to the Platform Designer System

The generic component is a type of Platform Designer component that enables
hierarchical isolation of IP components. This component is available in the IP Catalog.
Use this component as a mechanism to quickly define a custom component or import
your RTL into a Platform Designer system.

By default, the generic component's Implementation Type is set to Blackbox. This
mode specifies that the RTL implementation is not provided in the generated RTL
output of the Platform Designer system. When you generate a system containing a
generic component, the system's RTL instantiates the component, but does not

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

126

http://www.altera.com/products/ip/ipm-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

provide an implementation for the component. You must provide an implementation
for the component in a downstream compiler such as Intel Quartus Prime software or
RTL code.

Figure 62. Adding a Generic Component to the Platform Designer System

To add a generic component to your system:

1. Type generic component in the IP Catalog.

2. To launch the Component Instantiation editor, double-click Generic
Component. The default option is to create a Blackbox component.

The Component Instantiation editor allows you to select one of four implementation
types:

• IP—Use the IP option to create a component from a .ip file.

• HDL—Use the HDL option to instantiate a component from RTL (.v/.sv/.vhd)
without using _hw.tcl.

• Blackbox—The default option. Use the Blackbox option to create a generic
component. You can either add interfaces and signals manually, clone/mirror from
existing components in the current system, or import from an .ipxact file.

• HLS—Use the HLS option to add and compile High Level Synthesis (HLS) files, or
add and import HLS files.

Related Information

• Creating Custom Interfaces in a Generic Component on page 128

• Instantiating RTL in a System as a Generic Component on page 131

• Implementing Generic Components Using High Level Synthesis Files on page 132

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.17.1. Creating Custom Interfaces in a Generic Component

The Signals & Interfaces tab of the Component Instantiation editor allows you to
customize signals and interfaces for your generic component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. To add an interface, click <<add interface>> in the left pane and select the
interface. The selected interface appears in the parameter editor to the right,
where you specify its parameters.

4. To add signals to the selected interface, click <<add signal>> below the selected
interface.

5. To move signals between interfaces, select the signal and drag it to another
interface.

6. To rename a signal or interface, select the element, and then press F2.

7. To remove a signal or interface, right-click the element, and then click Remove.

Note: Alternatively, to remove a signal or interface, select the element and press
Delete. When you remove an interface, Platform Designer also removes all
of its associated signals.

Figure 63. Creating Custom Interfaces

Note: To add existing template interfaces to your generic component, select the interface
from Templates menu in the Component Instantiation editor.

2.17.1.1. Mirroring Interfaces in a Generic Component

To mirror existing signals and interfaces from an IP component to your generic
component:

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Mirror button. A list appears which lists all the available components in
the system and their associated interfaces.

4. Select the desired interface. Platform Designer mirrors the interface and its
associated signals and adds the mirrored interfaces and signals to the Signals &
Interfaces tab of the generic component.

Example 22. Mirroring Interfaces in a Generic Component Example

Selected Interface Mirrored Interface

Avalon Memory-Mapped Master (avalon_master) Avalon Memory-Mapped Slave
(avalon_slave)

Signals of the Selected Interface Signals of the Mirrored Interface

waitrequest(Input 1) waitrequest(Output 1)

readdata(Input 32) readdata(Output 32)

readdatavalid(Input 1) readdatavalid(Output 1)

burstcount(Output 32) burstcount(Input 32)

Figure 64. Mirroring Interfaces

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.17.1.2. Cloning Interfaces in a Generic Component

To clone existing signals and interfaces from an IP component to your generic
component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Clone button. A list appears which lists all the available components in
the system and their associated interfaces.

4. Select the desired interface. Platform Designer clones the interface and adds an
exact replica of the interface and its associated signals to the Signals &
Interfaces tab of the generic component.

Figure 65. Cloning Interfaces

2.17.1.3. Importing Interfaces to a Generic Component

To import interfaces from an existing IP or IP-XACT(3) file to a generic component:

(3) Platform Designer supports importing and exporting files in IP-XACT 2009 format and
exporting IP-XACT files in 2014 format.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, click the Signals & Interfaces tab.

3. Click the Import button..
A dialog box appears from where you choose the IP/IP-XACT file to import to the
generic component

4. Select the interface.
Platform Designer populates the Signals & Interfaces tab with the signals and
interfaces defined in the selected file.

Figure 66. Importing Interfaces

2.17.2. Instantiating RTL in a System as a Generic Component

To add an RTL file as a generic component:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, set the Implementation Type as HDL.

3. Select the Files tab.

4. Click Add File and select the RTL file to load to the generic component.

a. If you are importing an HDL file with SystemVerilog interface definition, you
should set the Attributes of this file to File contains SystemVerilog
interface definition used by the Top-level Module.

5. Click Analyze HDL files. This option analyzes and populates the Signals &
Interfaces tab of the generic component from the RTL file.

6. Verify, and modify the signals and interfaces if needed, in the Signals &
Interfaces tab.

Note: You must treat a generic component with an HDL Implementation Type as a
customized and centralized RTL, specific to your current system. When you set a
generic component's Implementation Type to HDL, the output of any RTL that you
add to the component is within the system's output directory.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 67. Instantiating an RTL as a Generic Component

2.17.3. Implementing Generic Components Using High Level Synthesis
Files

High Level Synthesis (HLS) files can be compiled to create Platform Designer
components and are written according to the i++ specification. HLS files can be in
.c,.cc,*.cpp,*.c++,*.cp, or *.cxx format.

An HLS file defines one or more components in an i++ format that Platform Designer
compiles into HDL. In order to add components from an HLS file there are two basic
steps:

1. Identify and add the HLS file.

2. Import an already compiled file from a previous Platform Designer session or
project, or Compile the HLS file in Platform Designer.

Once the component has been imported or compiled, Platform Designer performs the
following actions:

• Imports an .ip resulting from the HLS compilation to the component name
defined in the HLS file.

• Sets the HDL entity name and HDL compilation library to the component
defined in the HLS file.

• Adds the .ip file to the empty generic component.

• Adds paths to the .ip and _hw.tcl output files to the Platform Designer search
path to enable instantiation.

• Populates the signals and interfaces of the component from the .ip file.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After compilation, the HLS compiler creates a <component_name>.prj folder with
the following directories:

Table 31. Contents of <component_name>.prj Folder

Folder Description

/component Contains IP and _hw.tcl files.

/quartus Contains Intel Quartus Prime Pro Edition project files that instantiate the HLS component.
You can use this to verify timing and logic usage.

/reports Contains a compilation report in HTML.

/verification Contains verification files, if you decided to create a verification executable.

Related Information

Intel High Level Synthesis Compiler Getting Started Guide

2.17.3.1. Add High Level Synthesis Files to a Generic Component

You can quickly add High Level Synthesis (HLS) components to a Platform Designer
project by dragging and dropping files into the Platform Designer System View tab.
The drag-and-drop process selects the HLS implementation type, and adds the HLS
file to the HLS files box.

To add a component with an HLS implementation, perform the following steps in
Platform Designer:

1. Drag an HLS file to the System View tab of Platform Designer.
or

2. Type generic component in the IP Catalog.

3. To launch the Component Instantiation editor, double-click Generic
Component.

4. To add a component from an HLS file to the empty generic component, select the
HLS Implementation Type.

5. Click + and select an HLS file to add.

You can click + to add more than one HLS file. Click - to remove HLS files. The
primary case for adding multiple HLS files is when you are using a library of
components defined by one or more high level synthesis files.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

133

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ewa1462810049539
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Add an HLS Implementation Type File

Add File

Related Information

• Compile High Level Synthesis Files on page 134

• Import High Level Synthesis Files on page 136

2.17.3.2. Compile High Level Synthesis Files

The Compile option for High Level Synthesis (HLS) component instantiation in
Platform Designer invokes the Intel HLS Compiler to compile HLS files and modify a
generic component.

Performing a compile on an HLS file has the following results:

• Imports an .ip resulting from the HLS compilation to the component name
defined in the HLS file.

• Sets the HDL entity name and HDL compilation library to the component
defined in the HLS file.

• Adds the .ip file to the empty generic component.

• Adds paths to the .ip and _hw.tcl output files to the Platform Designer search
path to enable instantiation.

• Populates the signals and interfaces of the component from the .ip file.

After you have added an HLS file:

1. Click Compile.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 69. HLS Component Instantiation

2. In the HLS Options dialog box, you can select from the following options:

Figure 70. HLS Options Dialog Box

a. The project name defaults to the entity name defined in the HLS file. To set a
new project name, select new project name and enter a new HLS project
name in the dialog box.

Figure 71. Change the Project Name

b. Provide additional arguments to the HLS compiler. Refer to Command Compiler
Options in the Intel High Level Synthesis Reference Manual for information on
compiler arguments.

c. Disable or enable simulation file creation.
A simulation file is required to use the Run Verification option after
compilation is complete.

d. Enable verbose logging to create a compilation log file.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

e. Enable or disable display of the HLS report in a browser window directly after
compilation is complete.

f. Perform verification with or without additional verification arguments if you
chose to create a verification executable. Refer to the Intel High Level
Synthesis Compiler User Guide for information on verification arguments.

3. Click OK to compile the HLS file and create the component.

4. If your HLS file defines more than one component, the Choose File to Import
dialog box prompts you to select a specific component from a list.

5. After compiling, click Show Report to display a compilation report in a browser
window.

6. If you created simulation files for your component, you can click Run Verification
to perform verification.

Related Information

• Compiler Command Options

• Intel High Level Synthesis Compiler User Guide

2.17.3.3. Import High Level Synthesis Files

If you have a compiled High Level Synthesis (HLS) file, you can import it instead to
save compilation time.

1. Click Import.

Figure 72. HLS Component Instantiation

You should only use Import when your HLS file defines previously compiled
components.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

136

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462897780080
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html#ewa1457710831536
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 73. HLS Options Dialog Box

2. In the HLS Options dialog box, you can select from the following options:

a. The project name defaults to the entity name defined in the HLS file. To set a
new project name, select new project name and enter a new HLS project
name in the dialog box.

Figure 74. Change the Project Name

b. Enable or disable display of the HLS report in a browser window directly after
compilation is complete.

c. Perform verification with or without additional verification arguments if you
chose to create a verification executable. Refer to the Intel High Level
Synthesis Compiler User Guide for information on verification arguments.

3. Click OK.

4. If your HLS file defines more than one component, the Choose File to Import
dialog box prompts you to select a specific component .ip from a list.

5. After importing, click Show Report to display a compilation report in a browser
window if the compilation report is enabled.

6. Click Run Verification to perform verification if it is enabled.

Related Information

Intel High Level Synthesis Compiler User Guide

2.17.4. Creating System Template for a Generic Component

To create a Platform Designer system template:

1. Double-click Generic Component in the IP Catalog.

2. In the Component Instantiation editor, add the interfaces and signals for the
new component in the Signals & Interfaces tab.

3. Select the Implementation Templates tab.

4. Click Create Platform Designer System Template button. This option creates
an empty Platform Designer system and saves the template as a .qsys file to
implement this generic component.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

137

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html#ewa1457710831536
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 75. Creating System templates

To implement this component:

1. To open the template Platform Designer system, click File ➤ Open and choose the
specific .qsys file.

2. Add either or both IP components and generic components then export their
interfaces to satisfy the specified interface requirements.

3. To view the exported interfaces in the Interface Requirements tab, select View
➤ Interface Requirements.

Figure 76. Viewing the Interface Requirements from the System Template

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.17.5. Exporting a Generic Component

You can export a generic component as a .ipxact file as well as _hw.tcl file:

1. Double-click Generic Component in the IP Catalog.

2. Select the Export tab.

3. To export generic component as an IP-XACT file, click Export IP-XACT File and
select the location to save your IP-XACT file.

4. To export generic component as a _hw.tcl file, click Export _hw.tcl File and
select the location to save your _hw.tcl file.

2.18. Creating Platform Designer Components Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2019.06.19 18.1.0 • Added descriptions of AXI parameters in "Specify Parameters in the
Platform Designer Component Editor."

2018.12.15 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2018.05.07 18.0 • Added scripting support for wire-level expressions.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Replaced mentions of altera_axi_default_slave to

altera_error_response_slave
• Added support for SystemVerilog interfaces with _hw.tcl.
• Added support for user alterable HDL parameters with _hw.tcl.
• Added support for High Level Synthesis file compilation.

2017.05.08 17.0.0 • Updated Figure: Address Span Extender

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.
• Added topics for Generic Component.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Updated screen shots Files tab, Qsys Component Editor.
• Added topic: Specify Interfaces and Signals in the Qsys Component

Editor.
• Added topic: Create an HDL File in the Qsys Component Editor.
• Added topic: Create an HDL File Using a Template in the Qsys

Component Editor.

November 2013 13.1.0 • add_hdl_instance

• Added Creating a Component With Differing Structural Qsys View and
Generated Output Files.

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added Upgrading IP Components to the Latest Version.
• Updated for AMBA APB support.

November 2012 12.1.0 • Added AMBA AXI4 support.
• Added the demo_axi_memory example with screen shots and

example _hw.tcl code.

continued...

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

June 2012 12.0.0 • Added new tab structure for the Component Editor.
• Added AXI 3 support.

November 2011 11.1.0 Template update.

May 2011 11.0.0 • Removed beta status.
• Added Avalon Tri-state Conduit (Avalon-TC) interface type.
• Added many interface templates for Nios custom instructions and

Avalon-TC interfaces.

December 2010 10.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Creating Platform Designer Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

140

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Platform Designer Interconnect
Platform Designer interconnect is a high-bandwidth structure that allows you to
connect IP components to other IP components with various interfaces.

Platform Designer allows you to establish connections between Avalon and AXI
interfaces by generating an interconnect logic. This logic enables you to handle the
protocol differences. Platform Designer creates the interconnect logic by converting all
the protocols to a proprietary packet format. Then, the tool routes the packet through
network switches to the appropriate slaves. Here, the packet converts to the slave's
protocol.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

The video AMBA AXI and Intel Avalon Interoperation Using Platform Designer
describes seamless integration of IP components using the AMBA AXI and the Intel
Avalon interfaces.

Synchronous Reset Support

Platform Designer interconnect now supports synchronous reset of registers in the
interconnect. Use of synchronous reset can result in higher performance for Intel
Stratix 10 designs because Intel Stratix 10 Hyper-Registers lack a reset signal. If a
register in your Intel Stratix 10 design uses asynchronous reset, the Compiler cannot
implement the register as a Hyper-Register, potentially reducing performance.

When Use synchronous reset is set to True in the Domains tab, all registers in the
interconnect use synchronous reset. The Use synchronous reset option is enabled
by default for Intel Stratix 10 devices, but is disabled by default for all other devices.

Note: In Platform Designer systems with no clock domain crossing, the initial reset requires
asserting for at least 16 cycles. This action prevents the propagation of incorrect
values that the reset tree skew may generate during the initial reset release, ensuring
the resetting of all the Platform Designer components and interconnect. If system has
multiple clocks, reset must be held high for at least 16 slowest clock cycles.

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 10

• Creating Platform Designer Components on page 89

• Platform Designer System Design Components on page 276

• AMBA AXI and Intel Avalon Interoperation Using Platform Designer

• Specifying Interconnect Parameters on page 49

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
http://www.youtube.com/watch?v=LdD2B1x-5vo
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1. Memory-Mapped Interfaces

Platform Designer supports the implementation of memory-mapped interfaces for
Avalon, AXI, and APB protocols.

Platform Designer interconnect transmits memory-mapped transactions between
masters and slaves in packets. The command network transports read and write
packets from master interfaces to slave interfaces. The response network transports
response packets from slave interfaces to master interfaces.

For each component interface, Platform Designer interconnect manages memory-
mapped transfers and interacts with signals on the connected interface. Master and
slave interfaces can implement different signals based on interface parameterizations,
and Platform Designer interconnect provides any necessary adaptation between them.
In the path between master and slaves, Platform Designer interconnect may introduce
registers for timing synchronization, finite state machines for event sequencing, or
nothing at all, depending on the services required by the interfaces.

Platform Designer interconnect supports the following implementation scenarios:

• Any number of components with master and slave interfaces. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or many-to-many.

• Masters and slaves of different data widths.

• Masters and slaves operating in different clock domains.

• IP Components with different interface properties and signals. Platform Designer
adapts the component interfaces so that interfaces with the following differences
can be connected:

— Avalon and AXI interfaces that use active-high and active-low signaling. AXI
signals are active high, except for the reset signal.

— Interfaces with different burst characteristics.

— Interfaces with different latencies.

— Interfaces with different data widths.

— Interfaces with different optional interface signals.

Note: Since interface connections between AMBA 3 AXI and AMBA 4 AXI
declare a fixed set of signals with variable latency, there is no need for
adapting between active-low and active-high signaling, burst
characteristics, different latencies, or port signatures. Adaptation might
be necessary between Avalon interfaces.

In this example, there are two components mastering the system, a processor and a
DMA controller, each with two master interfaces. The masters connect through the
Platform Designer interconnect to slaves in the Platform Designer system.

The dark blue blocks represent interconnect components. The dark gray boxes indicate
items outside of the Platform Designer system and the Intel Quartus Prime software
design, and show how to export component interfaces and how to connect these
interfaces to external devices.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. Platform Designer interconnect for an Avalon-MM System with Multiple
Masters

Processor

M

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

S

Instruction

M

Data

MM

Control

Read Write

Instruction
Memory

SSS

Interconnect

PCB

Command Switch
(Avalon-ST)

Response Switch
(Avalon-ST)

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

Tri-State Conduit
 Pin Sharer & Bridge

TCS TCS

Tri-State
Controller

S

TCM

Tri-State
Conduit

S

TCM

Slave
Network
Interface

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M Avalon-MM Master Interface

S Avalon-MM Slave Interface

TCM Avalon Tri-State Conduit Master

TCS Avalon Tri-State Conduit Slave

Design using
Platform Designer

in Intel FPGA

3.1.1. Platform Designer Packet Format

The Platform Designer packet format supports Avalon, AXI, and APB transactions.
Memory-mapped transactions between masters and slaves are encapsulated in
Platform Designer packets. For Avalon systems without AXI or APB interfaces, some
fields are ignored or removed.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1.1. Fields in the Platform Designer Packet Format

The fields of the Platform Designer packet format are of variable length to minimize
resource usage. However, if most components in a design have a single data width, for
example 32-bits, and a single component has a data width of 64-bits, Platform
Designer inserts a width adapter to accommodate 64-bit transfers.

Table 32. Platform Designer Packet Format for Memory-Mapped Master and Slave
Interfaces

Command Description

Address Specifies the byte address for the lowest byte in the current cycle. There are no restrictions
on address alignment.

Size Encodes the run-time size of the transaction.
In conjunction with address, this field describes the segment of the payload that contains
valid data for a beat within the packet.

Address Sideband Carries “address” sideband signals. The interconnect passes this field from master to slave.
This field is valid for each beat in a packet, even though it is only produced and consumed
by an address cycle.
Up to 8-bit sideband signals are supported for both read and write address channels.

Cache Carries the AXI cache signals.

Transaction
(Exclusive)

Indicates whether the transaction has exclusive access.

Transaction (Posted) Used to indicate non-posted writes (writes that require responses).

Data For command packets, carries the data to be written. For read response packets, carries
the data that has been read.

Byteenable Specifies which symbols are valid. AXI can issue or accept any byteenable pattern. For
compatibility with Avalon, Intel recommends that you use the following legal values for 32-
bit data transactions between Avalon masters and slaves:
• 1111—Writes full 32 bits
• 0011—Writes lower 2 bytes
• 1100—Writes upper 2 bytes
• 0001—Writes byte 0 only
• 0010—Writes byte 1 only
• 0100—Writes byte 2 only
• 1000—Writes byte 3 only

Source_ID The ID of the master or slave that initiated the command or response.

Destination_ID The ID of the master or slave to which the command or response is directed.

Response Carries the AXI response signals.

Thread ID Carries the AXI transaction ID values.

Byte count The number of bytes remaining in the transaction, including this beat. Number of bytes
requested by the packet.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Burstwrap The burstwrap value specifies the wrapping behavior of the current burst. The burstwrap
value is of the form 2<n> -1. The following types are defined:
• Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value. When the

burst reaches the wrap boundary, it wraps back to the previous burst boundary so that
only the low order bits are used for addressing. For example, a burst starting at address
0x1C, with a burst wrap boundary of 32 bytes and a burst size of 20 bytes, would write
to addresses 0x1C, 0x0, 0x4, 0x8, and 0xC.

• For a burst wrap boundary of size <m>, Burstwrap = <m> - 1, or for this case
Burstwrap = (32 - 1) = 31 which is 25 -1.

• For AXI masters, the burstwrap boundary value (m) is based on the different AXBURST:
— Burstwrap set to all 1’s. For example, for a 6-bit burstwrap, burstwrap is

6'b111111.
— For WRAP bursts, burstwrap = AXLEN * size – 1.
— For FIXED bursts, burstwrap = size – 1.
— Sequential bursts increment the address for each transfer in the burst. For

sequential bursts, the Burstwrap field is set to all 1s. For example, with a 6-bit
Burstwrap field, the value for a sequential burst is 6'b111111 or 63, which is 26 -
1.

For Avalon masters, Platform Designer adaptation logic sets a hardwired value for the
burstwrap field, according the declared master burst properties. For example, for a master
that declares sequential bursting, the burstwrap field is set to ones. Similarly, masters that
declare burst have their burstwrap field set to the appropriate constant value.
AXI masters choose their burst type at run-time, depending on the value of the AW or
ARBURST signal. The interconnect calculates the burstwrap value at run-time for AXI
masters.

Protection Access level protection. When the lowest bit is 0, the packet has normal access. When the
lowest bit is 1, the packet has privileged access. For Avalon-MM interfaces, this field maps
directly to the privileged access signal, which allows a memory-mapped master to write to
an on-chip memory ROM instance. The other bits in this field support AXI secure accesses
and uses the same encoding, as described in the AXI specification.

QoS QoS (Quality of Service Signaling) is a 4-bit field that is part of the AMBA 4 AXI interface
that carries QoS information for the packet from the AXI master to the AXI slave.
Transactions from AMBA 3 AXI and Avalon masters have the default value 4'b0000, that
indicates that they are not participating in the QoS scheme. QoS values are dropped for
slaves that do not support QoS.

Data sideband Carries data sideband signals for the packet. On a write command, the data sideband
directly maps to WUSER. On a read response, the data sideband directly maps to RUSER. On
a write response, the data sideband directly maps to BUSER.

3.1.1.2. Transaction Types for Memory-Mapped Interfaces

Table 33. Transaction Types for Memory-Mapped Interfaces
The table below describes the information that each bit transports in the packet format's transaction field.

Bit Name Definition

0 PKT_TRANS_READ When asserted, indicates a read transaction.

1 PKT_TRANS_COMPRESSED_READ For read transactions, specifies whether the read command can be
expressed in a single cycle (all byteenables asserted on every
cycle).

2 PKT_TRANS_WRITE When asserted, indicates a write transaction.

3 PKT_TRANS_POSTED When asserted, no response is required.

4 PKT_TRANS_LOCK When asserted, indicates arbitration is locked. Applies to write
packets.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.1.3. Platform Designer Transformations

The memory-mapped master and slave components connect to network interface
modules that encapsulate the transaction in Avalon-ST packets. The memory-mapped
interfaces have no information about the encapsulation or the function of the layer
transporting the packets. The interfaces operate in accordance with memory-mapped
protocol and use the read and write signals and transfers.

Figure 78. Transformation when Generating a System with Memory-Mapped and Slave
Components
Platform Designer components that implement the blocks appear shaded.

Slave Response Connectivity

Master Command Connectivity

Avalon-STAvalon-MM or AXI Avalon-MM or AXI

Avalon-ST
Network

(Command)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Avalon-ST
Network

(Response)

Related Information

• Master Network Interfaces on page 148

• Slave Network Interfaces on page 151

3.1.2. Interconnect Domains

An interconnect domain is a group of connected memory-mapped masters and slaves
that share the same interconnect. The components in a single interconnect domain
share the same packet format.

3.1.2.1. Using One Domain with Width Adaptation

When one of the masters in a system connects to all the slaves, Platform Designer
creates a single domain with two packet formats: one with 64-bit data, and one with
16-bit data. A width adapter manages accesses between the 16-bit master and 64-bit
slaves.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. One Domain with 1:4 and 4:1 Width Adapters
In this system example, there are two 64-bit masters that access two 64-bit slaves. It also includes one 16-bit
master, that accesses two 16-bit slaves and two 64-bit slaves. The 16-bit Avalon master connects through a
1:4 adapter, then a 4:1 adapter to reach its 16-bit slaves.

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Master
M

Single Domain with 1:4 & 4:1 Width Adapters

64-Bit
Avalon-MM

Slave

S

64-Bit
Avalon-MM

Master
M

64-Bit
Avalon-MM

Master
M

4:1 1:4

64-Bit
Avalon-MM

Slave

S

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2.2. Using Two Separate Domains

Figure 80. Two Separate Domains
In this system example, Platform Designer uses two separate domains. The first domain includes two 64-bit
masters connected to two 64-bit slaves. A second domain includes one 16-bit master connected to two 16-bit
slaves. Because the interfaces in Domain 1 and Domain 2 do not share any connections, Platform Designer can
optimize the packet format for the two separate domains. In this example, the first domain uses a 64-bit data
width and the second domain uses 16-bit data.

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Master

M

Component 1 Component 2

3.1.3. Master Network Interfaces

Figure 81. Avalon-MM Master Network Interface
Avalon network interfaces drive default values for the QoS and BUSER, WUSER, and RUSER packet fields in the
master agent, and drop the packet fields in the slave agent.

Note: The response signal from the Limiter to the Agent is optional.

Master
Interface

Master Network Interface

Translator Agent Limiter

Router

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

response [1:0]

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 82. AXI Master Network Interface
An AMBA 4 AXI master supports INCR bursts up to 256 beats, QoS signals, and data sideband signals.

Master Network Interface

AXI
Translator

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

AXI
Master
Agent

Router

Read Command

Write Command

Limiter

Write Response

Read Response

Master
Interface

Note: For a complete definition of the optional read response signal, refer to Avalon
Memory-Mapped Interface Signal Types in the Avalon Interface Specifications.

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 10

3.1.3.1. Avalon-MM Master Agent

The Avalon-MM Master Agent translates Avalon-MM master transactions into Platform
Designer command packets and translates the Platform Designer Avalon-MM slave
response packets into Avalon-MM responses.

3.1.3.2. Avalon-MM Master Translator

The Avalon-MM Master Translator interfaces with an Avalon-MM master component
and converts the Avalon-MM master interface to a simpler representation for use in
Platform Designer.

The Avalon-MM Master translator performs the following functions:

• Translates active-low signaling to active-high signaling

• Inserts wait states to prevent an Avalon-MM master from reading invalid data

• Translates word and symbol addresses

• Translates word and symbol burst counts

• Manages re-timing and re-sequencing bursts

• Removes unnecessary address bits

3.1.3.3. AXI Master Agent

An AXI Master Agent accepts AXI commands and produces Platform Designer
command packets. It also accepts Platform Designer response packets and converts
those into AXI responses. This component has separate packet channels for read
commands, write commands, read responses, and write responses. Avalon master
agent drives the QoS and BUSER, WUSER, and RUSER packet fields with default values
AXQO and b0000, respectively.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

149

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For signal descriptions, refer to Platform Designer Packet Format.

Related Information

Fields in the Platform Designer Packet Format on page 144

3.1.3.4. AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

Attention: If an Avalon or AMBA 4 AXI slave is connected to a master without response ports, the
interconnect could ignore transaction responses such as SLAVEERROR or
DECODEERROR. This situation could lead to returning invalid data to the master.

The AXI translator is inserted for both AMBA 4 AXI masters and slaves and performs
the following functions:

• Matches ID widths between the master and slave in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI master connects to
an AMBA 4 AXI slave in 1x1 systems.

Related Information

Arm AMBA Protocol Specifications

3.1.3.5. APB Master Agent

An APB master agent accepts APB commands and produces or generates Platform
Designer command packets. It also converts Platform Designer response packets to
APB responses.

3.1.3.6. APB Slave Agent

An APB slave agent issues resulting transaction to the APB interface. It also accepts
creates Platform Designer response packets.

3.1.3.7. APB Translator

An APB peripheral does not require pslverr signals to support additional signals for
the APB debug interface.

The APB translator is inserted for both the master and slave and performs the
following functions:

• Sets the response value default to OKAY if the APB slave does not have a pslverr
signal.

• Turns on or off additional signals between the APB debug interface, which is used
with HPS (Intel SoC’s Hard Processor System).

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

150

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.3.8. AHB Slave Agent

The Platform Designer interconnect supports non-bursting Advanced High-
performance Bus (AHB) slave interfaces.

3.1.3.9. Memory-Mapped Router

The Memory-Mapped Router routes command packets from the master to the slave,
and response packets from the slave to the master. For master command packets, the
router uses the address to set the Destination_ID and Avalon-ST channel. For the
slave response packet, the router uses the Destination_ID to set the Avalon-ST
channel. The demultiplexers use the Avalon-ST channel to route the packet to the
correct destination.

3.1.3.10. Memory-Mapped Traffic Limiter

The Memory-Mapped Traffic Limiter ensures the responses arrive in order. It prevents
any command from being sent if the response could conflict with the response for a
command that has already been issued. By guaranteeing in-order responses, the
Traffic Limiter simplifies the response network.

3.1.4. Slave Network Interfaces

3.1.4.1. Avalon-MM Slave Translator

The Avalon-MM Slave Translator converts the Avalon-MM slave interface to a simplified
representation that the Platform Designer network can use.

Figure 83. Avalon-MM Slave Network Interface

Slave
Interface

Slave Network Interface

Agent Translator

Waitrequest

Overflow Error

Command

Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

An Avalon-MM Slave Translator performs the following functions:

• Drives the beginbursttransfer and byteenable signals.

• Supports Avalon-MM slaves that operate using fixed timing and or slaves that use
the readdatavalid signal to identify valid data.

• Translates the read, write, and chipselect signals into the representation that
the Avalon-ST slave response network uses.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Converts active low signals to active high signals.

• Translates word and symbol addresses and burstcounts.

• Handles burstcount timing and sequencing.

• Removes unnecessary address bits.

Related Information

Slave Network Interfaces on page 151

3.1.4.2. AXI Translator

AMBA 4 AXI allows omitting signals from interfaces. The translator bridges between
these “incomplete” AMBA 4 AXI interfaces and the “complete” AMBA 4 AXI interface on
the network interfaces.

Figure 84. AXI Slave Network Interface
An AMBA 4 AXI slave supports up to 256 beat INCR bursts, QoS signals, and data sideband signals.

AXI
Translator

AXI
Agent

Write Response

Read Command

Read Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Write Command

Network Interface

Slave
Interface

The AXI translator is inserted for both AMBA 4 AXI master and slave, and performs
the following functions:

• Matches ID widths between master and slave in 1x1 systems.

• Drives default values as defined in the AMBA Protocol Specifications for missing
signals.

• Performs lock transaction bit conversion when an AMBA 3 AXI master connects to
an AMBA 4 AXI slave in 1x1 systems.

3.1.4.3. Wait State Insertion

Wait states extend the duration of a transfer by one or more cycles. Wait state
insertion logic accommodates the timing needs of each slave, and causes the master
to wait until the slave can proceed. Platform Designer interconnect inserts wait states
into a transfer when the target slave cannot respond in a single clock cycle, as well as
in cases when slave read and write signals have setup or hold time requirements.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 85. Wait State Insertion Logic for One Master and One Slave
Wait state insertion logic is a small finite-state machine that translates control signal sequencing between the
slave side and the master side. Platform Designer interconnect can force a master to wait for the wait state
needs of a slave; for example, arbitration logic in a multi-master system. Platform Designer generates wait
state insertion logic based on the properties of all slaves in the system.

Master
Port

Slave
Port

Wait-State
Insertion

Logic read/writeread/write

wait request

address

data

3.1.4.4. Avalon-MM Slave Agent

The Avalon-MM Slave Agent accepts command packets and issues the resulting
transactions to the Avalon interface. For pipelined slaves, an Avalon-ST FIFO stores
information about pending transactions. The size of this FIFO is the maximum number
of pending responses that you specify when creating the slave component. The
Avalon-MM Slave Agent also backpressures the Avalon-MM master command
interface when the FIFO is full if the slave component includes the waitrequest
signal.

3.1.4.5. AXI Slave Agent

An AXI Slave Agent works like a reverse master agent. The AXI Slave Agent accepts
Platform Designer command packets to create AXI commands, and accepts AXI
responses to create Platform Designer response packets. This component has separate
packet channels for read commands, write commands, read responses, and write
responses.

3.1.5. Arbitration

When multiple masters contend for access to a slave, Platform Designer automatically
inserts arbitration logic, which grants access in fairness-based, round-robin order. You
can alternatively choose to designate a slave as a fixed priority arbitration slave, and
then manually assign priorities in the Platform Designer GUI.

3.1.5.1. Round-Robin Arbitration

When multiple masters contend for access to a slave, Platform Designer automatically
inserts arbitration logic which grants access in fairness-based, round-robin order.

In a fairness-based arbitration protocol, each master has an integer value of transfer
shares with respect to a slave. One share represents permission to perform one
transfer. The default arbitration scheme is equal share round-robin that grants equal,
sequential access to all requesting masters. You can change the arbitration scheme to
weighted round-robin by specifying a relative number of arbitration shares to the
masters that access a given slave. AXI slaves have separate arbitration for their
independent read and write channels, and the Arbitration Shares setting affects
both the read and write arbitration. To display arbitration settings, right-click an
instance on the System View tab, and then click Show Arbitration Shares.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 86. Arbitration Shares in the Connections Column

3.1.5.1.1. Fairness-Based Shares

In a fairness-based arbitration scheme, each master-to-slave connection provides a
transfer share count. This count is a request for the arbiter to grant a specific number
of transfers to this master before giving control to a different master. One share
represents permission to perform one transfer.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 87. Arbitration of Continuous Transfer Requests from Two Masters
Consider a system with two masters connected to a single slave. Master 1 has its arbitration shares set to
three, and Master 2 has its arbitration shares set to four. Master 1 and Master 2 continuously attempt to
perform back-to-back transfers to the slave. The arbiter grants Master 1 access to the slave for three transfers,
and then grants Master 2 access to the slave for four transfers. This cycle repeats indefinitely. The figure below
describes the waveform for this scenario.

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Figure 88. Arbitration of Two Masters with a Gap in Transfer Requests
If a master stops requesting transfers before it exhausts its shares, it forfeits all its remaining shares, and the
arbiter grants access to another requesting master. After completing one transfer, Master 2 stops requesting for
one clock cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished supply of
shares.

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

3.1.5.1.2. Round-Robin Scheduling

When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Platform Designer includes only requesting masters in the
arbitration for each slave transaction.

3.1.5.2. Fixed Priority Arbitration

Fixed priority arbitration is an alternative arbitration scheme to the default round-robin
scheme.

You can selectively apply fixed priority arbitration to any slave in a Platform Designer
system. You can design Platform Designer systems where a subset of slaves use the
default round-robin arbitration, and other slaves use fixed priority arbitration. Fixed
priority arbitration uses a fixed priority algorithm to grant access to a slave amongst
its connected masters.

To set up fixed priority arbitration, you must first designate a fixed priority slave in
your Platform Designer system in the Interconnect Requirements tab. You can then
assign an arbitration priority number for each master connected to a fixed priority
slave in the System View tab, where the highest numeric value receives the highest
priority. When multiple masters request access to a fixed priority arbitrated slave, the
arbiter gives the master with the highest priority first access to the slave.

For example, when a fixed priority slave receives requests from three masters on the
same cycle, the arbiter grants the master with highest assigned priority first access to
the slave, and backpressures the other two masters.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When you connect an AXI master to an Avalon-MM slave designated to use a fixed
priority arbitrator, the interconnect instantiates a command-path intermediary round-
robin multiplexer in front of the designated slave.

3.1.5.2.1. Designate a Platform Designer Slave to Use Fixed Priority Arbitration

You can designate any slave in your Platform Designer system to use fixed priority
arbitration. You must assign each master connected to a fixed priority slave a numeric
priority. The master with the highest higher priority receives first access to the slave.
No two masters can have the same priority.

1. In Platform Designer, navigate to the Interconnect Requirements tab.

2. Click Add to add a new requirement.

3. In the Identifier column, select the slave for fixed priority arbitration.

4. In the Setting column, select qsys mm.arbitrationScheme.

5. In the Value column, select fixed-priority.

6. Navigate to the System View tab.

7. In the System View tab, right-click the designated fixed priority slave, and then
select Show Arbitration Shares.

8. For each master connected to the fixed priory arbitration slave, type a numerical
arbitration priority in the box that appears in place of the connection circle.

9. Right click the designated fixed priority slave and uncheck Show Arbitration
Shares to return to the connection circles.

3.1.5.2.2. Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

When an AXI master is connected to a designated fixed priority arbitration Avalon-MM
slave, Platform Designer interconnect automatically instantiates an intermediary
multiplexer in front of the Avalon-MM slave.

Since AXI masters have separate read and write channels, each channel appears as
two separate masters to the Avalon-MM slave. To support fairness between the AXI
master’s read and write channels, the instantiated round-robin intermediary
multiplexer arbitrates between simultaneous read and write commands from the AXI
master to the fixed-priority Avalon-MM slave.

When an AXI master is connected to a fixed priority AXI slave, the master’s read and
write channels are directly connected to the AXI slave’s fixed-priority multiplexers. In
this case, there is one multiplexer for the read command, and one multiplexer for the
write command and therefore an intermediary multiplexer is not required.

The red circles indicate placement of the intermediary multiplexer between the AXI
master and Avalon-MM slave due to the separate read and write channels of the AXI
master.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 89. Intermediary Multiplexer Between AXI Master and Avalon-MM Slave

3.1.6. Memory-Mapped Arbiter

The input to the Memory-Mapped Arbiter is the command packet for all masters
requesting access to a specific slave. The arbiter outputs the channel number for the
selected master. This channel number controls the output of a multiplexer that selects
the slave device.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 90. Arbitration Logic
In this example, four Avalon-MM masters connect to four Avalon-MM slaves. In each cycle, an arbiter
positioned in front of each Avalon-MM slave selects among the requesting Avalon-MM masters.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Note: If you specify a Limit interconnect pipeline stages toparameter greater than zero,
the output of the Arbiter is registered. Registering this output reduces the amount of
combinational logic between the master and the interconnect, increasing the fMAX of
the system.

Note: You can use the Memory-Mapped Arbiter for both round-robin and fixed priority
arbitration.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.7. Datapath Multiplexing Logic

Datapath multiplexing logic drives the writedata signal from the granted master to
the selected slave, and the readdata signal from the selected slave back to the
requesting master. Platform Designer generates separate datapath multiplexing logic
for every master in the system (readdata), and for every slave in the system
(writedata). Platform Designer does not generate multiplexing logic if it is not
needed.

Figure 91. Datapath Multiplexing Logic for One Master and Two Slaves

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Datapath
Multiplexer

Slave
Port 2

Slave
Port 1

3.1.8. Width Adaptation

Platform Designer width adaptation converts between Avalon memory-mapped master
and slaves with different data and byte enable widths, and manages the run-time size
requirements of AXI. Width adaptation for AXI to Avalon interfaces is also supported.

3.1.8.1. Memory-Mapped Width Adapter

The Memory-Mapped Width Adapter is used in the Avalon-ST domain and operates
with information contained in the packet format.

The memory-mapped width adapter accepts packets on its sink interface with one
data width and produces output packets on its source interface with a different data
width. The ratio of the narrow data width must be a power of two, such as 1:4, 1:8,
and 1:16. The ratio of the wider data width to the narrower width must also be a
power of two, such as 4:1, 8:1, and 16:1 These output packets may have a different
size if the input size exceeds the output data bus width, or if data packing is enabled.

When the width adapter converts from narrow data to wide data, each input beat's
data and byte enables are copied to the appropriate segment of the wider output data
and byte enables signals.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 92. Width Adapter Timing for a 4:1 Adapter
This adapter assumes that the field ordering of the input and output packets is the same, with the only
difference being the width of the data and accompanying byte enable fields. When the width adapter converts
from wide data to narrow data, the narrower data is transmitted over several beats. The first output beat
contains the lowest addressed segment of the input data and byte enables.

Adapter
Input

Adapter
Output

addr_out[7:0]

clock

addr_in[7:0]

wide_data[31:0]

byteenable_in[3:0]

byteenable_out[3:0]

write

narrow_data[7:0]

08

AABBCCDD

C

08 09 0A 0B

0 0 1 1

DD CC BB AA

3.1.8.1.1. AXI Wide-to-Narrow Adaptation

For all cases of AXI wide-to-narrow adaptation, read data is re-packed to match the
original size. Responses are merged, with the following error precedence: DECERR,
SLVERR, OKAY, and EXOKAY.

Table 34. AXI Wide-to-Narrow Adaptation (Downsizing)

Burst Type Behavior

Incrementing If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to an incrementing burst with a larger length and size equal to the
output width.
If the resulting burst is unsuitable for the slave, the burst is converted to multiple sequential
bursts of the largest allowable lengths. For example, for a 2:1 downsizing ratio, an INCR9 burst is
converted into INCR16 + INCR2 bursts. This is true if the maximum burstcount a slave can
accept is 16, which is the case for AMBA 3 AXI slaves. Avalon slaves have a maximum burstcount
of 64.

Wrapping If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to a wrapping burst with a larger length, with a size equal to the output
width.
If the resulting burst is unsuitable for the slave, the burst is converted to multiple sequential
bursts of the largest allowable lengths; respecting wrap boundaries. For example, for a 2:1
downsizing ratio, a WRAP16 burst is converted into two or three INCR bursts, depending on the
address.

Fixed If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted into repeated sequential bursts over the same addresses. For example,
for a 2:1 downsizing ratio, a FIXED single burst is converted into an INCR2 burst.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.8.1.2. AXI Narrow-to-Wide Adaptation

Table 35. AXI Narrow-to-Wide Adaptation (Upsizing)

Burst Type Behavior

Incrementing The burst (and its response) passes through unmodified. Data and write strobes are placed in the
correct output segment.

Wrapping The burst (and its response) passes through unmodified.

Fixed The burst (and its response) passes through unmodified.

3.1.9. Burst Adapter

Platform Designer interconnect uses the memory-mapped burst adapter to
accommodate the burst capabilities of each interface in the system, including
interfaces that do not support burst transfers.

The maximum burst length for each interface is a property of the interface and is
independent of other interfaces in the system. Therefore, a specific master may be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst adapter translates the large master burst into smaller bursts, or
into individual slave transfers if the slave does not support bursting. Until the master
completes the burst, arbiter logic prevents other masters from accessing the target
slave. For example, if a master initiates a burst of 16 transfers to a slave with
maximum burst length of 8, the burst adapter initiates 2 bursts of length 8 to the
slave.

Avalon-MM and AXI burst transactions allow a master uninterrupted access to a slave
for a specified number of transfers. The master specifies the number of transfers when
it initiates the burst. Once a burst begins between a master and slave, arbiter logic is
locked until the burst completes. For burst masters, the length of the burst is the
number of cycles that the master has access to the slave, and the selected arbitration
shares have no effect.

Note: AXI masters can issue burst types that Avalon cannot accept, for example, fixed
bursts. In this case, the burst adapter converts the fixed burst into a sequence of
transactions to the same address.

Note: For AMBA 4 AXI slaves, Platform Designer allows 256-beat INCR bursts. You must
ensure that 256-beat narrow-sized INCR bursts are shortened to 16-beat narrow-sized
INCR bursts for AMBA 3 AXI slaves.

Avalon-MM masters always issue addresses that are aligned to the size of the transfer.
However, when Platform Designer uses a narrow-to-wide width adaptation, the
resulting address may be unaligned. For unaligned addresses, the burst adapter issues
the maximum sized bursts with appropriate byte enables. This brings the burst-in-
progress up to an aligned slave address. Then, it completes the burst on aligned
addresses.

The burst adapter supports variable wrap or sequential burst types to accommodate
different properties of memory-mapped masters. Some bursting masters can issue
more than one burst type.

Burst adaptation is available for Avalon to Avalon, Avalon to AXI, and AXI to Avalon,
and AXI to AXI connections. For information about AXI-to-AXI adaptation, refer to AXI
Wide-to-Narrow Adaptation

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For AMBA 4 AXI to AMBA 3 AXI connections, Platform Designer follows an AMBA 4 AXI
256 burst length to AMBA 3 AXI 16 burst length.

3.1.9.1. Burst Adapter Implementation Options

Platform Designer automatically inserts burst adapters into your system depending on
your master and slave connections, and properties. You can select burst adapter
implementation options on the Interconnect Requirements tab.

To access the implementation options, you must select the Burst adapter
implementation setting for the $system identifier.

• Generic converter (slower, lower area)—Default. Controls all burst
conversions with a single converter that can adapt incoming burst types. This
results in an adapter that has lower fMAX, but smaller area.

• Per-burst-type converter (faster, higher area)—Controls incoming bursts
with a specific converter, depending on the burst type. This results in an adapter
that has higher fMAX, but higher area. This setting is useful when you have AXI
masters or slaves and you want a higher fMAX.

Note: For more information about the Interconnect Requirements tab, refer to Creating a
System with Platform Designer.

Related Information

Creating a System with Platform Designer on page 10

3.1.9.2. Burst Adaptation: AXI to Avalon

The following entries specify the behavior when converting between AXI and Avalon
burst types.

Table 36. Burst Adaptation: AXI to Avalon

Burst Type Behavior

Incrementing Sequential Slave
Bursts that exceed slave_max_burst_length are converted to multiple sequential bursts
of a length less than or equal to the slave_max_burst_length. Otherwise, the burst is
unconverted. For example, for an Avalon slave with a maximum burst length of 4, an
INCR7 burst is converted to INCR4 + INCR3.
Wrapping Slave
Bursts that exceed the slave_max_burst_length are converted to multiple sequential
bursts of length less than or equal to the slave_max_burst_length. Bursts that exceed
the wrapping boundary are converted to multiple sequential bursts that respect the slave's
wrapping boundary.

Wrapping Sequential Slave
A WRAP burst is converted to multiple sequential bursts. The sequential bursts are less
than or equal to the max_burst_length and respect the transaction's wrapping boundary
Wrapping Slave
If the WRAP transaction's boundary matches the slave's boundary, then the burst passes
through. Otherwise, the burst is converted to sequential bursts that respect both the
transaction and slave wrap boundaries.

Fixed Fixed bursts are converted to sequential bursts of length 1 that repeatedly access the same
address.

Narrow All narrow-sized bursts are broken into multiple bursts of length 1.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.9.3. Burst Adaptation: Avalon to AXI

The following entries specify the behavior when converting between Avalon and AXI
burst types.

Note: The Platform Designer-generated interconnect that adapts between an Avalon
memory-mapped interface master and a connected AXI slave does not account for the
AXI3 or AXI4 4KB boundary restriction for burst transactions. When connecting an
Avalon memory-mapped interface FPGA master to an AXI slave in Platform Designer,
you must ensure that the bursts do not exceed the AXI3 or AXI4 4KB boundary
restriction for burst transactions.

Table 37. Burst Adaptation: Avalon to AXI

Burst Type Definition

Sequential Bursts of length greater than 16 are converted to multiple INCR bursts of a length less than
or equal to 16. Bursts of length less than or equal to 16 are not converted.

Wrapping Only Avalon masters with alwaysBurstMaxBurst = true are supported. The WRAP
burst is passed through if the length is less than or equal to 16. Otherwise, it is converted
to two or more INCR bursts that respect the transaction's wrap boundary.

GENERIC_CONVERTER Controls all burst conversions with a single converter that adapts all incoming burst types,
resulting in an adapter that has smaller area, but lower fMAX.

3.1.10. Waitrequest Allowance Adapter

The Waitrequest Allowance Adapter allows a connection between a master and a slave
interface with different waitrequestAllowance properties.

The Waitrequest Allowance adapter provides the following features:

• The adapter is used in the memory-mapped domain and operates with signals on
the memory-mapped interface.

• Signal widths and all properties other than waitrequestAllowance are identical
on master and slave interfaces.

• The adapter does not modify any command properties such as data width, burst
type, or burst count.

• The adapter is inserted by the Platform Designer interconnect software when a
master and slave with different waitrequestAllowance property are connected.

When the slave has a waitrequestAllowance = n the master must deassert read
or write signals after <n> transfers when waitrequest is asserted.

Table 38. Interconnect Scenarios Requiring waitrequestAllowance

Master (m) / Slave (n)
waitrequestAllowance

Adaptation
Required

Description Adapter Function

m = n No The master waitrequestAllowance
is equal to the slave's
waitrequestAllowance.

All signals are passed through.

m = 0; n > 0 Yes The master cannot send when
waitrequest=1, but holds the value
on the bus. This would result in the
slave receiving multiple copies.

The adapter deasserts valid when
input waitrequest is asserted.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Master (m) / Slave (n)
waitrequestAllowance

Adaptation
Required

Description Adapter Function

Requires adaptation to prevent.

m < n; m != 0 No The master can send <m> transfers
after waitrequest is asserted. The
slave receives fewer than <n>
transfers, which is acceptable.

All signals are passed through.

m > n; n = 0 Yes The slave cannot accept transfers when
waitrequest is asserted. Transfers
sent when waitrequest=1 can be
lost.
Prevention requires adaptation in the
form of transfer buffering.

If the input waitrequest is asserted,
the adapter buffers the input data.

m > n; n > 0 Yes The slave cannot accept more than
<n> transfers after waitrequest is
asserted, however the master can send
up to <m> transfers.
Transfers (<m> – <n>) can be lost.
Prevention requires adaptation in the
form of transfer buffering.

The adapter buffers the input data.

3.1.11. Read and Write Responses

Platform Designer merges write responses if a write is converted (burst adapted) into
multiple bursts. Platform Designer requires read response merging for a downsized
(wide-to-narrow width adapted) read.

Platform Designer merges responses based on the following precedence rule:

DECERR > SLVERR > OKAY > EXOKAY

Adaptation between a master with write responses and a slave without write
responses can be costly, especially if there are multiple slaves, or if the slave supports
bursts. To minimize the cost of logic between slaves, consider placing the slaves that
do not have write responses behind a bridge so that the write response adaptation
logic cost is only incurred once, at the bridge’s slave interface.

The following table describes what happens when there is a mismatch in response
support between the master and slave.

Table 39. Response Support for Mismatched Master and Slave

Slave with Response Slave Without Response

Master with Response Interconnect delivers response from
the slave to the master.
Response merging or duplication may
be necessary for bus sizing.

Interconnect delivers an OKAY
response to the master

Master without Response Master ignores responses from the
slave

No need for responses. Master, slave
and interconnect operate without
response support.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If there is a bridge between the master and the endpoint slave, and the responses
must come from the endpoint slave, ensure that the bridge passes the appropriate
response signals through from the endpoint slave to the master.

If the bridge does not support responses, then the responses are generated by the
interconnect at the slave interface of the bridge, and responses from the endpoint
slave are ignored.

For the response case where the transaction violates security settings or uses an
illegal address, the interconnect routes the transactions to the default slave. For
information about Platform Designer system security, refer to Manage System
Security. For information about specifying a default slave, refer to Error Response
Slave in Platform Designer System Design Components.

Note: Avalon-MM slaves without a response signal are not able to notify a connected
master that a transaction has not completed successfully. As a result, Platform
Designer interconnect generates an OKAY response on behalf of the Avalon-MM slave.

Related Information

• Master Network Interfaces on page 148

• Error Response Slave Intel FPGA IP on page 299

• Error Correction Coding (ECC) in Platform Designer Interconnect on page 202

3.1.12. Platform Designer Address Decoding

Address decoding logic forwards appropriate addresses to each slave.

Address decoding logic simplifies component design in the following ways:

• The interconnect selects a slave whenever it is being addressed by a master. Slave
components do not need to decode the address to determine when they are
selected.

• Slave addresses are properly aligned to the slave interface.

• Changing the system memory map does not involve manually editing HDL.

Figure 93. Address Decoding for One Master and Two Slaves
In this example, Platform Designer generates separate address decoding logic for each master in a system. The
address decoding logic processes the difference between the master address width (<M>) and the individual
slave address widths (<S>) and (<T>). The address decoding logic also maps only the necessary master
address bits to access words in each slave’s address space.

Slave
Port 1
(8-bit)

Slave
Port 2

(32-bit)

address [S..0]

read/write

read/write

address [T..2]

address [M..0]
Address

Decoding
Logic

Master
Port

Platform Designer controls the base addresses with the Base setting of active
components on the System View tab. The base address of a slave component must
be a multiple of the address span of the component. This restriction is part of the
Platform Designer interconnect to allow the address decoding logic to be efficient, and
to achieve the best possible fMAX.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 94. Address Decoding Base Settings

3.2. Avalon Streaming Interfaces

High bandwidth components with streaming data typically use Avalon-ST interfaces for
the high throughput datapath. Streaming interfaces can also use memory-mapped
connection interfaces to provide an access point for control. In contrast to the
memory-mapped interconnect, the Avalon-ST interconnect always creates a point-to-
point connection between a single data source and data sink.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 95. Memory-Mapped and Avalon-ST Interfaces

In this example, there are the following connection pairs:

• Data source in the Rx Interface transfers data to the data sink in the FIFO.

• Data source in the FIFO transfers data to the Tx Interface data sink.

The memory-mapped interface allows a processor to access the data source, FIFO, or data sink to provide
system control. If your source and sink interfaces have different formats, for example, a 32-bit source and an
8-bit sink, Platform Designer automatically inserts the necessary adapters. You can view the adapters on the
System View tab by clicking System ➤ Show System with Platform Designer Interconnect.

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor UART Timer

Control Plane Memory -Mapped Intefaces

Data Plane Avalon-Streaming Interface

RAM

Figure 96. Avalon-ST Connection Between the Source and Sink
This source-sink pair includes only the data signal. The sink must be able to receive data as soon as the
source interface comes out of reset.

Data Source Data Sinkdata

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 97. Signals Indicating the Start and End of Packets, Channel Numbers, Error
Conditions, and Backpressure
All data transfers using Avalon-ST interconnect occur synchronously on the rising edge of the associated clock
interface. Throughput and frequency of a system depends on the components and how they are connected.

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

The IP Catalog includes Avalon-ST components that you can use to create datapaths,
including datapaths whose input and output streams have different properties.
Generated systems that include memory-mapped master and slave components may
also use these Avalon-ST components because Platform Designer generation creates
interconnect with a structure similar to a network topology, as described in Platform
Designer Transformations. The following sections introduce the Avalon-ST
components.

Related Information

Platform Designer Transformations on page 146

3.2.1. Avalon-ST Adapters

Platform Designer automatically adds Avalon-ST adapters between two components
during system generation when it detects mismatched interfaces. If you connect
mismatched Avalon-ST sources and sinks, for example, a 32-bit source and an 8-bit
sink, Platform Designer inserts the appropriate adapter type to connect the
mismatched interfaces.

After generation, you can view the inserted adapters selecting System ➤ Show
System With Platform Designer Interconnect. For each mismatched source-sink
pair, Platform Designer inserts an Avalon-ST Adapter. The adapter instantiates the
necessary adaptation logic as sub-components. You can review the logic for each
adapter instantiation in the Hierarchy view by expanding each adapter's source and
sink interface and comparing the relevant ports. For example, to determine why a
channel adapter is inserted, expand the channel adapter's sink and source interfaces
and review the channel port properties for each interface.

You can turn off the auto-inserted adapters feature by adding the
qsys_enable_avalon_streaming_transform=off command to the
quartus.ini file. When you turn off the auto-inserted adapters feature, if
mismatched interfaces are detected during system generation, Platform Designer does
not insert adapters and reports the mismatched interface with validation error
message.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The auto-inserted adapters feature does not work for video IP connections.

3.2.1.1. Avalon-ST Adapter

The Avalon-ST adapter combines the logic of the channel, error, data format, and
timing adapters. The Avalon-ST adapter provides adaptations between interfaces that
have mismatched Avalon-ST endpoints. Based on the source and sink interface
parameterizations for the Avalon-ST adapter, Platform Designer instantiates the
necessary adapter logic (channel, error, data format, or timing) as hierarchal sub-
components.

3.2.1.1.1. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Table 40. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Parameter Name Description

Symbol Width Width of a single symbol in bits.

Use Packet Indicates whether the source and sink interfaces connected to the adapter's
source and sink interfaces include the startofpacket and endofpacket
signals, and the optional empty signal.

3.2.1.1.2. Avalon-ST Adapter Upstream Source Interface Parameters

Table 41. Avalon-ST Adapter Upstream Source Interface Parameters

Parameter Name Description

Source Data Width Controls the data width of the source interface data port.

Source Top Channel Maximum number of output channels allowed.

Source Channel Port Width Sets the bit width of the source interface channel port. If set to 0, there is no
channel port on the sink interface.

Source Error Port Width Sets the bit width of the source interface error port. If set to 0, there is no
error port on the sink interface.

Source Error Descriptors A list of strings that describe the error conditions for each bit of the source
interface error signal.

Source Uses Empty Port Indicates whether the source interface includes the empty port, and whether the
sink interface should also include the empty port.

Source Empty Port Width Indicates the bit width of the source interface empty port, and sets the bit width
of the sink interface empty port.

Source Uses Valid Port Indicates whether the source interface connected to the sink interface uses the
valid port, and if set, configures the sink interface to use the valid port.

Source Uses Ready Port Indicates whether the sink interface uses the ready port, and if set, configures
the source interface to use the ready port.

Source Ready Latency Specifies what ready latency to expect from the source interface connected to
the adapter's sink interface.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.1.3. Avalon-ST Adapter Downstream Sink Interface Parameters

Table 42. Avalon-ST Adapter Downstream Sink Interface Parameters

Parameter Name Description

Sink Data Width Indicates the bit width of the data port on the sink interface connected to the
source interface.

Sink Top Channel Maximum number of output channels allowed.

Sink Channel Port Width Indicates the bit width of the channel port on the sink interface connected the
source interface.

Sink Error Port Width Indicates the bit width of the error port on the sink interface connected to the
adapter's source interface. If set to zero, there is no error port on the source
interface.

Sink Error Descriptors A list of strings that describe the error conditions for each bit of the error port
on the sink interface connected to the source interface.

Sink Uses Empty Port Indicates whether the sink interface connected to the source interface uses the
empty port, and whether the source interface should also use the empty port.

Sink Empty Port Width Indicates the bit width of the empty port on the sink interface connected to the
source interface, and configures a corresponding empty port on the source
interface.

Sink Uses Valid Port Indicates whether the sink interface connected to the source interface uses the
valid port, and if set, configures the source interface to use the valid port.

Sink Uses Ready Port Indicates whether the ready port on the sink interface is connected to the
source interface , and if set, configures the sink interface to use the ready port.

Sink Ready Latency Specifies what ready latency to expect from the source interface connected to
the sink interface.

3.2.1.2. Channel Adapter

The channel adapter provides adaptations between interfaces that have different
channel signal widths.

Table 43. Channel Adapter Adaptations

Condition Description of Adapter Logic

The source uses channels, but the
sink does not.

Platform Designer gives a warning at generation time. The adapter provides a
simulation error and signals an error for data for any channel from the source other
than 0.

The sink has channel, but the
source does not.

Platform Designer gives a warning at generation time, and the channel inputs to the
sink are all tied to a logical 0.

The source and sink both support
channels, and the source's
maximum channel number is less
than the sink's maximum channel
number.

The source's channel is connected to the sink's channel unchanged. If the sink's
channel signal has more bits, the higher bits are tied to a logical 0.

The source and sink both support
channels, but the source's
maximum channel number is
greater than the sink's maximum
channel number.

The source’s channel is connected to the sink’s channel unchanged. If the source’s
channel signal has more bits, the higher bits are left unconnected. Platform Designer
gives a warning that channel information may be lost.
An adapter provides a simulation error message and an error indication if the value
of channel from the source is greater than the sink's maximum number of channels.
In addition, the valid signal to the sink is deasserted so that the sink never sees
data for channels that are out of range.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.2.1. Avalon-ST Channel Adapter Input Interface Parameters

Table 44. Avalon-ST Channel Adapter Input Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the input channel signal in bits

Max Channel Maximum number of input channels allowed.

3.2.1.2.2. Avalon-ST Channel Adapter Output Interface Parameters

Table 45. Avalon-ST Channel Adapter Output Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

3.2.1.2.3. Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

Table 46. Avalon-ST Channel Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Channel adapter supports packets, the
startofpacket, endofpacket, and optional empty signals
are included on its sink and source interfaces.

Include Empty Signal Indicates whether an empty signal is required.

Data Symbols Per Beat Number of symbols per transfer.

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Ready Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Error Signal Width (bits) Bit width of the error signal.

Error Signal Description A list of strings that describes what each bit of the error
signal represents.

3.2.1.3. Data Format Adapter

The data format adapter allows you to connect interfaces that have different values for
the parameters defining the data signal, or interfaces where the source does not use
the empty signal, but the sink does use the empty signal. One of the most common
uses of this adapter is to convert data streams of different widths.

Table 47. Data Format Adapter Adaptations

Condition Description of Adapter Logic

The source and sink’s bits per symbol
parameters are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts the source's width to the sink’s width.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Condition Description of Adapter Logic

If the adaptation is from a wider to a narrower interface, a beat of data at the
input corresponds to multiple beats of data at the output. If the input error
signal is asserted for a single beat, it is asserted on output for multiple beats.
If the adaptation is from a narrow to a wider interface, multiple input beats are
required to fill a single output beat, and the output error is the logical OR of the
input error signal.

The source uses the empty signal, but
the sink does not use the empty
signal.

Platform Designer cannot make the connection.

Figure 98. Avalon Streaming Interconnect with Data Format Adapter
In this example, the data format adapter allows a connection between a 128-bit output data stream and three
32-bit input data streams.

128-Bit RX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

128 Bits

128 Bits

128 Bits

Data
Format
Adapter

Data
Format
Adapter

Data
Format
Adapter

32 Bits

32 Bits

32 Bits

128 Bits

3.2.1.3.1. Avalon-ST Data Format Adapter Input Interface Parameters

Table 48. Avalon-ST Data Format Adapter Input Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signal Indicates whether an empty signal is required.

3.2.1.3.2. Avalon-ST Data Format Adapter Output Interface Parameters

Table 49. Avalon-ST Data Format Adapter Output Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signals Indicates whether an empty signal is required.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.3.3. Avalon-ST Data Format Adapter Common to Input and Output Interface
Parameters

Table 50. Avalon-ST Data Format Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Data Format adapter supports packets, Platform Designer
uses startofpacket, endofpacket, and empty signals.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of channels allowed.

Read Latency Specifies the ready latency to expect from the sink connected to the module's
source interface.

Error Signal Width (bits) Width of the error signal output in bits.

Error Signal Description A list of strings that describes what each bit of the error signal represents.

3.2.1.4. Error Adapter

The error adapter ensures that per-bit-error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Error
conditions that both source and sink can process are connected. If the source has an
error signal representing an error condition that is not supported by the sink, the
signal is left unconnected; the adapter provides a simulation error message and an
error indication if the error is asserted. If the sink has an error condition that is not
supported by the source, the sink's input error bit corresponding to that condition is
set to 0.

Note: The output interface error signal descriptor accepts an error set with an other
descriptor. Platform Designer assigns the bit-wise ORing of all input error bits that are
unmatched, to the output interface error bits set with the other descriptor.

3.2.1.4.1. Avalon-ST Error Adapter Input Interface Parameters

Table 51. Avalon-ST Error Adapter Input Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if the error
signal is not used.

Error Signal Description The description for each of the error bits. If scripting, separate the description
fields by commas. For a successful connection, the description strings of the
error bits in the source and sink must match and are case sensitive.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.4.2. Avalon-ST Error Adapter Output Interface Parameters

Table 52. Avalon-ST Error Adapter Output Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if you do not
need to send error values.

Error Signal Description The description for each of the error bits. Separate the description fields by
commas. For successful connection, the description of the error bits in the source
and sink must match, and are case sensitive.

3.2.1.4.3. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Table 53. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to
the interface.

Ready Latency When the ready signal is used, the value for
ready_latency indicates the number of cycles between
when the ready signal is asserted and when valid data is
driven.

Channel Signal Width (bits) The width of the channel signal. A channel width of 4 allows
up to 16 channels. The maximum width of the channel
signal is eight bits. Set to 0 if channels are not used.

Max Channel The maximum number of channels that the interface
supports. Valid values are 0–255.

Data Bits Per Symbol Number of bits per symbol.

Data Symbols Per Beat Number of symbols per active transfer.

Include Packet Support Turn on this option if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

3.2.1.5. Timing Adapter

The timing adapter allows you to connect component interfaces that require a different
number of cycles before driving or receiving data. This adapter inserts a FIFO buffer
between the source and sink to buffer data or pipeline stages to delay the back-
pressure signals. You can also use the timing adapter to connect interfaces that
support the ready signal, and those that do not. The timing adapter treats all signals
other than the ready and valid signals as payload, and simply drives them from the
source to the sink.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 54. Timing Adapter Adaptations

Condition Adaptation

The source has ready, but the
sink does not.

In this case, the source can respond to backpressure, but the sink never needs to
apply it. The ready input to the source interface is connected directly to logical 1.

The source does not have ready,
but the sink does.

The sink may apply backpressure, but the source is unable to respond to it. There
is no logic that the adapter can insert that prevents data loss when the source asserts
valid but the sink is not ready. The adapter provides simulation time error messages
if data is lost. The user is presented with a warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the
source's.

The source responds to ready assertion or deassertion faster than the sink requires
it. The number of pipeline stages equal to the difference in ready latency are inserted
in the ready path from the sink back to the source, causing the source and the sink
to see the same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in time to satisfy the
sink. A FIFO whose depth is equal to the difference in ready latency is inserted to
compensate for the source’s inability to respond in time.

3.2.1.5.1. Avalon-ST Timing Adapter Input Interface Parameters

Table 55. Avalon-ST Timing Adapter Input Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

3.2.1.5.2. Avalon-ST Timing Adapter Output Interface Parameters

Table 56. Avalon-ST Timing Adapter Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink connected
to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid signal.

3.2.1.5.3. Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

Table 57. Avalon-ST Timing Adapter Common to Input and Output Interface
Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support Turn this option on if the connected interfaces support a
packet protocol, including the startofpacket,
endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This signal
is not necessary if the number of symbols per beat is 1.

Data Symbols Per Beat Number of symbols per active transfer.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

Error Signal Width (bits) Width of the output error signal in bits.

Error Signal Description A list of strings that describes errors.

3.3. Interrupt Interfaces

Using individual requests, the interrupt logic can process up to 32 IRQ inputs
connected to each interrupt receiver. With this logic, the interrupt sender connected to
interrupt receiver_0 is the highest priority with sequential receivers being
successively lower priority. You can redefine the priority of interrupt senders by
instantiating the IRQ mapper component. For more information refer to IRQ Mapper.

You can define the interrupt sender interface as asynchronous with no associated clock
or reset interfaces. You can also define the interrupt receiver interface as
asynchronous with no associated clock or reset interfaces. As a result, the receiver
does its own synchronization internally. Platform Designer does not insert interrupt
synchronizers for such receivers.

For clock crossing adaption on interrupts, Platform Designer inserts a synchronizer,
which is clocked with the interrupt end point interface clock when the corresponding
starting point interrupt interface has no clock or a different clock (than the end point).
Platform Designer inserts the adapter if there is any kind of mismatch between the
start and end points. Platform Designer does not insert the adapter if the interrupt
receiver does not have an associated clock.

Related Information

IRQ Mapper on page 178

3.3.1. Individual Requests IRQ Scheme

In the individual requests IRQ scheme, Platform Designer interconnect passes IRQs
directly from the sender to the receiver, without making assumptions about IRQ
priority. If multiple senders assert their IRQs simultaneously, the receiver logic
determines which IRQ has highest priority, and then responds appropriately.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 99. Interrupt Controller Mapping IRQs
Using individual requests, the interrupt controller can process up to 32 IRQ inputs. The interrupt controller
generates a 32-bit signal irq[31:0] to the receiver, and maps slave IRQ signals to the bits of irq[31:0].
Any unassigned bits of irq[31:0] are disabled.

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

3.3.2. Assigning IRQs in Platform Designer

You assign IRQ connections on the System View tab of Platform Designer. After
adding all components to the system, you connect interrupt senders and receivers.
You can use the IRQ column to specify an IRQ number with respect to each receiver,
or to specify a receiver's IRQ as unconnected. Platform Designer uses the following
three components to implement interrupt handling: IRQ Bridge, IRQ Mapper, and IRQ
Clock Crosser.

3.3.2.1. IRQ Bridge

The IRQ Bridge allows you to route interrupt wires between Platform Designer
subsystems.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 100. Platform Designer IRQ Bridge Application
The peripheral subsystem example below has three interrupt senders that are exported to the to- level of the
subsystem. The interrupts are then routed to the CPU subsystem using the IRQ bridge.

3-bit bus

4-bit bus

 IRQ Bridge
IR

IS

 Interrupt
 Sender 1

IS

 Interrupt
 Sender 2

IS

 Interrupt
 Sender 3

IS
 Interrupt
 Sender 4 IS

export export export

export

IR

 Nios II
ProcessorCPU Subsystem

Peripheral Subsystem

Top-Level Platform Designer System

IS Interrupt Sender IR Interrupt Receiver

Note: Nios II BSP tools support the IRQ Bridge. Interrupts connected via an IRQ Bridge
appear in the generated system.h file. You can use the following properties with the
IRQ Bridge, which do not effect Platform Designer interconnect generation. Platform
Designer uses these properties to generate the correct IRQ information for
downstream tools:

• set_interface_property <sender port> bridgesToReceiver
<receiver port>— The <sender port> of the IP generates a signal that is
received on the IP's <receiver port>. Sender ports are single bits. Receivers ports
can be multiple bits. Platform Designer requires the bridgedReceiverOffset
property to identify the <receiver port> bit that the <sender port> sends.

• set_interface_property <sender port> bridgedReceiverOffset
<port number>— Indicates the <port number> of the receiver port that the
<sender port> sends.

3.3.2.2. IRQ Mapper

Platform Designer inserts the IRQ Mapper automatically during generation. The IRQ
Mapper converts individual interrupt wires to a bus, and then maps the appropriate
IRQ priority number onto the bus.

By default, the interrupt sender connected to the receiver0 interface of the IRQ
mapper is the highest priority, and sequential receivers are successively lower priority.
You can modify the interrupt priority of each IRQ wire by modifying the IRQ priority
number in Platform Designer under the IRQ column. The modified priority is reflected
in the IRQ_MAP parameter for the auto-inserted IRQ Mapper.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 101. IRQ Column in Platform Designer
Circled in the IRQ column are the default interrupt priorities allocated for the CPU subsystem.

Related Information

IRQ Bridge on page 177

3.3.2.3. IRQ Clock Crosser

The IRQ Clock Crosser synchronizes interrupt senders and receivers that are in
different clock domains. To use this component, connect the clocks for both the
interrupt sender and receiver, and for both the interrupt sender and receiver
interfaces. Platform Designer automatically inserts this component when it is required.

3.4. Clock Interfaces

Clock interfaces define the clocks used by a component. Components can have clock
inputs, clock outputs, or both. To update the clock frequency of the component, use
the Parameters tab for the clock source.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Clock Source parameters allows you to set the following options:

• Clock frequency—The frequency of the output clock from this clock source.

• Clock frequency is known— When turned on, the clock frequency is known.
When turned off, the frequency is set from outside the system.

Note: If turned off, system generation may fail because the components do not
receive the necessary clock information. For best results, turn this option on
before system generation.

• Reset synchronous edges

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have internal synchronization circuitry that matches the reset
required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

For more information about synchronous design practices, refer to Recommended
Design Practices

Related Information

Recommended Design Practices

3.4.1. (High Speed Serial Interface) HSSI Clock Interfaces

You can use HSSI Serial Clock and HSSI Bonded Clock interfaces in Platform Designer
to enable high speed serial connectivity between clocks that are used by certain IP
protocols.

3.4.1.1. HSSI Serial Clock Interface

You can connect the HSSI Serial Clock interface with only similar type of interfaces, for
example, you can connect a HSSI Serial Clock Source interface to a HSSI Serial Clock
Sink interface.

3.4.1.1.1. HSSI Serial Clock Source

The HSSI Serial Clock interface includes a source in the Start direction.

You can instantiate the HSSI Serial Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock start

You can connect the HSSI Serial Clock Source to multiple HSSI Serial Clock Sinks
because the HSSI Serial Clock Source supports multiple fan-outs. This Interface has a
single clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Source is valid and does not generate
error messages.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

180

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959483992
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 58. HSSI Serial Clock Source Port Roles

Name Direction Width Description

clk Output 1 bit A single bit wide port role, which provides synchronization for internal logic.

Table 59. HSSI Serial Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

3.4.1.1.2. HSSI Serial Clock Sink

The HSSI Serial Clock interface includes a sink in the End direction.

You can instantiate the HSSI Serial Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock end

You can connect the HSSI Serial Clock Sink interface to a single HSSI Serial Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a 1 bit width, and a clockRate parameter, which is the
frequency of the clock driven by the HSSI Serial Clock Source interface.

An unconnected and unexported HSSI Serial Sink is invalid and generates error
messages.

Table 60. HSSI Serial Clock Sink Port Roles

Name Direction Width Description

clk Output 1 A single bit wide port role, which provides synchronization for internal logic

Table 61. HSSI Serial Clock Sink Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven by the HSSI Serial Clock Source
interface. When you specify a clockRate greater than 0, then this
interface can be driven only at that rate.

3.4.1.1.3. HSSI Serial Clock Connection

The HSSI Serial Clock Connection defines a connection between a HSSI Serial Clock
Source connection point, and a HSSI Serial Clock Sink connection point.

A valid HSSI Serial Clock Connection exists when all the following criteria are satisfied.
If the following criteria are not satisfied, Platform Designer generates error messages
and the connection is prohibited.

• The starting connection point is an HSSI Serial Clock Source with a single port role
clk and maximum 1 bit in width. The direction of the starting port is Output.

• The ending connection point is an HSSI Serial Clock Sink with a single port role
clk, and maximum 1 bit in width. The direction of the ending port is Input.

• If the parameter, clockRate of the HSSI Serial Clock Sink is greater than 0, the
connection is only valid if the clockRate of the HSSI Serial Clock Source is the
same as the clockRate of the HSSI Serial Clock Sink.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.1.1.4. HSSI Serial Clock Example

Example 23. HSSI Serial Clock Interface Example

You can make connections to declare the HSSI Serial Clock interfaces in the _hw.tcl.

package require -exact qsys 14.0

set_module_property name hssi_serial_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

set_fileset_property QUARTUS_SYNTH TOP_LEVEL \
"hssi_serial_component"

set_fileset_property SIM_VERILOG TOP_LEVEL "hssi_serial_component"
set_fileset_property SIM_VHDL TOP_LEVEL "hssi_serial_component"

proc elaborate {} {
 # declaring HSSI Serial Clock Source
 add_interface my_clock_start hssi_serial_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_serial_clock_port_out \
 clk Output 1

 # declaring HSSI Serial Clock Sink
 add_interface my_clock_end hssi_serial_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_serial_clock_port_in clk \
 Input 1
}

proc generate { output_name } {

 add_fileset_file hssi_serial_component.v VERILOG PATH \
 "hssi_serial_component.v"
}

Example 24. HSSI Serial Clock Instantiated in a Composed Component

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

add_instance myinst1 hssi_serial_component
add_instance myinst2 hssi_serial_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

3.4.1.2. HSSI Bonded Clock Interface

You can connect the HSSI Bonded Clock interface only with similar type of interfaces,
for example, you can connect a HSSI Bonded Clock Source interface to a HSSI Bonded
Clock Sink interface.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.1.2.1. HSSI Bonded Clock Source

The HSSI Bonded Clock interface includes a source in the Start direction.

You can instantiate the HSSI Bonded Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock start

You can connect the HSSI Bonded Clock Source to multiple HSSI Bonded Clock Sinks
because the HSSI Serial Clock Source supports multiple fanouts. This Interface has a
single clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock
Source interface has two parameters: clockRate and serializationFactor.
clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source
interface, and the serializationFactor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the required frequency and
phases of the individual clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Source is valid, and does not generate
error messages.

Table 62. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 63. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

3.4.1.2.2. HSSI Bonded Clock Sink

The HSSI Bonded Clock interface includes a sink in the End direction.

You can instantiate the HSSI Bonded Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock end

You can connect the HSSI Bonded Clock Sink interface to a single HSSI Bonded Clock
Source interface; you cannot connect it to multiple sources. This Interface has a single
clk port role limited to a width range of 1 to 1024 bits. The HSSI Bonded Clock Source
interface has two parameters: clockRate and serialzationFactor. clockRate is the
frequency of the clock driven by the HSSI Bonded Clock Source interface, and the
serialization factor is the parallel data width that operates the HSSI TX serializer. The
serialization factor determines the required frequency and phases of the individual
clocks within the HSSI Bonded Clock interface

An unconnected and unexported HSSI Bonded Sink is invalid and generates error
messages.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

183

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 64. HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization for internal
logic.

Table 65. HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial Clock Source
interface.

serializatio
n

long 0 No The serialization factor is the parallel data width that operates the
HSSI TX serializer. The serialization factor determines the
necessary frequency and phases of the individual clocks within the
HSSI Bonded Clock interface.

3.4.1.2.3. HSSI Bonded Clock Connection

The HSSI Bonded Clock Connection defines a connection between a HSSI Bonded
Clock Source connection point, and a HSSI Bonded Clock Sink connection point.

A valid HSSI Bonded Clock Connection exists when all the following criteria are
satisfied. If the following criteria are not satisfied, Platform Designer generates error
messages and the connection is prohibited.

• The starting connection point is an HSSI Bonded Clock Source with a single port
role clk with a width range of 1 to 24 bits. The direction of the starting port is
Output.

• The ending connection point is an HSSI Bonded Clock Sink with a single port role
clk with a width range of 1 to 24 bits. The direction of the ending port is Input.

• The width of the starting connection point clk must be the same as the width of
the ending connection point.

• If the parameter, clockRate of the HSSI Bonded Clock Sink greater than 0, then
the connection is only valid if the clockRate of the HSSI Bonded Clock Source is
same as the clockRate of the HSSI Bonded Clock Sink.

• If the parameter, serializationFactor of the HSSI Bonded Clock Sink is greater
than 0, Platform Designer generates a warning if the serializationFactor of HSSI
Bonded Clock Source is not same as the serializationFactor of the HSSI Bonded
Clock Sink.

3.4.1.2.4. HSSI Bonded Clock Example

Example 25. HSSI Bonded Clock Interface Example

You can make connections to declare the HSSI Bonded Clock interfaces in the _hw.tcl
file.

package require -exact qsys 14.0

set_module_property name hssi_bonded_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset synthesis QUARTUS_SYNTH generate
add_fileset verilog_simulation SIM_VERILOG generate

set_fileset_property synthesis TOP_LEVEL "hssi_bonded_component"

set_fileset_property verilog_simulation TOP_LEVEL \

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

"hssi_bonded_component"

proc elaborate {} {
 add_interface my_clock_start hssi_bonded_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_bonded_clock_port_out \
 clk Output 1024

 add_interface my_clock_end hssi_bonded_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_bonded_clock_port_in \
 clk Input 1024
}

proc generate { output_name } {
 add_fileset_file hssi_bonded_component.v VERILOG PATH \
 "hssi_bonded_component.v"}

If you use the components in a hierarchy, for example, instantiated in a composed
component, you can declare the connections as illustrated in this example.

Example 26. HSII Bonded Clock Instantiated in a Composed Component

add_instance myinst1 hssi_bonded_component
add_instance myinst2 hssi_bonded_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

3.5. Reset Interfaces

Reset interfaces provide both soft and hard reset functionality. Soft reset logic
typically re-initializes registers and memories without powering down the device. Hard
reset logic initializes the device after power-on.

You can define separate reset sources for each clock domain, a single reset source for
all clocks, or any combination in between. You can choose to create a single global
reset domain by clicking System ➤ Create Global Reset Network. If your design
requires more than one reset domain, you can implement your own reset logic and
connectivity. The IP Catalog includes a reset controller, reset sequencer, and a reset
bridge to implement the reset functionality. You can also design your own reset logic.

Platform Designer interconnect now supports synchronous reset of registers in the
interconnect. Use of synchronous reset can result in higher performance for Intel
Stratix 10 designs because Intel Stratix 10 Hyper-Registers lack a reset signal. If a
register in your Intel Stratix 10 design uses asynchronous reset, the Compiler cannot
implement the register as a Hyper-Register, potentially reducing performance.

When Use synchronous reset is set to True in the Domains tab, all registers in the
interconnect use synchronous reset. The Use synchronous reset option is enabled
by default for Intel Stratix 10 designs, but is disabled by default for all other designs.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you design your own reset circuitry, you must carefully consider situations which
may result in system lockup. For example, if an Avalon-MM slave is reset in the middle
of a transaction, the Avalon-MM master may lockup.

Related Information

Specifying Interconnect Parameters on page 49

3.5.1. Single Global Reset Signal Implemented by Platform Designer

When you select System ➤ Create Global Reset Network, the Platform Designer
interconnect creates a global reset bus. All the reset requests are ORed together,
synchronized to each clock domain, and fed to the reset inputs. The duration of the
reset signal is at least one clock period.

The Platform Designer interconnect inserts the system-wide reset under the following
conditions:

• The global reset input to the Platform Designer system is asserted.

• Any component asserts its resetrequest signal.

3.5.2. Reset Controller

Platform Designer automatically inserts a reset controller block if the input reset
source does not have a reset request, but the connected reset sink requires a reset
request.

The Reset Controller has the following parameters that you can specify to customize
its behavior:

• Number of inputs— Indicates the number of individual reset interfaces the
controller ORs to create a signal reset output.

• Output reset synchronous edges—Specifies the level of synchronization. You
can select one the following options:

— None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have designed internal synchronization circuitry that matches
the reset style required for the IP in the system.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously and asserted
asynchronously.

• Synchronization depth—Specifies the number of register stages the
synchronizer uses to eliminate the propagation of metastable events.

• Reset request—Enables reset request generation, which is an early signal that is
asserted before reset assertion. The reset request is used by blocks that require
protection from asynchronous inputs, for example, M20K blocks.

Platform Designer automatically inserts reset synchronizers under the following
conditions:

• More than one reset source is connected to a reset sink

• There is a mismatch between the reset source’s synchronous edges and the reset
sinks’ synchronous edges

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.3. Reset Bridge

The Reset Bridge allows you to use a reset signal in two or more subsystems of your
Platform Designer system. You can connect one reset source to local components, and
export one or more to other subsystems, as required.

The Reset Bridge parameters are used to describe the incoming reset and include the
following options:

• Active low reset—When turned on, reset is asserted low.

• Synchronous edges—Specifies the level of synchronization and includes the
following options:

— None—The reset is asserted and deasserted asynchronously. Use this setting
if you have internal synchronization circuitry.

— Both—The reset is asserted and deasserted synchronously.

— Deassert—The reset is deasserted synchronously, and asserted
asynchronously.

• Number of reset outputs—The number of reset interfaces that are exported.

Note: Platform Designer supports multiple reset sink connections to a single reset source
interface. However, there are situations in composed systems where an internally
generated reset must be exported from the composed system in addition to being
used to connect internal components. In this situation, you must declare one reset
output interface as an export, and use another reset output to connect internal
components.

3.5.4. Reset Sequencer

The Reset Sequencer allows you to control the assertion and deassertion sequence for
Platform Designer system resets.

The Parameter Editor displays the expected assertion and deassertion sequences
based on the current settings. You can connect multiple reset sources to the reset
sequencer, and then connect the outputs of the Reset Sequencer to components in the
system.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 102. Elements and Flow of a Reset Sequencer

CSR

Sync
Sync
Sync
Sync

Reset
Controller

Main
FSM

ASRT SEQ

DSRT SEQ
RESET_OUT

Deglitch
Deglitch
Deglitch
Deglitch

Avalon
Interface

reset_in0
reset_in1
reset_in2
reset_in M

reset_dsrt_qual0
reset_dsrt_qual1
reset_dsrt_qual2
reset_dsrt_qual N

reset_in_sync

assrt_en

reset_logging
CSR_CONTROL(csr_*)
CSR_MASK/PVR

enable
done
enable
done

set_reset[N :0]

dr_reset[N :0]

reset_out0
reset_out1
reset_out2
reset_out N

Reset Sequencer

Parameter:
DSRT_QUALCNT_(0:N)

Parameter:
MIN_ASRT_TIME

Parameter:
ASRT_DELAY(0:N)

Parameter:
DSRT_DELAY(0:N)
ENABLE_DEASSERTION_INPUT_QUAL(0:N)

Reset Controller—Reused reset controller block. It synchronizes the reset inputs into one and feeds into the main FSM of the sequencer block.
Sync—Synchronization block (double flipflop).
Deglitch—Deglitch block. This block waits for a signal to be at a level for X clocks before propagating the input to the output.
CSR—This block contains the CSR Avalon interface and related CSR register and control block in the sequencer.
Main FSM—Main sequencer. This block determines when assertion/deassertion and assertion hold timing occurs.
[A/D]SRT SEQ—Generic sequencer block that sequences out assertion/deassertion of reset from 0:N. The block has multiple counters that saturate
upon reaching count.
RESET_OUT—Controls the end output via:
– Set/clear from the ASRT_SEQ/DSRT_SEQ.
– Masking/forcing from CSR controls.
– Remap of numbering (parameterization).

3.5.4.1. Reset Sequencer Parameters

Table 66. Reset Sequencer Parameters

Parameter Description

Number of reset outputs Sets the number of output resets to be sequenced, which is the number of output reset
signals defined in the component with a range of 2 to 10.

Number of reset inputs Sets the number of input reset signals to be sequenced, which is the number of input
reset signals defined in the component with a range of 1 to 10.

Minimum reset assertion time Specifies the minimum assertion cycles between the assertion of the last sequenced
reset, and the deassertion of the first sequenced reset. The range is 0 to 1023.

Enable Reset Sequencer CSR Enables CSR functionality of the Reset Sequencer through an Avalon interface.

reset_out# Lists the reset output signals. Set the parameters in the other columns for each reset
signal in the table.

ASRT Seq# Determines the order of reset assertion. Enter the values 1, 2, 3, etc. to specify the
required non-overlapping assertion order. This value determines the ASRT_REMAP
value in the component HDL.

ASRT Cycle# Number of cycles to wait before assertion of the reset. The value set here corresponds
to the ASRT_DELAY value in the component HDL. The range is 0 to 1023.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

DSRT Seq# Determines the reset order of reset deassertion. Enter the values 1, 2, 3, etc. to
specify the required non-overlapping deassertion order. This value determines the
DSRT_REMAP value in the component HDL.

DSRT Cycle#/Deglitch# Number of cycles to wait before deasserting or deglitching the reset. If the
USE_DRST_QUAL parameter is set to 0, specifies the number of cycles to wait before
deasserting the reset. If USE_DSRT_QUAL is set to1, specifies the number of cycles
to deglitch the input reset_dsrt_qual signal. This value determines either the
DSRT_DELAY, or the DSRT_QUALCNT value in the component HDL, depending on the
USE_DSRT_QUAL parameter setting. The range is 0 to 1023.

USE_DSRT_QUAL If you set USE_DSRT_QUAL to 1, the deassertion sequence waits for an external
input signal for sequence qualification instead of waiting for a fixed delay count. To use
a fixed delay count for deassertion, set this parameter to 0.

3.5.4.2. Reset Sequencer Timing Diagrams

Figure 103. Basic Sequencing

Figure 104. Sequencing with USE_DSRT_QUAL Set

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.3. Reset Sequencer CSR Registers

The Reset Sequencer's CSR registers provide the following functionality:

• Support reset logging

— Ability to identify which reset is asserted.

— Ability to determine whether any reset is currently active.

• Support software triggered resets

— Ability to generate reset by writing to the register.

— Ability to disable assertion or deassertion sequence.

• Support software sequenced reset

— Ability for the software to fully control the assertion/deassertion sequence by
writing to registers and stepping through the sequence.

• Support reset override

— Ability to assert a specific component reset through software.

Table 67. Reset Sequencer CSR Register Map

Register Offset Width Reset Value Description

Status Register 0x00 32 0x0 The Status register indicates which
sources are allowed to cause a reset.

Interrupt Enable Register 0x04 32 0x0 The Interrupt Enable register bits
enable events triggering the IRQ of the
reset sequencer.

Control Register 0x08 32 0x0 The Control register allows you to
control the Reset Sequencer.

Software Sequenced Reset
Assert Control Register

0x0C 32 0x3FF You can program the Software
Sequenced Reset Assert control
register to control the reset assertion
sequence.

Software Sequenced Reset
Deassert Control Register

0x10 32 0x3FF You can program the Software
Sequenced Reset Deassert register to
control the reset deassertion sequence.

Software Direct
Controlled Resets

0x14 32 0X0 You can write a bit to 1 to assert the
reset_outN signal, and to 0 to deassert
the reset_outN signal.

Software Reset Masking 0x18 32 0x0 Masking off (writing 1) to a reset_outN
"Reset Mask Enable" signal prevents
the corresponding reset from being
asserted. Writing a bit to 0 to a reset mask
enable signal allows assertion of
reset_outN.

3.5.4.3.1. Reset Sequencer Status Register

The Status register indicates which sources are allowed to cause a reset.

You can clear bits by writing 1 to the bit location. The Reset Sequencer ignores
attempts to write bits with a value of 0. If the sequencer is reset (power-on-reset), all
bits are cleared, except the power-on-reset bit.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 68. Values for the Status Register at Offset 0x00

Bit Attribute Default Description

31 RO 0 Reset Active—Indicates that the sequencer is currently active in reset
sequence (assertion or deassertion).

30 RW1C 0 Reset Asserted and waiting for SW to proceed—Set when
there is an active reset assertion, and the next sequence is waiting for the
software to proceed.
Only valid when the Enable SW sequenced reset assert option is
turned on.

29 RW1C 0 Reset Deasserted and waiting for SW to proceed—Set when
there is an active reset deassertion, and the next sequence is waiting for
the software to proceed.
Only valid when the Enable SW sequenced reset deassert option is
turned on.

28:26 Reserved.

25:16 RW1C 0 Reset deassertion input qualification signal
reset_dsrt_qual [9:0] status—Indicates that the reset
deassertion's input signal qualification signal is set. This bit is set on the
detection of assertion of the signal.

15:12 Reserved.

11 RW1C 0 reset_in9 was triggered—Indicates that reset_in9 triggered the
reset. Software clears this bits by writing 1 to this location.

10 RW1C 0 reset_in8 was triggered—Indicates that reset_in8 triggered the
reset. Software clears this bit by writing 1 to this location.

9 RW1C 0 reset_in7 was triggered—Indicates that reset_in7 triggered the
reset. Software clears this bit by writing 1 to this location.

8 RW1C 0 reset_in6 was triggered—Indicates that reset_in6 triggered the
reset. Software clears this bit by writing 1 to this location.

7 RW1C 0 reset_in5 was triggered—Indicates that reset_in5 triggered the
reset. Software clears this bit by writing 1 to this location.

6 RW1C 0 reset_in4 was triggered—Indicates that reset_in4 triggered the
reset. Software clears this bit by writing 1 to this location.

5 RW1C 0 reset_in3 was triggered—Indicates that reset_in3 triggered the
reset. Software clears this bit by writing 1 to this location.

4 RW1C 0 reset_in2 was triggered—Indicates that reset_in2 triggered the
reset. Software clears this bit by writing 1 to this location.

3 RW1C 0 reset_in1 was triggered—Indicates that reset_in1 triggered the
reset. Software clears this bit by writing 1 to this location.

2 RW1C 0 reset_in0 was triggered—Indicates that reset_in0 triggered.
Software clears this bit by writing 1 to this location.

1 RW1C 0 Software-triggered reset—Indicates that the software-triggered
reset is set by the software, and triggering a reset.

0 RW1C 0 Power-on-reset was triggered—Asserted whenever the reset to the
sequencer is triggered. This bit is NOT reset when sequencer is reset.
Software clears this bit by writing 1 to this location.

Related Information

Reset Sequencer CSR Registers on page 190

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.3.2. Reset Sequencer Interrupt Enable Register

The Interrupt Enable register bits enable events triggering the IRQ of the reset
sequencer.

Table 69. Values for the Interrupt Enable Register at Offset 0x04

Bit Attribute Default Description

31 Reserved.

30 RW 0 Interrupt on Reset Asserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in an assertion sequence.

29 RW 0 Interrupt on Reset Deasserted and waiting for SW to
proceed enable. When set, the IRQ is set when the sequencer is waiting
for the software to proceed in a deassertion sequence.

28:26 Reserved.

25:16 RW 0 Interrupt on Reset deassertion input qualification
signal reset_dsrt_qual_[9:0] status— When set, the IRQ is set
when the reset_dsrt_qual[9:0] status bit (per bit enable) is set.

15:12 Reserved.

11 RW 0 Interrupt on reset_in9 Enable—When set, the IRQ is set when the
reset_in9 trigger status bit is set.

10 RW 0 Interrupt on reset_in8 Enable—When set, the IRQ is set when the
reset_in8 trigger status bit is set.

9 RW 0 Interrupt on reset_in7 Enable—When set, the IRQ is set when the
reset_in7 trigger status bit is set.

8 RW 0 Interrupt on reset_in6 Enable—When set, the IRQ is set when the
reset_in6 trigger status bit is set.

7 RW 0 Interrupt on reset_in5 Enable—When set, the IRQ is set when the
reset_in5 trigger status bit is set.

6 RW 0 Interrupt on reset_in4 Enable—When set, the IRQ is set when the
reset_in4 trigger status bit is set.

5 RW 0 Interrupt on reset_in3 Enable—When set, the IRQ is set when the
reset_in3 trigger status bit is set.

4 RW 0 Interrupt on reset_in2 Enable—When set, the IRQ is set when the
reset_in2 trigger status bit is set.

3 RW 0 Interrupt on reset_in1 Enable—When set, the IRQ is set when the
reset_in1 trigger status bit is set.

2 RW 0 Interrupt on reset_in0 Enable—When set, the IRQ is set when the
reset_in0 trigger status bit is set.

1 RW 0 Interrupt on Software triggered reset Enable—When set, the
IRQ is set when the software triggered reset status bit is set.

0 RW 0 Interrupt on Power-On-Reset Enable—When set, the IRQ is set
when the power-on-reset status bit is set.

Related Information

Reset Sequencer CSR Registers on page 190

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.3.3. Reset Sequencer Control Register

The Control register allows you to control the Reset Sequencer.

Table 70. Values for the Control Register at Offset 0x08

Bit Attribute Default Description

31:3 Reserved.

2 RW 0 Enable SW sequenced reset assert—Enable a software sequenced
reset assert sequence. Timer delays and input qualification are ignored,
and only the software can sequence the assert.

1 RW 0 Enable SW sequenced reset deassert—Enable a software
sequenced reset deassert sequence. Timer delays and input qualification
are ignored, and only the software can sequence the deassert.

0 WO 0 Initiate Reset Sequence—To trigger the hardware sequenced warm
reset, the Reset Sequencer writes this bit to 1 a single time. The Reset
Sequencer verifies that Reset Active is 0 before setting this bit, and
always reads the value 0. To monitor this sequence, verify that Reset
Active is asserted, and then subsequently deasserted.

Related Information

Reset Sequencer CSR Registers on page 190

3.5.4.3.4. Reset Sequencer Software Sequenced Reset Assert Control Register

You can program the Software Sequenced Reset Assert control register to
control the reset assertion sequence.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Asserted and waiting for SW to proceed
bit. The Reset Sequencer proceeds only after the Reset Asserted and waiting
for SW to proceed bit is cleared.

Table 71. Values for the Reset Sequencer Software Sequenced Reset Assert Control
Register at Offset 0x0C

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset assert enable—This is a per-bit
enable for SW sequenced reset assert.
If the register's bitN is set, the sequencer sets the bit30 of the status
register when a resetN is asserted. It then waits for the bit30 of the
status register to clear before proceeding with the sequence. By default,
all bits are enabled (fully SW sequenced).

Related Information

Reset Sequencer CSR Registers on page 190

3.5.4.3.5. Reset Sequencer Software Sequenced Reset Deassert Control Register

You can program the Software Sequenced Reset Deassert register to control
the reset deassertion sequence.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the corresponding enable bit is set, the sequencer stops when the desired reset
asserts, and then sets the Reset Deasserted and waiting for SW to
proceed bit. The Reset Sequencer proceeds only after the Reset Deasserted and
waiting for SW to proceed bit is cleared.

Table 72. Values for the Reset Sequencer Software Sequenced Reset Deassert Control
Register at Offset 0x10

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0x3FF Per-reset SW sequenced reset deassert enable—This is a per-
bit enable for SW-sequenced reset deassert. If bitN of this register is set,
the sequencer sets bit29 of the Status Register when a resetN is
asserted. It then waits for the bit29 of the status register to clear before
proceeding with the sequence. By default, all bits are enabled (fully SW
sequenced).

Related Information

Reset Sequencer CSR Registers on page 190

3.5.4.3.6. Reset Sequencer Software Direct Controlled Resets

You can write a bit to 1 to assert the reset_outN signal, and to 0 to deassert the
reset_outN signal.

Table 73. Values for the Software Direct Controlled Resets at Offset 0x14

Bit Attribute Default Description

31:26 Reserved.

25:16 WO 0 Reset Overwrite Trigger Enable—This is a per-bit control trigger
bit for the overwrite value to take effect.

15:10 Reserved.

9:0 WO 0 reset_outN Reset Overwrite Value—This is a per-bit control of the
reset_out bit. The Reset Sequencer can use this to forcefully drive the
reset to a specific value. A value of 1 sets the reset_out. A value of 0
clears the reset_out. A write to this register only takes effect if the
corresponding trigger bit in this register is set.

Related Information

Reset Sequencer CSR Registers on page 190

3.5.4.3.7. Reset Sequencer Software Reset Masking

Masking off (writing 1) to a reset_outN "Reset Mask Enable" signal prevents
the corresponding reset from being asserted. Writing a bit to 0 to a reset mask enable
signal allows assertion of reset_outN.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 74. Values for the Reset Sequencer Software Reset Masking at Offset 0x18

Bit Attribute Default Description

31:10 Reserved.

9:0 RW 0 reset_outN "Reset Mask Enable"—This is a per-bit control to mask
off the reset_outN bit. Software Reset Masking prevents the reset bit
from being asserted during a reset assertion sequence. If reset_out is
already asserted, it does not deassert the reset.

Related Information

Reset Sequencer CSR Registers on page 190

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.4. Reset Sequencer Software Flows

3.5.4.4.1. Reset Sequencer (Software-Triggered) Flow

Figure 105. Reset Sequencer (Software-Triggered) Flow Diagram

No

1

Software clears all pending statuses by
writing all 1s to the Status Register.

Software initiates reset by writing a 1
 to the Control Register’s initiate reset sequence bit.

IRQ Asserted?

Reset Sequencer completed
initiating a reset through the sequencer.

SW reads
Status Register’s

reset active

Start

SW reads
Status Register’s

SW-triggered reset

End

SW reads
Status Register’s

reset active
keep polling

keep polling

keep polling

keep polling

Software writes 1 to Status Register’s
SW-Triggered reset to clear it

Yes

1

0

1

0

0

Related Information

• Reset Sequencer Status Register on page 190

• Reset Sequencer Control Register on page 193

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.4.2. Reset Assert Flow

The following flow sequence occurs for a Reset Assert Flow:

• A reset is triggered either by the software, or when input resets to the Reset
Sequencer are asserted.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status register to determine which reset was triggered.

3.5.4.4.3. Reset Deassert Flow

The following flow sequence occurs for a Reset Deassert Flow:

• When a reset source is deasserted, or when the reset assert sequence has
completed without pending resets asserted, the deassertion flow is initiated.

• The IRQ is asserted, if the IRQ is enabled.

• Software reads the Status Register to determine which reset was triggered.

3.5.4.4.4. Reset Assert (Software Sequenced) Flow

Figure 106. Reset Assert (Software Sequenced) Flow
SETUP RUNTIME

Reset Sequencer asserts an IRQ

Hardware sequences a reset until the point where
 Reset Sequencer must wait for software

Software waits until reset is asserted by checking if Status Register’s
 Reset asserted and waiting for SW to proceed bit is set

Software clears Status Register’s
Reset asserted and waiting for SW to proceed bit

Reset Sequencer sets IRQ
on the next Reset Sequencer trigger point (if any)

SW writes to SW sequenced Reset Assert control register’s
Per-reset SW sequenced reset assert enable

Software sets Control Register’s
Enable SW sequenced reset assert bit

Software defines which reset sequence it wants to control
by setting bits in Software sequenced Reset assert Control register’s

Per-reset SW sequenced reset assert enable

Software sets Interrupt Enable register’s
Interrupt on Reset Asserted and waiting for SW to proceed

bit

Related Information

• Reset Sequencer Control Register on page 193

• Reset Sequencer Software Sequenced Reset Assert Control Register on page 193

• Reset Sequencer Interrupt Enable Register on page 192

• Reset Sequencer Status Register on page 190

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.4.4.5. Reset Deassert (Software Sequenced) Flow

The sequence and flow is similar to the Reset Assert (SW Sequenced) flow,
though, this flow uses the reset deassert registers/bits instead of the reset
assert registers/bits.

Related Information

Reset Assert (Software Sequenced) Flow on page 197

3.6. Conduits

You can use the conduit interface type for interfaces that do not fit any of the other
interface types, and to group any arbitrary collection of signals. Like other interface
types, you can export or connect conduit interfaces.

The PCI Express-to-Ethernet example in Creating a System with Platform Designer is
an example of using a conduit interface for export. You can declare an associated
clock interface for conduit interfaces in the same way as memory-mapped interfaces
with the associatedClock.

To connect two conduit interfaces inside Platform Designer, the following conditions
must be met:

• The interfaces must match exactly with the same signal roles and widths.

• The interfaces must be the opposite directions.

• Clocked conduit connections must have matching associatedClocks on each of
their endpoint interfaces.

Note: To connect a conduit output to more than one input conduit interface, you can create a
custom component. The custom component could have one input that connects to two
outputs, and you can use this component between other conduits that you want to
connect. For information about the Avalon Conduit interface, refer to the Avalon
Interface Specifications

Related Information

• Avalon Interface Specifications

• Creating a System with Platform Designer on page 10

3.7. Interconnect Pipelining

Pipeline stages increase a design's fMAX by reducing the combinational logic depth, at
the cost of additional latency and logic.

The Limit interconnect pipeline stages to option in the Interconnect
Requirements tab allows you to define the maximum Avalon-ST pipeline stages that
Platform Designer can insert during generation. You can specify between 0 to 4
pipeline stages, where 0 means that the interconnect has a combinational datapath.
Choosing 3 or 4 pipeline stages may significantly increase the logic utilization of the
system.

Platform Designer adds additional latency once on the command path, and once on
the response path.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

198

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This setting is specific for each Platform Designer system or subsystem, so you can
specify a unique interconnect pipeline stage value for each subsystem.

The insertion of pipeline stages depends upon the existence of certain interconnect
components. For example, single-slave systems do not have multiplexers; therefore,
multiplexer pipelining does not occur. In an extreme case, of a single-master to single-
slave system, no pipelining occurs, regardless of the value of the Limit interconnect
pipeline stages to option.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 107. Pipeline Placement in Arbitration Logic
The example shows the possible placement of up to four potential pipeline stages. Platform Designer places
these stages before the input to the demultiplexer, at the output of the multiplexer, between the arbiter and
the multiplexer, and at the output of the demultiplexer.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

You can manually adjust number of pipeline stages in the Platform Designer Memory-
Mapped Interconnect tab.

Related Information

• Previewing the System Interconnect on page 47

• Inserting Pipeline Stages to Increase System Frequency on page 238

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

200

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.7.1. Manually Control Pipelining in the Platform Designer Interconnect

The Memory-Mapped Interconnect tab allows you to manipulate pipeline
connections in the Platform Designer interconnect.

Consider manually pipelining the interconnect only when changes to the Limit
interconnect pipeline stages to option do not improve frequency, and exhausted all
other options to achieve timing closure, including the use of a bridge. Perform manual
pipelining only in complete systems.

Access the Memory-Mapped Interconnect tab by clicking System ➤ Show
System With Platform Designer Interconnect

1. In the Intel Quartus Prime software, compile the design and run timing analysis.

2. From the timing analysis output, identify the critical path through the interconnect
and determine the approximate mid-point.

3. In Platform Designer, click System ➤ Show System With Platform Designer
Interconnect.

4. In the Memory-Mapped Interconnect tab, select the interconnect module that
contains the critical path.

You can determine the name of the module from the hierarchical node names in
the timing report.

5. Click Show Pipelinable Locations. Platform Designer display all possible pipeline
locations in the interconnect. Right-click the possible pipeline location to insert or
remove a pipeline stage.

6. Locate the possible pipeline location that is closest to the mid-point of the critical
path. The names of the blocks in the memory-mapped interconnect tab
correspond to the module instance names in the timing report.

7. Right-click the location where you want to insert a pipeline, and then click Insert
Pipeline.

8. Regenerate the Platform Designer system, recompile the design, and then rerun
timing analysis.

9. If necessary, repeat the manual pipelining process again until the design meets
the timing requirements.

Manual pipelining has the following limitations:

• If you make changes to the original system's connectivity after manually pipelining
an interconnect, the inserted pipelines may become invalid. Platform Designer
displays warning messages when you generate the system if invalid pipeline
stages are detected. You can remove invalid pipeline stages with the Remove
Stale Pipelines option in the Memory-Mapped Interconnect tab. Do not make
changes to the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Platform
Designer. Manually-inserted pipelines in one version of Platform Designer may not
be valid in a future version.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.8. Error Correction Coding (ECC) in Platform Designer
Interconnect

Error Correction Coding (ECC) logic allows the Platform Designer interconnect to
detect and correct errors. Enabling ECC improves data integrity in memory blocks.
Platform Designer supports ECC protection for Read Data FIFO (rdata_FIFO)
instances only.

As transistors become smaller, computer hardware is more susceptible to data
corruption. Data corruption causes Single Event Upsets (SEUs), and increases the
probability of Failures in Time (FIT) rates in computer systems. SEU events without
error notification can cause the system to be stuck in an unknown response status,
and increase the FIT rate.

Before writing data to the memory device, the ECC logic encodes the data bus with a
Hamming code. Then, the ECC logic decodes and performs error checking on the data
output.

When you enable ECC, Platform Designer interconnect sends uncorrectable errors
arising from memory as DECODEERROR (DECERR) on the Avalon response bus.

Figure 108. High-Level Implementation of rdata_FIFO with ECC Enabled

ECC Encode ECC Decode
Memory
ElementData Input Data and ECC

Encoded Bits
Data and ECC
Encoded Bits

Data Output

Note: Enabling ECC logic may increase logic utilization and cause lower fMAX.

Related Information

• Read and Write Responses on page 164

• Interconnect Requirements

3.9. AMBA 3 AXI Protocol Specification Support (version 1.0)

Platform Designer allows memory-mapped connections between AMBA 3 AXI
components, AMBA 3 AXI and AMBA 4 AXI components, and AMBA 3 AXI and Avalon
interfaces with unique or exceptional support. Refer to the AMBA 3 Protocol
Specifications on the ARM website for more information.

Related Information

• Arm AMBA Protocol Specifications

• Slave Network Interfaces on page 151

3.9.1. Channels

Platform Designer has the following support and restrictions for AMBA 3 AXI channels.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

202

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9.1.1. Read and Write Address Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Supports 64-bit addressing.

• ID width limited to 18-bits.

• HPS-FPGA master interface has a 12-bit ID.

3.9.1.2. Write Data, Write Response, and Read Data Channels

Most signals are allowed. However, the following limitations are present in Platform
Designer 14.0:

• Data widths limited to a maximum of 1024-bits

• Limited to a fixed byte width of 8-bits

3.9.1.3. Low Power Channel

Low power extensions are not supported in Platform Designer, version 14.0.

3.9.2. Cache Support

AWCACHE and ARCACHE are passed to an AXI slave unmodified.

3.9.2.1. Bufferable

Platform Designer interconnect treats AXI transactions as non-bufferable. All
responses must come from the terminal slave.

When connecting to Avalon-MM slaves, since they do not have write responses, the
following exceptions apply:

• For Avalon-MM slaves, the write response are generated by the slave agent once
the write transaction is accepted by the slave. The following limitation exists for an
Avalon bridge:

• For an Avalon bridge, the response is generated before the write reaches the
endpoint; users must be aware of this limitation and avoid multiple paths past the
bridge to any endpoint slave, or only perform bufferable transactions to an Avalon
bridge.

3.9.2.2. Cacheable (Modifiable)

Platform Designer interconnect acknowledges the cacheable (modifiable) attribute of
AXI transactions.

It does not change the address, burst length, or burst size of non-modifiable
transactions, with the following exceptions:

• Platform Designer considers a wide transaction to a narrow slave as modifiable
because the size requires reduction.

• Platform Designer may consider AXI read and write transactions as modifiable
when the destination is an Avalon slave. The AXI transaction may be split into
multiple Avalon transactions if the slave is unable to accept the transaction. This
may occur because of burst lengths, narrow sizes, or burst types.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer ignores all other bits, for example, read allocate or write allocate
because the interconnect does not perform caching. By default, Platform Designer
considers Avalon master transactions as non-bufferable and non-cacheable, with the
allocate bits tied low.

3.9.3. Security Support

TrustZone refers to the security extension of the ARM architecture, which includes the
concept of "secure" and "non-secure" transactions, and a protocol for processing
between the designations.

The interconnect passes the AWPROT and ARPROT signals to the endpoint slave
without modification. It does not use or modify the PROT bits.

Refer to Manage System Security in Creating a System with Platform Designer for
more information about secure systems and the TrustZone feature.

Related Information

Configuring Platform Designer System Security on page 54

3.9.4. Atomic Accesses

Exclusive accesses are supported for AXI slaves by passing the lock, transaction ID,
and response signals from master to slave, with the limitation that slaves that do not
reorder responses. Avalon slaves do not support exclusive accesses, and always return
OKAY as a response. Locked accesses are also not supported.

3.9.5. Response Signaling

Full response signaling is supported. Avalon slaves always return OKAY as a response.

3.9.6. Ordering Model

Platform Designer interconnect provides responses in the same order as the
commands are issued.

To prevent reordering, for slaves that accept reordering depths greater than 1,
Platform Designer does not transfer the transaction ID from the master, but provides a
constant transaction ID of 0. For slaves that do not reorder, Platform Designer allows
the transaction ID to be transferred to the slave. To avoid cyclic dependencies,
Platform Designer supports a single outstanding slave scheme for both reads and
writes. Changing the targeted slave before all responses have returned stalls the
master, regardless of transaction ID.

3.9.6.1. AXI and Avalon Ordering

There is a potential read-after-write risk when Avalon masters transact to AXI slaves.

According to the AMBA Protocol Specifications, there is no ordering requirement
between reads and writes. However, Avalon has an implicit ordering model that
requires transactions from a master to the same slave to be in order.

In response to this potential risk, Avalon interfaces provide a compile-time option to
enforce strict order. When turned on, the Avalon interface waits for outstanding write
responses before issuing reads.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9.7. Data Buses

Narrow bus transfers are supported. AXI write strobes can have any pattern that is
compatible with the address and size information. Intel recommends that transactions
to Avalon slaves follow Avalon byteenable limitations for maximum compatibility.

Note: Byte 0 is always bits [7:0] in the interconnect, following AXI's and Avalon's byte
(address) invariance scheme.

3.9.8. Unaligned Address Commands

Unaligned address commands are commands with addresses that do not conform to
the data width of a slave. Since Avalon-MM slaves accept only aligned addresses,
Platform Designer modifies unaligned commands from AXI masters to the correct data
width. Platform Designer must preserve commands issued by AXI masters when
passing the commands to AXI slaves.

Note: Unaligned transfers are aligned if downsizing occurs. For example, when downsizing to
a bus width narrower than that required by the transaction size, AWSIZE or ARSIZE,
the transaction must be modified.

3.9.9. Avalon and AXI Transaction Support

Platform Designer supports transactions between Avalon and AXI interfaces with the
following limitations in this section.

Related Information

Avalon Interface Specifications

3.9.9.1. Transaction Cannot Cross 4KB Boundaries

When an Avalon master issues a transaction to an AXI slave, the transaction cannot
cross 4KB boundaries. Non-bursting Avalon masters already follow this boundary
restriction.

When connecting an Avalon memory-mapped interface FPGA master to an AXI slave in
Platform Designer, you must ensure that the bursts do not exceed the AXI3 or AXI4
4KB boundary restriction for burst transactions.

3.9.9.2. Adjacent Bytelanes with Partial Width Transactions

The following limitations apply to Avalon to AXI partial width transactions with use of
adjacent bytelanes:

• Avalon interfaces only support adjacent bytelanes if the interface requires more
than one byte enable. For example: 1100, 0011.

• AXI fully supports use of bytelanes that are not adjacent. For example: 1010,
0101.

Related Information

Avalon Interface Specifications

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

205

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.9.9.3. Handling Read Side Effects

Read side effects can occur when more bytes than necessary are read from the slave,
and the unwanted data that are read are later inaccessible on subsequent reads. For
write commands, the correct byteenable paths are asserted based on the size of the
transactions. For read commands, narrow-sized bursts are broken up into multiple
non-bursting commands, and each command with the correct byteenable paths
asserted.

Platform Designer always assumes that the byteenable is asserted based on the size
of the command, not the address of the command. The following scenarios are
examples:

• For a 32-bit AXI master that issues a read command with an unaligned address
starting at address 0x01, and a burstcount of 2 to a 32-bit Avalon slave, the
starting address is: 0x00.

• For a 32-bit AXI master that issues a read command with an unaligned address
starting at address 0x01, with 4-bytes to an 8-bit AXI slave, the starting address
is: 0x00.

3.10. AMBA 3 APB Protocol Specification Support (version 1.0)

APB (Advanced Peripheral Bus) interface is optimized for minimal power consumption
and reduced interface complexity. You can use APB to interface to peripherals which
are low-bandwidth and do not require the high performance of a pipelined bus
interface. Signal transitions are sampled at the rising edge of the clock to enable the
integration of APB peripherals easily into any design flow.

Platform Designer allows connections between APB components, and AMBA 3 AXI,
AMBA 4 AXI, and Avalon memory-mapped interfaces. The following sections describe
unique or exceptional APB support in the Platform Designer software.

Related Information

Arm AMBA Protocol Specifications

3.10.1. Bridges

With APB, you cannot use bridge components that use multiple PSELx in Platform
Designer. As a workaround, you can group PSELx, and then send the packet to the
slave directly.

Intel recommends as an alternative that you instantiate the APB bridge and all the
APB slaves in Platform Designer. You should then connect the slave side of the bridge
to any high speed interface and connect the master side of the bridge to the APB
slaves. Platform Designer creates the interconnect on either side of the APB bridge
and creates only one PSEL signal.

Alternatively, you can connect a bridge to the APB bus outside of Platform Designer.
Use an Avalon/AXI bridge to export the Avalon/AXI master to the top-level, and then
connect this Avalon/AXI interface to the slave side of the APB bridge. Alternatively,
instantiate the APB bridge in Platform Designer and export APB master to the top-
level, and from there connect to APB bus outside of Platform Designer.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

206

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10.2. Burst Adaptation

APB is a non-bursting interface. Therefore, for any AXI or Avalon master with bursting
support, a burst adapter is inserted before the slave interface and the burst
transaction is translated into a series of non-bursting transactions before reaching the
APB slave.

3.10.3. Width Adaptation

Platform Designer allows different data width connections with APB. When connecting
a wider master to a narrower APB slave, the width adapter converts the wider
transactions to a narrower transaction to fit the APB slave data width. APB does not
support Write Strobe. Therefore, when you connect a narrower transaction to a wider
APB slave, the slave cannot determine which byte lane to write. In this case, the slave
data may be overwritten or corrupted.

3.10.4. Error Response

Error responses are returned to the master. Platform Designer performs error mapping
if the master is an AMBA 3 AXI or AMBA 4 AXI master, for example, RRESP/BRESP=
SLVERR. For the case when the slave does not use SLVERR signal, an OKAY response
is sent back to master by default.

3.11. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)

Platform Designer allows memory-mapped connections between AMBA 4 AXI
components, AMBA 4 AXI and AMBA 3 AXI components, and AMBA 4 AXI and Avalon
interfaces with unique or exceptional support.

3.11.1. Burst Support

Platform Designer supports INCR bursts up to 256 beats. Platform Designer converts
long bursts to multiple bursts in a packet with each burst having a length less than or
equal to MAX_BURST when going to AMBA 3 AXI or Avalon slaves.

For narrow-sized transfers, bursts with Avalon slaves as destinations are shortened to
multiple non-bursting transactions in order to transmit the correct address to the
slaves, since Avalon slaves always perform full-sized datawidth transactions.

Bursts with AMBA 3 AXI slaves as destinations are shortened to multiple bursts, with
each burst length less than or equal to 16. Bursts with AMBA 4 AXI slaves as
destinations are not shortened.

3.11.2. QoS

Platform Designer routes 4-bit QoS signals (Quality of Service Signaling) on the read
and write address channels directly from the master to the slave.

Transactions from AMBA 3 AXI and Avalon masters have a default value of 4'b0000,
which indicates that the transactions are not part of the QoS flow. QoS values are not
used for slaves that do not support QoS.

For Platform Designer 14.0, there are no programmable QoS registers or compile-time
QoS options for a master that overrides its real or default value.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.11.3. Regions

For Platform Designer 14.0, there is no support for the optional regions feature. AMBA
4 AXI slaves with AXREGION signals are allowed. AXREGION signals are driven with
the default value of 0x0, and are limited to one entry in a master's address map.

3.11.4. Write Response Dependency

Write response dependency as specified in the Arm AMBA Protocol Specifications for
AMBA 4 AXI is not supported.

Related Information

Arm AMBA Protocol Specifications

3.11.5. AWCACHE and ARCACHE

For AMBA 4 AXI, Platform Designer meets the requirement for modifiable and non-
modifiable transactions. The modifiable bit refers to ARCACHE[1]and AWCACHE[1].

3.11.6. Width Adaptation and Data Packing in Platform Designer

Data packing applies only to systems where the data width of masters is less than the
data width of slaves.

The following rules apply:

• Data packing is supported when masters and slaves are Avalon-MM.

• Data packing is not supported when any master or slave is an AMBA 3 AXI, AMBA
4 AXI, or APB component.

For example, for a read/write command with a 32-bit master connected to a 64-bit
slave, and a transaction of 2 burstcounts, Platform Designer sends 2 separate read/
write commands to access the 64-bit data width of the slave. Data packing is only
supported if the system does not contain AMBA 3 AXI, AMBA 4 AXI, or APB masters or
slaves.

3.11.7. Ordering Model

Out of order support is not implemented in Platform Designer, version 14.0. Platform
Designer processes AXI slaves as device non-bufferable memory types.

The following describes the required behavior for the device non-bufferable memory
type:

• Write response must be obtained from the final destination.

• Read data must be obtained from the final destination.

• Transaction characteristics must not be modified.

• Reads must not be pre-fetched. Writes must not be merged.

• Non-modifiable read and write transactions.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

208

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(AWCACHE[1] = 0 or ARCACHE[1] = 0) from the same ID to the same slave must
remain ordered. The interconnect always provides responses in the same order as the
commands issued. Slaves that support reordering provide a constant transaction ID to
prevent reordering. AXI slaves that do not reorder are provided with transaction IDs,
which allows exclusive accesses to be used for such slaves.

3.11.8. Read and Write Allocate

Read and write allocate does not apply to Platform Designer interconnect, which does
not have caching features, and always receives responses from an endpoint.

3.11.9. Locked Transactions

Locked transactions are not supported for Platform Designer, version 14.0.

3.11.10. Memory Types

For AMBA 4 AXI, Platform Designer processes transactions as though the endpoint is a
device memory type. For device memory types, using non-bufferable transactions to
force previous bufferable transactions to finish is irrelevant, because Platform Designer
interconnect always identifies transactions as being non-bufferable.

3.11.11. Mismatched Attributes

There are rules for how multiple masters issue cache values to a shared memory
region. The interconnect meets requirements if signals are not modified.

3.11.12. Signals

Platform Designer supports up to 64-bits for the BUSER, WUSER and RUSER sideband
signals. AMBA 4 AXI allows some signals to be omitted from interfaces by aligning
them with the default values as defined in the AMBA Protocol Specifications on the
ARM website.

Related Information

Arm AMBA Protocol Specifications

3.12. AMBA 4 AXI Streaming Interface Support (version 1.0)

3.12.1. Connection Points

Platform Designer allows you to connect an AMBA 4 AXI-Stream interface to another
AMBA 4 AXI-Stream interface.

The connection is point-to-point without adaptation and must be between an
axi4stream_master and axi4stream_slave. Connected interfaces must have the
same port roles and widths.

Non matching master to slave connections, and multiple masters to multiple slaves
connections are not supported.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

209

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.12.1.1. AMBA 4 AXI Streaming Connection Point Parameters

Table 75. AMBA 4 AXI Streaming Connection Point Parameters

Name Type Description

associatedClock string Name of associated clock interface.

associatedReset string Name of associated reset interface

3.12.1.2. AMBA 4 AXI Streaming Connection Point Signals

Table 76. AMBA 4 AXI-Stream Connection Point Signals

Port Role Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata(4) 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid(5) 1:8 Output Input No

tdest(6) 1:4 Output Input No

tuser(7) 1:4096 Output Input No

tlast 1 Output Input No

3.12.2. Adaptation

AMBA 4 AXI-Stream adaptation support is not available. AMBA 4 AXI-Stream master
and slave interface signals and widths must match.

3.13. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)

AMBA 4 AXI-Lite is a sub-set of AMBA 4 AXI. It is suitable for simpler control register-
style interfaces that do not require the full functionality of AMBA 4 AXI.

(4) integer in multiple of bytes

(5) maximum 8-bits

(6) maximum 4-bits

(7) number of bits in multiple of the number of bytes of tdata

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer 14.0 supports the following AMBA 4 AXI-Lite features:

• Transactions with a burst length of 1.

• Data accesses use the full width of a data bus (32- bit or 64-bit) for data
accesses, and no narrow-size transactions.

• Non-modifiable and non-bufferable accesses.

• No exclusive accesses.

3.13.1. AMBA 4 AXI-Lite Signals

Platform Designer supports all AMBA 4 AXI-Lite interface signals. All signals are
required.

Table 77. AMBA 4 AXI-Lite Signals

Global Write Address
Channel

Write Data
Channel

Write Response
Channel

Read Address
Channel

Read Data
Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

3.13.2. AMBA 4 AXI-Lite Bus Width

AMBA 4 AXI-Lite masters or slaves must have either 32-bit or 64-bit bus widths.
Platform Designer interconnect inserts a width adapter if a master and slave pair have
different widths.

3.13.3. AMBA 4 AXI-Lite Outstanding Transactions

AXI-Lite supports outstanding transactions. The options to control outstanding
transactions is set in the parameter editor for the selected component.

3.13.4. AMBA 4 AXI-Lite IDs

AMBA 4 AXI-Lite does not support IDs. Platform Designer performs ID reflection inside
the slave agent.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.13.5. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-
Lite

3.13.5.1. AMBA 4 AXI-Lite Slave Requirements

For an AMBA 4 AXI-Lite slave side, the master can be any master interface type, such
as an Avalon (with bursting), AMBA 3 AXI, or AMBA 4 AXI. Platform Designer allows
the following connections and inserts adapters, if needed.

• Burst adapter—Avalon and AMBA 3 AXI and AMBA 4 AXI bursting masters
require a burst adapter to shorten the burst length to 1 before sending a
transaction to an AMBA 4 AXI-Lite slave.

• Platform Designer interconnect uses a width adapter for mismatched data widths.

• Platform Designer interconnect performs ID reflection inside the slave agent.

• An AMBA 4 AXI-Lite slave must have an address width of at least 12-bits.

• AMBA 4 AXI-Lite does not have the AXSIZE parameter. Narrow master to a wide
AMBA 4 AXI-Lite slave is not supported. For masters that support narrow-sized
bursts, for example, AMBA 3 AXI and AMBA 4 AXI, a burst to an AMBA 4 AXI-Lite
slave must have a burst size equal to or greater than the slave's burst size.

3.13.5.2. AMBA 4 AXI-Lite Data Packing

Platform Designer interconnect does not support AMBA 4 AXI-Lite data packing.

3.13.6. AMBA 4 AXI-Lite Response Merging

When Platform Designer interconnect merges SLVERR and DECERR, the error
responses are not sticky. The response is based on priority and the master always
sees a DECERR. When SLVERR and DECERR are merged, it is based on their priorities,
not stickiness. DECERR receives priority in this case, even if SLVERR returns first.

3.14. Port Roles (Interface Signal Types)

Each interface defines signal roles and their behavior. Many signal roles are optional,
allowing IP component designers the flexibility to select only the signal roles necessary
to implement the required functionality.

3.14.1. AXI Master Interface Signal Types

Table 78. AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 4

arlock output 2

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

arprot output 3

arready input 1

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 4

awlock output 2

awprot output 3

awready input 1

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wvalid output 1

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

213

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.2. AXI Slave Interface Signal Types

Table 79. AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 4

arlock input 2

arprot input 3

arready output 1

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

awlen input 4

awlock input 2

awprot input 3

awready output 1

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

rvalid output 1

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

214

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wid input 1 - 18

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wvalid input 1

3.14.3. AMBA 4 AXI Master Interface Signal Types

Table 80. AMBA 4 AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 8

arlock output 1

arprot output 3

arready input 1

arregion output 1 - 4

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 8

awlock output 1

awprot output 3

awqos output 1 - 4

awready input 1

awregion output 1 - 4

awsize output 3

awuser output 1 - 64

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

215

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

buser input 1 - 64

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

ruser input 1 - 64

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wuser output 1 - 64

wvalid output 1

3.14.4. AMBA 4 AXI Slave Interface Signal Types

Table 81. AMBA 4 AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 8

arlock input 1

arprot input 3

arqos input 1 - 4

arready output 1

arregion input 1 - 4

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

216

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

awid input 1 - 18

awlen input 8

awlock input 1

awprot input 3

awqos input 1 - 4

awready output 1

awregion input 1 - 4

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

ruser output 1 - 64

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wuser input 1 - 64

wvalid input 1

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

217

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.5. AMBA 4 AXI-Stream Master and Slave Interface Signal Types

Table 82. AMBA 4 AXI-Stream Master and Slave Interface Signal Types

Name Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid 1:8 Output Input No

tdest 1:4 Output Input No

tuser 1 Output Input No

tlast 1:4096 Output Input No

3.14.6. ACE-Lite Interface Signal Roles

Table 83. ACE-Lite Interface Signal Roles

Name Width Master Direction Slave Direction Required

arsnoop 4 bits Output Input Yes

ardomain 2 bits Output Input Yes

arbar 2 bits Output Input Yes

awsnoop 3 bits Output Input Yes

awdomain 2 bits Output Input Yes

awbar 2 bits Output Input Yes

awunique 1 bit Output Input Yes

3.14.7. APB Interface Signal Types

Table 84. APB Interface Signal Types

Name Width Direction
APB Master

Direction
APB Slave

Required

paddr [1:32] output input yes

psel [1:16] output input yes

penable 1 output input yes

pwrite 1 output input yes

pwdata [1:32] output input yes

prdata [1:32] input output yes

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Width Direction
APB Master

Direction
APB Slave

Required

pslverr 1 input output no

pready 1 input output yes

paddr31 1 output input no

3.14.8. Avalon Memory-Mapped Interface Signal Roles

Signal roles define the signal types that Avalon-MM master and slave ports allow.

This specification does not require all signals to exist in an Avalon-MM interface. There
is no one signal that is always required. The minimum requirements for an Avalon-MM
interface are readdata for a read-only interface, or writedata and write for a
write-only interface.

The following table lists signal roles for the Avalon-MM interface:

Table 85. Avalon-MM Signal Roles
Some Avalon-MM signals can be active high or active low. When active low, the signal name ends with _n.

Signal Role Width Direction Required Description

Fundamental Signals

address 1 - 64 Master →
Slave

No Masters: By default, the address signal represents a byte
address. The value of the address must align to the data width.
To write to specific bytes within a data word, the master must
use the byteenable signal. Refer to the addressUnits
interface property for word addressing.
Slaves: By default, the interconnect translates the byte address
into a word address in the slave’s address space. From the
perspective of the slave, each slave access is for a word of data.
For example, address = 0 selects the first word of the slave.
address = 1 selects the second word of the slave. Refer to the
addressUnits interface property for byte addressing.

byteenable

byteenable_n

2, 4,
8, 16,
32,
64,
128

Master →
Slave

No Enables one or more specific byte lanes during transfers on
interfaces of width greater than 8 bits. Each bit in byteenable
corresponds to a byte in writedata and readdata. The master
bit <n> of byteenable indicates whether byte <n> is being
written to. During writes, byteenables specify which bytes are
being written to. Other bytes should be ignored by the slave.
During reads, byteenables indicate which bytes the master is
reading. Slaves that simply return readdata with no side effects
are free to ignore byteenables during reads. If an interface
does not have a byteenable signal, the transfer proceeds as if
all byteenables are asserted.
When more than one bit of the byteenable signal is asserted,
all asserted lanes are adjacent.

debugaccess 1 Master →
Slave

No When asserted, allows the Nios II processor to write on-chip
memories configured as ROMs.

read

read_n

1 Master →
Slave

No Asserted to indicate a read transfer. If present, readdata is
required.

readdata 8, 16,
32,
64,
128,

Slave →
Master

No The readdata driven from the slave to the master in response
to a read transfer. Required for interfaces that support reads.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

219

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

256,
512,
1024

response
[1:0]

2 Slave →
Master

No The response signal is an optional signal that carries the
response status.
Note: Because the signal is shared, an interface cannot issue or

accept a write response and a read response in the same
clock cycle.

• 00: OKAY—Successful response for a transaction.
• 01: RESERVED—Encoding is reserved.
• 10: SLAVEERROR—Error from an endpoint slave. Indicates

an unsuccessful transaction.
• 11: DECODEERROR—Indicates attempted access to an

undefined location.
For read responses:
• One response is sent with each readdata. A read burst

length of N results in N responses. Fewer responses are not
valid, even in the event of an error. The response signal value
may be different for each readdata in the burst.

• The interface must have read control signals. Pipeline support
is possible with the readdatavalid signal.

• On read errors, the corresponding readdata is "don't care".
For write responses:
• One write response must be sent for each write command. A

write burst results in only one response, which must be sent
after the final write transfer in the burst is accepted.

• If writeresponsevalid is present, all write commands
must be completed with write responses.

write

write_n

1 Master →
Slave

No Asserted to indicate a write transfer. If present, writedata is
required.

writedata 8, 16,
32,
64,
128,
256,
512,
1024

Master →
Slave

No Data for write transfers. The width must be the same as the
width of readdata if both are present. Required for interfaces
that support writes.

Wait-State Signals

lock 1 Master →
Slave

No lock ensures that once a master wins arbitration, the winning
master maintains access to the slave for multiple transactions.
Lock asserts coincident with the first read or write of a locked
sequence of transactions. Lock deasserts on the final
transaction of a locked sequence of transactions. lock assertion
does not guarantee that arbitration is won. After the lock-
asserting master has been granted, that master retains grant
until lock is deasserted.
A master equipped with lock cannot be a burst master.
Arbitration priority values for lock-equipped masters are ignored.
lock is particularly useful for read-modify-write (RMW)
operations. The typical read-modify-write operation includes the
following steps:
1. Master A asserts lock and reads 32-bit data that has multiple

bit fields.
2. Master A deasserts lock, changes one bit field, and writes the

32-bit data back.
lock prevents master B from performing a write between
Master A’s read and write.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

220

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

waitrequest

waitrequest_
n

1 Slave →
Master

No A slave asserts waitrequest when unable to respond to a
read or write request. Forces the master to wait until the
interconnect is ready to proceed with the transfer. At the start of
all transfers, a master initiates the transfer and waits until
waitrequest is deasserted. A master must make no
assumption about the assertion state of waitrequest when the
master is idle: waitrequest may be high or low, depending on
system properties.
When waitrequest is asserted, master control signals to the
slave must remain constant except for beginbursttransfer.
For a timing diagram illustrating the beginbursttransfer
signal, refer to the figure in Read Bursts.
An Avalon-MM slave may assert waitrequest during idle
cycles. An Avalon-MM master may initiate a transaction when
waitrequest is asserted and wait for that signal to be
deasserted. To avoid system lockup, a slave device should assert
waitrequest when in reset.

Pipeline Signals

readdatavali
d

readdatavali
d_n

1 Slave →
Master

No Used for variable-latency, pipelined read transfers. When
asserted, indicates that the readdata signal contains valid data.
For a read burst with burstcount value <n>, the
readdatavalid signal must be asserted <n> times, once for
each readdata item. There must be at least one cycle of latency
between acceptance of the read and assertion of
readdatavalid. For a timing diagram illustrating the
readdatavalid signal, refer to Pipelined Read Transfer with
Variable Latency.
A slave may assert readdatavalid to transfer data to the
master independently of whether the slave is stalling a new
command with waitrequest.
Required if the master supports pipelined reads. Bursting
masters with read functionality must include the
readdatavalid signal.

writerespons
evalid

1 Slave →
Master

No An optional signal. If present, the interface issues write
responses for write commands.
When asserted, the value on the response signal is a valid write
response.
Writeresponsevalid is only asserted one clock cycle or more
after the write command is accepted. There is at least a one
clock cycle latency from command acceptance to assertion of
writeresponsevalid.

Burst Signals

burstcount 1 – 11 Master →
Slave

No Used by bursting masters to indicate the number of transfers in
each burst. The value of the maximum burstcount parameter
must be a power of 2. A burstcount interface of width <n> can
encode a max burst of size 2(<n>-1). For example, a 4-bit
burstcount signal can support a maximum burst count of 8.
The minimum burstcount is 1. The
constantBurstBehavior property controls the timing of the
burstcount signal. Bursting masters with read functionality
must include the readdatavalid signal.
For bursting masters and slaves using byte addresses, the
following restriction applies to the width of the address:

<address_w> >=
 <burstcount_w> +
log2(<symbols_per_word_of_interface>)

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

For bursting masters and slaves using word addresses, the log2
term above is omitted.

beginbursttr
ansfer

1 Interconnect
→ Slave

No Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest. For a timing diagram
illustrating beginbursttransfer, refer to the figure in Read
Bursts.
beginbursttransfer is optional. A slave can always internally
calculate the start of the next write burst transaction by counting
data transfers.
Warning: do not use this signal. This signal exists to support

legacy memory controllers.

3.14.9. Avalon Streaming Interface Signal Roles

Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST
signal role. An Avalon-ST interface may contain only one instance of each signal role.
All Avalon-ST signal roles apply to both sources and sinks and have the same meaning
for both.

Table 86. Avalon-ST Interface Signals
In the following table, all signal roles are active high.

Signal Role Width Direction Required Description

Fundamental Signals

channel 1 – 128 Source → Sink No The channel number for data being transferred
on the current cycle.
If an interface supports the channel signal, the
interface must also define the maxChannel
parameter.

data 1 – 4,096 Source → Sink No The data signal from the source to the sink,
typically carries the bulk of the information being
transferred.
Parameters further define the contents and
format of the data signal.

error 1 – 256 Source → Sink No A bit mask to mark errors affecting the data
being transferred in the current cycle. A single bit
of the error signal masks each of the errors the
component recognizes. The errorDescriptor
defines the error signal properties.

ready 1 Sink → Source No Asserts high to indicate that the sink can accept
data. ready is asserted by the sink on cycle <n>
to mark cycle <n + readyLatency> as a ready
cycle. The source may only assert valid and
transfer data during ready cycles.
Sources without a ready input do not support
backpressure. Sinks without a ready output
never need to backpressure.

valid 1 Source → Sink No The source asserts this signal to qualify all other
source to sink signals. The sink samples data and
other source-to-sink signals on ready cycles
where valid is asserted. All other cycles are
ignored.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

Sources without a valid output implicitly
provide valid data on every cycle that a sink is
not asserting backpressure. Sinks without a
valid input expect valid data on every cycle
that they are not backpressuring.

Packet Transfer Signals

empty 1 – 5 Source → Sink No Indicates the number of symbols that are empty,
that is, do not represent valid data. The empty
signal is not necessary on interfaces where there
is one symbol per beat.

endofpacket 1 Source → Sink No Asserted by the source to mark the end of a
packet.

startofpacket 1 Source → Sink No Asserted by the source to mark the beginning of
a packet.

3.14.10. Avalon Clock Source Signal Roles

An Avalon Clock source interface drives a clock signal out of a component.

Table 87. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

3.14.11. Avalon Clock Sink Signal Roles

A clock sink provides a timing reference for other interfaces and internal logic.

Table 88. Clock Sink Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal
logic and for other interfaces.

3.14.12. Avalon Conduit Signal Roles

Table 89. Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out, or
bidirectional

A conduit interface consists of one or more input, output,
or bidirectional signals of arbitrary width. Conduits can
have any user-specified role. You can connect compatible
Conduit interfaces inside a Platform Designer system
provided the roles and widths match and the directions
are opposite.

3.14.13. Avalon Tristate Conduit Signal Roles

The following table lists the signal defined for the Avalon Tristate Conduit interface. All
Avalon-TC signals apply to both masters and slaves and have the same meaning for
both

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 90. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master → Slave Yes The meaning of request depends on the state of the
grant signal, as the following rules dictate.
When request is asserted and grant is deasserted,
request is requesting access for the current cycle.
When request is asserted and grant is asserted,
request is requesting access for the next cycle.
Consequently, request should be deasserted on the
final cycle of an access.
The request signal deasserts in the last cycle of a
bus access. The request signal can reassert
immediately following the final cycle of a transfer.
This protocol makes both rearbitration and
continuous bus access possible if no other masters
are requesting access.
Once asserted, request must remain asserted until
granted. Consequently, the shortest bus access is 2
cycles. Refer to Tristate Conduit Arbitration Timing
for an example of arbitration timing.

grant 1 Slave → Master Yes When asserted, indicates that a tristate conduit
master has access to perform transactions. The
grant signal asserts in response to the request
signal. The grant signal remains asserted until 1
cycle following the deassertion of request.

<name>_in 1 – 1024 Slave → Master No The input signal of a logical tristate signal.

<name>_out 1 – 1024 Master → Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master → Slave No The output enable for a logical tristate signal.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.14.14. Avalon Tri-State Slave Interface Signal Types

Table 91. Tri-state Slave Interface Signal Types

Name Width Direction Required Description

address 1 - 32 input No Address lines to the slave port.
Specifies a byte offset into the slave’s
address space.

read

read_n

1 input No Read-request signal. Not required if
the slave port never outputs data.
If present, data must also be used.

write

write_n

1 input No Write-request signal. Not required if
the slave port never receives data from
a master.
If present, data must also be present,
and writebyteenable cannot be
present.

chipselect

chipselect_n

1 input No When present, the slave port ignores
all Avalon-MM signals unless
chipselect is asserted. chipselect
is always present in combination with
read or write

outputenable

outputenable_n

1 input Yes Output-enable signal. When
deasserted, a tri-state slave port must
not drive its data lines otherwise data
contention may occur.

data 8,16, 32, 64, 128,
256, 512, 1024

bidir No Bidirectional data. During write
transfers, the FPGA drives the data
lines. During read transfers the slave
device drives the data lines, and the
FPGA captures the data signals and
provides them to the master.

byteenable

byteenable_n

2, 4, 8,16, 32, 64,
128

input No Enables specific byte lanes during
transfers.
Each bit in byteenable corresponds to a
byte lane in data. During writes,
byteenables specify which bytes the
master is writing to the slave. During
reads, byteenables indicates which
bytes the master is reading. Slaves
that simply return data with no side
effects are free to ignore
byteenables during reads.
When more than one byte lane is
asserted, all asserted lanes are
guaranteed to be adjacent. The
number of adjacent lines must be a
power of 2, and the specified bytes
must be aligned on an address
boundary for the size of the data. The
following are legal values for a 32-bit
slave:

1111 writes full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 writes byte 1 only
0100 writes byte 2 only
1000 writes byte 3 only

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Width Direction Required Description

writebyteenabl
e

writebyteenabl
e_n

2,4,8,16, 32,
64,128

input No Equivalent to the logical AND of the
byteenable and write signals. When
used, the write signal is not used.

begintransfer1 1 input No Asserted for the first cycle of each
transfer.

Note: All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Role
column.

3.14.15. Avalon Interrupt Sender Signal Roles

Table 92. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n

1-32 Output Yes Interrupt Request. An interrupt sender drives an
interrupt signal to an interrupt receiver.

3.14.16. Avalon Interrupt Receiver Signal Roles

Table 93. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit corresponds
directly to one IRQ sender with no inherent assumption
of priority.

3.15. Platform Designer Interconnect Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2019.11.11 19.1.0 • Added note to "Burst Adaptation: AXI to Avalon" about AXI3 and AXI4
4KB boundary restriction for burst transactions.

• Added "Adjacent Bytelanes with Partial Width Transactions" topic.

2019.06.19 19.1.0 • Corrected statement about preventing reordering in "Ordering Model."

2019.04.01 19.1.0 • Described new default use of synchronous reset option for Intel Stratix
10 designs in "Reset Interfaces."

2018.12.10 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2018.09.24 18.1.0 • Updated location of Limit interconnect pipeline stages to option in
Platform Designer GUI

• In Avalon Memory-Mapped Interface Signal Roles, added consecutive
byte-enable support.

• Specified minimum duration of reset that the Platform Design
Interconnect requires to work correctly.

2018.06.15 18.0.0 Clarified behavior of Error Correction Coding (ECC) in Interconnect.

2018.05.07 18.0.0 • Added support for waitrequestAllowance adapter.
• Added support for ACE-Lite connections.

continued...

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

226

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Updated information about the Reset Sequencer.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Fixed Priority Arbitration.
• Added topic: Read and Write Responses.
• Added topic: Error Correction Coding (ECC) in Qsys Interconnect.
• Added: response [1:0], Avalon Memory-Mapped Interface Signal

Roles.
• Added writeresponsevalid, Avalon Memory-Mapped Interface

Signal Roles.

December 2014 14.1.0 • Read error responses, Avalon Memory-Mapped Interface Signal,
response.

• Burst Adapter Implementation Options: Generic converter (slower,
lower area), Per-burst-type converter (faster, higher area).

August 2014 14.0a10.0 • Updated Qsys Packet Format for Memory-Mapped Master and Slave
Interfaces table, Protection.

• Streaming Interface renamed to Avalon Streaming Interfaces.
• Added Response Merging under Memory-Mapped Interfaces.

June 2014 14.0.0 • AXI4-Lite support.
• AXI4-Stream support.
• Avalon-ST adapter parameters.
• IRQ Bridge.
• Handling Read Side Effects note added.

November 2013 13.1.0 • HSSI clock support.
• Reset Sequencer.
• Interconnect pipelining.

May 2013 13.0.0 • AMBA APB support.
• Auto-inserted Avalon-ST adapters feature.
• Moved Address Span Extender to the Qsys System Design Components

chapter.

November 2012 12.1.0 • AMBA AXI4 support.

June 2012 12.0.0 • AMBA AXI3 support.
• Avalon-ST adapters.
• Address Span Extender.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Removed beta status.

December 2010 10.1.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

3. Platform Designer Interconnect

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

227

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Optimizing Platform Designer System Performance
Platform Designer provides tools that allow you to optimize the performance of the
system interconnect for Intel FPGA designs. This chapter presents techniques that
leverage the available tools and the trade offs of each implementation.

Note: Intel now refers to Qsys Pro as Platform Designer.

The foundation of any system is the interconnect logic that connects hardware blocks
or components. Creating interconnect logic is time consuming and prone to errors,
and existing interconnect logic is difficult to modify when design requirements change.
The Platform Designer system integration tool addresses these issues and provides an
automatically generated and optimized interconnect designed to satisfy the system
requirements.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Note: Recommended Intel practices may improve clock frequency, throughput, logic
utilization, or power consumption of a Platform Designer design. When you design a
Platform Designer system, use your knowledge of the design intent and goals to
further optimize system performance beyond the automated optimization available in
Platform Designer.

Related Information

• Creating a System with Platform Designer on page 10

• Creating Platform Designer Components on page 89

• Platform Designer Interconnect on page 141

• Avalon Interface Specifications

• AMBA Protocol Specifications

4.1. Designing with Avalon and AXI Interfaces

Platform Designer Avalon and AXI interconnect for memory-mapped interfaces is
flexible, partial crossbar logic that connects master and slave interfaces.

Avalon Streaming (Avalon-ST) links connect point-to-point, unidirectional interfaces
and are typically used in data stream applications. Each pair of components is
connected without any requirement to arbitrate between the data source and sink.

Because Platform Designer supports multiplexed memory-mapped and streaming
connections, you can implement systems that use multiplexed logic for control and
streaming for data in a single design.

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Related Information

Creating Platform Designer Components on page 89

4.1.1. Designing Streaming Components

When you design streaming component interfaces, you must consider integration and
communication for each component in the system. One common consideration is
buffering data internally to accommodate latency between components.

For example, if the component’s Avalon-ST output or source of streaming data is back-
pressured because the ready signal is deasserted, then the component must back-
pressure its input or sink interface to avoid overflow.

You can use a FIFO to back-pressure internally on the output side of the component so
that the input can accept more data even if the output is back-pressured. Then, you
can use the FIFO almost full flag to back-pressure the sink interface or input data
when the FIFO has only enough space to satisfy the internal latency. You can drive the
data valid signal of the output or source interface with the FIFO not empty flag when
that data is available.

4.1.2. Designing Memory-Mapped Components

When designing with memory-mapped components, you can implement any
component that contains multiple registers mapped to memory locations, for example,
a set of four output registers to support software read back from logic. Components
that implement read and write memory-mapped transactions require three main
building blocks: an address decoder, a register file, and a read multiplexer.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the
address bits drive the multiplexer selection bits. The read signal registers the data
from the multiplexer, adding a pipeline stage so that the component can achieve a
higher clock frequency.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 109. Control and Status Registers (CSR) in a Slave Component

write

writedata[31:0]

address[1:0]

read

readdata[31:0]

Avalon-MM
Slave Port

EN

D Q

EN

D Q

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Multiplexer

s

Decoder
2-4

Register File

User
Logic

EN

address[1:0]

This slave component has four write wait states and one read wait state. Alternatively,
if you want high throughput, you may set both the read and write wait states to zero,
and then specify a read latency of one, because the component also supports
pipelined reads.

4.2. Using Hierarchy in Systems

You can use hierarchy to sub-divide a system into smaller subsystems that you can
then connect in a top-level Platform Designer system. Additionally, if a design contains
one or more identical functional units, the functional unit can be defined as a
subsystem and instantiated multiple times within a top-level system.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

230

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hierarchy can simplify verification control of slaves connected to each master in a
memory-mapped system. Before you implement subsystems in your design, you
should plan the system hierarchical blocks at the top-level, using the following
guidelines:

• Plan shared resources—Determine the best location for shared resources in the
system hierarchy. For example, if two subsystems share resources, add the
components that use those resources to a higher-level system for easy access.

• Plan shared address space between subsystems—Planning the address space
ensures you can set appropriate sizes for bridges between subsystems.

• Plan how much latency you may need to add to your system—When you
add an Avalon-MM Pipeline Bridge between subsystems, you may add latency to
the overall system. You can reduce the added latency by parameterizing the
bridge with zero cycles of latency, and by turning off the pipeline command and
response signals.

Figure 110. Avalon-MM Pipeline Bridge

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 111. Passing Messages Between Subsystems

Nios II
Processor

M M

Nios II
Processor

M M

PIO

S

On-Chip
Memory

S

Mutex

S

UART

S

On-Chip
Memory

S

Shared
Memory

S

UART

S

PIO

S

Arbiter Arbiter ArbiterArbiter

Top-Level System

Subsystem Subsystem

Pipeline Bridges

Shared Resources for Message Passing

In this example, two Nios II processor subsystems share resources for message
passing. Bridges in each subsystem export the Nios II data master to the top-level
system that includes the mutex (mutual exclusion component) and shared memory
component (which could be another on-chip RAM, or a controller for an off-chip RAM
device).

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

232

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 112. Multi Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

M M

Input Data
Stream

S

On-Chip
Memory

S

Input Data
Stream

S

Arbiter

You can also design systems that process multiple data channels by instantiating the
same subsystem for each channel. This approach is easier to maintain than a larger,
non-hierarchical system. Additionally, such systems are easier to scale because you
can calculate the required resources as a multiple of the subsystem requirements.

4.3. Using Concurrency in Memory-Mapped Systems

Platform Designer interconnect uses parallel hardware in FPGAs, which allows you to
design concurrency into your system and process transactions simultaneously.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.1. Implementing Concurrency With Multiple Masters

Implementing concurrency requires multiple masters in a Platform Designer system.
Systems that include a processor contain at least two master interfaces because the
processors include separate instruction and data masters. You can categorize master
components as follows:

• General purpose processors, such as Nios II processors

• DMA (direct memory access) engines

• Communication interfaces, such as PCI Express

Because Platform Designer generates an interconnect with slave-side arbitration,
every master interface in a system can issue transfers concurrently, if they are not
posting transfers to the same slave. Concurrency is limited by the number of master
interfaces sharing any particular slave interface. If a design requires higher data
throughput, you can increase the number of master and slave interfaces to increase
the number of transfers that occur simultaneously. The example below shows a
system with three master interfaces.

Figure 113. Avalon Multiple Master Parallel Access
In this Avalon example, the DMA engine operates with Avalon-MM read and write masters. The yellow lines
represent active simultaneous connections.

Master Port

Slave Port

 M

Dual-Port On-Chip
Memory

S

External Memory
Controller

External Memory
Controller

Concurrent Access Possible

Nios II
Processor

 DMA
Engine

M MMM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

234

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 114. AXI Multiple Master Parallel Access
In this example, the DMA engine operates with a single master, because in AXI, the write and read channels on
the master are independent and can process transactions simultaneously. There is concurrency between the
read and write channels, with the yellow lines representing concurrent datapaths.

Master PortM

Dual-Port On-Chip
Memory

Slave PortS

External Memory
Controller

External Memory
Controller

Nios II
Processor

AXI DMA
Engine

M MM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

Concurrent Access Possible

Read Write

4.3.2. Implementing Concurrency With Multiple Slaves

You can create multiple slave interfaces for a particular function to increase
concurrency in your design.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 115. Single Interface Versus Multiple Interfaces

Host 2

Host 1

M

Host 3

Host 4

M

S

M

M

Arbiter

Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Multiple Channel Access

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S

S

S

Host 2

Host 1

M

Host 3

Host 4

M

M

M

In this example, there are two channel processing systems. In the first, four hosts
must arbitrate for the single slave interface of the channel processor. In the second,
each host drives a dedicated slave interface, allowing all master interfaces to
simultaneously access the slave interfaces of the component. Arbitration is not
necessary when there is a single host and slave interface.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.3. Implementing Concurrency with DMA Engines

In some systems, you can use DMA engines to increase throughput. You can use a
DMA engine to transfer blocks of data between interfaces, which then frees the CPU
from doing this task. A DMA engine transfers data between a programmed start and
end address without intervention, and the data throughput is dictated by the
components connected to the DMA. Factors that affect data throughput include data
width and clock frequency.

Figure 116. Single or Dual DMA Channels

Single DMA Channel

DMA
Engine

MM

Read
 Buffer 2

S

Read
 Buffer 1

S

Write
 Buffer 1

S

Write
 Buffer 2

S

Maximum of One Read & One Write Per Clock Cycle

DMA
Engine 1

MM

Write
 Buffer 1

S

Read
 Buffer 1

S

DMA
Engine 2

MM

Write
 Buffer 2

S

Read
 Buffer 2

S

Dual DMA Channels
Maximum of Two Reads & Two Writes Per Clock Cycle

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In this example, the system can sustain more concurrent read and write operations by
including more DMA engines. Accesses to the read and write buffers in the top system
are split between two DMA engines, as shown in the Dual DMA Channels at the bottom
of the figure.

The DMA engine operates with Avalon-MM write and read masters. An AXI DMA
typically has only one master, because in AXI, the write and read channels on the
master are independent and can process transactions simultaneously.

4.4. Inserting Pipeline Stages to Increase System Frequency

Adding pipeline stages may increase the fMAX of the design by reducing the
combinational logic depth, at the cost of additional latency and logic utilization.

Platform Designer provides the Limit interconnect pipeline stages to option on the
Interconnect Requirements tab to automatically add pipeline stages to the Platform
Designer interconnect when you generate a system.

The Limit interconnect pipeline stages to parameter in the Interconnect
Requirements tab allows you to define the maximum Avalon-ST pipeline stages that
Platform Designer can insert during generation. You can specify between 0 to 4
pipeline stages, where 0 means that the interconnect has a combinational datapath.
You can specify a unique interconnect pipeline stage value for each subsystem.

For more information, refer to Interconnect Pipelining.

Related Information

Pipelined Avalon-MM Interfaces on page 254

4.5. Using Bridges

You can use bridges to increase system frequency, minimize generated Platform
Designer logic, minimize adapter logic, and to structure system topology when you
want to control where Platform Designer adds pipelining. You can also use bridges with
arbiters when there is concurrency in the system.

An Avalon bridge has an Avalon-MM slave interface and an Avalon-MM master
interface. You can have many components connected to the bridge slave interface, or
many components connected to the bridge master interface. You can also have a
single component connected to a single bridge slave or master interface.

You can configure the data width of the bridge, which can affect how Platform
Designer generates bus sizing logic in the interconnect. Both interfaces support
Avalon-MM pipelined transfers with variable latency, and can also support configurable
burst lengths.

Transfers to the bridge slave interface are propagated to the master interface, which
connects to components downstream from the bridge. Bridges can provide more
control over interconnect pipelining than the Limit interconnect pipeline stages to
option.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can use Avalon bridges between AXI interfaces, and between Avalon domains.
Platform Designer automatically creates interconnect logic between the AXI and
Avalon interfaces, so you do not have to explicitly instantiate bridges between these
domains. For more discussion about the benefits and disadvantages of shared and
separate domains, refer to the Platform Designer Interconnect.

Related Information

• Bridges on page 276

• AMBA 3 APB Protocol Specification Support (version 1.0) on page 206

4.5.1. Using Bridges to Increase System Frequency

In Platform Designer, you can introduce interconnect pipeline stages or pipeline
bridges to increase clock frequency in your system. Bridges control the system
interconnect topology and allow you to subdivide the interconnect, giving you more
control over pipelining and clock crossing functionality.

4.5.1.1. Inserting Pipeline Bridges

You can insert an Avalon-MM pipeline bridge to insert registers in the path between
the bridges and its master and slaves. If a critical register-to-register delay occurs in
the interconnect, a pipeline bridge can help reduce this delay and improve system
fMAX.

The Avalon-MM pipeline bridge component integrates into any Platform Designer
system. The pipeline bridge options can increase logic utilization and read latency. The
change in topology may also reduce concurrency if multiple masters arbitrate for the
bridge. You can use the Avalon-MM pipeline bridge to control topology without adding
a pipeline stage. A pipeline bridge that does not add a pipeline stage is optimal in
some latency-sensitive applications. For example, a CPU may benefit from minimal
latency when accessing memory.

Figure 117. Avalon-MM Pipeline Bridge

D Q

Master
I/F

Wait Request
 Logic

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM
Master Interface

Connects to an
Avalon-MM

Slave Interface Slave
I/F

D Q

D Q

clock

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.1.1.1. Implementing Command Pipelining (Master-to-Slave)

When multiple masters share a slave device, you can use command pipelining to
improve performance.

The arbitration logic for the slave interface must multiplex the address, writedata,
and burstcount signals. The multiplexer width increases proportionally with the
number of masters connecting to a single slave interface. The increased multiplexer
width may become a timing critical path in the system. If a single pipeline bridge does
not provide enough pipelining, you can instantiate multiple instances of the bridge in a
tree structure to increase the pipelining and further reduce the width of the
multiplexer at the slave interface.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 118. Tree of Bridges

Master 1

M

Master 2

M

M

S

Pipeline Bridge

Master 3

M

Master 4

M

M

S

Pipeline Bridge

arb

arb arb

Write Data &
Control Signals

Read Data

Shared
Slave

S

4.5.1.1.2. Implementing Response Pipelining (Slave-to-Master)

When masters connect to multiple slaves that support read transfers, you can use
slave-to-master pipelining to improve performance.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The interconnect inserts a multiplexer for every read datapath back to the master. As
the number of slaves supporting read transfers connecting to the master increases,
the width of the read data multiplexer also increases. If the performance increase is
insufficient with one bridge, you can use multiple bridges in a tree structure to
improve fMAX.

4.5.1.2. Using Clock Crossing Bridges

The clock crossing bridge contains a pair of clock crossing FIFOs, which isolate the
master and slave interfaces in separate, asynchronous clock domains. Transfers to the
slave interface are propagated to the master interface.

When you use a FIFO clock crossing bridge for the clock domain crossing, you add
data buffering. Buffering allows pipelined read masters to post multiple reads to the
bridge, even if the slaves downstream from the bridge do not support pipelined
transfers.

You can also use a clock crossing bridge to place high and low frequency components
in separate clock domains. If you limit the fast clock domain to the portion of your
design that requires high performance, you may achieve a higher fMAX for this portion
of the design. For example, the majority of processor peripherals in embedded designs
do not need to operate at high frequencies, therefore, you do not need to use a high-
frequency clock for these components. When you compile a design with the Intel
Quartus Prime software, compilation may take more time when the clock frequency
requirements are difficult to meet because the Fitter needs more time to place
registers to achieve the required fMAX. To reduce the amount of effort that the Fitter
uses on low priority and low performance components, you can place these behind a
clock crossing bridge operating at a lower frequency, allowing the Fitter to increase the
effort placed on the higher priority and higher frequency datapaths.

4.5.2. Using Bridges to Minimize Design Logic

Bridges can reduce interconnect logic by reducing the amount of arbitration and
multiplexer logic that Platform Designer generates. This reduction occurs because
bridges limit the number of concurrent transfers that can occur.

4.5.2.1. Avoiding Speed Optimizations That Increase Logic

You can add an additional pipeline stage with a pipeline bridge between masters and
slaves to reduce the amount of combinational logic between registers, which can
increase system performance. If you can increase the fMAX of your design logic, you
may be able to turn off the Intel Quartus Prime software optimization settings, such as
the Perform register duplication setting. Register duplication creates duplicate
registers in two or more physical locations in the FPGA to reduce register-to-register
delays. You may also want to choose Speed for the optimization method, which
typically results in higher logic utilization due to logic duplication. By making use of
the registers or FIFOs available in the bridges, you can increase the design speed and
avoid needless logic duplication or speed optimizations, thereby reducing the logic
utilization of the design.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

242

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.2.2. Limiting Concurrency

The amount of logic generated for the interconnect often increases as the system
becomes larger because Platform Designer creates arbitration logic for every slave
interface that is shared by multiple master interfaces. Platform Designer inserts
multiplexer logic between master interfaces that connect to multiple slave interfaces if
both support read datapaths.

Most embedded processor designs contain components that are either incapable of
supporting high data throughput, or do not need to be accessed frequently. These
components can contain master or slave interfaces. Because the interconnect supports
concurrent accesses, you may want to limit concurrency by inserting bridges into the
datapath to limit the amount of arbitration and multiplexer logic generated.

For example, if a system contains three master and three slave interfaces that are
interconnected, Platform Designer generates three arbiters and three multiplexers for
the read datapath. If these masters do not require a significant amount of
simultaneous throughput, you can reduce the resources that your design consumes by
connecting the three masters to a pipeline bridge. The bridge controls the three slave
interfaces and reduces the interconnect into a bus structure. Platform Designer
creates one arbitration block between the bridge and the three masters, and a single
read datapath multiplexer between the bridge and three slaves, and prevents
concurrency. This implementation is similar to a standard bus architecture.

You should not use this method for high throughput datapaths to ensure that you do
not limit overall system performance.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

243

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 119. Differences Between Systems With and Without a Pipeline Bridge

S S S

Arbiter Arbiter Arbiter

SSS

M

Bridge

S

Arbiter

M M M M MM M

Write Data & Control Signals
Read Data

Concurrency No Concurrency

4.5.3. Using Bridges to Minimize Adapter Logic

Platform Designer generates adapter logic for clock crossing, width adaptation, and
burst support when there is a mismatch between the clock domains, widths, or
bursting capabilities of the master and slave interface pairs.

Platform Designer creates burst adapters when the maximum burst length of the
master is greater than the master burst length of the slave. The adapter logic creates
extra logic resources, which can be substantial when your system contains master
interfaces connected to many components that do not share the same characteristics.
By placing bridges in your design, you can reduce the amount of adapter logic that
Platform Designer generates.

4.5.3.1. Determining Effective Placement of Bridges

To determine the effective placement of a bridge, you should initially analyze each
master in your system to determine if the connected slave devices support different
bursting capabilities or operate in a different clock domain. The maximum burstcount
of a component is visible as the burstcount signal in the HDL file of the component.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

244

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The maximum burst length is 2 (width(burstcount -1)), therefore, if the burstcount width
is four bits, the maximum burst length is eight. If no burstcount signal is present,
the component does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the master and
slave interfaces, check the Clock column for the master and slave interfaces. If the
clock is different for the master and slave interfaces, Platform Designer inserts a clock
crossing adapter between them. To avoid creating multiple adapters, you can place
the components containing slave interfaces behind a bridge so that Platform Designer
creates a single adapter. By placing multiple components with the same burst or clock
characteristics behind a bridge, you limit concurrency and the number of adapters.

You can also use a bridge to separate AXI and Avalon domains to minimize burst
adaptation logic. For example, if there are multiple Avalon slaves that are connected
to an AXI master, you can consider inserting a bridge to access the adaptation logic
once before the bridge, instead of once per slave. This implementation results in
latency, and you would also lose concurrency between reads and writes.

4.5.3.2. Changing the Response Buffer Depth

When you use automatic clock-crossing adapters, Platform Designer determines the
required depth of FIFO buffering based on the slave properties. If a slave has a high
Maximum Pending Reads parameter, the resulting deep response buffer FIFO that
Platform Designer inserts between the master and slave can consume a lot of device
resources. To control the response FIFO depth, you can use a clock crossing bridge
and manually adjust its FIFO depth to trade off throughput with smaller memory
utilization.

For example, if you have masters that cannot saturate the slave, you do not need
response buffering. Using a bridge reduces the FIFO memory depth and reduces the
Maximum Pending Reads available from the slave.

4.5.4. Considering the Effects of Using Bridges

Before you use pipeline or clock crossing bridges in a design, you should carefully
consider their effects. Bridges can have any combination of consequences on your
design, which could be positive or negative. Benchmarking your system before and
after inserting bridges can help you determine the impact to the design.

4.5.4.1. Increased Latency

Adding a bridge to a design has an effect on the read latency between the master and
the slave. Depending on the system requirements and the type of master and slave,
this latency increase may not be acceptable in your design.

4.5.4.1.1. Acceptable Latency Increase

For a pipeline bridge, Platform Designer adds a cycle of latency for each pipeline
option that is enabled. The buffering in the clock crossing bridge also adds latency. If
you use a pipelined or burst master that posts many read transfers, the increase in
latency does not impact performance significantly because the latency increase is very
small compared to the length of the data transfer.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

245

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you use a pipelined read master such as a DMA controller to read data
from a component with a fixed read latency of four clock cycles, but only perform a
single word transfer, the overhead is three clock cycles out of the total of four. This is
true when there is no additional pipeline latency in the interconnect. The read
throughput is only 25%.

Figure 120. Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency

However, if 100 words of data are transferred without interruptions, the overhead is
three cycles out of the total of 103 clock cycles. This corresponds to a read efficiency
of approximately 97% when there is no additional pipeline latency in the interconnect.
Adding a pipeline bridge to this read path adds two extra clock cycles of latency. The
transfer requires 105 cycles to complete, corresponding to an efficiency of
approximately 94%. Although the efficiency decreased by 3%, adding the bridge may
increase the fMAX by 5%. For example, if the clock frequency can be increased, the
overall throughput would improve. As the number of words transferred increases, the
efficiency increases to nearly 100%, whether or not a pipeline bridge is present.

Figure 121. High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

4.5.4.1.2. Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically retrieve data for use
in calculations that cannot proceed until the data arrives. Before adding a bridge to
the datapath of a processor instruction or data master, determine whether the clock
frequency increase justifies the added latency.

A Nios II processor instruction master has a cache memory with a read latency of four
cycles, which is eight sequential words of data return for each read. At 100 MHz, the
first read takes 40 ns to complete. Each successive word takes 10 ns so that eight
reads complete in 110 ns.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

246

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 122. Performance of a Nios II Processor and Memory Operating at 100 MHz

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns

Adding a clock crossing bridge allows the memory to operate at 125 MHz. However,
this increase in frequency is negated by the increase in latency because if the clock
crossing bridge adds six clock cycles of latency at 100 MHz, then the memory
continues to operate with a read latency of four clock cycles. Consequently, the first
read from memory takes 100 ns, and each successive word takes 10 ns because reads
arrive at the frequency of the processor, which is 100 MHz. In total, eight reads
complete after 170 ns. Although the memory operates at a higher clock frequency, the
frequency at which the master operates limits the throughput.

Figure 123. Performance of a Nios II Processor and Eight Reads with Ten Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns

4.5.4.2. Limited Concurrency

Placing a bridge between multiple master and slave interfaces limits the number of
concurrent transfers your system can initiate. This limitation is the same when
connecting multiple master interfaces to a single slave interface. The slave interface of
the bridge is shared by all the masters and, as a result, Platform Designer creates
arbitration logic. If the components placed behind a bridge are infrequently accessed,
this concurrency limitation may be acceptable.

Bridges can have a negative impact on system performance if you use them
inappropriately. For example, if multiple memories are used by several masters, you
should not place the memory components behind a bridge. The bridge limits memory
performance by preventing concurrent memory accesses. Placing multiple memory
components behind a bridge can cause the separate slave interfaces to appear as one
large memory to the masters accessing the bridge; all masters must access the same
slave interface.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

247

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 124. Inappropriate Use of a Bridge in a Hierarchical System

Nios II
Processor

M M

M

DMA

M M

DDR
SDRAM

S

DDR
SDRAM

S

DDR
SDRAM

S

Bridge

S

Bottleneck
Arbiter

DDR
SDRAM

S

Platform Designer
Subsystem

A memory subsystem with one bridge that acts as a single slave interface for the
Avalon-MM Nios II and DMA masters, which results in a bottleneck architecture. The
bridge acts as a bottleneck between the two masters and the memories.

If the fMAX of your memory interfaces is low and you want to use a pipeline bridge
between subsystems, you can place each memory behind its own bridge, which
increases the fMAX of the system without sacrificing concurrency.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

248

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 125. Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System

Nios II
Processor

M M

DMA

M M

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

Subsystem

Subsystem

4.5.4.3. Address Space Translation

The slave interface of a pipeline or clock crossing bridge has a base address and
address span. You can set the base address, or allow Platform Designer to set it
automatically. The address of the slave interface is the base offset address of all the
components connected to the bridge. The address of components connected to the
bridge is the sum of the base offset and the address of that component.

The master interface of the bridge drives only the address bits that represent the
offset from the base address of the bridge slave interface. Any time a master accesses
a slave through a bridge, both addresses must be added together, otherwise the
transfer fails. The Address Map tab displays the addresses of the slaves connected to
each master and includes address translations caused by system bridges.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

249

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 126. Bridge Address Translation

M

Nios II Processor

M

Bridge

S

Base = 0x1000

0x2C 0x2C0x102C

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0xC

Address Translation

In this example, the Nios II processor connects to a bridge located at base address
0x1000, a slave connects to the bridge master interface at an offset of 0x20, and the
processor performs a write transfer to the fourth 32-bit or 64-bit word within the
slave. Nios II drives the address 0x102C to interconnect, which is within the address
range of the bridge. The bridge master interface drives 0x2C, which is within the
address range of the slave, and the transfer completes.

4.5.4.4. Address Coherency

To simplify the system design, all masters should access slaves at the same location.
In many systems, a processor passes buffer locations to other mastering components,
such as a DMA controller. If the processor and DMA controller do not access the slave
at the same location, Platform Designer must compensate for the differences.

Figure 127. Slaves at Different Addresses and Complicating the System

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20 0x20

0x20

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

Masters Drive
Different Addresses

A Nios II processor and DMA controller access a slave interface located at address
0x20. The processor connects directly to the slave interface. The DMA controller
connects to a pipeline bridge located at address 0x1000, which then connects to the
slave interface. Because the DMA controller accesses the pipeline bridge first, it must
drive 0x1020 to access the first location of the slave interface. Because the processor
accesses the slave from a different location, you must maintain two base addresses
for the slave device.

To avoid the requirement for two addresses, you can add an additional bridge to the
system, set its base address to 0x1000, and then disable all the pipelining options in
the second bridge so that the bridge has minimal impact on system timing and

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

250

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

resource utilization. Because this second bridge has the same base address as the
original bridge, the processor and DMA controller access the slave interface with the
same address range.

Figure 128. Address Translation Corrected With Bridge

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20

M

Bridge

S

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

4.6. Increasing Transfer Throughput

Increasing the transfer efficiency of the master and slave interfaces in your system
increases the throughput of your design. Designs with strict cost or power
requirements benefit from increasing the transfer efficiency because you can then use
less expensive, lower frequency devices. Designs requiring high performance also
benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that Platform Designer
can transfer in a given clock cycle. Read latency is the number of clock cycles between
the address and data phase of a transaction. For example, a read latency of two
means that the data is valid two cycles after the address is posted. If the master must
wait for one request to finish before the next begins, such as with a processor, then
the read latency is very important to the overall throughput.

You can measure throughput and latency in simulation by observing the waveforms, or
using the verification IP monitors.

Related Information

• Avalon Verification IP Suite User Guide

• Mentor Graphics* Verification IP Altera Edition AMBA 3 AXI and AMBA 4 AXI User
Guide

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

251

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412471932581.html#nik1412471592433
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.1. Using Pipelined Transfers

Pipelined transfers increase the read efficiency by allowing a master to post multiple
reads before data from an earlier read returns. Masters that support pipelined
transfers post transfers continuously, relying on the readdatavalid signal to
indicate valid data. Slaves support pipelined transfers by including the
readdatavalid signal or operating with a fixed read latency.

AXI masters declare how many outstanding writes and reads it can issue with the
writeIssuingCapability and readIssuingCapability parameters. In the
same way, a slave can declare how many reads it can accept with the
readAcceptanceCapability parameter. AXI masters with a read issuing capability
greater than one are pipelined in the same way as Avalon masters and the
readdatavalid signal.

4.6.1.1. Using the Maximum Pending Reads Parameter

If you create a custom component with a slave interface supporting variable-latency
reads, you must specify the Maximum Pending Reads parameter in the Component
Editor. Platform Designer uses this parameter to generate the appropriate interconnect
and represent the maximum number of read transfers that your pipelined slave
component can process. If the number of reads presented to the slave interface
exceeds the Maximum Pending Reads parameter, then the slave interface must
assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires an
understanding of the latencies of your custom components. This parameter should be
based on the component’s highest read latency for the various logic paths inside the
component. For example, if your pipelined component has two modes, one requiring
two clock cycles and the other five, set the Maximum Pending Reads parameter to
5 to allow your component to pipeline five transfers, and eliminating dead cycles after
the initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads
parameter by monitoring the number of reads that are pending during system
simulation or while running the hardware. To use this method, set the parameter to a
high value and use a master that issues read requests on every clock. You can use a
DMA for this task if the data is written to a location that does not frequently assert
waitrequest. If you implement this method, you can observe your component with
a logic analyzer or built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your
custom pipelined read component is important. If you underestimate the parameter
value, you may cause a master interface to stall with a waitrequest until the slave
responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO
inserted into the interconnect for each master connected to the slave. This FIFO does
not use significant hardware resources. Overestimating the Maximum Pending
Reads parameter results in a slight increase in hardware utilization. For these
reasons, if you are not sure of the optimal value, you should overestimate this value.

If your system includes a bridge, you must set the Maximum Pending Reads
parameter on the bridge as well. To allow maximum throughput, this value should be
equal to or greater than the Maximum Pending Reads value for the connected slave
that has the highest value. You can limit the maximum pending reads of a slave and

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

252

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

reduce the buffer depth by reducing the parameter value on the bridge if the high
throughput is not required. If you do not know the Maximum Pending Reads value
for all the slave components, you can monitor the number of reads that are pending
during system simulation while running the hardware. To use this method, set the
Maximum Pending Reads parameter to a high value and use a master that issues
read requests on every clock, such as a DMA. Then, reduce the number of maximum
pending reads of the bridge until the bridge reduces the performance of any masters
accessing the bridge.

4.6.2. Arbitration Shares and Bursts

Arbitration shares provide control over the arbitration process. By default, the
arbitration algorithm allocates evenly, with all masters receiving one share.

You can adjust the arbitration process by assigning a larger number of shares to
masters that need greater throughput. The larger the arbitration share, the more
transfers are allocated to the master to access a slave. The masters gets
uninterrupted access to the slave for its number of shares when the master is reading
or writing.

If a master cannot post a transfer, and other masters are waiting to gain access to a
particular slave, the arbiter grants access to another master. This mechanism prevents
a master from wasting arbitration cycles if it cannot post back-to-back transfers. A
bursting transaction contains multiple beats (or words) of data, starting from a single
address. Bursts allow a master to maintain access to a slave for more than a single
word transfer. If a bursting master posts a write transfer with a burst length of eight,
it is guaranteed arbitration for eight write cycles.

You can assign arbitration shares to an Avalon-MM bursting master and AXI masters
(which are always considered a bursting master). Each share consists of one burst
transaction (such as multi cycle write), and allows a master to complete a number of
bursts before arbitration switches to the next master.

Related Information

Arbitration on page 153

4.6.2.1. Differences Between Arbitration Shares and Bursts

The following three key characteristics distinguish arbitration shares and bursts:

• Arbitration Lock

• Sequential Addressing

• Burst Adapters

Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master;
consequently, the bursting master should be capable of sustaining transfers for the
duration of the locked period. If, after the fourth write, the master deasserts the write
signal (Avalon-MM write or AXI wvalid) for fifty cycles, all other masters continue to
wait for access during this stalled period.

To avoid wasted bandwidth, your master designs should wait until a full burst transfer
is ready before requesting access to a slave device. Alternatively, you can avoid
wasted bandwidth by posting burstcounts equal to the amount of data that is ready.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

253

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you create a custom bursting write master with a maximum
burstcount of eight, but only three words of data are ready, you can present a
burstcount of three. This strategy does not result in optimal use of the system band
width if the slave is capable of handling a larger burst; however, this strategy prevents
stalling and allows access for other masters in the system.

Sequential Addressing

An Avalon-MM burst transfer includes a base address and a burstcount, which
represents the number of words of data that are transferred, starting from the base
address and incrementing sequentially. Burst transfers are common for processors,
DMAs, and buffer processing accelerators; however, sometimes a master must access
non-sequential addresses. Consequently, a bursting master must set the burstcount
to the number of sequential addresses, and then reset the burstcount for the next
location.

The arbitration share algorithm has no restrictions on addresses; therefore, your
custom master can update the address it presents to the interconnect for every read
or write transaction.

Burst Adapters

Platform Designer allows you to create systems that mix bursting and non-bursting
master and slave interfaces. This design strategy allows you to connect bursting
master and slave interfaces that support different maximum burst lengths, with
Platform Designer generating burst adapters when appropriate.

Platform Designer inserts a burst adapter whenever a master interface burst length
exceeds the burst length of the slave interface, or if the master issues a burst type
that the slave cannot support. For example, if you connect an AXI master to an Avalon
slave, a burst adapter is inserted. Platform Designer assigns non-bursting masters and
slave interfaces a burst length of one. The burst adapter divides long bursts into
shorter bursts. As a result, the burst adapter adds logic to the address and
burstcount paths between the master and slave interfaces.

4.6.2.2. Choosing Avalon-MM Interface Types

To avoid inefficient Avalon-MM transfers, custom master or slave interfaces must use
the appropriate simple, pipelined, or burst interfaces.

4.6.2.2.1. Simple Avalon-MM Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes;
consequently, their performance is limited. Simple interfaces are appropriate for
transfers between masters and infrequently used slave interfaces. In Platform
Designer, the PIO, UART, and Timer include slave interfaces that use simple transfers.

4.6.2.2.2. Pipelined Avalon-MM Interfaces

Pipelined read transfers allow a pipelined master interface to start multiple read
transfers in succession without waiting for prior transfers to complete. Pipelined
transfers allow master-slave pairs to achieve higher throughput, even though the
slave port may require one or more cycles of latency to return data for each transfer.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

254

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In many systems, read throughput becomes inadequate if simple reads are used and
pipelined transfers can increase throughput. If you define a component with a fixed
read latency, Platform Designer automatically provides the pipelining logic necessary
to support pipelined reads. You can use fixed latency pipelining as the default design
starting point for slave interfaces. If your slave interface has a variable latency
response time, use the readdatavalid signal to indicate when valid data is
available. The interconnect implements read response FIFO buffering to handle the
maximum number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined
system interconnect efficiently, your system must contain pipelined masters. You can
use pipelined masters as the default starting point for new master components. Use
the readdatavalid signal for these master interfaces.

Because master and slaves sometimes have mismatched pipeline latency, the
interconnect contains logic to reconcile the differences.

Table 94. Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline Platform Designer interconnect does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with
fixed or variable
latency

Platform Designer interconnect forces the master to wait through any slave-side
latency cycles. This master-slave pair gains no benefits from pipelining, because
the master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline Platform Designer interconnect carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave returns data. An
example of a non-pipeline slave is an asynchronous off-chip interface.

Pipelined Pipelined with
fixed latency

Platform Designer interconnect allows the master to capture data at the exact
clock cycle when data from the slave is valid, to enable maximum throughput. An
example of a fixed latency slave is an on-chip memory.

Pipelined Pipelined with
variable latency

The slave asserts a signal when its readdata is valid, and the master captures
the data. The master-slave pair can achieve maximum throughput if the slave
has variable latency. Examples of variable latency slaves include SDRAM and
FIFO memories.

4.6.2.2.3. Burst Avalon-MM Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip
communication interfaces, such as PCI Express. To use a burst-capable slave interface
efficiently, you must connect to a bursting master. Components that require bursting
to operate efficiently typically have an overhead penalty associated with short bursts
or non-bursting transfers.

You can use a burst-capable slave interface if you know that your component requires
sequential transfers to operate efficiently. Because SDRAM memories incur a penalty
when switching banks or rows, performance improves when SDRAM memories are
accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from
bursting. Whenever an address is transferred over shared address and data signals,
the throughput of the data transfer is reduced. Because the address phase adds
overhead, using large bursts increases the throughput of the connection.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

255

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6.2.3. Avalon-MM Burst Master Example

Figure 129. Avalon Bursting Write Master
This example shows the architecture of a bursting write master that receives data from a FIFO and writes the
contents to memory. You can use a bursting master as a starting point for your own bursting components, such
as custom DMAs, hardware accelerators, or off-chip communication interfaces.

d

count enable

load

d

count enable

load

q

read acknowledge

d

write

full

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]

writedata[31:0]

increment_address

Look-Ahead FIFO

master_burstcount[2:0]

burst_begin

burst_count[2:0]

write

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

burst_begin
EN

D Q

s

1

0

Tracking Logic/
State Machine

The master performs word accesses and writes to sequential memory locations. When
go is asserted, the start_address and transfer_length are registered. On the
next clock cycle, the control logic asserts burst_begin, which synchronizes the
internal control signals in addition to the master_address and
master_burstcount presented to the interconnect. The timing of these two signals
is important because during bursting write transfers byteenable and burstcount
must be held constant for the entire burst.

To avoid inefficient writes, the master posts a burst when enough data is buffered in
the FIFO. To maximize the burst efficiency, the master should stall only when a slave
asserts waitrequest. In this example, the FIFO’s used signal tracks the number of
words of data that are stored in the FIFO and determines when enough data has been
buffered.

The address register increments after every word transfer, and the length register
decrements after every word transfer. The address remains constant throughout the
burst. Because a transfer is not guaranteed to complete on burst boundaries,
additional logic is necessary to recognize the completion of short bursts and complete
the transfer.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

256

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avalon Memory-Mapped Master Templates

4.7. Reducing Logic Utilization

You can minimize logic size of Platform Designer systems. Typically, there is a trade-
off between logic utilization and performance. Reducing logic utilization applies to both
Avalon and AXI interfaces.

4.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization

In Platform Designer, changes to the connections between master and slave reduce
the amount of interconnect logic required in the system.

Related Information

Limited Concurrency on page 247

4.7.1.1. Creating Dedicated Master and Slave Connections to Minimize
Interconnect Logic

You can create a system where a master interface connects to a single slave interface.
This configuration eliminates address decoding, arbitration, and return data
multiplexing, which simplifies the interconnect. Dedicated master-to-slave connections
attain the same clock frequencies as Avalon-ST connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or
hardware accelerator. For example, if you insert a pipeline bridge between a slave and
all other master interfaces, the logic between the bridge master and slave interface is
reduced to wires. If a hardware accelerator connects only to a dedicated memory, no
system interconnect logic is generated between the master and slave pair.

4.7.1.2. Removing Unnecessary Connections to Minimize Interconnect Logic

The number of connections between master and slave interfaces affects the fMAX of
your system. Every master interface that you connect to a slave interface increases
the width of the multiplexer width. As a multiplexer width increases, so does the logic
depth and width that implements the multiplexer in the FPGA. To improve system
performance, connect masters and slaves only when necessary.

When you connect a master interface to many slave interfaces, the multiplexer for the
read data signal grows. Avalon typically uses a readdata signal. AXI read data
signals add a response status and last indicator to the read response channel using
rdata, rresp, and rlast. Additionally, bridges help control the depth of
multiplexers.

Related Information

Implementing Command Pipelining (Master-to-Slave) on page 240

4.7.1.3. Simplifying Address Decode Logic

If address code logic is in the critical path, you may be able to change the address
map to simplify the decode logic. Experiment with different address maps, including a
one-hot encoding, to see if results improve.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

257

http://www.altera.com/support/examples/nios2/exm-avalon-mm.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces

As the number of components in a design increases, the amount of logic required to
implement the interconnect also increases. The number of arbitration blocks increases
for every slave interface that is shared by multiple master interfaces. The width of the
read data multiplexer increases as the number of slave interfaces supporting read
transfers increases on a per master interface basis. For these reasons, consider
implementing multiple blocks of logic as a single interface to reduce interconnect logic
utilization.

4.7.2.1. Logic Consolidation Trade-Offs

You should consider the following trade-offs before making modifications to your
system or interfaces:

• Consider the impact on concurrency that results when you consolidate
components. When a system has four master components and four slave
interfaces, it can initiate four concurrent accesses. If you consolidate the four
slave interfaces into a single interface, then the four masters must compete for
access. Consequently, you should only combine low priority interfaces such as low
speed parallel I/O devices if the combination does not impact the performance.

• Determine whether consolidation introduces new decode and multiplexing logic for
the slave interface that the interconnect previously included. If an interface
contains multiple read and write address locations, the interface already contains
the necessary decode and multiplexing logic. When you consolidate interfaces, you
typically reuse the decoder and multiplexer blocks already present in one of the
original interfaces; however, combining interfaces may simply move the decode
and multiplexer logic, rather than eliminate duplication.

• Consider whether consolidating interfaces makes the design complicated. If so,
you should not consolidate interfaces.

Related Information

Using Concurrency in Memory-Mapped Systems on page 233

4.7.2.2. Consolidating Interfaces

The following example shows a system with a mix of components, each having
different burst capabilities: a Nios II/e core, a Nios II/f core, and an external
processor, which off-loads some processing tasks to the Nios II/f core.

The Nios II/f core supports a maximum burst size of eight. The external processor
interface supports a maximum burst length of 64. The Nios II/e core does not support
bursting. The memory in the system is SDRAM with an Avalon maximum burst length
of two.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

258

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 130. Mixed Bursting System

Nios II/e Core

M M

Nios II/f Core

M

Host Processor
Interface

MM

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

Platform Designer automatically inserts burst adapters to compensate for burst length
mismatches. The adapters reduce bursts to a single transfer, or the length of two
transfers. For the external processor interface connecting to DDR SDRAM, a burst of
64 words is divided into 32 burst transfers, each with a burst length of two. When you
generate a system, Platform Designer inserts burst adapters based on maximum
burstcount values; consequently, the interconnect logic includes burst adapters
between masters and slave pairs that do not require bursting, if the master is capable
of bursts.

In this example, Platform Designer inserts a burst adapter between the Nios II
processors and the timer, system ID, and PIO peripherals. These components do not
support bursting and the Nios II processor performs a single word read and write
accesses to these components.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

259

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 131. Mixed Bursting System with Bridges

To reduce the number of adapters, you can add pipeline bridges. The pipeline bridge, between the Nios II/f
core and the peripherals that do not support bursts, eliminates three burst adapters from the previous
example. A second pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum burst
size set to eight, eliminates another burst adapter, as shown below.

Nios II/e Core

M M M

Nios II/f Core

M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

8

B

1

64

8 8
B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

B

1

8

B

2

8

M

Bridge

S

M

Bridge

S

4.7.3. Reducing Logic Utilization With Multiple Clock Domains

You specify clock domains in Platform Designer on the System View tab. Clock
sources can be driven by external input signals to Platform Designer, or by PLLs inside
Platform Designer. Clock domains are differentiated based on the name of the clock.
You can create multiple asynchronous clocks with the same frequency.

Platform Designer generates Clock Domain Crossing (CDC) logic that hides the details
of interfacing components operating in different clock domains. The interconnect
supports the memory-mapped protocol with each port independently, and therefore

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

260

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

masters do not need to incorporate clock adapters in order to interface to slaves on a
different domain. Platform Designer interconnect logic propagates transfers across
clock domain boundaries automatically.

Clock-domain adapters provide the following benefits:

• Allows component interfaces to operate at different clock frequencies.

• Eliminates the need to design CDC hardware.

• Allows each memory-mapped port to operate in only one clock domain, which
reduces design complexity of components.

• Enables masters to access any slave without communication with the slave clock
domain.

• Allows you to focus performance optimization efforts on components that require
fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock
domain, that use a hand-shaking protocol to propagate transfer control signals
(read_request, write_request, and the master waitrequest signals) across the
clock boundary.

Figure 132. Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address

This example illustrates a clock domain adapter between one master and one slave.
The synchronizer blocks use multiple stages of flipflops to eliminate the propagation of
meta-stable events on the control signals that enter the handshake FSMs. The CDC
logic works with any clock ratio.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

261

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The typical sequence of events for a transfer across the CDC logic is as follows:

• The master asserts address, data, and control signals.

• The master handshake FSM captures the control signals and immediately forces
the master to wait. The FSM uses only the control signals, not address and data.
For example, the master simply holds the address signal constant until the slave
side has safely captured it.

• The master handshake FSM initiates a transfer request to the slave handshake
FSM.

• The transfer request is synchronized to the slave clock domain.

• The slave handshake FSM processes the request, performing the requested
transfer with the slave.

• When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM. The acknowledge is
synchronized back to the master clock domain.

• The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the Platform Designer forces the master to wait until
the transfer terminates. As a result, pipeline master ports do not benefit from
pipelining when performing transfers to a different clock domain.

Platform Designer automatically determines where to insert CDC logic based on the
system and the connections between components, and places CDC logic to maintain
the highest transfer rate for all components. Platform Designer evaluates the need for
CDC logic for each master and slave pair independently, and generates CDC logic
wherever necessary.

Related Information

Avalon Memory-Mapped Design Optimizations

4.7.4. Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain boundaries. In
the worst case, which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the master
domain synchronizer length and the slave domain synchronizer length, the
components of this delay are the following:

• Four additional master clock cycles, due to the master-side clock synchronizer.

• Four additional slave clock cycles, due to the slave-side clock synchronizer.

• One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

262

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

4.8. Reducing Power Consumption

Platform Designer provides various low power design changes that enable you to
reduce the power consumption of the interconnect and custom components.

4.8.1. Reducing Power Consumption With Multiple Clock Domains

When you use multiple clock domains, you should put non-critical logic in the slower
clock domain. Platform Designer automatically reconciles data crossing over
asynchronous clock domains by inserting clock crossing logic (handshake or FIFO).

You can use clock crossing in Platform Designer to reduce the clock frequency of the
logic that does not require a high frequency clock, which allows you to reduce power
consumption. You can use either handshaking clock crossing bridges or handshaking
clock crossing adapters to separate clock domains.

You can use the clock crossing bridge to connect master interfaces operating at a
higher frequency to slave interfaces running at a lower frequency. Only connect low
throughput or low priority components to a clock crossing bridge that operates at a
reduced clock frequency. The following are examples of low throughput or low priority
components:

• PIOs

• UARTs (JTAG or RS-232)

• System identification (SysID)

• Timers

• PLL (instantiated within Platform Designer)

• Serial peripheral interface (SPI)

• EPCS controller

• Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you
reduce the dynamic power consumption of the design. Dynamic power is a function of
toggle rates and decreasing the clock frequency decreases the toggle rate.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

263

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 133. Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II
Processor

M M

Arbiter

DDR
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Conduit

S

M

Clock
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S
Low-Frequency Components

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

264

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Platform Designer automatically inserts clock crossing adapters between master and
slave interfaces that operate at different clock frequencies. You can choose the type of
clock crossing adapter in the Platform Designer Project Settings tab. Adapters do not
appear in the Connections column because you do not insert them. The following
clock crossing adapter types are available in Platform Designer:

• Handshake—Uses a simple handshaking protocol to propagate transfer control
signals and responses across the clock boundary. This adapter uses fewer
hardware resources because each transfer is safely propagated to the target
domain before the next transfer begins. The Handshake adapter is appropriate for
systems with low throughput requirements.

• FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO adapter
is approximately two clock cycles more than the handshake clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it
supports multiple transactions simultaneously. The FIFO adapter requires more
resources, and is appropriate for memory-mapped transfers requiring high
throughput across clock domains.

• Auto—Platform Designer specifies the appropriate FIFO adapter for bursting links
and the Handshake adapter for all other links.

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it
buffers transfers and data. Clock crossing adapters are not pipelined, so that each
transaction is blocking until the transaction completes. Blocking transactions may
lower the throughput substantially; consequently, if you want to reduce power
consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design requires
single read transfers, a clock crossing adapter is preferable because the latency is
lower.

The clock crossing bridge requires few logic resources other than on-chip memory. The
number of on-chip memory blocks used is proportional to the address span, data
width, buffering depth, and bursting capabilities of the bridge. The clock crossing
adapter does not use on-chip memory and requires a moderate number of logic
resources. The address span, data width, and the bursting capabilities of the clock
crossing adapter determine the resource utilization of the device.

When you decide to use a clock crossing bridge or clock crossing adapter, you must
consider the effects of throughput and memory utilization in the design. If on-chip
memory resources are limited, you may be forced to choose the clock crossing
adapter. Using the clock crossing bridge to reduce the power of a single component
may not justify using more resources. However, if you can place all of the low priority
components behind a single clock crossing bridge, you may reduce power
consumption in the design.

Related Information

Power Optimization

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

265

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471266057
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.8.2. Reducing Power Consumption by Minimizing Toggle Rates

A Platform Designer system consumes power whenever logic transitions between on
and off states. When the state is held constant between clock edges, no charging or
discharging occurs. You can use the following design methodologies to reduce the
toggle rates of your design:

• Registering component boundaries

• Using clock enable signals

• Inserting bridges

Platform Designer interconnect is uniquely combinational when no adapters or bridges
are present and there is no interconnect pipelining. When a slave interface is not
selected by a master, various signals may toggle and propagate into the component.
By registering the boundary of your component at the master or slave interface, you
can minimize the toggling of the interconnect and your component. In addition,
registering boundaries can improve operating frequency. When you register the signals
at the interface level, you must ensure that the component continues to operate
within the interface standard specification.

Avalon-MM waitrequest is a difficult signal to synchronize when you add registers to
your component. The waitrequest signal must be asserted during the same clock
cycle that a master asserts read or write to in order to prolong the transfer. A master
interface can read the waitrequest signal too early and post more reads and writes
prematurely.

Note: There is no direct AXI equivalent for waitrequest and burstcount, though the
AMBA Protocol Specification implies that the AXI ready signal cannot depend
combinatorially on the AXI valid signal. Therefore, Platform Designer typically
buffers AXI component boundaries for the ready signal.

For slave interfaces, the interconnect manages the begintransfer signal, which is
asserted during the first clock cycle of any read or write transfer. If the waitrequest
is one clock cycle late, you can logically OR the waitrequest and the
begintransfer signals to form a new waitrequest signal that is properly
synchronized. Alternatively, the component can assert waitrequest before it is
selected, guaranteeing that the waitrequest is already asserted during the first
clock cycle of a transfer.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

266

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 134. Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon-MM
Slave Port

Remaining
Component

Logic

ready
(synchronous)

Using Clock Enables

You can use clock enables to hold the logic in a steady state, and the write and read
signals as clock enables for slave components. Even if you add registers to your
component boundaries, the interface can potentially toggle without the use of clock
enables. You can also use the clock enable to disable combinational portions of the
component.

For example, you can use an active high clock enable to mask the inputs into the
combinational logic to prevent it from toggling when the component is inactive. Before
preventing inactive logic from toggling, you must determine if the masking causes the
circuit to function differently. If masking causes a functional failure, it may be possible
to use a register stage to hold the combinational logic constant between clock cycles.

Inserting Bridges

You can use bridges to reduce toggle rates, if you do not want to modify the
component by using boundary registers or clock enables. A bridge acts as a repeater
where transfers to the slave interface are repeated on the master interface. If the
bridge is not accessed, the components connected to its master interface are also not
accessed. The master interface of the bridge remains idle until a master accesses the
bridge slave interface.

Bridges can also reduce the toggle rates of signals that are inputs to other master
interfaces. These signals are typically readdata, readdatavalid, and
waitrequest. Slave interfaces that support read accesses drive the readdata,
readdatavalid, and waitrequest signals. A bridge inserts either a register or
clock crossing FIFO between the slave interface and the master to reduce the toggle
rate of the master input signals.

4.8.3. Reducing Power Consumption by Disabling Logic

There are typically two types of low power modes: volatile and non-volatile. A volatile
low power mode holds the component in a reset state. When the logic is reactivated,
the previous operational state is lost. A non-volatile low power mode restores the
previous operational state. You can use either software-controlled or hardware-
controlled sleep modes to disable a component in order to reduce power consumption.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

267

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Software-Controlled Sleep Mode

To design a component that supports software-controlled sleep mode, create a single
memory-mapped location that enables and disables logic by writing a zero or one. You
can use the register’s output as a clock enable or reset, depending on whether the
component has non-volatile requirements. The slave interface must remain active
during sleep mode so that the enable bit is set when the component needs to be
activated.

If multiple masters can access a component that supports sleep mode, you can use
the Mutex Intel FPGA IP to provide mutually exclusive accesses to your component.
You can also build in the logic to re-enable the component on the very first access by
any master in your system. If the component requires multiple clock cycles to re-
activate, then it must assert a wait request to prolong the transfer as it exits sleep
mode.

Hardware-Controlled Sleep Mode

Alternatively, you can implement a timer in your component that automatically causes
the component to enter a sleep mode based on a timeout value specified in clock
cycles between read or write accesses. Each access resets the timer to the timeout
value. Each cycle with no accesses decrements the timeout value by one. If the
counter reaches zero, the hardware enters sleep mode until the next access.

Figure 135. Hardware-Controlled Sleep Components

q

wakeread
write

d count

count enableload

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy

This example provides a schematic for the hardware-controlled sleep mode. If
restoring the component to an active state takes a long time, use a long timeout value
so that the component is not continuously entering and exiting sleep mode. The slave
interface must remain functional while the rest of the component is in sleep mode.
When the component exits sleep mode, the component must assert the waitrequest
signal until it is ready for read or write accesses.

Related Information

Mutex Core

4.9. Reset Polarity and Synchronization in Platform Designer

When you add a component interface with a reset signal, Platform Designer defines its
polarity as reset(active-high) or reset_n (active-low).

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

268

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can view the polarity status of a reset signal by selecting the signal in the
Hierarchy tab, and then view its expanded definition in the open Parameters and
Block Symbol tabs. When you generate your component, Platform Designer
interconnect automatically inverts polarities as needed.

Figure 136. Reset Signal (Active-High)

Figure 137. Reset Signal Active-Low

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

269

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each Platform Designer component has its own requirements for reset
synchronization. Some blocks have internal synchronization and have no
requirements, whereas other blocks require an externally synchronized reset. You can
define how resets are synchronized in your Platform Designer system with the
Synchronous edges parameter. In the clock source or reset bridge component, set
the value of the Synchronous edges parameter to one of the following, depending
on how the reset is externally synchronized:

• None—There is no synchronization on this reset.

• Both—The reset is synchronously asserted and deasserted with respect to the
input clock.

• Deassert—The reset is synchronously asserted with respect to the input clock,
and asynchronously deasserted.

Figure 138. Synchronous Edges Parameter

You can combine multiple reset sources to reset a particular component.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

270

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 139. Combine Multiple Reset Sources

When you generate your component, Platform Designer inserts adapters to
synchronize or invert resets if there are mismatches in polarity or synchronization
between the source and destination. You can view inserted adapters on the Memory-
Mapped Interconnect tab with the System ➤ Show System with Platform
Designer Interconnect command.

Figure 140. Platform Designer Interconnect

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

271

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.10. Optimizing Platform Designer System Performance Design
Examples

Avalon Pipelined Read Master Example on page 272

Multiplexer Examples on page 274

4.10.1. Avalon Pipelined Read Master Example

For a high throughput system using the Avalon-MM standard, you can design a
pipelined read master that allows a system to issue multiple read requests before data
returns. Pipelined read masters hide the latency of read operations by posting reads
as frequently as every clock cycle. You can use this type of master when the address
logic is not dependent on the data returning.

4.10.1.1. Avalon Pipelined Read Master Example Design Requirements

You must carefully design the logic for the control and datapaths of pipelined read
masters. The control logic must extend a read cycle whenever the waitrequest
signal is asserted. This logic must also control the master address, byteenable,
and read signals. To achieve maximum throughput, pipelined read masters should
post reads continuously while waitrequest is deasserted. While read is asserted,
the address presented to the interconnect is stored.

The datapath logic includes the readdata and readdatavalid signals. If your
master can accept data on every clock cycle, you can register the data with the
readdatavalid as an enable bit. If your master cannot process a continuous stream
of read data, it must buffer the data in a FIFO. The control logic must stop issuing
reads when the FIFO reaches a predetermined fill level to prevent FIFO overflow.

4.10.1.2. Expected Throughput Improvement

The throughput improvement that you can achieve with a pipelined read master is
typically directly proportional to the pipeline depth of the interconnect and the slave
interface. For example, if the total latency is two cycles, you can double the
throughput by inserting a pipelined read master, assuming the slave interface also
supports pipeline transfers. If either the master or slave does not support pipelined
read transfers, then the interconnect asserts waitrequest until the transfer
completes. You can also gain throughput when there are some cycles of overhead
before a read response.

Where reads are not pipelined, the throughput is reduced. When both the master and
slave interfaces support pipelined read transfers, data flows in a continuous stream
after the initial latency. You can use a pipelined read master that stores data in a FIFO
to implement a custom DMA, hardware accelerator, or off-chip communication
interface.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

272

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 141. Pipelined Read Master

d

count enable

load

d

count enable

load

d

write

q

read acknowledge

empty

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

length[31:0]

fifo_used[]

used[]

writedata[31:0]

readdatavalid

Look-Ahead FIFO

read

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

Tracking Logic/
State Machine

readdatavalid

This example shows a pipelined read master that stores data in a FIFO. The master
performs word accesses that are word-aligned and reads from sequential memory
addresses. The transfer length is a multiple of the word size.

When the go bit is asserted, the master registers the start_address and
transfer_length signals. The master begins issuing reads continuously on the next
clock cycle until the length register reaches zero. In this example, the word size is four
bytes so that the address always increments by four, and the length decrements by
four. The read signal remains asserted unless the FIFO fills to a predetermined level.
The address register increments and the length register decrements if the length has
not reached 0 and a read is posted.

The master posts a read transfer every time the read signal is asserted and the
waitrequest is deasserted. The master issues reads until the entire buffer has been
read or waitrequest is asserted. An optional tracking block monitors the done bit.
When the length register reaches zero, some reads are outstanding. The tracking logic
prevents assertion of done until the last read completes, and monitors the number of
reads posted to the interconnect so that it does not exceed the space remaining in the
readdata FIFO. This example includes a counter that verifies that the following
conditions are met:

• If a read is posted and readdatavalid is deasserted, the counter increments.

• If a read is not posted and readdatavalid is asserted, the counter decrements.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

273

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the length register and the tracking logic counter reach zero, all the reads
have completed and the done bit is asserted. The done bit is important if a second
master overwrites the memory locations that the pipelined read master accesses. This
bit guarantees that the reads have completed before the original data is overwritten.

4.10.2. Multiplexer Examples

You can combine adapters with streaming components to create datapaths whose
input and output streams have different properties. The following examples
demonstrate datapaths in which the output stream exhibits higher performance than
the input stream.

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory to boost the frequency of input data from 100 MHz to 110 MHz by
sampling two input streams at differential rates. The on-chip FIFO memory has an
input clock frequency of 100 MHz, and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time, and the second 72.7 percent of the time. You must know what the typical
and maximum input channel utilizations are before for this type of design. For
example, if the first channel hits 50% utilization, the output stream exceeds 100%
utilization.

Figure 142. Datapath that Doubles the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

30% Channel Utilization
8 Bits at 100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

80% Channel Utilization
8 Bits at 100 MHz

Input

Input

sink

sink

src

27.3% Sample Rate
110 MHz

72.7% Sample Rate
110 MHz

100% Channel Utilization
Output 110 MHz

The diagram below illustrates a datapath that uses a data format adapter and Avalon-
ST channel multiplexer to merge the 8-bit 100 MHz input from two streaming data
sources into a single 16-bit 100 MHz streaming output. This example shows an output
with double the throughput of each interface with a corresponding doubling of the
data width.

Figure 143. Datapath to Double Data Width and Maintain Original Frequency

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

Input

Input

sink

sink

src

16 Bits at 100 MHz

16 Bits at 100 MHz

16 Bits
at 100 MHz

The diagram below illustrates a datapath that uses the dual clock version of the on-
chip FIFO memory and Avalon-ST channel multiplexer to merge the 100 MHz input
from two streaming data sources into a single 200 MHz streaming output. This
example shows an output with double the throughput of each interface with a
corresponding doubling of the clock frequency.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

274

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 144. Datapath to Boost the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

Input

Input

sink

sink

src

200 MHz

200 MHz

Output
200 MHz

4.11. Optimizing Platform Designer System Performance Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.12.15 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2015.11.02 15.1.0 • Added:Reset Polarity and Synchronization in Qsys.
• Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Multiplexer Examples, rearranged description text for the figures.

May 2013 13.0.0 AMBA APB support.

November 2012 12.1.0 AMBA AXI4 support.

June 2012 12.0.0 AMBA AXI3 support.

November 2011 11.1.0 New document release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

4. Optimizing Platform Designer System Performance

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

275

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Platform Designer System Design Components
You can use Platform Designer IP components to create Platform Designer systems.
Platform Designer interfaces include components appropriate for streaming high-speed
data, reading and writing registers and memory, controlling off-chip devices, and
transporting data between components.

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

Related Information

• Creating a System with Platform Designer on page 10

• Platform Designer Interconnect on page 141

• AMBA Protocol Specifications

• Embedded Peripherals IP User Guide

• Avalon Interface Specifications

5.1. Bridges

Bridges affect the way Platform Designer transports data between components. You
can insert bridges between master and slave interfaces to control the topology of a
Platform Designer system, which affects the interconnect that Platform Designer
generates. You can also use bridges to separate components into different clock
domains to isolate clock domain crossing logic.

A bridge has one slave interface and one master interface. In Platform Designer, one
or more master interfaces from other components connect to the bridge slave. The
bridge master connects to one or more slave interfaces on other components.

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html#iga1434499254579
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 145. Using a Bridge in a Platform Designer System
In this example, three masters have logical connections to three slaves, although physically each master
connects only to the bridge. Transfers initiated to the slave propagate to the master in the same order in which
the transfers are initiated on the slave.

 Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

 Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

5.1.1. Clock Bridge Intel FPGA IP

The Clock Bridge Intel FPGA IP connects a clock source to multiple clock input
interfaces. You can use the clock bridge to connect a clock source that is outside the
Platform Designer system. Create the connection through an exported interface, and
then connect to multiple clock input interfaces.

Clock outputs match fan-out performance without the use of a bridge. You require a
bridge only when you want a clock from an exported source to connect internally to
more than one source.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

277

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 146. Clock Bridge Intel FPGA IP

 PIO

S

 DMA

M MS

Platform Designer System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

5.1.2. Avalon-MM Clock Crossing Bridge Intel FPGA IP

The Avalon-MM Clock Crossing BridgeIntel FPGA IPtransfers Avalon-MM commands
and responses between different clock domains. You can also use the Avalon-MM Clock
Crossing Bridge between AXI masters and slaves of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement clock
crossing logic. The bridge parameters control the depth of the command and response
FIFOs in both the master and slave clock domains. If the number of active reads
exceeds the depth of the response FIFO, the Clock Crossing Bridge stops sending
reads.

To maintain throughput for high-performance applications, increase the response FIFO
depth from the default minimum depth, which is twice the maximum burst size.

Note: When you use the FIFO-based clock crossing a Platform Designer system, the DC FIFO
is automatically inserted in the Platform Designer system. The reset inputs for the DC
FIFO connect to the reset sources for the connected master and slave components on
either side of the DC FIFO. For this configuration, you must assert both the resets on
the master and the slave sides at the same time to ensure the DC FIFO resets
properly. Alternatively, you can drive both resets from the same reset source to
guarantee that the DC FIFO resets properly.

Note: The clock crossing bridge includes appropriate SDC constraints for its internal
asynchronous FIFOs. For these SDC constraints to work correctly, do not set false
paths on the pointer crossings in the FIFOs. Do not split the bridge’s clocks into
separate clock groups when you declare SDC constraints; the split has the same effect
as setting false paths.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

278

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.2.1. Avalon-MM Clock Crossing Bridge Example

In the example shown below, the Avalon-MM Clock Crossing bridges separate slave
components into two groups. The Avalon-MM Clock Crossing Bridge places the low
performance slave components behind a single bridge and clocks the components at a
lower speed. The bridge places the high-performance components behind a second
bridge and clocks it at a higher speed.

By inserting clock-crossing bridges, you simplify the Platform Designer interconnect
and allow the Intel Quartus Prime Fitter to optimize paths that require minimal
propagation delay.

Figure 147. Avalon-MM Clock Crossing Bridge

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

279

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.2.2. Avalon-MM Clock Crossing Bridge Parameters

Table 95. Avalon-MM Clock Crossing Bridge Parameters

Parameters Values Description

Data width 8, 16, 32, 64, 128,
256, 512, 1024 bits

Determines the data width of the interfaces on the
bridge, and affects the size of both FIFOs. For the
highest bandwidth, set Data width to be as wide as
the widest master that connects to the bridge.

Symbol width 1, 2, 4, 8, 16, 32,
64 (bits)

Number of bits per symbol. For example, byte-
oriented interfaces have 8-bit symbols.

Address width 1-32 bits The address bits needed to address the downstream
slaves.

Use automatically-determined address
width

- The minimum bridge address width that is required
to address the downstream slaves.

Maximum burst size 1, 2, 4, 8, 16, 32,
64, 128, 256, 512,
1024 bits

Determines the maximum length of bursts that the
bridge supports.

Command FIFO depth 2, 4, 8, 16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Command (master-to-slave) FIFO depth.

Respond FIFO depth 2, 4, 8,16, 32, 64,
128, 256, 512,
1024, 2048, 4096,
8192, 16384 bits

Slave-to-master FIFO depth.

Master clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the issuing master to target slave direction.
Increasing this value leads to a larger mean time
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

Slave clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the clock crossing
logic in the target slave to master direction.
Increasing this value leads to a larger meantime
between failures (MTBF). You can determine the
MTBF for a design by running a timing analysis.

5.1.3. Avalon-MM Pipeline Bridge Intel FPGA IP

The Avalon-MM Pipeline Bridge Intel FPGA IP inserts a register stage in the Avalon-MM
command and response paths. The bridge accepts commands on its slave port and
propagates the commands to its master port. The pipeline bridge provides separate
parameters to turn on pipelining for command and response signals.

The Maximum pending read transactions parameter is the maximum number of
pending reads that the Avalon-MM bridge can queue up. To determine the best value
for this parameter, review this same option for the bridge's connected slaves and
identify the highest value of the parameter, and then add the internal buffering
requirements of the Avalon-MM bridge. In general, the value is between 4 and 32. The
limit for maximum queued transactions is 64.

You can use the Avalon-MM bridge to export a single Avalon-MM slave interface to
control multiple Avalon-MM slave devices. The pipelining feature is optional.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

280

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 148. Avalon-MM Pipeline Bridge IP and XAUI PHY Transceiver IP
In this example, the bridge transfers commands received on its slave interface to its master port.

Interconnect

Exported to Embedded
Processor on PCB

 Interleave

 PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline Bridge

(Platform Designer)

S

PMA
Ch

Cntl

Because the slave interface is exported to the pins of the device, having a single slave
port, rather than separate ports for each slave device, reduces the pin count of the
FPGA.

5.1.4. Avalon-MM Unaligned Burst Expansion Bridge Intel FPGA IP

The Avalon-MM Unaligned Burst Expansion Bridge Intel FPGA IP aligns read burst
transactions from masters connected to its slave interface, to the address space of
slaves connected to its master interface. This alignment ensures that all read burst
transactions are delivered to the slave as a single transaction.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

281

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 149. Avalon-MM Unaligned Burst Expansion Bridge Intel FPGA IP

Slave Master

32-bit Avalon-MM
Master

Slave

Master

SlaveUnaligned Burst
 Expansion Bridge

64-bit Avalon-MM
Slave

64-bit Avalon-MM
Slave

You can use the Avalon Unaligned Burst Expansion Bridge to align read burst
transactions from masters that have narrower data widths than the target slaves.
Using the bridge for this purpose improves bandwidth utilization for the master-slave
pair, and ensures that unaligned bursts are processed as single transactions rather
than multiple transactions.

Note: Do not use the Avalon-MM Unaligned Burst Expansion Bridge if any connected slave
has read side effects from reading addresses that are exposed to any connected
master's address map. This bridge can cause read side effects due to alignment
modification to read burst transaction addresses.

Note: The Avalon-MM Unaligned Burst Expansion Bridge does not support VHDL simulation.

5.1.4.1. Using the Avalon-MM Unaligned Burst Expansion Bridge

When a master sends a read burst transaction to a slave, the Avalon-MM Unaligned
Burst Expansion Bridge initially determines whether the start address of the read burst
transaction is aligned to the slave's memory address space. If the base address is
aligned, the bridge does not change the base address. If the base address is not
aligned, the bridge aligns the base address to the nearest aligned address that is less
than the requested base address.

The Avalon-MM Unaligned Burst Expansion Bridge then determines whether the final
word requested by the master is the last word at the slave read burst address. If a
single slave address contains multiple words, all those words must be requested for a
single read burst transaction to occur.

• If the final word requested by the master is the last word at the slave read burst
address, the bridge does not modify the burst length of the read burst command
to the slave.

• If the final word requested by the master is not the last word at the slave read
burst address, the bridge increases the burst length of the read burst command to
the slave. The final word requested by the modified read burst command is then
the last word at the slave read burst address.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

282

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The bridge stores information about each aligned read burst command that it sends to
slaves connected to a master interface. When a read response is received on the
master interface, the bridge determines if the base address or burst length of the
issued read burst command was altered.

If the bridge alters either the base address or the burst length of the issued read burst
command, it receives response words that the master did not request. The bridge
suppresses words that it receives from the aligned burst response that are not part of
the original read burst command from the master.

5.1.4.2. Avalon-MM Unaligned Burst Expansion Bridge Parameters

Figure 150. Avalon-MM Unaligned Burst Expansion Bridge Parameter Editor

Table 96. Avalon-MM Unaligned Burst Expansion Bridge Parameters

Parameter Description

Data width Data width of the master connected to the bridge.

Address width (in WORDS) The address width of the master connected to the bridge.

Burstcount width The burstcount signal width of the master connected to the bridge.

Maximum pending read
transactions

The Maximum pending read transactions parameter is the maximum number
of pending reads that the Avalon-MM bridge can queue up. To determine the best
value for this parameter, review this same option for the bridge's connected
slaves and identify the highest value of the parameter, and then add the internal
buffering requirements of the Avalon-MM bridge. In general, the value is between
4 and 32. The limit for maximum queued transactions is 64.

Width of slave to optimize for The data width of the connected slave. Supported values are: 16, 32, 64, 128,
256, 512, 1024, 2048, and 4096 bits.

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

283

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Note: If you connect multiple slaves, all slaves must have the same data width.

Pipeline command signals When turned on, the command path is pipelined, minimizing the bridge's critical
path at the expense of increased logic usage and latency.

5.1.4.3. Avalon-MM Unaligned Burst Expansion Bridge Example

Figure 151. Unaligned Burst Expansion Bridge
The example below shows an unaligned read burst command from a master that the Avalon-MM Unaligned
Burst Expansion Bridge converts to an aligned request for a connected slave, and the suppression of words due
to the aligned read burst command. In this example, a 32-bit master requests an 8-beat burst of 32-bit words
from a 64-bit slave with a start address that is not 64-bit aligned.

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5
Transaction 1

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

With Avalon-MM Unaligned Burst Expansion Bridge

Bridge
Alignment

X*

X*

Note: the bridge suppresses
X* response words

Transaction 1

Without Avalon-MM Unaligned Burst Expansion Bridge

Because the target slave has a 64-bit data width, address 1 is unaligned in the slave's
address space. As a result, several smaller burst transactions are needed to request
the data associated with the master's read burst command.

With an Avalon-MM Unaligned Burst Expansion Bridge in place, the bridge issues a
new read burst command to the target slave beginning at address 0 with burst length
10, which requests data up to the word stored at address 9.

When the bridge receives the word corresponding to address 0, it suppresses it from
the master, and then delivers the words corresponding to addresses 1 through 8 to the
master. When the bridge receives the word corresponding to address 9, it suppresses
that word from the master.

5.1.5. Bridges Between Avalon and AXI Interfaces

When designing a Platform Designer system, you can make connections between AXI
and Avalon interfaces without the use of explicitly-instantiated bridges; the
interconnect provides all necessary bridging logic. However, this does not prevent the
use of explicit bridges to separate the AXI and Avalon domains.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

284

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 152. Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Domains
Using an explicit Avalon-MM bridge to separate the AXI and Avalon domains reduces the amount of bridging
logic in the interconnect at the expense of concurrency.

Network

Avalon-MM

Avalon-MM

AXI

AXI

AXI

Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI

AXI

Network

Avalon-MM

Avalon-MM

Avalon-MMAXI

Separated Avalon & AXI Domains

5.1.6. AXI Bridge Intel FPGA IP

With an AXI bridge, you can influence the placement of resource-intensive
components, such as the width and burst adapters. Depending on its use, an AXI
bridge may reduce throughput and concurrency, in return for higher fMAX and less
logic.

You can use an AXI Bridge Intel FPGA IP to group different parts of your Platform
Designer system. Other parts of the system can then connect to the bridge interface
instead of to multiple separate master or slave interfaces. You can also use an AXI
bridge to export AXI interfaces from Platform Designer systems.

Example 27. Reducing the Number of Adapters by Adding a Bridge

The figure shows a system with a single AXI master and three AXI slaves. It also has
various interconnect components, such as routers, demultiplexers, and multiplexers.
Two of the slaves have a narrower data width than the master; 16-bit slaves versus a
32-bit master.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

285

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 153. AXI System Without a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_2

Command
Mux_0

Command
Mux_4

Command
Mux_5

Command
Mux_1

Command
Mux_3

Width
Adapter_1

Width
Adapter_0

Width
Adapter_2

Burst
Adapter_1

Burst
Adapter_0

Burst
Adapter_2

AXI Slave
Agent_0

AXI
Slave_0

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_2

AXI
Slave_2

AXI Slave
Agent_1

AXI
Slave_1

Four width adapters (0 - 3) and four burst adapters (0 - 3) are
inserted between the master and slaves for transaction
adaptation for the example system.

In this system, Platform Designer interconnect creates four width adapters and four
burst adapters to access the two slaves.

You can improve resource usage by adding an AXI bridge. Then, Platform Designer
needs to add only two width adapters and two burst adapters; one pair for the read
channels, and another pair for the write channel.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

286

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 154. Width and Burst Adapters Added to System With a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

Width
Adapter_0

AXI Slave
Agent_1

Burst
Adapter_0

AXI
Slave_2

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_0

AXI
Bridge

By inserting an AXI bridge, the
interconnect Is divided into two
domains (interconnect_0 and
interconnect_1). Notice the
reduction in the number of width
adapters from 4 to 2 after the
bridge insertion. The same
process applies for burst adapters.

Interconnect_0

AXI
Bridge

AXI Master
Agent

Router_0 Limiter_0

Router_1 Limiter_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

AXI Slave
Agent_0

AXI
Slave_0

Width and burst adapters are not
required in Interconnect_1
because the adaptations are
performed in Interconnect_0.

Interconnect_1

Command
Demux_0

Command
Demux_1

AXI Slave
Agent_1

AXI
Slave_1

The figure shows the same system with an AXI bridge component, and the decrease in
the number of width and burst adapters. Platform Designer creates only two width
adapters and two burst adapters, as compared to the four width adapters and four
burst adapters in the previous figure.

Even though this system includes more components, the overall system performance
improves because there are fewer resource-intensive width and burst adapters.

5.1.6.1. AXI Bridge Signal Types

Based on parameter selections that you make for the AXI Bridge component, Platform
Designer instantiates either the AMBA 3 AXI or AMBA 3 AXI master and slave
interfaces into the component.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

287

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: In AMBA 3 AXI, aw/aruser accommodates sideband signal usage by hard processor
systems (HPS).

Table 97. Sets of Signals for the AXI Bridge Based on the Protocol

Signal Name AMBA 3 AXI AMBA 3 AXI

awid / arid yes yes

awaddr / araddr yes yes

awlen / arlen yes (4-bit) yes (8-bit)

awsize / arsize yes yes

awburst / arburst yes yes

awlock / arlock yes yes (1-bit optional)

awcache / arcache yes (2-bit) yes (optional)

awprot / arprot yes yes

awuser / aruser yes yes

awvalid / arvalid yes yes

awready / arready yes yes

awqos / arqos no yes

awregion / arregion no yes

wid yes no (optional)

wdata / rdata yes yes

wstrb yes yes

wlast / rvalid yes yes

wvalid / rlast yes yes

wready / rready yes yes

wuser / ruser no yes

bid / rid yes yes

bresp / rresp yes yes (optional)

bvalid yes yes

bready yes yes

5.1.6.2. AXI Bridge Parameters

In the parameter editor, you can customize the parameters for the AXI bridge
according to the requirements of your design.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

288

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 155. AXI Bridge Parameter Editor

Table 98. AXI Bridge Parameters

Parameter Type Range Description

AXI Version string AMBA 3
AXI or

AMBA 3
AXI

Specifies the AXI version and signals that
Platform Designer generates for the slave and
master interfaces of the bridge.

Data Width integer 8:1024 Controls the width of the data for the master
and slave interfaces.

Address Width integer 1-64 bits Controls the width of the address for the
master and slave interfaces.

AWUSER Width integer 1-64 bits Controls the width of the write address channel
sideband signals of the master and slave
interfaces.

ARUSER Width integer 1-64 bits Controls the width of the read address channel
sideband signals of the master and slave
interfaces.

WUSER Width integer 1-64 bits Controls the width of the write data channel
sideband signals of the master and slave
interfaces.

RUSER Width integer 1-16 bits Controls the width of the read data channel
sideband signals of the master and slave
interfaces.

BUSER Width integer 1-16 bits Controls the width of the write response
channel sideband signals of the master and
slave interfaces.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

289

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.6.3. AXI Bridge Slave and Master Interface Parameters

Table 99. AXI Bridge Slave and Master Interface Parameters

Parameter Description

ID Width Controls the width of the thread ID of the master and slave
interfaces.

Write/Read/Combined Acceptance Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the slave interface accepts.

Write/Read/Combined Issuing Capability Controls the depth of the FIFO that Platform Designer needs
in the interconnect agents based on the maximum pending
commands that the master interface issues. Issuing
capability must follow acceptance capability to avoid
unnecessary creation of FIFOs in the bridge.

Note: Maximum acceptance/issuing capability is a model-only parameter and does not
influence the bridge HDL. The bridge does not backpressure when this limit is reached.
Downstream components or the interconnect must apply backpressure.

5.1.7. AXI Timeout Bridge Intel FPGA IP

The AXI Timeout Bridge Intel FPGA IP allows your system to recover when it freezes,
and facilitates debugging. You can place an AXI Timeout Bridge between a single
master and a single slave if you know that the slave may time out and cause your
system to freeze. If a slave does not accept a command or respond to a command it
accepted, its master can wait indefinitely.

Figure 156. AXI Timeout Bridge

For a domain with multiple masters and slaves, placement of an AXI Timeout Bridge in
your design may be beneficial in the following scenarios:

• To recover from a freeze, place the bridge near the slave. If the master attempts
to communicate with a slave that freezes, the AXI Timeout Bridge frees the
master by generating error responses. The master is then able to communicate
with another slave.

• When debugging your system, place the AXI Timeout Bridge near the master. This
placement enables you to identify the origin of the burst, and to obtain the full
address from the master. Additionally, placing an AXI Timeout Bridge near the
master enables you to identify the target slave for the burst.

Note: If you place the bridge at the slave's side and you have multiple slaves
connected to the same master, you do not get the full address.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

290

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 157. AXI Timeout Bridge Placement

Interconnect

M 0

M 1

S 0

S 1

Possible bridge placement when used with Interconnect

Near Master
or at Master’s Side

Near Slave
or at Slave’s Side

Master Slave

Simplest Form

Bridge

5.1.7.1. AXI Timeout Bridge Stages

A timeout occurs when the internal timer in the bridge exceeds the specified number
of cycles within which a burst must complete from start to end.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

291

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 158. AXI Timeout Bridge Stages

A

BC

A read/write
times out

No more
outstanding
commands

The AXI Timeout Bridge is notified
that the slave is reset.

 A Slave is functional - The bridge passes through all bursts.

 B Slave is unresponsive - The bridge accepts commands and
 responds (with errors) to commands for the unresponsive slave.
 Commands are not passed through to the slave at this stage.

 C Slave is reset - The bridge does not accept new commands,
 and responds only to commands that are outstanding.

• When a timeout occurs, the AXI Timeout Bridge asserts an interrupt and reports
the burst that caused the timeout to the Configuration and Status Register (CSR).

• The bridge then generates error responses back to the master on behalf of the
unresponsive slave. This stage frees the master and certifies the unresponsive
slave as dysfunctional.

• The AXI Timeout Bridge accepts subsequent write addresses, write data, and read
addresses to the dysfunctional slave. The bridge does not accept outstanding write
responses, and read data from the dysfunctional slave is not passed through to
the master.

• The awvalid, wvalid, bready, arvalid, and rready ports are held low at the
master interface of the bridge.

Note: After a timeout, awvalid, wvalid, and arvalid may be dropped before they are
accepted by awready at the master interface. While the behavior violates the AXI
specification, it occurs only on an interface connected to the slave which has been
certified dysfunctional by the AXI Timeout Bridge.

Write channel refers to the AXI write address, data and response channels. Similarly,
read channel refers to the AXI read address and data channels. AXI write and read
channels are independent of each other. However, when a timeout occurs on either
channel, the bridge generates error responses on both channels.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

292

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 100. Burst Start and End Definitions for the AXI Timeout Bridge

Channel Start End

Write When an address is issued. First cycle of awvalid,
even if data of the same burst is issued before the
address (first cycle of wvalid).

When the response is issued. First cycle of
bvalid.

Read When an address is issued. First cycle of arvalid. When the last data is issued. First cycle of rvalid
and rlast.

The AXI Timeout Bridge has four required interfaces: Master, Slave, Configuration and
Status Register (CSR) (AMBA 3 AXI-Lite), and Interrupt. Platform Designer allows the
AXI Timeout Bridge to connect to any AMBA 3 AXI, AMBA 3 AXI, or Avalon master or
slave interface. Avalon masters must utilize the bridge’s interrupt output to detect a
timeout.

The bridge slave interface accepts write addresses, write data, and read addresses,
and then generates the SLVERR response at the write response and read data
channels. Do not use buser, rdata and ruser at this stage of processing.

To resume normal operation, the dysfunctional slave must be reset and the bridge
notified of the change in status via the CSR. Once the CSR notifies the bridge that the
slave is ready, the bridge does not accept new commands until all outstanding bursts
are responded to with an error response.

The CSR has a 4-bit address width and a 32-bit data width. The CSR reports status
and address information when the bridge asserts an interrupt.

Table 101. CSR Interrupt Status Information for the AXI Timeout Bridge

Address Attribute Name

0x0 write-only Slave is reset

0x4 read-only Timed out operation

0x8 through 0xF read-only Timed out address

5.1.7.2. AXI Timeout Bridge Parameters

Table 102. AXI Timeout Bridge Parameters

Parameter Description

ID width The width of awid, bid, arid, or rid.

Address width The width of awaddr or araddr.

Data width The width of wdata or rdata.

User width The width of awuser, wuser, buser, aruser, or ruser.

Maximum number of
outstanding writes

The expected maximum number of outstanding writes.

Maximum number of
outstanding reads

The expected maximum number of outstanding reads.

Maximum number of
cycles

The number of cycles within which a burst must complete.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

293

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.8. Address Span Extender Intel FPGA IP

The Address Span Extender Intel FPGA IP allows memory-mapped master interfaces to
access a larger or smaller address map than the width of their address signals allows.
The Address Span Extender IP splits the addressable space into multiple separate
windows, so that the master can access the appropriate part of the memory through
the window.

The Address Span Extender does not limit master and slave widths to a 32-bit and 64-
bit configuration. You can use the Address Span Extender with 1-64 bit address
windows.

Figure 159. Address Span Extender Intel FPGA IP

S

S

Control Port

Address Span Extender

Mapping Table

Control Register Z-1

Control Register 0

Slave Word Address

Expanded Master Address

. .
.

M

If a processor can address only 2 GB of an address span, and your system contains 4
GB of memory, the Address Span Extender can provide two, 2 GB windows in the 4 GB
memory address space. This issue sometimes occurs with Intel SoC devices.

For example, an HPS subsystem in an SoC device can address only 1 GB of an address
span within the FPGA, using the HPS-to-FPGA bridge. The Address Span Extender
enables the SoC device to address all the address space in the FPGA using multiple 1
GB windows.

5.1.8.1. CTRL Register Layout

The control registers consist of one 64-bit register for each window, where you specify
the window's base address. For example, if CTRL_BASE is the base address of the
control register, and address span extender contains two windows (0 and 1), then
window 0’s control register starts at CTRL_BASE, and window 1’s control register
starts at CTRL_BASE + 8 (using byte addresses).

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

294

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.8.2. Address Span Extender Parameters

Table 103. Address Span Extender Parameters

Parameter Description

Datapath Width Width of write data and read data signals.

Expanded Master Byte Address
Width

Width of the master byte address port. That is, the address span size of all the
downstream slaves that attach to the address span extender.

Slave Word Address Width Width of the slave word address port. That is, the address span size of the
downstream slaves that the upstream master accesses.

Burstcount Width Burst count port width of the downstream slave and the upstream master that
attach to the address span extender.

Number of sub-windows The slave port can represent one or more windows in the master address span.
You can subdivide the slave address span into N equal spans in N sub-windows.
A remapping register in the CSR slave represents each sub-window, and
configures the base address that each sub-window remaps to. The address span
extender replaces the upper bits of the address with the stored index value in
the remapping register before the master initiates a transaction.

Enable Slave Control Port Dictates run-time control over the sub-window indexes. If you can define static
re-mappings that do not need any change, you do not need to enable this CSR
slave.

Maximum Pending Reads Sets the bridge slave's maximumPendingReadTransactions property. In
certain system configurations, you must increase this value to improve
performance. This value usually aligns with the properties of the downstream
slaves that you attach to this bridge.

5.1.8.3. Calculating the Address Span Extender Slave Address

The diagram describes how Platform Designer calculates the slave address. In this
example, the address span extender is configured with a 28-bit address space for
slaves. The upper 2 bits [27:26] are used to select the control registers.

The lower 26 bits ([25:0]) originate from the address span extender's data port, and
are the offset into a particular window.

Figure 160. Address Span Extender

Control Registers[63:0]

Mapping Table (Sub-Windows)

[27:26] [25:0]

28-bit Slave Word Address

38-bit Master Word Address

Control
Port

0x00000000_04000000
0x00000000_08000000
0x00000000_0C000000

0x00000000_00000000 0

1

2

3

{ ”Control Register”[37:26] , “Slave addr”[25:0] }

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

295

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.1.8.4. Using the Address Span Extender

This example shows when and how to use address span extender component in your
Platform Designer design.

Figure 161. Block Diagram with Address Span Extender

 External Streaming
Source (Example: SDI)

Modular
SGDMA

4GB SDRAM

Address Span
 Extender

 Peripherals
(LED and UART)

32-bit Address
 Master

Avalon MM/AXI

Avalon ST

In the above design, a 32-bit master shares 4 GB SDRAM with an external streaming
interface. The master has the path to access streaming data from the SDRAM DDR
memory. However, if you connect the whole 32-bit address bus of the master to the
SDRAM DDR memory, you cannot connect the master to peripherals such as LED or
UART. To avoid this situation, you can implement the address span extender between
the master and DDR memory. The address span extender allows the master to access
the SDRAM DDR memory and the peripherals at the same time.

To implement address span extender for the above example, you can divide the
address window of the address span extender into two sub-windows of 512 MB each.
The sub-window 0 is for the master program area. You can dynamically map the sub-
window 1 to any area other than the program area.

You can change the offset of the address window by setting the base address of sub-
window 1 to the control register of the address span extender. However, you must
make sure that the sub-window address span masks the base address. You can
choose any arbitrary base address. If you set the value 0xa000_0000 to the control
register, Platform Designer maps the sub-window 1 to 0xa000_0000.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

296

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 104. CSR Mapping Table

Address Data

0x8000_0000 0x0000_0000

0x8000_0008 0xa000_0000

Figure 162. Memory mapping for Address Span Extender

 Peripherals

 CSR Area

 Address Span Extender

 Extended Master Area

0xFFFF_FFFF

0x8000_0000

0x3FFF_FFFF

0x0000_0000

Master

 Sub-window 1

 Sub-window 0
0x2000_0000

0xa000_0000

4GB SDRAM

 Streaming Data

Address: 0x8000_0008

0xa0000_0000

The table below indicates the Platform Designer parameter settings for this address
span extender example.

Table 105. Parameter Settings for the Address Span Extender Example

Parameter Value Description

Datapath Width 32 bits The CPU has 32-bits data width and the SDRAM DDR
memory has 512-bits data width. Since the transaction
between the master and SDRAM DDR memory is minimal,
set the datapath width to align with the upstream master.

Expanded Master Byte Address 32 bits The address span extender has a 4 GB address span.

Slave Word Address Width 18 bits There are two 512 MB sub-windows in reserve for the
master. The number of bytes over the data word width in
the Datapath Properties (4 bytes for this example)
accounts for the slave address.

Burstcount Width 4 bits The address span extender must handle up to 8 words burst
in this example.

Number of sub-windows 2 Address window of the address span extender has two sub-
windows of 512 MB each.

Enable Slave Control Port true The address span extender component must have control to
change the base address of the sub-window.

Maximum Pending Reads 4 This number is the same as SDRAM DDR memory burst
count.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

297

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 163. Address Span Extender Parameter Editor

Note: You can view the address span extender connections in the System View tab. The
windowed slave port and control port connect to the master. The expanded master
port connects to the SDRAM DDR memory.

5.1.8.5. Alternate Options for the Address Span Extender

You can set parameters for the address span extender with an initial fixed address
value. Enter an address for the Reset Default for Master Window option, and
select True for the Disable Slave Control Port option. This allows the address span
extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and stacks sequentially in the windowed slave
interface's address space. To control the fixed address bits of a particular sub-window,
you can write to the sub-window’s register in the register control slave interface.
Platform Designer structures the logic so that Platform Designer can optimize and
remove bits that are not needed.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

298

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If Burstcount Width is greater than 1, Platform Designer processes the read burst in
a single cycle, and assumes all byteenable signals are asserted on every cycle.

5.1.8.6. Nios II Support

If the address span extender window is fixed, for example, the Disable Slave
Control Port option is turned on, then the address span extender performs as a
bridge. Components on the slave side of the address span extender that are within the
window are visible to the Nios II processor. Components partially within a window
appear to the Nios II processor as if they have a reduced span. For example, a
memory partially within a window appears as having a smaller size.

You can also use the address span extender to provide a window for the Nios II
processor, so that the HPS memory map is visible to the Nios II processor. This
technique allows the Nios II processor to communicate with HPS peripherals.

In the example, a Nios II processor has an address span extender from address
0x40000 to 0x80000. There is a window within the address span extender starting at
0x100000. Within the address span extender's address space there is a slave at base
address 0x1100000. The slave appears to the Nios II processor as being at address:

0x110000 - 0x100000 + 0x40000 = 0x050000

Figure 164. Nios II Support and the Address Span Extender

0x80000

0x40000

Nios II

Address Span
Extender

Avalon-MM
Slave

0x140000

0x120000

0x110000

0x100000

Effective Slave Base Address =
0x110000 - 0x100000 + 0x040000

= 0x050000

The address span extender window is dynamic. For example, when the Disable Slave
Control Port option is turned off, the Nios II processor is unable to see components
on the slave side of the address span extender.

5.2. Error Response Slave Intel FPGA IP

The Error Response Slave IP provides a predictable error response service for master
interfaces that attempt to access an undefined memory region.

The Error Response Slave is an AMBA 3 AXI component, and appears in the Platform
Designer IP Catalog under Platform Designer Interconnect.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

299

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To comply with the AXI protocol, the interconnect logic must return the DECERR error
response in cases where the interconnect cannot decode slave access. Therefore, an
AXI system with address space not fully decoded to slave interfaces requires the Error
Response Slave.

The Error Response Slave behaves like any other component in the system, and
connects to other components via translation and adaptation interconnect logic.
Connecting an Error Response Slave to masters of different data widths, including
Avalon or AXI-Lite masters, can increase resource usage.

An Error Response Slave can connect to clock, reset, and IRQ signals as well as AMBA
3 AXI and AMBA 4 AXI master interfaces without instantiating a bridge. When you
connect an Error Response Slave to a master, the Error Response Slave accepts cycles
sent from the master, and returns the DECERR error response. On the AXI interface,
the Error Response Slave supports only a read and write acceptance of capability 1,
and does not support write data interleaving. The Error Response Slave can return
responses when simultaneously targeted by a read and write cycle, because its read
and write channels are independent.

An optional Avalon interface on the Error Response Slave provides information in a set
of CSR registers. CSR registers log the required information when returning an error
response.

• To set the Error Response Slave as the default slave for a master interface in your
system, connect the slave to the master in your Platform Designer system.

• A system can contain more than one Error Response Slave.

• As a best practice, instantiate separate Error Response Slave components for each
AXI master in your system.

Related Information

• AMBA 3 AXI Protocol Specification Support (version 1.0) on page 202

• Designating a Default Slave on page 304

5.2.1. Error Response Slave Parameters

Figure 165. Error Response Slave Parameter Editor

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

300

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you turn on Enable CSR Support (for error logging) more parameters become
available.

Figure 166. Error Response Slave Parameter Editor with Enabled CSR Support

Table 106. Error Response Slave Parameters

Parameter Value Description

AXI master ID width 1-8 bits Specifies the master ID width for error logging.

AXI address width 8-64 bits Specifies the address width for error logging.
This value also affects the overall address width of the
system, and should not exceed the maximum address
width required in the system.

AXI data width 32, 64, or
128 bits

Specifies the data width for error logging.

Enable CSR Support (for error logging) On / Off When turned on, instantiates an Avalon CSR interface
for error logging.

CSR Error Log Depth 1-16 bits Depth of the transaction log, for example, the number of
transactions the CSR logs for cycles with errors.

Register Avalon CSR inputs On / Off When turned on, controls debug access to the CSR
interface.

5.2.2. Error Response Slave CSR Registers

The Error Response Slave with enabled CSR support provides a service to handle
access violations. This service uses CSR registers for status and logging purposes.

The sequence of actions in the access violation service is equivalent for read and write
access violations, but the CSR status bits and log registers are different.

5.2.2.1. Error Response Slave Access Violation Service

When an access violation occurs, and the CSR port is enabled:

1. The Error Response Slave generates an interrupt:

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

301

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— For a read access violation, the Error Response Slave sets the Read Access
Violation Interrupt register bit in the Interrupt Status register.

— For a write access violation, the Error Response Slave sets the Write Access
Violation Interrupt register bit in the Interrupt Status register.

2. The Error Response Slave transfers transaction information to the access violation
log FIFO. The amount of information that the FIFO can handle is given by the
Error Log Depth parameter.

You define the Error Log Depth in the Parameter Editor, when you enable CSR
Support.

3. Software reads entries of the access violation log FIFO until the corresponding
cycle log valid bit is cleared, and then exits the service routine.

— The Read cycle log valid bit is in the Read Access Violation Log
CSR Registers.

— The Write cycle log valid bit is in the Write Access Violation
Log CSR Registers.

4. The Error Response Slave clears the interrupt bit when there are no access
violations to report.

Some special cases are:

• If any error occurs when the FIFO is full, the Error Response Slave sets the
corresponding Access Violation Interrupt Overflow register bit (bits
2 and 3 of the Status Register for write and read access violations, respectively).
Setting this bit means that not all error entries were written to the access violation
log.

• After Software reads an entry in the Access Violation log, the Error Response Slave
can write a new entry to the log.

• Software can specify the number of entries to read before determining that the
access violation service is taking too long to complete, and exit the routine.

5.2.2.2. CSR Interrupt Status Registers

Table 107. CSR Interrupt Status Registers
For CSR register maps: Address = Memory Address Base + Offset.

Offset Bits Attribute Default Description

0x00 31:4 Reserved.

3 RW1C 0 Read Access Violation Interrupt Overflow register

Asserted when a read access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

2 RW1C 0 Write Access Violation Interrupt Overflow register

Asserted when a write access causes the Interconnect to return a
DECERR response, and the buffer log depth is full. Indicates that
there is a logging error lost due to an exceeded buffer log depth.
Cleared by setting the bit to 1.

1 RW1C 0 Read Access Violation Interrupt register

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

302

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bits Attribute Default Description

Asserted when a read access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.
Note: Access violation are logged until the bit is cleared.

0 RW1C 0 Write Access Violation Interrupt register

Asserted when a write access causes the Interconnect to return a
DECERR response. Cleared by setting the bit to 1.
Note: Access violation are logged until the bit is cleared.

5.2.2.3. CSR Read Access Violation Log Registers

The CSR read access violation log settings are valid only when an associated read
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 108. CSR Read Access Violation Log Registers

Offset Bits Attribute Default Description

0x100 31:13 Reserved.

12:11 R0 0 Offending Read cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

10:7 R0 0 Offending Read cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

6:4 R0 0 Offending Read cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending Read cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Read cycle log valid: Specifies the validity of the read access
violation log. This bit is cleared when the interrupt register is
cleared.

0x104 31:0 R0 0 Offending read cycle ID: Master ID for the cycle that causes
the access violation.

0x108 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (lower 32-bit).

0x10C 31:0 R0 0 Offending read cycle target address: Target address for
the cycle that causes the access violation (upper 32-bit). Valid only
if widest address in system is larger than 32 bits.
Note: When this register is read, the current read access violation

log is recovered from FIFO.

5.2.2.4. CSR Write Access Violation Log Registers

The CSR write access violation log settings are valid only when an associated write
interrupt register is set. Read this set of registers until the validity bit is cleared.

Table 109. CSR Write Access Violation Log

Offset Bits Attribute Default Description

0x190 31:13 Reserved.

12:11 R0 0 Offending write cycle burst type: Specifies the burst type
of the initiating cycle that causes the access violation.

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

303

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bits Attribute Default Description

10:7 R0 0 Offending write cycle burst length: Specifies the burst
length of the initiating cycle that causes the access violation.

6:4 R0 0 Offending write cycle burst size: Specifies the burst size
of the initiating cycle that causes the access violation.

3:1 R0 0 Offending write cycle PROT: Specifies the PROT of the
initiating cycle that causes the access violation.

0 R0 0 Write cycle log valid: Specifies whether the log for the
transaction is valid. This bit is cleared when the interrupt register is
cleared.

0x194 31:0 R0 0 Offending write cycle ID: Master ID for the cycle that
causes the access violation.

0x198 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (lower 32-
bit).

0x19C 31:0 R0 0 Offending write cycle target address: Write target
address for the cycle that causes the access violation (upper 32-
bit). Valid only if widest address in system is larger than 32 bits.

0x1A0 31:0 R0 0 Offending write cycle first write data: First 32 bits of
the write data for the write cycle that causes the access violation.
Note: When this register is read, the current write access

violation log is recovered from FIFO, when the data width is
32 bits.

0x1A4 31:0 R0 0 Offending write cycle first write data: Bits [63:32] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 32 bits.

0x1A8 31:0 R0 0 Offending write cycle first write data: Bits [95:64] of
the write data for the write cycle that causes the access violation.
Valid only if the data width is greater than 64 bits.

0x1AC 31:0 R0 0 Offending write cycle first write data: The first bits
[127:96] of the write data for the write cycle that causes the
access violation. Valid only if the data width is greater than 64 bits.
Note: When this register is read, the current write access

violation log is recovered from FIFO.

5.2.3. Designating a Default Slave

You can designate any slave in your Platform Designer system as the error response
default slave. The default slave you designate provides an error response service for
masters that attempt access to an undefined memory region.

1. In your Platform Designer system, in the System View tab, right-click the header
and turn on Show Default Slave Column.

2. Select the slave that you want to designate as the default slave, and then click the
checkbox for the slave in the Default Slave column.

3. In the System View tab, in the Connections column, connect the designated
default slave to one or more masters.

Related Information

Specifying a Default Slave on page 56

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

304

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3. Tri-State Components

The tri-state interface type allows you to design Platform Designer subsystems that
connect to tri-state devices on your PCB. You can use tri-state components to
implement pin sharing, convert between unidirectional and bidirectional signals, and
create tri-state controllers for devices whose interfaces can be described using the tri-
state signal types.

Example 28. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

In this example, there are two generic Tri-State Conduit Controllers. The first is
customized to control a flash memory. The second is customized to control an off-chip
SSRAM. The Tri-State Conduit Pin Sharer multiplexes between these two controllers,
and the Tri-State Conduit Bridge converts between an on-chip encoding of tri-state
signals and true bidirectional signals. By default, the Tri-State Conduit Pin Sharer and
Tri-State Conduit Bridge present byte addresses. Typically, each address location
contains more than one byte of data.

Figure 167. Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

Intel FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tri-state
Conduit

Pin
Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte

x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

Conduit Cn

TCS

Address Connections from Platform Designer System to PCB

The flash device operates on 16-bit words and must ignore the least-significant bit of
the Avalon-MM address. The figure shows addr[0]as not connected. The SSRAM
memory operates on 32-bit words and must ignore the two low-order memory bits.
Because neither device requires a byte address, addr[0] is not routed on the PCB.

The flash device responds to address range 0 MB to 8 MB-1. The SSRAM responds to
address range 8 MB to 10 MB-1. The PCB schematic for the PCB connects
addr[21:0] to addr[18:0] of the SSRAM device because the SSRAM responds to
32-bit word address. The 8 MB flash device accesses 16-bit words; consequently, the
schematic does not connect addr[0]. The chipselect signals select between the
two devices.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

305

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 168. Address Connections from Platform Designer System to PCB

PCB_Addr [21:0]

2 MByte SSRAM
(32-bit word)

0

8 MB

16 MB

10 MB

PCB_Addr [19:1]

Addr [21:0]

8 MByte Flash
 (16-bit word) 8 MByte Flash

 (16-bit word)

Unused

2 MByte SSRAM
(32-bit word)

Addr [18:0]

PCB

Platform Designer

Address Map

Addr [22:1]
PCB_Addr [21:0]

 Addr [0]

Addr [23] x

x

Tristate Conduit
Bridge

Note: If you create a custom tri-state conduit master with word aligned addresses, the
Tri-state Conduit Pin Sharer does not change or align the address signals.

Figure 169. Tri-State Conduit System in Platform Designer

Related Information

• Avalon Tri-State Conduit Components User Guide

• Avalon Interface Specifications

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

306

http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.1. Generic Tri-State Controller Intel FPGA IP

The Generic Tri-State Controller Intel FPGA IP provides a template for a controller. You
can customize the Generic Tri-State Controller with various parameters to reflect the
behavior of an off-chip device. The following types of parameters are available for the
Generic Tri-State Controller:

• Width of the address and data signals

• Read and write wait times

• Bus turnaround time

• Data hold time

Note: In calculating delays, the Generic Tri-State Controller chooses the larger of the bus
turnaround time and read latency. Turnaround time is measured from the time that a
command is accepted, not from the time that the previous read returned data.

The Generic Tri-State Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to a memory-mapped
master, such as a processor.

• Tristate Conduit Master interface—The tri-state master interface usually
connects to the tri-state conduit slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. You must connect this interface to
a clock source.

• Reset sink—This interface connects to a reset source interface.

5.3.2. Tri-State Conduit Pin Sharer Intel FPGA IP

The Tri-State Conduit Pin Sharer Intel FPGA IP multiplexes between the signals of the
connected tri-state controllers. You connect all signals from the tri-state controllers to
the Tri-State Conduit Pin Sharer IP, and then use the parameter editor to specify the
signals that are shared.

The parameter editor includes a Shared Signal Name column. If the widths of
shared signals differ, the signals are aligned on their 0th bit and the higher-order pins
are driven to 0 whenever the smaller signal has control of the bus. Unshared signals
always propagate through the pin sharer. The tri-state conduit pin sharer uses the
round-robin arbiter to select between tri-state conduit controllers.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

307

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 170. Tri-State Conduit Pin Sharer Parameter Editor

Note: All tri-state conduit components connected to a pin sharer must be in the same clock
domain.

Related Information

Avalon-ST Round Robin Scheduler Intel FPGA IP on page 332

5.3.3. Tri-State Conduit Bridge Intel FPGA IP

The Tri-State Conduit Bridge Intel FPGA IP instantiates bidirectional signals for each
tri-state signal while passing all other signals straight through the component. The Tri-
State Conduit Bridge registers all outgoing and incoming signals, which adds two
cycles of latency for a read request. You must account for this additional pipelining
when designing a custom controller. During reset, all outputs are placed in a high-
impedance state. Outputs are enabled in the first clock cycle after reset is deasserted,
and the output signals are then bidirectional.

5.4. Avalon Data Pattern Generator and Checker Intel FPGA IP

You can use the Avalon Data Pattern Generator IP to insert different error conditions,
and then use the Avalon Data Pattern Checker IP to report these error conditions to
the control interface, via an Avalon Memory-Mapped (Avalon-MM) slave.

Similary, for Avalon-ST interfaces, Avalon Data Pattern Generator IP generates data,
and sends the data out on an Avalon-ST data interface. the Avalon Data Pattern
Checker IP verifies the data. Optionally, you can format the data as packets, with
accompanying start_of_packet and end_of_packet signals.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

308

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Throttle Seed is the starting value for the throttle control random number
generator. Intel recommends a unique value for each instance of the data pattern
generator and checker IP cores in a system.

5.4.1. Avalon Data Pattern Generator Intel FPGA IP

The Avalon Data Pattern Generator IP accepts commands to generate data via an
Avalon-MM command interface, and drives the generated data to an Avalon-ST data
interface. You can parameterize most aspects of the Avalon-ST data interface, such as
the number of error bits and data signal width, thus allowing you to test components
with different interfaces.

Figure 171. Avalon Data Pattern Generator Intel FPGA IP

Avalon-MM
Slave Port

Av
alo

n-
M

M
Sla

ve
 Po

rt

Avalon-ST
 SourceAVALON DATA PATTERN

GENERATOR IP

command data_out

control & status

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data
Error Mask. Data that is not organized in packets is a single stream with no beginning
or end. TheAvalon Avalon Data Pattern Generator IP has a throttle register that is set
via the Avalon-MM control interface. The Avalon Data Pattern Generator IP uses the
value of the throttle register in conjunction with a pseudo-random number generator
to throttle the data generation rate.

5.4.1.1. Avalon Data Pattern Generator IP Command Interface

The command interface for the Avalon Data Pattern Generator is a 32-bit Avalon-MM
write slave that accepts data generation commands. It is connected to a 16-element
deep FIFO, thus allowing a master peripheral to drive commands into the Avalon Data
Pattern Generator IP.

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is addressed.
When the FIFO is full, the command interface asserts the waitrequest signal. You
can create errors by writing to the register cmd_hi (address 1). The errors are cleared
when 0 is written to this register, or its respective fields.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

309

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.1.2. Avalon Data Pattern Generator IP Control and Status Interface

The control and status interface of the Avalon Data Pattern Generator IP is a 32-bit
Avalon-MM slave that allows you to enable or disable the data generation, as well as
set the throttle. This interface also provides generation-time information, such as the
number of channels and whether data packets are supported.

5.4.1.3. Avalon Data Pattern Generator IP Output Interface

The output interface of the Avalon Data Pattern Generator IP is an Avalon-ST interface
that optionally supports data packets. You can configure the output interface to align
with your system requirements. Depending on the incoming stream of commands, the
output data may contain interleaved packet fragments for different channels. To keep
track of the current symbol’s position within each packet, the Avalon Data Pattern
Generator IP maintains an internal state for each channel.

You can configure the output interface of the Avalon Data Pattern Generator IP with
the following parameters:

• Number of Channels—Number of channels that the Avalon Data Pattern
Generator IP supports. Valid values are 1 to 256.

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 256.

• Include Packet Support—Indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—Width of the error signal on the output interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

5.4.1.4. Avalon Data Pattern Generator IP Functional Parameter

The Avalon Data Pattern Generator IP functional parameter allows you to configure the
Avalon Data Pattern Generator as an entire system.

5.4.2. Avalon Data Pattern Checker Intel FPGA IP

The Avalon Data Pattern Checker Intel FPGA IP accepts data via an Avalon-ST
interface and verifies it against the a predetermined pattern that the Avalon Data
Pattern GeneratorIntel FPGA IP produces. The Avalon Data Pattern Checker IP reports
any exceptions to the control interface. You can parameterize most aspects of the
Avalon Data Pattern Checker's Avalon-ST interface, such as the number of error bits,
and the data signal width. This IP allows you to test components with different
interfaces. The Avalon Data Pattern Checker IP has a throttle register that is set via
the Avalon-MM control interface. The value of the throttle register controls the rate at
which data is accepted.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

310

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 172. Avalon Data Pattern Checker Intel FPGA IP

Avalon-MM
Slave Port

Av
alo

n-
ST

Sin
k

AVALON DATA PATTERN
CHECKER IP

data_in

control & status

The Avalon Data Pattern Checker IP detects exceptions and reports them to the
control interface via a 32-element deep internal FIFO. Possible exceptions are data
error, missing start-of-packet (SOP), missing end-of-packet (EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

5.4.2.1. Avalon Data Pattern Checker IP Input Interface

The Avalon Data Pattern Checker IP input interface is an Avalon-ST interface that
optionally supports data packets. You can configure the input interface to align with
your system requirements. Incoming data may contain interleaved packet fragments.
To keep track of the current symbol’s position, the test pattern checker maintains an
internal state for each channel.

5.4.2.2. Avalon Data Pattern Checker IP Control and Status Interface

The Avalon Data Pattern Checker IP control and status interface is a 32-bit Avalon-MM
slave that allows you to enable or disable data acceptance, as well as set the throttle.
This interface provides generation-time information, such as the number of channels
and whether the Avalon Data Pattern Checker supports data packets. The control and
status interface also provides information on the exceptions detected by the Avalon
Data Pattern Checker IP. The interface obtains this information by reading from the
exception FIFO.

5.4.2.3. Avalon Data Pattern Checker IP Functional Parameter

The Avalon Data Pattern Checker IP functional parameter allows you to configure the
Avalon Data Pattern Checker IP as a whole system.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

311

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.2.4. Avalon Data Pattern Checker Input Parameters

You can configure the input interface of the Avalon Data Pattern Checker IP using the
following parameters:

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and
writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per
beat. Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Number of Channels—Number of channels that the test pattern checker
supports. Valid values are 1 to 256.

• Error Signal Width (bits)—Width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal in not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

5.4.3. Avalon Data Pattern Generator and Checker IP Software
Programming Model

The HAL system library support, software files, and register maps describe the
software programming model for the test pattern generator and checker cores.

5.4.3.1. HAL System Library Support

For Nios II processor users, Intel provides HAL system library drivers that allow you to
initialize and access the Avalon Data Pattern Generator and Checker IPs. Intel
recommends you use the provided drivers to access the IPs instead of accessing the
registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders
to your software application directory:

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_source/HAL

• <IP installation directory>/ip/sopc_builder_ip/
altera_Avalon_data_sink/HAL

Note: This instruction does not apply if you use the Nios II command-line tools.

5.4.3.2. Avalon Data Pattern Generator and Checker IP Files

The following files define the low-level access to the hardware, and provide the
routines for the HAL device drivers.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

312

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Avalon Data Pattern Generator IP files in <installation directory>/ip/
sopc_builder_ip/altera_Avalon_data_source/HAL:

— data_source_regs.h—header file that defines the test pattern generator's
register maps.

— data_source_util.h, data_source_util.c—header and source code for
the functions and variables required to integrate the driver into the HAL
system library.

• Avalon Data Pattern Checker IP files in <installation directory>/ip/
sopc_builder_ip/altera_Avalon_data_sink/HAL

— data_sink_regs.h—header file that defines the IP register maps.

— data_sink_util.h, data_sink_util.c—header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

Note: Do not modify the Avalon Data Pattern Generator or Avalon Data Pattern Checker IP
files.

5.4.3.3. Avalon Data Pattern Generator and Checker IP Register Maps

5.4.3.3.1. Avalon Data Pattern Generator IP Control and Status Registers

Table 110. Avalon Data Pattern Generator IP Control and Status Register Map
Each register is 32-bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 111. Avalon Data Pattern Generator IP Status Register Bits

Bits Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates data packet support.

Table 112. Avalon Data Pattern Generator IP Control Register Bits

Bits Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the data pattern generator IP.

[7:1] Reserved

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

313

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bits Name Access Description

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively. The
Data Pattern Generator IP uses this value in conjunction with a pseudo-
random number generator to throttle the data generation rate.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

Table 113. Avalon Data Pattern Generator IP Fill Register Bits

Bits Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that there is
at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

5.4.3.3.2. Avalon Data Pattern Generator IP Command Registers

Table 114. Avalon Data Pattern Generator IP Command Register Map
Shows the offset for the command registers. Each register is 32-bits wide.

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

Table 115. cmd_lo Register Bits

Bits Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a packet, the
size of all segments must be a multiple of the configured number of
symbols per beat. If this condition is not met, the Data Pattern Generator IP
inserts additional symbols to the segment to ensure the condition is
fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than
14 bits wide, the Data Pattern Generator IP uses the low order bits of this
register to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is
ignored when data packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is
ignored when data packets are not supported.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

314

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 116. cmd_hi Register Bits

Bits Name Access Description

[15:0] SIGNALED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates a
signaled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create data
errors. To stop creating data errors, set this register to 0.

[24] SUPPRESS
SOP

RW Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

[25] SUPRESS
EOP

RW Set this bit to 1 to suppress the assertion of the endofpacket signal when
the last segment in a packet is sent.

5.4.3.3.3. Avalon Data Pattern Checker IP Control and Status Registers

Table 117. Avalon Data Pattern Generator and Checker IP Control and Status Register
Map
Shows the offset for the control and status registers. Each register is 32 bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 Reserved

base + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 118. Avalon Data Pattern Checker IP Status Register Bits

Bits Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 119. Avalon Data Pattern Checker IP Control Register Bits

Bits Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the Data Pattern Checker IP.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively.
Platform Designer uses this value in conjunction with a pseudo-random
number generator to throttle the data generation rate.

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

315

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bits Name Access Description

Setting THROTTLE to 0 stops the Avalon Data Pattern Checker IP. Setting it
to 256 causes the Avalon Data Pattern Checker IP to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

If there is no exception, reading the exception_descriptor register bit register
returns 0.

Table 120. exception_descriptor Register Bits

Bits Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 121. indirect_select Register Bits

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT
registers.

[15:8] Reserved

[31:16] INDIRECT
ERROR

RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

Table 122. indirect_count Register Bits

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET
COUNT

RO The number of data packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL
COUNT

RO The number of symbols received on the channel specified by INDIRECT
CHANNEL.

5.4.4. Avalon Data Pattern Generator IP API

The following subsections describe application programming interface (API) for the
Avalon Data Pattern Generator IP.

Note: API functions are currently not available from the interrupt service routine (ISR).

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

316

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_source_reset() on page 317

data_source_init() on page 317

data_source_get_id() on page 318

data_source_get_supports_packets() on page 318

data_source_get_num_channels() on page 318

data_source_get_symbols_per_cycle() on page 318

data_source_get_enable() on page 319

data_source_set_enable() on page 319

data_source_get_throttle() on page 319

data_source_set_throttle() on page 320

data_source_is_busy() on page 320

data_source_fill_level() on page 320

data_source_send_data() on page 321

5.4.4.1. data_source_reset()

Table 123. data_source_reset()

Information Type Description

Prototype void data_source_reset(alt_u32 base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the Avalon Data Pattern Generator IP, including all internal counters and
FIFOs. The control and status registers are not reset by this function.

5.4.4.2. data_source_init()

Table 124. data_source_init()

Information Type Description

Prototype int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
command_base—Base address of the command slave.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the Avalon Data Pattern Generator
IP:
• Resets and disables the Avalon Data Pattern Generator IP.
• Sets the maximum throttle.
• Clears all inserted errors.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

317

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.4.3. data_source_get_id()

Table 125. data_source_get_id()

Information Type Description

Prototype int data_source_get_id(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Avalon Data Pattern Generator IP identifier.

Description Retrieves the Avalon Data Pattern Generator IP identifier.

5.4.4.4. data_source_get_supports_packets()

Table 126. data_source_get_supports_packets()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the Avalon Data Pattern Generator IP supports data packets.

5.4.4.5. data_source_get_num_channels()

Table 127. data_source_get_num_channels()

Description Description

Prototype int data_source_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the Avalon Data Pattern
Generator IP.

5.4.4.6. data_source_get_symbols_per_cycle()

Table 128. data_source_get_symbols_per_cycle()

Description Description

Prototype int data_source_get_symbols(alt_u32 base);

Thread-safe Yes

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

318

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Description

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols transferred in a beat.

Description Retrieves the number of symbols transferred by the Avalon Data Pattern
Generator IP in each beat.

5.4.4.7. data_source_get_enable()

Table 129. data_source_get_enable()

Information Type Description

Prototype int data_source_get_enable(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

5.4.4.8. data_source_set_enable()

Table 130. data_source_set_enable()

Information Type Description

Prototype void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
value— ENABLE bit set to the value of this parameter.

Returns void

Description Enables or disables the Avalon Data Pattern Generator IP. When disabled, the
Avalon Data Pattern Generator IP stops data transmission but continues to
accept commands and stores them in the FIFO

5.4.4.9. data_source_get_throttle()

Table 131. data_source_get_throttle()

Information Type Description

Prototype int data_source_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

319

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the current throttle value.

5.4.4.10. data_source_set_throttle()

Table 132. data_source_set_throttle()

Information Type Description

Prototype void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.
value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the Avalon Data Pattern
Generator IP sends data.

5.4.4.11. data_source_is_busy()

Table 133. data_source_is_busy()

Information Type Description

Prototype int data_source_is_busy(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Avalon Data Pattern Generator IP is busy.
0—Avalon Data Pattern Generator IP is not busy.

Description Checks if the Avalon Data Pattern Generator IP is busy. TheAvalon Data Pattern
Generator IP is busy when it is sending data or has data in the command FIFO to
be sent.

5.4.4.12. data_source_fill_level()

Table 134. data_source_fill_level()

Information Type Description

Prototype int data_source_fill_level(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

320

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Parameters base—Base address of the control and status slave.

Returns Number of commands in the command FIFO.

Description Retrieves the number of commands currently in the command FIFO.

5.4.4.13. data_source_send_data()

Table 135. data_source_send_data()

Information Type Description

Prototype int data_source_send_data(alt_u32 cmd_base, alt_u16 channel,
alt_u16 size, alt_u32 flags, alt_u16 error, alt_u8
data_error_mask);

Thread-safe No

Include <data_source_util.h >

Parameters cmd_base—Base address of the command slave.
channel—Channel to send the data.
size—Data size.
flags —Specifies whether to send or suppress SOP and EOP signals. Valid
values are DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_EOP.
error—Value asserted on the error signal on the output interface.
data_error_mask—Parameter and the data are XORed together to produce
erroneous data.

Returns Returns 1.

Description Sends a data fragment to the specified channel. If data packets are supported,
applications must ensure consistent usage of SOP and EOP in each channel.
Except for the last segment in a packet, the length of each segment is a multiple
of the data width.
If data packets are not supported, applications must ensure that there are no
SOP and EOP indicators in the data. The length of each segment in a packet is a
multiple of the data width.

5.4.5. Avalon Data Pattern Checker IP API

The following subsections describe API for the Avalon Data Pattern Checker IP. The API
functions are currently not available from the ISR.

data_sink_reset() on page 322

data_sink_init() on page 322

data_sink_get_id() on page 323

data_sink_get_supports_packets() on page 323

data_sink_get_num_channels() on page 323

data_sink_get_symbols_per_cycle() on page 323

data_sink_get_enable() on page 324

data_sink_set enable() on page 324

data_sink_get_throttle() on page 324

data_sink_set_throttle() on page 325

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

321

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_get_packet_count() on page 325

data_sink_get_error_count() on page 325

data_sink_get_symbol_count() on page 326

data_sink_get_exception() on page 326

data_sink_exception_is_exception() on page 326

data_sink_exception_has_data_error() on page 327

data_sink_exception_has_missing_sop() on page 327

data_sink_exception_has_missing_eop() on page 327

data_sink_exception_signalled_error() on page 328

data_sink_exception_channel() on page 328

5.4.5.1. data_sink_reset()

Table 136. data_sink_reset()

Information Type Description

Prototype void data_sink_reset(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the Avalon Data Pattern Checker IP, including all internal counters.

5.4.5.2. data_sink_init()

Table 137. data_sink_init()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Initialization is successful.
0—Initialization is unsuccessful.

Description Performs the following operations to initialize the Avalon Data Pattern Checker
IP:
• Resets and disables the Avalon Data Pattern Checker IP.
• Sets the throttle to the maximum value.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

322

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.3. data_sink_get_id()

Table 138. data_sink_get_id()

Information Type Description

Prototype int data_sink_get_id(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Avalon Data Pattern Checker IP identifier.

Description Retrieves the Avalon Data Pattern Checker IP identifier.

5.4.5.4. data_sink_get_supports_packets()

Table 139. data_sink_get_supports_packets()

Information Type Description

Prototype int data_sink_init(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.
0—Data packets are not supported.

Description Checks if the Avalon Data Pattern Checker IP supports data packets.

5.4.5.5. data_sink_get_num_channels()

Table 140. data_sink_get_num_channels()

Information Type Description

Prototype int data_sink_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the Avalon Data Pattern Checker
IP.

5.4.5.6. data_sink_get_symbols_per_cycle()

Table 141. data_sink_get_symbols_per_cycle()

Information Type Description

Prototype int data_sink_get_symbols(alt_u32 base);

Thread-safe Yes

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

323

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols received in a beat.

Description Retrieves the number of symbols received by the Avalon Data Pattern Checker IP
in each beat.

5.4.5.7. data_sink_get_enable()

Table 142. data_sink_get_enable()

Information Type Description

Prototype int data_sink_get_enable(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

5.4.5.8. data_sink_set enable()

Table 143. data_sink_set enable()

Information Type Description

Prototype void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
value—ENABLE bit is set to the value of the parameter.

Returns void

Description Enables the Avalon Data Pattern Checker IP.

5.4.5.9. data_sink_get_throttle()

Table 144. data_sink_get_throttle()

Information Type Description

Prototype int data_sink_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the throttle value.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

324

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.10. data_sink_set_throttle()

Table 145. data_sink_set_throttle()

Information Type Description

Prototype void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include: <data_sink_util.h >

Parameters base—Base address of the control and status slave.
value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The throttle
value, when divided by 256 yields the rate at which the Avalon Data Pattern
Checker IP receives data.

5.4.5.11. data_sink_get_packet_count()

Table 146. data_sink_get_packet_count()

Information Type Description

Prototype int data_sink_get_packet_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of data packets received on the channel.

Description Retrieves the number of data packets received on a channel.

5.4.5.12. data_sink_get_error_count()

Table 147. data_sink_get_error_count()

Information Type Description

Prototype int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of errors received on the channel.

Description Retrieves the number of errors received on a channel.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

325

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.13. data_sink_get_symbol_count()

Table 148. data_sink_get_symbol_count()

Information Type Description

Prototype int data_sink_get_symbol_count(alt_u32 base, alt_u32
channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.
channel—Channel number.

Returns Number of symbols received on the channel.

Description Retrieves the number of symbols received on a channel.

5.4.5.14. data_sink_get_exception()

Table 149. data_sink_get_exception()

Information Type Description

Prototype int data_sink_get_exception(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns First exception descriptor in the exception FIFO.
0—No exception descriptor found in the exception FIFO.

Description Retrieves the first exception descriptor in the exception FIFO and pops it off the
FIFO.

5.4.5.15. data_sink_exception_is_exception()

Table 150. data_sink_exception_is_exception()

Information Type Description

Prototype int data_sink_exception_is_exception(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor

Returns 1—Indicates an exception.
0—No exception.

Description Checks if an exception descriptor describes a valid exception.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

326

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.16. data_sink_exception_has_data_error()

Table 151. data_sink_exception_has_data_error()

Information Type Description

Prototype int data_sink_exception_has_data_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Data has errors.
0—No errors.

Description Checks if an exception indicates erroneous data.

5.4.5.17. data_sink_exception_has_missing_sop()

Table 152. data_sink_exception_has_missing_sop()

Information Type Description

Prototype int data_sink_exception_has_missing_sop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing SOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing SOP.

5.4.5.18. data_sink_exception_has_missing_eop()

Table 153. data_sink_exception_has_missing_eop()

Information Type Description

Prototype int data_sink_exception_has_missing_eop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing EOP.
0—Other exception types.

Description Checks if an exception descriptor indicates missing EOP.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

327

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4.5.19. data_sink_exception_signalled_error()

Table 154. data_sink_exception_signalled_error()

Information Type Description

Prototype int data_sink_exception_signalled_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Signal error value.

Description Retrieves the value of the signaled error from the exception.

5.4.5.20. data_sink_exception_channel()

Table 155. data_sink_exception_channel()

Information Type Description

Prototype int data_sink_exception_channel(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Channel number on which an exception occurred.

Description Retrieves the channel number on which an exception occurred.

5.5. Avalon-ST Splitter Intel FPGA IP

The Avalon-ST Splitter Intel FPGA IP allows you to replicate transactions from an
Avalon-ST sink interface to multiple Avalon-ST source interfaces. This IP supports from
1 to 16 outputs.

Figure 173. Avalon-ST Splitter Intel FPGA IP

Output 0

In_Data

Out_Data

Av
alo

n-
ST

Sin
k

Avalon-ST Splitter
Intel FPGA IP

Output N

Avalon-ST
Source 0

Clock

Avalon-ST
Source N

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

328

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Avalon-ST Splitter IP copies input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This includes all signals except for the ready signal. The IP includes a
clock signal to determine the Avalon-ST interface and clock domain where the IP
resides. Because the Avalon-ST Splitter IP does not use the clock signal internally,
latency is not introduced when using this IP.

5.5.1. Avalon-ST Splitter Intel FPGA IP Backpressure

The Avalon-ST Splitter Intel FPGA IP integrates with backpressure by AND-ing the
ready signals from the output interfaces and sending the result to the input interface.
As a result, if an output interface deasserts the ready signal, the input interface
receives the deasserted ready signal, as well. This functionality ensures that
backpressure on the output interfaces is propagated to the input interface.

When the Qualify Valid Out option is enabled, the out_valid signals on all other
output interfaces are gated when backpressure is applied from one output interface.
In this case, when any output interface deasserts its ready signal, the out_valid
signals on the other output interfaces are also deasserted.

When the Qualify Valid Out option is disabled, the output interfaces have a non-
gated out_valid signal when backpressure is applied. In this case, when an output
interface deasserts its ready signal, the out_valid signals on the other output
interfaces are not affected.

Because the logic is combinational, the Intel FPGA IP introduces no latency.

5.5.2. Avalon-ST Splitter Intel FPGA IP Interfaces

The Avalon-ST Splitter Intel FPGA IP supports streaming data, with optional packet,
channel, and error signals. The Intel FPGA IP propagates backpressure from any
output interface to the input interface.

Table 156. Avalon-ST Splitter Intel FPGA IP Support

Feature Support

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

329

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.5.3. Avalon-ST Splitter Intel FPGA IP Parameters

Table 157. Avalon-ST Splitter Intel FPGA IP Parameters

Parameter Legal Values Default Value Description

Number Of Outputs 1 to 16 2 The number of output interfaces. Platform Designer
supports 1 for some systems where no duplicated
output is required.

Qualify Valid Out Enabled,
Disabled

Enabled If enabled, the out_valid signal of all output
interfaces is gated when back pressure is applied.

Data Width 1–512 8 The width of the data on the Avalon-ST data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets Enabled,
Disabled

Disabled Enable support of data packet transfers. Packet
support includes the startofpacket,
endofpacket, and empty signals.

Use Channel Enabled,
Disabled

Disabled Enable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error Enabled,
Disabled

Disabled Enable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the IP is not
using the error signal. This parameter is disabled
when Use Error is set to 0.

5.6. Avalon-ST Delay Intel FPGA IP

The Avalon-ST Delay Intel FPGA IP provides a solution to delay Avalon-ST transactions
by a constant number of clock cycles. This IP supports up to 16 clock cycle delays.

Figure 174. Avalon-ST Delay Intel FPGA IP

Out_Data
In_Data

Clock

Av
alo

n-
ST

Sin
k

Avalon-ST
 Source

Avalon-ST Delay
Intel FPGA IP

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

330

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Avalon-ST Delay Intel FPGA IP adds a delay between the input and output
interfaces. The IP accepts transactions presented on the input interface and
reproduces them on the output interface N cycles later without changing the
transaction.

The input interface delays the input signals by a constant N number of clock cycles to
the corresponding output signals of the output interface. The Number Of Delay
Clocks parameter defines the constant N, which must be from 0 to 16. The change of
the in_valid signal is reflected on the out_valid signal exactly N cycles later.

5.6.1. Avalon-ST Delay Intel FPGA IP Reset Signal

The Avalon-ST Delay Intel FPGA IP has a reset signal that is synchronous to the clk
signal. When the IP asserts the reset signal, the output signals are held at 0. After
the reset signal is deasserted, the output signals are held at 0 for N clock cycles. The
delayed values of the input signals are then reflected at the output signals after N
clock cycles.

5.6.2. Avalon-ST Delay Intel FPGA IP Interfaces

The Avalon-ST Delay Intel FPGA IP supports streaming data, with optional packet,
channel, and error signals. The Avalon-ST Delay Intel FPGA IP does not support
backpressure.

Table 158. Avalon-ST Delay Intel FPGA IP Support

Feature Support

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

5.6.3. Avalon-ST Delay Intel FPGA IP Parameters

Table 159. Avalon-ST Delay Intel FPGA IP Parameters

Parameter Legal Values Default Value Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the IP introduces, in clock
cycles. Platform Designer supports 0 for some
systems where no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST data
interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and
output interfaces. For example, byte-oriented
interfaces have 8-bit symbols.

Use Packets 0 or 1 0 Indicates whether data packet transfers are
supported. Packet support includes the
startofpacket, endofpacket, and empty
signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

331

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal Values Default Value Description

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when Use
Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data
interface can support. This parameter is disabled
when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

5.7. Avalon-ST Round Robin Scheduler Intel FPGA IP

The Avalon-ST Round Robin Scheduler Intel FPGA IP controls the read operations from
a multi-channel Avalon-ST component that buffers data by channels. The IP reads the
almost-full threshold values from the multiple channels in the multi-channel
component, and then issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Figure 175. Avalon-ST Round Robin Scheduler Intel FPGA IP

Request
(Channel_select) Almost Full Status

Avalon-ST Round-Robin
Scheduler Intel FPGA IP

Av
alo

n-
M

M

W
rit

e M
as

te
r Avalon-ST Sink

In a multi-channel component, the IP can store data either in the sequence that it
comes in (FIFO), or in segments according to the channel. When data is stored in
segments according to channels, a scheduler is needed to schedule the read
operations.

5.7.1. Avalon-ST Round Robin Scheduler IP Almost-Full Status Interface

The Almost-Full Status interface is an Avalon-ST sink interface that collects the
almost-full status from the sink components for the channels in the sequence
provided.

Table 160. Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

332

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Property

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

5.7.2. Avalon-ST Round Robin Scheduler IP Request Interface

The Request Interface is an Avalon-MM write master interface that requests data from
a specific channel. The Avalon-ST Round Robin Scheduler cycles through the channels
it supports and schedules data to be read.

5.7.3. Avalon-ST Round Robin Scheduler IP Operation

If a particular channel is almost full, the Avalon-ST Round Robin Scheduler does not
schedule data to be read from that channel in the source component.

The scheduler only requests 1 bit of data from a channel at each transaction. To
request 1 bit of data from channel n, the scheduler writes the value 1 to address (4
×n). For example, if the scheduler is requesting data from channel 3, the scheduler
writes 1 to address 0xC. At every clock cycle, the scheduler requests data from the
next channel. Therefore, if the scheduler starts requesting from channel 1, at the next
clock cycle, it requests from channel 2. The scheduler does not request data from a
particular channel if the almost-full status for the channel is asserted. In this case, the
scheduler uses one clock cycle without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component
is able to service the request transaction. The component asserts waitrequest when
it cannot accept new requests.

Table 161. Avalon-ST Round Robin Scheduler Ports

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address that indicates which channel has the
request.

request_write Out Write enable signal.

request_writedata Out The amount of data requested from the particular channel.
This value is always fixed at 1.

request_waitrequest In Wait request signal that pauses the scheduler when the
slave cannot accept a new request.

Avalon-ST Almost-Full Status Interface
continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

333

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Description

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is almost full.

5.7.4. Avalon-ST Round Robin Scheduler IP Parameters

Table 162. Avalon-ST Round Robin Scheduler IP Parameters

Parameters Legal Values Default Value Description

Number of channels 2–32 2 Specifies the number of channels the Avalon-ST
Round Robin Scheduler supports.

Use almost-full status Enabled,
Disabled

Disabled If enabled, the scheduler uses the almost-full
interface. If not, the IP requests data from the
next channel at the next clock cycle.

5.8. Avalon Packets to Transactions Converter Intel FPGA IP

The Avalon Packets to Transactions Converter Intel FPGA IP receives streaming data
from upstream components and initiates Avalon-MM transactions. The IP then returns
Avalon-MM transaction responses to the requesting components.

Figure 176. Avalon Packets to Transactions Converter Intel FPGA IP

Av
alo

n-
ST

Sin

k

Avalon Packets to
Transactions Converter

Intel FPGA IP

data_out

Av
alo

n-
M

M
 M

as
te

r

data_in

Av
alo

n-
ST

So

ur
ce

Avalon-MM
Slave

Component

Note: The SPI Slave to Avalon Master Bridge, and the JTAG to Avalon Master Bridge, are
examples of the Packets to Transactions Converter IP. For more information, refer to
the Avalon Interface Specifications.

Related Information

Avalon Interface Specifications

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

334

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.8.1. Avalon Packets to Transactions Converter IP Interfaces

Table 163. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.

The Avalon-MM master interface supports read and write transactions. The data width
is set to 32 bits, and burst transactions are not supported.

5.8.2. Avalon Packets to Transactions Converter IP Operation

The Avalon Packets to Transactions Converter IP receives streams of packets on its
Avalon-ST sink interface and initiates Avalon-MM transactions. Upon receiving
transaction responses from Avalon-MM slaves, the IP transforms the responses to
packets and returns them to the requesting components via its Avalon-ST source
interface. The IP does not report Avalon-ST errors.

5.8.2.1. Avalon Packets to Transactions Converter IP Data Packet Formats

A response packet is returned for every write transaction. The IP also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the IP returns the data read.

The Avalon Packets to Transactions Converter IP expects incoming data streams to be
in the formats shown in the table below.

Table 164. Data Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size indicates
the size of the data field. For read transactions, the size indicates
the total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[4:2] Size Total number of bytes read/written successfully.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

335

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avalon Packets to Transactions Converter IP Interfaces on page 335

5.8.2.2. Avalon Packets to Transactions Converter IP Supported Transactions

The Avalon Packets to Transactions Converter IP supports the following Avalon-MM
transactions:

Table 165. Avalon Packets to Transactions Converter IP Supported Transactions

Transactio
n Code

Avalon-MM Transaction Description

0x00 Write, non-incrementing address. Writes data to the address until the total number of bytes written
to the same word address equals to the value specified in the size
field.

0x04 Write, incrementing address. Writes transaction data starting at the current address.

0x10 Read, non-incrementing address. Reads 32 bits of data from the address until the total number of
bytes read from the same address equals to the value specified in
the size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size parameter
starting from the current address.

0x7f No transaction. No transaction is initiated. You can use this transaction type for
testing purposes. Although no transaction is initiated on the
Avalon-MM interface, the IP still returns a response packet for this
transaction code.

The Avalon Packets to Transactions Converter IP can process only a single transaction
at a time. The ready signal on the IP Avalon-ST sink interface is asserted only when
the current transaction is completely processed.

No internal buffer is implemented on the datapaths. Data received on the Avalon-ST
interface is forwarded directly to the Avalon-MM interface and vice-versa. Asserting
the waitrequest signal on the Avalon-MM interface backpressures the Avalon-ST
sink interface. In the opposite direction, if the Avalon-ST source interface is
backpressured, the read signal on the Avalon-MM interface is not asserted until the
backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a
read can result in data loss. In this cases, the IP returns the data that is successfully
received.

A transaction is considered complete when the IP receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
property. Whether or not both values agree, the IP always uses the end of packet
(EOP) to determine the end of data.

5.8.2.3. Avalon Packets to Transactions IP Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a
transaction. If an SOP is received in the middle of a transaction, the IP drops the
current transaction without returning a response packet for the transaction, and
initiates a new transaction. This effectively processes packets without an end of
packet (EOP).

• Unsupported transaction codes—The IP processes unsupported transactions as
a no transaction.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

336

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.9. Avalon-ST Pipeline Stage Intel FPGA IP

The Avalon-ST Pipeline Stage Intel FPGA IP receives data from an Avalon-ST source
interface, and outputs the data to an Avalon-ST sink interface. In the absence of back
pressure, the Avalon-ST Pipeline Stage Intel FPGA IP source interface outputs data
one cycle after receiving the data on its sink interface.

If the pipeline stage receives back pressure on its source interface, the pipeline stage
continues to assert its source interface's current data output. While the pipeline stage
is receiving back pressure on its source interface, and then receives new data on its
sink interface, the pipeline stage internally buffers the new data. It then asserts back
pressure on its sink interface.

After the backpressure is deasserted, the pipeline stage's source interface is
deasserted and the pipeline stage asserts internally buffered data (if present).
Additionally, the pipeline stage deasserts back pressure on its sink interface.

Figure 177. Pipeline Stage Simple Register
If the ready signal is not pipelined, the pipeline stage becomes a simple register.

Sink Sourcedata_in data_outRegister 0

Figure 178. Pipeline Stage Holding Register
If the ready signal is pipelined, the pipeline stage must also include a second "holding" register.

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

337

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.10. Avalon Streaming Multiplexer and Demultiplexer Intel FPGA
IP

The Avalon-ST MultiplexerIntel FPGA IP receives data from various input interfaces
and multiplexes the data into a single output interface, using the optional channel
signal to indicate the origin of the data. The Avalon-ST MultiplexerIntel FPGA IP
receives data from a channelized input interface and drives that data to multiple
output interfaces, where the output interface is selected by the input channel signal.

The Multiplexer and Demultiplexer IPs can transfer data between interfaces on that
supports a unidirectional flow of data. The Multiplexer and Demultiplexer IP allow you
to create multiplexed or demultiplexed datapaths without having to write custom HDL
code. The Multiplexer IP includes an Avalon-ST Round Robin Scheduler.

Related Information

Avalon-ST Round Robin Scheduler Intel FPGA IP on page 332

5.10.1. Avalon Streaming Multiplexer and Demultiplexer Software
Programming Model

The Multiplexer and Demultiplexer IP components do not have any user-visible control
or status registers. Therefore, Platform Designer cannot control or configure any
aspect of the Multiplexer or Demultiplexer at run-time. These IP components cannot
generate interrupts.

5.10.2. Avalon-ST Multiplexer Intel FPGA IP

The Avalon-ST Multiplexer Intel FPGA IP takes data from a variety of input data
interfaces, and multiplexes the data onto a single output interface. The multiplexer
includes a round-robin scheduler that selects from the next input interface that has
data. Each input interface has the same width as the output interface, so that the
other input interfaces are backpressured when the multiplexer is carrying data from a
different input interface.

Figure 179. Avalon-ST Multiplexer Intel FPGA IP

src
sink

data_in_ n

sink

data_in _0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink

. .
 .

channel

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

338

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The multiplexer includes an optional channel signal that enables each input interface
to carry channelized data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input
interface. All input interfaces must have the same channel width. These bits are
appended to either the most or least significant bits of the output channel signal.

The scheduler processes one input interface at a time, selecting it for transfer. Once
an input interface has been selected, data from that input interface is sent until one of
the following scenarios occurs:

• The specified number of cycles have elapsed.

• The input interface has no more data to send and the valid signal is deasserted
on a ready cycle.

• When packets are supported, endofpacket is asserted.

5.10.2.1. Avalon-ST Multiplexer IP Input Interfaces

Each input interface is an Avalon-ST data interface that optionally supports packets.
The input interfaces are identical; they have the same symbol and data widths, error
widths, and channel widths.

5.10.2.2. Avalon Multiplexer IP Output Interface

The output interface carries the multiplexed data stream with data from the inputs.
The symbol, data, and error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition
of the bits needed to indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—the bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—the number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—indicates whether packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)— the number of bits Platform Designer uses for
the channel signal for output interfaces. For example, set this parameter to 1 if
you have two input interfaces with no channel, or set this parameter to 2 if you
have two input interfaces with a channel width of 1 bit. The input channel can
have a width between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

339

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.10.2.3. Avalon Multiplexer IP Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—the number of input interfaces that the multiplexer
supports. Valid values are 2 to 16.

• Scheduling Size (Cycles)—the number of cycles that are sent from a single
channel before changing to the next channel.

• Use Packet Scheduling—when this parameter is turned on, the multiplexer only
switches the selected input interface on packet boundaries. Therefore, packets on
the output interface are not interleaved.

• Use high bits to indicate source port—when this parameter is turned on, the
multiplexer uses the high bits of the output channel signal to indicate the origin
of the input interface of the data. For example, if the input interfaces have 4-bit
channel signals, and the multiplexer has 4 input interfaces, the output interface
has a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output
channel signal indicate origin of the input interface of the data, and bits [3:0] are
the channel bits that were presented at the input interface.

5.10.3. Avalon-ST Demultiplexer Intel FPGA IP

The Avalon-ST Demultiplexer Intel FPGA IP takes data from a channelized input data
interface and provides that data to multiple output interfaces, where the output
interface selected for a particular transfer is specified by the input channel signal.

Figure 180. Avalon-ST Demultiplexer

sink
data_out_n

data_out_0

sink
sinkdata_in

src

src

. .
 . . .
 .

channel

The data is delivered to the output interfaces in the same order it is received at the
input interface, regardless of the value of channel, packet, frame, or any other
signal. Each of the output interfaces has the same width as the input interface; each
output interface is idle when the demultiplexer is driving data to a different output
interface. The demultiplexer uses log2 (num_output_interfaces) bits of the
channel signal to select the output for the data; the remainder of the channel bits
are forwarded to the appropriate output interface unchanged.

5.10.3.1. Avalon-ST Demultiplexer IP Input Interface

Each input interface is an Avalon-ST data interface that optionally supports packets.
You can configure the following parameters for the input interface:

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

340

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata
and writedata signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred
per beat (transfer). Valid values are 1 to 32.

• Include Packet Support—Indicates whether data packet transfers are
supported. Packet support includes the startofpacket, endofpacket, and
empty signals.

• Channel Signal Width (bits)—The number of bits for the channel signal for
output interfaces. A value of 0 means that output interfaces do not use the
optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is in use.

Note: If you change only bits per symbol, and do not change the data width, errors are
generated.

5.10.3.2. Avalon-ST Demultiplexer IP Output Interface

Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that the demultiplexer uses to select the output interface.

5.10.3.3. Avalon-ST Demultiplexer IP Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2 to 16.

• High channel bits select output—When this option is turned on, the
demultiplexing function uses the high bits of the input channel signal, and the
low order bits are passed to the output. When this option is turned off, the
demultiplexing function uses the low order bits, and the high order bits are passed
to the output.

Where you place the signals in your design affects the functionality; for example,
there is one input interface and two output interfaces. If the low-order bits of the
channel signal select the output interfaces, the even channels go to channel 0, and the
odd channels go to channel 1. If the high-order bits of the channel signal select the
output interface, channels 0 to 7 go to channel 0 and channels 8 to 15 go to channel
1.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

341

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 181. Select Bits for the Demultiplexer

sink

data_out_n

data_ out_0

sink
sink

data_ in
src

src

channel <4 .. 0 >

channel <3 .. 0 >

channel <3 .. 0 >

5.11. Avalon-ST Single-Clock and Dual-Clock FIFO Intel FPGA IP

The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO Intel FPGA IP are FIFO
buffers which operate with a common clock and independent clocks for input and
output ports respectively.

Figure 182. Avalon-ST Single Clock FIFO Intel FPGA IP

Avalon-ST
Single-Clock

FIFO Intel FPGA IP

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data

Source

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

342

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 183. Avalon-ST Dual Clock FIFO Intel FPGA IP

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO Intel FPGA IP

Avalon-ST
Data
Sink

Avalon-ST
Data

Source

5.11.1. Interfaces Implemented in FIFO Cores

The following interfaces are implemented in FIFO Intel FPGA IP:

Avalon-ST Data Interface on page 343

Avalon-MM Control and Status Register Interface on page 343

Avalon-ST Status Interface on page 344

5.11.1.1. Avalon-ST Data Interface

Each FIFO IP has an Avalon-ST data sink and source interface. The data sink and
source interfaces in the dual-clock FIFO IP are driven by different clocks.

Table 166. Avalon-ST Interfaces Properties

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.

5.11.1.2. Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO IP to include an optional Avalon-MM interface,
and the dual-clock FIFO IP to include an Avalon-MM interface in each clock domain.
The Avalon-MM interface provides access to 32-bit registers, which allows you to

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

343

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

retrieve the FIFO buffer fill level and configure the almost-empty and almost-full
thresholds. In the single-clock FIFO IP, you can also configure the packet and error
handling modes.

5.11.1.3. Avalon-ST Status Interface

The single-clock FIFO IP has two optional Avalon-ST status source interfaces from
which you can obtain the FIFO buffer almost-full and almost empty statuses.

5.11.2. Avalon-ST FIFO IP Operating Modes

• Default mode—The IP accepts incoming data on the in interface (Avalon-ST data
sink) and forwards it to the out interface (Avalon-ST data source). The IP asserts
the valid signal on the Avalon-ST source interface to indicate that data is
available at the interface.

• Store and forward mode—this mode applies only to the single-clock FIFO IP.
The IP asserts the valid signal on the out interface only when a full packet of
data is available at the interface. In this mode, you can also enable the drop-on-
error feature by setting the drop_on_error register to 1. When this feature is
enabled, the IP drops all packets received with the in_error signal asserted.

• Cut-through mode—this mode applies only to the single-clock FIFO IP. The IP
asserts the valid signal on the out interface to indicate that data is available for
consumption when the number of entries specified in the
cut_through_threshold register are available in the FIFO buffer.

Note: To turn on Cut-through mode, the Use store and forward parameter must be set
to 0. Turning on Use store and forward mode prompts the user to turn on Use fill
level, and then the CSR appears.

5.11.3. Avalon-ST FIFO IP Buffer Fill Level

You can obtain the fill level of the Avalon-ST FIFO IP buffer via the optional Avalon-MM
control and status interface. Turn on the Use fill level parameter (Use sink fill level
and Use source fill level in the Avalon-ST Dual-Clock FIFO IP) and read the
fill_level register.

The Avalon-ST Dual-Clock FIFO IP has two fill levels, one in each clock domain. Due to
the latency of the clock crossing logic, the fill levels reported in the input and output
clock domains may be different for any instance. In both cases, the fill level may
report badly for the clock domain; that is, the fill level is reported high in the input
clock domain, and low in the output clock domain.

The Avalon-ST Dual-Clock FIFO IP has an output pipeline stage to improve fMAX. This
output stage is accounted for when calculating the output fill level, but not when
calculating the input fill level. Therefore, the best measure of the amount of data in
the FIFO is by the fill level in the output clock domain. The fill level in the input clock
domain represents the amount of space available in the FIFO (available space =
FIFO depth – input fill level).

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

344

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow
and Underflow

You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO
IP overflow and underflow. This feature is available only in the Avalon-ST Single-Clock
FIFO IP. To use the thresholds, turn on the Use fill level, Use almost-full status,
and Use almost-empty status parameters. You can access the
almost_full_threshold and almost_empty_threshold registers via the csr
interface and set the registers to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and
almost_empty interfaces (Avalon-ST status source). The IP asserts the
almost_full signal when the fill level is equal to or higher than the almost-full
threshold. Likewise, the IP asserts the almost_empty signal when the fill level is
equal to or lower than the almost-empty threshold.

5.11.5. Avalon-ST Single-Clock and Dual-Clock FIFO IP Parameters

Table 167. Avalon-ST Single-Clock and Dual-Clock FIFO IP Parameters

Parameter Legal
Values

Description

Bits per symbol 1–32 These parameters determine the width of the FIFO.
FIFO width = Bits per symbol * Symbols per beat, where: Bits
per symbol is the number of bits in a symbol, and Symbols per
beat is the number of symbols transferred in a beat.

Symbols per beat 1–32

Error width 0–32 The width of the error signal.

FIFO depth 2 n The FIFO depth. An output pipeline stage is added to the FIFO to
increase performance, which increases the FIFO depth by one.
<n> = n=1,2,3,4 and so on.

Use packets — Turn on this parameter to enable data packet support on the
Avalon-ST data interfaces.

Channel width 1–32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only

Use fill level — Turn on this parameter to include the Avalon-MM control and status
register interface (CSR). The CSR is enabled when Use fill level is
set to 1.

Use Store and Forward To turn on Cut-through mode, Use store and forward must be
set to 0. Turning on Use store and forward prompts the user to
turn on Use fill level, and then the CSR appears.

Avalon-ST Dual Clock FIFO Only

Use sink fill level — Turn on this parameter to include the Avalon-MM control and status
register interface in the input clock domain.

Use source fill level — Turn on this parameter to include the Avalon-MM control and status
register interface in the output clock domain.

Write pointer synchronizer length 2–8 The length of the write pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability while
increasing the latency of the IP.

continued...

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

345

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal
Values

Description

Read pointer synchronizer length 2–8 The length of the read pointer synchronizer chain. Setting this
parameter to a higher value leads to better metastability.

Use Max Channel — Turn on this parameter to specify the maximum channel number.

Max Channel 1–255 Maximum channel number.

Note: For more information about metastability in Intel devices, refer to Understanding
Metastability in FPGAs. For more information about metastability analysis and
synchronization register chains, refer to the Managing Metastability.

Related Information

• Managing Metastability with the Software

• Understanding Metastability in FPGAs

5.11.6. Avalon-ST Single-Clock FIFO IP Registers

Table 168. Avalon-ST Single-Clock FIFO IP Registers
The CSR interface in the Avalon-ST Single Clock FIFO IP provides access to registers.

32-Bit
Word
Offset

Name Access Reset Description

0 fill_lev
el

R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

1 Reserved — — Reserved for future use.

2 almost_f
ull_thre
shold

RW FIFO
depth–1

Set this register to a value that indicates the FIFO buffer is getting
full.

3 almost_e
mpty_thr
eshold

RW 0 Set this register to a value that indicates the FIFO buffer is getting
empty.

4 cut_thro
ugh_thre
shold

RW 0 0—Enables store and forward mode.
Greater than 0—Enables cut-through mode and specifies the
minimum of entries in the FIFO buffer before the valid signal on
the Avalon-ST source interface is asserted. Once the FIFO IP starts
sending the data to the downstream component, it continues to do
so until the end of the packet.
Note: To turn on Cut-through mode, Use store and forward

must be set to 0. Turning on Use store and forward
mode prompts the user to turn on Use fill level, and then
the CSR appears.

5 drop_on_
error

RW 0 0—Disables drop-on error.
1—Enables drop-on error.
This register applies only when the Use packet and Use store
and forward parameters are turned on.

Table 169. Register Description for Avalon-ST Dual-Clock FIFO
The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO IP reports the FIFO fill level.

32-Bit Word Offset Name Access Reset Value Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

346

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959644819
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Avalon Memory-Mapped Design Optimizations

• Avalon Interface Specifications

5.12. Platform Designer System Design Components Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2019.11.11 19.1.0 • Updated the names of Intel FPGA IP components throughout.
• Updated name of Test Pattern Checker IP to Avalon Data Pattern

Checker IP throughout.
• Updated Address Span Extender figure bit order.
• Provided directory path in Test Pattern Generator

2018.12.15 18.1.0 • Replaced references to System Contents tab with new System View
tab.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer.
• Changed instances of AXI Default Slave to Error Response Slave.
• Updated topics: Error Response Slave.
• Updated Figure: Error Response Slave Parameter Editor.
• Added Figure: Error Response Slave Parameter Editor with Enabled CSR

Support.
• Updated topics: CSR Registers and renamed to Error Response Slave

CSR Registers.
• Added topic: Error Response Slave Access Violation Service.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2016.05.03 16.0.0 Updated Address Span Extender
• Address Span Extender register mapping better explained
• Address Span Extender Parameters table added
• Address Span Extender example added

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Avalon-MM Unaligned Burst Expansion Bridge and Avalon-MM Pipeline
Bridge, Maximum pending read transactions parameter. Extended
description.

December 2014 14.1.0 • AXI Timeout Bridge.
• Added notes to Avalon-MM Clock Crossing Bridge pertaining to:

— SDC constraints for its internal asynchronous FIFOs.
— FIFO-based clock crossing.

June 2014 14.0.0 • AXI Bridge support.
• Address Span Extender updates.
• Avalon-MM Unaligned Burst Expansion Bridge support.

November 2013 13.1.0 • Address Span Extender

May 2013 13.0.0 • Added Streaming Pipeline Stage support.
• Added AMBA APB support.

November 2012 12.1.0 • Moved relevant content from the Embedded Peripherals IP User Guide.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

347

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

5. Platform Designer System Design Components

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

348

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Platform Designer Command-Line Utilities
You can perform many of the functions available in the Platform Designer GUI at the
command-line, with Platform Designer command-line utilities.

You run Platform Designer command-line executables from the Intel Quartus Prime
installation directory:

<Intel Quartus Prime installation directory>\quartus\sopc_builder
\bin

For command-line help listing of all the options for any executable, type the following
command:

<Intel Quartus Prime installation directory>\quartus\sopc_builder
\bin\<executable name> --help

Note: You must add $QUARTUS_ROOTDIR/sopc_builder/bin/ to the PATH variable to
access command-line utilities. Once you add this PATH variable, you can launch the
utility from any directory location.

6.1. Run the Platform Designer Editor with qsys-edit

The qsys-edit utility allows you to run the Platform Designer editor from command-
line.

You can use the following options with the qsys-edit utility:

Table 170. qsys-edit Command-Line Options

Option Usage Description

1st arg file Optional Specifies the name of the .qsys system or .qvar
variation file to edit.

--search-path[=<value>] Optional If you omit this command, Platform Designer uses a
standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example:

/extra/dir,$

.

--quartus-project[=<value>] Required This option is mandatory if you are associating your
Platform Designer system with an existing Intel Quartus
Prime project. Specifies the name of the Intel Quartus
Prime project file. If you do not provide the revision via
--rev, Platform Designer uses the default revision as the
Intel Quartus Prime project name.

continued...

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Option Usage Description

--new-quartus-project[=<value>] Required This option is mandatory if you are associating your
Platform Designer system with a new Intel Quartus Prime
project. Specifies the name and path of the new Intel
Quartus Prime project. Creates a new Intel Quartus Prime
project at the specified path. You can also provide the
revision name.

--rev[=<value>] Optional Specifies the name of the Intel Quartus Prime project
revision.

--family[=<value>] Optional Sets the device family.

--part[=<value>] Optional Sets the device part number. If set, this option overrides
the --family option.

--new-component-type[=<value>] Optional Specifies the instance type for parameterization in a
variation.

--require-generation Optional Marks the loading system as requiring generation.

--debug Optional Enables debugging features and output.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-edit. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for qsys-edit.

Important: The options --quartus-project and --new-quartus-project are mutually
exclusive. If you use --quartus-project you cannot use --new-quartus-
project and vice versa.

Extended Features with the --debug Options

The --debug option provides powerful tools for debugging. When you launch Platform
Designer with the --debug option enabled, you can:

• View debug messages when opening a system or generating HDL for that system.

• Add the --verbose argument when generating IP or a system using command-
line utilities.

• Access internal library components in the IP Catalog, for example, modules used
to create interconnect fabric.

• Access to debug tools and files from the Internal menu.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

350

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 184. Internal Menu Options

Table 171. Debug Options on the Internal Menu

Menu Item Description

Show hw.tcl Debugger Displays a Tcl debugger.

Show System File Displays the current system XML in a text dialog box.

Show SOPCINFO File Shows the SOPCINFO report XML in a text dialog box.

Show UI Properties Displays the UI properties in a text dialog box.

Show Command Line Arguments Displays all command-line arguments and environment variables in a text
dialog box.

Show System Changes Displays dynamic system changes in a text dialog box.

Make Model Read-only Makes the system you are working in read-only.

Take Screenshots Creates a .png file in the <project_directory> by default. You can navigate
and save to a directory of your choice.

Show Plug-In Catalog Displays library details such as type, version, tags, etc. for all IPs in the IP
Catalog.

Show Adapter Reports Displays adapter reports for any adapters added when transforming the
system.

• You can view detailed debugging messages in the Component Editor while
building a custom IP component.

• You can view the generated Tcl script while editing in the Component Editor with
the Advanced ➤ Show Tcl for Component command.

• You can launch the System Console with debug logging.

6.2. Scripting IP Core Generation

Use the qsys-script and qsys-generate utilities to define and generate an IP
core variation outside of the Intel Quartus Prime GUI.

To parameterize and generate an IP core at command-line, follow these steps:

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

351

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Run qsys-script to start a Tcl script that instantiates the IP and sets
parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

Related Information

Generate a Platform Designer System with qsys-script on page 356

6.2.1. qsys-generate Command-Line Options

Table 172. Command-Line Options for qsys-generate
Options in alphabetical order.

Option Usage Description

<1st arg file> Required Specifies the name of the .qsys system file to generate.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the Platform
Designer system.

--clear-output-directory Optional Clears the output directory corresponding to the selected
target, that is, simulation or synthesis.

--example-design=<value> Optional Creates example design files.
For example, --example-design or --example-
design=all. The default is All, which generates example
designs for all instances. Alternatively, choose specific
filesets based on instance name and fileset name. For
example --example-
design=instance0.example_design1,instance1.ex
ample_design 2. Specify an output directory for the
example design files creation.

--family=<value> Optional Sets the device family name.

--help Optional Displays help for --qsys-generate.

--greybox Optional If you are synthesizing your design with a third-party EDA
synthesis tool, generate a netlist for the synthesis tool to
estimate timing and resource usage for this design.
Note: Generation of a timing and area estimation (gray

box) netlist is available only for individual Intel FPGA
IP, and not for Platform Designer systems.

--ipxact Optional If you specify this option, Platform Designer generates the
post-generation system as an IPXACT-compatible
component description.
Note: Platform Designer supports importing and exporting

files in IP-XACT 2009 format and exporting IP-XACT
files in 2014 format.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses
when running qsys-generate. You specify the value as
<size><unit>, where unit is m (or M) for multiples of
megabytes or g (or G) for multiples of gigabytes. The
default value is 512m.

continued...

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

352

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--parallel[=<level>] Optional Directs Platform Designer to generate in parallel mode, with
the level of parallelism that you specify. If you omit the
level, Platform Designer determines a number based on
processor availability and number of files to be generated.

--part=<value> Optional Sets the device part number. If set, this option overrides the
--family option.

--search-path=<value> Optional If you omit this command, Platform Designer uses a
standard default path. If you provide this command,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", for example, "/extra/dir,$".

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Platform Designer
system. The simulation model contains generated HDL files
for the simulator, and may include simulation-only features.
Specify the preferred simulation language. The default value
is VERILOG.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Platform Designer uses to
compile the system in an Intel Quartus Prime project.
Specify the generation language for the top-level RTL file for
the Platform Designer system. The default value is
VERILOG.

--testbench=<SIMPLE|STANDARD> Optional Creates a testbench system that instantiates the original
system, adding bus functional models (BFMs) to drive the
top-level interfaces. When you generate the system, the
BFMs interact with the system in the simulator. The default
value is STANDARD.

--testbench-
simulation=<VERILOG|VHDL>

Optional After you create the testbench system, create a simulation
model for the testbench system. The default value is
VERILOG.

--upgrade-ip-cores Optional Enables upgrading all the IP cores that support upgrade in
the Platform Designer system you specify. This command
has no impact on IP cores in any subsystem.

--upgrade-variation-file Optional If you set this option to true, the file argument for this
command accepts a .v file, which contains a IP variant.
This file parameterizes a corresponding instance in a
Platform Designer system of the same name.

6.3. Display Available IP Components with ip-catalog

The ip-catalog command displays a list of available IP components relative to the
current Intel Quartus Prime project directory, as either text or XML.

You can use the following options with the ip-catalog utility:

Table 173. ip-catalog Command-Line Options

Option Usage Description

--project-dir= <directory> Optional Finds IP components relative to the Intel Quartus Prime project
directory. By default, Platform Designer uses ‘.’ as the current
directory. To exclude a project directory, leave the value empty.

--type Optional Provides a pattern to filter the type of available plug-ins. By
default, Platform Designer shows only IP components. To look
for a partial type string, surround with *, for instance,
connection.

continued...

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

353

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--name=<value> Optional Provides a pattern to filter the names of the IP components
found. To show all IP components, use a * or ‘ ‘. By default,
Platform Designer shows all IP components. The argument is
not case sensitive. To look for a partial name, surround with *,
for instance, *uart*

--verbose Optional Reports the progress of the command.

--xml Optional Generates the output in XML format, in place of colon-
delimited format.

--search-path=<value> Optional If you omit this command, Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, "/
extra/dir,$".

<1st arg value> Optional Specifies the directory or name fragment.

--jvm-max-heap-size=<value> Optional The maximum memory size that Platform Designer uses for
when running ip-catalog. You specify the value as <size
><unit>, where unit is m (or M) for multiples of megabytes
or g (or G) for multiples of gigabytes. The default value is
512m.

--help Optional Displays help for the ip-catalog command.

6.4. Create an .ipx File with ip-make-ipx

The ip-make-ipx command creates an .ipx index file. This file provides a
convenient way to include a collection of IP components from an arbitrary directory.
You can edit the .ipx file to disable visibility of one or more IP components in the IP
Catalog.

You can use the following options with the ip-make-ipx utility:

Table 174. ip-make-ipx Command-Line Options

Option Usage Description

--source-directory=<directory> Optional Specifies the directory containing your IP components. The
default directory is ‘.’. You can provide a comma-separated
list of directories.

--output=<file> Optional Specifies the name of the index file to generate. The default
name is /component.ipx. Set as --output=<""> to print
the output to the console.

--relative-vars=<value> Optional Causes the output file to include references relative to the
specified variable or variables wherever possible. You can
specify multiple variables as a comma-separated list.

--thorough-descent Optional If you set this option, Platform Designer searches all the
component files, without skipping the sub-directories.

--message-before=<value> Optional Prints a log message at the start of reading an index file.

continued...

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

354

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--message-after=<value> Optional Prints a log message at the end of reading an index file.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses when
running ipr-make-ipx. You specify this value as
<size><unit>, where unit is m (or M) for multiples of
megabytes, or g (or G) for multiples of gigabytes. The
default value is 512m.

--help Optional Displays help for the ip-make-ipx command.

6.5. Generate Simulation Scripts

You can use the ip-make-simscript utility to generate simulation scripts for one or
more simulators, given one or more Simulation Package Descriptor (.spd)
files, .qsys files, and .ip files.

In Platform Designer, ip-make-simscript generates simulation scripts in a
hierarchical structure instead of a flat view of the entire system. The ip-make-
simscript utility uses .spd and system files according to the options you select:

• When targeting only .spd files (ip-make-simscript --spd=<file>.spd) the
utility combines the contents of all input .spd files, and generates a common
directory which contains a set of <simulator>_files.tcl files under the
specified output directory.

• When targeting only system files (ip-make-simscript --system-
file=<file>) such as .qsys and .ip files, the utility searches for instances of
<simulator>_files.tcl files for each input system, and generates a combined
simulation script which contains a list of references of <simulator>_files.tcl.

• When the utility uses both --spd and --system-file options, ip-make-
simscript combines all input .spd files and generates a common/
<simulator>_files.tcl in the specified output directory. The generated
simulation script refers to the generated common/<simulator>_files.tcl
first, followed by a list of Tcl files from each input system.

Table 175. ip-make-simscript Command-Line Options

Option Usage Description

--spd[=<file>] Optional/Repeatable The .spd files describe the list of HDL files for
simulation, and memory models hierarchy. This
argument can either be a single path to an .spd file or
a comma-separated list of paths of .spd files.
For instance, --spd=ipcore_1.spd,ipcore_2.spd
The generated list is processed in the order of the
input .spd files.
Note: When this argument is used in combination with

--system-file, the .spd files are parsed
before the system files.

--system-file[=<file>] Optional/Repeatable Specifies the system files (.qsys or .ip files) used to
generate the simulation scripts. This argument can
contain either a single path to a Platform Designer
system file or a comma-separated list of paths to
Platform Designer system files.

continued...

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

355

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

The simulation script is generated in the order the
system files are listed.
Note: When this argument is used in combination with

--spd, the .spd files are parsed before the
system files.

--output-
directory[=<directory>]

Optional Specifies the directory path for the location of output
files. If you do not specify a directory, the output
directory defaults to the directory from which --ip-
make-simscript runs.

--compile-to-work Optional Compiles all design files to the default library - work.

--use-relative-paths Optional Uses relative paths whenever possible.

--cache-file[=<file>] Optional Generates cache file for managed flow.

--quiet Optional Quiet reporting mode. Does not report generated files.

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses
when running ip-make-simscript.
You specify this value as

<size><unit>

where unit is m (or M) for multiples of megabytes, or g
(or G) for multiples of gigabytes. The default value is
512m.

--search-path=<value> Optional Comma-separated list of search paths.
If omitted, a default path including the current working
directory is used.
To include the standard path in your replacement,
append the $ symbol, for example:"/extra/dir,$"

--device-family=<value> Optional Overrides the existing device family when used.

--top-name=<value> Optional Specify a top-level entity name used in generated
simulation scripts.

--help Optional Displays help for --ip-make-simscript.

6.6. Generate a Platform Designer System with qsys-script

You can use the qsys-script utility to create and manipulate a Platform Designer
system with Tcl scripting commands. If you specify a system, Platform Designer loads
that system before executing any of the scripting commands.

Note: You must provide a package version for the qsys-script. If you do not specify the
--package-version=<value> command, you must then provide a Tcl script and
request the system scripting API directly with the package require -exact
qsys<version> command.

Example 29. Platform Designer Command-Line Scripting

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

356

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

my_script.tcl contains:

package require -exact qsys 16.0
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

You can use the following options with the qsys-script utility:

Table 176. qsys-script Command-Line Options

Option Usage Description

--system-file=<file> Optional Specifies the path to a .qsys file. Platform Designer loads the
system before running scripting commands.

--script=<file> Optional A file that contains Tcl scripting commands that you can use to
create or manipulate a Platform Designer system. If you specify
both --cmd and --script, Platform Designer runs the --cmd
commands before the script specified by --script.

--cmd=<value> Optional A string that contains Tcl scripting commands that you can use
to create or manipulate a Platform Designer system. If you
specify both --cmd and --script, Platform Designer runs the
--cmd commands before the script specified by --script.

--package-version=<value> Optional Specifies which Tcl API scripting version to use and determines
the functionality and behavior of the Tcl commands. The Intel
Quartus Prime software supports Tcl API scripting commands.
The minimum supported version is 12.0. If you do not specify
the version on the command-line, your script must request the
scripting API directly with the package require -exact
qsys <version > command.

--search-path=<value> Optional If you omit this command, a Platform Designer uses a standard
default path. If you provide this command, Platform Designer
searches a comma-separated list of paths. To include the
standard path in your replacement, use "$", for example, /
<directory path>/dir,$. Separate multiple directory
references with a comma.

--quartus-project=<value> Optional Specifies the path to a .qpf Intel Quartus Prime project file.
Utilizes the specified Intel Quartus Prime project to add the file
saved using save_system command. If you omit this
command, Platform Designer uses the default revision as the
project name.

--new-quartus-project=<value> Optional Specifies the name of the new Intel Quartus Prime project.
Creates a new Intel Quartus Prime project at the specified path
and adds the file saved using save_system command to the
project. If you omit this command, Platform Designer uses the
Intel Quartus Prime project revision as the new Intel Quartus
Prime project name.

--rev=<value> Optional Allows you to specify the name of the Intel Quartus Prime
project revision.

--jvm-max-heap-size=<value> Optional The maximum memory size that the qsys-script tool uses.
You specify this value as <size><unit>, where unit is m (or M)
for multiples of megabytes, or g (or G) for multiples of
gigabytes.

--help Optional Displays help for the qsys-script utility.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

357

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel FPGA Wiki: Platform Designer Scripts

6.7. Parameterizing an Instantiated IP Core after save_system
Command

When you call the save_system command in your Tcl script, Platform Designer
converts all the instantiated IP cores in your system to generic components.

To modify these IP cores after saving your system, you must first load the actual
component within the instantiated generic component. Re-parameterize an
instantiated IP core using one of the following methods:

1. Load the component in the Platform Designer system, modify the component's
parameter value, and save the component:

…
save_system kernel_system.qsys
…
load_component cra_root
set_component_parameter_value DATA_W 64
save_component
…

2. Load the .ip file specific to the component, modify the instance's parameter
value, and save the .ip file:

…
save_system kernel_system.qsys
…
load_system cra_root.ip
set_instance_parameter_value cra_root DATA_W 64
save_system
…

Note: To directly modify an instance parameter value after the save_system
command, you must load the .ip file corresponding to the IP component.

Related Information

• set_component_parameter_value on page 486

• load_component on page 483

• save_component on page 485

• save_system on page 374

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

358

https://fpgawiki.intel.com/wiki/Qsys_Scripts
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8. Validate the Generic Components in a System with qsys-
validate

Use the qsys-validate utility to run IP component footprint validation on the .qsys
file for the system.

Table 177. qsys-validate Command-Line Options

Option Usage Description

1st arg file Optional The name of the .qsys system file to validate.

--search-path[=<value>] Optional If omitted, Platform Designer uses a standard default
path. If provided, Platform Designer searches a comma-
separated list of paths. To include the standard path in
your replacement, use "$", for
example: /extra/dir.$.

--strict Optional Enables strict validation. All warnings are reported as
errors

--jvm-max-heap-size=<value> Optional The maximum memory size Platform Designer uses for
allocations when running qsys-edit. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Display help for qsys-validate.

6.9. Generate an IP Component or Platform Designer System with
quartus_ipgenerate

The quartus_ipgenerate command allows you to generate IP components or a
Platform Designer system in your Intel Quartus Prime project. Ensure that you include
the IP component or the Platform Designer system you wish to generate in your Intel
Quartus Prime project.

To run the quartus_ipgenerate command from the Intel Quartus Prime shell, type:

quartus_ipgenerate <project name> [<options>]

Use any of the following options with the quartus_ipgenerate utility:

Table 178. quartus_ipgenerate Command-Line Options

Option Usage Description

<1st arg file> Required Specifies the name of the Intel Quartus Prime project file (.qpf).
This option generates all the .qsys and .ip files in the specified
Intel Quartus Prime project (<project name>).

-f [<argument file>] Optional Specifies a file containing additional command-line arguments.
Arguments that you specify after this option can conflict or override
the options you specify in the argument file.

--rev[=<revision name>] or
-c[=<revision name>]

Optional Specifies the Intel Quartus Prime project revision and the
associated .qsf file to use. If you omit this option, Platform
Designer uses the same revision name as your Intel Quartus Prime
project.

continued...

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

359

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--clear_ip_generation_dirs or
--clean

Optional Clears the generation directories of all the .qsys or the .ip files in
the specified Intel Quartus Prime project. For example, to clear the
generation directories in the project test, run the following
command:

quartus_ipgenerate --clear_ip_generation_dirs test

or

quartus_ipgenerate --clean test

--generate_ip_file --
ip_file[=<ip file name>]

Optional Generates the files for <file name>.ip file in the specified Intel
Quartus Prime project.
Use the following optional flags with --generate_ip_file:
• -synthesis[=<value>]—optional argument that specifies the

synthesis target type. Specify the value as either verilog or vhdl.
The default value is verilog.

• -simulation[=<value>]—optional argument that specifies the
simulation target type. Specify the value as either verilog or vhdl.
If you omit this flag, Platform Designer does not generate any
simulation files.

• --clear_ip_generation_dirs—clears the preexisting
generation directories before generation. If you omit this
command, Platform Designer does not clear the generation
directories.

For example, to generate the files for a test.qsys file within the
project, test:

 quartus_ipgenerate --generate_ip_file --synthesis=vhdl --
simulation=verilog --clear_ip_generation_dirs --
ip_file=test.qsys test

--generate_project_ip_files
[<project name>]

Optional Generates the files for all the .qsys and .ip files in the specified
Intel Quartus Prime project.
Use any of the following optional flags with
--generate_project_ip_files:
• -synthesis[=<value>]—optional argument that specifies the

synthesis target type. Specify the value as either verilog or vhdl.
The default value is verilog.

• -simulation[=<value>]—optional argument that specifies the
simulation target type. Specify the value as either verilog or vhdl.
If you omit this flag, Platform Designer does not generate any
simulation files.

• --clear_ip_generation_dirs—clears the preexisting
generation directories before generation. If you omit this
command, Platform Designer does not clear the generation
directories.

For example, to generate all the .qsys and .ip files within the
project, test:

quartus_ipgenerate --generate_project_ip_files --
synthesis=vhdl --simulation=verilog --clear_ip_generation_dirs
test

continued...

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

360

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--get_project_ip_files Optional Returns a list of the .qsys or .ip files in the specified Intel Quartus
Prime project. This option displays each file in a separate Intel
Quartus Prime message line. For example, to get a list of .qsys files
in the project test, and revision rev:

quartus_ipgenerate --get_project_ip_files test -c rev

--lower_priority Optional Allows you to lower the priority of the current process. This option is
useful if you use a single-processor computer, allowing you to use
other applications more easily while the Intel Quartus Prime software
runs the command in the background.

6.10. Generate an IP Variation File with ip-deploy

Use the ip-deploy utility to generate an IP variation file (.ip file) in the specified
location.

Table 179. ip-deploy Command-Line Options

Option Usage Description

--component-name[=<value>] Required The name of a component you instantiate.

--output-name[=<value>] Optional Name for the resulting component; defaults to the
component's type name.

--component-parameter[=<value>] Optional Repeatable. A single value assignment, like
--component-param=WIDTH=11. To assign multiple
parameters, use this option several times.

--preset[=<value>] Optional Repeatable. The name of a saved preset to use in
creating a variation of the IP component. Presets are
additive and repeatable.

--family[=<value>] Optional Sets the device family

--part[=<value>] Optional Sets the device part number. You can also use this
command to set the base device, device speed-grade,
device family, and device feature's system information.

--output-directory[=<value>] Optional This directory contains the output IP variation file.
Platform Designer automatically creates the directory if
the directory does not exist. If you do not specify an
output directory, the output directory is the current
working directory.

--search-path[=<value>] Optional If you do not specify the search path, the command uses
a standard default path. If you provide a search path,
Platform Designer searches a comma-separated list of
paths. To include the standard path in your replacement,
use "$", like /extra/dir,$.

--jvm-max-heap-size[=<value>] Optional The maximum memory size Platform Designer uses for
allocations when running qsys-edit. You specify this
value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for ip-deploy

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

361

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11. Archive a Platform Designer System with qsys-archive

The qsys-archive command allows you to archive a system, extract an archived
system, and retrieve information about the system's dependencies.

Table 180. qsys-archive Command-Line Options

Option Usage Description

<1st arg file> Required The filename of the root Platform Designer system,
Platform Designer file archive, or the Intel Quartus Prime
project file.

--search-path[=<value>] Optional If you omit this option, Platform Designer uses a
standard default path. If you specify this option, Platform
Designer searches a comma-separated list of paths. To
include the standard path in your replacement, use "$",
for example: /extra/dir,$.

--archive Optional Creates a zip archive of the specified Platform Designer
system or the Intel Quartus Prime project.

--report-file[=<value>] Optional Lists the files that the Platform Designer system or the
Intel Quartus Prime project references, and writes the
files list to the specified name in .txt format.

--output-directory[=<file>] Optional Specifies the output directory to save the archive.

--extract Optional Extracts all the files in the given archive.

--output-name[=<value>] Optional Specifies the output name to save the archive or report.

collect-to-common-
directory[=<true|false>]

Optional When archiving, collects all the .qsys files in the root
directory of the archive and all .ip files in a single ip
directory, and updates all the matching references. The
default option is true.

new-quartus-project[=<value>] Optional Creates a new Intel Quartus Prime project which contains
all the .ip and system files referenced by the Platform
Designer system or the Intel Quartus Prime project.

quartus-project[=<value>] Optional When you use this command in combination with:
• --report-file—adds all the referenced files to the

Intel Quartus Prime project.
• --extract—adds all extracted files to the specified

project.
• --archive—archives all the system and .ip files

referenced in the Intel Quartus Prime project.

--rev Optional Specifies the name of the Intel Quartus Prime project
revision.

--include-generated-files Optional Includes all the generated files of the Platform Designer
system.

--force Optional Forcefully creates the specified archive or report,
overwriting any existing archives or reports.

--jvm-max-heap-size=<value> Optional Specifies the maximum memory size Platform Designer
uses for allocations when running qsys-edit. Specify
this value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of
gigabytes. The default value is 512m.

--help Optional Displays help for qsys-archive.

Alternatively, you can archive and restore your system using the Platform Designer
GUI. For more information, refer to Archive your System section.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

362

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Saving, Archiving, and Restoring Platform Designer Systems on page 83

6.12. Platform Designer Scripting Command Reference

Platform Designer system scripting provides Tcl commands to manipulate your
system. The qsys-script provides a command-line alternative to the Platform
Designer tool. Use the qsys-script commands to create and modify your system,
as well as to create reports about the system.

To use the current version of the Tcl commands, include the following line at the top of
your script:

package require -exact qsys <version>

For example, for the current release of the Intel Quartus Prime software, include:

package require -exact qsys 18.0

The Platform Designer scripting commands fall under the following categories:

System on page 364

Subsystems on page 377

Domains and Interfaces on page 385

Instances on page 390

Instantiations on page 423

Components on page 462

Connections on page 488

Top-level Exports on page 500

Validation on page 514

Miscellaneous on page 525

Wire-Level Connection Commands on page 535

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

363

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1. System

This section lists the commands that allow you to manipulate a Platform Designer
system.

create_system on page 365

export_hw_tcl on page 366

get_device_families on page 367

get_devices on page 368

get_module_properties on page 369

get_module_property on page 370

get_project_properties on page 371

get_project_property on page 372

load_system on page 373

save_system on page 374

set_module_property on page 375

set_project_property on page 376

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

364

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.1. create_system

Description
Replaces the current system with a new system of the specified name.

Usage
create_system [<name>]

Returns
No return value.

Arguments

name (optional) The new system name.

Example

create_system my_new_system_name

Related Information

• load_system on page 373

• save_system on page 374

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

365

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.2. export_hw_tcl

Description
Allows you to save the currently open system as an _hw.tcl file in the project
directory. The saved systems appears under the System category in the IP Catalog.

Usage
export_hw_tcl

Returns
No return value.

Arguments
No arguments

Example

export_hw_tcl

Related Information

• load_system on page 373

• save_system on page 374

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

366

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.3. get_device_families

Description
Returns the list of installed device families.

Usage
get_device_families

Returns

String[] The list of device families.

Arguments
No arguments

Example

get_device_families

Related Information

get_devices on page 368

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

367

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.4. get_devices

Description
Returns the list of installed devices for the specified family.

Usage
get_devices <family>

Returns

String[] The list of devices.

Arguments

family Specifies the family name to get the devices for.

Example

get_devices exampleFamily

Related Information

get_device_families on page 367

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

368

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.5. get_module_properties

Description
Returns the properties that you can manage for a top-level module of the Platform
Designer system.

Usage
get_module_properties

Returns
The list of property names.

Arguments
No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 370

• set_module_property on page 375

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

369

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.6. get_module_property

Description
Returns the value of a top-level system property.

Usage
get_module_property <property>

Returns
The property value.

Arguments

property The property name to query. Refer to Module Properties.

Example

get_module_property NAME

Related Information

• get_module_properties on page 369

• set_module_property on page 375

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

370

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.7. get_project_properties

Description
Returns the list of properties that you can query for properties pertaining to the Intel
Quartus Prime project.

Usage
get_project_properties

Returns
The list of project properties.

Arguments
No arguments

Example

get_project_properties

Related Information

• get_project_property on page 372

• set_project_property on page 376

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

371

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.8. get_project_property

Description
Returns the value of an Intel Quartus Prime project property.

Usage
get_project_property <property>

Returns
The property value.

Arguments

property The project property name. Refer to Project properties.

Example

get_project_property DEVICE_FAMILY

Related Information

• get_module_properties on page 369

• get_module_property on page 370

• set_module_property on page 375

• Project Properties on page 553

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

372

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.9. load_system

Description
Loads the Platform Designer system from a file, and uses the system as the current
system for scripting commands.

Usage
load_system <file>

Returns
No return value.

Arguments

file The path to the .qsys file.

Example

load_system example.qsys

Related Information

• create_system on page 365

• save_system on page 374

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

373

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.10. save_system

Description

Saves the current system to the specified file. If you do not specify the file, Platform
Designer saves the system to the same file opened with the load_system command.

Usage
save_system <file>

Returns
No return value.

Arguments

file If available, the path of the .qsys file to save.

Example

save_system

save_system file.qsys

Related Information

• load_system on page 373

• create_system on page 365

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

374

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.11. set_module_property

Description
Specifies the Tcl procedure to evaluate changes in Platform Designer system instance
parameters.

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Module Properties.

value The new value of the property.

Example

set_module_property COMPOSITION_CALLBACK "my_composition_callback"

Related Information

• get_module_properties on page 369

• get_module_property on page 370

• Module Properties on page 547

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

375

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1.12. set_project_property

Description
Sets the project property value, such as the device family.

Usage
set_project_property <property> <value>

Returns
No return value.

Arguments

property The property name. Refer to Project Properties.

value The new property value.

Example

set_project_property DEVICE_FAMILY "Cyclone IV GX"

Related Information

• get_project_properties on page 371

• get_project_property on page 372

• Project Properties on page 553

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

376

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2. Subsystems

This section lists the commands that allow you to obtain the connection and parameter
information of instances in your Platform Designer subsystem.

get_composed_connections on page 378

get_composed_connection_parameter_value on page 379

get_composed_connection_parameters on page 380

get_composed_instance_assignment on page 381

get_composed_instance_assignments on page 382

get_composed_instance_parameter_value on page 383

get_composed_instance_parameters on page 384

get_composed_instances on page 385

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

377

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.1. get_composed_connections

Description
Returns the list of all connections in the subsystem for an instance that contains the
subsystem of the Platform Designer system.

Usage
get_composed_connections <instance>

Returns
The list of connection names in the subsystem.

Arguments

instance The child instance containing the subsystem.

Example

get_composed_connections subsystem_0

Related Information

• get_composed_connection_parameter_value on page 379

• get_composed_connection_parameters on page 380

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

378

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.2. get_composed_connection_parameter_value

Description
Returns the parameter value of a connection in a child instance containing the
subsystem.

Usage
get_composed_connection_parameter_value <instance> <child_connection>
<parameter>

Returns
The parameter value.

Arguments

instance The child instance that contains the subsystem.

child_connection The connection name in the subsystem.

parameter The parameter name to query for the connection.

Example

get_composed_connection_parameter_value subsystem_0 cpu.data_master/memory.s0
baseAddress

Related Information

• get_composed_connection_parameters on page 380

• get_composed_connections on page 378

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

379

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.3. get_composed_connection_parameters

Description
Returns the list of parameters of a connection in the subsystem, for an instance that
contains the subsystem.

Usage
get_composed_connection_parameters <instance> <child_connection>

Returns
The list of parameter names.

Arguments

instance The child instance containing the subsystem.

child_connection The name of the connection in the subsystem.

Example

get_composed_connection_parameters subsystem_0 cpu.data_master/memory.s0

Related Information

• get_composed_connection_parameter_value on page 379

• get_composed_connections on page 378

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

380

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.4. get_composed_instance_assignment

Description
Returns the assignment value of the child instance in the subsystem.

Usage
get_composed_instance_assignment <instance> <child_instance>
<assignment>

Returns
The assignment value.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

assignment The assignment key.

Example

get_composed_instance_assignment subsystem_0 video_0
"embeddedsw.CMacro.colorSpace"

Related Information

• get_composed_instance_assignments on page 382

• get_composed_instances on page 385

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

381

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.5. get_composed_instance_assignments

Description
Returns the list of assignments of the child instance in the subsystem.

Usage
get_composed_instance_assignments <instance> <child_instance>

Returns
The list of assignment names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_assignments subsystem_0 cpu

Related Information

• get_composed_instance_assignment on page 381

• get_composed_instances on page 385

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

382

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.6. get_composed_instance_parameter_value

Description
Returns the parameter value of the child instance in the subsystem.

Usage
get_composed_instance_parameter_value <instance> <child_instance>
<parameter>

Returns
The parameter value of the instance in the subsystem.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

parameter The parameter name to query on the child instance in the subsystem.

Example

get_composed_instance_parameter_value subsystem_0 cpu DATA_WIDTH

Related Information

• get_composed_instance_parameters on page 384

• get_composed_instances on page 385

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

383

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.7. get_composed_instance_parameters

Description
Returns the list of parameters of the child instance in the subsystem.

Usage
get_composed_instance_parameters <instance> <child_instance>

Returns
The list of parameter names.

Arguments

instance The subsystem containing the child instance.

child_instance The child instance name in the subsystem.

Example

get_composed_instance_parameters subsystem_0 cpu

Related Information

• get_composed_instance_parameter_value on page 383

• get_composed_instances on page 385

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

384

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.2.8. get_composed_instances

Description
Returns the list of child instances in the subsystem.

Usage
get_composed_instances <instance>

Returns
The list of instance names in the subsystem.

Arguments

instance The subsystem containing the child instance.

Example

get_composed_instances subsystem_0

Related Information

• get_composed_instance_assignment on page 381

• get_composed_instance_assignments on page 382

• get_composed_instance_parameter_value on page 383

• get_composed_instance_parameters on page 384

6.12.3. Domains and Interfaces

This section lists the commands that allow you to specify parameters for domains and
interfaces in your system.

Related Information

Specifying Interconnect Parameters on page 49

6.12.3.1. set_domain_assignment

Description
Sets the assignment value to all connections on the given domain.

Usage

set_domain_assignment <element> <assignment> <value>

Arguments

element Connection or interface in the domain to set with assignment. If element
name is $system, assigns to all the domains in the system.

assignment The name of the assignment.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

385

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

value The value of the assignment.

6.12.3.2. get_domain_assignment

Description
Obtains the value for specified assignment in the given domain.

Usage

get_domain_assignment <element> <assignment>

Arguments

element Connection or interface in the domain for which you want the assignment
value.

assignment The name of the assignment.

6.12.3.3. get_domain_assignments

Description
Obtains all domain assignments for the given domain as a list of strings. Each "group"
of three elements in the list contains the element name, assignment name, and value
(in that order). Element name in the output is the input element name. If the input
element is $system, then the output element name is the connection point in the
domain. For example, typical list contents appear like this:

[element0 name0 value0 element1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

foreach {element name value } $requirement_list \
 { puts " $element $name $value" }

Usage

get_domain_assignments <element>

Arguments

element Connection or interface in the domain for which you want to get
assignments. If element is specified as $system, gives values of all the
domains in the system.

6.12.3.4. set_interface_assignment

Description
Adds interconnect assignment to the interface.

Usage

set_interface_assignment <interface> <assignment> <value>

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

386

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

interface Interface name.

assignment The name of the assignment.

value The value of the assignment.

6.12.3.5. get_interface_assignment

Description
Obtains the value of the named interface interconnect assignment on the specified
interface.

Usage

get_interface_assignment <interface> <assignment>

Arguments

interface Interface name.

assignment The name of the assignment.

6.12.3.6. get_interface_assignments

Description
Obtains all interface interconnect assignments for the given domain as a list of strings.
Each "group" of three elements in the list contains the interface name, assignment
name, and value (in that order). For example, typical list contents might look like this:

[interface0 name0 value0 interface1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

foreach {interface name value } $requirement_list \
 { puts " $interface $name $value" }

Usage

get_interface_assignments <interface>

Arguments

interface Interface name that you want to get assignments for. If interface is
specified as $system , it gives assignments of all the interfaces in the
system.

assignment The name of the assignment.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

387

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.3.7. set_postadaptation_assignment

Description
Adds a post adaptation interconnect assignment.

Usage

set_postadaptation_assignment <element> <assignment> <value>

Arguments

element Element name.

assignment The name of the assignment.

value The value of the assignment.

6.12.3.8. get_postadaptation_assignment

Description
Obtains the value of the named post adaptation interconnect assignment on the
specified element.

Usage

get_postadaptation_assignment <element> <assignment>

Arguments

element Element name.

assignment The name of the assignment.

6.12.3.9. get_postadaptation_assignments

Description
Obtains all post adaptation interconnect assignments for the given domain as a list of
strings. Each "group" of three elements in the list contains the element name,
assignment name, and value (in that order). For example, typical list contents might
look like this:

[element0 name0 value0 element1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

foreach {element name value } $requirement_list \
 { puts " $element $name $value" }

Usage

get_postadaptation_assignments <interface>

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

388

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

interface Interface name that you want to get assignments for. If interface is
specified as $system , it gives assignments of all the interfaces in the
system.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

389

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4. Instances

This section lists the commands that allow you to manipulate the instances of IP
components in your Platform Designer system.

add_instance on page 391

apply_instance_preset on page 392

create_ip on page 393

add_component on page 394

duplicate_instance on page 395

enable_instance_parameter_update_callback on page 396

get_instance_assignment on page 397

get_instance_assignments on page 398

get_instance_documentation_links on page 399

get_instance_interface_assignment on page 400

get_instance_interface_assignments on page 401

get_instance_interface_parameter_property on page 402

get_instance_interface_parameter_value on page 403

get_instance_interface_parameters on page 404

get_instance_interface_port_property on page 405

get_instance_interface_ports on page 406

get_instance_interface_properties on page 407

get_instance_interface_property on page 408

get_instance_interfaces on page 409

get_instance_parameter_property on page 410

get_instance_parameter_value on page 411

get_instance_parameter_values on page 412

get_instance_parameters on page 413

get_instance_port_property on page 414

get_instance_properties on page 415

get_instance_property on page 416

get_instances on page 417

is_instance_parameter_update_callback_enabled on page 418

remove_instance on page 419

set_instance_parameter_value on page 420

set_instance_parameter_values on page 421

set_instance_property on page 422

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

390

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.1. add_instance

Description
Adds an instance of a component, referred to as a child or child instance, to the
system.

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the instance.
Platform Designer uses this name in the generated HDL to identify the
instance.

type Refers to a kind of instance available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified instance type. If you do not
specify any instance, Platform Designer uses the latest version.

Example

add_instance uart_0 altera_avalon_uart 16.1

Related Information

• get_instance_property on page 416

• get_instances on page 417

• remove_instance on page 419

• set_instance_parameter_value on page 420

• get_instance_parameter_value on page 411

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

391

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.2. apply_instance_preset

Description
Applies the settings in a preset to the specified instance.

Usage
apply_instance_preset <preset_name>

Returns
No return value.

Arguments

preset_name The preset name.

Example

apply_preset "Custom Debug Settings"

Related Information

set_instance_parameter_value on page 420

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

392

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.3. create_ip

Description
Creates a new IP Variation system with the given instance.

Usage
create_ip <type> [<instance_name> <version>]

Returns
No return value.

Arguments

type Kind of instance available in the IP catalog, for example,
altera_avalon_uart.

instance_name
(optional)

A unique local name that you can use to manipulate the
instance. If not specified, Platform Designer uses a default
name.

version (optional) The required version of the specified instance type. If not
specified, Platform Designer uses the latest version.

Example

create_ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Information

• add_component on page 394

• load_system on page 373

• save_system on page 374

• set_instance_parameter_value on page 420

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

393

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.4. add_component

Description
Adds a new IP Variation component to the system.

Usage
add_component <instance_name> <file_name> [<component_type>
<component_instance_name> <component_version>]

Returns
No return value.

Arguments

instance_name A unique local name that you can use to manipulate the instance.

file_name The IP variation file name. If a path is not specified, Platform Designer
saves the file in the ./ip/system/ sub-folder of your system.

component_type
(optional)

The kind of instance available in the IP catalog, for
example altera_avalon_uart.

component_instance_name
(optional)

The instance name of the component in the IP
variation file. If not specified, Platform Designer
uses a default name.

component_version
(optional)

The required version of the specified instance type. If
not specified, Platform Designer uses the latest
version.

Example

add_component myuart_0 myuart.ip altera_avalon_uart altera_avalon_uart_inst 17.0

Related Information

• load_component on page 483

• load_instantiation on page 450

• save_system on page 374

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

394

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.5. duplicate_instance

Description
Creates a duplicate instance of the specified instance.

Usage
duplicate_instance <instance> [<name>]

Returns

String The new instance name.

Arguments

instance Specifies the instance name to duplicate.

name (optional) Specifies the name of the duplicate instance.

Example

duplicate_instance cpu cpu_0

Related Information

• add_instance on page 391

• remove_instance on page 419

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

395

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.6. enable_instance_parameter_update_callback

Description
Enables the update callback for instance parameters.

Usage
enable_instance_parameter_update_callback [<value>]

Returns
No return value.

Arguments

value (optional) Specifies whether to enable/disable the instance parameters
callback. Default option is "1".

Example

enabled_instance_parameter_update_callback

Related Information

• is_instance_parameter_update_callback_enabled on page 418

• set_instance_parameter_value on page 420

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

396

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.7. get_instance_assignment

Description
Returns the assignment value of a child instance. Platform Designer uses assignments
to transfer information about hardware to embedded software tools and applications.

Usage
get_instance_assignment <instance> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The instance name.

assignment The assignment key to query.

Example

get_instance_assignment video_0 embeddedsw.CMacro.colorSpace

Related Information

get_instance_assignments on page 398

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

397

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.8. get_instance_assignments

Description
Returns the list of assignment keys for any defined assignments for the instance.

Usage
get_instance_assignments <instance>

Returns

String[] The list of assignment keys.

Arguments

instance The instance name.

Example

get_instance_assignments sdram

Related Information

get_instance_assignment on page 397

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

398

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.9. get_instance_documentation_links

Description
Returns the list of all documentation links provided by an instance.

Usage
get_instance_documentation_links <instance>

Returns

String[] The list of documentation links.

Arguments

instance The instance name.

Example

get_instance_documentation_links cpu_0

Notes
The list of documentation links includes titles and URLs for the links. For instance, a
component with a single data sheet link may return:

{Data Sheet} {http://url/to/data/sheet}

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

399

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.10. get_instance_interface_assignment

Description
Returns the assignment value for an interface of a child instance. Platform Designer
uses assignments to transfer information about hardware to embedded software tools
and applications.

Usage
get_instance_interface_assignment <instance> <interface> <assignment>

Returns

String The value of the specified assignment.

Arguments

instance The child instance name.

interface The interface name.

assignment The assignment key to query.

Example

get_instance_interface_assignment sdram s1 embeddedsw.configuration.isFlash

Related Information

get_instance_interface_assignments on page 401

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

400

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.11. get_instance_interface_assignments

Description
Returns the list of assignment keys for any assignments defined for an interface of a
child instance.

Usage
get_instance_interface_assignments <instance> <interface>

Returns

String[] The list of assignment keys.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_assignments sdram s1

Related Information

get_instance_interface_assignment on page 400

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

401

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.12. get_instance_interface_parameter_property

Description
Returns the property value for a parameter in an interface of an instance. Parameter
properties are metadata about how Platform Designer uses the parameter.

Usage
get_instance_interface_parameter_property <instance> <interface>
<parameter> <property>

Returns

various The parameter property value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

property The property name for the parameter. Refer to Parameter Properties.

Example

get_instance_interface_parameter_property uart_0 s0 setupTime ENABLED

Related Information

• get_instance_interface_parameters on page 404

• get_instance_interfaces on page 409

• get_parameter_properties on page 529

• Parameter Properties on page 548

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

402

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.13. get_instance_interface_parameter_value

Description
Returns the parameter value of an interface in an instance.

Usage
get_instance_interface_parameter_value <instance> <interface>
<parameter>

Returns

various The parameter value.

Arguments

instance The child instance name.

interface The interface name.

parameter The parameter name for the interface.

Example

get_instance_interface_parameter_value uart_0 s0 setupTime

Related Information

• get_instance_interface_parameters on page 404

• get_instance_interfaces on page 409

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

403

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.14. get_instance_interface_parameters

Description
Returns the list of parameters for an interface in an instance.

Usage
get_instance_interface_parameters <instance> <interface>

Returns

String[] The list of parameter names for parameters in the interface.

Arguments

instance The child instance name.

interface The interface name.

Example

get_instance_interface_parameters uart_0 s0

Related Information

• get_instance_interface_parameter_value on page 403

• get_instance_interfaces on page 409

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

404

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.15. get_instance_interface_port_property

Description
Returns the property value of a port in the interface of a child instance.

Usage
get_instance_interface_port_property <instance> <interface> <port>
<property>

Returns

various The port property value.

Arguments

instance The child instance name.

interface The interface name.

port The port name.

property The property name of the port. Refer to Port Properties.

Example

get_instance_interface_port_property uart_0 exports tx WIDTH

Related Information

• get_instance_interface_ports on page 406

• get_port_properties on page 509

• Port Properties on page 552

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

405

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.16. get_instance_interface_ports

Description
Returns the list of ports in an interface of an instance.

Usage
get_instance_interface_ports <instance> <interface>

Returns

String[] The list of port names in the interface.

Arguments

instance The instance name.

interface The interface name.

Example

get_instance_interface_ports uart_0 s0

Related Information

• get_instance_interface_port_property on page 405

• get_instance_interfaces on page 409

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

406

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.17. get_instance_interface_properties

Description
Returns the list of properties that you can query for an interface in an instance.

Usage
get_instance_interface_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instance_interface_properties

Related Information

• get_instance_interface_property on page 408

• get_instance_interfaces on page 409

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

407

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.18. get_instance_interface_property

Description
Returns the property value for an interface in a child instance.

Usage
get_instance_interface_property <instance> <interface> <property>

Returns

String The property value.

Arguments

instance The child instance name.

interface The interface name.

property The property name. Refer to Element Properties.

Example

get_instance_interface_property uart_0 s0 DESCRIPTION

Related Information

• get_instance_interface_properties on page 407

• get_instance_interfaces on page 409

• Element Properties on page 543

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

408

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.19. get_instance_interfaces

Description
Returns the list of interfaces in an instance.

Usage
get_instance_interfaces <instance>

Returns

String[] The list of interface names.

Arguments

instance The instance name.

Example

get_instance_interfaces uart_0

Related Information

• get_instance_interface_ports on page 406

• get_instance_interface_properties on page 407

• get_instance_interface_property on page 408

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

409

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.20. get_instance_parameter_property

Description
Returns the property value of a parameter in an instance. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns

various The parameter property value.

Arguments

instance The instance name.

parameter The parameter name.

property The property name of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property uart_0 baudRate ENABLED

Related Information

• get_instance_parameters on page 413

• get_parameter_properties on page 529

• Parameter Properties on page 548

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

410

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.21. get_instance_parameter_value

Description
Returns the parameter value in a child instance.

Usage
get_instance_parameter_value <instance> <parameter>

Returns

various The parameter value.

Arguments

instance The instance name.

parameter The parameter name.

Example

get_instance_parameter_value pixel_converter input_DPI

Related Information

• get_instance_parameters on page 413

• set_instance_parameter_value on page 420

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

411

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.22. get_instance_parameter_values

Description
Returns a list of the parameters' values in a child instance.

Usage
get_instance_parameter_values <instance> <parameters>

Returns

String[] A list of the parameters' value.

Arguments

instance The child instance name.

parameter A list of parameter names in the instance.

Example

get_instance_parameter_value uart_0 [list param1 param2]

Related Information

• get_instance_parameters on page 413

• set_instance_parameter_value on page 420

• set_instance_parameter_values on page 421

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

412

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.23. get_instance_parameters

Description
Returns the names of all parameters for a child instance that the parent can
manipulate. This command omits derived parameters and parameters that have the
SYSTEM_INFO parameter property set.

Usage
get_instance_parameters <instance>

Returns

instance The list of parameters in the instance.

Arguments

instance The instance name.

Example

get_instance_parameters uart_0

Related Information

• get_instance_parameter_property on page 410

• get_instance_parameter_value on page 411

• set_instance_parameter_value on page 420

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

413

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.24. get_instance_port_property

Description
Returns the property value of a port contained by an interface in a child instance.

Usage
get_instance_port_property <instance> <port> <property>

Returns

various The property value for the port.

Arguments

instance The child instance name.

port The port name.

property The property name. Refer to Port Properties.

Example

get_instance_port_property uart_0 tx WIDTH

Related Information

• get_instance_interface_ports on page 406

• get_port_properties on page 509

• Port Properties on page 552

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

414

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.25. get_instance_properties

Description
Returns the list of properties for a child instance.

Usage
get_instance_properties

Returns

String[] The list of property names for the child instance.

Arguments
No arguments.

Example

get_instance_properties

Related Information

get_instance_property on page 416

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

415

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.26. get_instance_property

Description
Returns the property value for a child instance.

Usage
get_instance_property <instance> <property>

Returns

String The property value.

Arguments

instance The child instance name.

property The property name. Refer to Element Properties.

Example

get_instance_property uart_0 ENABLED

Related Information

• get_instance_properties on page 415

• Element Properties on page 543

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

416

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.27. get_instances

Description
Returns the list of the instance names for all the instances in the system.

Usage
get_instances

Returns

String[] The list of child instance names.

Arguments
No arguments.

Example

get_instances

Related Information

• add_instance on page 391

• remove_instance on page 419

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

417

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.28. is_instance_parameter_update_callback_enabled

Description
Returns true if you enable the update callback for instance parameters.

Usage
is_instance_parameter_update_callback_enabled

Returns

boolean 1 if you enable the callback; 0 if you disable the callback.

Arguments
No arguments

Example

is_instance_parameter_update_callback_enabled

Related Information

enable_instance_parameter_update_callback on page 396

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

418

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.29. remove_instance

Description
Removes an instance from the system.

Usage
remove_instance <instance>

Returns
No return value.

Arguments

instance The child instance name to remove.

Example

remove_instance cpu

Related Information

• add_instance on page 391

• get_instances on page 417

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

419

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.30. set_instance_parameter_value

Description
Sets the parameter value for a child instance. You cannot set derived parameters and
SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
No return value.

Arguments

instance The child instance name.

parameter The parameter name.

value The parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Related Information

• get_instance_parameter_value on page 411

• get_instance_parameter_property on page 410

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

420

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.31. set_instance_parameter_values

Description
Sets a list of parameter values for a child instance. You cannot set derived parameters
and SYSTEM_INFO parameters for the child instance with this command.

Usage
set_instance_parameter_value <instance> <parameter_value_pairs>

Returns
No return value.

Arguments

instance The child instance name.

parameter_value_pairs The pairs of parameter name and value to set.

Example

set_instance_parameter_value uart_0 [list baudRate 9600 parity odd]

Related Information

• get_instance_parameter_value on page 411

• get_instance_parameter_values on page 412

• get_instance_parameters on page 413

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

421

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.4.32. set_instance_property

Description
Sets the property value of a child instance. Most instance properties are read-only and
can only be set by the instance itself. The primary use for this command is to update
the ENABLED parameter, which includes or excludes a child instance when generating
Platform Designer interconnect.

Usage
set_instance_property <instance> <property> <value>

Returns
No return value.

Arguments

instance The child instance name.

property The property name. Refer to Instance Properties.

value The property value.

Example

set_instance_property cpu ENABLED false

Related Information

• get_instance_parameters on page 413

• get_instance_property on page 416

• Instance Properties on page 544

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

422

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5. Instantiations

This section lists the commands that allow you to manipulate the loaded instantiations
in a Platform Designer system.

add_instantiation_hdl_file on page 425

add_instantiation_interface on page 426

add_instantiation_interface_port on page 427

copy_instance_interface_to_instantiation on page 428

get_instantiation_assignment_value on page 429

get_instantiation_assignments on page 430

get_instantiation_hdl_file_properties on page 431

get_instantiation_hdl_file_property on page 432

get_instantiation_hdl_files on page 433

get_instantiation_interface_assignment_value on page 434

get_instantiation_interface_assignments on page 435

get_instantiation_interface_parameter_value on page 436

get_instantiation_interface_parameters on page 437

get_instantiation_interface_port_properties on page 438

get_instantiation_interface_port_property on page 439

get_instantiation_interface_ports on page 440

get_instantiation_interface_property on page 441

get_instantiation_interface_properties on page 442

get_instantiation_interface_sysinfo_parameter_value on page 443

get_instantiation_interface_sysinfo_parameters on page 444

get_instantiation_interfaces on page 445

get_instantiation_properties on page 446

get_instantiation_property on page 447

get_loaded_instantiation on page 448

import_instantiation_interfaces on page 449

load_instantiation on page 450

remove_instantiation_hdl_file on page 451

remove_instantiation_interface on page 452

remove_instantiation_interface_port on page 453

save_instantiation on page 454

set_instantiation_assignment_value on page 455

set_instantiation_hdl_file_property on page 456

set_instantiation_interface_assignment_value on page 457

set_instantiation_interface_parameter_value on page 458

set_instantiation_interface_port_property on page 459

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

423

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instantiation_interface_sysinfo_parameter_value on page 460

set_instantiation_property on page 461

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

424

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.1. add_instantiation_hdl_file

Description
Adds an HDL file to the loaded instantiation.

Usage
add_instantiation_hdl_file <file> [<kind>]

Returns
No return value.

Arguments

file Specifies the HDL file name.

kind(optional) Indicates the file set kind to add the file to. If you do not specify this
option, the command adds the file to all the file sets. Refer to File Set
Kind.

Example

add_instantiation_hdl_file my_nios2_gen2.vhdl quartus_synth

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• File Set Kind on page 559

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

425

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.2. add_instantiation_interface

Description
Adds an interface to the loaded instantiation.

Usage
add_instantiation_interface <interface> <type> <direction>

Returns
No return value.

Arguments

interface Specifies the interface name.

type Specifies the interface type.

direction Specifies the interface direction. Refer to Interface Direction.

Example

add_instantiation_interface clk_0 clock OUTPUT

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Interface Direction on page 558

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

426

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.3. add_instantiation_interface_port

Description
Adds a port to a loaded instantiation's interface.

Usage
add_instantiation_interface_port <interface> <port> <role> <width>
<vhdl_type><direction>

Returns
No return value.

Arguments

interface Specifies the interface name.

port Specifies the port name.

role Specifies the port role.

width Specifies the port width.

vhdl_type Specifies the VHDL type of the port. Refer to VHDL Type.

direction Specifies the port direction. Refer to Direction Properties.

Example

add_instantiation_interface_port avs_s0 avs_s0_address address 8 {standard
logic vector} input

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• VHDL Type on page 566

• Direction Properties on page 542

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

427

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.4. copy_instance_interface_to_instantiation

Description
Adds an interface to a loaded instantiation by copying the specified interface of
another instance.

Usage
copy_instance_interface_to_instantiation <instance> <interface> <type>

Returns

String The name of the newly added interface.

Arguments

instance Specifies the name of the instance to copy the interface from.

interface Specifies the name of the interface to copy.

type Specifies the type of copy to make. Refer to Instantiation Interface Duplicate
Type.

Example

copy_instance_interface_to_instantiation cpu_0 data_master CLONE

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Instantiation Interface Duplicate Type on page 562

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

428

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.5. get_instantiation_assignment_value

Description
Gets the assignment value on the loaded instantiation.

Usage
get_instantiation_assignment_value <name>

Returns

String The assignment value.

Arguments

name Specifies the name of the assignment to get the value of.

Example

get_instantiation_assignment_value embeddedsw.configuration.exceptionOffset

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

429

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.6. get_instantiation_assignments

Description
Gets the assignment names in the loaded instantiation.

Usage
get_instantiation_assignments

Returns

String[] The list of assignment names.

Arguments
No arguments

Example

get_instantiation_assignments

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

430

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.7. get_instantiation_hdl_file_properties

Description
Returns the list of properties in an HDL file associated with an instantiation.

Usage
get_instantiation_hdl_file_properties

Returns

String[] The list of property names.

Arguments
No arguments

Example

get_instantiation_hdl_file_properties

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

431

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.8. get_instantiation_hdl_file_property

Description
Returns the property value of an HDL file associated with the loaded instantiation.

Usage
get_instantiation_hdl_file_property <file> <property>

Returns

various The property value.

Arguments

file Specifies the HDL file name.

property Specifies the property name. Refer to Instantiation Hdl File Properties.

Example

get_instantiation_hdl_file_property my_nios2_gen2.vhdl OUTPUT_PATH

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Instantiation HDL File Properties on page 561

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

432

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.9. get_instantiation_hdl_files

Description
Returns the list of HDL files of the loaded instantiation.

Usage
get_instantiation_hdl_files [<kind>]

Returns

String[] The list of HDL file names.

Arguments

kind (optional) Specifies the file set kind to get the files of. If you do not specify this
option, the command gets the QUARTUS_SYNTH files. Refer to File Set
Kind.

Example

get_instantiation_hdl_files quartus_synth

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• File Set Kind on page 559

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

433

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.10. get_instantiation_interface_assignment_value

Description
Gets the assignment value of the loaded instantiation's interface.

Usage
get_instantiation_interface_assignment_value <interface> <name>

Returns

String The assignment value

Arguments

interface Specifies the interface name.

name Specifies the assignment name to get the value of.

Example

get_instantiation_interface_assignment_value avs_s0
embeddedsw.configuration.exceptionOffset

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

434

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.11. get_instantiation_interface_assignments

Description
Gets the assignment names of the loaded instantiation's interface.

Usage
get_instantiation_interface_assignments <interface>

Returns

String[] The list of assignment names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_assignments avs_s0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

435

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.12. get_instantiation_interface_parameter_value

Description
Returns the parameter value of a loaded instantiation's interface.

Usage
get_instantiation_interface_parameter_value <interface> <parameter>

Returns

String The parameter value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

Example

get_instantiation_interface_parameter_value avs_s0 associatedClock

Related Information

• get_instantiation_interface_parameters on page 437

• set_instantiation_interface_parameter_value on page 458

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

436

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.13. get_instantiation_interface_parameters

Description
Returns the list of parameters of an instantiation's interface.

Usage
get_instantiation_interface_parameters <interface>

Returns

String[] The list of parameter names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_parameters avs_s0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• get_instantiation_interface_parameter_value on page 436

• set_instantiation_interface_parameter_value on page 458

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

437

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.14. get_instantiation_interface_port_properties

Description
Returns the list of port properties of an instantiation's interface.

Usage
get_instantiation_interface_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments

Example

get_instantiation_interface_port_properties

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

438

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.15. get_instantiation_interface_port_property

Description
Returns the port property value of a loaded instantiation's interface.

Usage
get_instantiation_interface_port_property <interface> <port>
<property>

Returns

various The property value.

Arguments

interface Specifies the interface name.

port Specifies the port name.

property Specifies the property name. Refer to Port Properties.

Example

get_instantiation_interface_port_property avs_s0 avs_s0_address WIDTH

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Port Properties on page 565

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

439

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.16. get_instantiation_interface_ports

Description
Returns the list of ports of the loaded instantiation's interface.

Usage
get_instantiation_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface Specifies the interface name.

Example

get_instantiation_interface_ports avs_s0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

440

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.17. get_instantiation_interface_property

Description
Returns the value of a single interface property from the specified instantiation
interface.

Usage
get_instantiation_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The interface name on the currently loaded interface.

property The property name. Refer to Instantiation Interface Properties.

Example

get_instantiation_interface_property in_clk TYPE

Related Information

• get_instantiation_interface_properties on page 442

• load_instantiation on page 450

• Instantiation Interface Properties on page 563

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

441

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.18. get_instantiation_interface_properties

Description
Returns the names of all the available instantiation interface properties, common to all
interface types.

Usage
get_instantiation_interface_properties

Returns

String[] A list of instantiation interface properties.

Arguments
No arguments.

Example

get_instantiation_interface_properties

Related Information

get_instantiation_interface_property on page 441

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

442

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.19. get_instantiation_interface_sysinfo_parameter_value

Description
Gets the system info parameter value for a loaded instantiation's interface.

Usage
get_instantiation_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info property value.

Arguments

interface Specifies the interface name.

parameter Specifies the system info parameter name. Refer to System Info Type.

Example

get_instantiation_interface_sysinfo_parameter_value debug_mem_slave
max_slave_data_width

Related Information

• get_instantiation_interface_sysinfo_parameters on page 444

• set_instantiation_interface_sysinfo_parameter_value on page 460

• System Info Type Properties on page 554

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

443

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.20. get_instantiation_interface_sysinfo_parameters

Description
Returns the list of system info parameters for the loaded instantiation's interface.

Usage
get_instantiation_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the interface name.

type (optional) Specifies the parameters type to return. If you do not specify this
option, the command returns all the parameters. Refer to Access
Type.

Example

get_instantiation_interface_sysinfo_parameters debug_mem_slave

Related Information

• get_instantiation_interface_sysinfo_parameter_value on page 443

• set_instantiation_interface_sysinfo_parameter_value on page 460

• Access Type on page 560

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

444

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.21. get_instantiation_interfaces

Description
Returns the list of interfaces for the loaded instantiation.

Usage
get_instantiation_interfaces

Returns

String[] The list of interface names.

Arguments
No arguments.

Example

get_instantiation_interfaces

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

445

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.22. get_instantiation_properties

Description
Returns the list of properties for the loaded instantiation.

Usage
get_instantiation_properties

Returns

String[] The list of property names.

Arguments
No arguments.

Example

get_instantiation_properties

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

446

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.23. get_instantiation_property

Description
Returns the value of the specified property for the loaded instantiation.

Usage
get_instantiation_property <property>

Returns

various The value of an instantiation property.

Arguments

property Specifies the property name to get the value of. Refer to Instantiation
Properties.

Example

get_instantiation_property HDL_ENTITY_NAME

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Instantiation Properties on page 564

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

447

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.24. get_loaded_instantiation

Description
Returns the instance name of the loaded instantiation.

Usage
get_loaded_instantiation

Returns

String The instance name.

Arguments
No arguments

Example

get_loaded_instantiation

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

448

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.25. import_instantiation_interfaces

Description
Sets the interfaces of a loaded instantiation by importing the interfaces from the
specified file.

Usage
import_instantiation_interfaces <file>

Returns
No return value

Arguments

file Specifies the The IP or IP-XACT file to import the interfaces from.

Example

import_instantiation_interfaces ip/my_system/my_system_nios2_gen2_0.ip

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

449

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.26. load_instantiation

Description
Loads the instantiation of an instance, so that you can modify the instantiation if
necessary.

Usage
load_instantiation <instance>

Returns

boolean 1 if successful; 0 if unsuccessful.

Arguments

instance Specifies the instance name.

Example

load_instantiation cpu

Related Information

save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

450

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.27. remove_instantiation_hdl_file

Description
Removes an HDL file from the loaded instantiation.

Usage
remove_instantiation_hdl_file <file> [<kind>]

Returns
No return value.

Arguments

file Specifies the HDL file name.

kind (optional) Specifies the kind of file set to remove the file from. If you do not
specify this option, the command removes the file from all the file
sets. Refer to File Set Kind.

Example

remove_instantiation_hdl_file my_nios2_gen2.vhdl quartus_synth

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• File Set Kind on page 559

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

451

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.28. remove_instantiation_interface

Description
Removes an interface from a loaded instantiation.

Usage
remove_instantiation_interface <interface>

Returns
No return value

Arguments

interface Specifies the interface name.

Example

remove_instantiation_interface avs_s0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

452

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.29. remove_instantiation_interface_port

Description
Removes a port from a loaded instantiation's interface.

Usage
remove_instantiation_interface_port <interface> <port>

Returns
No return value

Arguments

interface Specifies the interface name.

port Specifies the port name.

Example

remove_instantiation_interface_port avs_s0 avs_s0_address

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

453

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.30. save_instantiation

Description
Saves the loaded instantiation.

Usage
save_instantiation

Returns
No return value

Arguments
No arguments

Example

save_instantiation

Related Information

load_instantiation on page 450

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

454

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.31. set_instantiation_assignment_value

Description
Sets the assignment value for the loaded instantiation.

Usage
set_instantiation_assignment_value <name> [<value>]

Returns
No return value

Arguments

instance Specifies the assignment name to set value for.

value (optional) Specifies the assignment value. If you do not specify this option, the
command removes the assignment.

Example

set_instantiation_assignment_value embeddedsw.configuration.exceptionOffset 32

Related Information

get_instantiation_assignment_value on page 429

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

455

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.32. set_instantiation_hdl_file_property

Description
Sets the property value for an HDL file associated with a loaded instantiation.

Usage
set_instantiation_hdl_file_property<file> <property> <value>

Returns
No return value

Arguments

file Specifies the HDL file name.

property Specifies the property name. Refer to Instantiation Hdl File Properties.

value Specifies the property value.

Example

set_instantiation_hdl_file_property my_nios2_gen2.vhdl OUTPUT_PATH
my_nios2_gen2.vhdl

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Instantiation HDL File Properties on page 561

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

456

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.33. set_instantiation_interface_assignment_value

Description
Sets the assignment value for the loaded instantiation's interface.

Usage
set_instantiation_interface_assignment_value <interface> <name>
[<value>]

Returns
No return value

Arguments

interface Specifies the interface name.

name Specifies the assignment name to set the value of.

value (optional) Specifies the new assignment value. If you do not specify this value,
the command removes the assignment.

Example

set_instantiation_interface_assignment_value
embeddedsw.configuration.exceptionOffset 32

Related Information

get_instantiation_assignment_value on page 429

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

457

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.34. set_instantiation_interface_parameter_value

Description
Sets the parameter value for the loaded instantiation's interface.

Usage
set_instantiation_interface_parameter_value <interface> <parameter>
<value>

Returns
No return value

Arguments

instance Specifies the interface name.

parameter Specifies the parameter name.

value Specifies the parameter value.

Example

set_instantiation_interface_parameter avs_s0 associatedClock clk

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• get_instantiation_interface_parameter_value on page 436

• get_instantiation_interface_parameters on page 437

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

458

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.35. set_instantiation_interface_port_property

Description
Sets the port property value on a loaded instantiation's interface.

Usage
set_instantiation_interface_port_property <interface> <port>
<property> <value>

Returns
No return value

Arguments

interface Specifies the interface name.

port Specifies the port name.

property Specifies the property name. Refer to Port Properties.

value Specifies the property value.

Example

set_instantiation_interface_port_property avs_s0 avs_s0_address WIDTH 1

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Port Properties on page 565

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

459

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.36. set_instantiation_interface_sysinfo_parameter_value

Description
Sets the system info parameter value for the loaded instantiation's interface.

Usage
set_instantiation_interface_sysinfo_parameter_value <interface>
<parameter> <value>

Returns
No return value

Arguments

interface Specifies the interface name.

parameter Specifies the system info parameter name. Refer to System Info Type.

value Specifies the system info parameter value.

Example

set_instantiation_interface_sysinfo_parameter_value debug_mem_slave
max_slave_data_width 64

Related Information

• get_instantiation_interface_sysinfo_parameter_value on page 443

• get_instantiation_interface_sysinfo_parameters on page 444

• System Info Type Properties on page 554

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

460

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.5.37. set_instantiation_property

Description
Sets the property value for the loaded instantiation.

Usage
set_instantiation_property <property> <value>

Returns
No return value

Arguments

property Specifies the property name. Refer to Instantiation Properties.

value Specifies the value to set.

Example

set_instantiation_property HDL_ENTITY_NAME my_system_nios2_gen2_0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• Instantiation Properties on page 564

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

461

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6. Components

This section lists the commands that allow you to manipulate the IP components
loaded in a Platform Designer system.

apply_component_preset on page 463

get_component_assignment on page 464

get_component_assignments on page 465

get_component_documentation_links on page 466

get_component_interface_assignment on page 467

get_component_interface_assignments on page 468

get_component_interface_parameter_property on page 469

get_component_interface_parameter_value on page 470

get_component_interface_parameters on page 471

get_component_interface_port_property on page 472

get_component_interface_ports on page 473

get_component_interface_property on page 474

get_component_interfaces on page 475

get_component_parameter_property on page 476

get_component_parameter_value on page 477

get_component_parameters on page 478

get_component_project_properties on page 479

get_component_project_property on page 480

get_component_property on page 481

get_loaded_component on page 482

load_component on page 483

reload_component_footprint on page 484

save_component on page 485

set_component_parameter_value on page 486

set_component_project_property on page 487

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

462

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.1. apply_component_preset

Description
Applies the settings in a preset to the loaded component.

Usage
apply_component_preset<preset_name>

Returns
No return value

Arguments

preset_name Specifies the preset name.

Example

apply_component_preset "Custom Debug Settings"

Related Information

• load_component on page 483

• set_component_parameter_value on page 486

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

463

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.2. get_component_assignment

Description
Returns the assignment value for the loaded component.

Usage
get_component_assignment <assignment>

Returns

String The specified assignment value.

Arguments

assignment Specifies the assignment key value to query.

Example

get_component_assignment embeddedsw.CMacro.colorSpace

Related Information

• load_component on page 483

• get_component_assignments on page 465

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

464

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.3. get_component_assignments

Description
Returns the list of assignment keys for the loaded component.

Usage
get_component_assignments

Returns

String[] The list of assignment keys.

Arguments
No arguments

Example

get_component_assignments

Related Information

• get_instance_assignment on page 397

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

465

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.4. get_component_documentation_links

Description
Returns the list of all documentation links that the loaded component provides.

Usage
get_component_documentation_links

Returns

String[] The list of documentation links.

Arguments
No arguments

Example

get_component_documentation_links

Related Information

load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

466

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.5. get_component_interface_assignment

Description
Returns the assignment value of an interface of the loaded component.

Usage
get_component_interface_assignment <interface> <assignment>

Returns

String The specified assignment value.

Arguments

interface Specifies the interface name.

assignment Specifies the assignment key to the query.

Example

get_component_interface_assignment s1 embeddedsw.configuration.isFlash

Related Information

• get_component_interface_assignments on page 468

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

467

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.6. get_component_interface_assignments

Description
Returns the list of assignment keys for any assignments that you define for an
interface on the loaded component.

Usage
get_component_interface_assignments <interface>

Returns

String[] The list of assignment keys.

Arguments

interface Specifies the interface name.

Example

get_component_interface_assignments s1

Related Information

• get_component_interface_assignment on page 467

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

468

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.7. get_component_interface_parameter_property

Description
Returns the property value of a parameter in a loaded component's interface.
Parameter properties are metadata about how the Intel Quartus Prime uses the
parameters.

Usage
get_component_interface_parameter_property <interface> <parameter>
<property>

Returns

various The parameter property value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

property Specifies the parameter property. Refer to Parameter Properties.

Example

get_component_interface_parameter_property s0 setupTime ENABLED

Related Information

• get_component_interface_parameters on page 471

• get_component_interfaces on page 475

• load_component on page 483

• Parameter Properties on page 548

• get_parameter_properties on page 529

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

469

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.8. get_component_interface_parameter_value

Description
Returns the parameter value of an interface of the loaded component.

Usage
get_component_interface_parameter_value <interface> <parameter>

Returns

various The parameter value.

Arguments

interface Specifies the interface name.

parameter Specifies the parameter name.

Example

get_component_interface_parameter_value s0 setupTime

Related Information

• get_component_interface_parameters on page 471

• get_component_interfaces on page 475

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

470

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.9. get_component_interface_parameters

Description
Returns the list of parameters for an interface of the loaded component.

Usage
get_component_interface_parameters <interface>

Returns

String[] The list of parameter names.

Arguments

interface Specifies the interface name.

Example

get_component_interface_parameters s0

Related Information

• get_component_interface_parameter_value on page 470

• get_component_interfaces on page 475

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

471

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.10. get_component_interface_port_property

Description
Returns the property value of a port in the interface of the loaded component.

Usage
get_component_interface_port_property <interface> <port> <property>

Returns

various The port property value

Arguments

interface Specifies the interface name.

port Specifies the port name of the interface.

property Specifies the property name of the port. Refer to Port Properties.

Example

get_component_interface_port_property exports tx WIDTH

Related Information

• get_component_interface_ports on page 473

• load_component on page 483

• Port Properties on page 565

• get_port_properties on page 509

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

472

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.11. get_component_interface_ports

Description
Returns the list of interface ports of the loaded component.

Usage
get_component_interface_ports <interface>

Returns

String[] The list of port names

Arguments

interface Specifies the interface name.

Example

get_component_interface_ports s0

Related Information

• get_component_interface_port_property on page 472

• get_component_interfaces on page 475

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

473

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.12. get_component_interface_property

Description
Returns the value of a single property from the specified interface for the loaded
component.

Usage
get_component_interface_property <interface> <property>

Returns

String The property value.

Arguments

interface Specifies the interface name.

property Specifies the property name. Refer to Element Properties.

Example

get_interface_property clk_in DISPLAY_NAME

Related Information

• load_component on page 483

• Element Properties on page 543

• get_interface_properties on page 506

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

474

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.13. get_component_interfaces

Description
Returns the list of interfaces in the loaded component.

Usage
get_component_interfaces

Returns

String[] The list of interface names.

Arguments
No arguments

Example

get_component_interfaces

Related Information

• get_component_interface_ports on page 473

• get_component_interface_property on page 474

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

475

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.14. get_component_parameter_property

Description
Returns the property value of a parameter in the loaded component.

Usage
get_component_parameter_property <parameter> <property>

Returns

Various The parameter property value.

Arguments

parameter Specifies the parameter name in the component.

property Specifies the property name of the parameter. Refer to Parameter
Properties.

Example

get_component_parameter_property baudRate ENABLED

Related Information

• get_component_parameters on page 478

• get_parameter_properties on page 529

• load_component on page 483

• Parameter Properties on page 548

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

476

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.15. get_component_parameter_value

Description
Returns the parameter value in the loaded component.

Usage
get_component_parameter_value <parameter>

Returns

various The parameter value

Arguments

parameter Specifies the parameter name in the component.

Example

get_component_parameter_value baudRate

Related Information

• get_component_parameters on page 478

• load_component on page 483

• set_component_parameter_value on page 486

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

477

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.16. get_component_parameters

Description
Returns the list of parameters in the loaded component.

Usage
get_component_parameters

Returns

String[] The list of parameters in the component.

Arguments
No arguments

Example

get_instance_parameters

Related Information

• get_component_parameter_property on page 476

• get_component_parameter_value on page 477

• load_component on page 483

• set_component_parameter_value on page 486

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

478

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.17. get_component_project_properties

Description
Returns the list of properties that you query about the loaded component's Intel
Quartus Prime project.

Usage
get_component_project_properties

Returns

String[] The list of project properties.

Arguments
No arguments

Example

get_component_project_properties

Related Information

• get_component_project_property on page 480

• load_component on page 483

• set_component_project_property on page 487

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

479

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.18. get_component_project_property

Description
Returns the project property value of the loaded component. Only select project
properties are available.

Usage
get_component_project_property <property>

Returns

String The property value.

Arguments

property Specifies the project property name. Refer to Project Properties.

Example

get_component_project_property HIDE_FROM_IP_CATALOG

Related Information

• get_component_project_properties on page 479

• load_component on page 483

• set_component_project_property on page 487

• Project Properties on page 553

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

480

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.19. get_component_property

Description
Returns the property value of the loaded component.

Usage
get_component_property <property>

Returns

String The property value.

Arguments

property The property name on the loaded component. Refer to Element Properties.

Example

get_component_property CLASS_NAME

Related Information

• load_component on page 483

• get_instance_properties on page 415

• Element Properties on page 543

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

481

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.20. get_loaded_component

Description
Returns the instance name associated with the loaded component.

Usage
get_loaded_component

Returns

String The instance name.

Arguments
No arguments

Example

get_loaded_component

Related Information

• load_component on page 483

• save_component on page 485

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

482

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.21. load_component

Description
Loads the actual component inside of a generic component, so that you can modify
the component parameters.

Usage
load_component <instance>

Returns

boolean 1 if successful; 0 if unsuccessful.

Arguments

instance Specifies the instance name.

Example

load_component cpu

Related Information

• get_loaded_component on page 482

• save_component on page 485

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

483

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.22. reload_component_footprint

Description
Validates the footprint of a specified child instance, and updates the footprint of the
instance in case of issues.

Usage
reload_component_footprint [<instance>]

Returns

String[] A list of validation messages.

Arguments

instance
(optional)

Specifies the child instance name to validate. If you do not specify
this option, the command validates all the generic components in
the system.

Example

reload_component_footprint cpu_0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• validate_component_footprint on page 523

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

484

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.23. save_component

Description
Saves the loaded component.

Usage
save_component

Returns
No return value

Arguments
No arguments

Example

save_component

Related Information

• get_loaded_component on page 482

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

485

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.24. set_component_parameter_value

Description
Sets the parameter value for the loaded component.

Usage
set_component_parameter_value <parameter> <value>

Returns
No return value

Arguments

parameter Specifies the parameter name.

parameter Specifies the new parameter value.

Example

set_component_parameter_value baudRate 9600

Related Information

• get_component_parameter_value on page 477

• get_component_parameters on page 478

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

486

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6.25. set_component_project_property

Description
Sets the project property value of the loaded component, such as hiding from the IP
catalog.

Usage
set_component_project_property <property> <value>

Returns
No return value

Arguments

property Specifies the property name. Refer to Project Properties.

value Specifies the new property value.

Example

set_component_project_property HIDE_FROM_IP_CATALOG false

Related Information

• get_component_project_properties on page 479

• get_component_project_property on page 480

• load_component on page 483

• Project Properties on page 553

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

487

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7. Connections

This section lists the commands that allow you to manipulate the interface connections
in your Platform Designer system.

add_connection on page 489

auto_connect on page 490

get_connection_parameter_property on page 491

get_connection_parameter_value on page 492

get_connection_parameters on page 493

get_connection_properties on page 494

get_connection_property on page 495

get_connections on page 496

remove_connection on page 497

remove_dangling_connections on page 498

set_connection_parameter_value on page 499

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

488

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.1. add_connection

Description
Connects the named interfaces using an appropriate connection type. Both interface
names consist of an instance name, followed by the interface name that the module
provides.

Usage
add_connection <start> [<end>]

Returns
No return value.

Arguments

start The start interface that you connect, in
<instance_name>.<interface_name> format. If you do not specify the end
argument, the connection must be of the form <instance1>.<interface>/
<instance2>.<interface>.

end (optional) The end interface that you connect, in
<instance_name>.<interface_name> format.

Example

add_connection dma.read_master sdram.s1

Related Information

• get_connection_parameter_value on page 492

• get_connection_property on page 495

• get_connections on page 496

• remove_connection on page 497

• set_connection_parameter_value on page 499

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

489

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.2. auto_connect

Description
Creates connections from an instance or instance interface to matching interfaces of
other instances in the system. For example, Avalon-MM slaves connect to Avalon-MM
masters.

Usage
auto_connect <element>

Returns
No return value.

Arguments

element The instance interface name, or the instance name.

Example

auto_connect sdram
auto_connect uart_0.s1

Related Information

add_connection on page 489

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

490

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.3. get_connection_parameter_property

Description
Returns the property value of a parameter in a connection. Parameter properties are
metadata about how Platform Designer uses the parameter.

Usage
get_connection_parameter_property <connection> <parameter> <property>

Returns

various The parameter property value.

Arguments

connection The connection to query.

parameter The parameter name.

property The property of the connection. Refer to Parameter Properties.

Example

get_connection_parameter_property cpu.data_master/dma0.csr baseAddress UNITS

Related Information

• get_connection_parameter_value on page 492

• get_connection_property on page 495

• get_connections on page 496

• get_parameter_properties on page 529

• Parameter Properties on page 548

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

491

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.4. get_connection_parameter_value

Description
Returns the parameter value of the connection. Parameters represent aspects of the
connection that you can modify, such as the base address for an Avalon-MM
connection.

Usage
get_connection_parameter_value <connection> <parameter>

Returns

various The parameter value.

Arguments

connection The connection to query.

parameter The parameter name.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Information

• get_connection_parameters on page 493

• get_connections on page 496

• set_connection_parameter_value on page 499

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

492

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.5. get_connection_parameters

Description
Returns the list of parameters of a connection.

Usage
get_connection_parameters <connection>

Returns

String[] The list of parameter names.

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Information

• get_connection_parameter_property on page 491

• get_connection_parameter_value on page 492

• get_connection_property on page 495

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

493

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.6. get_connection_properties

Description
Returns the properties list of a connection.

Usage
get_connection_properties

Returns

String[] The list of connection properties.

Arguments
No arguments.

Example

get_connection_properties

Related Information

• get_connection_property on page 495

• get_connections on page 496

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

494

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.7. get_connection_property

Description
Returns the property value of a connection. Properties represent aspects of the
connection that you can modify, such as the connection type.

Usage
get_connection_property <connection> <property>

Returns

String The connection property value.

Arguments

connection The connection to query.

property The connection property name. Refer to Connection Properties.

Example

get_connection_property cpu.data_master/dma0.csr TYPE

Related Information

• get_connection_properties on page 494

• Connection Properties on page 540

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

495

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.8. get_connections

Description
Returns the list of all connections in the system if you do not specify any element. If
you specify a child instance, for example cpu, Platform Designer returns all
connections to any interface on the instance. If you specify an interface of a child
instance, for example cpu.instruction_master, Platform Designer returns all
connections to that interface.

Usage
get_connections [<element>]

Returns

String[] The list of connections.

Arguments

element (optional) The child instance name, or the qualified interface name on a
child instance.

Example

get_connections
get_connections cpu
get_connections cpu.instruction_master

Related Information

• add_connection on page 489

• remove_connection on page 497

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

496

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.9. remove_connection

Description
Removes a connection from the system.

Usage
remove_connection <connection>

Returns
No return value.

Arguments

connection The connection name to remove.

Example

remove_connection cpu.data_master/sdram.s0

Related Information

• add_connection on page 489

• get_connections on page 496

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

497

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.10. remove_dangling_connections

Description

Removes connections where both end points of the connection no longer exist in the
system.

Usage
remove_dangling_connections

Returns
No return value.

Arguments
No arguments.

Example

remove_dangling_connections

Related Information

• add_connection on page 489

• get_connections on page 496

• remove_connection on page 497

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

498

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.7.11. set_connection_parameter_value

Description
Sets the parameter value for a connection.

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection The connection name.

parameter The parameter name.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress "0x000a0000"

Related Information

• get_connection_parameter_value on page 492

• get_connection_parameters on page 493

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

499

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8. Top-level Exports

This section lists the commands that allow you to manipulate the exported interfaces
in your Platform Designer system.

add_interface on page 501

get_exported_interface_sysinfo_parameter_value on page 502

get_exported_interface_sysinfo_parameters on page 503

get_interface_port_property on page 504

get_interface_ports on page 505

get_interface_properties on page 506

get_interface_property on page 507

get_interfaces on page 508

get_port_properties on page 509

remove_interface on page 510

set_exported_interface_sysinfo_parameter_value on page 511

set_interface_port_property on page 512

set_interface_property on page 513

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

500

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.1. add_interface

Description
Adds an interface to your system, which Platform Designer uses to export an interface
from within the system. You specify the exported internal interface with
set_interface_property <interface> EXPORT_OF instance.interface.

Usage
add_interface <name> <type> <direction>.

Returns
No return value.

Arguments

name The name of the interface that Platform Designer exports from the system.

type The type of interface.

direction The interface direction.

Example

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Related Information

• get_interface_ports on page 505

• get_interface_properties on page 506

• get_interface_property on page 507

• set_interface_property on page 513

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

501

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.2. get_exported_interface_sysinfo_parameter_value

Description
Gets the value of a system info parameter for an exported interface.

Usage
get_exported_interface_sysinfo_parameter_value <interface>
<parameter>

Returns

various The system info parameter value.

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System Info
Type.

Example

get_exported_interface_sysinfo_parameter_value clk clock_rate

Related Information

• get_exported_interface_sysinfo_parameters on page 503

• set_exported_interface_sysinfo_parameter_value on page 511

• System Info Type Properties on page 554

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

502

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.3. get_exported_interface_sysinfo_parameters

Description
Returns the list of system info parameters for an exported interface.

Usage
get_exported_interface_sysinfo_parameters <interface> [<type>]

Returns

String[] The list of system info parameter names.

Arguments

interface Specifies the name of the exported interface.

type (optional) Specifies the parameters type to return. If you do not specify this
option, the command returns all the parameters. Refer to Access
Type.

Example

get_exported_interface_sysinfo_parameters clk

Related Information

• get_exported_interface_sysinfo_parameter_value on page 502

• set_exported_interface_sysinfo_parameter_value on page 511

• Access Type on page 560

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

503

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.4. get_interface_port_property

Description
Returns the value of a property of a port contained by one of the top-level exported
interfaces.

Usage
get_interface_port_property <interface> <port> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

port The port name in the interface.

property The property name on the port. Refer to Port Properties.

Example

get_interface_port_property uart_exports tx DIRECTION

Related Information

• get_interface_ports on page 505

• get_port_properties on page 509

• Port Properties on page 552

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

504

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.5. get_interface_ports

Description
Returns the names of all the added ports to a given interface.

Usage
get_interface_ports <interface>

Returns

String[] The list of port names.

Arguments

interface The top-level interface name of the system.

Example

get_interface_ports export_clk_out

Related Information

• get_interface_port_property on page 504

• get_interfaces on page 508

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

505

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.6. get_interface_properties

Description
Returns the names of all the available interface properties common to all interface
types.

Usage
get_interface_properties

Returns

String[] The list of interface properties.

Arguments
No arguments.

Example

get_interface_properties

Related Information

• get_interface_property on page 507

• set_interface_property on page 513

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

506

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.7. get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Usage
get_interface_property <interface> <property>

Returns

various The property value.

Arguments

interface The name of a top-level interface of the system.

property The name of the property. Refer to Interface Properties.

Example

get_interface_property export_clk_out EXPORT_OF

Related Information

• get_interface_properties on page 506

• set_interface_property on page 513

• Interface Properties on page 545

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

507

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.8. get_interfaces

Description
Returns the list of top-level interfaces in the system.

Usage
get_interfaces

Returns

String[] The list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Information

• add_interface on page 501

• get_interface_ports on page 505

• get_interface_property on page 507

• remove_interface on page 510

• set_interface_property on page 513

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

508

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.9. get_port_properties

Description
Returns the list of properties that you can query for ports.

Usage
get_port_properties

Returns

String[] The list of port properties.

Arguments
No arguments.

Example

get_port_properties

Related Information

• get_instance_interface_port_property on page 405

• get_instance_interface_ports on page 406

• get_instance_port_property on page 414

• get_interface_port_property on page 504

• get_interface_ports on page 505

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

509

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.10. remove_interface

Description
Removes an exported top-level interface from the system.

Usage
remove_interface <interface>

Returns
No return value.

Arguments

interface The name of the exported top-level interface.

Example

remove_interface clk_out

Related Information

• add_interface on page 501

• get_interfaces on page 508

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

510

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.11. set_exported_interface_sysinfo_parameter_value

Description
Sets the system info parameter value for an exported interface.

Usage
set_exported_interface_sysinfo_parameter_value <interface>
<parameter> <value>

Returns
No return value

Arguments

interface Specifies the name of the exported interface.

parameter Specifies the name of the system info parameter. Refer to System Info
Type.

value Specifies the system info parameter value.

Example

set_exported_interface_sysinfo_parameter_value clk clock_rate 5000000

Related Information

• get_exported_interface_sysinfo_parameter_value on page 502

• get_exported_interface_sysinfo_parameters on page 503

• System Info Type Properties on page 554

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

511

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.12. set_interface_port_property

Description
Sets the port property in a top-level interface of the system.

Usage
set_interface_port_property <interface> <port> <property> <value>

Returns
No return value

Arguments

interface Specifies the top-level interface name of the system.

port Specifies the port name in a top-level interface of the system.

property Specifies the property name of the port. Refer to Port Properties.

value Specifies the property value.

Example

set_interface_port_property clk clk_clk NAME my_clk

Related Information

• Port Properties on page 565

• get_interface_ports on page 505

• get_interfaces on page 508

• get_port_properties on page 509

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

512

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.8.13. set_interface_property

Description
Sets the value of a property on an exported top-level interface. You use this command
to set the EXPORT_OF property to specify which interface of a child instance is
exported via this top-level interface.

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property. Refer to Interface Properties.

value The property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out

Related Information

• add_interface on page 501

• get_interface_properties on page 506

• get_interface_property on page 507

• Interface Properties on page 545

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

513

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9. Validation

This section lists the commands that allow you to validate the components, instances,
interfaces and connections in a Platform Designer system.

set_validation_property on page 515

sync_sysinfo_parameters on page 516

validate_component on page 517

validate_component_interface on page 518

validate_connection on page 519

validate_instance on page 520

validate_instance_interface on page 521

validate_system on page 522

validate_component_footprint on page 523

reload_component_footprint on page 484

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

514

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.1. set_validation_property

Description
Sets a property that affects how and when validation is run. To disable system
validation after each scripting command, set AUTOMATIC_VALIDATION to False.

Usage
set_validation_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Validation Properties.

value The new property value.

Example

set_validation_property AUTOMATIC_VALIDATION false

Related Information

• validate_system on page 522

• Validation Properties on page 557

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

515

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.2. sync_sysinfo_parameters

Description
Updates the system info parameters of the specified generic component.

Usage
sync_sysinfo_parameters [<instance>]

Returns

String[] A list of update messages.

Arguments

instance
(optional)

Specifies the name of the instance to sync. If you do not specify
this option, the command synchronizes all the generic
components in the system.

Example

sync_sysinfo_parameters cpu_0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

516

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.3. validate_component

Description
Validates the loaded component.

Usage
validate_component

Returns

String[] A list of validation messages.

Arguments
No arguments

Example

validate_component

Related Information

• validate_component_interface on page 518

• load_component on page 483

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

517

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.4. validate_component_interface

Description
Validates an interface of the loaded component.

Usage
validate_component_interface <interface>

Returns

String[] List of validation messages

Arguments

instance Specifies the name of the instance for the loaded component.

Example

validate_instance_interface data_master

Related Information

• load_component on page 483

• validate_component on page 517

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

518

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.5. validate_connection

Description
Validates the specified connection and returns validation messages.

Usage
validate_connection <connection>

Returns
A list of validation messages.

Arguments

connection The connection name to validate.

Example

validate_connection cpu.data_master/sdram.s1

Related Information

• validate_instance on page 520

• validate_instance_interface on page 521

• validate_system on page 522

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

519

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.6. validate_instance

Description
Validates the specified child instance and returns validation messages.

Usage
validate_instance <instance>

Returns
A list of validation messages.

Arguments

instance The child instance name to validate.

Example

validate_instance cpu

Related Information

• validate_connection on page 519

• validate_instance_interface on page 521

• validate_system on page 522

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

520

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.7. validate_instance_interface

Description
Validates an interface of an instance and returns validation messages.

Usage
validate_instance_interface <instance> <interface>

Returns
A list of validation messages.

Arguments

instance The child instance name.

interface The interface to validate.

Example

validate_instance_interface cpu data_master

Related Information

• validate_connection on page 519

• validate_instance on page 520

• validate_system on page 522

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

521

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.8. validate_system

Description
Validates the system and returns validation messages.

Usage
validate_system

Returns
A list of validation messages.

Arguments
No arguments.

Example

validate_system

Related Information

• validate_connection on page 519

• validate_instance on page 520

• validate_instance_interface on page 521

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

522

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.9. validate_component_footprint

Description
Validates the footprint of the specified child instance.

Usage
validate_component_footprint <instance>

Returns

String[] List of validation messages.

Arguments

instance (optional) Specifies the child instance name. If you omit this option, the
command validates all generic components in the system.

Example

validate_component_footprint cpu_0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

523

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.9.10. reload_component_footprint

Description
Validates the footprint of a specified child instance, and updates the footprint of the
instance in case of issues.

Usage
reload_component_footprint [<instance>]

Returns

String[] A list of validation messages.

Arguments

instance
(optional)

Specifies the child instance name to validate. If you do not specify
this option, the command validates all the generic components in
the system.

Example

reload_component_footprint cpu_0

Related Information

• load_instantiation on page 450

• save_instantiation on page 454

• validate_component_footprint on page 523

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

524

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10. Miscellaneous

This section lists the miscellaneous commands that you can use for your Platform
Designer systems.

auto_assign_base_addresses on page 526

auto_assign_irqs on page 527

auto_assign_system_base_addresses on page 528

get_parameter_properties on page 529

lock_avalon_base_address on page 530

send_message on page 531

set_use_testbench_naming_pattern on page 532

unlock_avalon_base_address on page 533

get_testbench_dutname on page 534

get_use_testbench_naming_pattern on page 535

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

525

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.1. auto_assign_base_addresses

Description
Assigns base addresses to all memory-mapped interfaces of an instance in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_base_addresses <instance>

Returns
No return value.

Arguments

instance The name of the instance with memory-mapped interfaces.

Example

auto_assign_base_addresses sdram

Related Information

• auto_assign_system_base_addresses on page 528

• lock_avalon_base_address on page 530

• unlock_avalon_base_address on page 533

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

526

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.2. auto_assign_irqs

Description
Assigns interrupt numbers to all connected interrupt senders of an instance in the
system.

Usage
auto_assign_irqs <instance>

Returns
No return value.

Arguments

instance The name of the instance with an interrupt sender.

Example

auto_assign_irqs uart_0

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

527

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.3. auto_assign_system_base_addresses

Description
Assigns legal base addresses to all memory-mapped interfaces of all instances in the
system. Instance interfaces that are locked with lock_avalon_base_address keep
their addresses during address auto-assignment.

Usage
auto_assign_system_base_addresses

Returns
No return value.

Arguments
No arguments.

Example

auto_assign_system_base_addresses

Related Information

• auto_assign_base_addresses on page 526

• lock_avalon_base_address on page 530

• unlock_avalon_base_address on page 533

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

528

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.4. get_parameter_properties

Description
Returns the list of properties that you can query for any parameters, for example
parameters of instances, interfaces, instance interfaces, and connections.

Usage
get_parameter_properties

Returns

String[] The list of parameter properties.

Arguments
No arguments.

Example

get_parameter_properties

Related Information

• get_connection_parameter_property on page 491

• get_instance_interface_parameter_property on page 402

• get_instance_parameter_property on page 410

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

529

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.5. lock_avalon_base_address

Description
Prevents the memory-mapped base address from being changed for connections to
the specified interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
lock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

lock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 526

• auto_assign_system_base_addresses on page 528

• unlock_avalon_base_address on page 533

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

530

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.6. send_message

Description
Sends a message to the user of the component. The message text is normally HTML.
You can use the element to provide emphasis. If you do not want the message
text to be HTML, then pass a list like { Info Text } as the message level,

Usage
send_message <level> <message>

Returns
No return value.

Arguments

level Intel Quartus Prime supports the following message levels:

• ERROR—provides an error message.

• WARNING—provides a warning message.

• INFO—provides an informational message.

• PROGRESS—provides a progress message.

• DEBUG—provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

531

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.7. set_use_testbench_naming_pattern

Description
Use this command to create testbench systems so that the generated file names for
the test system match the system's original generated file names. Without setting this
command, the generated file names for the test system receive the top-level
testbench system name.

Usage
set_use_testbench_naming_pattern <value>

Returns
No return value.

Arguments

value True or false.

Example

set_use_testbench_naming_pattern true

Notes
Use this command only to create testbench systems.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

532

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.8. unlock_avalon_base_address

Description
Allows the memory-mapped base address to change for connections to the specified
interface of an instance when Platform Designer runs the
auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage
unlock_avalon_base_address <instance.interface>

Returns
No return value.

Arguments

instance.interface The qualified name of the interface of an instance, in
<instance>.<interface> format.

Example

unlock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 526

• auto_assign_system_base_addresses on page 528

• lock_avalon_base_address on page 530

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

533

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.9. get_testbench_dutname

Description
Returns the currently set dutname for the test-bench systems. Use this command only
when creating test-bench systems.

Usage
get_testbench_dutname

Returns

String The currently set dutname. Returns NULL if empty.

Arguments
No arguments.

Example

get_testbench_dutname

Related Information

• get_use_testbench_naming_pattern on page 535

• set_use_testbench_naming_pattern on page 532

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

534

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10.10. get_use_testbench_naming_pattern

Description
Verifies if the test-bench naming pattern is set to be used. Use this command only
when creating test-bench systems.

Usage
get_use_testbench_naming_pattern

Returns

boolean True, if the test-bench naming pattern is set to be used.

Arguments
No arguments.

Example

get_use_testbench_naming_pattern

Related Information

• get_testbench_dutname on page 534

• set_use_testbench_naming_pattern on page 532

6.12.11. Wire-Level Connection Commands

Wire-level commands accept optional input ports and wire-level expressions as
arguments for the qsys-script utility and in _hw.tcl files.

You can use wire-level commands to:

• Apply a wire-level expression to a port with set_wirelevel_expression.

• Retrieve a list of expressions from a port, instance, or all expressions in the
current level of system hierarchy with get_wirelevel_expression.

• Remove a list of expressions from a port, instance, or all expressions in the
current level of system hierarchy with remove_wirelevel_expression.

Note: The following restrictions apply when using wire-level commands _hw.tcl files:

• Wire-level commands are only valid in a composition callback.

• Wire-level expressions can only be applied to instances created by
add_instance.

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

• Create a Composed Component or Subsystem on page 120

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

535

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.11.1. set_wirelevel_expression

Description
Applies a wire-level expression to an optional input port or instance in the system.

Usage
set_wirelevel_expression <instance_or_port_bitselection> <expression>

Returns
No return value.

Arguments

instance_or_port_bitselection Specify the instance or port to which the wire-level
expression using the
<instance_name>.<port_name>[<bit_selection>]
format. The bit selection can be a bit-select, for
example [0], or a partial range defined in descending
order, for example [7:0]. If no bit selection is
specified, the full range of the port is selected.

expression The expression to be applied to an optional input port.

Examples

set_wirelevel_expression {module0.portA[7:0]} "8'b0"
set_wirelevel_expression module0.portA "8'b0"
set_wirelevel_expression {module0.portA[0]} "1'b0"

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

6.12.11.2. get_wirelevel_expressions

Description
Retrieve a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expression statement.

Usage
get_wirelevel_expressions <instance_or_port_bitselection>

Returns

String[] A flattened list of wire-level expressions. Every item in the list consists of
right- and left-hand clauses of a wire-level expression. You can loop over the
returned list using foreach{port expr} $return_list{}.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

536

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list of
wire-level expressions are retrieved using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is specified,
the command causes the return of all expressions
from the specified instance.

• If no argument is present, the command causes
the return of all expressions from the current level
of system hierarchy.

The bit selection can be a bit-select, for example [0],
or a partial range defined in descending order, for
example [7:0]. If no bit selection is specified, the full
range of the port is selected.

Example

get_wirelevel_expressions
get_wirelevel_expressions module0
get_wirelevel_expressions {module0.portA[7:0]}

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

6.12.11.3. remove_wirelevel_expressions

Description
Remove a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expressions statement.

Usage
remove_wirelevel_expressions <instance_or_port_bitselection>

Returns
No return value.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list of
wire-level expressions are removed using the
<instance_name>.<port_name>[<bit_selection>]
format.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

537

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If no <port_name>[<bit_selection>] is specified,
the command causes the removal of all
expressions from the specified instance.

• If no argument is present, the command causes
the return of all expressions from the current level
of system hierarchy.

The bit selection can be a bit-select, for example [0],
or a partial range defined in descending order, for
example [7:0]. If no bit selection is specified, the full
range of the port is selected.

Examples

remove_wirelevel_expressions
remove_wirelevel_expressions module0
remove_wirelevel_expressions {module0.portA[7:0]}

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

538

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13. Platform Designer Scripting Property Reference

Interface properties work differently for _hw.tcl scripting than with Platform Designer
scripting. In _hw.tcl, interfaces do not distinguish between properties and
parameters. In Platform Designer scripting, the properties and parameters are unique.

The following are the Platform Designer scripting properties:

Connection Properties on page 540

Design Environment Type Properties on page 541

Direction Properties on page 542

Element Properties on page 543

Instance Properties on page 544

Interface Properties on page 545

Message Levels Properties on page 546

Module Properties on page 547

Parameter Properties on page 548

Parameter Status Properties on page 550

Parameter Type Properties on page 551

Port Properties on page 552

Project Properties on page 553

System Info Type Properties on page 554

Units Properties on page 556

Validation Properties on page 557

Interface Direction on page 558

File Set Kind on page 559

Access Type on page 560

Instantiation HDL File Properties on page 561

Instantiation Interface Duplicate Type on page 562

Instantiation Interface Properties on page 563

Instantiation Properties on page 564

Port Properties on page 565

VHDL Type on page 566

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

539

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.1. Connection Properties

Type Name Description

string END Indicates the end interface of the connection.

string NAME Indicates the name of the connection.

string START Indicates the start interface of the connection.

String TYPE The type of the connection.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

540

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.2. Design Environment Type Properties

Description
IP cores use the design environment to identify the most appropriate interfaces to
connect to the parent system.

Name Description

NATIVE Supports native IP interfaces.

QSYS Supports standard Platform Designer interfaces.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

541

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.3. Direction Properties

Name Description

BIDIR Indicates the direction for a bidirectional signal.

INOUT Indicates the direction for an input signal.

OUTPUT Indicates the direction for an output signal.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

542

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.4. Element Properties

Description
Element properties are, with the exception of ENABLED and NAME, read-only
properties of the types of instances, interfaces, and connections. These read-only
properties represent metadata that does not vary between copies of the same type.
ENABLED and NAME properties are specific to particular instances, interfaces, or
connections.

Type Name Description

String AUTHOR The author of the component or interface.

Boolean AUTO_EXPORT Indicates whether unconnected interfaces on the instance are automatically
exported.

String CLASS_NAME The type of the instance, interface or connection, for example, altera_nios2
or avalon_slave.

String DESCRIPTION The description of the instance, interface or connection type.

String DISPLAY_NAME The display name for referencing the type of instance, interface or connection.

Boolean EDITABLE Indicates whether you can edit the component in the Platform Designer
Component Editor.

Boolean ENABLED Indicates whether the instance is enabled.

String GROUP The IP Catalog category.

Boolean INTERNAL Hides internal IP components or sub-components from the IP Catalog..

String NAME The name of the instance, interface or connection.

String VERSION The version number of the instance, interface or connection, for example, 16.1.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

543

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.5. Instance Properties

Type Name Description

String AUTO_EXPORT Indicates whether Platform Designer automatically exports the unconnected
interfaces on the instance.

Boolean ENABLED If true, Platform Designer includes this instance in the generated system.

String NAME The name of the system, which Platform Designer uses as the name of the top-
level module in the generated HDL.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

544

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.6. Interface Properties

Type Name Description

String EXPORT_OF Indicates which interface of a child instance to export through the top-level interface.
Before using this command, you must create the top-level interface using the
add_interface command. You must use the format:
<instanceName.interfaceName>. For example:

set_interface_property CSC_input EXPORT_OF my_colorSpaceConverter.input_port

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

545

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.7. Message Levels Properties

Name Description

COMPONENT_INFO Reports an informational message only during component editing.

DEBUG Provides messages when debug mode is enabled.

ERROR Provides an error message.

INFO Provides an informational message.

PROGRESS Reports progress during generation.

TODOERROR Provides an error message that indicates the system is incomplete.

WARNING Provides a warning message.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

546

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.8. Module Properties

Type Name Description

String GENERATION_ID The generation ID for the system.

String NAME The name of the instance.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

547

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.9. Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a parameter
changes and AFFECTS_ELABORATION is false, the elaboration phase
does not repeat and improves performance. When
AFFECTS_ELABORATION is set to true, the default value, Platform
Designer reanalyzes the HDL file to determine the port widths and
configuration each time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you provide a
top-level HDL module. The default value is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property determines whether a
parameter's value sets derived parameters, and whether the value
affects validation messages. Setting this property to false may
improve response time in the parameter editor when the value
changes.

String[] ALLOWED_RANGES Indicates the range or ranges of the parameter. For integers, each
range is a single value, or a range of values defined by a start and
end value, and delimited by a colon, for example, 11:15. This
property also specifies the legal values and description strings for
integers, for example, {0:None 1:Monophonic 2:Stereo
4:Quadrophonic}, where 0, 1, 2, and 4 are the legal values. You
can assign description strings in the parameter editor for string
variables. For example,

ALLOWED_RANGES {"dev1:Cyclone IV GX""dev2:Stratix V
 GT"}

String DEFAULT_VALUE The default value.

Boolean DERIVED When True, indicates that the parameter value is set by the
component and cannot be set by the user. Derived parameters are not
saved as part of an instance's parameter values. The default value is
False.

String DESCRIPTION A short user-visible description of the parameter, suitable for a tooltip
description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property.
• boolean--For integer parameters whose value are 0 or 1. The

parameter displays as an option that you can turn on or off.
• radio—displays a parameter with a list of values as radio buttons.
• hexadecimal—for integer parameters, displays and interprets

the value as a hexadecimal number, for example: 0x00000010
instead of 16.

• fixed_size—for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
Add and Remove buttons from tables.

String DISPLAY_NAME The GUI label that appears to the left of this parameter.

String DISPLAY_UNITS The GUI label that appears to the right of the parameter.

Boolean ENABLED When False, the parameter is disabled. The parameter displays in
the parameter editor but is grayed out, indicating that you cannot edit
this parameter.

String GROUP Controls the layout of parameters in the GUI.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

548

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean HDL_PARAMETER When True, Platform Designer passes the parameter to the HDL
component description. The default value is False.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to DESCRIPTION,
but allows a more detailed explanation.

String NEW_INSTANCE_VALUE Changes the default value of a parameter without affecting older
components that do not explicitly set a parameter value, and use the
DEFAULT_VALUE property. Oder instances continue to use
DEFAULT_VALUE for the parameter and new instances use the value
assigned by NEW_INSTANCE_VALUE.

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to a
parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information. For example:

SYSTEM_INFO <info-type>

String SYSTEM_INFO_ARG Defines an argument to pass to SYSTEM_INFO. For example, the
name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies the types of system information that you can query. Refer to
System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the parameter
editor.

String WIDTH Indicates the width of the logic vector for the STD_LOGIC_VECTOR
parameter.

Related Information

• System Info Type Properties on page 554

• Parameter Type Properties on page 551

• Units Properties on page 556

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

549

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.10. Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates that this parameter is an active parameter.

Boolean DEPRECATED Indicates that this parameter exists only for backwards compatibility, and may
not have any effect.

Boolean EXPERIMENTAL Indicates that this parameter is experimental and not exposed in the design
flow.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

550

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.11. Parameter Type Properties

Name Description

BOOLEAN A boolean parameter set to true or false.

FLOAT A signed 32-bit floating point parameter. (Not supported for HDL parameters.)

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. (Not supported for HDL
parameters.)

LONG A signed 64-bit integer parameter. (Not supported for HDL parameters.)

NATURAL A 32-bit number that contains values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter set to 0 or 1.

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. (Not supported for HDL parameters.)

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

551

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.12. Port Properties

Type Name Description

(various) DIRECTION The direction of the signal. Refer to Direction Properties.

String ROLE The type of the signal. Each interface type defines a set of interface types for its
ports.

Integer WIDTH The width of the signal in bits.

Related Information

Direction Properties on page 542

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

552

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.13. Project Properties

Type Name Description

String DEVICE The device part number in the Intel Quartus Prime project that contains the
Platform Designer system.

String DEVICE_FAMILY The device family name in the Intel Quartus Prime project that contains the
Platform Designer system.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

553

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.14. System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string that describes the address map
for the interface specified in the SYSTEM_INFO
parameter property.

Integer ADDRESS_WIDTH The number of address bits that Platform Designer
requires to address memory-mapped slaves connected
to the specified memory-mapped master in this
instance.

String AVALON_SPEC The version of the Platform Designer interconnect. Refer
to Avalon Interface Specifications.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the SYSTEM_INFO parameter
property. If this instance has interfaces on multiple clock
domains, you can use this property to determine which
interfaces are on each clock domain. The absolute value
of the integer is arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the SYSTEM_INFO parameter property. If
zero, the clock rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. You use this property to determine the reset
sink for global reset when you use Platform Designer
interconnect that conforms to Avalon Interface
Specifications.

String CUSTOM_INSTRUCTION_SLAVES Provides slave information, including the name, base
address, address span, and clock cycle type.

String DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the selected device.

String DEVICE_FAMILY The family name of the selected device.

String DEVICE_FEATURES A list of key/value pairs delimited by spaces that
indicate whether a device feature is available in the
selected device family. The format of the list is suitable
for passing to the array command. The keys are device
features. The values are 1 if the feature is present, and
0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the selected device.

Integer GENERATION_ID An integer that stores a hash of the generation time that
Platform Designer uses as a unique ID for a generation
run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer representing the reset domain for the
interface specified in the SYSTEM_INFO parameter
property If this instance has interfaces on multiple reset

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

554

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

domains, you can use this property to determine which
interfaces are on each reset domain. The absolute value
of the integer is arbitrary.

String TRISTATECONDUIT_INFO An XML description of the tri-state conduit masters
connected to a tri-state conduit slave. The slave is
specified as the SYSTEM_INFO parameter property. The
value contains information about the slave, connected
master instance and interface names, and signal names,
directions, and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

• Design Environment Type Properties on page 541

• Avalon Interface Specifications

• Platform Designer Interconnect on page 141

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

555

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.15. Units Properties

Name Description

ADDRESS A memory-mapped address.

BITS Memory size in bits.

BITSPERSECOND Rate in bits per second.

BYTES Memory size in bytes.

CYCLES A latency or count in clock cycles.

GIGABITSPERSECOND Rate in gigabits per second.

GIGABYTES Memory size in gigabytes.

GIGAHERTZ Frequency in GHz.

HERTZ Frequency in Hz.

KILOBITSPERSECOND Rate in kilobits per second.

KILOBYTES Memory size in kilobytes.

KILOHERTZ Frequency in kHz.

MEGABITSPERSECOND Rate, in megabits per second.

MEGABYTES Memory size in megabytes.

MEGAHERTZ Frequency in MHz.

MICROSECONDS Time in microseconds.

MILLISECONDS Time in milliseconds.

NANOSECONDS Time in nanoseconds.

NONE Unspecified units.

PERCENT A percentage.

PICOSECONDS Time in picoseconds.

SECONDS Time in seconds.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

556

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.16. Validation Properties

Type Name Description

Boolean AUTOMATIC_VALIDATION When true, Platform Designer runs system validation and
elaboration after each scripting command. When false, Platform
Designer runs system validation with validation scripting commands.
Some queries affected by system elaboration may be incorrect if
automatic validation is disabled. You can disable validation to make a
system script run faster.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

557

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.17. Interface Direction

Type Name Description

String INPUT Indicates that the interface is a slave (input, transmitter, sink, or end).

String OUTPUT Indicates that the interface is a master (output, receiver, source, or start).

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

558

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.18. File Set Kind

Name Description

EXAMPLE_DESIGN This file-set contains example design files.

QUARTUS_SYNTH This file-set contains files that Platform Designer uses for Intel Quartus Prime Synthesis

SIM_VERILOG This file-set contains files that Platform Designer uses for Verilog HDL Simulation.

SIM_VHDL This file-set contains files that Platform Designer uses for VHDL Simulation.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

559

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.19. Access Type

Name Type Description

String READ_ONLY Indicates that the parameter can be only read-only.

String WRITABLE Indicates that the parameter has read/write properties.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

560

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.20. Instantiation HDL File Properties

Name Type Description

Boolean CONTAINS_INLINE_CONFIGURATION Returns True if the HDL file contains inline configuration.

Boolean IS_CONFIGURATION_PACKAGE Returns True if the HDL file is a configuration package.

Boolean IS_TOP_LEVEL Returns True if the HDL file is the top-level HDL file.

String OUTPUT_PATH Specifies the output path of the HDL file.

String TYPE Specifies the HDL file type of the HDL file.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

561

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.21. Instantiation Interface Duplicate Type

Type Name Description

String CLONE Creates a copy of an interface and all the interface ports.

String MIRROR Creates a copy of an interface with all the port roles and directions reversed.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

562

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.22. Instantiation Interface Properties

Name Type Description

String DIRECTION The direction of the interface.

String TYPE The type of the interface.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

563

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.23. Instantiation Properties

Name Type Description

String HDL_COMPILATION_LIBRARY Indicates the HDL compilation library name of the generic
component.

String HDL_ENTITY_NAME Indicates the HDL entity name of the Generic Component.

String IP_FILE Indicates the .ip file path that implements the generic component.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

564

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.24. Port Properties

Name Type Description

String DIRECTION Specifies the direction of the signal

String NAME Renames a top-level port. Only use with set_interface_port_property

String ROLE Specifies the type of the signal. Each interface type defines a set of interface types
for its ports.

String VHDL_TYPE Specifies the VHDL type of the signal. Can be either STANDARD_LOGIC, or
STANDARD_LOGIC_VECTOR.

Integer WIDTH Specifies the width of the signal in bits.

Related Information

Direction Properties on page 542

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

565

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.25. VHDL Type

Name Description

STD_LOGIC Represents the value of a digital signal in a wire.

STD_LOGIC_VECTOR Represents an array of digital signals and variables.

6.14. Platform Designer Command-Line Interface Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2019.11.11 19.1.0 • Added statement to qsys-generate topic indicating that graybox
option is only for individual Intel FPGA IP cores, and not for complete
Platform Designer systems.

• Added statement to qsys-generate topic indicating that upgrade-
ip-cores has no impact on subsystems.

2019.04.01 19.1.0 • Added new Domains command-line reference and deprecated
get_interconnect_requirement,
get_interconnect_requirements, and
set_interconnect_requirement assignments.

2018.12.15 18.1.0 First release as separate chapter.

2016.10.31 16.1.0 • Added command-line options for qsys-archive.
• Added command-line options for quartus_ipgenerate.
• Updated the Qsys Pro scripting commands.

2016.05.03 16.0.0 • Qsys Command-Line Utilities updated with latest supported command-
line options.

June 2012 12.0.0 • Added command-line utilities, and scripts.

December 2010 10.1.0 Initial release of content.

6. Platform Designer Command-Line Utilities

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

566

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Component Interface Tcl Reference
Tcl commands allow you to perform a wide range of functions in Platform Designer.
Command descriptions contain the Platform Designer phases where you can use the
command, for example, main program, elaboration, composition, or fileset callback.
This reference denotes optional command arguments in brackets [].

Note: Intel now refers to Qsys Pro as Platform Designer.

Platform Designer supports Avalon, AMBA 3 AXI (version 1.0), AMBA 4 AXI (version
2.0), AMBA 4 AXI-Lite (version 2.0), AMBA 4 AXI-Stream (version 1.0), and AMBA 3
APB (version 1.0) interface specifications.

For more information about procedures for creating IP component _hw.tcl files in the
Platform Designer Component Editor, and supported interface standards, refer to
Creating Platform Designer Components and Platform Designer Interconnect.

If you are developing an IP component to work with the Nios II processor, refer to
Publishing Component Information to Embedded Software in section 3 of the Nios II
Software Developer's Handbook, which describes how to publish hardware IP
component information for embedded software tools, such as a C compiler and a
Board Support Package (BSP) generator.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating Platform Designer Components on page 89

• Platform Designer Interconnect on page 141

• Publishing Component Information to Embedded Software
In Nios II Gen2 Software Developer's Handbook

7.1. Platform Designer _hw.tcl Command Reference

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://www.intel.com/content/www/us/en/programmable/documentation/lro1419794938488.html#mwh1416946964569
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7.1.1. Interfaces and Ports

add_interface on page 569

add_interface_port on page 571

get_interfaces on page 573

get_interface_assignment on page 574

get_interface_assignments on page 575

get_interface_ports on page 576

get_interface_properties on page 577

get_interface_property on page 578

get_port_properties on page 579

get_port_property on page 580

set_interface_assignment on page 581

set_interface_property on page 583

set_port_property on page 584

set_interface_upgrade_map on page 585

Related Information

Interface Properties on page 666

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

568

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.1. add_interface

Description
Adds an interface to your module. An interface represents a collection of related
signals that are managed together in the parent system. These signals are
implemented in the IP component's HDL, or exported from an interface from a child
instance. As the IP component author, you choose the name of the interface.

Availability
Discovery, Main Program, Elaboration, Composition

Usage
add_interface <name> <type> <direction> [<associated_clock>]

Returns
No returns value.

Arguments

name A name you choose to identify an interface.

type The type of interface.

direction The interface direction.

associated_clock
(optional)

(deprecated) For interfaces requiring associated clocks, use:
set_interface_property <interface>
associatedClock <clockInterface> For interfaces
requiring associated resets, use: set_interface_property
<interface> associatedReset <resetInterface>

Example

add_interface mm_slave avalon slave

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Notes
By default, interfaces are enabled. You can set the interface property ENABLED to
false to disable an interface. If an interface is disabled, it is hidden and its ports are
automatically terminated to their default values. Active high signals are terminated to
0. Active low signals are terminated to 1.

If the IP component is composed of child instances, the top-level interface is
associated with a child instance's interface with set_interface_property
interface EXPORT_OF child_instance.interface.

The following direction rules apply to Platform Designer-supported interfaces.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

569

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Type Direction

avalon master, slave

axi master, slave

tristate_conduit master, slave

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

reset source, sink

nios_custom_instruction slave

Related Information

• add_interface_port on page 571

• get_interface_assignments on page 575

• get_interface_properties on page 577

• get_interfaces on page 573

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

570

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.2. add_interface_port

Description
Adds a port to an interface on your module. The name must match the name of a
signal on the top-level module in the HDL of your IP component. The port width and
direction must be set before the end of the elaboration phase. You can set the port
width as follows:

• In the Main program, you can set the port width to a fixed value or a width
expression.

• If the port width is set to a fixed value in the Main program, you can update the
width in the elaboration callback.

Availability
Main Program, Elaboration

Usage
add_interface_port <interface> <port> [<signal_type> <direction>
<width_expression>]

Returns

Arguments

interface The name of the interface to which this port belongs.

port The name of the port. This name must match a signal in your top-level HDL for
this IP component.

signal_type
(optional)

The type of signal for this port, which must be unique. Refer to
the Avalon Interface Specifications for the signal types available
for each interface type.

direction (optional) The direction of the signal. Refer to Direction Properties.

width_expression
(optional)

The width of the port, in bits. The width may be a fixed
value, or a simple arithmetic expression of parameter
values.

Example

fixed width:
add_interface_port mm_slave s0_rdata readdata output 32

width expression:
add_parameter DATA_WIDTH INTEGER 32
add_interface_port s0 rdata readdata output "DATA_WIDTH/2"

Related Information

• add_interface on page 569

• get_port_properties on page 579

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

571

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• get_port_property on page 580

• get_port_property on page 580

• Direction Properties on page 675

• Avalon Interface Specifications

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

572

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.3. get_interfaces

Description
Returns a list of top-level interfaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interfaces

Returns
A list of the top-level interfaces exported from the system.

Arguments
No arguments.

Example

get_interfaces

Related Information

add_interface on page 569

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

573

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.4. get_interface_assignment

Description
Returns the value of the specified assignment for the specified interface

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignment <interface> <assignment>

Returns
The value of the assignment.

Arguments

interface The name of a top-level interface.

assignment The name of an assignment.

Example

get_interface_assignment s1 embeddedsw.configuration.isFlash

Related Information

• add_interface on page 569

• get_interface_assignments on page 575

• get_interfaces on page 573

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

574

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.5. get_interface_assignments

Description
Returns the value of all interface assignments for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_interface_assignments <interface>

Returns
A list of assignment keys.

Arguments

interface The name of the top-level interface whose assignment is being retrieved.

Example

get_interface_assignments s1

Related Information

• add_interface on page 569

• get_interface_assignment on page 574

• get_interfaces on page 573

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

575

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.6. get_interface_ports

Description
Returns the names of all of the ports that have been added to a given interface. If the
interface name is omitted, all ports for all interfaces are returned.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_ports [<interface>]

Returns
A list of port names.

Arguments

interface (optional) The name of a top-level interface.

Example

get_interface_ports mm_slave

Related Information

• add_interface_port on page 571

• get_port_property on page 580

• set_port_property on page 584

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

576

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.7. get_interface_properties

Description
Returns the names of all the interface properties for the specified interface as a space
separated list

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_interface_properties <interface>

Returns
A list of properties for the interface.

Arguments

interface The name of an interface.

Example

get_interface_properties interface

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_property on page 578

• set_interface_property on page 583

• Avalon Interface Specifications

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

577

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.8. get_interface_property

Description
Returns the value of a single interface property from the specified interface.

Availability
Discovery, Main Program, Elaboration, Composition, Fileset Generation

Usage
get_interface_property <interface> <property>

Returns

Arguments

interface The name of an interface.

property The name of the property whose value you want to retrieve. Refer to
Interface Properties.

Example

get_interface_property mm_slave linewrapBursts

Notes

The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_properties on page 577

• set_interface_property on page 583

• Avalon Interface Specifications

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

578

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.9. get_port_properties

Description
Returns a list of port properties.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_properties

Returns
A list of port properties. Refer to Port Properties.

Arguments
No arguments.

Example

get_port_properties

Related Information

• add_interface_port on page 571

• get_port_property on page 580

• set_port_property on page 584

• Port Properties on page 673

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

579

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.10. get_port_property

Description
Returns the value of a property for the specified port.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_port_property <port> <property>

Returns
The value of the property.

Arguments

port The name of the port.

property The name of a port property. Refer to Port Properties.

Example

get_port_property rdata WIDTH_VALUE

Related Information

• add_interface_port on page 571

• get_port_properties on page 579

• set_port_property on page 584

• Port Properties on page 673

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

580

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.11. set_interface_assignment

Description
Sets the value of the specified assignment for the specified interface.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_interface_assignment <interface> <assignment> [<value>]

Returns
No return value.

Arguments

interface The name of the top-level interface whose assignment is being set.

assignment The assignment whose value is being set.

value (optional) The new assignment value.

Example

set_interface_assignment s1 embeddedsw.configuration.isFlash 1

Notes

Assignments for Nios II Software Build Tools

Interface assignments provide extra data for the Nios II Software Build Tools working
with the generated system.

Assignments for Platform Designer Tools

There are several assignments that guide behavior in the Platform Designer tools.

qsys.ui.export_name: If present, this interface should always be
exported when an instance is added to a Platform
Designer system. The value is the requested
name of the exported interface in the parent
system.

qsys.ui.connect: If present, this interface should be auto-
connected when an instance is added to a
Platform Designer system. The value is a comma-
separated list of other interfaces on the same
instance that should be connected with this
interface.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

581

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ui.blockdiagram.direction: If present, the direction of this interface in the
block diagram is set by the user. The value is
either "output" or "input".

Related Information

• add_interface on page 569

• get_interface_assignment on page 574

• get_interface_assignments on page 575

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

582

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.12. set_interface_property

Description
Sets the value of a property on an exported top-level interface. You can use this
command to set the EXPORT_OF property to specify which interface of a child instance
is exported via this top-level interface.

Availability
Main Program, Elaboration, Composition

Usage
set_interface_property <interface> <property> <value>

Returns
No return value.

Arguments

interface The name of an exported top-level interface.

property The name of the property Refer to Interface Properties.

value The new property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out
set_interface_property mm_slave linewrapBursts false

Notes
The properties for each interface type are different. Refer to the Avalon Interface
Specifications for more information about interface properties.

Related Information

• get_interface_properties on page 577

• get_interface_property on page 578

• Avalon Interface Specifications

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

583

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.13. set_port_property

Description
Sets a port property.

Availability
Elaboration

Usage
set_port_property <port> <property> [<value>]

Returns
The new value.

Arguments

port The name of the port.

property One of the supported properties. Refer to Port Properties.

value (optional) The value to set.

Example

set_port_property rdata WIDTH 32

Related Information

• add_interface_port on page 571

• get_port_properties on page 579

• set_port_property on page 584

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

584

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.14. set_interface_upgrade_map

Description
Maps the interface name of an older version of an IP core to the interface name of the
current IP core. The interface type must be the same between the older and newer
versions of the IP cores. This allows system connections and properties to maintain
proper functionality. By default, if the older and newer versions of IP core have the
same name and type, then Platform Designer maintains all properties and connections
automatically.

Availability
Parameter Upgrade

Usage

set_interface_upgrade_map { <old_interface_name> <new_interface_name>
<old_interface_name_2> <new_interface_name_2> … }

Returns
No return value.

Arguments

{ <old_interface_name>
<new_interface_name>}

List of mappings between names of older and
newer interfaces.

Example

set_interface_upgrade_map { avalon_master_interface
new_avalon_master_interface }

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

585

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2. Parameters

add_parameter on page 587

get_parameters on page 588

get_parameter_properties on page 589

get_parameter_property on page 590

get_parameter_value on page 591

get_string on page 592

load_strings on page 593

set_parameter_property on page 594

set_parameter_value on page 595

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

586

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.1. add_parameter

Description
Adds a parameter to your IP component.

Availability
Main Program

Usage
add_parameter <name> <type> [<default_value> <description>]

Returns

Arguments

name The name of the parameter.

type The data type of the parameter Refer to Parameter Type Properties.

default_value (optional) The initial value of the parameter in a new instance of the IP
component.

description (optional) Explains the use of the parameter.

Example

add_parameter seed INTEGER 17 "The seed to use for data generation."

Notes

Most parameter types have a single GUI element for editing the parameter value.
string_list and integer_list parameters are different, because they are edited
as tables. A multi-column table can be created by grouping multiple into a single
table. To edit multiple list parameters in a single table, the display items for the
parameters must be added to a group with a TABLE hint:
add_parameter coefficients INTEGER_LIST add_parameter positions
INTEGER_LIST add_display_item "" "Table Group" GROUP TABLE
add_display_item "Table Group" coefficients PARAMETER
add_display_item "Table Group" positions PARAMETER

Related Information

• get_parameter_properties on page 589

• get_parameter_property on page 590

• get_parameter_value on page 591

• set_parameter_property on page 594

• set_parameter_value on page 595

• Parameter Type Properties on page 671

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

587

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.2. get_parameters

Description
Returns the names of all the parameters in the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameters

Returns
A list of parameter names

Arguments
No arguments.

Example

get_parameters

Related Information

• add_parameter on page 587

• get_parameter_property on page 590

• get_parameter_value on page 591

• get_parameters on page 588

• set_parameter_property on page 594

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

588

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.3. get_parameter_properties

Description
Returns a list of all the parameter properties as a list of strings. The
get_parameter_property and set_parameter_property commands are used to
get and set the values of these properties, respectively.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_properties

Returns
A list of parameter property names. Refer to Parameter Properties.

Arguments
No arguments.

Example

set property_summary [get_parameter_properties]

Related Information

• add_parameter on page 587

• get_parameter_property on page 590

• get_parameter_value on page 591

• get_parameters on page 588

• set_parameter_property on page 594

• Parameter Properties on page 669

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

589

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.4. get_parameter_property

Description
Returns the value of a property of a parameter.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_parameter_property <parameter> <property>

Returns
The value of the property.

Arguments

parameter The name of the parameter whose property value is being retrieved.

property The name of the property. Refer to Parameter Properties.

Example

set enabled [get_parameter_property parameter1 ENABLED]

Related Information

• add_parameter on page 587

• get_parameter_properties on page 589

• get_parameter_value on page 591

• get_parameters on page 588

• set_parameter_property on page 594

• set_parameter_value on page 595

• Parameter Properties on page 669

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

590

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.5. get_parameter_value

Description
Returns the current value of a parameter defined previously with the add_parameter
command.

Availability
Discovery, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage
get_parameter_value <parameter>

Returns
The value of the parameter.

Arguments

parameter The name of the parameter whose value is being retrieved.

Example

set width [get_parameter_value fifo_width]

Notes

If AFFECTS_ELABORATION is false for a given parameter, get_parameter_value
is not available for that parameter from the elaboration callback. If
AFFECTS_GENERATION is false then it is not available from the generation callback.

Related Information

• add_parameter on page 587

• get_parameter_property on page 590

• get_parameters on page 588

• set_parameter_property on page 594

• set_parameter_value on page 595

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

591

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.6. get_string

Description
Returns the value of an externalized string previously loaded by the load_strings
command.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_string <identifier>

Returns
The externalized string.

Arguments

identifier The string identifier.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Use uppercase words separated with underscores to name string identifiers. If you are
externalizing module properties, use the module property name for the string
identifier:

set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

If you are externalizing a parameter property, qualify the parameter property with the
parameter name, with uppercase format, if needed:

set_parameter_property my_param DISPLAY_NAME [get_string MY_PARAM_DISPLAY_NAME]

If you use a string to describe a string format, end the identifier with _FORMAT.

set formatted_string [format [get_string TWO_ARGUMENT_MESSAGE_FORMAT]
"arg1" "arg2"]

Related Information

load_strings on page 593

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

592

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.7. load_strings

Description
Loads strings from an external .properties file.

Availability
Discovery, Main Program

Usage
load_strings <path>

Returns
No return value.

Arguments

path The path to the properties file.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Refer to the Java Properties File for properties file format. A .properties file is a
text file with KEY=value pairs. For externalized strings, the KEY is a string identifier
and the value is the externalized string.
For example:

TROGDOR = A dragon with a big beefy arm

Related Information

• get_string on page 592

• Java Properties File

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

593

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.8. set_parameter_property

Description
Sets a single parameter property.

Availability
Main Program, Edit, Elaboration, Validation, Composition

Usage
set_parameter_property <parameter> <property> <value>

Returns

Arguments

parameter The name of the parameter that is being set.

property The name of the property. Refer to Parameter Properties.

value The new value for the property.

Example

set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Related Information

• add_parameter on page 587

• get_parameter_properties on page 589

• set_parameter_property on page 594

• Parameter Properties on page 669

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

594

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.2.9. set_parameter_value

Description
Sets a parameter value. The value of a derived parameter can be updated by the IP
component in the elaboration callback or the edit callback. Any changes to the value of
a derived parameter in the edit callback is not preserved.

Availability
Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage
set_parameter_value <parameter> <value>

Returns
No return value.

Arguments

parameter The name of the parameter that is being set.

value Specifies the new parameter value.

Example

set_parameter_value half_clock_rate [expr { [get_parameter_value
clock_rate] / 2 }]

7.1.3. Interconnect Parameters

set_domain_assignment on page 595

get_domain_assignment on page 596

get_domain_assignments on page 596

set_postadaptation_assignment on page 597

get_postadaptation_assignment on page 597

get_postadaptation_assignments on page 598

7.1.3.1. set_domain_assignment

Description
Sets the assignment value to all connections on the given domain.

Availability
Composition

Usage

set_domain_assignment <element> <assignment> <value>

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

595

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments

element Connection or interface in the domain to which you want to set the
assignment. If the element name is $system, the assignment applies to all
the domains in the system.

assignment The name of the assignment.

value The value of the assignment.

7.1.3.2. get_domain_assignment

Description
Returns the value for the specified assignment in the given domain.

Availability
Composition

Usage

get_domain_assignment <element> <assignment>

Arguments

element Connection or interface in the domain for which you want to get the
assignment value.

assignment The name of the assignment.

7.1.3.3. get_domain_assignments

Description
Returns all domain assignments for the given domain as a list of strings. Each "group"
of three elements in the list contains the element name, assignment name, and value,
in that order. Element name in the output is the input element name. If the input
element is $system, then the output element name is the connection point in the
domain. The Returns section shows a typical list.

Returns

[element0 name0 value0 element1 name1 value1 ...]

In TCL, you'd loop over the list by writing a foreach loop:

 foreach {element name value } \
 $requirement_list { puts " $element $name $value" }

Availability
Composition

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

596

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage

get_domain_assignments <element>

Arguments

element Connection or interface in the domains for which you want to get the
assignments value. If you specify $system as the element, the command
returns values of all the domains in the system.

7.1.3.4. set_postadaptation_assignment

Description
Adds an post adaptation interconnect assignment.

Availability
Composition

Usage

set_postadaptation_assignment <element> <assignment> <value>

Arguments

element Connection or interface in the domain to which you want to set the
assignment.

assignment The name of the assignment.

value The value of the assignment.

7.1.3.5. get_postadaptation_assignment

Description
Returns the value of the named post adaptation interconnect assignment on the
specified element.

Availability
Composition

Usage

get_postadaptation_assignment <element> <assignment>

Arguments

element Connection or interface in the domain for which you want to get the
assignment value.

assignment The name of the assignment.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

597

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.3.6. get_postadaptation_assignments

Description
Returns all post adaptation interconnect assignments for the given domain as a list of
strings. Each "group" of three elements in the list contains the element name,
assignment name and value in that order. The Returns section shows a typical list.

Returns

[element0 name0 value0 element1 name1 value1 ...]

In Tcl, you loop over the list by writing a foreach loop:

foreach {element name value } $requirement_list \
 { puts " $element $name $value" }

Availability
Composition

Usage

get_postadaptation_assignments <element>

Arguments

element Connection or interface in the domain to which you want to set the
assignment.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

598

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4. Display Items

add_display_item on page 600

get_display_items on page 602

get_display_item_properties on page 603

get_display_item_property on page 604

set_display_item_property on page 605

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

599

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.1. add_display_item

Description
Specifies the following aspects of the IP component display:

• Creates logical groups for an IP component's parameters. For example, to create
separate groups for the IP component's timing, size, and simulation parameters.
An IP component displays the groups and parameters in the order that you specify
the display items in the _hw.tcl file.

• Groups a list of parameters to create multi-column tables.

• Specifies an image to provide representation of a parameter or parameter group.

• Creates a button by adding a display item of type action. The display item
includes the name of the callback to run.

Availability
Main Program

Usage
add_display_item <parent_group> <id> <type> [<args>]

Returns

Arguments

parent_group Specifies the group to which a display item belongs

id The identifier for the display item. If the item being added is a parameter, this is
the parameter name. If the item is a group, this is the group name.

type The type of the display item. Refer to Display Item Kind Properties.

args (optional) Provides extra information required for display items.

Example

add_display_item "Timing" read_latency PARAMETER
add_display_item "Sounds" speaker_image_id ICON speaker.jpg

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

600

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notes

The following examples illustrate further illustrate the use of arguments:

• add_display_item groupName id icon path-to-image-file

• add_display_item groupName parameterName parameter

• add_display_item groupName id text "your-text"

The your-text argument is a block of text that is displayed in the GUI. Some
simple HTML formatting is allowed, such as and <i>, if the text starts with
<html>.

• add_display_item parentGroupName childGroupName group [tab]

The tab is an optional parameter. If present, the group appears in separate tab in
the GUI for the instance.

• add_display_item parentGroupName actionName action
buttonClickCallbackProc

Related Information

• get_display_item_properties on page 603

• get_display_item_property on page 604

• get_display_items on page 602

• set_display_item_property on page 605

• Display Item Kind Properties on page 677

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

601

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.2. get_display_items

Description
Returns a list of all items to be displayed as part of the parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_display_items

Returns
List of display item IDs.

Arguments
No arguments.

Example

get_display_items

Related Information

• add_display_item on page 600

• get_display_item_properties on page 603

• get_display_item_property on page 604

• set_display_item_property on page 605

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

602

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.3. get_display_item_properties

Description
Returns a list of names of the properties of display items that are part of the
parameterization GUI.

Availability
Main Program

Usage
get_display_item_properties

Returns
A list of display item property names. Refer to Display Item Properties.

Arguments
No arguments.

Example

get_display_item_properties

Related Information

• add_display_item on page 600

• get_display_item_property on page 604

• set_display_item_property on page 605

• Display Item Properties on page 676

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

603

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.4. get_display_item_property

Description
Returns the value of a specific property of a display item that is part of the
parameterization GUI.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_display_item_property <display_item> <property>

Returns
The value of a display item property.

Arguments

display_item The id of the display item.

property The name of the property. Refer to Display Item Properties.

Example

set my_label [get_display_item_property my_action DISPLAY_NAME]

Related Information

• add_display_item on page 600

• get_display_item_properties on page 603

• get_display_items on page 602

• set_display_item_property on page 605

• Display Item Properties on page 676

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

604

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.4.5. set_display_item_property

Description
Sets the value of specific property of a display item that is part of the
parameterization GUI.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition

Usage
set_display_item_property <display_item> <property> <value>

Returns
No return value.

Arguments

display_item The name of the display item whose property value is being set.

property The property that is being set. Refer to Display Item Properties.

value The value to set.

Example

set_display_item_property my_action DISPLAY_NAME "Click Me"
set_display_item_property my_action DESCRIPTION "clicking this button runs the
click_me_callback proc in the hw.tcl file"

Related Information

• add_display_item on page 600

• get_display_item_properties on page 603

• get_display_item_property on page 604

• Display Item Properties on page 676

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

605

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5. Module Definition

add_documentation_link on page 607

get_module_assignment on page 608

get_module_assignments on page 609

get_module_ports on page 610

get_module_properties on page 611

get_module_property on page 612

send_message on page 613

set_module_assignment on page 614

set_module_property on page 615

add_hdl_instance on page 616

package on page 617

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

606

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.1. add_documentation_link

Description
Allows you to link to documentation for your IP component.

Availability
Discovery, Main Program

Usage
add_documentation_link <title> <path>

Returns
No return value.

Arguments

title The title of the document for use on menus and buttons.

path A path to the IP component documentation, using a syntax that provides the
entire URL, not a relative path. For example: http://www.mydomain.com/
my_memory_controller.html or file:///datasheet.txt

Example

add_documentation_link "Avalon Verification IP Suite User Guide" http://
www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

607

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.2. get_module_assignment

Description
This command returns the value of an assignment. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to
provide information about the IP component to embedded software tools and
applications.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignment <assignment>

Returns
The value of the assignment

Arguments

assignment The name of the assignment whose value is being retrieved

Example

get_module_assignment embeddedsw.CMacro.colorSpace

Related Information

• get_module_assignments on page 609

• set_module_assignment on page 614

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

608

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.3. get_module_assignments

Description
Returns the names of the module assignments.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_module_assignments

Returns
A list of assignment names.

Arguments
No arguments.

Example

get_module_assignments

Related Information

• get_module_assignment on page 608

• set_module_assignment on page 614

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

609

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.4. get_module_ports

Description
Returns a list of the names of all the ports which are currently defined.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_ports

Returns
A list of port names.

Arguments
No arguments.

Example

get_module_ports

Related Information

• add_interface on page 569

• add_interface_port on page 571

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

610

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.5. get_module_properties

Description
Returns the names of all the module properties as a list of strings. You can use the
get_module_property and set_module_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_properties

Returns
List of strings. Refer to Module Properties.

Arguments
No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 612

• set_module_property on page 615

• Module Properties on page 679

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

611

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.6. get_module_property

Description
Returns the value of a single module property.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_module_property <property>

Returns
Various.

Arguments

property The name of the property, Refer to Module Properties.

Example

set my_name [get_module_property NAME]

Related Information

• get_module_properties on page 611

• set_module_property on page 615

• Module Properties on page 679

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

612

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.7. send_message

Description
Sends a message to the user of the IP component. The message text is normally
interpreted as HTML. You can use the element to provide emphasis. If you do not
want the message text to be interpreted as HTML, then pass a list as the message
level, for example, { Info Text }.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
send_message <level> <message>

Returns
No return value .

Arguments

level The following message levels are supported:

• ERROR--Provides an error message. The Platform Designer system cannot
be generated with existing error messages.

• WARNING--Provides a warning message.

• INFO--Provides an informational message. The INFO level is not available
in the Main Program.

• PROGRESS--Reports progress during generation.

• DEBUG--Provides a debug message when debug mode is enabled.

message The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

613

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.8. set_module_assignment

Description
Sets the value of the specified assignment.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_module_assignment <assignment> [<value>]

Returns
No return value.

Arguments

assignment The assignment whose value is being set

value (optional) The value of the assignment

Example

set_module_assignment embeddedsw.CMacro.colorSpace CMYK

Related Information

• get_module_assignment on page 608

• get_module_assignments on page 609

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

614

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.9. set_module_property

Description
Allows you to set the values for module properties.

Availability
Discovery, Main Program

Usage
set_module_property <property> <value>

Returns
No return value.

Arguments

property The name of the property. Refer to Module Properties.

value The new value of the property.

Example

set_module_property VERSION 10.0

Related Information

• get_module_properties on page 611

• get_module_property on page 612

• Module Properties on page 679

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

615

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.10. add_hdl_instance

Description
Adds an instance of a predefined module, referred to as a child or child instance. The
HDL entity generated from this instance can be instantiated and connected within this
IP component's HDL.

Availability
Main Program, Elaboration, Composition

Usage
add_hdl_instance <entity_name> <ip_type> [<version>]

Returns
The entity name of the added instance.

Arguments

entity_name Specifies a unique local name that you can use to manipulate the
instance. This name is used in the generated HDL to identify the
instance.

ip_type The type refers to a kind of instance available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified instance type. If no version is
specified, the latest version is used.

Example

add_hdl_instance my_uart altera_avalon_uart

Related Information

• get_instance_parameter_value on page 634

• get_instance_parameters on page 632

• get_instances on page 624

• set_instance_parameter_value on page 637

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

616

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.5.11. package

Description
Allows you to specify a particular version of the Platform Designer software to avoid
software compatibility issues, and to determine which version of the _hw.tcl API to
use for the IP component. You must use the package command at the beginning of
your _hw.tcl file.

Availability
Main Program

Usage
package require -exact qsys <version>

Returns
No return value

Arguments

version The version of Platform Designer that you require, such as 14.1.

Example

package require -exact qsys 14.1

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

617

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6. Composition

add_instance on page 619

add_connection on page 620

get_connections on page 621

get_connection_parameters on page 622

get_connection_parameter_value on page 623

get_instances on page 624

get_instance_interfaces on page 625

get_instance_interface_ports on page 626

get_instance_interface_properties on page 627

get_instance_property on page 628

set_instance_property on page 629

get_instance_properties on page 630

get_instance_interface_property on page 631

get_instance_parameters on page 632

get_instance_parameter_property on page 633

get_instance_parameter_value on page 634

get_instance_port_property on page 635

set_connection_parameter_value on page 636

set_instance_parameter_value on page 637

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

618

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.1. add_instance

Description
Adds an instance of an IP component, referred to as a child or child instance to the
subsystem. You can use this command to create IP components that are composed of
other IP component instances. The HDL for this subsystem generates; There is no
need to write custom HDL for the IP component.

Availability
Main Program, Composition

Usage
add_instance <name> <type> [<version>]

Returns
No return value.

Arguments

name Specifies a unique local name that you can use to manipulate the instance.
This name is used in the generated HDL to identify the instance.

type The type refers to a type available in the IP Catalog, for example
altera_avalon_uart.

version (optional) The required version of the specified type. If no version is
specified, the highest available version is used.

Example

add_instance my_uart altera_avalon_uart
add_instance my_uart altera_avalon_uart 14.1

Related Information

• add_connection on page 620

• get_instance_interface_property on page 631

• get_instance_parameter_value on page 634

• get_instance_parameters on page 632

• get_instance_property on page 628

• get_instances on page 624

• set_instance_parameter_value on page 637

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

619

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.2. add_connection

Description
Connects the named interfaces on child instances together using an appropriate
connection type. Both interface names consist of a child instance name, followed by
the name of an interface provided by that module. For example, mux0.out is the
interface named out on the instance named mux0. Be careful to connect the start to
the end, and not the other way around.

Availability
Main Program, Composition

Usage
add_connection <start> [<end> <kind> <name>]

Returns
The name of the newly added connection in start.point/end.point format.

Arguments

start The start interface to be connected, in
<instance_name>.<interface_name> format.

end (optional) The end interface to be connected,
<instance_name>.<interface_name>.

kind (optional) The type of connection, such as avalon or clock.

name
(optional)

A custom name for the connection. If unspecified, the name will be
<start_instance>.<interface>.<end_instance><interface>

Example

add_connection dma.read_master sdram.s1 avalon

Related Information

• add_instance on page 619

• get_instance_interfaces on page 625

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

620

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.3. get_connections

Description
Returns a list of all connections in the composed subsystem.

Availability
Main Program, Composition

Usage
get_connections

Returns
A list of connections.

Arguments
No arguments.

Example

set all_connections [get_connections]

Related Information

add_connection on page 620

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

621

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.4. get_connection_parameters

Description
Returns a list of parameters found on a connection.

Availability
Main Program, Composition

Usage
get_connection_parameters <connection>

Returns
A list of parameter names

Arguments

connection The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Information

• add_connection on page 620

• get_connection_parameter_value on page 623

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

622

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.5. get_connection_parameter_value

Description
Returns the value of a parameter on the connection. Parameters represent aspects of
the connection that can be modified once the connection is created, such as the base
address for an Avalon Memory Mapped connection.

Availability
Composition

Usage
get_connection_parameter_value <connection> <parameter>

Returns
The value of the parameter.

Arguments

connection The connection to query.

parameter The name of the parameter.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Information

• add_connection on page 620

• get_connection_parameters on page 622

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

623

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.6. get_instances

Description
Returns a list of the instance names for all child instances in the system.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instances

Returns
A list of child instance names.

Arguments
No arguments.

Example

get_instances

Notes

This command can be used with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 616

• add_instance on page 619

• get_instance_parameter_value on page 634

• get_instance_parameters on page 632

• set_instance_parameter_value on page 637

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

624

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.7. get_instance_interfaces

Description
Returns a list of interfaces found in a child instance. The list of interfaces can change if
the parameterization of the instance changes.

Availability
Validation, Composition

Usage
get_instance_interfaces <instance>

Returns
A list of interface names.

Arguments

instance The name of the child instance.

Example

get_instance_interfaces pixel_converter

Related Information

• add_instance on page 619

• get_instance_interface_ports on page 626

• get_instance_interfaces on page 625

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

625

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.8. get_instance_interface_ports

Description
Returns a list of ports found in an interface of a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_interface_ports <instance> <interface>

Returns
A list of port names found in the interface.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

Example

set port_names [get_instance_interface_ports cpu data_master]

Related Information

• add_instance on page 619

• get_instance_interfaces on page 625

• get_instance_port_property on page 635

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

626

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.9. get_instance_interface_properties

Description
Returns the names of all of the properties of the specified interface

Availability
Validation, Composition

Usage
get_instance_interface_properties <instance> <interface>

Returns
List of property names.

Arguments

instance The name of the child instance.

interface The name of an interface on the instance.

Example

set properties [get_instance_interface_properties cpu data_master]

Related Information

• add_instance on page 619

• get_instance_interface_property on page 631

• get_instance_interfaces on page 625

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

627

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.10. get_instance_property

Description
Returns the value of a single instance property.

Availability
Main Program, Elaboration, Validation, Composition, Fileset Generation

Usage
get_instance_property <instance> <property>

Returns
Various.

Arguments

instance The name of the instance.

property The name of the property. Refer to Instance Properties.

Example

set my_name [get_instance_property myinstance NAME]

Related Information

• add_instance on page 619

• get_instance_properties on page 630

• set_instance_property on page 629

• Instance Properties on page 668

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

628

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.11. set_instance_property

Description
Allows a user to set the properties of a child instance.

Availability
Main Program, Elaboration, Validation, Composition

Usage
set_instance_property <instance> <property> <value>

Returns

Arguments

instance The name of the instance.

property The name of the property to set. Refer to Instance Properties.

value The new property value.

Example

set_instance_property myinstance SUPRESS_ALL_WARNINGS true

Related Information

• add_instance on page 619

• get_instance_properties on page 630

• get_instance_property on page 628

• Instance Properties on page 668

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

629

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.12. get_instance_properties

Description
Returns the names of all the instance properties as a list of strings. You can use the
get_instance_property and set_instance_property commands to get and set
values of individual properties. The value returned by this command is always the
same for a particular version of Platform Designer

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_instance_properties

Returns
List of strings. Refer to Instance Properties.

Arguments
No arguments.

Example

get_instance_properties

Related Information

• add_instance on page 619

• get_instance_property on page 628

• set_instance_property on page 629

• Instance Properties on page 668

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

630

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.13. get_instance_interface_property

Description
Returns the value of a property for an interface in a child instance.

Availability
Validation, Composition

Usage
get_instance_interface_property <instance> <interface> <property>

Returns
The value of the property.

Arguments

instance The name of the child instance.

interface The name of an interface on the child instance.

property The name of the property of the interface.

Example

set value [get_instance_interface_property cpu data_master setupTime]

Related Information

• add_instance on page 619

• get_instance_interfaces on page 625

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

631

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.14. get_instance_parameters

Description
Returns a list of names of the parameters on a child instance that can be set using
set_instance_parameter_value. It omits parameters that are derived and those
that have the SYSTEM_INFO parameter property set.

Availability
Main Program, Elaboration, Validation, Composition

Usage
get_instance_parameters <instance>

Returns
A list of parameters in the instance.

Arguments

instance The name of the child instance.

Example

set parameters [get_instance_parameters instance]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 616

• add_instance on page 619

• get_instance_parameter_value on page 634

• get_instances on page 624

• set_instance_parameter_value on page 637

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

632

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.15. get_instance_parameter_property

Description
Returns the value of a property on a parameter in a child instance. Parameter
properties are metadata that describe how the Platform Designer tools use the
parameter.

Availability
Validation, Composition

Usage
get_instance_parameter_property <instance> <parameter> <property>

Returns
The value of the parameter property.

Arguments

instance The name of the child instance.

parameter The name of the parameter in the instance.

property The name of the property of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property instance parameter property

Related Information

• add_instance on page 619

• Parameter Properties on page 669

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

633

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.16. get_instance_parameter_value

Description
Returns the value of a parameter in a child instance. You cannot use this command to
get the value of parameters whose values are derived or those that are defined using
the SYSTEM_INFO parameter property.

Availability
Elaboration, Validation, Composition

Usage
get_instance_parameter_value <instance> <parameter>

Returns
The value of the parameter.

Arguments

instance The name of the child instance.

parameter Specifies the parameter whose value is being retrieved.

Example

set dpi [get_instance_parameter_value pixel_converter input_DPI]

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 616

• add_instance on page 619

• get_instance_parameters on page 632

• get_instances on page 624

• set_instance_parameter_value on page 637

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

634

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.17. get_instance_port_property

Description
Returns the value of a property of a port contained by an interface in a child instance.

Availability
Validation, Composition, Fileset Generation

Usage
get_instance_port_property <instance> <port> <property>

Returns
The value of the property for the port.

Arguments

instance The name of the child instance.

port The name of a port in one of the interfaces on the child instance.

property The property whose value is being retrieved. Only the following port
properties can be queried on ports of child instances: ROLE, DIRECTION,
WIDTH, WIDTH_EXPR and VHDL_TYPE. Refer to Port Properties.

Example

get_instance_port_property instance port property

Related Information

• add_instance on page 619

• get_instance_interface_ports on page 626

• Port Properties on page 673

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

635

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.18. set_connection_parameter_value

Description
Sets the value of a parameter of the connection. The start and end are each interface
names of the format <instance>.<interface>. Connection parameters depend on
the type of connection, for Avalon-MM they include base addresses and arbitration
priorities.

Availability
Main Program, Composition

Usage
set_connection_parameter_value <connection> <parameter> <value>

Returns
No return value.

Arguments

connection Specifies the name of the connection as returned by the add_conection
command. It is of the form start.point/end.point.

parameter The name of the parameter.

value The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress "0x000a0000"

Related Information

• add_connection on page 620

• get_connection_parameter_value on page 623

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

636

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.6.19. set_instance_parameter_value

Description
Sets the value of a parameter for a child instance. Derived parameters and
SYSTEM_INFO parameters for the child instance cannot be set with this command.

Availability
Main Program, Elaboration, Composition

Usage
set_instance_parameter_value <instance> <parameter> <value>

Returns
Vo return value.

Arguments

instance Specifies the name of the child instance.

parameter Specifies the parameter that is being set.

value Specifies the new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Notes

You can use this command with instances created by either add_instance or
add_hdl_instance.

Related Information

• add_hdl_instance on page 616

• add_instance on page 619

• get_instance_parameter_value on page 634

• get_instances on page 624

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

637

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7. Fileset Generation

add_fileset on page 639

add_fileset_file on page 640

set_fileset_property on page 641

get_fileset_file_attribute on page 642

set_fileset_file_attribute on page 643

get_fileset_properties on page 644

get_fileset_property on page 645

get_fileset_sim_properties on page 646

set_fileset_sim_properties on page 647

create_temp_file on page 648

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

638

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.1. add_fileset

Description
Adds a generation fileset for a particular target as specified by the kind. Platform
Designer calls the target (SIM_VHDL, SIM_VERILOG, QUARTUS_SYNTH, or
EXAMPLE_DESIGN) when the specified generation target is requested. You can define
multiple filesets for each kind of fileset. Platform Designer passes a single argument to
the specified callback procedure. The value of the argument is a generated name,
which you must use in the top-level module or entity declaration of your IP
component. To override this generated name, you can set the fileset property
TOP_LEVEL.

Availability
Main Program

Usage
add_fileset <name> <kind> [<callback_proc> <display_name>]

Returns
No return value.

Arguments

name The name of the fileset.

kind The kind of fileset. Refer to Fileset Properties.

callback_proc
(optional)

A string identifying the name of the callback procedure. If you
add files in the global section, you can then specify a blank
callback procedure.

display_name (optional) A display string to identify the fileset.

Example

add_fileset my_synthesis_fileset QUARTUS_SYNTH mySynthCallbackProc "My
Synthesis"
proc mySynthCallbackProc { topLevelName } { ... }

Notes

If using the TOP_LEVEL fileset property, all parameterizations of the component must
use identical HDL.

Related Information

• add_fileset_file on page 640

• get_fileset_property on page 645

• Fileset Properties on page 681

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

639

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.2. add_fileset_file

Description
Adds a file to the generation directory. You can specify source file locations with either
an absolute path, or a path relative to the IP component's _hw.tcl file. When you
use the add_fileset_file command in a fileset callback, the Intel Quartus Prime
software compiles the files in the order that they are added.

Availability
Main Program, Fileset Generation

Usage
add_fileset_file <output_file> <file_type> <file_source> <path_or_contents>
[<attributes>]

Returns
No return value.

Arguments

output_file Specifies the location to store the file after Platform Designer generation

file_type The kind of file. Refer to File Kind Properties.

file_source Specifies whether the file is being added by path, or by file contents.
Refer to File Source Properties.

path_or_contents When the file_source is PATH, specifies the file to be copied to
output_file. When the file_source is TEXT, specifies the text
contents to be stored in the file.

attributes
(optional)

An optional list of file attributes. Typically used to specify that a
file is intended for use only in a particular simulator. Refer to File
Attribute Properties.

Example

add_fileset_file "./implementation/rx_pma.sv" SYSTEM_VERILOG PATH
synth_rx_pma.sv
add_fileset_file gui.sv SYSTEM_VERILOG TEXT "Customize your IP core"

Related Information

• add_fileset on page 639

• get_fileset_file_attribute on page 642

• File Kind Properties on page 685

• File Source Properties on page 686

• File Attribute Properties on page 684

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

640

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.3. set_fileset_property

Description
Allows you to set the properties of a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
set_fileset_property <fileset> <property> <value>

Returns
No return value.

Arguments

fileset The name of the fileset.

property The name of the property to set. Refer to Fileset Properties.

value The new property value.

Example

set_fileset_property mySynthFileset TOP_LEVEL simple_uart

Notes

When a fileset callback is called, the callback procedure is passed a single argument.
The value of this argument is a generated name which must be used in the top-level
module or entity declaration of your IP component. If set, the TOP_LEVEL specifies a
fixed name for the top-level name of your IP component.

The TOP_LEVEL property must be set in the global section. It cannot be set in a
fileset callback.

If using the TOP_LEVEL fileset property, all parameterizations of the IP component
must use identical HDL.

Related Information

• add_fileset on page 639

• Fileset Properties on page 681

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

641

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.4. get_fileset_file_attribute

Description
Returns the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
get_fileset_file_attribute <output_file> <attribute>

Returns
Value of the fileset File attribute.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

Example

get_fileset_file_attribute my_file.sv ALDEC_SPECIFIC

Related Information

• add_fileset on page 639

• add_fileset_file on page 640

• get_fileset_file_attribute on page 642

• File Attribute Properties on page 684

• add_fileset on page 639

• add_fileset_file on page 640

• get_fileset_file_attribute on page 642

• File Attribute Properties on page 684

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

642

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.5. set_fileset_file_attribute

Description
Sets the attribute of a fileset file.

Availability
Main Program, Fileset Generation

Usage
set_fileset_file_attribute <output_file> <attribute> <value>

Returns
The attribute value if it was set.

Arguments

output_file Location of the output file.

attribute Specifies the name of the attribute Refer to File Attribute Properties.

value Value to set the attribute to.

Example

set_fileset_file_attribute my_file_pkg.sv COMMON_SYSTEMVERILOG_PACKAGE
my_file_package

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

643

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.6. get_fileset_properties

Description
Returns a list of properties that can be set on a fileset.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition,
Fileset Generation, Parameter Upgrade

Usage
get_fileset_properties

Returns
A list of property names. Refer to Fileset Properties.

Arguments
No arguments.

Example

get_fileset_properties

Related Information

• add_fileset on page 639

• get_fileset_properties on page 644

• set_fileset_property on page 641

• Fileset Properties on page 681

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

644

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.7. get_fileset_property

Description
Returns the value of a fileset property for a fileset.

Availability
Main Program, Elaboration, Fileset Generation

Usage
get_fileset_property <fileset> <property>

Returns
The value of the property.

Arguments

fileset The name of the fileset.

property The name of the property to query. Refer to Fileset Properties.

Example

get_fileset_property fileset property

Related Information

Fileset Properties on page 681

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

645

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.8. get_fileset_sim_properties

Description
Returns simulator properties for a fileset.

Availability
Main Program, Fileset Generation

Usage
get_fileset_sim_properties <fileset> <platform> <property>

Returns
The fileset simulator properties.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator Properties.

Example

get_fileset_sim_properties my_fileset LINUX64 OPT_CADENCE_64BIT

Related Information

• add_fileset on page 639

• set_fileset_sim_properties on page 647

• Operating System Properties on page 693

• Simulator Properties on page 687

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

646

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.9. set_fileset_sim_properties

Description
Sets simulator properties for a given fileset

Availability
Main Program, Fileset Generation

Usage
set_fileset_sim_properties <fileset> <platform> <property> <value>

Returns
The fileset simulator properties if they were set.

Arguments

fileset The name of the fileset.

platform The operating system that applies to the property. Refer to Operating
System Properties.

property Specifies the name of the property to set. Refer to Simulator Properties.

value Specifies the value of the property.

Example

set_fileset_sim_properties my_fileset LINUX64 OPT_MENTOR_PLI "{libA} {libB}"

Related Information

• get_fileset_sim_properties on page 646

• Operating System Properties on page 693

• Simulator Properties on page 687

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

647

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.7.10. create_temp_file

Description
Creates a temporary file, which you can use inside the fileset callbacks of a _hw.tcl
file. This temporary file is included in the generation output if it is added using the
add_fileset_file command.

Availability
Fileset Generation

Usage
create_temp_file <path>

Returns
The path to the temporary file.

Arguments

path The name of the temporary file.

Example

set filelocation [create_temp_file "./hdl/compute_frequency.v"]
add_fileset_file compute_frequency.v VERILOG PATH ${filelocation}

Related Information

• add_fileset on page 639

• add_fileset_file on page 640

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

648

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8. Miscellaneous

check_device_family_equivalence on page 650

get_device_family_displayname on page 651

get_qip_strings on page 652

set_qip_strings on page 653

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

649

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.1. check_device_family_equivalence

Description
Returns 1 if the device family is equivalent to one of the families in the device families
list. Returns 0 if the device family is not equivalent to any families. This command
ignores differences in capitalization and spaces.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
check_device_family_equivalence <device_family> <device_family_list>

Returns
1 if equivalent, 0 if not equivalent.

Arguments

device_family The device family name that is being checked.

device_family_list The list of device family names to check against.

Example

check_device_family_equivalence "CYLCONE III LS" { "stratixv" "Cyclone IV"
"cycloneiiils" }

Related Information

get_device_family_displayname on page 651

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

650

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.2. get_device_family_displayname

Description
Returns the display name of a given device family.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset
Generation, Parameter Upgrade

Usage
get_device_family_displayname <device_family>

Returns
The preferred display name for the device family.

Arguments

device_family A device family name.

Example

get_device_family_displayname cycloneiiils (returns: "Cyclone IV LS")

Related Information

check_device_family_equivalence on page 650

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

651

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.3. get_qip_strings

Description
Returns a Tcl list of QIP strings for the IP component.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
get_qip_strings

Returns
A Tcl list of qip strings set by this IP component.

Arguments
No arguments.

Example

set strings [get_qip_strings]

Related Information

set_qip_strings on page 653

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

652

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.8.4. set_qip_strings

Description
Places strings in the Intel Quartus Prime IP File (.qip) file, which Platform Designer
passes to the command as a Tcl list. You add the .qip file to your Intel Quartus Prime
project on the Files page, in the Settings dialog box. Successive calls to
set_qip_strings are not additive and replace the previously declared value.

Availability
Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter
Upgrade

Usage
set_qip_strings <qip_strings>

Returns
The Tcl list which was set.

Arguments

qip_strings A space-delimited Tcl list.

Example

set_qip_strings {"QIP Entry 1" "QIP Entry 2"}

Notes
You can use the following macros in your QIP strings entry:

%entityName% The generated name of the entity replaces this macro when the
string is written to the .qip file.

%libraryName% The compilation library this IP component was compiled into is
inserted in place of this macro inside the .qip file.

%instanceName% The name of the instance is inserted in place of this macro inside
the .qip file.

Related Information

get_qip_strings on page 652

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

653

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9. SystemVerilog Interface Commands

add_sv_interface on page 655

get_sv_interfaces on page 656

get_sv_interface_property on page 657

get_sv_interface_properties on page 658

set_sv_interface_property on page 659

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

654

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.1. add_sv_interface

Description
Adds a SystemVerilog interface to the IP component.

Availability
Elaboration, Global

Usage
add_sv_interface <sv_interface_name> <sv_interface_type>

Returns
No return value.

Arguments

sv_interface_name The name of the SystemVerilog interface in the IP component.

sv_interface_type The type of the SystemVerilog interface used by the IP component.

Example

add_sv_interface my_sv_interface my_sv_interface_type

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

655

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.2. get_sv_interfaces

Description
Returns the list of SystemVerilog interfaces in the IP component.

Availability
Elaboration, Global

Usage
get_sv_interfaces

Returns

String[] Returns the list of SystemVerilog interfaces defined in the IP component.

Arguments
No arguments.

Example

get_sv_interfaces

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

656

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.3. get_sv_interface_property

Description
Returns the value of a single SystemVerilog interface property from the specified
interface.

Availability
Elaboration, Global

Usage
get_sv_interface_property <sv_interface_name> <sv_interface_property>

Returns

various The property value.

Arguments

sv_interface_name The name of a SystemVerilog interface of the system.

sv_interface_property The name of the property. Refer to System Verilog Interface
Properties.

Example

get_sv_interface_property my_sv_interface USE_ALL_PORTS

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

657

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.4. get_sv_interface_properties

Description
Returns the names of all the available SystemVerilog interface properties common to
all interface types.

Availability
Elaboration, Global

Usage
get_sv_interface_properties

Returns

String[] The list of SystemVerilog interface properties.

Arguments
No arguments.

Example

get_sv_interface_properties

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

658

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.9.5. set_sv_interface_property

Description
Sets the value of a property on a SystemVerilog interface.

Availability
Elaboration, Global

Usage
set_sv_interface_property <sv_interface_name> <sv_interface_property>
<value>

Returns
No return value.

Arguments

interface The name of a SystemVerilog interface.

sv_interface_property The name of the property. Refer to SystemVerilog Interface
Properties.

value The property value.

Example

set_sv_interface_property my_sv_interface USE_ALL_PORTS True

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

659

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.10. Wire-Level Expression Commands

set_wirelevel_expression on page 536

get_wirelevel_expressions on page 536

remove_wirelevel_expressions on page 537

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

660

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.10.1. set_wirelevel_expression

Description
Applies a wire-level expression to an optional input port or instance in the system.

Usage
set_wirelevel_expression <instance_or_port_bitselection> <expression>

Returns
No return value.

Arguments

instance_or_port_bitselection Specify the instance or port to which the wire-level
expression using the
<instance_name>.<port_name>[<bit_selection>]
format. The bit selection can be a bit-select, for
example [0], or a partial range defined in descending
order, for example [7:0]. If no bit selection is
specified, the full range of the port is selected.

expression The expression to be applied to an optional input port.

Examples

set_wirelevel_expression {module0.portA[7:0]} "8'b0"
set_wirelevel_expression module0.portA "8'b0"
set_wirelevel_expression {module0.portA[0]} "1'b0"

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

661

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.10.2. get_wirelevel_expressions

Description
Retrieve a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expression statement.

Usage
get_wirelevel_expressions <instance_or_port_bitselection>

Returns

String[] A flattened list of wire-level expressions. Every item in the list consists of
right- and left-hand clauses of a wire-level expression. You can loop over the
returned list using foreach{port expr} $return_list{}.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list of
wire-level expressions are retrieved using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is specified,
the command causes the return of all expressions
from the specified instance.

• If no argument is present, the command causes
the return of all expressions from the current level
of system hierarchy.

The bit selection can be a bit-select, for example [0],
or a partial range defined in descending order, for
example [7:0]. If no bit selection is specified, the full
range of the port is selected.

Example

get_wirelevel_expressions
get_wirelevel_expressions module0
get_wirelevel_expressions {module0.portA[7:0]}

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

662

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.10.3. remove_wirelevel_expressions

Description
Remove a list of wire-level expressions from an optional input port, instance, or all
expressions in the current level of system hierarchy. If the port bit selection is
specified as an argument, the range must be identical to what was used in the
set_wirelevel_expressions statement.

Usage
remove_wirelevel_expressions <instance_or_port_bitselection>

Returns
No return value.

Arguments

instance_or_port_bitselection Specifies which instance or port from which a list of
wire-level expressions are removed using the
<instance_name>.<port_name>[<bit_selection>]
format.

• If no <port_name>[<bit_selection>] is specified,
the command causes the removal of all
expressions from the specified instance.

• If no argument is present, the command causes
the return of all expressions from the current level
of system hierarchy.

The bit selection can be a bit-select, for example [0],
or a partial range defined in descending order, for
example [7:0]. If no bit selection is specified, the full
range of the port is selected.

Examples

remove_wirelevel_expressions
remove_wirelevel_expressions module0
remove_wirelevel_expressions {module0.portA[7:0]}

Related Information

• Scripting Wire-Level Expressions on page 47

• Wire-Level Connectivity on page 42

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

663

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2. Platform Designer _hw.tcl Property Reference

Script Language Properties on page 665

Interface Properties on page 666

SystemVerilog Interface Properties on page 666

Instance Properties on page 668

Parameter Properties on page 669

Parameter Type Properties on page 671

Parameter Status Properties on page 672

Port Properties on page 673

Direction Properties on page 675

Display Item Properties on page 676

Display Item Kind Properties on page 677

Display Hint Properties on page 678

Module Properties on page 679

Fileset Properties on page 681

Fileset Kind Properties on page 682

Callback Properties on page 683

File Attribute Properties on page 684

File Kind Properties on page 685

File Source Properties on page 686

Simulator Properties on page 687

Port VHDL Type Properties on page 688

System Info Type Properties on page 689

Design Environment Type Properties on page 691

Units Properties on page 692

Operating System Properties on page 693

Quartus.ini Type Properties on page 694

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

664

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.1. Script Language Properties

Name Description

TCL Implements the script in Tcl.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

665

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.2. Interface Properties

Name Description

CMSIS_SVD_FILE Specifies the connection point's associated CMSIS file.

CMSIS_SVD_VARIABLES Defines the variables inside a .svd file.

ENABLED Specifies whether or not interface is enabled.

EXPORT_OF For composed _hwl.tcl files, the EXPORT_OF property indicates
which interface of a child instance is to be exported through this
interface. Before using this command, you must have created the
border interface using add_interface. The interface to be
exported is of the form <instanceName.interfaceName>.
Example:

set_interface_property CSC_input
 EXPORT_OF my_colorSpaceConverter.input_port

PORT_NAME_MAP A map of external port names to internal port names, formatted as
a Tcl list. Example:

set_interface_property <interface name> PORT_NAME_MAP
 "<new port name> <old port name> <new port name 2> <old
port name 2>"

SVD_ADDRESS_GROUP Generates a CMSIS SVD file. Masters in the same SVD address
group write register data of their connected slaves into the same
SVD file

SVD_ADDRESS_OFFSET Generates a CMSIS SVD file. Slaves connected to this master have
their base address offset by this amount in the SVD file.

SV_INTERFACE When SV_INTERFACE is set, all the ports in the given interface are
part of the SystemVerilog interface.
Example:

set_interface_property my_qsys_interface SV_INTERFACE
 my_sv_interface

IPXACT_REGISTER_MAP Specifies the connection point's associated IP-XACT register map
file. Platform Designer supports register map files in IP-XACT 2009
or 2014 format.
Example:

set_interface_property my_qsys_interface
 IPXACT_REGISTER_MAP <path_to_ipxact_reg_file>

IPXACT_REGISTER_MAP_VARIABLES For macro substitution inside the IP-XACT register map file.
Specifies a list of key value pairs, where key is the macro name and
value is the replacement text that substitutes the macros in the IP-
XACT register map.

Related Information

Interfaces and Ports on page 568

7.2.3. SystemVerilog Interface Properties

Name Description

SV_INTERFACE_TYPE Set the interface type of the SystemVerilog interface.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

666

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

USE_ALL_PORTS When USE_ALL_PORTS is set to true, all the ports defined in the Module, are
declared in this SystemVerilog interface.
USE_ALL_PORTS must be set to true only if the module has one SystemVerilog
interface and the SystemVerilog interface signal names match with the port names
declared for Platform Designer interface.
When USE_ALL_PORTS is true, SV_INTERFACE_PORT or SV_INTERFACE_SIGNAL
port properties should not be set.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

667

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.4. Instance Properties

Name Description

HDLINSTANCE_GET_GENERATED_NAME Platform Designer uses this property to get the auto-generated
fixed name when the instance property
HDLINSTANCE_USE_GENERATED_NAME is set to true, and only
applies to fileSet callbacks.

HDLINSTANCE_USE_GENERATED_NAME If true, instances added with the add_hdl_instance command
are instructed to use unique auto-generated fixed names based on
the parameterization.

SUPPRESS_ALL_INFO_MESSAGES If true, allows you to suppress all Info messages that originate
from a child instance.

SUPPRESS_ALL_WARNINGS If true, allows you to suppress alL warnings that originate from a
child instance

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

668

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.5. Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not
affect the external interface of the module. An example of a
parameter that does not affect the external interface is
isNonVolatileStorage. An example of a parameter that does
affect the external interface is width. When the value of a
parameter changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase (calling
the callback or hardware analysis) is not repeated, improving
performance. Because the default value of
AFFECTS_ELABORATION is true, the provided HDL file is
normally re-analyzed to determine the new port widths and
configuration every time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you
provide a top-level HDL module; it is true if you provide a fileset
callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property marks whether a
parameter's value is used to set derived parameters, and whether
the value affects validation messages. When set to false, this
may improve response time in the parameter editor UI when the
value is changed.

String[] ALLOWED_RANGES Indicates the range or ranges that the parameter value can have.
For integers, The ALLOWED_RANGES property is a list of ranges
that the parameter can take on, where each range is a single
value, or a range of values defined by a start and end value
separated by a colon, such as 11:15. This property can also
specify legal values and display strings for integers, such as
{0:None 1:Monophonic 2:Stereo 4:Quadrophonic}
meaning 0, 1, 2, and 4 are the legal values. You can also assign
display strings to be displayed in the parameter editor for string
variables. For example, ALLOWED_RANGES {"dev1:Cyclone IV
GX""dev2:Stratix V GT"}.

String DEFAULT_VALUE The default value.

Boolean DERIVED When true, indicates that the parameter value can only be set by
the IP component, and cannot be set by the user. Derived
parameters are not saved as part of an instance's parameter
values. The default value is false.

String DESCRIPTION A short user-visible description of the parameter, suitable for a
tooltip description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property. The following
values are possible:
• boolean--for integer parameters whose value can be 0 or

1. The parameter displays as an option that you can turn on or
off.

• radio--displays a parameter with a list of values as radio
buttons instead of a drop-down list.

• hexadecimal--for integer parameters, display and
interpret the value as a hexadecimal number, for example:
0x00000010 instead of 16.

• fixed_size--for string_list and integer_list
parameters, the fixed_size DISPLAY_HINT eliminates the
add and remove buttons from tables.

String DISPLAY_NAME This is the GUI label that appears to the left of this parameter.

String DISPLAY_UNITS This is the GUI label that appears to the right of the parameter.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

669

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean ENABLED When false, the parameter is disabled, meaning that it is
displayed, but greyed out, indicating that it is not editable on the
parameter editor.

String GROUP Controls the layout of parameters in GUI

Boolean HDL_PARAMETER When true, the parameter must be passed to the HDL IP
component description. The default value is false.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to
DESCRIPTION, but allows for a more detailed explanation.

String NEW_INSTANCE_VALUE This property allows you to change the default value of a
parameter without affecting older IP components that have did
not explicitly set a parameter value, and use the DEFAULT_VALUE
property. The practical result is that older instances continue to
use DEFAULT_VALUE for the parameter and new instances use
the value that NEW_INSTANCE_VALUE assigns.

String SV_INTERFACE_PARAMETER This parameter is used in the SystemVerilog interface
instantiation.
Example:

set_parameter_property my_parameter SV_INTERFACE_PARAMETER
my_sv_interface

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to
a parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information requested, <info-type>.

String SYSTEM_INFO_ARG Defines an argument to be passed to a particular SYSTEM_INFO
function, such as the name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies one of the types of system information that can be
queried. Refer to System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the
parameterization GUI.

String WIDTH For a STD_LOGIC_VECTOR parameter, this indicates the width of
the logic vector.

Related Information

• System Info Type Properties on page 689

• Parameter Type Properties on page 671

• Units Properties on page 692

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

670

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.6. Parameter Type Properties

Name Description

BOOLEAN A boolean parameter whose value is true or false.

FLOAT A signed 32-bit floating point parameter. Not supported for HDL parameters.

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. Not supported for HDL
parameters.

LONG A signed 64-bit integer parameter. Not supported for HDL parameters.

NATURAL A 32-bit number that contain values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter whose value can be 1 or 0;

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of the
logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. Not supported for HDL parameters.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

671

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.7. Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates the parameter is a regular parameter.

Boolean DEPRECATED Indicates the parameter exists only for backwards compatibility, and may not
have any effect.

Boolean EXPERIMENTAL Indicates the parameter is experimental, and not exposed in the design flow.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

672

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.8. Port Properties

Type Name Description

(various) DIRECTION The direction of the port from the IP component's perspective.
Refer to Direction Properties.

String DRIVEN_BY Indicates that this output port is always driven to a constant
value or by an input port. If all outputs on an IP component
specify a driven_by property, the HDL for the IP component
is generated automatically.

String[] FRAGMENT_LIST This property can be used in 2 ways: First you can take a
single RTL signal and split it into multiple Platform Designer
signals add_interface_port <interface> alpha
<role> <direction> <width> add_interface_port
<interface> bar <role> <direction> <width>
set_port_property alpha fragment_list
"my_rtl_signal(3:0)" set_port_property bar
fragment_list "my_rtl_signal(6:4)" Second you can
take multiple RTL signals and combine them into a single
Platform Designer signal add_interface_port
<interface> baz <role> <direction> <width>
set_port_property baz fragment_list
"rtl_signal_1(3:0) rtl_signal_2(3:0)" Note: The
listed bits in a port fragment must match the declared width
of the Platform Designer signal.

String ROLE Specifies an Avalon signal type such as waitrequest,
readdata, or read. For a complete list of signal types, refer
to the Avalon Interface Specifications.

String SV_INTERFACE_PORT This port from the module is used as I/O in the SystemVerilog
interface instantiation. The top-level wrapper of the module
which contains this port is from the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT
my_sv_interface

String SV_INTERFACE_PORT_NAME This property is used only when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_x SV_INTERFACE_PORT_NAME port_a

When writing the RTL, the Platform Designer port name
port_x is mapped to RTL name port_a in the SystemVerilog
interface

String SV_INTERFACE_SIGNAL This port from the module is assumed to be inside the
SystemVerilog interface or the modport used by the module.
The top-level wrapper of the module containing this port is
unwrapped from SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL
my_sv_interface

String SV_INTERFACE_SIGNAL_NAME This property is only used when the Platform Designer port
name defined for the module is different from the port name
in the SystemVerilog interface.
Example:

set_port_property port_y SV_INTERFACE_SIGNAL_NAME port_b

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

673

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

Boolean TERMINATION When true, instead of connecting the port to the Platform
Designer system, it is left unconnected for output and
bidir or set to a fixed value for input. Has no effect for IP
components that implement a generation callback instead of
using the default wrapper generation.

BigInteger TERMINATION_VALUE The constant value to drive an input port.

(various) VHDL_TYPE Indicates the type of a VHDL port. The default value, auto,
selects std_logic if the width is fixed at 1, and
std_logic_vector otherwise. Refer to Port VHDL Type
Properties.

String WIDTH The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

String WIDTH_EXPR The width expression of a port. The width_value_expr
property can be set directly to a numeric value if desired.
When get_port_property is used width always returns the
current integer width of the port while width_expr always
returns the unevaluated width expression.

Integer WIDTH_VALUE The width of the port in bits. Cannot be set directly. Any
changes must be set through the WIDTH_EXPR property.

Related Information

• Direction Properties on page 675

• Port VHDL Type Properties on page 688

• Avalon Interface Specifications

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

674

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.9. Direction Properties

Name Description

Bidir Direction for a bidirectional signal.

Input Direction for an input signal.

Output Direction for an output signal.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

675

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.10. Display Item Properties

Type Name Description

String DESCRIPTION A description of the display item, which you can use as a tooltip.

String[] DISPLAY_HINT A hint that affects how the display item displays in the parameter editor.

String DISPLAY_NAME The label for the display item in a the parameter editor.

Boolean ENABLED Indicates whether the display item is enabled or disabled.

String PATH The path to a file. Only applies to display items of type ICON.

String TEXT Text associated with a display item. Only applies to display items of type TEXT.

Boolean VISIBLE Indicates whether this display item is visible or not.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

676

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.11. Display Item Kind Properties

Name Description

ACTION An action displays as a button in the GUI. When the button is clicked, it calls the callback
procedure. The button label is the display item id.

GROUP A group that is a child of the parent_group group. If the parent_group is an empty string,
this is a top-level group.

ICON A .gif, .jpg, or .png file.

PARAMETER A parameter in the instance.

TEXT A block of text.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

677

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.12. Display Hint Properties

Name Description

BIT_WIDTH Bit width of a number

BOOLEAN Integer value either 0 or 1.

COLLAPSED Indicates whether a group is collapsed when initially displayed.

COLUMNS Number of columns in text field, for example, "columns:N".

EDITABLE Indicates whether a list of strings allows free-form text entry (editable combo box).

FILE Indicates that the string is an optional file path, for example, "file:jpg,png,gif".

FIXED_SIZE Indicates a fixed size for a table or list.

GROW if set, the widget can grow when the IP component is resized.

HEXADECIMAL Indicates that the long integer is hexadecimal.

RADIO Indicates that the range displays as radio buttons.

ROWS Number of rows in text field, or visible rows in a table, for example, "rows:N".

SLIDER Range displays as slider.

TAB if present for a group, the group displays in a tab

TABLE if present for a group, the group must contain all list-type parameters, which display
collectively in a single table.

TEXT String is a text field with a limited character set, for example, "text:A-Za-z0-9_".

WIDTH width of a table column

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

678

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.13. Module Properties

Name Description

ANALYZE_HDL When set to false, prevents a call to the Intel Quartus Prime
mapper to verify port widths and directions, speeding up
generation time at the expense of fewer validation checks. If this
property is set to false, invalid port widths and directions are
discovered during the Intel Quartus Prime software compilation.
This does not affect IP components using filesets to manage
synthesis files.

AUTHOR The IP component author.

COMPOSITION_CALLBACK The name of the composition callback. If you define a
composition callback, you cannot not define the generation or
elaboration callbacks.

DATASHEET_URL Deprecated. Use add_documentation_link to provide
documentation links.

DESCRIPTION The description of the IP component, such as "This IP component
implements a half-rate bridge."

DISPLAY_NAME The name to display when referencing the IP component, such as
"My Platform Designer IP Component".

EDITABLE Indicates whether you can edit the IP component in the
Component Editor.

ELABORATION_CALLBACK The name of the elaboration callback. When set, the IP
component's elaboration callback is called to validate and
elaborate interfaces for instances of the IP component.

GENERATION_CALLBACK The name for a custom generation callback.

GROUP The group in the IP Catalog that includes this IP component.

ICON_PATH A path to an icon to display in the IP component's parameter
editor.

INSTANTIATE_IN_SYSTEM_MODULE If true, this IP component is implemented by HDL provided by the
IP component. If false, the IP component creates exported
interfaces allowing the implementation to be connected in the
parent.

INTERNAL An IP component which is marked as internal does not appear in
the IP Catalog. This feature allows you to hide the sub-IP-
components of a larger composed IP component.

MODULE_DIRECTORY The directory in which the hw.tcl file exists.

MODULE_TCL_FILE The path to the hw.tcl file.

NAME The name of the IP component, such as my_qsys_component.

OPAQUE_ADDRESS_MAP For composed IP components created using a _hw.tcl file that
include children that are memory-mapped slaves, specifies
whether the children's addresses are visible to downstream
software tools. When true, the children's address are not visible.
When false, the children's addresses are visible.

PREFERRED_SIMULATION_LANGUAGE The preferred language to use for selecting the fileset for
simulation model generation.

REPORT_HIERARCHY null

STATIC_TOP_LEVEL_MODULE_NAME Deprecated.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

679

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

STRUCTURAL_COMPOSITION_CALLBACK The name of the structural composition callback. This callback is
used to represent the structural hierarchical model of the IP
component and the RTL can be generated either with module
property COMPOSITION_CALLBACK or by ADD_FILESET with
target QUARTUS_SYNTH

SUPPORTED_DEVICE_FAMILIES A list of device family supported by this IP component.

TOP_LEVEL_HDL_FILE Deprecated.

TOP_LEVEL_HDL_MODULE Deprecated.

UPGRADEABLE_FROM null

VALIDATION_CALLBACK The name of the validation callback procedure.

VERSION The IP component's version, such as 10.0.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

680

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.14. Fileset Properties

Name Description

ENABLE_FILE_OVERWRITE_MODE null

ENABLE_RELATIVE_INCLUDE_PATHS If true, HDL files can include other files using relative paths in the
fileset.

TOP_LEVEL The name of the top-level HDL module that the fileset generates. If
set, the HDL top level must match the TOP_LEVEL name, and the
HDL must not be parameterized. Platform Designer runs the
generate callback one time, regardless of the number of instances in
the system.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

681

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.15. Fileset Kind Properties

Name Description

EXAMPLE_DESIGN Contains example design files.

QUARTUS_SYNTH Contains files that Platform Designer uses for the Intel Quartus Prime
software synthesis.

SIM_VERILOG Contains files that Platform Designer uses for Verilog HDL simulation.

SIM_VHDL Contains files that Platform Designer uses for VHDL simulation.

SYSTEMVERILOG_INTERFACE This file is treated as SystemVerilog interface file by the Platform Designer.
Example:

add_fileset_file mem_ifc.sv SYTEM_VERILOG PATH “.ifc/mem_ifc.sv”
SYSTEMVERILOG_INTERFACE

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

682

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.16. Callback Properties

Description
This list describes each type of callback. Each command may only be available in some
callback contexts.

Name Description

ACTION Called when an ACTION display item's action is performed.

COMPOSITION Called during instance elaboration when the IP component contains a
subsystem.

EDITOR Called when the IP component is controlling the parameterization
editor.

ELABORATION Called to elaborate interfaces and signals after a parameter change. In
API 9.1 and later, validation is called before elaboration. In API 9.0 and
earlier, elaboration is called before validation.

GENERATE_VERILOG_SIMULATION Called when the IP component uses a custom generator to generates
the Verilog simulation model for an instance.

GENERATE_VHDL_SIMULATION Called when the IP component uses a custom generator to generates
the VHDL simulation model for an instance.

GENERATION Called when the IP component uses a custom generator to generates
the synthesis HDL for an instance.

PARAMETER_UPGRADE Called when attempting to instantiate an IP component with a newer
version than the saved version. This allows the IP component to
upgrade parameters between released versions of the component.

STRUCTURAL_COMPOSITION Called during instance elaboration when an IP component is
represented by a structural hierarchical model which may be different
from the generated RTL.

VALIDATION Called to validate parameter ranges and report problems with the
parameter values. In API 9.1 and later, validation is called before
elaboration. In API 9.0 and earlier, elaboration is called before
validation.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

683

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.17. File Attribute Properties

Name Description

ALDEC_SPECIFIC Applies to Aldec simulation tools and for simulation filesets only.

CADENCE_SPECIFIC Applies to Cadence simulation tools and for simulation filesets only.

COMMON_SYSTEMVERILOG_PACKAGE The name of the common SystemVerilog package. Applies to
simulation filesets only.

MENTOR_SPECIFIC Applies to Mentor simulation tools and for simulation filesets only.

SYNOPSYS_SPECIFIC Applies to Synopsys simulation tools and for simulation filesets only.

TOP_LEVEL_FILE Contains the top-level module for the fileset and applies to synthesis
filesets only.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

684

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.18. File Kind Properties

Name Description

DAT DAT Data

FLI_LIBRARY FLI Library

HEX HEX Data

MIF MIF Data

OTHER Other

PLI_LIBRARY PLI Library

SDC Timing Constraints

SYSTEM_VERILOG SystemVerilog HDL

SYSTEM_VERILOG_ENCRYPT Encrypted SystemVerilog HDL

SYSTEM_VERILOG_INCLUDE SystemVerilog Include

VERILOG Verilog HDL

VERILOG_ENCRYPT Encrypted Verilog HDL

VERILOG_INCLUDE Verilog Include

VHDL VHDL

VHDL_ENCRYPT Encrypted VHDL

VPI_LIBRARY VPI Library

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

685

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.19. File Source Properties

Name Description

PATH Specifies the original source file and copies to output_file.

TEXT Specifies an arbitrary text string for the contents of output_file.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

686

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.20. Simulator Properties

Name Description

ENV_ALDEC_LD_LIBRARY_PATH LD_LIBRARY_PATH when running riviera-pro

ENV_CADENCE_LD_LIBRARY_PATH LD_LIBRARY_PATH when running ncsim

ENV_MENTOR_LD_LIBRARY_PATH LD_LIBRARY_PATH when running modelsim

ENV_SYNOPSYS_LD_LIBRARY_PATH LD_LIBRARY_PATH when running vcs

OPT_ALDEC_PLI -pli option for riviera-pro

OPT_CADENCE_64BIT -64bit option for ncsim

OPT_CADENCE_PLI -loadpli1 option for ncsim

OPT_CADENCE_SVLIB -sv_lib option for ncsim

OPT_CADENCE_SVROOT -sv_root option for ncsim

OPT_MENTOR_64 -64 option for modelsim

OPT_MENTOR_CPPPATH -cpppath option for modelsim

OPT_MENTOR_LDFLAGS -ldflags option for modelsim

OPT_MENTOR_PLI -pli option for modelsim

OPT_SYNOPSYS_ACC +acc option for vcs

OPT_SYNOPSYS_CPP -cpp option for vcs

OPT_SYNOPSYS_FULL64 -full64 option for vcs

OPT_SYNOPSYS_LDFLAGS -LDFLAGS option for vcs

OPT_SYNOPSYS_LLIB -l option for vcs

OPT_SYNOPSYS_VPI +vpi option for vcs

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

687

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.21. Port VHDL Type Properties

Name Description

AUTO The VHDL type of this signal is automatically determined. Single-bit signals are
STD_LOGIC; signals wider than one bit are STD_LOGIC_VECTOR.

STD_LOGIC Indicates that the signal is not rendered in VHDL as a STD_LOGIC signal.

STD_LOGIC_VECTOR Indicates that the signal is rendered in VHDL as a STD_LOGIC_VECTOR signal.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

688

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.22. System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string describing the address map for
the interface specified in the system info argument.

Integer ADDRESS_WIDTH The number of address bits required to address all
memory-mapped slaves connected to the specified
memory-mapped master in this instance, using byte
addresses.

String AVALON_SPEC The version of the interconnect. SOPC Builder
interconnect uses Avalon Specification 1.0. Platform
Designer interconnect uses Avalon Specification 2.0.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple clock domains, this
can be used to determine which interfaces are on each
clock domain. The absolute value of the integer is
arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the system info argument. If 0, the clock
rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. This is used to determine the reset sink to use
for global reset when using SOPC interconnect.

String CUSTOM_INSTRUCTION_SLAVES Provides custom instruction slave information, including
the name, base address, address span, and clock cycle
type.

(various) DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the currently selected device.

String DEVICE_FAMILY The family name of the currently selected device.

String DEVICE_FEATURES A list of key/value pairs delineated by spaces indicating
whether a particular device feature is available in the
currently selected device family. The format of the list is
suitable for passing to the Tcl array set command. The
keys are device features; the values are 1 if the feature
is present, and 0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the currently selected device.

Integer GENERATION_ID A integer that stores a hash of the generation time to be
used as a unique ID for a generation run.

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer that represents the reset domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple reset domains, this
can be used to determine which interfaces are on each
reset domain. The absolute value of the integer is
arbitrary.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

689

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

String TRISTATECONDUIT_INFO An XML description of the Avalon Tri-state Conduit
masters connected to an Avalon Tri-state Conduit slave.
The slave is specified as the system info argument. The
value contains information about the slave, the
connected master instance and interface names, and
signal names, directions and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

Design Environment Type Properties on page 691

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

690

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.23. Design Environment Type Properties

Description
A design environment is used by IP to tell what sort of interfaces are most appropriate
to connect in the parent system.

Name Description

NATIVE Design environment prefers native IP interfaces.

QSYS Design environment prefers standard Platform Designer interfaces.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

691

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.24. Units Properties

Name Description

Address A memory-mapped address.

Bits Memory size, in bits.

BitsPerSecond Rate, in bits per second.

Bytes Memory size, in bytes.

Cycles A latency or count, in clock cycles.

GigabitsPerSecond Rate, in gigabits per second.

Gigabytes Memory size, in gigabytes.

Gigahertz Frequency, in GHz.

Hertz Frequency, in Hz.

KilobitsPerSecond Rate, in kilobits per second.

Kilobytes Memory size, in kilobytes.

Kilohertz Frequency, in kHz.

MegabitsPerSecond Rate, in megabits per second.

Megabytes Memory size, in megabytes.

Megahertz Frequency, in MHz.

Microseconds Time, in micros.

Milliseconds Time, in ms.

Nanoseconds Time, in ns.

None Unspecified units.

Percent A percentage.

Picoseconds Time, in ps.

Seconds Time, in s.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

692

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.25. Operating System Properties

Name Description

ALL All operating systems

LINUX32 Linux 32-bit

LINUX64 Linux 64-bit

WINDOWS32 Windows 32-bit

WINDOWS64 Windows 64-bit

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

693

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.2.26. Quartus.ini Type Properties

Name Description

ENABLED Returns 1 if the setting is turned on, otherwise returns 0.

STRING Returns the string value of the .ini setting.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

694

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3. Component Interface Tcl Reference Revision History

The table below indicates edits made to the Component Interface Tcl Reference
content since its creation:

Document Version Intel Quartus
Prime Version

Changes

2019.04.01 19.1.0 • Described new domain and post adaptation assignments in
"Interconnect Parameters" topic.

2018.09.24 18.1.0 • Added new _hw.tcl interface properties that allow importing and
exporting register maps in IP-XACT format.

2018.05.07 18.0.0 • Added wire-level expression commands to support wire-level interfaces.
• Updated send_message level availability for INFO messages.
• Updated set_port_property availability.

2017.11.06 17.1.0 • Changed instances of Qsys Pro to Platform Designer
• Added statement clarifying use of brackets.
• Added properties and interface commands to support SystemVerilog.

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Implemented Qsys rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Edit to add_fileset_file command.

December 2014 14.1.0 • set_interface_upgrade_map
• Moved Port Roles (Interface Signal Types) section to Qsys

Interconnect.

November 2013 13.1.0 • add_hdl_instance

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added AMBA APB support.

November 2012 12.1.0 • Added the demo_axi_memory example with screen shots and
example _hw.tcl code.

June 2012 12.0.0 • Added AXI 3 support.
• Added: set_display_item_property,

set_parameter_property,LONG_DESCRIPTION, and static filesets.

November 2011 11.1.0 • Template update.
• Added: set_qip_strings, get_qip_strings,

get_device_family_displayname,
check_device_family_equivalence.

May 2011 11.0.0 • Revised section describing HDL and composed component
implementations.

• Separated reset and clock interfaces in example.
• Added: TRISTATECONDUIT_INFO, GENERATION_ID, UNIQUE_ID

SYSTEM_INFO.
• Added: WIDTH and SYSTEM_INFO_ARG parameter properties.
• Removed the doc_type argument from the

add_documentation_link command.
• Removed: get_instance_parameter_properties
• Added: add_fileset, add_fileset_file, create_temp_file.
• Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 • Initial release.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

695

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

7. Component Interface Tcl Reference

UG-20130 | 2020.01.31

Intel Quartus Prime Pro Edition User Guide: Platform Designer Send Feedback

696

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Intel Quartus Prime Pro Edition User Guide: Platform
Designer Document Archives

If a software version is not listed, the user guide for the previous IP core version applies.

Intel Quartus Prime
Version

User Guide

18.1 Intel Quartus Prime Pro Edition User Guide: Platform Designer

18.0 Intel Quartus Prime Pro Edition User Guide: Platform Designer

17.1 Intel Quartus Prime Pro Edition User Guide: Platform Designer

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-qpp-platform-designer-18-1.pdf
https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-qpp-platform-designer-18-0.pdf
https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-qpp-platform-designer-17-1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

UG-20130 | 2020.01.31

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics*, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics*, and Synopsys. Includes design flow steps,
generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor
Graphics* and Cadence*. Also includes information about signal integrity
analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

UG-20130 | 2020.01.31

Send Feedback Intel Quartus Prime Pro Edition User Guide: Platform Designer

699

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html
https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html
https://www.intel.com/content/www/us/en/programmable/documentation/hjy1513988789394.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html
https://www.intel.com/content/www/us/en/programmable/documentation/osq1513989409475.html
https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html
https://www.intel.com/content/www/us/en/programmable/documentation/fnf1513989100686.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Platform%20Designer%20(UG-20130%202020.01.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Quartus Prime Pro Edition User Guide: Platform Designer
	Contents
	1. Creating a System with Platform Designer
	1.1. Platform Designer Interface Support
	1.2. Platform Designer System Design Flow
	1.3. Creating or Opening a Platform Designer System
	1.3.1. Specifying the Target Intel FPGA Device for a System
	1.3.2. Specifying Additional Application Memory
	1.3.3. Synchronizing IP File References
	1.3.4. Converting Incompatible Components

	1.4. Viewing a Platform Designer System
	1.4.1. Viewing the System Hierarchy
	1.4.2. Filtering the System View
	1.4.3. Viewing System Connections
	1.4.4. Viewing Clock and Reset Domains
	1.4.4.1. Viewing Clock Domains in a System
	1.4.4.2. Viewing Reset Domains in a System

	1.4.5. Viewing Avalon Memory-Mapped Domains in a System
	1.4.6. Viewing the System Schematic
	1.4.7. Customizing the Platform Designer Layout

	1.5. Adding IP Components to a System
	1.5.1. Modifying IP Parameters
	1.5.1.1. Viewing Component or Parameter Details
	1.5.1.2. Viewing a Component's Block Symbol

	1.5.2. Applying Preset Parameters for Specific Applications
	1.5.2.1. Creating IP Custom Preset Parameters Settings

	1.5.3. Adding Third-Party IP Components
	1.5.3.1. IP Search Path Recursive Search
	1.5.3.1.1. IP Search Path Precedence
	1.5.3.1.2. IP Component Description Files

	1.5.3.2. Defining the IP Search Path with Index Files

	1.5.4. Specifying IP Component Instantiation Options
	1.5.4.1. Component Implementation Type Options

	1.5.5. Creating or Opening an IP Core Variant

	1.6. Connecting System Components
	1.6.1. Platform Designer 64-Bit Addressing Support
	1.6.1.1. Support for Avalon-MM Non-Power of Two Data Widths

	1.6.2. Connecting Masters and Slaves
	1.6.3. Changing a Conduit to a Reset
	1.6.4. Wire-Level Connectivity
	1.6.4.1. Editing Wire-Level Expressions
	1.6.4.2. Wire-Level Expression Syntax
	1.6.4.3. Adding or Removing Ports from Wire-Level Endpoint Interfaces
	1.6.4.4. Scripting Wire-Level Expressions

	1.6.5. Previewing the System Interconnect

	1.7. Specifying Interconnect Parameters
	1.7.1. Interconnect Parameters

	1.8. Specifying Signal and Interface Boundary Requirements
	1.8.1. Interface Requirements Tab Fields
	1.8.2. Editing Exported Interface Signal Names

	1.9. Configuring Platform Designer System Security
	1.9.1. System Security Options
	1.9.2. Specifying a Default Slave
	1.9.3. Accessing Undefined Memory Regions

	1.10. Upgrading Outdated IP Components in Platform Designer
	1.11. Synchronizing System Component Information
	1.11.1. System Info Tab Fields

	1.12. Validating System Integrity
	1.12.1. Validating the System Integrity of Individual Components

	1.13. Generating a Platform Designer System
	1.13.1. Generation Dialog Box Options
	1.13.2. Specifying the Generation ID
	1.13.3. Disabling or Enabling Parallel IP Generation
	1.13.4. Files Generated for Intel FPGA IP Cores and Platform Designer Systems
	1.13.5. Generating System Testbench Files
	1.13.5.1. Platform Designer Testbench Simulation Output Directories
	1.13.5.2. Platform Designer Testbench Files

	1.13.6. Generating Example Designs for IP Components
	1.13.7. Incremental System Generation Example
	1.13.8. Generating the HPS IP Component System View Description File
	1.13.9. Generating Header Files for Master Components

	1.14. Simulating a Platform Designer System
	1.14.1. Adding Assertion Monitors for Simulation
	1.14.2. Simulating Software Running on a Nios II Processor

	1.15. Adding a System to an Intel Quartus Prime Project
	1.16. Managing Hierarchical Platform Designer Systems
	1.16.1. Adding a Subsystem to a Platform Designer System
	1.16.2. Viewing and Traversing Subsystem Contents
	1.16.3. Editing a Subsystem
	1.16.4. Changing a Component's Hierarchy Level
	1.16.5. Saving a Subsystem

	1.17. Saving, Archiving, and Restoring Platform Designer Systems
	1.18. Running System Scripts
	1.19. Creating a System with Platform Designer Revision History

	2. Creating Platform Designer Components
	2.1. Platform Designer Components
	2.1.1. Platform Designer Interface Support
	2.1.2. Component Structure
	2.1.3. Component File Organization
	2.1.4. Component Versions
	2.1.4.1. Upgrade IP Components to the Latest Version

	2.2. Design Phases of an IP Component
	2.3. Create IP Components in the Platform Designer Component Editor
	2.3.1. Save an IP Component and Create the _hw.tcl File
	2.3.2. Edit an IP Component with the Platform Designer Component Editor

	2.4. Specify IP Component Type Information
	2.5. Create an HDL File in the Platform Designer Component Editor
	2.6. Create an HDL File Using a Template in the Platform Designer Component Editor
	2.7. Specify Synthesis and Simulation Files in the Platform Designer Component Editor
	2.7.1. Specify HDL Files for Synthesis in the Platform Designer Component Editor
	2.7.2. Analyze Synthesis Files in the Platform Designer Component Editor
	2.7.3. Name HDL Signals for Automatic Interface and Type Recognition in the Platform Designer Component Editor
	2.7.4. Specify Files for Simulation in the Component Editor
	2.7.5. Include an Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	2.8. Add Signals and Interfaces in the Platform Designer Component Editor
	2.9. Specify Parameters in the Platform Designer Component Editor
	2.9.1. Valid Ranges for Parameters in the _hw.tcl File
	2.9.2. Types of Platform Designer Parameters
	2.9.2.1. Platform Designer User Parameters
	2.9.2.2. Platform Designer System Information Parameters
	2.9.2.2.1. Obtaining Device Trait Information Using PART_TRAIT System Information Parameter

	2.9.2.3. Platform Designer Derived Parameters
	2.9.2.3.1. Parameterized Parameter Widths

	2.9.3. Declare Parameters with Custom _hw.tcl Commands
	2.9.4. Validate Parameter Values with a Validation Callback

	2.10. Declaring SystemVerilog Interfaces in _hw.tcl
	2.11. User Alterable HDL Parameters in _hw.tcl
	2.12. Scripting Wire-Level Expressions
	2.13. Control Interfaces Dynamically with an Elaboration Callback
	2.14. Control File Generation Dynamically with Parameters and a Fileset Callback
	2.15. Create a Composed Component or Subsystem
	2.16. Add Component Instances to a Static or Generated Component
	2.16.1. Static IP Components
	2.16.2. Generated Components
	2.16.3. Design Guidelines for Adding Component Instances

	2.17. Adding a Generic Component to the Platform Designer System
	2.17.1. Creating Custom Interfaces in a Generic Component
	2.17.1.1. Mirroring Interfaces in a Generic Component
	2.17.1.2. Cloning Interfaces in a Generic Component
	2.17.1.3. Importing Interfaces to a Generic Component

	2.17.2. Instantiating RTL in a System as a Generic Component
	2.17.3. Implementing Generic Components Using High Level Synthesis Files
	2.17.3.1. Add High Level Synthesis Files to a Generic Component
	2.17.3.2. Compile High Level Synthesis Files
	2.17.3.3. Import High Level Synthesis Files

	2.17.4. Creating System Template for a Generic Component
	2.17.5. Exporting a Generic Component

	2.18. Creating Platform Designer Components Revision History

	3. Platform Designer Interconnect
	3.1. Memory-Mapped Interfaces
	3.1.1. Platform Designer Packet Format
	3.1.1.1. Fields in the Platform Designer Packet Format
	3.1.1.2. Transaction Types for Memory-Mapped Interfaces
	3.1.1.3. Platform Designer Transformations

	3.1.2. Interconnect Domains
	3.1.2.1. Using One Domain with Width Adaptation
	3.1.2.2. Using Two Separate Domains

	3.1.3. Master Network Interfaces
	3.1.3.1. Avalon-MM Master Agent
	3.1.3.2. Avalon-MM Master Translator
	3.1.3.3. AXI Master Agent
	3.1.3.4. AXI Translator
	3.1.3.5. APB Master Agent
	3.1.3.6. APB Slave Agent
	3.1.3.7. APB Translator
	3.1.3.8. AHB Slave Agent
	3.1.3.9. Memory-Mapped Router
	3.1.3.10. Memory-Mapped Traffic Limiter

	3.1.4. Slave Network Interfaces
	3.1.4.1. Avalon-MM Slave Translator
	3.1.4.2. AXI Translator
	3.1.4.3. Wait State Insertion
	3.1.4.4. Avalon-MM Slave Agent
	3.1.4.5. AXI Slave Agent

	3.1.5. Arbitration
	3.1.5.1. Round-Robin Arbitration
	3.1.5.1.1. Fairness-Based Shares
	3.1.5.1.2. Round-Robin Scheduling

	3.1.5.2. Fixed Priority Arbitration
	3.1.5.2.1. Designate a Platform Designer Slave to Use Fixed Priority Arbitration
	3.1.5.2.2. Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

	3.1.6. Memory-Mapped Arbiter
	3.1.7. Datapath Multiplexing Logic
	3.1.8. Width Adaptation
	3.1.8.1. Memory-Mapped Width Adapter
	3.1.8.1.1. AXI Wide-to-Narrow Adaptation
	3.1.8.1.2. AXI Narrow-to-Wide Adaptation

	3.1.9. Burst Adapter
	3.1.9.1. Burst Adapter Implementation Options
	3.1.9.2. Burst Adaptation: AXI to Avalon
	3.1.9.3. Burst Adaptation: Avalon to AXI

	3.1.10. Waitrequest Allowance Adapter
	3.1.11. Read and Write Responses
	3.1.12. Platform Designer Address Decoding

	3.2. Avalon Streaming Interfaces
	3.2.1. Avalon-ST Adapters
	3.2.1.1. Avalon-ST Adapter
	3.2.1.1.1. Avalon-ST Adapter Parameters Common to Source and Sink Interfaces
	3.2.1.1.2. Avalon-ST Adapter Upstream Source Interface Parameters
	3.2.1.1.3. Avalon-ST Adapter Downstream Sink Interface Parameters

	3.2.1.2. Channel Adapter
	3.2.1.2.1. Avalon-ST Channel Adapter Input Interface Parameters
	3.2.1.2.2. Avalon-ST Channel Adapter Output Interface Parameters
	3.2.1.2.3. Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

	3.2.1.3. Data Format Adapter
	3.2.1.3.1. Avalon-ST Data Format Adapter Input Interface Parameters
	3.2.1.3.2. Avalon-ST Data Format Adapter Output Interface Parameters
	3.2.1.3.3. Avalon-ST Data Format Adapter Common to Input and Output Interface Parameters

	3.2.1.4. Error Adapter
	3.2.1.4.1. Avalon-ST Error Adapter Input Interface Parameters
	3.2.1.4.2. Avalon-ST Error Adapter Output Interface Parameters
	3.2.1.4.3. Avalon-ST Error Adapter Common to Input and Output Interface Parameters

	3.2.1.5. Timing Adapter
	3.2.1.5.1. Avalon-ST Timing Adapter Input Interface Parameters
	3.2.1.5.2. Avalon-ST Timing Adapter Output Interface Parameters
	3.2.1.5.3. Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

	3.3. Interrupt Interfaces
	3.3.1. Individual Requests IRQ Scheme
	3.3.2. Assigning IRQs in Platform Designer
	3.3.2.1. IRQ Bridge
	3.3.2.2. IRQ Mapper
	3.3.2.3. IRQ Clock Crosser

	3.4. Clock Interfaces
	3.4.1. (High Speed Serial Interface) HSSI Clock Interfaces
	3.4.1.1. HSSI Serial Clock Interface
	3.4.1.1.1. HSSI Serial Clock Source
	3.4.1.1.2. HSSI Serial Clock Sink
	3.4.1.1.3. HSSI Serial Clock Connection
	3.4.1.1.4. HSSI Serial Clock Example

	3.4.1.2. HSSI Bonded Clock Interface
	3.4.1.2.1. HSSI Bonded Clock Source
	3.4.1.2.2. HSSI Bonded Clock Sink
	3.4.1.2.3. HSSI Bonded Clock Connection
	3.4.1.2.4. HSSI Bonded Clock Example

	3.5. Reset Interfaces
	3.5.1. Single Global Reset Signal Implemented by Platform Designer
	3.5.2. Reset Controller
	3.5.3. Reset Bridge
	3.5.4. Reset Sequencer
	3.5.4.1. Reset Sequencer Parameters
	3.5.4.2. Reset Sequencer Timing Diagrams
	3.5.4.3. Reset Sequencer CSR Registers
	3.5.4.3.1. Reset Sequencer Status Register
	3.5.4.3.2. Reset Sequencer Interrupt Enable Register
	3.5.4.3.3. Reset Sequencer Control Register
	3.5.4.3.4. Reset Sequencer Software Sequenced Reset Assert Control Register
	3.5.4.3.5. Reset Sequencer Software Sequenced Reset Deassert Control Register
	3.5.4.3.6. Reset Sequencer Software Direct Controlled Resets
	3.5.4.3.7. Reset Sequencer Software Reset Masking

	3.5.4.4. Reset Sequencer Software Flows
	3.5.4.4.1. Reset Sequencer (Software-Triggered) Flow
	3.5.4.4.2. Reset Assert Flow
	3.5.4.4.3. Reset Deassert Flow
	3.5.4.4.4. Reset Assert (Software Sequenced) Flow
	3.5.4.4.5. Reset Deassert (Software Sequenced) Flow

	3.6. Conduits
	3.7. Interconnect Pipelining
	3.7.1. Manually Control Pipelining in the Platform Designer Interconnect

	3.8. Error Correction Coding (ECC) in Platform Designer Interconnect
	3.9. AMBA 3 AXI Protocol Specification Support (version 1.0)
	3.9.1. Channels
	3.9.1.1. Read and Write Address Channels
	3.9.1.2. Write Data, Write Response, and Read Data Channels
	3.9.1.3. Low Power Channel

	3.9.2. Cache Support
	3.9.2.1. Bufferable
	3.9.2.2. Cacheable (Modifiable)

	3.9.3. Security Support
	3.9.4. Atomic Accesses
	3.9.5. Response Signaling
	3.9.6. Ordering Model
	3.9.6.1. AXI and Avalon Ordering

	3.9.7. Data Buses
	3.9.8. Unaligned Address Commands
	3.9.9. Avalon and AXI Transaction Support
	3.9.9.1. Transaction Cannot Cross 4KB Boundaries
	3.9.9.2. Adjacent Bytelanes with Partial Width Transactions
	3.9.9.3. Handling Read Side Effects

	3.10. AMBA 3 APB Protocol Specification Support (version 1.0)
	3.10.1. Bridges
	3.10.2. Burst Adaptation
	3.10.3. Width Adaptation
	3.10.4. Error Response

	3.11. AMBA 4 AXI Memory-Mapped Interface Support (version 2.0)
	3.11.1. Burst Support
	3.11.2. QoS
	3.11.3. Regions
	3.11.4. Write Response Dependency
	3.11.5. AWCACHE and ARCACHE
	3.11.6. Width Adaptation and Data Packing in Platform Designer
	3.11.7. Ordering Model
	3.11.8. Read and Write Allocate
	3.11.9. Locked Transactions
	3.11.10. Memory Types
	3.11.11. Mismatched Attributes
	3.11.12. Signals

	3.12. AMBA 4 AXI Streaming Interface Support (version 1.0)
	3.12.1. Connection Points
	3.12.1.1. AMBA 4 AXI Streaming Connection Point Parameters
	3.12.1.2. AMBA 4 AXI Streaming Connection Point Signals

	3.12.2. Adaptation

	3.13. AMBA 4 AXI-Lite Protocol Specification Support (version 2.0)
	3.13.1. AMBA 4 AXI-Lite Signals
	3.13.2. AMBA 4 AXI-Lite Bus Width
	3.13.3. AMBA 4 AXI-Lite Outstanding Transactions
	3.13.4. AMBA 4 AXI-Lite IDs
	3.13.5. Connections Between AMBA 3 AXI,AMBA 4 AXI and AMBA 4 AXI-Lite
	3.13.5.1. AMBA 4 AXI-Lite Slave Requirements
	3.13.5.2. AMBA 4 AXI-Lite Data Packing

	3.13.6. AMBA 4 AXI-Lite Response Merging

	3.14. Port Roles (Interface Signal Types)
	3.14.1. AXI Master Interface Signal Types
	3.14.2. AXI Slave Interface Signal Types
	3.14.3. AMBA 4 AXI Master Interface Signal Types
	3.14.4. AMBA 4 AXI Slave Interface Signal Types
	3.14.5. AMBA 4 AXI-Stream Master and Slave Interface Signal Types
	3.14.6. ACE-Lite Interface Signal Roles
	3.14.7. APB Interface Signal Types
	3.14.8. Avalon Memory-Mapped Interface Signal Roles
	3.14.9. Avalon Streaming Interface Signal Roles
	3.14.10. Avalon Clock Source Signal Roles
	3.14.11. Avalon Clock Sink Signal Roles
	3.14.12. Avalon Conduit Signal Roles
	3.14.13. Avalon Tristate Conduit Signal Roles
	3.14.14. Avalon Tri-State Slave Interface Signal Types
	3.14.15. Avalon Interrupt Sender Signal Roles
	3.14.16. Avalon Interrupt Receiver Signal Roles

	3.15. Platform Designer Interconnect Revision History

	4. Optimizing Platform Designer System Performance
	4.1. Designing with Avalon and AXI Interfaces
	4.1.1. Designing Streaming Components
	4.1.2. Designing Memory-Mapped Components

	4.2. Using Hierarchy in Systems
	4.3. Using Concurrency in Memory-Mapped Systems
	4.3.1. Implementing Concurrency With Multiple Masters
	4.3.2. Implementing Concurrency With Multiple Slaves
	4.3.3. Implementing Concurrency with DMA Engines

	4.4. Inserting Pipeline Stages to Increase System Frequency
	4.5. Using Bridges
	4.5.1. Using Bridges to Increase System Frequency
	4.5.1.1. Inserting Pipeline Bridges
	4.5.1.1.1. Implementing Command Pipelining (Master-to-Slave)
	4.5.1.1.2. Implementing Response Pipelining (Slave-to-Master)

	4.5.1.2. Using Clock Crossing Bridges

	4.5.2. Using Bridges to Minimize Design Logic
	4.5.2.1. Avoiding Speed Optimizations That Increase Logic
	4.5.2.2. Limiting Concurrency

	4.5.3. Using Bridges to Minimize Adapter Logic
	4.5.3.1. Determining Effective Placement of Bridges
	4.5.3.2. Changing the Response Buffer Depth

	4.5.4. Considering the Effects of Using Bridges
	4.5.4.1. Increased Latency
	4.5.4.1.1. Acceptable Latency Increase
	4.5.4.1.2. Unacceptable Latency Increase

	4.5.4.2. Limited Concurrency
	4.5.4.3. Address Space Translation
	4.5.4.4. Address Coherency

	4.6. Increasing Transfer Throughput
	4.6.1. Using Pipelined Transfers
	4.6.1.1. Using the Maximum Pending Reads Parameter

	4.6.2. Arbitration Shares and Bursts
	4.6.2.1. Differences Between Arbitration Shares and Bursts
	4.6.2.2. Choosing Avalon-MM Interface Types
	4.6.2.2.1. Simple Avalon-MM Interfaces
	4.6.2.2.2. Pipelined Avalon-MM Interfaces
	4.6.2.2.3. Burst Avalon-MM Interfaces

	4.6.2.3. Avalon-MM Burst Master Example

	4.7. Reducing Logic Utilization
	4.7.1. Minimizing Interconnect Logic to Reduce Logic Unitization
	4.7.1.1. Creating Dedicated Master and Slave Connections to Minimize Interconnect Logic
	4.7.1.2. Removing Unnecessary Connections to Minimize Interconnect Logic
	4.7.1.3. Simplifying Address Decode Logic

	4.7.2. Minimizing Arbitration Logic by Consolidating Multiple Interfaces
	4.7.2.1. Logic Consolidation Trade-Offs
	4.7.2.2. Consolidating Interfaces

	4.7.3. Reducing Logic Utilization With Multiple Clock Domains
	4.7.4. Duration of Transfers Crossing Clock Domains

	4.8. Reducing Power Consumption
	4.8.1. Reducing Power Consumption With Multiple Clock Domains
	4.8.2. Reducing Power Consumption by Minimizing Toggle Rates
	4.8.3. Reducing Power Consumption by Disabling Logic

	4.9. Reset Polarity and Synchronization in Platform Designer
	4.10. Optimizing Platform Designer System Performance Design Examples
	4.10.1. Avalon Pipelined Read Master Example
	4.10.1.1. Avalon Pipelined Read Master Example Design Requirements
	4.10.1.2. Expected Throughput Improvement

	4.10.2. Multiplexer Examples

	4.11. Optimizing Platform Designer System Performance Revision History

	5. Platform Designer System Design Components
	5.1. Bridges
	5.1.1. Clock Bridge Intel FPGA IP
	5.1.2. Avalon-MM Clock Crossing Bridge Intel FPGA IP
	5.1.2.1. Avalon-MM Clock Crossing Bridge Example
	5.1.2.2. Avalon-MM Clock Crossing Bridge Parameters

	5.1.3. Avalon-MM Pipeline Bridge Intel FPGA IP
	5.1.4. Avalon-MM Unaligned Burst Expansion Bridge Intel FPGA IP
	5.1.4.1. Using the Avalon-MM Unaligned Burst Expansion Bridge
	5.1.4.2. Avalon-MM Unaligned Burst Expansion Bridge Parameters
	5.1.4.3. Avalon-MM Unaligned Burst Expansion Bridge Example

	5.1.5. Bridges Between Avalon and AXI Interfaces
	5.1.6. AXI Bridge Intel FPGA IP
	5.1.6.1. AXI Bridge Signal Types
	5.1.6.2. AXI Bridge Parameters
	5.1.6.3. AXI Bridge Slave and Master Interface Parameters

	5.1.7. AXI Timeout Bridge Intel FPGA IP
	5.1.7.1. AXI Timeout Bridge Stages
	5.1.7.2. AXI Timeout Bridge Parameters

	5.1.8. Address Span Extender Intel FPGA IP
	5.1.8.1. CTRL Register Layout
	5.1.8.2. Address Span Extender Parameters
	5.1.8.3. Calculating the Address Span Extender Slave Address
	5.1.8.4. Using the Address Span Extender
	5.1.8.5. Alternate Options for the Address Span Extender
	5.1.8.6. Nios II Support

	5.2. Error Response Slave Intel FPGA IP
	5.2.1. Error Response Slave Parameters
	5.2.2. Error Response Slave CSR Registers
	5.2.2.1. Error Response Slave Access Violation Service
	5.2.2.2. CSR Interrupt Status Registers
	5.2.2.3. CSR Read Access Violation Log Registers
	5.2.2.4. CSR Write Access Violation Log Registers

	5.2.3. Designating a Default Slave

	5.3. Tri-State Components
	5.3.1. Generic Tri-State Controller Intel FPGA IP
	5.3.2. Tri-State Conduit Pin Sharer Intel FPGA IP
	5.3.3. Tri-State Conduit Bridge Intel FPGA IP

	5.4. Avalon Data Pattern Generator and Checker Intel FPGA IP
	5.4.1. Avalon Data Pattern Generator Intel FPGA IP
	5.4.1.1. Avalon Data Pattern Generator IP Command Interface
	5.4.1.2. Avalon Data Pattern Generator IP Control and Status Interface
	5.4.1.3. Avalon Data Pattern Generator IP Output Interface
	5.4.1.4. Avalon Data Pattern Generator IP Functional Parameter

	5.4.2. Avalon Data Pattern Checker Intel FPGA IP
	5.4.2.1. Avalon Data Pattern Checker IP Input Interface
	5.4.2.2. Avalon Data Pattern Checker IP Control and Status Interface
	5.4.2.3. Avalon Data Pattern Checker IP Functional Parameter
	5.4.2.4. Avalon Data Pattern Checker Input Parameters

	5.4.3. Avalon Data Pattern Generator and Checker IP Software Programming Model
	5.4.3.1. HAL System Library Support
	5.4.3.2. Avalon Data Pattern Generator and Checker IP Files
	5.4.3.3. Avalon Data Pattern Generator and Checker IP Register Maps
	5.4.3.3.1. Avalon Data Pattern Generator IP Control and Status Registers
	5.4.3.3.2. Avalon Data Pattern Generator IP Command Registers
	5.4.3.3.3. Avalon Data Pattern Checker IP Control and Status Registers

	5.4.4. Avalon Data Pattern Generator IP API
	5.4.4.1. data_source_reset()
	5.4.4.2. data_source_init()
	5.4.4.3. data_source_get_id()
	5.4.4.4. data_source_get_supports_packets()
	5.4.4.5. data_source_get_num_channels()
	5.4.4.6. data_source_get_symbols_per_cycle()
	5.4.4.7. data_source_get_enable()
	5.4.4.8. data_source_set_enable()
	5.4.4.9. data_source_get_throttle()
	5.4.4.10. data_source_set_throttle()
	5.4.4.11. data_source_is_busy()
	5.4.4.12. data_source_fill_level()
	5.4.4.13. data_source_send_data()

	5.4.5. Avalon Data Pattern Checker IP API
	5.4.5.1. data_sink_reset()
	5.4.5.2. data_sink_init()
	5.4.5.3. data_sink_get_id()
	5.4.5.4. data_sink_get_supports_packets()
	5.4.5.5. data_sink_get_num_channels()
	5.4.5.6. data_sink_get_symbols_per_cycle()
	5.4.5.7. data_sink_get_enable()
	5.4.5.8. data_sink_set enable()
	5.4.5.9. data_sink_get_throttle()
	5.4.5.10. data_sink_set_throttle()
	5.4.5.11. data_sink_get_packet_count()
	5.4.5.12. data_sink_get_error_count()
	5.4.5.13. data_sink_get_symbol_count()
	5.4.5.14. data_sink_get_exception()
	5.4.5.15. data_sink_exception_is_exception()
	5.4.5.16. data_sink_exception_has_data_error()
	5.4.5.17. data_sink_exception_has_missing_sop()
	5.4.5.18. data_sink_exception_has_missing_eop()
	5.4.5.19. data_sink_exception_signalled_error()
	5.4.5.20. data_sink_exception_channel()

	5.5. Avalon-ST Splitter Intel FPGA IP
	5.5.1. Avalon-ST Splitter Intel FPGA IP Backpressure
	5.5.2. Avalon-ST Splitter Intel FPGA IP Interfaces
	5.5.3. Avalon-ST Splitter Intel FPGA IP Parameters

	5.6. Avalon-ST Delay Intel FPGA IP
	5.6.1. Avalon-ST Delay Intel FPGA IP Reset Signal
	5.6.2. Avalon-ST Delay Intel FPGA IP Interfaces
	5.6.3. Avalon-ST Delay Intel FPGA IP Parameters

	5.7. Avalon-ST Round Robin Scheduler Intel FPGA IP
	5.7.1. Avalon-ST Round Robin Scheduler IP Almost-Full Status Interface
	5.7.2. Avalon-ST Round Robin Scheduler IP Request Interface
	5.7.3. Avalon-ST Round Robin Scheduler IP Operation
	5.7.4. Avalon-ST Round Robin Scheduler IP Parameters

	5.8. Avalon Packets to Transactions Converter Intel FPGA IP
	5.8.1. Avalon Packets to Transactions Converter IP Interfaces
	5.8.2. Avalon Packets to Transactions Converter IP Operation
	5.8.2.1. Avalon Packets to Transactions Converter IP Data Packet Formats
	5.8.2.2. Avalon Packets to Transactions Converter IP Supported Transactions
	5.8.2.3. Avalon Packets to Transactions IP Converter Malformed Packets

	5.9. Avalon-ST Pipeline Stage Intel FPGA IP
	5.10. Avalon Streaming Multiplexer and Demultiplexer Intel FPGA IP
	5.10.1. Avalon Streaming Multiplexer and Demultiplexer Software Programming Model
	5.10.2. Avalon-ST Multiplexer Intel FPGA IP
	5.10.2.1. Avalon-ST Multiplexer IP Input Interfaces
	5.10.2.2. Avalon Multiplexer IP Output Interface
	5.10.2.3. Avalon Multiplexer IP Parameters

	5.10.3. Avalon-ST Demultiplexer Intel FPGA IP
	5.10.3.1. Avalon-ST Demultiplexer IP Input Interface
	5.10.3.2. Avalon-ST Demultiplexer IP Output Interface
	5.10.3.3. Avalon-ST Demultiplexer IP Parameters

	5.11. Avalon-ST Single-Clock and Dual-Clock FIFO Intel FPGA IP
	5.11.1. Interfaces Implemented in FIFO Cores
	5.11.1.1. Avalon-ST Data Interface
	5.11.1.2. Avalon-MM Control and Status Register Interface
	5.11.1.3. Avalon-ST Status Interface

	5.11.2. Avalon-ST FIFO IP Operating Modes
	5.11.3. Avalon-ST FIFO IP Buffer Fill Level
	5.11.4. Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	5.11.5. Avalon-ST Single-Clock and Dual-Clock FIFO IP Parameters
	5.11.6. Avalon-ST Single-Clock FIFO IP Registers

	5.12. Platform Designer System Design Components Revision History

	6. Platform Designer Command-Line Utilities
	6.1. Run the Platform Designer Editor with qsys-edit
	6.2. Scripting IP Core Generation
	6.2.1. qsys-generate Command-Line Options

	6.3. Display Available IP Components with ip-catalog
	6.4. Create an .ipx File with ip-make-ipx
	6.5. Generate Simulation Scripts
	6.6. Generate a Platform Designer System with qsys-script
	6.7. Parameterizing an Instantiated IP Core after save_system Command
	6.8. Validate the Generic Components in a System with qsys-validate
	6.9. Generate an IP Component or Platform Designer System with quartus_ipgenerate
	6.10. Generate an IP Variation File with ip-deploy
	6.11. Archive a Platform Designer System with qsys-archive
	6.12. Platform Designer Scripting Command Reference
	6.12.1. System
	6.12.1.1. create_system
	6.12.1.2. export_hw_tcl
	6.12.1.3. get_device_families
	6.12.1.4. get_devices
	6.12.1.5. get_module_properties
	6.12.1.6. get_module_property
	6.12.1.7. get_project_properties
	6.12.1.8. get_project_property
	6.12.1.9. load_system
	6.12.1.10. save_system
	6.12.1.11. set_module_property
	6.12.1.12. set_project_property

	6.12.2. Subsystems
	6.12.2.1. get_composed_connections
	6.12.2.2. get_composed_connection_parameter_value
	6.12.2.3. get_composed_connection_parameters
	6.12.2.4. get_composed_instance_assignment
	6.12.2.5. get_composed_instance_assignments
	6.12.2.6. get_composed_instance_parameter_value
	6.12.2.7. get_composed_instance_parameters
	6.12.2.8. get_composed_instances

	6.12.3. Domains and Interfaces
	6.12.3.1. set_domain_assignment
	6.12.3.2. get_domain_assignment
	6.12.3.3. get_domain_assignments
	6.12.3.4. set_interface_assignment
	6.12.3.5. get_interface_assignment
	6.12.3.6. get_interface_assignments
	6.12.3.7. set_postadaptation_assignment
	6.12.3.8. get_postadaptation_assignment
	6.12.3.9. get_postadaptation_assignments

	6.12.4. Instances
	6.12.4.1. add_instance
	6.12.4.2. apply_instance_preset
	6.12.4.3. create_ip
	6.12.4.4. add_component
	6.12.4.5. duplicate_instance
	6.12.4.6. enable_instance_parameter_update_callback
	6.12.4.7. get_instance_assignment
	6.12.4.8. get_instance_assignments
	6.12.4.9. get_instance_documentation_links
	6.12.4.10. get_instance_interface_assignment
	6.12.4.11. get_instance_interface_assignments
	6.12.4.12. get_instance_interface_parameter_property
	6.12.4.13. get_instance_interface_parameter_value
	6.12.4.14. get_instance_interface_parameters
	6.12.4.15. get_instance_interface_port_property
	6.12.4.16. get_instance_interface_ports
	6.12.4.17. get_instance_interface_properties
	6.12.4.18. get_instance_interface_property
	6.12.4.19. get_instance_interfaces
	6.12.4.20. get_instance_parameter_property
	6.12.4.21. get_instance_parameter_value
	6.12.4.22. get_instance_parameter_values
	6.12.4.23. get_instance_parameters
	6.12.4.24. get_instance_port_property
	6.12.4.25. get_instance_properties
	6.12.4.26. get_instance_property
	6.12.4.27. get_instances
	6.12.4.28. is_instance_parameter_update_callback_enabled
	6.12.4.29. remove_instance
	6.12.4.30. set_instance_parameter_value
	6.12.4.31. set_instance_parameter_values
	6.12.4.32. set_instance_property

	6.12.5. Instantiations
	6.12.5.1. add_instantiation_hdl_file
	6.12.5.2. add_instantiation_interface
	6.12.5.3. add_instantiation_interface_port
	6.12.5.4. copy_instance_interface_to_instantiation
	6.12.5.5. get_instantiation_assignment_value
	6.12.5.6. get_instantiation_assignments
	6.12.5.7. get_instantiation_hdl_file_properties
	6.12.5.8. get_instantiation_hdl_file_property
	6.12.5.9. get_instantiation_hdl_files
	6.12.5.10. get_instantiation_interface_assignment_value
	6.12.5.11. get_instantiation_interface_assignments
	6.12.5.12. get_instantiation_interface_parameter_value
	6.12.5.13. get_instantiation_interface_parameters
	6.12.5.14. get_instantiation_interface_port_properties
	6.12.5.15. get_instantiation_interface_port_property
	6.12.5.16. get_instantiation_interface_ports
	6.12.5.17. get_instantiation_interface_property
	6.12.5.18. get_instantiation_interface_properties
	6.12.5.19. get_instantiation_interface_sysinfo_parameter_value
	6.12.5.20. get_instantiation_interface_sysinfo_parameters
	6.12.5.21. get_instantiation_interfaces
	6.12.5.22. get_instantiation_properties
	6.12.5.23. get_instantiation_property
	6.12.5.24. get_loaded_instantiation
	6.12.5.25. import_instantiation_interfaces
	6.12.5.26. load_instantiation
	6.12.5.27. remove_instantiation_hdl_file
	6.12.5.28. remove_instantiation_interface
	6.12.5.29. remove_instantiation_interface_port
	6.12.5.30. save_instantiation
	6.12.5.31. set_instantiation_assignment_value
	6.12.5.32. set_instantiation_hdl_file_property
	6.12.5.33. set_instantiation_interface_assignment_value
	6.12.5.34. set_instantiation_interface_parameter_value
	6.12.5.35. set_instantiation_interface_port_property
	6.12.5.36. set_instantiation_interface_sysinfo_parameter_value
	6.12.5.37. set_instantiation_property

	6.12.6. Components
	6.12.6.1. apply_component_preset
	6.12.6.2. get_component_assignment
	6.12.6.3. get_component_assignments
	6.12.6.4. get_component_documentation_links
	6.12.6.5. get_component_interface_assignment
	6.12.6.6. get_component_interface_assignments
	6.12.6.7. get_component_interface_parameter_property
	6.12.6.8. get_component_interface_parameter_value
	6.12.6.9. get_component_interface_parameters
	6.12.6.10. get_component_interface_port_property
	6.12.6.11. get_component_interface_ports
	6.12.6.12. get_component_interface_property
	6.12.6.13. get_component_interfaces
	6.12.6.14. get_component_parameter_property
	6.12.6.15. get_component_parameter_value
	6.12.6.16. get_component_parameters
	6.12.6.17. get_component_project_properties
	6.12.6.18. get_component_project_property
	6.12.6.19. get_component_property
	6.12.6.20. get_loaded_component
	6.12.6.21. load_component
	6.12.6.22. reload_component_footprint
	6.12.6.23. save_component
	6.12.6.24. set_component_parameter_value
	6.12.6.25. set_component_project_property

	6.12.7. Connections
	6.12.7.1. add_connection
	6.12.7.2. auto_connect
	6.12.7.3. get_connection_parameter_property
	6.12.7.4. get_connection_parameter_value
	6.12.7.5. get_connection_parameters
	6.12.7.6. get_connection_properties
	6.12.7.7. get_connection_property
	6.12.7.8. get_connections
	6.12.7.9. remove_connection
	6.12.7.10. remove_dangling_connections
	6.12.7.11. set_connection_parameter_value

	6.12.8. Top-level Exports
	6.12.8.1. add_interface
	6.12.8.2. get_exported_interface_sysinfo_parameter_value
	6.12.8.3. get_exported_interface_sysinfo_parameters
	6.12.8.4. get_interface_port_property
	6.12.8.5. get_interface_ports
	6.12.8.6. get_interface_properties
	6.12.8.7. get_interface_property
	6.12.8.8. get_interfaces
	6.12.8.9. get_port_properties
	6.12.8.10. remove_interface
	6.12.8.11. set_exported_interface_sysinfo_parameter_value
	6.12.8.12. set_interface_port_property
	6.12.8.13. set_interface_property

	6.12.9. Validation
	6.12.9.1. set_validation_property
	6.12.9.2. sync_sysinfo_parameters
	6.12.9.3. validate_component
	6.12.9.4. validate_component_interface
	6.12.9.5. validate_connection
	6.12.9.6. validate_instance
	6.12.9.7. validate_instance_interface
	6.12.9.8. validate_system
	6.12.9.9. validate_component_footprint
	6.12.9.10. reload_component_footprint

	6.12.10. Miscellaneous
	6.12.10.1. auto_assign_base_addresses
	6.12.10.2. auto_assign_irqs
	6.12.10.3. auto_assign_system_base_addresses
	6.12.10.4. get_parameter_properties
	6.12.10.5. lock_avalon_base_address
	6.12.10.6. send_message
	6.12.10.7. set_use_testbench_naming_pattern
	6.12.10.8. unlock_avalon_base_address
	6.12.10.9. get_testbench_dutname
	6.12.10.10. get_use_testbench_naming_pattern

	6.12.11. Wire-Level Connection Commands
	6.12.11.1. set_wirelevel_expression
	6.12.11.2. get_wirelevel_expressions
	6.12.11.3. remove_wirelevel_expressions

	6.13. Platform Designer Scripting Property Reference
	6.13.1. Connection Properties
	6.13.2. Design Environment Type Properties
	6.13.3. Direction Properties
	6.13.4. Element Properties
	6.13.5. Instance Properties
	6.13.6. Interface Properties
	6.13.7. Message Levels Properties
	6.13.8. Module Properties
	6.13.9. Parameter Properties
	6.13.10. Parameter Status Properties
	6.13.11. Parameter Type Properties
	6.13.12. Port Properties
	6.13.13. Project Properties
	6.13.14. System Info Type Properties
	6.13.15. Units Properties
	6.13.16. Validation Properties
	6.13.17. Interface Direction
	6.13.18. File Set Kind
	6.13.19. Access Type
	6.13.20. Instantiation HDL File Properties
	6.13.21. Instantiation Interface Duplicate Type
	6.13.22. Instantiation Interface Properties
	6.13.23. Instantiation Properties
	6.13.25. VHDL Type

	6.14. Platform Designer Command-Line Interface Revision History

	7. Component Interface Tcl Reference
	7.1. Platform Designer _hw.tcl Command Reference
	7.1.1. Interfaces and Ports
	7.1.1.1. add_interface
	7.1.1.2. add_interface_port
	7.1.1.3. get_interfaces
	7.1.1.4. get_interface_assignment
	7.1.1.5. get_interface_assignments
	7.1.1.6. get_interface_ports
	7.1.1.7. get_interface_properties
	7.1.1.8. get_interface_property
	7.1.1.9. get_port_properties
	7.1.1.10. get_port_property
	7.1.1.11. set_interface_assignment
	7.1.1.12. set_interface_property
	7.1.1.13. set_port_property
	7.1.1.14. set_interface_upgrade_map

	7.1.2. Parameters
	7.1.2.1. add_parameter
	7.1.2.2. get_parameters
	7.1.2.3. get_parameter_properties
	7.1.2.4. get_parameter_property
	7.1.2.5. get_parameter_value
	7.1.2.6. get_string
	7.1.2.7. load_strings
	7.1.2.8. set_parameter_property
	7.1.2.9. set_parameter_value

	7.1.3. Interconnect Parameters
	7.1.3.1. set_domain_assignment
	7.1.3.2. get_domain_assignment
	7.1.3.3. get_domain_assignments
	7.1.3.4. set_postadaptation_assignment
	7.1.3.5. get_postadaptation_assignment
	7.1.3.6. get_postadaptation_assignments

	7.1.4. Display Items
	7.1.4.1. add_display_item
	7.1.4.2. get_display_items
	7.1.4.3. get_display_item_properties
	7.1.4.4. get_display_item_property
	7.1.4.5. set_display_item_property

	7.1.5. Module Definition
	7.1.5.1. add_documentation_link
	7.1.5.2. get_module_assignment
	7.1.5.3. get_module_assignments
	7.1.5.4. get_module_ports
	7.1.5.5. get_module_properties
	7.1.5.6. get_module_property
	7.1.5.7. send_message
	7.1.5.8. set_module_assignment
	7.1.5.9. set_module_property
	7.1.5.10. add_hdl_instance
	7.1.5.11. package

	7.1.6. Composition
	7.1.6.1. add_instance
	7.1.6.2. add_connection
	7.1.6.3. get_connections
	7.1.6.4. get_connection_parameters
	7.1.6.5. get_connection_parameter_value
	7.1.6.6. get_instances
	7.1.6.7. get_instance_interfaces
	7.1.6.8. get_instance_interface_ports
	7.1.6.9. get_instance_interface_properties
	7.1.6.10. get_instance_property
	7.1.6.11. set_instance_property
	7.1.6.12. get_instance_properties
	7.1.6.13. get_instance_interface_property
	7.1.6.14. get_instance_parameters
	7.1.6.15. get_instance_parameter_property
	7.1.6.16. get_instance_parameter_value
	7.1.6.17. get_instance_port_property
	7.1.6.18. set_connection_parameter_value
	7.1.6.19. set_instance_parameter_value

	7.1.7. Fileset Generation
	7.1.7.1. add_fileset
	7.1.7.2. add_fileset_file
	7.1.7.3. set_fileset_property
	7.1.7.4. get_fileset_file_attribute
	7.1.7.5. set_fileset_file_attribute
	7.1.7.6. get_fileset_properties
	7.1.7.7. get_fileset_property
	7.1.7.8. get_fileset_sim_properties
	7.1.7.9. set_fileset_sim_properties
	7.1.7.10. create_temp_file

	7.1.8. Miscellaneous
	7.1.8.1. check_device_family_equivalence
	7.1.8.2. get_device_family_displayname
	7.1.8.3. get_qip_strings
	7.1.8.4. set_qip_strings

	7.1.9. SystemVerilog Interface Commands
	7.1.9.1. add_sv_interface
	7.1.9.2. get_sv_interfaces
	7.1.9.3. get_sv_interface_property
	7.1.9.4. get_sv_interface_properties
	7.1.9.5. set_sv_interface_property

	7.1.10. Wire-Level Expression Commands
	7.1.10.1. set_wirelevel_expression
	7.1.10.2. get_wirelevel_expressions
	7.1.10.3. remove_wirelevel_expressions

	7.2. Platform Designer _hw.tcl Property Reference
	7.2.1. Script Language Properties
	7.2.2. Interface Properties
	7.2.3. SystemVerilog Interface Properties
	7.2.4. Instance Properties
	7.2.5. Parameter Properties
	7.2.6. Parameter Type Properties
	7.2.7. Parameter Status Properties
	7.2.8. Port Properties
	7.2.9. Direction Properties
	7.2.10. Display Item Properties
	7.2.11. Display Item Kind Properties
	7.2.12. Display Hint Properties
	7.2.13. Module Properties
	7.2.14. Fileset Properties
	7.2.15. Fileset Kind Properties
	7.2.16. Callback Properties
	7.2.17. File Attribute Properties
	7.2.18. File Kind Properties
	7.2.19. File Source Properties
	7.2.20. Simulator Properties
	7.2.21. Port VHDL Type Properties
	7.2.22. System Info Type Properties
	7.2.23. Design Environment Type Properties
	7.2.24. Units Properties
	7.2.25. Operating System Properties
	7.2.26. Quartus.ini Type Properties

	7.3. Component Interface Tcl Reference Revision History

	8. Intel Quartus Prime Pro Edition User Guide: Platform Designer Document Archives
	A. Intel Quartus Prime Pro Edition User Guides

