
Intel® High Level Synthesis Compiler
Pro Edition
Reference Manual

Updated for Intel® Quartus® Prime Design Suite: 19.4

Subscribe
Send Feedback

MNL-1083 | 2020.02.10
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=ewa1462824960255
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/mnl-hls-reference.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html

Contents

1. Intel® HLS Compiler Pro Edition Reference Manual... 5

2. Compiler... 7
2.1. Intel HLS Compiler Pro Edition Command Options.. 7
2.2. Using Libraries in Your Component... 11
2.3. Compiler Interoperability.. 11
2.4. Intel HLS Compiler Pipeline Approach.. 13

3. C Language and Library Support... 15
3.1. Supported C and C++ Subset for Component Synthesis..15
3.2. C and C++ Libraries...15
3.3. Templated and Overloaded Functions..17

3.3.1. Templated Functions...17
3.3.2. Overloaded Functions... 18
3.3.3. Function Name Mapping..18

3.4. Compiler-Defined Preprocessor Macros... 19

4. Component Interfaces.. 20
4.1. Component Invocation Interface.. 20

4.1.1. Scalar Parameters..21
4.1.2. Pointer and Reference Parameters.. 21
4.1.3. Interface Definition Example: Component with Both Scalar and Pointer

Arguments..21
4.2. Avalon Streaming Interfaces..22
4.3. Avalon Memory-Mapped Master Interfaces...25

4.3.1. Memory-Mapped Master Testbench Constructor..26
4.3.2. Implicit and Explicit Examples of Describing a Memory Interface.................... 26
4.3.3. Avalon Memory-Mapped Master Interfaces and Load-Store Units.................... 28

4.4. Slave Interfaces...33
4.4.1. Control and Status Register (CSR) Slave... 34
4.4.2. Slave Memories... 36

4.5. Component Invocation Interface Control Attributes...37
4.6. Unstable and Stable Component Parameters..38
4.7. Global Variables...39
4.8. Structs in Component Interfaces..39
4.9. Reset Behavior.. 39

5. Component Memories (Memory Attributes).. 41
5.1. Static Variables..46

6. Loops in Components..48
6.1. Loop Initiation Interval (ii Pragma)...49
6.2. Loop-Carried Dependencies (ivdep Pragma)...50
6.3. Loop Coalescing (loop_coalesce Pragma)..52
6.4. Loop Unrolling (unroll Pragma)... 53
6.5. Loop Concurrency (max_concurrency Pragma)..54
6.6. Loop Iteration Speculation (speculated_iterations Pragma)............................... 54
6.7. Loop Pipelining Control (disable_loop_pipelining Pragma)................................ 56

Contents

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8. Loop Interleaving Control (max_interleaving Pragma)... 57

7. Component Concurrency... 58
7.1. Serial Equivalence within a Memory Space or I/O... 58
7.2. Concurrency Control (hls_max_concurrency Attribute)... 58
7.3. Component Pipelining Control (hls_disable_component_pipelining Attribute).....59

8. Arbitrary Precision Math Support.. 61
8.1. Declaring ac_int Data Types..63

8.1.1. Important Usage Information on the ac_int Data Type................................64
8.2. Integer Promotion and ac_int Data Types... 64
8.3. Debugging Your Use of the ac_int Data Type... 65
8.4. Declaring ac_fixed Data Types.. 65
8.5. Declaring ac_complex Data Types.. 66
8.6. AC Data Types and Native Compilers.. 67
8.7. Declaring hls_float Data Types.. 67

8.7.1. Operators and Return Types Supported by the hls_float Data Type............. 69

9. Component Target Frequency... 74

10. Systems of Tasks.. 75
10.1. Task Functions ..75
10.2. Internal Streams..80
10.3. System of Tasks Simulation... 81

11. Libraries... 82
11.1. Object Libraries... 83
11.2. Creating an Object Library...84
11.3. Creating Objects From HLS Code..85

11.3.1. Creating an Object File From HLS Code... 85
11.3.2. Supported OpenCL Language Constructs... 86

11.4. Creating Objects From RTL Code.. 87
11.4.1. RTL Modules and the HLS Pipeline.. 89
11.4.2. Creating an HLS-Library Object File from an RTL Module99

11.5. Packaging Object Files Into a Library...100

12. Advanced Hardware Synthesis Controls.. 102
12.1. The hls_fpga_reg() Function... 102

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary....................... 104
13.1. Intel HLS Compiler Pro Edition i++ Command-Line Arguments............................... 104
13.2. Intel HLS Compiler Pro Edition Header Files... 106
13.3. Compiler-Defined Preprocessor Macros..109
13.4. Intel HLS Compiler Pro Edition Keywords... 110
13.5. Intel HLS Compiler Pro Edition Simulation API (Testbench Only)..............................110
13.6. Intel HLS Compiler Pro Edition Component Memory Attributes................................ 112
13.7. Intel HLS Compiler Pro Edition Loop Pragmas... 118
13.8. Intel HLS Compiler Pro Edition Scope Pragmas... 123
13.9. Intel HLS Compiler Pro Edition Component Attributes.. 124
13.10. Intel HLS Compiler Pro Edition Component Default Interfaces............................... 126
13.11. Intel HLS Compiler Pro Edition Component Invocation Interface Control Attributes...126
13.12. Intel HLS Compiler Pro Edition Component Macros.. 128

Contents

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13.13. Systems of Tasks API.. 130
13.13.1. ihc::stream Class... 133

13.14. Intel HLS Compiler Pro Edition Streaming Input Interfaces................................... 134
13.15. Intel HLS Compiler Pro Edition Streaming Output Interfaces................................. 139
13.16. Intel HLS Compiler Pro Edition Memory-Mapped Interfaces...................................143
13.17. Intel HLS Compiler Pro Edition Load-Store Unit Control.. 147
13.18. Intel HLS Compiler Pro Edition Arbitrary Precision Data Types............................... 149

A. Advanced Math Source Code Libraries.. 151
A.1. Random Number Generator Library.. 151
A.2. Matrix Multiplication Library...152

B. Supported Math Functions.. 154
B.1. Math Functions Provided by the math.h Header File .. 154
B.2. Math Functions Provided by the extendedmath.h Header File................................ 158
B.3. Math Functions Provided by the ac_fixed_math.h Header File.............................. 160
B.4. Math Functions Provided by the hls_float.h Header File......................................160
B.5. Math Functions Provided by the hls_float_math.h Header File.............................160

C. Intel HLS Compiler Pro Edition Reference Manual Archives...162

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual..163

Contents

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® HLS Compiler Pro Edition Reference Manual
The Intel® HLS Compiler Pro Edition Reference Manual provides reference information
about the features supported by the Intel HLS Compiler Pro Edition. The Intel HLS
Compiler is sometimes referred to as the i++ compiler, reflecting the name of the
compiler command.

In this publication, <quartus_installdir> refers to the location where you
installed Intel Quartus® Prime Design Suite.

The default Intel Quartus Prime Design Suite installation location depends on your
operating system:

Windows C:\intelFPGA_pro\19.4

Linux /home/<username>/intelFPGA_pro/19.4

About the Intel HLS Compiler Documentation Library

Documentation for the Intel HLS Compiler is split across a few publications. Use the
following table to find the publication that contains the Intel HLS Compiler information
that you are looking for:

Table 1. Intel High Level Synthesis Compiler Documentation Library

Title and Description

Release Notes
Provide late-breaking information about the Intel HLS Compiler.

Link Link

Getting Started Guide
Get up and running with the Intel HLS Compiler by learning how to initialize your compiler
environment and reviewing the various design examples and tutorials provided with the Intel HLS
Compiler.

Link Link

User Guide
Provides instructions on synthesizing, verifying, and simulating intellectual property (IP) that you
design for Intel FPGA products. Go through the entire development flow of your component from
creating your component and testbench up to integrating your component IP into a larger system
with the Intel Quartus Prime software.

Link Link

continued...

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/lxu1505493246188.html#pce1505494782911
https://www.intel.com/content/www/us/en/programmable/documentation/vco1568738657809.html#pce1505494782911
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ewa1462810049539
https://www.intel.com/content/www/us/en/programmable/documentation/kxq1572389188277.html#orb1572392153419
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html#ewa1457710831536
https://www.intel.com/content/www/us/en/programmable/documentation/xdt1573053936346.html#zzs1573054582361
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Title and Description

Reference Manual
Provides reference information about the features supported by the Intel HLS Compiler. Find
details on Intel HLS Compiler command options, header files, pragmas, attributes, macros,
declarations, arguments, and template libraries.

Link Link

Best Practices Guide
Provides techniques and practices that you can apply to improve the FPGA area utilization and
performance of your HLS component. Typically, you apply these best practices after you verify the
functional correctness of your component.

Link Link

Quick Reference
Provides a brief summary of Intel HLS Compiler declarations and attributes on a single two-sided
page.

Link Link

1. Intel® HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

6

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462825185106
https://www.intel.com/content/www/us/en/programmable/documentation/apo1572388959915.html#aea1572906832329
https://www.intel.com/content/www/us/en/programmable/documentation/nml1505158467345.html#sgg1518628059019
https://www.intel.com/content/www/us/en/programmable/documentation/izl1573056107369.html#otk1573056339096
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/hls/mnl-hls-quickref.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/hls/mnl-hls-quickref.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Compiler

2.1. Intel HLS Compiler Pro Edition Command Options

Use the Intel HLS Compiler command options to customize how the compiler performs
general functions, customize file linking, or customize compilation.

Table 2. General Command Options
These i++ command options perform general compiler functions.

Command Option Description

--debug-log Instructs the compiler to generate a log file that contains diagnostic information.
By default, the debug.log file is in the a.prj subdirectory within your current working
directory.
If you also include the -o <result> command option, the debug.log file will be in the
<result>.prj subdirectory.
If your compilation fails, the debug.log file is generated whether you set this option or
not.

-h or --help Instructs the compiler to list all the command options and their descriptions on screen.

-o <result> Instructs the compiler to place its output into the <result> executable and the
<result>.prj directory.
If you do not specify the -o <result>option, the compiler outputs an a.out file for Linux
and an a.exe file for Windows. Use the -o <result> command option to specify the name
of the compiler output.
Example command: i++ -o hlsoutput multiplier.c
Invoking this example command creates an hlsoutput executable for Linux and an
hlsoutput.exe for Windows in your working directory.

-v Verbose mode that instructs the compiler to display messages describing the progress of
the compilation.
Example command: i++ -v hls/multiplier/multiplier.c, where multiplier.c
is the input file.

--version Instructs the compiler to display its version information on screen.
Command: i++ --version

Table 3. Command Options that Customize Compilation
These i++ command options perform compiler functions that impact the translation from source file to object
file.

Option Description

-c Instructs the compiler to preprocess, parse, and generate object files (.o/.obj) in the
current working directory. The linking stage is omitted.
Example command: i++ -march="Arria 10" -c multiplier.c

continued...

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Option Description

Invoking this example command creates a multiplier.o file and sets the name of the
<result>.prj directory to multiplier.prj.
When you later link the .o file, the -o option affects only the name of the executable file.
The name of the <result>.prj directory remains unchanged from when the directory
name was set by i++ -c command invocation.

--component <components> Allows you to specify a comma-separated list of function names that you want to the
compiler to synthesize to RTL.
Example command: i++ counter.cpp --component count
To use this option, your component must be configured with C-linkage using the extern
"C" specification. For example:

extern "C" int myComponent(int a, int b)

Using the component function attribute is preferred over using the --component
command option to indicate functions that you want the compiler to synthesize.

-D<macro>[=<val>] Allows you to pass a macro definition (<macro>) and its value (<val>) to the compiler.
If you do not a specify a value for <val>, its default value will be 1.

-g Generate debug information (default).

-g0 Do not generate debug information.

--gcc-
toolchain=<GCC_dir>

Specifies the path to a GCC installation that you want to use for compilation. This path
should be the absolute path to the directory that contains the GCC lib, bin, and
include folders.
You should not need to use this if you configured your system as described in the Getting
Started Guide.

--hyper-optimized-
handshaking=[auto|off]

This option applies to Intel Stratix® 10 devices only.
Use this option to modify the handshaking protocol used in certain areas of your design.
By default, the --hyper-optimized-handshaking option is set to auto.
When you enable this optimization, the compiler adds pipeline registers to the
handshaking paths of the stallable nodes. This optimization results in a higher fMAX at the
cost of increased area and latency due to the added registers.
Disabling this optimization typically decreases area and latency at the cost of lower fMAX.
Restriction: This option applies only to designs targeting Intel Stratix 10. If you use this

option when you target devices other than Intel Stratix 10 devices, the
compiler exits with an error..

-I<dir> Adds a directory (<dir>) to the end of the include path list.

-march=[x86-64 |
<FPGA_family> |
<FPGA_part_number>]

Instructs the compiler to compile the component to the specified architecture or FPGA
family.
The -march compiler option can take one of the following values:

x86-64 Instructs the compiler to compile the code for an emulator flow.

"<FPGA_family>" Instructs the compiler to compile the code for a target FPGA
device family.
The <FPGA_family> value can be any of the following device
families:
• Arria10 or "Arria 10"
• Cyclone10GX or "Cyclone 10 GX"
• Stratix10 or "Stratix 10"
Quotation marks are required only if you specify a FPGA family
name specifier that contains spaces

continued...

2. Compiler

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

<FPGA_part_number> Instructs the compiler to compile the code for a target device.
The compiler determines the FPGA device family from the FPGA
part number that you specify here.

If you do not specify this option, -march=x86-64 is assumed.
If the parameter value that you specify contains spaces, surround the parameter value in
quotation marks.

--quartus-compile Compiles your HDL file with the Intel Quartus Prime compiler.
Example command: i++ --quartus-compile <input_files>
-march="Arria 10"

When you specify this option, the Intel Quartus Prime compiler is run after the HDL is
generated. The compiled Intel Quartus Prime project is put in the <result>.prj/
quartus directory and a summary of the FPGA resource consumption and maximum
clock frequency is added to the high level design reports in the <result>.prj/reports
directory.
This compilation is intended to estimate the best achievable fMAX for your component.
Your component is not expected to cleanly close timing in the reports.

--quartus-seed <seed> Specifies the seed value that is used by Intel Quartus Prime project located in the
<result>.prj/quartus directory.
This seed value is used by the Intel Quartus Prime Fitter for initial placement
configuration when optimizing design placement to meet timing requirements (fMAX).

--simulator
<simulator_name>

Specifies the simulator you are using to perform verification.
This command option can take the following values for <simulator_name>:
• modelsim

• none

If you do not specify this option, --simulator modelsim is assumed.
Important: The --simulator command option only works in conjunction with the -

march command option.

The --simulator none option instructs the HLS compiler to skip the verification flow
and generate RTL for the components without generating the corresponding test bench. If
you use this option, the high-level design report (report.html) is generated more
quickly but you cannot co-simulate your design. Without data from co-simulation, the
report must omit verification statistics such as component latency.
Example command: i++ -march="<FPGA_family_or_part_number>"
--simulator none multiplier.c

-ffp-contract=fast Remove intermediate rounding and conversion when possible, except for code blocks
fenced by #pragma clang fp contract(off).
To learn more, review the following tutorial: <quartus_installdir>/hls/examples/
tutorials/best_practices/floating_point_ops

--fpc This option is deprecated and will be removed in a future release. Use -ffp-
contract=fast instead.
Remove intermediate rounding and conversion when possible.
Exception: Intermediate rounding and conversion is not removed in code blocks fenced
by #pragma clang fp contract(off).
To learn more, review the following tutorial: <quartus_installdir>/hls/examples/
tutorials/best_practices/floating_point_ops

-ffp-reassoc Relax the order of floating point arithmetic operations, except for code blocks fenced by
#pragma clang fp reassoc(off)

To learn more, review the following tutorial: <quartus_installdir>/hls/examples/
tutorials/best_practices/floating_point_ops

--fp-relaxed This option is deprecated and will be removed in a future release. Use -ffp-reassoc
instead.
Relax the order of floating point arithmetic operations.

continued...

2. Compiler

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Exception: The order of floating point operations in code blocks fenced by #pragma
clang fp reassoc(off) is not relaxed.
To learn more, review the following tutorial: <quartus_installdir>/hls/examples/
tutorials/best_practices/floating_point_ops

--daz Disable subnormal support in native IEEE-754 double-precision floating-point
computations.

--rounding=[ieee |
faithful]

Control rounding scheme for native IEEE-754 double-precision adders, multipliers, and
dividers.
If you do not specify this option, adders and multipliers use IEEE-754 RNE rounding (0.5
ULP) and dividers use faithful rounding (1 ULP).
The --rounding option can take one of the following values:

ieee All adders, multipliers, and dividers use IEEE-754 RNE rounding.

faithful All adders, multipliers, and dividers use faithful rounding.

--clock clock target> Optimizes the RTL for the specified clock frequency or period.
The clock target value must include a unit.
For example:

i++ -march="Arria 10" test.cpp --clock 100MHz
i++ -march="Arria 10" test.cpp --clock 10ns

Table 4. Command Options that Customize File Linking
These HLS command options specify compiler actions that impact the translation of the object file to the binary
or RTL component.

Option Description

-ghdl Logs all signals when running the verification executable. After running the executable,
the simulator logs waveforms to the a.prj/verification/vsim.wlf file.
For details about the ModelSim* waveform, see Debugging during Verification in Intel
High Level Synthesis Compiler Pro Edition User Guide.

-L<dir> (Linux only) Adds a directory (<dir>) to the end of the search path for the library files.

-l<library> (Linux only) Specifies the library file (.a) name when linking the object file to the binary.
On Windows, you can list library files (.lib) on the command line without specifying any
command options or flags.

--x86-only Creates only the testbench executable.
The compiler outputs an <result> file for Linux or a <result>.exe file for Windows.
The <result>.prj directory and its contents are not created.

--fpga-only Creates only the <result>.prj directory and its contents.
The testbench executable file (<result>/<result>.exe) is not created.
Before you can co-simulate your hardware from a compilation output that uses this
option, you must compile your testbench with the --x86-only option (or as part of a
full compilation).

2. Compiler

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

10

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html#ewa1462823594274
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2. Using Libraries in Your Component

Use libraries to reuse functions created by you or others without needing to know the
function implementation details.

To use the functions in a library, you must have the C-header files (.h) for the library
available. For object libraries, you must also have the object library archive file (.a on
Linux systems or .lib on Windows systems) available.

Any object libraries that you use in your component must be built and used by the
same version number Intel FPGA high-level design tool. For example, to compile your
component with the Intel HLS Compiler Version 19.4, the libraries included in your
component must have been created with a version 19.4 Intel FPGA high-level design
tool. If you use a library with a different version, you get a version mismatch error
when you compile your component.

To include a library in your component:

1. Review the header files corresponding to the library that you want to include in
your component.

The header file shows you the functions available to call in the library and how to
call the functions.

2. Include the header files in your component code.

For example, #include "primitives.h"

3. Compile your component with the Intel HLS Compiler as follows::

— For source code (that is, header-only) libraries, there is no additional library
file name to specify.

For example, i++ -march=arria10 MyComponent.cpp

— For object libraries, ensure that you add the object library archive file name to
the i++ command.

For example, i++ -march=arria10 MyComponent.cpp libprim.a

Related Information

• Libraries on page 82

• Advanced Math Source Code Libraries on page 151

• Arbitrary Precision Math Support on page 61

2.3. Compiler Interoperability

The Intel High Level Synthesis Compiler is compatible with x86-64 object code
compiled by supported versions of GCC or Microsoft Visual Studio. You can compile
your testbench code with GCC or Microsoft Visual Studio, but generating RTL and
cosimulation support for your component always requires the Intel HLS Compiler.

To see what versions of GCC and Microsoft Visual Studio the Intel HLS Compiler
supports, see "Intel High Level Synthesis Compiler Prerequisites" in Intel High Level
Synthesis Compiler Getting Started Guide.

The interoperability between GCC or Microsoft Visual Studio, and the Intel HLS
Compiler lets you decouple your testbench development from your component
development. Decoupling your testbench development can be useful for situations

2. Compiler

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

11

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#lpd1467738276041
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

where you want to iterate your testbench quickly with platform-native compilers
(GCC/Microsoft Visual Studio), without having to recompile the RTL generated for your
component.

To create only your testbench executable with the i++ command, specify the
--x86-only option.

You can choose to only generate RTL and cosimulation support for your component by
linking the object file or files for your component with the Intel High Level Synthesis
Compiler.

To generate only your RTL and cosimulation support for your component, specify the
--fpga-only option.

To use a native compiler (GCC or Microsoft Visual Studio) to compile your Intel HLS
Compiler code, you must point the native compiler to Intel HLS Compiler resources
and libraries. The Intel HLS Compiler example designs contain build scripts
(Makefile for Linux and build.bat for Windows) that you can use as examples of
the required configuration. These scripts locate the Intel HLS Compiler installation, so
you do not need to hard-code the locations in your build scripts.

GCC

The following instructions were tested with GCC compiler and C++ Libraries version
5.4.0.

To compile your Intel HLS Compiler code with GCC:

1. Add the Intel HLS Compiler header files to the g++ command include path.

The header files are in the quartus_installdir/hls/include directory.

2. Add the HLS emulation library to the linker search path.

The emulation library is in the quartus_installdir/hls/host/linux64/lib
directory.

3. Add the hls_emul library to the linker command (that is, specify -lhls_emul.as
a command option).

4. Ensure that you specify the -std=c++14 option of the g++ command.

5. If you are using HLS tasks in a system of tasks (ihc::launch and
ihc:collect), specify the -pthread option of the g++ command.

6. If you are using arbitrary precision datatypes, include the reference version
instead of the FPGA-optimized version provided with the Intel HLS Compiler. You
can use the __INTELFPGA_COMPILER__ macro to control which version is
included. For example, if you are using arbitrary precision integers, you can use
the following macro code

#ifdef __INTELFPGA_COMPILER__
#include "HLS/ac_int.h"
#else
#include "ref/ac_int.h"
#endif

2. Compiler

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you implement these steps, your g++ command resembles the following example
command:

g++ myFile.cpp -I"$(HLS_INSTALL_DIR)/include" -L"$(HLS_INSTALL_DIR)/host/
linux64/lib" -lhls_emul -pthread -std=c++14

Microsoft Visual C++

The following instructions were tested with Microsoft Visual Studio 2017 Professional.

To compile your Intel HLS Compiler code with Microsoft Visual C++:

1. Add the Intel HLS Compiler header files to the compiler command include path.

The header files are in the quartus_installdir\hls\include directory.

2. Add the HLS emulation library to the linker search path.

The emulation library is in the quartus_installdir\hls\host
\windows64\lib directory.

3. Add the hls_emul library to the linker command.

4. If you are using arbitrary precision datatypes, include the reference version
instead of the FPGA-optimized version provided with the Intel HLS Compiler. You
can use the __INTELFPGA_COMPILER__ macro to control which version is
included:

#ifdef __INTELFPGA_COMPILER__
#include "HLS/ac_int.h"
#else
#include "ref/ac_int.h"
#endif

Your Microsoft Visual C++ compiler command should resemble the following example
command:

cl myFile.cpp /I "%HLS_INSTALL_DIR%\include" /nologo /EHsc /wd4068 /MD /stc:c+
+14 /Zi
 /link "/libpath:%HLS_INSTALL_DIR%\host\windows64\lib" hls_emul.lib

2.4. Intel HLS Compiler Pipeline Approach

The Intel HLS Compiler attempts to pipeline functions as much as possible. Different
stages of the pipeline might have multiple operations performed in parallel.

The following figure shows an example of the pipeline architecture generated by the
Intel HLS Compiler. The numbered operations on the right side represent the pipeline
implementation of the C++ code on the left side of the figure. Each box in the right
side of the figure is an operation in the pipeline.

2. Compiler

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Example of Pipeline Architecture

component int pe
(int A, int B, int C) {

int product1 = A * B;
int product2 = B * C;

int sum = product1 + product2;

return sum;

2
add

1
return

3

4
call

multiply
3

multiply

B CA

With a pipelined approach, multiple invocations of the component can be
simultaneously active. For example, the earlier figure shows that the first invocation of
the component can be returning a result at the same time the fourth invocation of the
component is called.

One invocation of a component advances to the its next stage in the pipeline only after
all of the operations of its current stage are complete.

Some operations can stall the pipeline. A common example of operations that can stall
a pipeline is a variable latency operation like a memory load or store operation. To
support pipeline stalls, the Intel HLS Compiler propagates ready and valid signals
through the pipeline to all operations that have a variable latency.

For operations that have a fixed latency, the Intel HLS Compiler can statically schedule
the interaction between the operations and ready signals are not needed between the
stages with fixed latency operations. In these cases, the compiler optimizes the
pipeline to statically schedule the operations, which significantly reduces the logic
required to implement the pipeline.

2. Compiler

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. C Language and Library Support

3.1. Supported C and C++ Subset for Component Synthesis

The Intel HLS Compiler has several synthesis limitations regarding the supported
subset of C99 and C++.

The compiler cannot synthesize code for dynamic memory allocation, virtual functions,
function pointers, and C++ or C library functions except the supported math functions
explicitly mentioned in the appendix of this document. In general, the compiler can
synthesize functions that include classes, structs, functions, templates, and pointers.

While some C++ constructs are synthesizable, aim to create a component function in
C99 whenever possible.

Important: These synthesis limitations do not apply to testbench code.

3.2. C and C++ Libraries

The Intel High Level Synthesis (HLS) Compiler provides a number of header files to
provide FPGA implementations of certain C and C++ functions.

Table 5. Intel HLS Compiler Pro Edition Header Files Summary

HLS Header File Description

HLS/hls.h Required for component identification and component parameter interfaces.

HLS/math.h Includes FPGA-specific definitions for the math functions from the math.h for
your operating system.

HLS/extendedmath.h Includes additional FPGA-specific definitions of math functions not in math.h.

HLS/ac_int.h Provides FPGA-optimized arbitrary width integer support.

HLS/ac_fixed.h Provides FPGA-optimized arbitrary precision fixed point support.

HLS/ac_fixed_math.h Provides FPGA-optimized arbitrary precision fixed point math functions.

HLS/ac_complex.h Provides FPGA-optimized complex number support.

HLS/hls_float.h Provides FPGA-optimized arbitrary-precision IEEE IEEE 754 compliant floating-
point number support.

continued...

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

HLS Header File Description

HLS/hls_float_math.h Provides FPGA-optimized floating-point math functions.

HLS/stdio.h Provides printf support for components so that printf statements work in
x86 emulations, but are disabled in component when compiling to an FPGA
architecture.

<iostream> To use cout and cerr in your component, guard the statements with the
HLS_SYNTHESIS macro.

math.h

To access functions in math.h from a component to be synthesized, include the
"HLS/math.h" file in your source code. The header ensures that the components call
the hardware versions of the math functions.

For more information about supported math.h functions, see Supported Math
Functions on page 154.

stdio.h

Synthesized component functions generally do not support C and C++ standard library
functions such as FILE pointers.

A component can call printf by including the header file HLS/stdio.h. This header
changes the behavior of printf depending on the compilation target:

• For compilation that targets the x86-64 architecture (that is, -march=x86-64),
the printf call behaves as normal.

• For compilation that targets the FPGA architecture (that is,
-march="<FPGA_family_or_part_number>"), the compiler removes the
printf call.

If you use printf in a component function without first including the #include
"HLS/stdio.h" line in your code, you get an error message similar to the following
error when you compile hardware to the FPGA architecture:

$ i++ -march="<FPGA_family_or_part_number>" --component dut test.cpp
Error: HLS gen_qsys FAILED.
See ./a.prj/dut.log for details.

You can use C and C++ standard library functions such as fopen and printf as
normal in all testbench functions.

iostream

A component can use C++ standard output streams (cout or cerr) provided by the
standard C++ header but you must guard any cout or cerr statements with the
HLS_SYNTHESIS macro. This macro ensures that statements in a component work in
x86 emulations (that is, -march=x86-64), but are disabled in the component when
compiling it to an FPGA architecture (that is,
-march="<FPGA_family_or_part_number>"). For example:

#include “HLS/hls.h”
#include <iostream>

component int debug_component (int a){
#ifndef HLS_SYNTHESIS

3. C Language and Library Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 std::cout << “input value: ” << a << std::endl;
#endif
 return a;
}

If you attempt to use cout or cerr in a component function without guarding the line
in your code with the HLS_SYNTHESIS macro , you get an error message similar to
the following error when you compile hardware to the FPGA architecture:

$ i++ -march="<FPGA_family_or_part_number>" run.cpp
run.cpp:5: Compiler Error: Cannot synthesize std::cout used inside of a
component.
HLS Main Optimizer FAILED.

Related Information

Supported Math Functions on page 154

3.3. Templated and Overloaded Functions

You can use templating and overloading to create generalized function interfaces for
your HLS components and HLS tasks. HLS components can be both templated and
overloaded. HLS tasks can only be templated. You cannot overload an HLS task
function.

Related Information

Task Functions on page 75

3.3.1. Templated Functions

Using a templated function as an HLS component differs from using the templated
function as an HLS task.

Templated Functions as an HLS Component

When you create a template function, you must declare the variant of the function to
synthesize into hardware.

For example, a templated multadd function might be useful in a system.

template <typename T, int MULT>
T multadd (T a, T b) {
 return MULT * (a + b);
}

To synthesize a version of this function into a component, you must declare the
variant that you want to synthesize:

template component int multadd<int, 5>(int a, int b);

This declaration combined with the earlier template definition marks the int variant
with MULT=5 of the multiadd function to be generated into a component. This
component can now be invoked from the testbench.

3. C Language and Library Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Templated Functions as an HLS Task

If you want to use the function as a task in a system of tasks, use the ihc::launch
and ihc::collect calls, and wrap the function that is called in parentheses.

For example, to use the multadd function template that was defined earlier as an HLS
task, your HLS component code might look like the following code:

component void foo () {
 int a, b;
 ihc::launch((multadd<int, 5>), a, b);
 int res = ihc::collect((multadd<int, 5>));
}

If you forget to wrap the template function in parentheses, the Intel HLS Compiler
generates error like these:

test.cpp:10:7: error: expected '>'
 ihc::launch(multadd<int, 5>, a, b);
 ^
note: expanded from macro 'launch'
#define launch(x, ...) _launch<decltype(x),x>(__VA_ARGS__)
 ^
test.cpp:10:27: error: expected unqualified-id
 ihc::launch(multadd<int, 5>, a, b);

3.3.2. Overloaded Functions

HLS component functions can be overloaded, but HLS task functions cannot because
the ihc::launch and ihc::collect calls cannot distinguish between overloaded
variants of a task function.

To overload a component function, define multiple variants of the function.

For example:

component int mult (int a, int b) {
 return a * b;
}

component float mult (float a, float b) {
 return a * b;
}

3.3.3. Function Name Mapping

The Intel HLS Compiler always generates unique function names to avoid name
collisions that might occur for overloaded and templated functions.

A mapping of the full function declaration to the synthesized function name is provided
in the summary page of the high-level design reports (repoort.html). The
synthesized function name is used for all the other reports such as the loops report
and area analysis.

The following example shows an example of this table in the report:

3. C Language and Library Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Compiler-Defined Preprocessor Macros

The Intel HLS Compiler Pro Edition has a built-in macros that you can use to
customize your code to create flow-dependent behaviors.

Table 6. Macro Definition for __INTELFPGA_COMPILER__

Tool Invocation __INTELFPGA_COMPILER__

g++ or cl Undefined

i++ -march=x86-64 1940

i++ -march="<FPGA_family_or_part_number>" 1940

Table 7. Macro Definition for HLS_SYNTHESIS

Tool Invocation
HLS_SYNTHESIS

Testbench Code HLS Component Code

g++ or cl Undefined Undefined

i++ -march=x86-64 Undefined Undefined

i++ -march="<FPGA_family_or_part_number>" Undefined Defined

3. C Language and Library Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Component Interfaces
Intel HLS Compiler generates a component interface for integrating your RTL
component into a larger system. A component has two basic interface types: the
component invocation interface and the parameter interface.

The component invocation interface is common to all HLS components and contains
the return data (for nonvoid functions) and handshake signals for passing control to
the component, and for receiving control back when the component finishes
executing.

The parameter interface is the protocol you use to transfer data in and out of your
component function. The parameter interface for your component is based on the
parameters that you define in your component function signature.

4.1. Component Invocation Interface

For each function that you label as a component, the Intel HLS Compiler creates a
corresponding RTL module. This RTL module must have top-level ports, or interfaces,
that allow your overall system to interact with your HLS component.

By default, the RTL module for a component includes the following interfaces and
data:

• A call interface that consists of start and busy signals. The call interface is
sometimes referred to as the do stream.

• A return interface that consists of done and stall signals. The return interface is
sometimes referred to as the return stream.

• Return data if the component function has a return type that is not void

See Figure 2 on page 21 for an example component showing these interfaces.

Your component function parameters generate different RTL depending on their type.
For details see the following sections:

• Scalar Parameters on page 21

• Pointer and Reference Parameters on page 21

You can also explicitly declare Avalon Streaming interfaces (stream_in<> and
stream_out<> classes) and Avalon Memory-Mapped Master (mm_master<> classes)
interfaces on component interfaces. For details see the following sections:

• Avalon Streaming Interfaces on page 22

• Avalon Memory-Mapped Master Interfaces on page 25

In addition, you can indicate the control signals that correspond to the actions of
calling your component by using the component invocation interface arguments. For
details, see Component Invocation Interface Control Attributes on page 37.

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1.1. Scalar Parameters

Each scalar parameter in your component results in an input conduit that is
synchronized with the component start and busy signals.

The inputs are read into the component when the external system pulls the start
signal high and the component keeps the busy signal low.

For an example of how to specify a scalar parameters and how it is read in by a
component, see the a argument in Figure 2 on page 21 and Figure 3 on page 22.

4.1.2. Pointer and Reference Parameters

Each pointer or reference parameter of a component results in an input conduit for the
address. The input conduit is synchronized with the component start and busy
signals. In addition to this input conduit, all pointers share a single Avalon Memory-
Mapped (MM) master interface that the component uses to access system memory.

You can customize these pointer interfaces using the mm_master<> class.

Note: Explicitly-declared Avalon Memory-Mapped Master interfaces and Avalon Streaming
interfaces are passed by reference.

For details about Avalon (MM) Master interfaces, see Avalon Memory-Mapped Master
Interfaces on page 25.

4.1.3. Interface Definition Example: Component with Both Scalar and
Pointer Arguments

The following design example illustrates the interactions between a component's
interfaces and signals, and the waveform of the corresponding RTL module.

component int dut(int a, int* b, int i) {
 return a*b[i];
}

Figure 2. Block Diagram of the Interfaces and Signals for the Component dut

dut

start
busy

a[31:0]
b[63:0]
i[31:0]

done
stall

returndata[31:0]

Avalon-MM Interface

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Waveform Diagram of the Signals for the Component dut
This diagram shows that the Avalon-MM read signal reads from a memory interface that has a read latency of
one cycle and is non-blocking.

If the dut component raises the busy signal, the caller needs to keep the start
signal high and continue asserting the input arguments. Similarly, if the component
downstream of dut raises the stall signal, then dut holds the done signal high until
the stallsignal is de-asserted.

4.2. Avalon Streaming Interfaces

A component can have input and output streams that conform to the Avalon
Streaming (ST) interface specifications. These input and output streams are
represented in the C source by passing references to ihc::stream_in<> and
ihc::stream_out<> objects as function arguments to the component.

When you use an Avalon ST interface, you can serialize the data over several clock
cycles. That is, one component invocation can read from a stream multiple times.

You cannot derive new classes from the stream classes or encapsulate them in other
formats such as structs or arrays. However, you may use references to instances of
these classes as references inside other classes, meaning that you can create a class
that has a reference to a stream object as a data member.

A component can have multiple read sites for a stream. Similarly, a component can
have multiple write sites for a stream. However, try to restrict each stream in your
design to a single read site, a single write site, or one of each.

Note: Within the component, there is no guarantee on the order of execution of different
streams unless a data dependency exists between streams.

For more information about streaming interfaces, refer to "Avalon Streaming
Interfaces" in Avalon Interface Specifications.

Restriction: The Intel HLS Compiler does not support the Avalon ST channel or error signals.

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

22

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Streaming Input Interfaces

Table 8. Intel HLS Compiler Pro Edition Streaming Input Interface Template Summary

Template Object or Parameter Description

ihc::stream_in Streaming input interface to the component.

ihc::buffer Specifies the capacity (in words) of the FIFO buffer on the input data
that associates with the stream.

ihc::readyLatency Specifies the number of cycles between when the ready signal is
deasserted and when the input stream can no longer accept new inputs.

ihc::bitsPerSymbol Describes how the data is broken into symbols on the data bus.

ihc::firstSymbolInHighOrderBits Specifies whether the data symbols in the stream are in big endian
order.

ihc::usesPackets Exposes the startofpacket and endofpacket sideband signals on
the stream interface.

ihc::usesEmpty Exposes the empty out-of-band signal on the stream interface.

ihc::usesValid Controls whether a valid signal is present on the stream interface.

Table 9. Intel HLS Compiler Pro Edition Streaming Input Interface stream_in Function
APIs

Function API Description

T read() Blocking read call to be used from within the component

T read(bool& sop, bool& eop) Available only if usesPackets<true> is set.
Blocking read with out-of-band startofpacket and
endofpacket signals.

T read(bool& sop, bool& eop, int& empty) Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking read with out-of-band startofpacket,
endofpacket, and empty signals.

T tryRead(bool &success) Non-blocking read call to be used from within the
component. The success bool is set to true if the read was
valid. That is, the Avalon-ST valid signal was high when
the component tried to read from the stream.
The emulation model of tryRead() is not cycle-accurate,
so the behavior of tryRead() might differ between
emulation and co-simulation.

T tryRead(bool& success, bool& sop, bool&
eop)

Available only if usesPackets<true> is set.
Non-blocking read with out-of-band startofpacket and
endofpacket signals.

T tryRead(bool& success, bool& sop, bool&
eop, int& empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Non-blocking read with out-of-band startofpacket,
endofpacket, and emptysignals.

void write(T data) Blocking write call to be used from the testbench to
populate the FIFO to be sent to the component.

void write(T data, bool sop, bool eop) Available only if usesPackets<true> is set.

continued...

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function API Description

Blocking write call with out-of-band startofpacket and
endofpacket signals.

void write(T data, bool sop, bool eop, int
empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking write call with out-of-band startofpacket,
endofpacket, and empty signals.

Streaming Output Interfaces

Table 10. Intel HLS Compiler Pro Edition Streaming Output Interface Template
Summary

Template Object or Parameter Description

ihc::stream_out Streaming output interface from the component.

ihc::readylatency Specifies the number of cycles between when the ready signal is
deasserted and when the input stream can no longer accept new inputs.

ihc::bitsPerSymbol Describes how the data is broken into symbols on the data bus.

ihc::firstSymbolInHighOrderBits Specifies whether the data symbols in the stream are in big endian
order.

ihc::usesPackets Exposes the startofpacket and endofpacket sideband signals on
the stream interface.

ihc::usesEmpty Exposes the empty out-of-band signal on the stream interface.

ihc::usesReady Controls whether a ready signal is present.

Table 11. Intel HLS Compiler Pro Edition Streaming Output Interface stream_out
Function APIs

Function API Description

void write(T data) Blocking write call from the component

void write(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Blocking write with out-of-band startofpacket and
endofpacket signals.

void write(T data, bool sop, bool eop, int
empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking write with out-of-band startofpacket,
endofpacket, and empty signals.

bool tryWrite(T data) Non-blocking write call from the component. The return
value represents whether the write was successful.

bool tryWrite(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Non-blocking write with out-of-band startofpacket and
endofpacket signals.
The return value represents whether the write was
successful. That is, the downstream interface was pulling
the ready signal high while the HLS component tried to
write to the stream.

bool tryWrite(T data, bool sop, bool eop, int
empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.

continued...

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function API Description

Non-blocking write with out-of-band startofpacket,
endofpacket, and empty signals. The return value
represents whether the write was successful.

T read() Blocking read call to be used from the testbench to read
back the data from the component

T read(bool &sop, bool &eop) Available only if usesPackets<true> is set.
Blocking read call to be used from the testbench to read
back the data from the component with out-of-band
startofpacket and endofpacket signals.

T read(bool &sop, bool &eop, int &empty) Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking read call to be used from the testbench to read
back the data from the component with out-of-band
startofpacket, endofpacket, and empty signals.

Related Information

Avalon Interface Specifications

4.3. Avalon Memory-Mapped Master Interfaces

A component can interface with an external memory over an Avalon Memory-Mapped
(MM) Master interface. You can specify the Avalon MM Master interface implicitly using
a function pointer argument or reference argument, or explicitly using the
mm_master<> class defined in the "HLS/hls.h" header file. Describe a customized
Avalon MM Master interface in your code by including a reference to an mm_master<>
object in your component function signature.

Each mm_master argument of a component results in an input conduit for the
address. That input conduit is associated with the component start and busy signals.
In addition to this input conduit, a unique Avalon MM Master interface is created for
each address space. Master interfaces that share the same address space are
arbitrated on the same interface.

For more information about Avalon MM Master interfaces, refer to "Avalon Memory-
Mapped Interfaces" in Avalon Interface Specifications.

Table 12. Intel HLS Compiler Pro Edition Memory-Mapped Interfaces Summary

Template Object or Parameter Description

ihc::mm_master The underlying pointer type.

ihc::dwidth The width of the memory-mapped data bus in bits

ihc::awidth The width of the memory-mapped address bus in bits.

ihc::aspace The address space of the interface that associates with the master.

ihc::latency The guaranteed latency from when a read command exits the
component when the external memory returns valid read data.

ihc::maxburst The maximum number of data transfers that can associate with a read
or write transaction.

ihc::align The alignment of the base pointer address in bytes.

continued...

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

25

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Object or Parameter Description

ihc::readwrite_mode The port direction of the interface.

ihc::waitrequest Adds the waitrequest signal that is asserted by the slave when it is
unable to respond to a read or write request.

getInterfaceAtIndex This testbench function is used to index into an mm_master object.

Related Information

Avalon Interface Specifications

4.3.1. Memory-Mapped Master Testbench Constructor

For components that use an instance of the Avalon Memory-Mapped (MM) Master class
(mm_master<>) to describe their memory interfaces, you must create an
mm_master<> object in the testbench for each mm_master argument.

To create an mm_master<> object, add the following constructor in your code:

ihc::mm_master<int, … > mm(void* ptr, int size, bool use_socket=false);

where the constructor arguments are as follows:

• ptr is the underlying pointer to the memory in the testbench

• size is the total size of the buffer in bytes

• use_socket is the option you use to override the copying of the memory buffer
and have all the memory accesses pass back to the testbench memory

By default, the Intel HLS Compiler copies the memory buffer over to the simulator
and then copies it back after the component has run. In some cases, such as
pointer-chasing in linked lists, copying the memory buffer back and forth is
undesirable. You can override this behavior by setting use_socket to true.

Note: When you set use_socket to true, only Avalon MM Master interfaces with
64-bit wide addresses are supported. In addition, setting this option
increases the run time of the simulation.

4.3.2. Implicit and Explicit Examples of Describing a Memory Interface

Optimize component code that describes a memory interface by specifying an explicit
mm_master object.

Implicit Example

The following code example arbitrates the load and store instructions from both
pointer dereferences to a single interface on the component's top-level module. This
interface will have a data bus width of 64 bits, an address width of 64 bits, and a fixed
latency of 1.

#include "HLS/hls.h"
component void dut(int *ptr1, int *ptr2) {
 *ptr1 += *ptr2;
 *ptr2 += ptr1[1];
}

int main(void) {
 int x[2] = {0, 1};

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

26

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 int y = 2;

 dut(x, &y);

 return 0;
}

Explicit Example

This example demonstrates how to optimize the previous code snippet for a specific
memory interface using the explicit mm_master class. The mm_master class has a
defined template, and it has the following characteristics:

• Each interface is given a unique ID that infers two independent interfaces and
reduces the amount of arbitration within the component.

• The data bus width is larger than the default width of 64 bits.

• The address bus width is smaller than the default width of 64 bits.

• The interfaces have a fixed latency of 2.

By defining these characteristics, you state that your system returns valid read data
after exactly two clock cycles and that the interface never stalls for both reads and
writes, but the system must be able to provide two different memories. A unique
physical Avalon MM master port (as specified by the aspace parameter) is expected
to correspond to a unique physical memory. If you connect multiple Avalon MM Master
interfaces with different physical Avalon MM master ports to the same physical
memory, the Intel HLS Compiler cannot ensure functional correctness for any memory
dependencies.

#include "HLS/hls.h"

typedef ihc::mm_master<int, ihc::dwidth<256>,
 ihc::awidth<32>,
 ihc::aspace<1>,
 ihc::latency<2> > Master1;
typedef ihc::mm_master<int, ihc::dwidth<256>,
 ihc::awidth<32>,
 ihc::aspace<4>,
 ihc::latency<2> > Master2;

component void dut(Master1 &mm1,Master2 &mm2) {
 *mm1 += *mm2;
 *mm2 += mm1[1];
}
int main(void) {
 int x[2] = {0, 1};
 int y = 2;

 Master1 mm_x(x,2*sizeof(int),false);
 Master2 mm_y(&y,sizeof(int),false);

 dut(mm_x, mm_y);

 return 0;
}

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.3. Avalon Memory-Mapped Master Interfaces and Load-Store Units

When your component uses one or more Avalon Memory-Mapped (MM) Master
interfaces, the Intel HLS Compiler inserts load-store units (LSUs) between the
interface and the rest of your component. The type of LSU inserted depends on the
inferred memory access pattern and other memory attributes.

The Intel HLS Compiler also tries to minimize the number of LSUs created by
coalescing multiple load/store operations into wider load/store operations. Multiple
LSUs can share a memory interface.

Typically, the Intel HLS Compiler creates burst-coalesced LSUs for variable-latency MM
Master interfaces and pipelined LSUs for fixed-latency MM Master interfaces.

For details about the types of the LSUs and when the Intel HLS Compiler typically
instantiates them, see Load-Store Unit Types on page 28 and Memory-Access
Coalescing and Load-Store Units on page 32.

If your design contains one or more variable-latency Avalon MM Master interfaces (for
example, if you interface with off-chip memory), you can control the LSU type to
improve the performance and resource utilization of your design.

Use the high-level design reports to determine what types of LSUs your component
has, and then you can apply these LSU controls as needed to achieve the component
performance that you want.

Table 13. Intel HLS Compiler Pro Edition Load-Store Unit Control Summary

Template
Object/Parameter/Function

Description

ihc::lsu The underlying LSU class template object

ihc::style Specifies the type of load-store unit.

ihc::static_coalescing Explicitly allows or prevents static coalescing of a load/store operation
with other load/store operations.

load Loads data from memory into the LSU.

store Stores data from the LSU into memory.

Related Information

Control LSUs For Your Variable-Latency MM Master Interfaces

4.3.3.1. Load-Store Unit Types

The Intel HLS Compiler determines the types of load-store units (LSUs) to instantiate
and whether to coalesce memory accesses based on from the memory access pattern
that the compiler infers.

The Intel HLS Compiler instantiates the following the types of LSUs:

• Burst-coalesced LSUs
• Nonaligned burst-

coalesced LSUs

The Intel HLS Compiler typically instantiates burst-coalesced LSUs for accessing
variable-latency Avalon MM Master interfaces.

• Pipelined LSUs
• Never-stall pipelined

LSUs

The Intel HLS Compiler typically instantiates pipelined LSUs for accessing fixed-
latency Avalon MM Master interfaces.

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

28

https://www.intel.com/content/www/us/en/programmable/documentation/nml1505158467345.html#axa1566448364572
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Click LSUs in the Graph Viewer (in the High-Level Design Reports) to see which types
of LSU the compiler instantiated for your component.

Figure 4. Example of LSU Information Provided in the Graph Viewer

Burst-Coalesced Load-Store Units

A burst-coalesced LSU buffers contiguous memory requests until the largest possible
burst can be made. For noncontiguous memory requests, a burst-coalesced LSU
flushes the buffer between requests.

While a burst-coalsced LSU provides efficient, variable-latency access to memories
outside of your component, a burst-coalesced LSU requires a considerable amount of
FPGA resources.

The following code example results in the Intel HLS Compiler instantiating two burst-
coalesced LSUs:

#include "HLS/hls.h"

component void
burst_coalesced(ihc::mm_master<int, ihc::dwidth<64>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<0>> &in,
 ihc::mm_master<int, ihc::dwidth<64>, ihc::awidth<32>,
 ihc::aspace<2>, ihc::latency<0>> &out,
 int i) {
 int value = in[i / 2]; // Burst-coalesced LSU
 out[i] = value; // Burst-coalesced LSU
}

Depending on the memory access pattern and other attributes, the compiler might
modify a burst-coalesced LSU to be a nonaligned burst-coalesced LSU.

Nonaligned Burst-coalesced LSUs

When a burst-coalesced LSU can access a memory that is not aligned to the external
memory word size, the Intel HLS Compiler creates a nonaligned burst-coalesced LSU.
Nonaligned LSUs typically require more FPGA resources to implement than aligned
LSUs. The throughput of a nonaligned LSU might be reduced if it receives many
unaligned requests.

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following code example results in a nonaligned burst-coalesced LSU:

#include "HLS/hls.h"

struct State {
 int x;
 int y;
 int z;
};

component void
static_coalescing(ihc::mm_master<State, ihc::dwidth<128>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<0>> &in,
 ihc::mm_master<State, ihc::dwidth<128>, ihc::awidth<32>,
 ihc::aspace<2>, ihc::latency<0>> &out,
 int i) {
 out[i] = in[i]; // Two Nonaligned Burst-coalesced LSUs

The figure that follows (Figure 5 on page 30) shows the external memory contents
for the previous code example and the nonaligned burst-coalesced LSUs in the
component pipeline.

The data type that is read and written is a 96-bit-wide struct. The external memory
width is 128 bits. This difference between the read/write data width and the external
memory width forces some of the memory requests to span two consecutive memory
words.

A nonaligned burst-coalesced LSU can detect that discrepancy and serve such memory
requests as needed while still buffering contiguous requests until the largest possible
burst can be made.

Figure 5. Nonaligned Memory Accesses

Nonaligned Burst-
Coalesced Store

Nonaligned Burst-
Coalesced Load

...

out[2].z out[3].x out[3].y out[3].z

out[1].y out[1].z out[2].x out[2].y

out[0].x out[0].y out[0].z out[1].x

...

in[2].z in[3].x in[3].y in[3].z

in[1].y in[1].z in[2].x in[2].y

128 Bits

in[0].x in[0].y in[0].z in[1].x

LD

ST

Pipeline

Pipelined Load-Store Units

In a pipelined LSU, requests are submitted when they are received and no buffering
occurs. Pipelined LSUs are also used for accessing local memories inside your
component.

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can tell the compiler to instantiate pipelined LSUs for variable-latency MM Master
interfaces. However, variable-latency interface access with pipelined LSUs might
reduce throughput.

Memory accesses are pipelined, so multiple requests can be in flight at the same time.
If there is no arbitration between the LSU and the memory interfaces, and the
interface is fixed latency, a never-stall pipelined LSU is created.

The following code example results in the Intel HLS Compiler instantiating four
pipelined LSUs:

#include "HLS/hls.h"

component void
pipelined(ihc::mm_master<int, ihc::dwidth<64>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<2>> &in,
 ihc::mm_master<int, ihc::dwidth<64>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<2>> &out,
 int gi, int li) {
 int lmem[1024];

 int res = in[gi]; // Pipelined LSU
 for (int i = 0; i < 4; i++) {
 lmem[li - i] = res; // Pipelined LSU
 res >>= 1;
 }

 res = 0;
 for (int i = 0; i < 4; i++) {
 res ^= lmem[li - i]; // Pipelined LSU
 }

 out[gi] = res; // Pipelined LSU
}

Never-Stall Pipelined LSUs

If a pipelined LSU is connected to a memory inside the component or to a fixed-
latency MM Master interface without arbitration, a never-stall LSU is created because
all accesses to the memory take a fixed number of cycles that are known to the
compiler.

The following code example results in the Intel HLS Compiler instantiating three
never-stall pipelined LSUs for accessing array lmem.

#include "HLS/hls.h"

component void
neverstall(ihc::mm_master<int, ihc::dwidth<128>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<0>> &in,
 ihc::mm_master<int, ihc::dwidth<128>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<0>> &out,
 int gi, int li) {
 int lmem[1024];
 for (int i = 0; i < 1024; i++)
 lmem[i] = in[i]; // Pipelined never-stall LSU

 out[gi] = lmem[li] ^ lmem[li + 1]; // Pipelined never-stall LSU
}

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.3.2. Memory-Access Coalescing and Load-Store Units

The Intel HLS Compiler sometimes coalesces multiple memory accesses into a wider
memory access to save on the number of LSUs instantiated.

When the compiler coalesces the memory accesses, it is referred to as static
coalescing because the coalescing occurs at compile time. This static coalescing
contrasts with the dynamic coalescing done by a burst-coalesced LSU.

The compiler typically attempts to static coalescing when it detects multiple memory
operations that access consecutive locations in memory. This coalescing is usually
beneficial because it reduces the number of LSUs that compete for a shared memory
interface.

The compiler coalesces memory accesses only up to the width of the memory
interface that is being accessed. For an external memory interface, the maximum
width is predetermined by the properties of the external memory that you are
accessing. For a component (internal) memory interface, the maximum width can be
set by the compiler based on the memory geometry that the compiler creates. For
more details about component memories, see Component Memories (Memory
Attributes) on page 41.

For the following code example, the Intel HLS Compiler statically coalesces the four 4-
byte-wide load operations into one 16-byte-wide load operations. A similar coalescing
is done for the the four store operations. Coalescing the load and store operations
reduces the number of required accesses to the Avalon MM Master interfaces by 4.

#include "HLS/hls.h"

component void
static_coalescing(ihc::mm_master<int, ihc::dwidth<128>, ihc::awidth<32>,
 ihc::aspace<1>, ihc::latency<0>> &in,
 ihc::mm_master<int, ihc::dwidth<128>, ihc::awidth<32>,
 ihc::aspace<2>, ihc::latency<0>> &out,
 int i) {
 // Four loads statically coalesced into one 16 bytes wide load
 int a1 = in[3 * i + 0];
 int a2 = in[3 * i + 1];
 int a3 = in[3 * i + 2];
 int a4 = in[3 * i + 3];

 // Four stores statically coalesced into one 16 bytes wide store
 out[3 * i + 0] = a4;
 out[3 * i + 1] = a3;
 out[3 * i + 2] = a2;
 out[3 * i + 3] = a1;
}

The Graph Viewer in the High-Level Design Reports for this example show that the
design only has one load and one store, each of width 128 bit.

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Graph Viewer Showing Coalesced Memory Accesses

4.4. Slave Interfaces

The Intel HLS Compiler can implement two different types of slave interface for you
component: a control-and-status register (CSR) slave interface and a slave memory
interface. In general, use the CSR slave interface to pass scalar values to your
component and use the slave memory interface to pass arrays to and from your
component.

Slave interfaces are implemented as Avalon Memory Mapped (Avalon MM) Slave
interfaces. For details about the Avalon MM Slave interfaces, see "Avalon Memory-
Mapped Interfaces in Avalon Interface Specifications.

Table 14. Types of Slave Interfaces

Slave
Type

Associated
Slave

Interface

Read/Write
Behavior

Synchronization Read Latency Controlling
Interface Data

Width

Register The
component
CSR slave.

The component
cannot update
these registers
from the

Synchronized with the
component start signal.

Fixed value of 1. Always 64 bits

continued...

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

33

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Slave
Type

Associated
Slave

Interface

Read/Write
Behavior

Synchronization Read Latency Controlling
Interface Data

Width

datapath, so you
can read back
only data that you
wrote in.

Memory
(M20K/
MLAB)

Dedicated
slave
interface on
the
component.

The component
reads from this
memory and
updates it as it
runs.
Updates from the
component
datapath are
visible in memory.

Reads and writes to slave
memories from outside of
the component should
occur only when your
component is not
executing.
You might experience
undefined component
behavior if outside slave
memory accesses occur
when your component is
executing. The undefined
behavior can occur even if a
slave memory access is to a
memory address that the
component does not
access.

Fixed value that is
dependent on the
component memory
access pattern and any
attributes or pragmas
that you set.
See the Function Viewer
report in the High-Level
Design Report
(report.html) for the
read latency of a
specific slave memory
argument.

The data width
is a multiple of
the slave data
type, where the
multiple is
determined by
coalescing the
internal
accesses.

4.4.1. Control and Status Register (CSR) Slave

A component can have a maximum of one CSR slave interface, but more than one
argument can be mapped into this interface.

Any arguments that are labeled as hls_avalon_slave_register_argument are
located in this memory space. The resulting memory map is described in the
automatically generated header file <results>.prj/components/
<component_name>_csr.h. This file also provides the C macros for a master
component to interact with the slave component. Examples of master components
include Nios® II soft processors and Intel Acceleration Stack host applications.

The control and status registers (that is, function call and return) of an
hls_avalon_slave_component attribute are implemented in this interface.

You do not need to use the hls_avalon_slave_component attribute to use the
hls_avalon_slave_register_argument attribute.

To learn more, review the tutorial: <quartus_installdir>/hls/examples/
tutorials/interfaces/mm_slaves

Example code of a component with a CSR slave:

#include "HLS/hls.h"

struct MyStruct {
 int f;
 double j;
 short k;
};

hls_avalon_slave_component
component MyStruct mycomp_xyz (hls_avalon_slave_register_argument int y,
 hls_avalon_slave_register_argument MyStruct struct_argument,
 hls_avalon_slave_register_argument unsigned long long mylong,
 hls_avalon_slave_register_argument char char_arg

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

) {
 return struct_argument;
}

Generated C header file for the component mycomp_xyz:

/* This header file describes the CSR Slave for the mycomp_xyz component */

#ifndef __MYCOMP_XYZ_CSR_REGS_H__
#define __MYCOMP_XYZ_CSR_REGS_H__

/**/
/* Memory Map Summary */
/**/

/*
 Register | Access | Register Contents | Description
 Address | | (64-bits) |
------------|---------|--------------------------|-----------------------------
 0x0 | R | {reserved[62:0], | Read the busy status of
 | | busy[0:0]} | the component
 | | | 0 - the component is ready
 | | | to accept a new start
 | | | 1 - the component cannot
 | | | accept a new start
------------|---------|--------------------------|-----------------------------
 0x8 | W | {reserved[62:0], | Write 1 to signal start to
 | | start[0:0]} | the component
------------|---------|--------------------------|-----------------------------
 0x10 | R/W | {reserved[62:0], | 0 - Disable interrupt,
 | | interrupt_enable[0:0]} | 1 - Enable interrupt
------------|---------|--------------------------|-----------------------------
 0x18 | R/Wclr | {reserved[61:0], | Signals component completion
 | | done[0:0], | done is read-only and
 | | interrupt_status[0:0]} | interrupt_status is write 1
 | | | to clear
------------|---------|--------------------------|-----------------------------
 0x20 | R | {returndata[63:0]} | Return data (0 of 3)
------------|---------|--------------------------|-----------------------------
 0x28 | R | {returndata[127:64]} | Return data (1 of 3)
------------|---------|--------------------------|-----------------------------
 0x30 | R | {returndata[191:128]} | Return data (2 of 3)
------------|---------|--------------------------|-----------------------------
 0x38 | R/W | {reserved[31:0], | Argument y
 | | y[31:0]} |
------------|---------|--------------------------|-----------------------------
 0x40 | R/W | {struct_argument[63:0]} | Argument struct_argument (0
of 3)
------------|---------|--------------------------|-----------------------------
 0x48 | R/W | {struct_argument[127:64]} | Argument struct_argument (1
of 3)
------------|---------|--------------------------|-----------------------------
 0x50 | R/W | {struct_argument[191:128]} | Argument struct_argument
(2 of 3)
------------|---------|--------------------------|-----------------------------
 0x58 | R/W | {mylong[63:0]} | Argument mylong
------------|---------|--------------------------|-----------------------------
 0x60 | R/W | {reserved[55:0], | Argument char_arg
 | | char_arg[7:0]} |

NOTE: Writes to reserved bits will be ignored and reads from reserved
 bits will return undefined values.
*/

/**/
/* Register Address Macros */
/**/

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

/* Byte Addresses */
#define MYCOMP_XYZ_CSR_BUSY_REG (0x0)
#define MYCOMP_XYZ_CSR_START_REG (0x8)
#define MYCOMP_XYZ_CSR_INTERRUPT_ENABLE_REG (0x10)
#define MYCOMP_XYZ_CSR_INTERRUPT_STATUS_REG (0x18)
#define MYCOMP_XYZ_CSR_RETURNDATA_0_REG (0x20)
#define MYCOMP_XYZ_CSR_RETURNDATA_1_REG (0x28)
#define MYCOMP_XYZ_CSR_RETURNDATA_2_REG (0x30)
#define MYCOMP_XYZ_CSR_ARG_Y_REG (0x38)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_0_REG (0x40)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_1_REG (0x48)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_2_REG (0x50)
#define MYCOMP_XYZ_CSR_ARG_MYLONG_REG (0x58)
#define MYCOMP_XYZ_CSR_ARG_CHAR_ARG_REG (0x60)

/* Argument Sizes (bytes) */
#define MYCOMP_XYZ_CSR_RETURNDATA_0_SIZE (8)
#define MYCOMP_XYZ_CSR_RETURNDATA_1_SIZE (8)
#define MYCOMP_XYZ_CSR_RETURNDATA_2_SIZE (8)
#define MYCOMP_XYZ_CSR_ARG_Y_SIZE (4)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_0_SIZE (8)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_1_SIZE (8)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_2_SIZE (8)
#define MYCOMP_XYZ_CSR_ARG_MYLONG_SIZE (8)
#define MYCOMP_XYZ_CSR_ARG_CHAR_ARG_SIZE (1)

/* Argument Masks */
#define MYCOMP_XYZ_CSR_RETURNDATA_0_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_RETURNDATA_1_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_RETURNDATA_2_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_ARG_Y_MASK (0xffffffff)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_0_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_1_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_ARG_STRUCT_ARGUMENT_2_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_ARG_MYLONG_MASK (0xffffffffffffffffULL)
#define MYCOMP_XYZ_CSR_ARG_CHAR_ARG_MASK (0xff)

/* Status/Control Masks */
#define MYCOMP_XYZ_CSR_BUSY_MASK (1<<0)
#define MYCOMP_XYZ_CSR_BUSY_OFFSET (0)

#define MYCOMP_XYZ_CSR_START_MASK (1<<0)
#define MYCOMP_XYZ_CSR_START_OFFSET (0)

#define MYCOMP_XYZ_CSR_INTERRUPT_ENABLE_MASK (1<<0)
#define MYCOMP_XYZ_CSR_INTERRUPT_ENABLE_OFFSET (0)

#define MYCOMP_XYZ_CSR_INTERRUPT_STATUS_MASK (1<<0)
#define MYCOMP_XYZ_CSR_INTERRUPT_STATUS_OFFSET (0)
#define MYCOMP_XYZ_CSR_DONE_MASK (1<<1)
#define MYCOMP_XYZ_CSR_DONE_OFFSET (1)

#endif /* __MYCOMP_XYZ_CSR_REGS_H__ */

4.4.2. Slave Memories

By default, component functions access parameters that are passed by reference
through an Avalon Memory-Mapped (MM) Master interface. An alternative way to pass
parameters by reference is to use an Avalon MM Slave interface, which exists inside
the component.

Having a pointer argument generate an Avalon MM Master interface on the component
has two potential disadvantages:

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The master interface has a single port. If the component has multiple load-store
sites, arbitration on that port might create stallable logic.

• Depending on the system in which the component is instantiated, other masters
might use the memory bus while the component is running and create undesirable
stalls on the bus.

Because a slave memory is internal to the component, the HLS compiler can create a
memory architecture that is optimized for the access pattern of the component such
as creating banked memories or coalescing memories.

Slave memories differ from component memories because they can be accessed from
an Avalon MM Master outside of the component. Component memories are by
definition restricted to the component and cannot be accessed outside the component.

You can explicitly control the structure of your slave memories by applying memory
arguments to slave memory variable declarations.

Important: Reads and writes to slave memories from outside of the component should
occur only when your component is not executing. You might experience
undefined component behavior if outside slave memory accesses occur when your
component is executing. The undefined behavior can occur even if a slave memory
access is to a memory address that the component does not access.

A component can have many slave memory interfaces. Unlike slave register
arguments that are grouped together in the CSR slave interface, each slave memory
has a separate interface with separate data buses. The slave memory interface data
bus width is determined by the width of the slave type. If the internal accesses to the
memory have been coalesced, the slave memory interface data bus width might be a
multiple of the width of the slave type.

Component Macro Description

hls_avalon_slave_memory_argument Implement the argument, in on-chip memory blocks, which
can be read from or written to over a dedicated slave
interface.

4.5. Component Invocation Interface Control Attributes

The component invocation interface refers to the control signals that correspond to
actions of calling the function. All unstable component argument inputs are
synchronized according to this component invocation protocol. A component argument
is unstable if it changes while there is live data in the component (that is, between
pipelined function invocations).

Table 15. Intel HLS Compiler Component Invocation Interface Control Attribute
Summary

Control Attribute Description

hls_avalon_streaming_component This is the default component invocation interface.

continued...

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control Attribute Description

The component uses start, busy, stall, and done signals for
handshaking.

hls_avalon_slave_component The start, done, and returndata (if applicable) signals are registered in
the component slave memory map.

hls_always_run_component The start signal is tied to 1 internally in the component. There is no done
signal output.

hls_stall_free_return If the downstream component never stalls, the stall signal is removed by
internally setting it to 0.

Related Information

Control and Status Register (CSR) Slave on page 34

4.6. Unstable and Stable Component Parameters

If you do not specify the intended behavior for a parameter, the default behavior of an
argument is unstable. An unstable argument can change while there is live data in the
component (that is, between pipelined function invocations).

You can declare an interface argument to be stable with the hls_stable_argument
attribute. A stable interface argument is an argument that does not change while your
component executes, but the argument might change between component executions.

You can mark the following the interface arguments as stable:

• Scalar (conduit) arguments

• Pointer interface arguments

The address conduit input is stable. The associated Avalon MM Master interface is
not affected.

• Pass-by-reference arguments

The address conduit input is stable. The associated Avalon MM Master interface is
not affected.

• Avalon Memory-Mapped (MM) Master interface arguments

The address conduit input is stable. The associated Avalon MM Master interface is
not affected.

• Avalon Memory-Mapped (MM) Slave register interface arguments

The following interface arguments cannot be marked as stable:

• Avalon Memory-Mapped (MM) Slave memory interface arguments

• Avalon Streaming interface arguments

You might save some FPGA area in your component design when you declare an
interface argument as stable because there is no need to carry the data with the
pipeline.

You cannot have two component invocations in flight with different stable arguments
between the two component invocations.

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Attribute Description

hls_stable_argument A stable argument is an argument that does not change
while there is live data in the component (that is, between
pipelined function invocations).

4.7. Global Variables

Components can use and update C++ global variables. If you access a global variable
in your component function, it is implemented as an Avalon Memory-Mapped (MM)
Master interfaces, like a pointer parameter.

If you access more than one global variable, each global variable uses the same
Avalon MM Master interface, which results in stallable arbitration. If you use pointers
and non-constant global memory accesses, then the pointers and global memory
accesses all share the same Avalon MM Master interface.

In addition to the Avalon MM Master interface, each global variable that the
component uses has an input conduit that must be supplied with the address of the
global variable in system memory. The input conduit arguments that are generated in
the RTL are named @<global variable name>. Input conduits generated for
pointer arguments omit the @ are named for the corresponding pointer argument.

If your global variable is declared as const, then no Avalon MM Master interface and
no additional input conduit is generated. Therefore, global variables declared as
const use significantly less FPGA area than modifiable global variable.

4.8. Structs in Component Interfaces

Review the interface_structs.sv file in your <a.prj>/components/
<component_name> folder to see information about the padding and packed-ness of
the implementation interfaces for the structs in your component.

The interface_structs.sv file contains the Verilog-style definitions of the structs
found on your component interface.

4.9. Reset Behavior

For your HLS component, the reset assertion can be asynchronous but the reset
deassertion must be synchronous.

The reset assertion and deassertion behavior can be generated from an asynchronous
reset input by using a reset synchronizer, as described in the following example
Verilog code:

reg [2:0] sync_resetn;
always @(posedge clock or negedge resetn) begin
 if (!resetn) begin
 sync_resetn <= 3'b0;
 end else begin
 sync_resetn <= {sync_resetn[1:0], 1'b1};
 end
end

This synchronizer code is used in the example Intel Quartus Prime Pro Edition project
that is generated for your components included in an i++ compile.

4. Component Interfaces

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the reset is asserted, the component holds its busy signal high and its done
signal low. After the reset is deasserted, the component holds its busy signal high
until the component is ready to accept the next invocation. All component interfaces
(slaves, masters, and streams) are valid only after the component busy signal is low.

Simulation Component Reset

You can check the reset behavior of your component during simulation by using the
ihc_hls_sim_reset API. This API returns 1 if the reset was exercised (that is, if the
reset is called during hardware simulation of the component). Otherwise, the API
returns 0.

Call the API as follows:

int ihc_hls_sim_reset(void);

During x86 emulation of your component, the ihc_hls_sim_reset API always
returns 0. You cannot reset a component during x86 emulation.

4. Component Interfaces

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Component Memories (Memory Attributes)
The Intel High Level Synthesis (HLS) Compiler builds a hardware memory system
using FPGA memory resources (such as block RAMs) for any local, constant, static
variable or array, and slave memory declared in your code.

Memory accesses are mapped to load-store units (LSUs), which transact with the
hardware memory through its ports. The Intel HLS Compiler sometimes statically
coalesces multiple memory accesses to a component memory into one wider memory
access in order to save on the number of LSUs instantiated. LSUs for component
memory are always pipelined LSUs.

If two or more LSUs need to be scheduled during the same cycle, the compiler might
create stallable arbitration logic. Stallable arbitration logic appears red in the
Component Viewer (in the High-Level Design Reports).

For more details about LSUs instantiated by the Intel HLS Compiler, see Load-Store
Unit Types on page 28. For details about coalescing memory accesses to save on
instantiated LSUs, see Memory-Access Coalescing and Load-Store Units on page 32.

Figure 7. A Basic Memory Configuration Inferred by the Intel HLS Compiler

The following diagram shows a basic memory configuration:

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 8. A Memory System With Two Memory Banks

The contents of a memory system can be partitioned into one or more memory banks,
such that each bank contains a subset of data contained in the hardware memory:

5. Component Memories (Memory Attributes)

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. A Memory System With Two Replicates

A memory bank can contain one or more memory replicates. The compiler might
create memory replicates to create more read ports. Having more read ports allows
faster access to your memory system if you have many read operations.

The replicates in a memory bank contain identical data and you can read from the
replicates simultaneously. A replicate can have two or four access ports, depending on
whether the replicate is clocked at the same frequency (single pumped) or twice the
frequency (double pumped) of the component. All ports in replicates can be accessed
concurrently. The number of ports in a memory bank depends on the number of
replicates that the bank contains.

A replicate can also contain one or more private copies to support multiple concurrent
loop iterations.

5. Component Memories (Memory Attributes)

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. A Memory System With Two Private Copies

The Intel HLS Compiler can control the geometry and configuration parameters of the
hardware memories that it builds. The compiler tries to create stall-free memory
accesses. That is, the compiler tries to give memory reads and writes contention-free
access to a memory port. A memory system is stall-free if all reads and writes in the
memory system are contention-free.

The compiler tries to create a minimum-area stall-free memory system. If you want a
different area-performance trade off, use the component memory attributes to specify
your own memory system configuration and override the memory system inferred by
the compiler.

Component Memory Attributes

Apply the component memory attributes to local, constant, and static variables, or
arrays in your component to customize the on-chip memory architecture of the
component memory system and lower the FPGA area utilization of your component.
You can also apply memory attributes to slave memories and struct data members.

These component memory attributes are defined in the "HLS/hls.h" header file,
which you can include in your code.

Table 16. Intel HLS Compiler Pro Edition Component Memory Attributes Summary

Memory Attribute Description

hls_register Forces a variable or array to be carried through the pipeline in registers.
A register variable can be implemented either exclusively in flip-flops
(FFs) or in a mix of FFs and RAM-based FIFOs.

hls_memory Forces a variable or array to be implemented as embedded memory.

continued...

5. Component Memories (Memory Attributes)

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Memory Attribute Description

hls_memory_impl Forces a variable or array to be implemented as embedded memory of a
specified type.

hls_singlepump Specifies that the memory implementing the variable or array must be
clocked at the same rate as the component accessing the memory.

hls_doublepump Specifies that the memory implementing the variable or array must be
clocked at twice the rate as the component accessing the memory.

hls_numbanks Specifies that the memory implementing the variable or array must have
a defined number of memory banks.

hls_bankwidth Specifies that the memory implementing the variable or array must have
memory banks of a defined width.

hls_bankbits Forces the memory system to split into a defined number of memory
banks and defines the bits used to select a memory bank.

hls_numports_readonly_writeonly This memory attribute is deprecated. Use hls_max_replicates
instead.
Specifies that the memory implementing the variable or array must have
a defined number of read and write ports.

hls_simple_dual_port_memory Specifies that the memory implementing the variable or array should
have no port that services both reads and writes.

hls_merge (depthwise) Allows merging two or more local variables to be implemented in
component memory as a single merged memory system in a depth-wise
manner.

hls_merge (widthwise) Allows merging two or more local variables to be implemented in
component memory as a single merged memory system in a width-wise
manner.

hls_init_on_reset Forces the static variables inside the component to be initialized when
the component reset signal is asserted.

hls_init_on_powerup Sets the component memory implementing the static variable to
initialize on power-up when the FPGA is programmed.

hls_max_concurrency Specifies the memory has a defined maximum number of private copies
to allow concurrent iterations of a loop at any given time.

hls_max_replicates Specifies that the memory implementing the variable or array has no
more than the specified number of replicates to enable simultaneous
reads from the datapath

Struct Datatypes and Memory Attributes

You can apply memory attributes to struct member variables in the struct
declaration. If you also apply memory attributes to the object instantiation of a
struct variable, the attributes on the instantiation override the attributes from the
declaration.

The following code example applies memory attributes to both a declaration and an
instantiation:

struct State {
 int array[100] hls_memory;
 int reg[4] hls_register;
};
component int test(..) {
 struct State S1;
 struct State S2 hls_memory;
 // some uses
}

5. Component Memories (Memory Attributes)

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For this example code, the compiler splits S1 into two variables, S1.array[100]
(implemented in memory) and S1.reg[4] (implemented in registers). However, the
compiler ignores the attributes applied at the struct declaration for object S2
because the S2 object has the hls_memory attribute applied at instantiation.

Constraints on Attributes for Memory Banks

The properties of memory banks constrain how you can divide component memory
into banks with the memory bank attributes.

The relationship between the following properties is constrained:

• The number of bytes in your array that you want to access at one time (S). If you
are accessing a local variable, this value represents the size (in bytes) of the local
variable.

• The number of memory banks specified by hls_numbanks attribute (Nbanks).

• The width (in bytes) of the memory banks specified by hls_bankwidth attribute
(W).

• The number of memory bank-select bits specified by hls_bankbits attribute.
That is, n+1 when you specify b0, b1, ..., bn as the bank-select bits (Nbits).

These attributes are subject to the following constraints:

• Nbanks × W = S

The number of bytes accessed concurrently (or size of a local variable) is equal to
the number of memory banks it uses times the width of the memory banks.

• Nbanks must be a power of 2 value.

• Nbanks = 2Nbits

Nbits bank-selection bits that are required to address Nbanks number of memory
banks.

Values that you specify for the hls_numbanks, hls_bankwidth, and
hls_bankbits attributes must meet these constraints. For attributes that you do not
specify, the Intel HLS Compiler infers values for the attributes following these
constraints.

5.1. Static Variables

The HLS compiler supports function-scope static variables with the same semantics as
in C and C++.

Function-scope static variables are initialized to the specified values on reset. In
addition, changes to these variables are visible across component invocations, making
function-scope static variables ideal for storing state in a component.

To initialize static variables, the component requires extra logic, and the component
might take some time to exit the reset state while this logic is active.

5. Component Memories (Memory Attributes)

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Static Variable Initialization

Unlike a typical program, you can control when the static variables in your component
are initialized, if they are implemented as memories. A static variable can be initialized
either when your component is powered up or when your component is reset.

Initializing a static variable when a component is powered up resembles a traditional
programming model where you cannot reinitialize the static variable value after the
program starts to run.

Initializing a static variable when a component is reset initializes the static variable
each time each time your component receives a reset signal, including on power up.
However, this type of static variable initialization requires extra logic. This extra logic
can affect the start-up latency and the FPGA area needed for your component.

You can explicitly set the static variable initialization by adding one of the following
attributes to your static variable declaration:

hls_init_on_reset The static variable value is initialized after the component
is reset.

Add this attribute to your static variable declaration as
shown in the following example:

static char arr[128] hls_init_on_reset;

This is the default behavior for initializing static variables.
You do not need to specify the hls_init_on_reset
keyword with your static variable declaration to get this
behavior.

For example, the static variable in the following example is
initialized when the component is reset:

static int arr[64];

hls_init_on_powerup The static variable is initialized only on power up. This
initialization uses a memory initialization file (.mif) to
initialize the memory, which reduces the resource
utilization and start-up latency of the component.

Add this keyword to your static variable declaration as
shown in the following example:

static char arr[128] hls_init_on_powerup;

Some static variables might not be able to take advantage
of this initialization because of the complexity of the static
variables (for example, an array of structs). In these
cases, the compiler returns an error.

For a demonstration of initializing static variables, review the tutorial in
<quartus_installdir>/hls/examples/tutorials/component_memories/
static_var_init.

For information about resetting your component, see Reset Behavior on page 39.

5. Component Memories (Memory Attributes)

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Loops in Components
The Intel HLS Compiler Pro Edition attempts to pipeline loops to maximize throughput
of the various components that you define.

Loop Pipelining

Pipelining loops enables the Intel HLS Compiler Pro Edition to execute subsequent
iterations of a loop in a pipeline-parallel fashion. Pipeline-parallel execution means
that multiple iterations of the loop, at different points in their executions, are
executing at the same time. Because all stages of the loop are always active,
pipelining loops helps maximize usage of the generated hardware.

Figure 11. Pipelined loop with three stages and four iterations
In this figure, one stage is the logic that runs during one clock cycle.

There are some cases where pipelining is not possible at all. In other cases, a new
iteration of the loop cannot start until N cycles after the previous iteration.

The number of cycles for which a loop iteration must wait before it can start is called
the initiation interval (II) of the loop. This loop pipelining status is captured in the high
level design report (report.html). In general, an II of 1 is desirable.

A common case where II > 1 is when a part of the loop depends in some way on the
results of the previous iteration of the same loop. The circuit must wait for these loop-
carried dependencies to be resolved before starting a new iteration of the loop. These
loop-carried dependencies are indicated in the optimization report.

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

In the case of nested loops, II > 1 for an outer loop is not considered a significant
performance limiter if a critical inner loop carries out the majority of the work. One
common performance limiter is if the HLS compiler cannot statically compute the trip
count of an inner loop (for example, a variable inner loop trip count). Without a known
trip count, the compiler cannot pipeline the outer loop.

For more information about loop pipelining, see Pipeline Loops in Intel High Level
Synthesis Compiler Best Practices Guide.

Compiler Pragmas Controlling Loop Pipelining

The Intel HLS Compiler has several pragmas that you can specify in your code to
control how the compiler pipelines your loops.

Loop pragmas must immediately precede the loop that the pragma applies to. You
cannot have a loop pragma before elements such as labels on loops. The following
table shows examples of how to apply loop pragmas correctly.

Incorrect (produces a compile-time error) Correct

#pragma ivdep
TEST_LOOP: for(int idx = 0; idx < counter; idx+
+) {...}

TEST_LOOP:
#pragma ivdep
for(int idx = 0; idx < counter; idx++) {...}

Table 17. Intel HLS Compiler Pro Edition Loop Pragmas Summary

Pragma Description

disable_loop_pipelining Prevents compiler from pipelining a loop,

ii Forces a loop to have a loop initiation interval (II) of a specified value.

ivdep Ignores memory dependencies between iterations of this loop.

loop_coalesce Tries to fuse all loops nested within this loop into a single loop.

max_concurrency Limits the number of iterations of a loop that can simultaneously execute
at any time.

max_interleaving Controls whether iterations of a pipelined inner loop in a loop nest from
one invocation of the inner loop can be interleaved in the component
data pipeline with iterations from other invocations of the inner loop.

speculated_iterations Specifies the number of clock cycles that a loop exit condition can take
to compute.

unroll Unrolls the loop completely or by a number of times.

6.1. Loop Initiation Interval (ii Pragma)

The initiation interval, or II, is the number of clock cycles between the launch of
successive loop iterations. Use the ii pragma to direct the Intel High Level Synthesis
(HLS) Compiler to attempt to set the initiation interval (II) for the loop that follows the
pragma declaration. If the compiler cannot achieve the specified II for the loop, then
the compilation errors out.

You might want to increase the II of a loop to get an fMAX improvement in your
component. A loop is a good candidate to have the ii pragma applied to increase its
loop II if the loop meets any of the following conditions:

6. Loops in Components

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

49

https://www.intel.com/content/www/us/en/programmable/documentation/nml1505158467345.html#uny1508901514896
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The loop is not critical to the throughput of your component.

• The running time of the loop is small compared to other loops it might contain.

You can also apply the ii pragma to force a loop to an II of 1 and accept a possible
fMAX penalty.

To specify a loop initiation interval for a loop, specify the pragma before the loop as
follows:

#pragma ii <desired_initiation_interval>

The <desired_initiation_interval> parameter is required and is an integer that
specifies the number of clock cycles to wait between the beginning of execution of
successive loop iterations.

Example

Consider a case where your component has two distinct sequential pipelineable loops:
an initialization loop with a low trip count and a processing loop with a high trip count
and no loop-carried memory dependencies. In this case, the compiler does not know
that the initialization loop has a much smaller impact on the overall throughput of your
design. If possible, the compiler attempts to pipeline both loops with an II of 1.

Because the initialization loop has a loop-carried dependence, it will have a feedback
path in the generated hardware. To achieve an II with such a feedback path, some
clock frequency might be sacrificed. Depending on the feedback path in the main loop,
the rest of your design could have run at a higher operating frequency.

If you specify #pragma ii 2 on the initialization loop, you tell the compiler that it
can be less aggressive in optimizing II for this loop. Less aggressive optimization
allows the compiler to pipeline the path limiting the fmax and could allow your overall
component design to achieve a higher fmax.

The initialization loop takes longer to run with its new II. However, the decrease in the
running time of the long-running loop due to higher fmax compensates for the
increased length in running time of the initialization loop.

6.2. Loop-Carried Dependencies (ivdep Pragma)

When compiling your components, the HLS compiler generates hardware to avoid any
data hazards between load and store instructions to component memories, slave
memories, and external memories (through Avalon-MM mater interfaces). In
particular, read-write dependencies can limit performance when they exist across loop
iterations because they prevent the compiler from beginning a new loop iteration
before the current iteration finishes executing its load and store instructions. You have
the option to guarantee to the HLS compiler that there are no implicit memory
dependencies across loop iterations in your component by adding the ivdep pragma
in your code.

The ivdep pragma tells the compiler that a memory dependency between loop
iterations can be ignored. Ignoring the dependency saves area and lowers the loop
initiation interval (II) of the affected loop because the hardware required for avoiding
data hazards is no longer required.

6. Loops in Components

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can provide more information about loop dependencies by adding the
safelen(N) clause to the ivdep pragma. The safelen(N) clause specifies the
maximum number of consecutive loop iterations without loop-carried memory
dependencies. For example, #pragma ivdep safelen(32) indicates to the compiler
that there are a maximum of 32 iterations of the loop before loop-carried
dependencies might be introduced. That is, while #pragma ivdep promises that
there are no implicit memory dependency between any iteration of this loop, #pragma
safelen(32) promises that the iteration that is 32 iterations away is the closest
iteration that could be dependent on this iteration.

To specify that accesses to a particular memory array inside a loop will not cause loop-
carried dependencies, add the line #pragma ivdep array (array_name) before
the loop in your component code. The array specified by the ivdep pragma must be
one of the following items:

• a component memory array

• a pointer argument

• a pointer variable that points to a component memory

• a reference to an mm_master object

If the specified array is a pointer, the ivdep pragma also applies to all arrays that
may alias with specified pointer. The array specified by the ivdep pragma can also be
an array or a pointer member of a struct.

Caution: Incorrect usage of the ivdep pragma might introduce functional errors in hardware.

Use Case 1:

If all accesses to memory arrays inside a loop do not cause loop-carried dependencies,
add #pragma ivdep before the loop.

1 // no loop-carried dependencies for A and B array accesses
2 #pragma ivdep
3 for(int i = 0; i < N; i++) {
4 A[i] = A[i + N];
5 B[i] = B[i + N];
6 }

Use Case 2:

You may specify #pragma ivdep array (array_name) on particular memory
arrays instead of all array accesses. This pragma is applicable to arrays, pointers, or
pointer members of structs. If the specified array is a pointer, the ivdep pragma
applies to all arrays that may alias with the specified pointer.

 1 // No loop-carried dependencies for A array accesses
 2 // Compiler inserts hardware that reinforces dependency constraints for B
 3 #pragma ivdep array(A)
 4 for(int i = 0; i < N; i++) {
 5 A[i] = A[i - X[i]];
 6 B[i] = B[i - Y[i]];
 7 }
 8
 9 // No loop-carried dependencies for array A inside struct
10 #pragma ivdep array(S.A)
11 for(int i = 0; i < N; i++) {
12 S.A[i] = S.A[i - X[i]];
13 }
14

6. Loops in Components

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15 // No loop-carried dependencies for array A inside the struct pointed by S
16 #pragma ivdep array(S->X[2][3].A)
17 for(int i = 0; i < N; i++) {
18 S->X[2][3].A[i] = S.A[i - X[i]];
19 }
20
21 // No loop-carried dependencies for A and B because ptr aliases
22 // with both arrays
23 int *ptr = select ? A : B;
24 #pragma ivdep array(ptr)
25 for(int i = 0; i < N; i++) {
26 A[i] = A[i - X[i]];
27 B[i] = B[i - Y[i]];
28 }
29
30 // No loop-carried dependencies for A because ptr only aliases with A
31 int *ptr = &A[10];
32 #pragma ivdep array(ptr)
33 for(int i = 0; i < N; i++) {
34 A[i] = A[i - X[i]];
35 B[i] = B[i - Y[i]];
36 }

6.3. Loop Coalescing (loop_coalesce Pragma)

Use the loop_coalesce pragma to direct the Intel HLS Compiler to coalesce nested
loops into a single loop without affecting the loop functionality. Coalescing loops can
help reduce your component area usage by directing the compiler to reduce the
overhead needed for loop control.

Coalescing nested loops also reduces the latency of the component, which could
further reduce your component area usage. However, in some cases, coalescing loops
might lengthen the critical loop initiation interval path, so coalescing loops might not
be suitable for all components.

To coalesce nested loops, specify the pragma as follows:

#pragma loop_coalesce <loop_nesting_level>

The <loop_nesting_level> parameter is optional and is an integer that specifies how
many nested loop levels that you want the compiler to attempt to coalesce. If you do
not specify the <loop_nesting_level> parameter, the compiler attempts to coalesce all
of the nested loops.

For example, consider the following set of nested loops:

for (A)
 for (B)
 for (C)
 for (D)
 for (E)

If you place the pragma before loop (A), then the loop nesting level for these loops is
defined as:

• Loop (A) has a loop nesting level of 1.

• Loop (B) has a loop nesting level of 2.

• Loop (C) has a loop nesting level of 3.

• Loop (D) has a loop nesting level of 4.

• Loop (E) has a loop nesting level of 3.

6. Loops in Components

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Depending on the loop nesting level that you specify, the compiler attempts to
coalesce loops differently:

• If you specify #pragma loop_coalesce 1 on loop (A), the compiler does not
attempt to coalesce any of the nested loops.

• If you specify #pragma loop_coalesce 2 on loop (A), the compiler attempts to
coalesce loops (A) and (B).

• If you specify #pragma loop_coalesce 3 on loop (A), the compiler attempts to
coalesce loops (A), (B), (C), and (E).

• If you specify #pragma loop_coalesce 4 on loop (A), the compiler attempts to
coalesce all of the loops [loop (A) - loop (E)].

Example

The following simple example shows how the compiler coalesces two loops into a
single loop.

Consider a simple nested loop written as follows:

#pragma loop_coalesce
for (int i = 0; i < N; i++)
 for (int j = 0; j < M; j++)
 sum[i][j] += i+j;

The compiler coalesces the two loops together so that they run as if they were a single
loop written as follows:

int i = 0;
int j = 0;
while(i < N){

 sum[i][j] += i+j;
 j++;

 if (j == M){
 j = 0;
 i++;
 }
}

6.4. Loop Unrolling (unroll Pragma)

The Intel HLS Compiler supports the unroll pragma for unrolling multiple copies of a
loop.

Example code:

1 #pragma unroll <N>
2 for (int i = 0; i < M; ++i) {
3 // Some useful work
4 }

In this example, N specifies the unroll factor, that is, the number of copies of the loop
that the HLS compiler generates. If you do not specify an unroll factor, the HLS
compiler unrolls the loop fully. You can find the unroll status of each loop in the high
level design report (report.html).

6. Loops in Components

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.5. Loop Concurrency (max_concurrency Pragma)

You can use the max_concurrency pragma to increase or limit the concurrency of a
loop in your component. The concurrency of a loop is how many iterations of that loop
can be in progress at one time. By default, the Intel HLS Compiler tries to maximize
the concurrency of loops so that your component runs at peak throughput.

To achieve maximum concurrency in loops, sometimes private copies of component
memory have to be created to break dependencies on the underlying hardware that
prevent the loop from being fully pipelined.

You can see the number of private copies created for you component memories in the
High Level Design report (report.html) for your component:

• In the Details pane of the Loop analysis report as a message that says that the
maximum number of simultaneous executions has been limited to N.

• In the Bank view of your component memory in the Function Memory Viewer,
where it graphically shows the number of private copies.

Creating private copies of component memory in this case is not the same as
replicating memory in order to increase the number of ports.

If you want to exchange some performance for component memory savings, apply
#pragma max_concurrency <N> to the loop. When you apply this pragma, the
number of private copies changes and controls the number of iterations entering the
loop, as shown in the following example:

#pragma max_concurrency 1
for (int i = 0; i < N; i++) {
 int arr[M];
 // Doing work on arr
}

You can control the number of private copies created for a component memory
accessed withing a loop by using the hls_max_concurrency memory attribute. For
details, see hls_max_concurrency Memory Attribute.

You can also control the concurrency of your component by using the
hls_max_concurrency component attribute. For more information about the
hls_max_concurrency(N) component attribute, see Concurrency Control
(hls_max_concurrency Attribute).

6.6. Loop Iteration Speculation (speculated_iterations Pragma)

With speculated_iterations pragma control, you can adjust the number of
speculated iterations for a loop. Speculated iterations are loop iterations that are
initiated while the loop exit condition is being calculated. Adjusting the number of
speculated iterations can help enable more efficient loop pipelining in your component.

Typically, the exit condition for a loop iteration must be evaluated before it is known
whether to start the next loop iteration or continue into the rest of the function. This
requirement means that the loop initiation interval (II) cannot be lower than the
number of cycles required to compute the exit condition. Speculated iterations can
help lower the loop II because operations within the loop can occur in the function
pipeline at the same time as the exit condition is evaluated.

6. Loops in Components

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For any speculated iteration, instructions with side effects outside of the loop (like
writing to memory or a stream) are not completed until the loop exit condition for the
iteration has been evaluated. For loop iterations that are in flight but incomplete when
the loop exit condition is met, side effect data is discarded.

The Intel HLS Compiler determines the number of speculated iterations on a per-loop
basis. You can see the number of speculated iterations for a loop in the Loop Analysis
Report in the High Level Design Report (report.html).

While speculated iterations can improve loop II, they occupy the pipeline until they are
completed. A new loop invocation cannot start until all of the speculated iterations
have completed. For example, the next iteration of an outer loop cannot start until all
the speculated iterations of an inner loop have completed.

For loops where the exit condition calculation is a bottleneck (as shown in the Loop
Analysis Report), consider increasing the number of speculated iterations with the
speculated_iterations pragma. Increasing the number of speculated iterations
might not improve the loop II if other bottlenecks in the loop are found.

For frequently invoked loops with a low latency loop body (for example, an inner loop
with a short trip count), you might want to use the speculated_iterations
pragma to reduce the number of speculated iterations to reduce the overhead of your
design. However, setting the number of speculated iterations too low might increase
the loop II because there is not enough time to evaluate the exit condition.

The following example shows how you can change the characteristics of a pipelined
loop with the speculated_iterations pragma.

include <HLS/hls.h>

component void unopt_int_cube_root (int *dst, int N) {
 int m = 0;
// The exit condition which has 2 multiplies and a compare is most critical
// in loop feedback path. The compiler choice of 4 speculated iterations
// results in II=2 because the exit condition takes 7 cycles: each
// multiplication takes 3 cycles and the comparison takes 1 cycle. Four
// speculated iterations times two-cycle II gives 8 cycles to cover this
// evaluation.

 while (m*m*m < N) {
 m += 1;
 }
 dst[0] = m;
}

component void opt_int_cube_root (int *dst, int N) {
 int m = 0;
// Increasing to 7 speculated iterations to cover the 7 cycle exit condition
// calculation allows us to achieve II=1
 #pragma speculated_iterations 7
 while (m*m*m < N) {
 m += 1;
 }
 dst[0] = m;
}

component void unopt2_int_cube_root (int *dst, int N) {
 int m = 0;
// by setting to pragma to 0, user can verify that the II has increased to 7
// which matches the exit condition bottleneck
 #pragma speculated_iterations 0
 while (m*m*m < N) {
 m += 1;

6. Loops in Components

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
 dst[0] = m;
}

The Loop Analysis Report for these components looks like the following example:

When you click the line with unopt2_int_cube_root.B2 (spec.cpp:31) in the
Loop Analysis Report, the Details pane shows the following information:

6.7. Loop Pipelining Control (disable_loop_pipelining Pragma)

When the loop iterations effectively execute sequentially due to loop-carried
dependencies, use the disable_loop_pipelining pragma to generate a simple
sequential datapath and avoid loop resource hardware duplication. The simpler
datapath and lack of resource duplication in hardware reduces the FPGA area
utilization of your component.

Use the Loop Analysis section of the high-level design reports (report.html) to
help determine if you should apply this pragma to your loops.

In the following example, the Intel HLS Compiler fails to schedule the loop with a
small loop initiation interval (II) because of a memory dependency. Pipelining this loop
is unlikely to have any benefit to your component throughput or performance.

#pragma disable_loop_pipelining
for (int i = 1; i < N; i++) {
 int j = a[i-1];
 // Memory dependency induces a high-latency loop feedback path
 a[i] = foo(j)
}

You can also disable pipelining the datapath of your entire component with the
hls_disable_component_pipelining component attribute. For more information
about this attribute, see Component Pipelining Control
(hls_disable_component_pipelining Attribute) on page 59.

6. Loops in Components

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8. Loop Interleaving Control (max_interleaving Pragma)

The Intel HLS Compiler Pro Edition tries to maximize the throughput and hardware
resource occupancy of pipelined inner loops in a loop nest by issuing new inner loop
iterations as frequently as possible (minimizing the loop initiation interval). When the
compiler cannot achieve a loop II of 1 for an inner loop, the compiler configures the
loop nest to interleave iterations of one invocation of the inner loop with iterations of
other invocations of the inner loop.

In cases where this interleaving would not yield a performance benefit, limiting or
restricting the amount of interleaving can result in reduced FPGA area utilization.

To limit the number of interleaved invocations of an inner loop that can be executed
simultaneously. Annotate the inner loop with the max_interleaving pragma. The
annotated loop must be contained inside another pipelined loop.

The required parameter (n) specifies an upper bound on the degree of interleaving
allowed, That is, how many invocations of the containing loop can execute the
annotated loop at a given time.

Specify the max_interleaving pragma in one of the following ways:

• #pragma max_interleaving 1

The compiler restricts the annotated (inner) loop to be invoked only once per
outer loop iteration. That is, all iterations of the inner loop travel the pipeline
before the next invocation of the inner loop can occur.

• #pragma max_interleaving 0

The compiler allows the pipeline to contain a number simultaneous invocations of
the inner loop equal to the loop initiation interval (II) of the inner loop. For
example, an inner loop with an II of 2 can have iterations from two invocations in
the pipeline at a time.

This behavior is the default behavior for the compiler if you do not specify the
max_interleaving pragma.

In the following code snippet, the compiler restricts the pipelined execution of the i
loop. A new invocation of the i loop corresponds only to subsequent iteration of the j
loop.

// Loop j is pipelined with ii=1
for (int j = 0; j < M; j++) {
 int a[N];
 // Loop i is pipelined with ii=2
 #pragma max_interleaving 1
 for (int i = 1; i < N; i++) {
 a[i] = foo(i)
 }
 …
}

6. Loops in Components

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Component Concurrency
The Intel HLS Compiler assumes that you want a fully pipelined data path in your
component. In the C++ implementation, think of a fully pipelined data path as calling
a function multiple times before the first call has returned (see also Figure 11 on page
48 and Intel HLS Compiler Pipeline Approach on page 13). The behavior of multiple
component invocations within the synthesized data path is subject to the concurrency
model, so the Intel HLS Compiler might not be able to deliver a component with a
component initiation interval (II) of 1, or even any pipelining.

The Intel HLS Compiler provides you with the hls_max_concurrency component
attribute to help you control the maximum concurrency of your component.

7.1. Serial Equivalence within a Memory Space or I/O

Within a single memory space or I/O (stream read/write, Avalon-MM interface read/
write, or component invocation input and return), every invocation of the component
(that is, every cycle where the start signal is asserted and the component holds the
busy signal low) on the component invocation interface behaves as though the
previous invocation was fully executed.

When visualizing a single shared memory space, think of multiple function calls as
executing sequentially, one after another. This way, when the component asserts the
done signal, the results of a component invocation in hardware are guaranteed to be
visible to both the next component invocation and the external system.

The HLS compiler leverages pipeline parallelism to execute component invocations and
loop iterations in parallel if the associated dependencies allow for parallel execution.
Because the HLS compiler generates hardware that keeps track of dependencies
across component invocations, it can support pipeline parallelism while guaranteeing
serial equivalence across memory spaces. Ordering between independent I/O
instructions is not guaranteed.

7.2. Concurrency Control (hls_max_concurrency Attribute)

You can use the hls_max_concurrency component attribute to increase or limit the
maximum concurrency of your component. The concurrency of a component is the
number of invocations of the component that can be in progress at one time. By
default, the Intel HLS Compiler tries to maximize concurrency so that the component
runs at peak throughput.

You can control the maximum concurrency of your component by adding the
hls_max_concurrency attribute immediately before you declare your component,
as shown in the following example:

#include "HLS/hls.h"

hls_max_concurrency(3)

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

component void foo (/* arguments */){
 // Component code
}

The Intel HLS Compiler sets the component initiation interval (II) to 1 in the following
cases:

• At the component level, the Intel HLS compiler does not automatically create
private copies of component memory to increase the throughput. If your
component invocation uses a non-static component memory system, the next
invocation cannot start until the previous invocation has finished all of its accesses
to and from that component memory. This limitation is shown in the Loop analysis
report as load-store dependencies on the component memory. Adding the
hls_max_concurrency(N) attribute to the component creates private copies of
the component memory so that you can have multiple invocations of your
component in progress at the same time.

For finer-grained control of which component memories to create local copies of,
use the hls_max_concurrency memory attribute. For details, see
hls_max_concurrency Memory Attribute.

• In some cases, the compiler reduces concurrency to save a great deal of area. In
these cases, the hls_max_concurrency(N) attribute can increase the
concurrency from 1.

• This attribute can also accept a value of 0. When this attribute is set to 0, the
component should be able to accept new invocations as soon as the downstream
datapath frees up. Only use this value when you see loop initiation interval (II)
issues (such as extra bubbles) in your component, because using this attribute
can increase the component area.

You can also control the concurrency of loops in components with the
max_concurrency(N) pragma. For more information about the
max_concurrency(N) pragma, see Loop Concurrency (max_concurrency Pragma)
on page 54.

7.3. Component Pipelining Control
(hls_disable_component_pipelining Attribute)

If running simultaneous invocations of your component does not improve throughput,
or if you do not intend to invoke your component repeatedly, avoid extra FPGA area
utilization by using the hls_disable_component_pipelining component
attribute.

When you specify the hls_disable_component_pipelining, the Intel HLS
Compiler generates a simpler, sequential datapath for your component.

You apply the attribute as shown in the following example:

#include "HLS/hls.h"

hls_disable_component_pipelining
component void baz (/* arguments */){
 // component code
}

7. Component Concurrency

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also disable pipelining the datapath of a only a loop in your component with
the disable_loop_pipelining pragma. For more information about this pragma
see Loop Pipelining Control (disable_loop_pipelining Pragma) on page 56.

7. Component Concurrency

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Arbitrary Precision Math Support
The Intel HLS Compiler Pro Edition supports a range of FPGA-optimized arbitrary-
precision data types that are defined in header files that you can include in your
designs.

Some of these header files are based on the Algorithmic C (AC) data types that
Mentor Graphics* provides under the Apache license. For more information about the
Algorithmic C data types, refer to Mentor Graphics Algorithmic C (AC) Datatypes,
which is available as a part of your Intel HLS Compiler installation:
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

The Intel HLS Compiler also supports arbitrary-precision IEEE 754 compliant floating
point data types that is not based on the AC data types.

The Intel HLS Compiler supports the following arbitrary precision data types:

Table 18. Arbitrary Precision Data Types Supported by the Intel HLS Compiler Pro
Edition

Data Type Intel Header File Description

ac_int HLS/ac_int.h Arbitrary-width integer support
To learn more, review the following tutorials:
• <quartus_installdir>/hls/examples/tutorials/

ac_datatypes/ac_int_basic_ops

• <quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_int_overflow

• <quartus_installdir>/hls/examples/tutorials/
best_practices/struct_interfaces

ac_fixed HLS/ac_fixed.h Arbitrary-precision fixed-point number support
To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/ac_datatypes/ac_fixed_constructor

HLS/
ac_fixed_math.h

Support for some nonstandard math functions for arbitrary-precision
fixed-point data types
To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/ac_datatypes/ac_fixed_math_library

ac_complex HLS/ac_complex.h Complex number support

hls_float HLS/hls_float.h Arbitrary-precision floating-point number support

HLS/
hls_float_math.h

Support for commonly used exponential, logarithmic, power, and
trigonometric functions.
To learn more, review the following tutorials:
• <quartus_installdir>/hls/examples/tutorials/

hls_float/1_reduced_doubl

• <quartus_installdir>/hls/examples/tutorials/
hls_float/2_explicit_arithmetic

• <quartus_installdir>/hls/examples/tutorials/
hls_float/3_conversions

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The Intel HLS Compiler also supports some nonstandard math functions for the
following data types when you include an additional header file:

• ac_fixed data type

Include the HLS/ac_fixed_math.h header file

• hls_float data type

Include the HLS/hls_float_math.h header file

Advantages of Arbitrary Precision Data Types

The arbitrary precision data types have the following advantages over using standard
C/C++ data types in your components:

• You can achieve narrower data paths and processing elements for various
operations in the circuit.

• The data types ensure that all operations are carried out in a size guaranteed not
to lose any data. However, you can still lose data if you store data into a location
where the data type is too narrow.

Limitations of AC Data Types

The AC data types have the following limitations:

• Multipliers are limited to generating 512-bit results.

• Dividers are limited to consuming a maximum of 64 bits.

• The FPGA-optimized header files provided by the Intel HLS Compiler are not
compatible with GCC or MSVC. When you use the Intel HLS Compiler header files,
you cannot use GCC or MSVC to compile your testbench. Both your component
and testbench must be compiled with the Intel HLS Compiler.

To compile AC data types with GCC or MSVC, use the reference AC data types
headers also provided with he Intel HLS Compiler. For details, see AC Data Types
and Native Compilers on page 67.

Limitations of the Intel HLS Compiler Arbitrary Precision Floating Point Data
Type

The hls_float data type has the following limitations:

• FP optimization into constants that was previously done for floats and doubles is
not done for hls_float.

• A limited set of math functions is supported. For details, see Operators and Return
Types Supported by the hls_float Data Type on page 69.

• The hls_float header files provided by the Intel HLS Compiler are not
compatible with GCC or MSVC. When you use the Intel HLS Compiler header files,
you cannot use GCC or MSVC to compile your testbench. Both your component
and testbench must be compiled with the Intel HLS Compiler.

• The high-level design reports do not show bit widths for the hls_float data
type.

• Constant initialization works only with rounding mode RZERO

Related Information

AC Datatypes at HLSLibs

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

62

https://hlslibs.org
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1. Declaring ac_int Data Types

The HLS compiler package includes an ac_int.h header file to provide arbitrary
precision integer support in your component.

1. Include the ac_int.h header file in your component in the following manner:

#ifdef __INTELFPGA_COMPILER__
#include "HLS/ac_int.h"
#else
#include "ref/ac_int.h"
#endif

2. After you include the header file, declare your ac_int variables in one of the
following ways:

— Template-based declaration

— ac_int<N, true> var_name; //Signed N bit integer

— ac_int<N, false> var_name; //Unsigned N bit integer

— Predefined types up to 63 bits

— intN var_name; //Signed N bit integer

— uintN var_name; //Unsigned N bit integer

Where N is the total length of the integer in bits.

Restriction: If you want to initialize an ac_int variable to a value larger than 64 bits,
you must use the bit_fill or bit_fill_hex utility function. For details
see "2.3.14 Methods to Fill Bits" in Mentor Graphics Algorithmic C (AC)
Datatypes, which is available as
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

The following code example shows the use of the bit_fill or
bit_fill_hex utility functions:

typedef ac_int<80,false> i80_t;
i80_t x;
x.bit_fill_hex(“a9876543210fedcba987”); // member funtion
x = ac::bit_fill_hex<i80_t>(“a9876543210fedcba987”); // global
function
int vec[] = { 0xa987, 0x6543210f, 0xedcba987 };
x.bit_fill(vec); // member function
x = bit_fill<i80_t>(vec); // global function
// inlining the constant array
x.bit_fill((int [3]) { 0xa987,0x6543210f,0xedcba987 }); // member
function
x = bit_fill<i80_t>((int [3]) { 0xa987,0x6543210f,0xedcba987 }); //
global function

For a list of supported operators and their return types, see "Chapter 2: Arbitrary-
Length Bit-Accurate Integer and Fixed-Point Datatypes" in Mentor Graphics Algorithmic
C (AC) Datatypes, which is available in the following file:
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.1.1. Important Usage Information on the ac_int Data Type

The ac_int datatype has a large number of API calls that are documented in the
ac_int documentation included in the Intel HLS Compiler installation package. For
more information on AC datatypes, refer to Mentor Graphics Algorithmic C (AC)
Datatypes, which is available as
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

The ac_int datatype automatically increases the size of the result of the operation to
guarantee that the intermediate operations never overflow. However, the HLS compiler
automatically truncates or extends the result to the size of the specified destination
container, so ensure that the storage variable for your computation is large enough.

The HLS compiler installation package includes a number of examples in the tutorials.
Refer to the tutorials in <quartus_installdir>/hls/example/tutorials/
ac_datatypes for some of the recommended practices.

8.2. Integer Promotion and ac_int Data Types

The rules of integer promotion when you use ac_int data types are different from
standard C/C++ rules. Your component design should account for these differing
rules.

Depending on the data type of the operands, integer promotion is carries out
differently:

• Both operands are standard integer types (int, short, long, unsigned char,
or signed char):

If both operands are of standard integer type (for example char or short)
operations, integers are promoted following the C/C++ standard. That is, the
operation is carried out in the data type and size of the largest operand, but at
least 32 bits. The expression returns the result in the larger data type.

• Both operands are ac_int data types:

If both operands are ac_int data types, operations are carried out in the smallest
ac_int data type needed to contain all values. For example, the multiplication of
two 8-bit ac_int values is carried out as an 16-bit operation. The expression
returns the result in that type.

• One operand is a standard integer type and one operand is an ac_int type:

If the expression has one standard data type and one ac_int type, the rules for
ac_int data type promotion apply. The resulting expression type is always an
ac_int data type. For example, if you add a short data type and an
ap_int<16> data type, the resulting data type is ac_int<17>.

In C/C++, literals are by default an int data type, so when you use a literal without
any casting, the expression type is always at least 32 bits. For example, if you have
code like following code snippet, the comparison is carried out in 32 bits:

ac_int<5, true> ap;
...
if (ap < 4) {
...

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the operands are signed differently and the unsigned type is at least as large as the
signed type, the operation is carried out as an unsigned operations. Otherwise, the
unsigned operand is converted to a signed operand.

For example, if you have code like the following snippet, the -1 value expands to a
32-bit negative number (0xffffffff) while the uint3 value is a positive 32-bit
number 7 (0x00000007):

uint3 x = 7;
if (x != -1) {
 // FAIL
}

8.3. Debugging Your Use of the ac_int Data Type

The "HLS/ac_int.h" header file provides you with tools to help check ac_int
operations and assignments for overflow in your component when you run an x86
emulation of your component: DEBUG_AC_INT_WARNING and
DEBUG_AC_INT_ERROR.

When you use the DEBUG_AC_INT_WARNING and DEBUG_AC_INT_ERROR macros, you
cannot declare constexpr ac_int variables or constexpr ac_int arrays.

Table 19. Intel HLS Compiler ac_int Debugging Tools Summary

Tool Description

DEBUG_AC_INT_WARNING Emits a warning for each detected overflow.

DEBUG_AC_INT_ERROR Emits a message for the first overflow that is detected and then exits the component with
an error.

After you use these tools to determine that your component has overflows, run the
gdb debugger on your component to run the program again and step through the
program to see where the overflows happen.

Review the ac_int_overflow tutorial in <quartus_installdir>/hls/example/
tutorials/ac_datatypes to learn more.

8.4. Declaring ac_fixed Data Types

The HLS compiler package includes an ac_fixed.h header file for arbitrary precision
fixed-point support.

1. Include the ac_fixed.h header file in your component in the following manner:

#ifdef __INTELFPGA_COMPILER__
#include "HLS/ac_fixed.h"
#else
#include "ref/ac_fixed.h"
#endif

2. After you include the header file, declare your ac_fixed variables as follows:

— ac_fixed<N, I, true, Q, O> var_name; //Signed fixed-point
number

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— ac_fixed<N, I, false, Q, O> var_name; //Unsigned fixed-
point number

Where the template attributes are defined as follows:

N The total length of the fixed-point number in bits.

I The number of bits used to represent the integer value of the fixed-point
number.

The difference of N−I determines how many bits represent the fractional part
of the fixed-point number.

Q The quantization mode that determines how to handle values where the
generated precision (number of decimal places) exceeds the number of bits
available in the variable to represent the fractional part of the number.

For a list of quantization modes and their descriptions, see "2.1. Quantization
and Overflow" in Mentor Graphics Algorithmic C (AC) Datatypes, which is
available in the following file:
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

O The overflow mode that determines how to handle values where the
generated value has more bits than the number of bits available in the
variable.

For a list of overflow modes and their descriptions, , see "2.1. Quantization
and Overflow" in Mentor Graphics Algorithmic C (AC) Datatypes, which is
available in the following file:
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

For a list of supported operators and their return types, see "Chapter 2: Arbitrary-
Length Bit-Accurate Integer and Fixed-Point Datatypes" in Mentor Graphics Algorithmic
C (AC) Datatypes, which is available in the following file:
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

8.5. Declaring ac_complex Data Types

The HLS compiler package includes an ac_complex.h header file for complex number
support.

1. Include the ac_complex.h header file in your component in the following
manner:

#ifdef __INTELFPGA_COMPILER__
#include "HLS/ac_complex.h"
#else
#include "ref/ac_complex.h"
#endif

2. After you include the header file, declare your ac_complex variables according to
the data type of your complex number.

The underlying data type can be ac_int, ac_fixed, hls_float, and standard C
integer or floating-point data types.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For a list of supported operators and their return types, see "4. Complex Datatype" in
Mentor Graphics Algorithmic C (AC) Datatypes, which is available in the following file:
<quartus_installdir>/hls/include/ref/ac_datatypes_ref.pdf.

8.6. AC Data Types and Native Compilers

The reference version of the Mentor Graphics Algorithmic C (AC) data types is also
provided with the Intel HLS Compiler. Do not use these reference header files in your
component if you want to compile your component with an FPGA target.

Use the reference header files for AC data types to confirm functional correctness in
your component when you are compiling your component with native compilers (g++
or MSVC).

If you use the reference header files and compile your component to an FPGA target,
your component can compile successfully but your component QoR will be poor.

All of your code must use the same header files (either the reference header files or
the FPGA-optimized header files). For example, your code cannot use the reference
header files in your testbench and, at the same time, use the FPGA-optimized header
file in your component code.

The following reference header files are provided with the Intel HLS Compiler:

AC data type Reference Header File Description

ac_int ref/ac_int.h Arbitrary width integer support

ac_fixed ref/ac_fixed.h Arbitrary precision fixed-point number support

ac_complex ref/ac_complex.h Arbitrary precision complex number support

8.7. Declaring hls_float Data Types

The Intel HLS Compiler Pro Edition includes the hls_float.h header file for
arbitrary-precision floating-point number support. The floating-point representation for
hls_float data types adopts the same IEEE standard as native C++ float and
double types.

An hls_float variable carries an explicit sign bit and an arbitrary number of bits for
the exponent and mantissa.
Due to the differences in the internal math implementations and rounding errors, the
results from hls_float operations might not always be bit-accurate to those
produced by C++ native floating-point types with the same exponent and mantissa bit
widths. However, these results are validated against the infinitely accurate results.

1. Include the hls_float.h header file in your component in the following manner:

#include "HLS/hls_float.h"

2. After you include the header file, declare your hls_float variables as follows:

hls_float<exponent_width, mantissa_width[,rounding_mode]>

Where the template attributes are defined as follows:

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

exponent_width,
mantissa_width

The bit-width of the exponent and mantissa of the floating-
point variable.

The hls_float data type supports the following
exponent_width, mantissa_width combinations:

Table 20. Exponent- and Mantissa-Width
Combinations Supported by the hls_float
Data Type

5, 10 8, 7 8 , 10 8 , 17 8 , 23

8, 26 10, 35 11, 44 11, 52 15, 63

Some of these width combinations map to some commonly
used floating-point formats:

Floating-Point Format exponent_width,
mantissa_width

Setting

IEEE 754 half-precision (binary16) 5, 10

bfloat16 8, 7

IEEE 754 single-precision (binary32) 8. 23

IEEE 754 double-precision (binary 64) 11, 52

80-bit extended precision(1) 15, 63

rounding_mode Optional parameter to specify the IEEE 754 rounding mode
used when converting between data types.

Set the rounding mode with one of the following values:

• ihc::fp_config::FP_Round::RNE

Round to nearest, tie to even

This rounding mode is more accurate (0.5 ULP), but
requires more FPGA area.

• ihc::fp_config::FP_Round::RZERO

Round towards zero

This rounding mode is less accurate (1 ULP) and requires
less FPGA area.

If you do not set this parameter, the Intel HLS Compiler uses
the ihc::FP_Round::RNE rounding mode.

The hls_float data type supports a limited set of math operations. For details, see
Operators and Return Types Supported by the hls_float Data Type on page 69.

(1) Not a bit-to-bit mapping.
80-bit extended precision has one explicit bit of fraction that is dropped when converting it to
hls_float<15,63>.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.7.1. Operators and Return Types Supported by the hls_float Data Type

The hls_float data type supports all overloaded math operators and a limited set of
the math functions provided by the Intel HLS Compiler Pro Edition. For some math
operators, you can control the precision of the output by using templated versions of
the functions.

Important: Due to the differences in the internal math implementations and rounding errors, the
results from hls_float operations might not always be bit-accurate to those
produced by C++ native floating-point types with the same exponent and mantissa bit
widths. However, these results are validated against the infinitely accurate results.

Supported Math Functions

In addition to supporting all overloaded math operators, the Intel HLS Compiler
supports the following additional math functions for the hls_float data type through
the HLS/hls_float_math.h header file:

• Exponential and logarithmic functions(*):

— ln, log2, log10, ln(1+x)

— ex, 2x, 10x,ex−1

• Advanced functions(*):

— reciprocal

— reciprocal_sqrt

— sqrt(*)

— cube root

— hypot (hypotenuse)

• Power functions(*):

— pow, powr, pown

• Trigonometric functions(*):

— sin, cos, sincos

— sinpi, cospi

— asin, asinpi, acos, acospit, atan, atanpi, atan2

Conversion Rules

You can convert between different sizes of hls_float data types through assignment
or by using the convert_to() function. For example,

hls_float<8, 32> myFloat = ...;
hls_float<3, 18> myFloat2 = myFloat; // use rounding rules defined by hls_float
type
hls_float <3, 18>myFloat3 = myFloat.convert_to<3, 18,
ihc::fp_config::FP_Round::RZERO>();
// use rounding rules defined in convert_to() function call

(*) Not supported for hls_float<15,63> precision variables.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To convert between native types (for example, float, double) and hls_float data
types, assign to or from the types. Type conversion in an assignment occurs according
to the rules in the the Table 21 on page 70 table that follows.

For two hls_float variables in a binary operation, the hls_float variable with the
larger exponent bit-width is considered to be the "larger" variable. If the two variables
have the same exponent bit width, the variable with the larger mantissa bit-width is
considered to be the larger variable. The operands are then unified to the "larger" type
before the binary operation occurs.

Native floating point data types and hls_float data types are converted to
hls_float data types according to the rules in the Table 21 on page 70 table that
follows.

The Intel HLS Compiler also provides some operations that leave the precision of input
types untouched and provide control over the output precision. For details, see
Operations With Explicit Precision Controls on page 70.

Table 21. Default Conversion Rules for hls_float Variables

Data Type From hls_float To Data Type From Data Type To hls_float

hls_float with
higher representable
range

Keep exponent equivalent.
The mantissa is rounded according to the
rounding mode of the target hls_float (with
the higher representable range).

+-Inf if the source of the conversion is out of
the representable range.
Otherwise, keep exponent equivalent.
The mantissa is rounded according to the
rounding mode of the target hls_float (with
the smaller representable range).

float Convert original hls_float to hls_float<8,
23> with earlier hls_float rule, then bit-cast
to float

Bit-cast float to hls_float<8, 23>, and
then convert to target hls_float precision
using the hls_float to hls_float rules
described earlier.

double Convert original hls_float to
hls_float<11, 52> with earlier hls_float
rule, then bit-cast to double

Bit-cast double to hls_float<11, 52>, and
then convert to target hls_float precision
using the hls_float to hls_float rules
described earlier.

long double

(emulation only)
(Linux only)

Convert original hls_float to
hls_float<15, 63> with earlier hls_float
rule, then insert a 1-bit 1 to the MSB of fraction
bits to get an approximate equivalent of 80-bit
representation of long double

Drop the explicit 1 fraction bit to convert long
double to 79-bit hls_float<15, 63>

long double

(emulation only)
(Windows only)

Same as double Same as double

C++ native integer
types

Truncate towards zero
Converting from hls_float that is larger than
range of integer type is undefined behavior.

Round to nearest, tie breaks to even.
If the integer value is too large, the
hls_float value saturates to plus infinity.

Operations With Explicit Precision Controls

The Intel HLS Compiler provides the following operations that leave the precision of
input hls_float-type variables untouched and let you control the output precision:

Rounding Mode Control For hls_float to hls_float Conversions

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Syntax convert_to<output_exponent_width,
output_mantissa_width, rounding_mode>

Description Use this method to override the rounding mode set for an hls_float
variable when you are converting the variable to different precision.

By default, hls_float to hls_float conversions use the rounding
mode that you specified when you declared the variable.

Multiplication

Syntax ihc::hls_float< output_exponent_width,
output_mantissa_width > ::mul <accuracy_setting],
[subnormal_setting]> (hls_float_a, hls_float_b)

Where the optional parameters are defined as follows:

subnormal_setting Optional parameter to specify whether input and
output number are flushed to zero when carrying
out basic binary operations explicitly.

Set this parameter with one of the following values:

• ihc::fp_config::FP_Subnormal::ON

Input and output numbers in the subnormal
range are preserved.

The target FPGA device must have subnormal
support,

Subnormal support might require more FPGA
area.

• ihc::fp_config::FP_Subnormal::OFF

Input or output numbers in the subnormal
range are flushed to zero.

• ihc::fp_config::FP_Subnormal::AUTO

With this setting, the Intel HLS Compiler
enables subnormal support only when it is
directly supported by the target FPGA device
and it does incur any extra FPGA area
overhead.

If you do not set this parameter, the Intel HLS
Compiler uses the ihc::FP_Subnormal::AUTO
subnormal setting.

accuracy_setting Optional parameter that influences trade-offs
between the accuracy of the result due to different
rounding decisions in the intermediary calculations
and the FPGA area utilized by the generated
hardware. Floating-point operations with less
accurate results typically use fewer logic elements.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, a divider with a high accuracy might
use 20% more FPGA area than divider with low
accuracy. The low accuracy divider has a higher
error bound [1 unit of least precision (ULP)] than a
high accuracy divider (0.5 ULP).

Set this parameter with one of the following values:

• ihc::fp_config::FP_Accuracy::LOW

• ihc::fp_config::FP_Accuracy::HIGH

If you do not set this parameter, the Intel HLS
Compiler uses the
ihc::fp_config::FP_Accuracy::HIGH
accuracy setting.

Description This math function supplements the basic multiplication operation
performed by the multiplication (*) operator.

Multiplies hls_float_a and flaot_b without changing the input types, and
outputs an hls_float at the specified precision.

Addition/Subtraction/Division

Syntax ihc::hls_float< output_exponent_width,
output_mantissa_width > ::add <[optional parameters]>
(hls_float_a, hls_float_b)

ihc::hls_float< output_exponent_width,
output_mantissa_width > ::sub <[optional parameters]>
(hls_float_a, hls_float_b)

ihc::hls_float< output_exponent_width,
output_mantissa_width > ::div <[optional parameters]>
(hls_float_a, hls_float_b)

Description These math functions supplement the basic math operations performed
by the addition/subtraction/division (+/ −//) operators.

Adds/Subtracts/Divides hls_float_a and hls_float_b by first casting
hls_float_a and hls_float_b to the specified hls_floatprecision. The
operation and output are at the specified precision.

You can also specify the optional parameters that are the
accuracy_setting and subnormal_setting parameters described earlier.

Comparison Operators

Comparison operators (>, <, ==, !=, >=, <=) are subject to the conversion rules
described earlier.

The == and != operators impose a bit-wise comparison of the casted values.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Comparisons with NaN always return false.

Additional hls_float Functions

The hls_float data type also has the following additional functions:

Table 22.

Function Description

Getters and Setters

hls_float::get_exponent

hls_float::set_exponent

Gets/sets the exponent value of the hls_float variable.

hls_float::get_mantissa

hls_float::set_mantissa

Gets/sets the mantissa value of the hls_float variable.

hls_float::get_sign

hls_float::set_sign

Gets/sets the sign bit of the hls_float variable.

Special Constants

hls_float<e,m>::nan() Constant used to assign the hls_float variable a value of NaN.

hls_float<e,m>::pos_inf() Constant used to assign the hls_float variable a value of +∞.

hls_float<e,m>::neg_inf() Constant used to assign the hls_float variable a value of −∞.

Value Queries

hls_float::is_nan() Returns true if the value of the hls_float variable is NaN.

hls_float::is_inf() Returns true if the value of the hls_float variable is ±∞.

hls_float::is_zero() Returns true if the value of the hls_float variable is zero.

Special Functions

hls_float::next_after(next_va
l)

Returns the next representable value towards next_val.

8. Arbitrary Precision Math Support

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Component Target Frequency

You can specify component target frequency either in the i++ command by specifying
the --clock option or by using the hls_scheduler_target_fmax_mhz component
attribute. The component attribute takes priority over the command option.

For details about the --clock option, see Command Options Affecting Linking on
page 106.

For details about the hls_scheduler_target_fmax_mhz component attribute, see
hls_scheduler_target_fmax_mhz Component Attribute on page 125.

The two options for setting target frequency are functionally equivalent except their
scopes differ:

• The --clock option applies to all components compiled with the invocation of the
i++ command that contains the --clock option.

• The hls_scheduler_target_fmax_mhz component attribute applies only to the
component that has the attribute.

To learn more about the attribute and how it interacts with the loop pragma, review
the following tutorial:

<quartus_installdir>/hls/examples/tutorials/best_practices/
set_component_target_fmax

If you use both the i++ command --clock option and the
hls_scheduler_target_fmax_mhz component attribute, the component attribute
takes priority. For example, you can compile the following code with the i++ … --
clock=300MHz command:

component int test1(){
 …
}

hls_scheduler_target_fmax_mhz(200)
component int test2(){
 …
}

The compiler schedules component test1 at 300 MHz (from the command option)
and component test2 at 200 MHz (from the component attribute).

Note: Setting the target fMAX determines the pipelining effort at the compilation stage.
Compiling with Quartus Prime software reports the achievable fMAX value for your
components. This value is often different from the value you specified.

You can lower the --clock value to reduce the latency of your design at the expense
of reducing the fMAX v of your component.

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

10. Systems of Tasks
Your component design might contain operations that you want to run asynchronously
from the main flow of your component. The Intel HLS Compiler Pro Edition lets you
define these asynchronous activities in task functions. These task functions, along with
the component that invokes them, constitute a system of tasks.

The component keyword marks a single function and its subfunctions as a
component. Within this component function, directly-called functions are in-lined while
functions that use the systems of tasks API calls (ihc::launch and ihc::collect)
generate hardware outside the component datapath and behave like an asynchronous
call.

The function tagged with the component keyword marks the boundary of a system of
tasks. Your external system can interact with all the interfaces that the component
exposes.

Implementing your design as a system of tasks instead of a monolithic component can
be useful in situations where expressing coarse-grained thread-level parallelism is
needed. For example, a system of tasks is useful in the following situations:

• Improving the performance of operations like executing loops in parallel

• Reducing FPGA area utilization by sharing an expensive compute block with
different parts of your component

Table 23. Intel HLS Compiler System of Tasks Summary

Function Description

ihc::launch Marks a function as an Intel HLS Compiler task for hardware generation,
and launches the task function asynchronously.

ihc::collect Synchronizes the completion of the specified task function in the
component.

ihc::stream Allows streaming communication between different task functions.

ihc::launch_always_run Launches a task function at component power-on or reset and
continuously executes the function.

10.1. Task Functions

The Intel HLS Compiler Pro Edition implements task functions in way similar to HLS
component functions, but with some additional constraints.

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Scalar Parameters and Return Values

Like HLS components, the scalar parameters and return value for an HLS task are
implemented as conduits and the hand-shaking is implemented as a simple stall/
valid handshake. The ihc::launch and ihc::collect calls connect directly to
the HLS task function do and return streams.

In the High Level Design Report (report.html), the ihc::launch and
ihc::collect calls appear as blocking streaming write and streaming read
operations.

Interaction with External Systems

Task functions can use a global instance of the ihc::stream_in class to take an
input from the external system, or a global instance of the ihc::stream_out class
to provide output to the external system.

The global ihc::stream_in and ihc::stream_out streams must be declared
outside of any struct variables, and they cannot be declared in arrays.

Communication Between HLS Task Functions

For two task functions to communicate with each other, connect them with a global
ihc::stream object (instead of the ihc::stream_in and ihc::stream_out
objects).

The global ihc::stream object must be declared outside of any struct variables, and
it cannot be declared in an array.

The ihc::stream object has an API very similar to the ihc::stream_in and
ihc::stream_out classes. However, since these streams always require
handshaking, the API does not support the parameters ihc::usesReady or
ihc::usesValid. They do support tryRead and tryWrite API functions.

The ihc::stream objects can have both of their endpoints within the system of
tasks. This includes within the same function as well. For an example of using an
ihc::stream within a single function as a FIFO, see the following tutorial:

<quartus_installdir>/hls/examples/tutorials/system_of_tasks/
internal_stream

If an instance of the ihc::stream class has only one endpoint within the system of
tasks, it is treated as if it were a ihc::stream_in or ihc::stream_out class based
on its usage within the system, so it can be used interchangeably with
ihc::stream_in or ihc::stream_out (provided that the limitations do not affect
the design). An ihc::stream object can be used for multiple tasks to communicate
with one another. See the following tutorial:

<quartus_installdir>/hls/examples/tutorials/system_of_tasks/
parallel_loops

The following diagram shows how you might use the ihc::stream object to
communicate between task functions:

10. Systems of Tasks

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Example of a Systems of Tasks using Internal Streams

Component Function

component top
{

Task Function

producer
{

}

Task Function

consumer
{

}

}

internal.write()

ihc : : launch

ihc : : launch

ihc : : stream<> internal;
//global scope

internal.read()

//no collect

for (...) {

}

for (...) {

}

HLS Task Function Restrictions

HLS task functions are subject to the following restrictions:

• Task functions cannot be shared between multiple components.

• All read sites and write sites for a stream must be within the same function
(component or task).

• A task function can be launched (with ihc::launch) only from one component
function or task function. The launching function and the collecting function can be
different functions but they must part of the same component system of tasks.

• A task function can be collected (with ihc::collect) only from one component
or task function. The collecting function and the launching function can be
different functions but they must part of the same component system of tasks.

• No guarantee of execution order is provided between independent I/O
instructions, even at the task level.

The ihc::launch and ihc::collect calls to a particular task function are
executed in order.

Any stream accesses to that task from the current function are executed in
instruction order only with respect to ihc::launch and ihc::collect calls to
the corresponding function.

10. Systems of Tasks

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Example 1 of a Valid ihc::launch/ihc::collect Sequence

component foo
{

}

Component Function

ihc : : launch

ihc : : launch

ihc : : collect

ihc : : collect

Task Mul

Task Mul
Add<int>

Figure 14. Example 2 of a Valid ihc::launch/ihc::collect Sequence

foo
{

}

Task Function or
Component Function

ihc : : launch

ihc : : launch

ihc : : collect

ihc : : collect

Task Mul

(A)

(B)

(A)

(B)

10. Systems of Tasks

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Example 3 of a Valid ihc::launch/ihc::collect Sequence

Component Function

component baz
{

Task Function

foo
{

}

ihc : : collect

ihc : : collect

Task Function

bar
{

}

} ihc : : launch

Task Mul

Task
Add<int>

ihc : : launch

ihc : : launch

ihc : : launch

10. Systems of Tasks

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Example of an Invalid ihc::launch/ihc::collect Sequence

Task Function or
Component Function

foo
{

}

Task Function or
Component Function

bar
{

}

ihc : : launch

ihc : : collect

ihc : : launch

ihc : : collect

Task Mul

Task Attributes

You can use the following function-level attributes on an HLS task function:

• hls_max_concurrency

• hls_component_ii

• hls_scheduler_target_fmax_mhz

• hls_disable_component_pipelining

In addition to these function attributes, you can use any HLS attributes and pragmas
within your HLS task functions. For example, you can use attributes and pragmas like
#pragma ii, #pragma ivdep, hls_memory, and hls_register.

You cannot use component macros or component invocation interface control
attributes when you define HLS task functions. For example, you cannot use
hls_avalon_slave_register_argument, hls_conduit_argument,
hls_stall_free_return, or hls_avalon_streaming_component

10.2. Internal Streams

You can use the HLS ihc::stream object as a FIFO in a single task or component.

For an example of using the HLS tasks ihc::stream object as a FIFO, review the
tutorial in <quartus_installdir>/hls/examples/tutorials/
system_of_tasks/internal_stream.

10. Systems of Tasks

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To help you understand the tutorial better, review the following diagram showing a
store-load dependency:

This diagram is simplified from the tutorial. It shows 10 iterations, while the tutorial goes through 32 iterations.

In the diagram, i is the index of the outer loop and j is the index of the inner loop.

Each iteration of the outer loop reads all the values written by the previous loop
iteration and writes one less value to the buffer. The internal stream outperforms the
array in this design because array must allocate enough space to store written values
before the values are read, but an internal stream does not need to allocate this
space.

In addition, the trip count of the inner loop decreases by one in each outer loop, so
the space claimed by array is never filled after the first iteration, which wastes area.

10.3. System of Tasks Simulation

When you simulate a system of tasks design where the completion of a task function
is not synchronized with an ihc::collect call, use the
ihc_hls_set_component_wait_cycle testbench API function to allow output from
that task function to be returned after the component function finishes running.

If you do not use this function in your testbench, the latency of some task functions
might make your simulation output inaccurate.

For an example of a valid systems of task design where the completion of a task
function is not synchronized with an ihc::collect call, see Example 3 of a Valid
ihc::launch/ihc::collect Sequence.

Table 24. Intel HLS Compiler Testbench API for System of Tasks

Function Description

ihc_hls_set_component_wait_cycle This function tells the simulation process to continue running for a
specified number of cycles after the done signal for the specified
component is observed.

10. Systems of Tasks

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11. Libraries
With libraries, you can reuse functions without knowing the underlying hardware
design or implementation details. Libraries can be created with Intel FPGA high-level
design tools including the Intel HLS Compiler and the Intel FPGA SDK for OpenCL*,
either from code initially targeting that tool or from RTL code.

The Intel HLS Compiler supports two types of libraries:

• Object libraries

• Source code libraries

Object Libraries

An object library is a single platform-specific archive file that contains one or more
object files. An object file contains implementations of one or more functions. The
object and library files use the same formats as the operating system that you compile
your Intel HLS Compiler code on, with additional sections that carry HLS-specific
information.

On Linux platforms, an object library is a .a archive file that contains .o object files.
On Windows platforms, a library is a .lib archive file that contains .obj object files.

An object library includes one or more function signature files that you include in your
component source code so that your component can call the functions provided by the
library. A function signature file is a C-style header file (.h) that declares the
signatures of the functions that are provided in an object library.

Object libraries can be created from RTL or high-level source code.

Source Code Libraries

A source code library is a C-style header file that contains a source code library. You
include this header file in your component source code, and the header file code is
compiled along with your component.

You can use C++ templates to make your source code library more customizable.

The Intel HLS Compiler provides some source code libraries that provide you with
FPGA-optimized code for some commonly-used algorithms.

For details about source code libraries included with the Intel HLS Compiler, see the
following sections:

• Arbitrary Precision Math Support on page 61

• Advanced Math Source Code Libraries on page 151

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

11.1. Object Libraries

An object library is a single platform-specific archive file that contains one or more
object files, each of which contains implementations of one or more functions.

The object and library files use the same formats as the operating system that you
compile your Intel HLS Compiler code on, with additional sections that carry additional
library information. On Linux platforms, a library is a .a archive file that contains .o
object files. On Windows platforms, a library is a .lib archive file that contains .obj
object files.

You can call the functions in the library from your component without needing to know
the hardware design or the implementation details underlying the functions in the
library. Add the library to the i++ command line when your compile your component.

You can create a library from your HLS C++ code source files or register transfer level
(RTL) language source files. You can target the library for use with one of the following
Intel high-level design products:

• Intel HLS Compiler Pro Edition

• Intel FPGA SDK for OpenCL Pro Edition

To create a library from your HLS code that targets the Intel FPGA SDK for
OpenCL, you must have the Intel FPGA SDK for OpenCL Pro Edition installed. The
version of the SDK must be same as your version of Intel HLS Compiler.

Creating a library is a two-step process

1. Each object file is generated from input source files with the fpga_crossgen
command.

The required input source files depend on the type of source code you are creating
the object from.

An object is effectively an intermediate representation of your source code with
both a CPU representation and an FPGA representation of your code.

An object can be targeted for use with only one Intel high-level design product. If
you want to target more than one high-level design product, you must generate a
separate object for each target product.

2. Object files are collected into a library file with the fpga_libtool command

Objects created from different types of source code can be collected into a library,
provided all objects target the same high-level design product.

Libraries must be built and used by the same version number Intel FPGA high-
level design tool. For example, to compile your component with the Intel HLS
Compiler Version 19.4, the libraries included in your component must have been
created with a version 19.4 Intel FPGA high-level design tool.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. High-Level View of the Library Creation Process
Prepare Functions Package Objects

Library

Object

Object

Object

Object

Objects

Packaging
(fpga_libtool)

Emulation
Model Source

Input Source Files Preparation
(fpga_crossgen)

Object

CPU
Representation

FPGA
Representation ...

11.2. Creating an Object Library

Creating an object library is a multistep process where you create the objects that you
want to include in a library and then collect the objects into a library file.

To create an object library:

1. Create the objects for your library with the fpga_crossgen command. You can
create your objects from a variety of sources:

— Create an object from HLS code.

For details, see Creating Objects From HLS Code on page 85.

— Create an object from RTL code.

For details, see Creating Objects From RTL Code on page 87.

— Create an object from OpenCL code.

For details, see Creating Library Objects From OpenCL Code in the Intel FPGA
SDK for OpenCL Pro Edition Programming Guide.

2. Collect the objects into an object library with the fpga_libtool command.

For details, see Packaging Object Files Into a Library on page 100.

For example, if you wanted to create a Linux HLS object library called foobar from
HLS code in a file called foo.cpp and OpenCL code in a file called bar.cl, run the
following commands:

fpga_crossgen foo.cpp –target hls -o foo.o
fpga_crossgen bar.cl –target hls -o bar.o
fpga_libtool –target hls –create foobar.a foo.o bar.o

You can use the resulting library (foobar.a) in your component by including the
header file or files that you created for the library (for example ,foobar.a, or foo.h
and bar.h) in your component.

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

84

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html#owr1568230510943
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you compile your component, specify the library in the option of the i++
command. For example, to compile a component baz.cpp that uses the foobar.a
library, issue the following command:

i++ baz.cpp foobar.a

11.3. Creating Objects From HLS Code

You can create a library from object files from your HLS source code. An HLS-based
object file contains code for CPU execution (testbench and emulation) and FPGA
execution. A library can contain multiple object files.

Restriction: Creating object files from HLS code is supported only on Linux operating systems.

You can create object files for use with different Intel high-level design tools from the
same HLS source code.

Depending on the target high-level design tool, your source code might require
adjustments to support tool-specifc data types or constructs.

Intel HLS Compiler

No additional work is needed in your HLS source code when you use the code to
create objects for Intel HLS Compiler libraries.

Intel FPGA SDK for OpenCL

The Intel FPGA SDK for OpenCL supports language constructs that are not natively
supported by C++. Your component might need modifications to support those
constructs.

The Intel HLS Compiler supports a limited set of OpenCL language constructs through
the ocl_types.h header file. For details, review Supported OpenCL Language
Constructs on page 86.

Restriction: You cannot use systems of tasks in components intended for use in an OpenCL library
object.

To create an object from your HLS code that targets the Intel FPGA SDK for OpenCL,
you must have the Intel FPGA SDK for OpenCL Pro Edition installed. The version of the
SDK must be the same as your version of Intel HLS Compiler.

11.3.1. Creating an Object File From HLS Code

Use the fpga_crossgen command to create objects for your library from your HLS
code. An object created from HLS code contains information required both for
emulating the functions in the object and synthesizing the hardware for the object
functions.

Restriction: Creating object files from HLS code is supported only on Linux operating systems.

The fpga_crossgen command creates one object file from one input source file. The
object created can be used only libraries that target the same Intel high-level design
tool.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Objects are assigned the same version number as the version number of your Intel
HLS Compiler installation. Libraries can contain only objects with the same version
number, and can only be used with Intel high-level design tools with the same version
number.

1. Create a library object with the following command:

fpga_crossgen <source_file> --target target_HLD_tool [-o <object_file_name>]

Where the command parameters are defined as follows:

• target_HLD_tool

The target Intel high-level design tool for this library. This parameter can have
one of the following values:

— hls

Target this object to be included in libraries for components developed
with the Intel HLS Compiler.

Objects built for the Intel HLS Compiler are created as operating system
specific object files (.o on Linux). You cannot use objects created on one
operating system with the Intel HLS Compiler running on a different
operating system.

— aoc

Target this object to be included in libraries for kernels developed with the
Intel FPGA SDK for OpenCL.

Objects built for the Intel FPGA SDK for OpenCL are not operating system
specific. The objects are created as Intel FPGA SDK for OpenCL object files
(.aoco).

You must have the Intel FPGA SDK for OpenCL Pro Edition installed to use
this option. The version of the SDK must be the same as your version of
Intel HLS Compiler.

If you do not specify an object file name with the -o option, the object file name
defaults to be the same name as the source file name.

After you generated all objects that you want to include in your library, collect the
objects in the library with the fpga_libtool command. For details, see Packaging
Object Files Into a Library on page 100.

11.3.2. Supported OpenCL Language Constructs

If you are using the Intel HLS Compiler to develop libraries to use with the Intel FPGA
SDK for OpenCL, you might need access to OpenCL language constructs that are not
typically available natively from C++ language elements. The Intel HLS Compiler
provides support for some OpenCL language constructs through the ocl_types.h
header file.

All basic OpenCL data types (double, float, long long, long, int, short, char
and bool) are supported without needing the ocl_types.h header file.

Add OpenCL language construct support by adding the following code to your
component:`

#include "HLS/ocl_types.h"

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The OpenCL types header file adds support for the following OpenCL language
constructs:

• OpenCL address space qualifiers

• Arbitrary precision integers (up to 64 bits)

• OpenCL vector data types

Note: The size of the long data type is 64 bits in OpenCL and for the Intel HLS Compiler on
Linux systems. For Intel HLS Compiler on Windows systems, the size of long is 32
bits.

OpenCL Address Space Qualifiers

The ocl_types.h header file adds macros to support defining pointer in different
OpenCL address spaces as follows:

OpenCL Address Space Qualifier Intel HLS Compiler Macro

__global OCL_ADDRSP_GLOBAL

__local OCL_ADDRSP_LOCAL

__constant OCL_ADDRSP_CONSTANT

__private OCL_ADDRSP_PRIVATE

Arbitrary Precision Integers

The ocl_types.h header file supports the OpenCL intX_t and uintX_t data types
up to 64 bits. That is, you can use int1_t - int64_t and uint1_t - uint64_t in
your component.

11.4. Creating Objects From RTL Code

You can create a library from object files that package register transfer level (RTL)
language source files. An RTL-based object file also contains an object manifest file (in
XML format) that identifies the functions that are callable in the object file. A library
can contain multiple RTL-based objects.

Creating a library from RTL code is a two-step process. First, each object file is created
from the RTL source and emulation models as described in the object manifest file
with the fpga_crossgen command. Then, one or more object files are collected into
an HLS library file with the fpga_libtool command.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. High-Level View of the Library Creation Process from RTL
Prepare RTL Functions Package Objects

Library

Object

Object

Object

Object

Objects

Packaging
(fpga_libtool)

Object
Manifest

Emulation
Model Source

RTL Source Files Preparation
(fpga_crossgen)

Object

Object
Manifest

Compiled
Emulation

Model

RTL Source Files

...

To create a library from RTL code, you need to create the following files and
components:

Table 25. Files and Components Required for Creating a Library From RTL Code

File or Component Description

RTL-based Functions

RTL module source files Verilog (.v), System Verilog (.sv), or VHDL (.vhd) files
and accompanying memory initialization files (.mif
or .hex) that define the RTL modules in the library.
You cannot use additional files such as Intel Quartus Prime
IP File (.qip), Synopsys Design Constraints File (.sdc), or
Tcl Script File (.tcl).

Object manifest file An XML (.xml) file that describes the properties of the
callable functions available in the RTL module.
The Intel HLS Compiler uses these properties to integrate
the RTL module in an HLS library into the component
pipeline.

RTL module function signature file A C-style header file (.h) that declares the signatures of the
functions that are implemented by the RTL module and
described in the RTL module properties file.
Use this header file in your HLS component source code so
that your component can call the functions provided in the
HLS library.

HLS emulation model files C++ files (.cpp and .h) that contain code that is
functionally equivalent to the RTL component and has the
same function signatures as the RTL component. The
emulation model is used only for component emulation. Co-
simulations use the RTL provided in the library.

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11.4.1. RTL Modules and the HLS Pipeline

HLS libraries allows you to use RTL modules that are written in Verilog, SystemVerilog,
or VHDL inside HLS components. The Intel HLS Compiler integrates the RTL modules
into the HLS pipeline architecture.

Consider using HLS libraries in the following situations:

• You want to use optimized and verified RTL modules in HLS components without
rewriting the modules as C++ functions.

• You want to implement HLS component functionality that you cannot express
effectively in C++.

11.4.1.1. Integration of an RTL Module into the HLS Pipeline

When you specify an HLS library during component compilation, the Intel HLS
Compiler integrates the RTL module within the library into the overall component
pipeline.

The following figure shows how an HLS library called myMod might be integrated into
the example pipeline described in Intel HLS Compiler Pipeline Approach on page 13.

Figure 19. Example of Pipeline Architecture That Integrates an HLS Library

extern “C” int myMod (int) ;

component int pe
(int A, int B, int C) {

int product1 = A * B;
int product2 = B * C;
int mod_output = myMod(C);
int sum = product1 + product2;

int result = sum + mod_output;

return result;

}

A
6

6

B Ccall

multiply

4
add 3 cycles

2
add

1
return

5
multiply

4

3

myMod

3
buffering

5

The depicted RTL module has a latency of 3 cycles. Since the multiply and add
operations have a latency of just one cycle, the compiler inserts buffering to balance
the latency of the parallel data paths in the pipeline. A balanced latency allows the
invocations of the HLS component to execute without stalling the pipeline.

Specifying the latency of the RTL module in the HLS library object manifest file allows
the HLS compiler to balance the pipeline latencies in the HLS component. The pipeline
integration protocol uses ready/valid handshaking, so the latency of the RTL module

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

can be variable. However, the variability in the latency should be small to maximize
performance. In addition, specify the latency in the HLS library object manifest file for
the object in the HLS library so that the RTL module experiences a good
approximation of the actual latency in steady state.

Note: You must specify the RTL module latency correctly in the HLS library object manifest
file, or you get bad quality of results (QoR) for your component.

11.4.1.2. RTL Module Interfaces

For an RTL module to properly interact with other compiler-generated operations, you
must support a simple ready/valid handshaking protocol at both the input and the
output of an RTL module.

An RTL module must use a single streaming interface. That is, a single pair of ready
and valid logic must control all the inputs.

You have the option to provide the necessary streaming ports but declare the RTL
module as stall-free. In this case, you do not have to implement proper stall behavior
because the Intel HLS Compiler creates a wrapper for your module.

You must handle ivalid signals properly if your RTL module has an internal state.
For more information, see Stall-Free RTL on page 97.

Consider the following interfaces for the RTL module myMod:

In this diagram, myMod interacts with the upstream module through data signals,
arg1 and arg2, and control signals, ivalid (input) and oready (output). The
ivalid control signal equals 1 (ivalid = 1) if and only if data signal arg1 and
data signal arg2 contain valid data. When the control signal oready equals 1
(oready = 1), it indicates that the myMod RTL module can process the data signals
arg1 and arg2 if they are valid (that is, ivalid = 1). When ivalid = 1 and
oready = 0, the upstream module holds the values of ivalid, arg1, and arg2 in
the next clock cycle.

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The myMod module interacts with the downstream pipeline logic through the data
signal result and the control signals, ovalid (output) and iready (input). The
ovalid control signal equals 1 (ovalid = 1) if and only if the data signal result
contains valid data. When the iready control signal equals 1 (ivalid = 1), the
downstream module can process the data signal result if it is valid. When ovalid =
1 and iready = 0, the myMod RTL module must hold the valid of the ovalid and
result signals in the next clock cycle.

11.4.1.3. RTL Reset and Clock Signals

Resets and clocks of RTL modules are connected to the same clock and reset drivers
as the rest of the HLS pipeline.

Because of the common clock and reset drivers, an RTL module runs in the same clock
domain as the HLS component that is integrating the RTL module. The module reset
input is asserted whenever the HLS component is reset.

11.4.1.3.1. Intel Stratix 10 Design-Specific Reset Requirements for Stall-Free and
Stallable RTL Modules

When you create an RTL module for Intel Stratix 10 HLS designs, ensure that the
module satisfies specific logic reset requirements.

Reset Requirements for Stall-Free RTL Modules

A stall-free RTL module is a fixed-latency module for which theIntel HLS Compiler can
optimize away stall logic.

• When creating a stall-free RTL module for an Intel Stratix 10 design, use
synchronous clear signals only.

• After deassertion of the reset signal to the stall-free RTL module, the module
must be operational within 15 clock cycles. If the reset signal is pipelined within
the module, this requirement limits the reset pipelining to no more than 15
stages.

Reset Requirements for Stallable RTL Modules

A stallable RTL module has a variable latency, and it relies on backpressured input and
output interfaces to function correctly.

• When creating a stallable RTL module for an Intel Stratix 10 design, use
synchronous clear signals only.

• After assertion of the reset signal to the stallable RTL module, the module must
deassert its oready and ovalid interface signals within 40 clock cycles.

• After deassertion of the reset signal to the stallable RTL module, the module
must be fully operational within 40 clock cycles. The module signals its readiness
by asserting the oready interface signal.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11.4.1.4. Object Manifest File Syntax

The HLS library object manifest file is an XML file that maps the RTL modules in a
library object to functions that can be called by your HLS code. The Intel HLS Compiler
uses the properties defined in the manifest file to integrate an RTL module into the
component pipeline.

The following example show a simple object manifest file for an RTL module that
implements a double-precision square root function. The RTL module is implemented
in VHDL with a Verilog wrapper.

The following object manifest file is for an RTL module named my_fp_sqrt_double
(line 2) that implements a callable function with a C interface named my_sqrtfd (line
2).

 1: <RTL_SPEC>
 2: <FUNCTION name="my_sqrtfd" module="my_fp_sqrt_double">
 3: <ATTRIBUTES>
 4: <IS_STALL_FREE value="yes"/>
 5: <IS_FIXED_LATENCY value="yes"/>
 6: <EXPECTED_LATENCY value="31"/>
 7: <CAPACITY value="31"/>
 8: <HAS_SIDE_EFFECTS value="no"/>
 9: <ALLOW_MERGING value="no"/>
10: <PARAMETER name="WIDTH" value="64"/>
11: </ATTRIBUTES>
12: <INTERFACE>
13: <AVALON port="clock" type="clock"/>
14: <AVALON port="resetn" type="resetn"/>
15: <AVALON port="ivalid" type="ivalid"/>
16: <AVALON port="iready" type="iready"/>
17: <AVALON port="ovalid" type="ovalid"/>
18: <AVALON port="oready" type="oready"/>
19: <INPUT port="datain" width="64"/>
20: <OUTPUT port="dataout" width="64"/>
21: </INTERFACE>
22: <REQUIREMENTS>
23: <FILE name="my_fp_sqrt_double_s5.v" />
24: <FILE name="fp_sqrt_double_s5.vhd" />
25: </REQUIREMENTS>
26: <RESOURCES>
27: <ALUTS value="2057"/>
28: <FFS value="3098"/>
29: <RAMS value="15"/>
30: <MLABS value="43"/>
31: <DSPS value="1.5"/>
32: </RESOURCES>
33: </FUNCTION>
34: </RTL_SPEC>

Table 26. Elements and Attributes in the Object Manifest File

XML Element Description

RTL_SPEC Top-level element in the object manifest file. There can only be one such top-
level element in the file.

FUNCTION Element that defines the HLS function that the RTL module implements. The
name attribute within the FUNCTION element specifies the function name.
You might have multiple FUNCTION elements, each declaring a different
function that you can call from the HLS component.
The same RTL module can implement multiple functions by specifying different
parameters. To use the same module with different parameter combinations,
create a separate FUNCTION tag for each parameter combination.

continued...

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

XML Element Description

ATTRIBUTES Element that contains other XML elements that describe various characteristics
(for example, latency) of the RTL module.
The example RTL module takes one PARAMETER setting named WIDTH, which
has a value of 64.
See Table 27 on page 93 for more details other ATTRIBUTES-specific
elements.
If you create multiple RTL-based functions using different modules or use the
same RTL module with different PARAMETER settings, you must create a
separate FUNCTION element for each function.

INTERFACE Element that contains other XML elements that describe the RTL module
interface.
The example object manifest file shows the streaming interface signals that
every RTL module must provide (that is, clock, resetn, ivalid, iready,
ovalid, and oready).
The resetn signal is active low. Its synchronicity depends on the target
device:

Intel Arria® 10 The resetn signal is asynchronous to the clock signal.

Intel Stratix 10 The resetn signal is synchronous to the clock signal. For
more information about reset signal timing, see Intel Stratix
10 Design-Specific Reset Requirements for Stall-Free and
Stallable RTL Modules on page 91.

The signal names must match the ones specified in the RTL module properties
file. An error occurs during library creation if a signal name is different in the
RTL code and the RTL module properties file.

REQUIREMENTS Element that specifies one or more RTL resource files (that
is, .v, .sv, .vhd, .hex, and .mif). The specified paths to these files are
relative to the location of the object manifest file. Each RTL resource file
becomes part of the associated Platform Designer component that corresponds
to the entire HLS component.
HLS libraries do not support .qip files.

RESOURCES Optional element that specifies an estimate of the FPGA resources that the RTL
module uses. If you do not specify this element, the estimated FPGA resources
that the RTL module uses defaults to zero in the HLS resource estimation
report.

11.4.1.4.1. XML Elements for ATTRIBUTES

In the RTL module properties file of the RTL module within an HLS library, there are
XML elements under ATTRIBUTES that you can specify to set module characteristics.

Table 27. XML Elements for the RTL module properties file ATTRIBUTES Element

XML Element Description

IS_STALL_FREE Instructs the Intel HLS Compiler to remove all stall logic around the RTL module.
Set IS_STALL_FREE to "yes" to indicate that the module does not generate stalls
internally and it cannot properly handle incoming stalls. The module ignores the stall input.
If you set IS_STALL_FREE to "no", the module must properly handle all stall and valid
signals.
If you set IS_STALL_FREE to "yes", you must also set IS_FIXED_LATENCY to "yes".
Also, if the RTL module has an internal state, it must properly handle ivalid=0 inputs.

IS_FIXED_LATENCY Indicates whether the RTL module has a fixed latency.

continued...

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

XML Element Description

Set IS_FIXED_LATENCY to "yes" if the RTL module always takes a known number of clock
cycles to compute its output. The value you assign to the EXPECTED_LATENCY element
specifies the number of clock cycles.
The safe value for IS_FIXED_LATENCY is "no". When you set IS_FIXED_LATENCY="no",
the EXPECTED_LATENCY value must be at least 1.
For a given RTL module, you may set IS_FIXED_LATENCY to "yes" and IS_STALL_FREE
to "no". Such a module produces its output in a fixed number of clock cycles and handles
stall signals properly.

EXPECTED_LATENCY Specifies the expected latency of the RTL module.
If you set IS_FIXED_LATENCY to "yes", set the EXPECTED_LATENCY value to be the
exact latency of the module. Otherwise, the Intel HLS Compiler generates incorrect
hardware.
For a module with variable latency, the Intel HLS Compiler balances the pipeline around this
module to the EXPECTED_LATENCY value that you specify. For modules that can stall and
require use of signals such as iready, the EXPECTED_LATENCY value must be set to at
least 1.
The specified value and the actual latency might differ for a module with variable latency,
which might affect the number of stalls inside the pipeline. However, the resulting hardware
is functionally correct.

CAPACITY Specifies the number of multiple inputs that this module can process simultaneously.
You must specify a value for CAPACITY if you also set IS_STALL_FREE="no" and
IS_FIXED_LATENCY="no". Otherwise, you do not need to specify a value for CAPACITY.
If CAPACITY is strictly less than EXPECTED_LATENCY, the Intel HLS Compiler automatically
inserts capacity-balancing FIFO buffers after this module when necessary.
A conservative but safe value for CAPACITY is 1.

HAS_SIDE_EFFECTS Indicates whether the RTL module has side effects. Modules that have internal states or
communicate with external memories are examples of modules with side effects.
Set HAS_SIDE_EFFECTS to "yes" to indicate that the module has side effects. Specifying
HAS_SIDE_EFFECTS to "yes" ensures that optimization efforts do not remove calls to
modules with side effects.
Stall-free modules with side effects (that is, IS_STALL_FREE="yes" and
HAS_SIDE_EFFECTS="yes") must properly handle ivalid=0 input cases because the
module might receive invalid data occasionally.
A conservative but safe value for HAS_SIDE_EFFECTS is "yes".

ALLOW_MERGING This attribute is reserved for future use.
To prevent unexpected behavior, always set this attribute as <ALLOW_MERGING
value="no"/>.

PARAMETER Specifies the value of an RTL module parameter.
PARAMETER attributes:
• name

Specifies the name of the RTL module parameter.
• value

Specifies a decimal numeric value for the parameter.
The value for an RTL module parameter can be specified using either a value or a type
attribute.

11.4.1.4.2. XML Elements for INTERFACE

In the RTL module properties file of the RTL module within an HLS library, there are
XML elements under INTERFACE that define aspects of the RTL module interface.

The RTL module cannot access the memories of the HLS component.

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 28. Mandatory XML Elements for the RTL module properties file INTERFACE
Element

XML Element Description

INPUT Specifies the input parameter of the RTL module that receives the value of a
call argument with the RTL-based function is called.
INPUT attributes:
• port

Specifies the port name of the RTL module.
• width

Specifies the width of the port in bits.
The width of the port must match the size of the C datatype corresponding
to the call argument. The port width is always a multiple of 8 bits.

All call arguments must be passed by value. You cannot use reference, pointer,
and array type arguments.

OUTPUT Specifies the output parameter of the RTL module that represents the return
value of functions based on this module.
OUTPUT attributes:
• port

Specifies the port name of the RTL module.
• width

Specifies the width of the port in bits.
The width of the port must match the size of the C datatype of the function
return value. The port width is always a multiple of 8 bits.

The return value cannot be a pointer.

11.4.1.4.3. XML Elements for RESOURCES

In the RTL module properties file of the RTL module within an HLS library, there are
optional elements under RESOURCES that you can define to specify the estimated
FPGA resource utilization of the module. If you do not specify a particular element, it
is assigned a default value of zero in the report estimates.

Table 29. XML Elements for the RTL module properties file RESOURCES Element

XML Element Description

ALUTS Specifies the number of combinational adaptive look-up tables (ALUTs) that the
module uses.

FFS Specifies the number of dedicated logic registers that the module uses.

RAMS Specifies the number of block RAMs that the module uses.

DSPS Specifies the number of digital signal processing (DSP) blocks that the module
uses.

MLABS Specifies the number of memory logic arrays (MLABs) that the module uses.
This value is equal to the number of adaptive logic modules (ALMs) that is used
for memory divided by 10 because each MLAB consumes 10 ALMs.

11.4.1.5. Mapping HLS Datatypes to RTL Signals

All supported composite datatypes are represented by wide input or output signals.
Typically, the components of a composite datatype are presented with the first-
declared value or value of lowest index in the low-order bits of the signal.

Arrays

In C++, arrays are passed as a pointer to the memory in which the array is stored.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel HLS Compiler does not support pointer parameters for RTL modules.
However, C++ allows you to pass a struct by value, so you can declare a struct
datatype that has an array as one of its members and declare your function to accept
an argument of this struct-type by value.

Structs

You can use both packed and unpacked structs as call arguments and return values in
your HLS components and tasks. The members of a struct are presented as slices of
the input signal, with the first-declared struct member in the lowest-order bits of the
input signal.

• Unpacked Structs

When your struct declaration is not packed, the layout of the input signal
corresponding to the struct datatype is determined by C language-specific padding
rules that cause the Intel HLS Compiler to insert padding bytes before struct
members that require a specific alignment.

You should use packed structs as arguments to your RTL modules unless there is a
specific reason to conform to a particular padded struct layout.

• Packed Structs

If the struct type is declared as packed, member values start on an 8-bit
boundary.

The Intel HLS Compiler does not insert padding bytes to align struct members on
platform-defined boundaries. The second-declared member always starts in the
next highest byte after high-order byte of the first-declared struct member.

• System Verilog Structs

If you are developing an RTL module in System Verilog, you can declare a System
Verilog struct type that corresponds to the C++ struct type that is mapped to the
input signal of your RTL module.

The declaration order of the struct members is reversed in the System Verilog
declaration because it specifies how the member signals should be concatenated
to produce the composite signal. In a System Verilog concatenation expression,
the bits are specified from high to low. That is, the last byte of the C++ struct
type must be listed first in the System Verilog signal concatenation.

You can compile your emulation models as HLS components to obtain an
interface_structs.v file that contains declarations of the System Verilog
struct types corresponding to the struct-type arguments of those functions. For
details, see the following tutorial:

<quartus_installdir>/hls/examples/tutorials/libraries/
rtl_struct_mapping

• Pointers in Structs

You cannot use struct types that have reference or pointer members as arguments
to or return values from RTL-based functions.

11.4.1.6. HLS Emulation Models for RTL-Based Functions

For an RTL-based function, write C++ code that serves as an emulation model for that
function. This model is used when you run your component in emulation mode.

The emulation model is not used when you co-simulate your component; co-
simulations use RTL extracted from the library.

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: If your function uses static variables to hold internal state, the emulation is
equivalent to the RTL functionality only if the function is called from only one place in
the HLS component.

This behavior is different because on CPUs all calls to the function share the same
state variables. On FPGAs, the RTL module is instantiated once for each location in the
HLS component where the function is called, and these instances do no share state.

11.4.1.7. Potential Incompatibility between RTL Modules and Partial
Reconfiguration

When you create an HLS library using RTL modules, you might encounter Partial
Reconfiguration-related issues.

Consider a situation where you create and verify your library on a device that does not
support Partial Reconfiguration (PR). If you then uses the library RTL module inside a
PR region, the module might not function correctly after PR.

To ensure that the RTL modules function correctly on a device that uses PR:

• The RTL modules do not use memory logic array blocks (MLABs) with initialized
content.

• The RTL modules do not make any assumptions regarding the power-up values of
any logic.

For complete PR coding guidelines, refer to Creating a Partial Reconfiguration Design
in the Partial Reconfiguration User Guide.

11.4.1.8. Stall-Free RTL

The Intel HLS Compiler can optimize hardware resource usage and performance by
not placing stall logic around an RTL module with fixed latency.

If you have an RTL module with a fixed latency that you want integrated into your
component pipeline without surrounding stall logic, ensure that you set attributes in
the object manifest file (.xml) as follows:

1. Specify a value for the EXPECTED_LATENCY attribute (under the FUNCTION
element) so that the latency equals the number of pipeline stages in the module.

Important: An inaccurate EXPECTED_LATENCY value causes the RTL module to be
out of sync with the rest of the pipeline, and can lead to functionally
incorrect results.

2. Set the IS_STALL_FREE attribute under the FUNCTION element to "yes".

This setting instructs the Intel HLS Compiler to avoid placing stall logic around the
RTL module. This setting also tells the compiler that the RTL module produces a
result after the number cycles specified in the EXPECTED_LATENCY attribute after
accepting input values. The stall free logic produces a result every cycle but the
result is delayed by the number cycles specified in the EXPECTED_LATENCY
attribute.

For RTL modules with a fixed latency, the output signals (ovalid and oready) can
have constant high values, and the input ready signal (iready) can be ignored.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

97

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#kjl1519923189923
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A stall-free RTL module might receive an invalid input signal (ivalid is low). In this
case, the module must produce invalid data on the output EXPECTED_LATENCY cycles
after the cycle in which the input was invalid. For a stall-free RTL module without an
internal state, you might find it convenient to propagate the invalid input through the
module. If the module has an internal state, that state should not be affect by data
inputs that are not accompanied by ivalid = 1.

11.4.1.9. RTL Module Restrictions and Limitations for HLS Libraries

RTL modules that you want to include in an HLS library are subject to some
restrictions and limitations to ensure that the library works consistently across
different user designs.

RTL Module Restrictions

When you create an RTL module, ensure that it operates within the following
restrictions:

• The RTL module must work correctly at any clock frequency that passes timing
analysis.

• Data input and output sizes must match the sizes of the arguments and return
value declared in the RTL module function signature (.h) file. The input and
output sizes must always be the size of a C++ standard type: char, short, int,
long, float, or double.

For example, if you work with 24-bit values inside an RTL module, declare inputs
to be 32 bits and declare the function signature to accept the uint data type. In
the RTL module, accept the 32-bit input but discard the top 8 bits.

• RTL modules cannot connect to external I/O signals. All input and output signals
must come from the HLS component that uses the library.

• An RTL module must have a clock port, a resetn port, and handshaking ports to
support the data input and output interfaces. The handshake signal must be
named ivalid, ovalid, iready, and oready.

• Every function call that corresponds to an RTL module instantiation is completely
independent of other instantiations. No hardware is shared.

• An RTL module must receive all its inputs at the same time. A single ivalid input
signifies that all inputs contain valid data.

RTL-Based Object Limitations

Using RTL modules in HLS libraries has the following limitations:

• You can only set RTL module parameters in the object manifest file (.xml) file.

To use the same module with multiple parameter combinations, create a separate
FUNCTION tag for each parameter combination.

• Pass data inputs to the RTL module only by value through the HLS component
code.

You cannot pass streams, pointers, or references as input to an RTL module.

For streaming data, extract data from the stream first in your component and then
pass the extracted scalar data to the RTL module in the HLS library.

Passing data inputs to an RTL module as pointers or references causes a fatal
error in the Intel HLS Compiler.

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Names of RTL module source files cannot conflict with the names of objects in
other libraries or in file names of Intel HLS Compiler IP.

When you create a library, choose RTL module names that are unlike to conflict
with other libraries or compiler IP. For example, prefix the name of your RTL
modules with the name of your library.

If there is a naming conflict, the Intel Quartus Prime compilation of the HLS
component might fail or result in a functionally-incorrect FPGA image.

• Names of the RTL module and its signals cannot conflict with reserved names
defined by any of the supported RTL languages: Verilog, System Verilog, and
VHDL.

• The Intel HLS Compiler does not support .qip files. You must manually parse
nested .qip files to create a flat list of RTL files.

11.4.2. Creating an HLS-Library Object File from an RTL Module

Before an RTL module can be included in a library intended for use in an Intel HLS
Compiler design, create a platform-specific object (.o files on Linux, .obj files on
Windows) from the RTL module. Use the fpga_crossgen command to create the
object.

For instructions on creating an OpenCL library object file from RTL, see “Packaging an
RTL Component for an OpenCL Library” in the Intel FPGA SDK for OpenCL Pro Edition
Programming Guide.Before you can create an HLS library object from an RTL module,
ensure that the functions in your RTL module are functionally correct and that you
have the following files ready:

• RTL module source files

These files are the the Verilog (.v), System Verilog (.sv), or VHDL (.vhdl) files
and the accompanying memory initialization files (.mif or .hex) that define the
RTL modules.

• RTL object manifest file

This XML file describes the callable interfaces of your RTL modules. Review Object
Manifest File Syntax on page 92 for details about what to include in this XML file.

• HLS emulation model file

These C++ files (.cpp and .h) provide an emulation model for the RTL module
that allows you to emulate your component when it includes an HLS library that
contains this RTL module. Full hardware compilations use the RTL source files.

• RTL module function signature file

This C-style header file (.h) declares the signatures of the functions that are
implemented by the RTL module and described in the object manifest file. Include
this file in you HLS component code for the component to call the functions
provided by the RTL modules packaged in the object.

1. After you have the files ready, create the HLS library object with the following
command:

fpga_crossgen <object_manifest_file_name> --target hls --emulation_model
<emulation_model_file_location> [-o <object_file_name>]

Where <object_manifest_file_name> is the full path of the RTL object manifest
(.xml) file including the file name. This path can be a full or relative path.

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

99

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html#ewa1452547365017
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html#ewa1452547365017
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you do not specify an object file name with the -o option, the object file name
defaults to be the same name as the object manifest file name. That is, an object
manifest file named manifest.xml results in an object file named manifest.o
(on Linux) or manifest.obj (on Windows).

The output of the command is a platform-specific object file ((.o on Linux, .obj
on Windows). The platform of the object file is determine by the platform where
you run the fpga_crossgen command. When you run the command on Linux,
you get a .o object file. When you run the command on Windows, you get a .obj
object file.

Important: Each object created with the fpga_crossgen command is assigned a
compiler version number. You can package only object with the same
version number into a library, and a library can be used only with a
target compiler (For example, i++) with the same version number.

11.5. Packaging Object Files Into a Library

Collect object files in a library file so that others can incorporate the library into their
projects and call the functions that are contained in the objects in the library. Package
object files into a library with the fpga_libtool command.

Before you package object files into a library, ensure that you have the path
information for all of the object files that you want to include in the library.All objects
to be packaged in the library must have the same version number. This library can be
used only by an Intel high-level design tool with the same version number.

The fpga_libtool command creates libraries encapsulated in operating system
specific archive files (.a on Linux, .lib on Windows).
Create the HLS library file with the following command:

fpga_libtool --target target_HLD_tool --create library_name[.a | .lib
| .aoclib] object_file_1 [object_file_2 ... object_file_n]

Where the command parameters are defined as follows:

11. Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• target_HLD_tool

The target Intel high-level design tool for this library. This parameter can have one
of the following values:

— hls

Target this library for components developed with the Intel HLS Compiler.

Libraries built for the Intel HLS Compiler are encapsulated in operating system
specific archive files (.a on Linux, .lib on Windows). You cannot use HLS
libraries created on one operating system with the Intel HLS Compiler running
on a different operating system.

— aoc

Target this library for kernels developed with the Intel FPGA SDK for OpenCL.

Libraries built for the Intel FPGA SDK for OpenCL are not operating system
specific. The objects are created as Intel FPGA SDK for OpenCL object files
(.aoclib).

You must have the Intel FPGA SDK for OpenCL Pro Edition installed to use this
option. The version of the SDK must be the same as your version of Intel HLS
Compiler.

library_name

The name of the library file.

Specify the file extension of the library files as follows, depending on the target
high-level design tool:

— Intel HLS Compiler

Specify the operating-system specific archive extension: .a for Linux-platform
libraries and .lib for Windows-platform libraries.

— Intel FPGA SDK for OpenCL

Specify .aoclib as the file extension for an OpenCL library.

OpenCL libraries are not operating-system specific.

You can specify one or more object files to include in the library.

For example, the following command packages three Linux-platform objects
(prim1.o, prim2.o, and prim3.o) into an HLS library called libdemo:

fpga_libtool --create libdemo.a prim1.o prim2.o prim3.o --target hls

11. Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Advanced Hardware Synthesis Controls

12.1. The hls_fpga_reg() Function

In some cases, explicitly asking the compiler to inserting a register stage between the
operand and the return value of the function call can help improve the performance of
your component. Use the hls_fpga_reg() function to insert at least one register
between the operand and return value of the function call.

Typically, you do not need to use this function to achieve the performance from your
component that you want.

To use the hls_fpga_reg() function effectively, you must know about how portions
of the data path are placed on FPGA devices, and you typically use the
hls_fpga_reg() function for the following purposes:

• Breaking the critical paths between spatially distant portions of a data path, such
as between processing elements of a large systolic array.

• Reducing the pressure on placement and routing efforts caused by spatially
distinct portions of the kernel implementation.

The Intel HLS Compiler does not provide feedback about where you should add
hls_fpga_reg() function calls. Use Intel Quartus Prime software to determine
where you should insert the calls to address specific aspects of component
performance.

Syntax T hls_fpga_reg(T op)

where T can be any sized type.

Description The hls_fpga_reg() function directs the Intel HLS Compiler to insert
at least one hardware pipelining register on the signal path that assigns
the operand to the return value. This built-in function operates as an
assignment, where the operand is assigned to the return value. The
assignment has no implicit semantic or functional meaning beyond a
standard assignment.

Functionally, you can consider the hls_fpga_reg() function to be
always optimized away by the compiler.

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Usage Notes You can nest hls_fpga_reg() function calls to increase the minimum
number of registers that are inserted on the assignment path. Because
each function call guarantees the insertion of at least one register
stage, the number of nested calls provides a lower limit on the number
of registers.

For example, the following code snippet tells the compiler to insert at
least two registers on the assignment path.

int out=hls_fpga_reg(hls_fpga_reg(in));

The compiler might insert more than two registers on the path.

12. Advanced Hardware Synthesis Controls

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13. Intel High Level Synthesis Compiler Pro Edition
Reference Summary

13.1. Intel HLS Compiler Pro Edition i++ Command-Line Arguments

Use the i++ command-line arguments to affect how your component is compiled and
linked.

General i++ Command Options

Option Description

--debug-log Generate the compiler diagnostics log.

-h, --help List compiler command options along with brief descriptions.

-oresult Place compiler output into the <result> executable and the <result>.prj directory.

-v Display messages describing the progress of the compilation.

--version Display compiler version information.

Command Options Affecting Compiling

Option Default
Value

Description

-c Preprocess, parse, and generate object files.

--component
component name

Comma-separated list of function names to synthesize to RTL.
To use this option, your component must be configured with C-linkage using the
extern "C" specification. For example:

extern "C" int myComponent(int a, int b)

Using the component function attribute is preferred over using the --
component command option to indicate functions that you want the compiler to
synthesize.

-Dmacro[=val] Define a <macro> with <val> as its value.

-g Generate debug information (default option).

-g0 Do not generate debug information.

--gcc-
toolchain=<GCC_dir>

Specifies the path to a GCC installation that you want to use for compilation. This
path should be the absolute path to the directory that contains the GCC lib,
bin, and include folders.

--hyper-optimized-
handshaking=[auto|
off]

auto This option applies to Intel Stratix 10 devices only.
Use this option to modify the handshaking protocol used in certain areas of your
design.

continued...

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Option Default
Value

Description

-Idir Add directory <dir> to the end of the main include path.

-march=[x86-64 |
FPGA_family |
FPGA_part_number]

x86-64 Generate code for an emulator flow (x86-64) or for the specified FPGA family or
FPGA part number.

--quartus-compile Run the HDL generated through Intel Quartus Prime to generate accurate fMAX
and area estimates. Your component is not expected to cleanly close timing.

--quartus-compile
<seed>

Specifies the Fitter seed to use when your component is compiled to hardware by
Intel Quartus Prime.

--simulator
simulator_name

modelsim Specifies the simulator you are using to perform verification.
This command option can take the following values for <simulator_name>:

modelsim Use ModelSim for component verification.

none Disable verification. That is, generate RTL for components without
the test bench.

If you do not specify this option, --simulator modelsim is assumed.

-ffp-contract=fast Remove intermediate rounding and conversion when possible, except for code
blocks fenced by #pragma clang fp contract(off).
To learn more, review the following tutorial: <quartus_installdir>/hls/
examples/tutorials/best_practices/floating_point_ops

--fpc This option is deprecated and will be removed in a future release. Use -ffp-
contract=fast instead.
Remove intermediate rounding and conversion when possible.
Exception: Intermediate rounding and conversion is not removed in code blocks
fenced by #pragma clang fp contract(off).
To learn more, review the following tutorial: <quartus_installdir>/hls/
examples/tutorials/best_practices/floating_point_ops

-ffp-reassoc Relax the order of floating point arithmetic operations, except for code blocks
fenced by #pragma clang fp reassoc(off)
To learn more, review the following tutorial: <quartus_installdir>/hls/
examples/tutorials/best_practices/floating_point_ops

--fp-relaxed This option is deprecated and will be removed in a future release. Use -ffp-
reassoc instead.
Relax the order of floating point arithmetic operations.
Exception: The order of floating point operations in code blocks fenced by
#pragma clang fp reassoc(off) is not relaxed.
To learn more, review the following tutorial: <quartus_installdir>/hls/
examples/tutorials/best_practices/floating_point_ops

--daz Disable subnormal support in double-precision floating-point computations.

--rounding=[ieee |
faithful]

Control rounding scheme for double-precision adders, multipliers, and dividers.
If you do not specify this option, adders and multipliers use IEEE-754 RNE
rounding (0.5 ULP) and dividers uses faithful rounding (1 ULP).
The -rounding option can take one of the following values:

ieee All adders, multipliers, and dividers use IEEE-754 RNE rounding.

faithful All adders, multipliers, and dividers use faithful rounding.

--clock clock target 240 MHz Optimize the RTL for the specified clock frequency or period.
The clock target value must include a unit.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Default
Value

Description

For example:

i++ -march="Arria 10" test.cpp --clock 100MHz
i++ -march="Arria 10" test.cpp --clock 10ns

Command Options Affecting Linking

Option Default
Value

Description

-ghdl Enable full debug visibility and logging of all HDL signals in simulation.

-Ldir (Linux only) Add directory <dir> to the list of directories to be searched for
library files specified with the -l option.

-llibrary (Linux only) Search the library name <library> when linking.

--x86-only Create only the testbench executable (<result>.out/<result>.exe).

--fpga-only Create only the <result>.prj directory and its contents.

13.2. Intel HLS Compiler Pro Edition Header Files

Coding your component to be compiled by the Intel HLS Compiler requires you to
include the hls.h header file. Other header files provided with the Intel HLS Compiler
provide FPGA-optimized implementations of certain C and C++ functions.

Table 30. Intel HLS Compiler Pro Edition Header Files Summary

HLS Header File Description

HLS/hls.h Required for component identification and component parameter interfaces.

HLS/math.h Includes FPGA-specific definitions for the math functions from the math.h for
your operating system.

HLS/extendedmath.h Includes additional FPGA-specific definitions of math functions not in math.h.

HLS/ac_int.h Provides FPGA-optimized arbitrary width integer support.

HLS/ac_fixed.h Provides FPGA-optimized arbitrary precision fixed point support.

HLS/ac_fixed_math.h Provides FPGA-optimized arbitrary precision fixed point math functions.

HLS/ac_complex.h Provides FPGA-optimized complex number support.

HLS/hls_float.h Provides FPGA-optimized arbitrary-precision IEEE IEEE 754 compliant floating-
point number support.

HLS/hls_float_math.h Provides FPGA-optimized floating-point math functions.

HLS/stdio.h Provides printf support for components so that printf statements work in
x86 emulations, but are disabled in component when compiling to an FPGA
architecture.

<iostream> To use cout and cerr in your component, guard the statements with the
HLS_SYNTHESIS macro.

hls.h Header File

Syntax #include "HLS/hls.h"

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Required for component identification and component parameter
interfaces.

math.h Header File

Syntax #include "HLS/math.h"

Description Includes FPGA-specific definitions for the math functions from the
math.h for your operating system.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
best_practices/single_vs_double_precision_math.

extendedmath.h Header File

Syntax #include "HLS/extendedmath.h"

Description Includes additional FPGA-specific definitions of math functions not in
math.h.

To learn more, review the following design:
<quartus_installdir>/hls/examples/QRD.

ac_int.h Header File

Syntax #include "HLS/ac_int.h"

Description Intel HLS Compiler version of ac_int header file.

Provides FPGA-optimized arbitrary width integer support.

To learn more, review the following tutorials:

• <quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_int_basic_ops

• <quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_int_overflow

• <quartus_installdir>/hls/examples/tutorials/
best_practices/struct_interfaces

ac_fixed.h Header File

Syntax #include "HLS/ac_fixed.h"

Description Intel HLS Compiler version of the ac_fixed header file.

Provides FPGA-optimized arbitrary precision fixed point support.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_fixed_constructor.

ac_fixed_math.h Header File

Syntax #include "HLS/ac_fixed_math.h"

Description Intel HLS Compiler version of the ac_fixed_math header file.

Provides FPGA-optimized arbitrary precision fixed point math functions.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_fixed_math_library.

ac_complex.h Header File

Syntax #include "HLS/ac_complex.h"

Description Intel HLS Compiler version of the ac_comple header file.

Provides FPGA-optimized complex math functions.

hls_float.h Header File

Syntax #include "HLS/hls_float.h"

Description Header file to provide FPGA-optimized arbitrary-precision IEEE 754
compliant floating-point number support.

To learn more, review the following tutorials:

• <quartus_installdir>/hls/examples/tutorials/
hls_float/1_reduced_doubl

• <quartus_installdir>/hls/examples/tutorials/
hls_float/2_explicit_arithmetic

• <quartus_installdir>/hls/examples/tutorials/
hls_float/3_conversions

hls_float_math.h Header File

Syntax #include "HLS/hls_float_math.h"

Description Header file to provide math functions for hls_float data types.

To learn more, review the following tutorials:

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• <quartus_installdir>/hls/examples/tutorials/
hls_float/1_reduced_doubl

• <quartus_installdir>/hls/examples/tutorials/
hls_float/2_explicit_arithmetic

• <quartus_installdir>/hls/examples/tutorials/
hls_float/3_conversions

stdio.h Header File

Syntax #include "HLS/stdio.h"

Description Provides printf support for components so that printf statements
work in x86 emulations, but are disabled in component when compiling
to an FPGA architecture.

Standard C++ <iostream> Header File

Syntax #include <iostream>

Description To use the C++ standard output streams (cout and cerr) provided by
the standard <iostream> header, you must guard any standard output
statements with the HLS_SYNTHESIS macro.

This macro ensures that statements in a component work in x86
emulations but are disabled in the component when compiling to an
FPGA architecture.

13.3. Compiler-Defined Preprocessor Macros

The has a built-in macros that you can use to customize your code to create flow-
dependent behaviors.

Table 31. Macro Definition for __INTELFPGA_COMPILER__

Tool Invocation __INTELFPGA_COMPILER__

g++ or cl Undefined

-march=x86-64

-march="<FPGA_family_or_part_number>"

Table 32. Macro Definition for HLS_SYNTHESIS

Tool Invocation
HLS_SYNTHESIS

Testbench Code HLS Component Code

g++ or cl Undefined Undefined

-march=x86-64 Undefined Undefined

-march="<FPGA_family_or_part_number>" Undefined Defined

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13.4. Intel HLS Compiler Pro Edition Keywords

Table 33. Intel HLS Compiler Pro Edition Keywords

Feature Description

component Indicates that a function is a component.
Example:

component void foo()

13.5. Intel HLS Compiler Pro Edition Simulation API (Testbench
Only)

Table 34. Intel HLS Compiler Pro Edition Simulation API (Testbench only) Summary

Function Description

ihc_hls_enqueue This function enqueues one invocation of an HLS component.

ihc_hls_enqueue_noret This function enqueues one invocation of an HLS component. This function
should be used when the return type of the HLS component is void.

ihc_hls_component_run_all This function pushes all enqueued invocations of a component into the
component in the HDL simulator as quickly as the component can accept
new invocations.

ihc_hls_sim_reset This function sends a reset signal to the component during automated
simulation.

ihc_hls_set_component_wait_cycle This function tells the simulation process to continue running for a specified
number of cycles after the done signal for the specified component is
observed.

ihc_hls_enqueue Function

Syntax ihc_hls_enqueue(void* retptr, void*
funcptr, /*function arguments*/)

Description This function enqueues one invocation of an HLS component. The return
value is stored in the first argument which should be a pointer to the
return type. The component is not run until the
ihc_hls_component_run_all() is invoked.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/usability/enqueue_call.

ihc_hls_enqueue_noret Function

Syntax ihc_hls_enqueue_noret(void*
funcptr, /*function arguments*/)

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description This function enqueues one invocation of an HLS component. This
function should be used when the return type of the HLS component is
void. The component is not run until the
ihc_hls_component_run_all() is invoked.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/usability/enqueue_call.

ihc_hls_component_run_all Function

Syntax ihc_hls_component_run_all (void* funcptr)

Description This function accepts a pointer to the HLS component function. When
run, all enqueued invocations of the component will be pushed into the
component in the HDL simulator as quickly as the component can accept
new invocations.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/usability/enqueue_call.

ihc_hls_sim_reset Function

Syntax int ihc_hls_sim_reset(void)

Description This function sends a reset signal to the component during automated
simulation. It returns 1 if the reset was exercised or 0 otherwise.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/component_memories/static_var_init.

ihc_hls_set_component_wait_cycle Function

Syntax ihc_hls_set_component_wait_cycle(<component function
name>, <# of wait cycles>)

Description This function tells the simulation process to continue running for a
specified number of cycles after the done signal for the specified
component is observed. This delay can enable task functions with a
higher latency than the component function to successfully return their
output during simulation.

Use this function when you simulate a design that uses a system of
tasks where the completion of a task function is not synchronized with
an ihc::collect call.

Simulation API Code Example

component int foo(int val) {
 // function definition
}

component void bar (int val) {

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // function definition
}
int main() {
 // …….
 int input = 0;
 int res[5];
 ihc_hls_enqueue(&res, &foo, input);
 ihc_hls_enqueue_noret(&bar, input);
 input = 1;
 ihc_hls_enqueue(&res, &foo, input);
 ihc_hls_enqueue_noret(&bar, input);
 ihc_hls_component_run_all(&foo);
 ihc_hls_component_run_all(&bar);
}

13.6. Intel HLS Compiler Pro Edition Component Memory Attributes

Use the component memory attributes to control the on-chip component memory
architecture of your component.

Table 35. Intel HLS Compiler Pro Edition Component Memory Attributes Summary

Memory Attribute Description

hls_register Forces a variable or array to be carried through the pipeline in registers.
A register variable can be implemented either exclusively in flip-flops
(FFs) or in a mix of FFs and RAM-based FIFOs.

hls_memory Forces a variable or array to be implemented as embedded memory.

hls_memory_impl Forces a variable or array to be implemented as embedded memory of a
specified type.

hls_singlepump Specifies that the memory implementing the variable or array must be
clocked at the same rate as the component accessing the memory.

hls_doublepump Specifies that the memory implementing the variable or array must be
clocked at twice the rate as the component accessing the memory.

hls_numbanks Specifies that the memory implementing the variable or array must have
a defined number of memory banks.

hls_bankwidth Specifies that the memory implementing the variable or array must have
memory banks of a defined width.

hls_bankbits Forces the memory system to split into a defined number of memory
banks and defines the bits used to select a memory bank.

hls_numports_readonly_writeonly This memory attribute is deprecated. Use hls_max_replicates
instead.
Specifies that the memory implementing the variable or array must have
a defined number of read and write ports.

hls_simple_dual_port_memory Specifies that the memory implementing the variable or array should
have no port that services both reads and writes.

hls_merge (depthwise) Allows merging two or more local variables to be implemented in
component memory as a single merged memory system in a depth-wise
manner.

hls_merge (widthwise) Allows merging two or more local variables to be implemented in
component memory as a single merged memory system in a width-wise
manner.

hls_init_on_reset Forces the static variables inside the component to be initialized when
the component reset signal is asserted.

continued...

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Memory Attribute Description

hls_init_on_powerup Sets the component memory implementing the static variable to
initialize on power-up when the FPGA is programmed.

hls_max_concurrency Specifies the memory has a defined maximum number of private copies
to allow concurrent iterations of a loop at any given time.

hls_max_replicates Specifies that the memory implementing the variable or array has no
more than the specified number of replicates to enable simultaneous
reads from the datapath

hls_register Memory Attribute

Syntax hls_register

Constraints N/A

Default Value Based on the memory access pattern inferred by the compiler.

Description Forces a variable or array to be implemented as registers.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
best_practices/swap_vs_copy.

hls_memory Memory Attribute

Syntax hls_memory

Constraints N/A

Default Value Based on the memory access pattern inferred by the compiler.

Description Forces a variable or array to be implemented as embedded memory.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_implementation.

hls_memory_impl Memory Attribute

Syntax hls_memory_impl("type")

Constraints N/A

Default Value Based on the memory size and memory access pattern inferred by the
compiler.

Description Forces a variable or array to be implemented as embedded memory of
the specified type.

The type parameter can be one of the following values:

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BLOCK_RAM Implement the variable or array as memory blocks,
such as M20K memory blocks.

MLAB Implement the variable or array as memory logic array
blocks (MLABs).

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_implementation.

hls_singlepump Memory Attribute

Syntax hls_singlepump

Constraints N/A

Default Value Based on the memory access pattern inferred by the compiler.

Description Specifies that the memory implementing the variable or array must be
clocked at the same rate as the component accessing the memory.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/QRD.

hls_doublepump Memory Attribute

Syntax hls_doublepump

Constraints N/A

Default Value Based on the memory access pattern inferred by the compiler.

Description Specifies that the memory implementing the variable or array must be
clocked at twice the rate of the component accessing the memory.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_bank_configuration.

hls_numbanks Memory Attribute

Syntax hls_numbanks(N)

Constraints This attribute is subject to constraints outlined in Constraints on
Attributes for Memory Banks on page 46.

Default Value Based on the memory access pattern inferred by the compiler.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Specifies that the memory implementing the variable or array must
have N banks, where N is a power-of-two constant number.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_geometry.

hls_bankwidth Memory Attribute

Syntax hls_bankwidth(N)

Constraints This attribute is subject to constraints outlined in Constraints on
Attributes for Memory Banks on page 46.

Default Value Based on the memory access pattern inferred by the compiler.

Description Specifies that the memory implementing the variable or array must
have banks that are N bytes wide, where N is a power-of-two constant
number.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_geometry.

hls_bankbits Memory Attribute

Syntax hls_bankbits(b0, b1, ..., bn)

Constraints This attribute is subject to constraints outlined in Constraints on
Attributes for Memory Banks on page 46.

Default Value Based on the memory access pattern inferred by the compiler.

Description Forces the memory system to split into 2n+1 banks, with {b0, b1, ...,
bn} forming the bank-select bits.

Important: b0, b1, ..., bn must be consecutive, positive integers. You
can specify the consecutive, positive integers in ascending
or descending order.

If you do not specify the hls_bankwidth(N) attribute along with this
attribute, then b0, b1, ..., bn are mapped to array index bits 0 to n-1
in the memory bank implementation.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_geometry.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hls_numports_readonly_writeonly Memory Attribute

Syntax hls_numports_readonly_writeonly(M, N)

Constraints N/A

Default Value Based on the memory access pattern inferred by the compiler.

Description This memory attribute is deprecated. Use hls_max_replicates
instead.

Specifies that the memory implementing the variable or array must
have M read ports and N write ports, where M and N are constant
numbers greater than zero.

hls_simple_dual_port_memory Memory Attribute

Syntax hls_simple_dual_port_memory

Constraints N/A

Default Value N/A

Description Specifies that the memory implementing the variable or array should
have no port that services both reads and writes.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_bank_configuration.

hls_merge (depthwise) Memory Attribute

Syntax hls_merge("mem_name", "depth")

Constraints N/A

Default Value N/A

Description Allows merging two or more local variables to be implemented in
component memory as a single merged memory system in a depth-
wise manner.

All variables with same <mem_name> label specified in their
hls_merge attribute are merged into the same memory system.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_merging.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hls_merge (widthwise) Memory Attribute

Syntax hls_merge("mem_name", "width")

Constraints N/A

Default Value N/A

Description Allows merging two or more local variables to be implemented in
component memory as a single merged memory system in a width-
wise manner.

All variables with same <mem_name> label specified in their
hls_merge attribute are merged into the same memory system.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_merging.

hls_init_on_reset Memory Attribute

Syntax hls_init_on_reset

Constraints N/A

Default Value Default behavior for static variables.

Description Forces the static variable inside the component to be initialized when
the component reset signal is asserted. This requires an additional
write port to the component memory implemented and can increase
the power-up latency when the component is reset.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
component_memories/static_var_init.

hls_init_on_powerup Memory Attribute

Syntax hls_init_on_powerup

Constraints N/A

Default Value N/A

Description Sets the component memory implementing the static variable to
initialize on power-up when the FPGA is programmed. When the
component is reset, the component memory is not reset back to the
initialized value of the static.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
component_memories/static_var_init.

hls_max_concurrency Memory Attribute

Syntax hls_max_concurrency(N)

Constraints N/A

Default Value N/A

Description Specifies that the memory can have a maximum N private copies to
allow N concurrent iterations of a loop at any given time, where N is
rounded up to the nearest power of 2.

Apply this attribute only when the scope of a variable (through its
declaration or access pattern) is limited to a loop. If the loop has the
max_concurrency pragma applied to it, the number of private copies
created is the lesser of the hls_max_concurrency memory attribute
value and the max_concurrency pragma value.

hls_max_replicates Memory Attribute

Syntax hls_max_replicates(N)

Constraints N/A

Default Value N/A

Description Specifies that the memory implementing the variable or array has no
more than the N replicates to enable simultaneous reads from the
datapath.

To learn more, review the following tutorial:
<quartus_installdir>/hls/tutorials/
component_memories/memory_bank_configuration.

13.7. Intel HLS Compiler Pro Edition Loop Pragmas

Use the Intel HLS Compiler loop pragmas to control how the compiler pipelines the
loops in your component.

Table 36. Intel HLS Compiler Pro Edition Loop Pragmas Summary

Pragma Description

disable_loop_pipelining Prevents compiler from pipelining a loop,

ii Forces a loop to have a loop initiation interval (II) of a specified value.

continued...

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pragma Description

ivdep Ignores memory dependencies between iterations of this loop.

loop_coalesce Tries to fuse all loops nested within this loop into a single loop.

max_concurrency Limits the number of iterations of a loop that can simultaneously execute
at any time.

max_interleaving Controls whether iterations of a pipelined inner loop in a loop nest from
one invocation of the inner loop can be interleaved in the component
data pipeline with iterations from other invocations of the inner loop.

speculated_iterations Specifies the number of clock cycles that a loop exit condition can take
to compute.

unroll Unrolls the loop completely or by a number of times.

disable_loop_pipelining Loop Pragma

Syntax #pragma disable_loop_pipelining

Description Tells the compiler to not pipeline this loop.

Disable loop pipelining for a loop when the loop-carried dependencies
cause the loop iterations to effectively execute sequentially. With loop
pipelining disabled, the Intel HLS Compiler can generate a simpler
datapath and reduce the FPGA area utilization of your component.

Example:

#pragma disable_loop_pipelining
for (int i = 1; i < N; i++) {
 int j = a[i-1];
 // Memory dependency induces a high-latency loop feedback path
 a[i] = foo(j)
}

ii Loop Pragma

Syntax #pragma ii N

Description Forces the loop to which you apply this pragma to have a loop initiation
interval (II) of <N>, where <N> is a positive integer value.

Forcing a loop II value can have an adverse effect on the fMAX of your
component because using this pragma to get a lower loop II combines
pipeline stages together and creates logic with a long propagation delay.

Using this pragma with a larger loop II inserts more pipeline stages and
can give you a better component fMAX value.

Example:

#pragma ii 2
for (int i = 0; i < 8; i++) {
 // Loop body
}

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ivdep Loop Pragma

Syntax #pragma ivdep safelen(N) array(array_name)

Description Tells the compiler to ignore memory dependencies between iterations of
this loop.

It can accept an optional argument that specifies the name of the array.
If array is not specified, all component memory dependencies are
ignored. If there are loop-carried dependencies, your generated RTL
produces incorrect results.

The safelen parameter specifies the dependency distance. The
dependency distance is the number of iterations between successive
load/stores that depend on each other. It is safe to not include safelen
is only when the dependence distance is infinite (that is, there are no
real dependencies).

Example:

#pragma ivdep safelen(2)
for (int i = 0; i < 8; i++) {
 // Loop body
}

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/best_practices/
loop_memory_dependency.

loop_coalesce Loop Pragma

Syntax #pragma loop_coalesce N

Description Tells the compiler to try to fuse all loops nested within this loop into a
single loop. This pragma accepts an optional value N which indicates the
number of levels of loops to coalesce together.

#pragma loop_coalesce 2
for (int i = 0; i < 8; i++) {
 for (int j = 0; j < 8; j++) {
 // Loop body
 }
}

max_concurrency Loop Pragma

Syntax #pragma max_concurrency N

Description This pragma limits the number of iterations of a loop that can
simultaneously execute at any time.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This pragma is useful mainly when private copies of are created to
improve the throughput of the loop. This is mentioned in the details
pane for the loop in the Loop Analysis pane and the Bank view of the
Function Memory Viewer of the high level design report (report.html).

This can occur only when the scope of a component memory (through its
declaration or access pattern) is limited to this loop. Adding this pragma
can be used to reduce the area that the loop consumes at the cost of
some throughput.

Example:

// Without this pragma,
// multiple private copies
// of the array "arr"
#pragma max_concurrency 1
for (int i = 0; i < 8; i++) {
 int arr[1024];
 // Loop body
}

max_interleaving Loop Pragma

Syntax #pragma max_interleaving <option>

Description<option> This pragma controls whether iterations of a pipelined inner
loop in a loop nest from one invocation of the inner loop can be
interleaved in the component data pipeline with iterations from
other invocations of the inner loop.

By default, the Intel HLS Compiler tries interleave a number
simultaneous invocations of the inner loop equal to the loop
initiation interval (II) of the inner loop. For example, an inner
loop with an II of 2 can have iterations from two invocations in
the pipeline at a time.

In cases where the interleaving of loop iterations from different
loop invocations does not yield a performance benefit, limiting
or restricting the amount of interleaving can result in reduced
FPGA area utilization.

Supported values for <option>:

• 1

The compiler restricts the annotated (inner) loop to be
invoked only once per outer loop iteration. That is, all
iterations of the inner loop travel the pipeline before the
next invocation of the inner loop can occur.

• 0

Use the default interleaving behavior.

Example:

// Loop j is pipelined with ii=1
for (int j = 0; j < M; j++) {
 int a[N];

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // Loop i is pipelined with ii=2
 #pragma max_interleaving 1
 for (int i = 1; i < N; i++) {
 a[i] = foo(i)
 }
 …
}

speculated_iterations Loop Pragma

Syntax speculated_iterations N

Description This pragma specifies the number of loop iterations to wait before
considering a loop exit condition. That is, you estimate that a loop takes
at least N loop iterations before the exit condition is met.

If you specify a value that is too low, then the loop II increases to
accommodate the iterations required to determine whether the loop exit
condition is met.

Example:

component int loop_speculate (int N) {
 int m = 0;
 // The exit path has 2 multiplies and
 // compare is most critical in loop feedback path
 #pragma speculated_iterations 2
 while (m*m*m < N) {
 m += 1;
 }
 return m;
 }

unroll Loop Pragma

Syntax #pragma unroll N

Description This pragma unrolls the loop completely or by <N> times, where <N> is
optional and is a positive integer value.

Example:

#pragma unroll 8
for (int i = 0; i < 8; i++) {
 // Loop body
}

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/best_practices/resource_sharing_filter.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13.8. Intel HLS Compiler Pro Edition Scope Pragmas

Use the Intel HLS Compiler scope pragmas to influence the rounding of floating-point
operations and the ordering of arithmetic operations in your component at finer grain
than the i++ command options.

Table 37. Intel HLS Compiler Pro Edition Scoped Pragmas Summary

Pragma Description

fp contract Controls the removal of intermediate rounding and conversion when
possible within the code block that this pragma is applied to.

fp reassoc Controls the relaxing of the order of floating point arithmetic operations
within the code block that this pragma is applied to.

fp contract Scoped Pragma

Syntax #pragma clang fp contract(state)

Description This pragma controls whether the compiler can contract floating-point
multiply and add or subtract operations into a single fused multiply-add
(FMA), and controls whether the compiler skip intermediate rounding
and conversions.

If multiple occurrences of this pragma affect the same scope, the
pragma with the narrowest scope takes precedence.

The state parameter can be one of the following values:

• off

Turns off any permissions to fuse instructions into FMAs.

The effect of the -ffp-contract=fast i++ command flag is
suppressed for instructions within the scope of the pragma.

• fast

Allows the fusing of mult andadd instructions into an FMA, but
might violate the language standard.

For instructions with the scope of this pragma, the same
optimizations as -ffp-contract=fast i++ command flag are
enabled.

fp reassoc Scoped Pragma

Syntax #pragma clang fp reassoc(state)

Description This pragma controls whether the compiler can relax the order of
floating point operations requested by the source code. With some
reordering, the compiler can optimize the hardware structure which
improves the performance of your component.

If multiple occurrences of this pragma affect the same scope, the
pragma with the narrowest scope takes precedence.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The state parameter can be one of the following values:

• on

Enables the effect of the -ffp-reassoc i++ command flag for
instructions within the scope of the pragma.

• off

The effect of the -ffp-reassoc i++ command flag is suppressed
for instructions within the scope of the pragma.

13.9. Intel HLS Compiler Pro Edition Component Attributes

Table 38. Intel HLS Compiler Component Attributes Summary

Attribute Description

hls_component_ii Force the component to which you apply this attribute to have a
specified component initiation interval (II).

hls_disable_component_pipelining Prevents the creation of the pipelined component datapath. Multiple
invocations of this component now occur sequentially and not
simultaneously.

hls_max_concurrency Request more copies of the component memory so that the component
can run multiple invocations in parallel.

hls_scheduler_target_fmax_mhz Specify the target clock frequency of your component.

hls_component_ii Component Attribute

Syntax hls_component_ii(<N>)

Description Forces the component to which you apply this attribute to have a
component initiation interval (II) of <N>, where <N> is a positive
integer value.

This can have an adverse effect on the fMAX of your component because
using this attribute to get a lower II combines pipeline stages together
and creates logic with a long propagation delay.

Using this attribute with a larger II inserts more pipeline stages and can
give you a better component fMAX value.

hls_disable_component_pipelining Component Attribute

Syntax hls_disable_component_pipelining

Description Tells the compiler to not create a pipelined datapath for the component.
An unpipelined component datapath can save FPGA area utilization in
some cases.

Use this attribute when a pipelined datapath does not improve your
component throughput or when the component is not invoked
repeatedly.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example #include "HLS/hls.h"

hls_disable_component_pipelining
component void baz (/* arguments */){
 // component code
}

hls_max_concurrency Component Attribute

Syntax hls_max_concurrency(<N>)

Description In some cases, the concurrency of a component is limited to 1. This limit
occurs when the generated hardware cannot be shared across
component invocations. For example, when using component memories
for a non-static variable.

You can use this attribute to request more copies of the component
memory so that the component can run multiple invocations in parallel.

This attribute can accept any non-negative whole number, including 0.

Value
greater
than 0

A value greater than 0 indicates how many copies of the
component memory to instantiate as well as how many
component invocations can be in flight at once.

Value
equal to 0

Setting hls_max_concurrency to a value of 0 is useful
in cases when there is no component memory but the
component still has a poor dynamic loop initiation interval
(II) even if you believe your component II should be 1.
You can review the II for loops in your component in the
high level design report.

To learn more, review the design example:
<quartus_installdir>/hls/examples/inter_decim_filter.

Example hls_max_concurrency(2)
component void foo(ihc::stream_in<int> &data_in,
 ihc::stream_out<int> &data_out) {
 int arr[N];
 for (int i = 0; i < N; i++) {
 arr[i] = data_in.read();
 }
 // Operate on the data and modify in place
 for (int i = 0; i < N; i++) {
 data_out.write(arr[i]);
 }
}

hls_scheduler_target_fmax_mhz Component Attribute

Syntax hls_scheduler_target_fmax_mhz(<N>)

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Apply the hls_scheduler_target_fmax_mhz component attribute to
have the compiler target a specific fMAX value. Specify the target fMAX
value in MHz.

The component is not guaranteed to close timing at the specified
frequency, and any tasks in a system of tasks use the same clock
regardless of having different scheduling targets.

13.10. Intel HLS Compiler Pro Edition Component Default
Interfaces

Table 39. Intel HLS Compiler Default Interfaces

Interface Description

Component invocation
interface
(component call and return)

The component call is implemented as an interface consisting of the component start and
busy conduits.
The component return is also implemented as an interface that includes the component
done and stall signals.

Scalar parameter interface
(passed by value)

Scalar parameters are implemented as input conduits that are synchronized with the
component invocation interface.

Pointer parameter interface
(passed by reference)

Pointer parameters are implemented as an implicit Avalon Memory-Mapped Master
(mm_master) interface with the default parametrization.
By default, the base address is treated as a scalar parameter so it is implemented as a
conduit that is synchronized to the component invocation interface.
A memory mapped interface is also exposed on the component.

13.11. Intel HLS Compiler Pro Edition Component Invocation
Interface Control Attributes

Table 40. Intel HLS Compiler Component Invocation Interface Control Attribute
Summary

Control Attribute Description

hls_avalon_streaming_component This is the default component invocation interface.
The component uses start, busy, stall, and done signals for
handshaking.

hls_avalon_slave_component The start, done, and returndata (if applicable) signals are registered in
the component slave memory map.

hls_always_run_component The start signal is tied to 1 internally in the component. There is no done
signal output.

hls_stall_free_return If the downstream component never stalls, the stall signal is removed by
internally setting it to 0.

hls_avalon_streaming_component Invocation Control Attribute

Description This is the default component invocation interface.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This attribute follows the Avalon-ST protocol for both the function
call and the return streams. The component consumes the unstable
arguments when the start signal is asserted and the busy signal is
deasserted. The component produces the return data when the
done signal is asserted.

Top-Level
Module Ports

• Function call:

— start

— busy

• Function return:

— done

— stall

Example component hls_avalon_streaming_component void foo(/*component
arguments*/)

hls_avalon_slave_component Invocation Control Attribute

Description The start, done, and returndata (if applicable) signals are
registered in the component slave memory map.

These component must take either slave, stream, or stable
arguments. If you do not specify these types of arguments, the
compiler generates an error message when you compile this
component.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/interfaces/mm_slaves.

Top-Level
Module Ports

• Avalon-MM slave interface

• irq_done signal

Example component hls_avalon_slave_component void foo(/*component
arguments*/)

hls_always_run_component Invocation Control Attribute

Description The start signal is tied to 1 internally in the component. There is
no done signal output. The control logic is optimized away when
Intel Quartus Prime compiles the generated RTL for your FPGA.

Use this protocol when the component datapath relies only on
explicit streams for data input and output.

IP verification does not support components with this component
invocation protocol.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Top-Level
Module Ports

None

Example component hls_always_run_component void foo(/*component
arguments*/)

hls_stall_free_return Invocation Control Attribute

Description If the downstream component never stalls, the stall signal is
removed by internally setting it to 0.

This feature can be used with the
hls_avalon_streaming_component,
hls_avalon_slave_component, and
hls_always_run_component arguments. This attribute can be
used to specify that the downstream component is stall free.

Top-Level
Module Ports

N/A

Example component hls_stall_free_return int dut(int a, int b)
 { return a * b;}

13.12. Intel HLS Compiler Pro Edition Component Macros

Table 41. Intel HLS Compiler Component Macros Summary

Macro Description

hls_conduit_argument Implement the argument as an input conduit that is synchronous to the
component call (start and busy).

hls_avalon_slave_register_arg
ument

Implement the argument as a register that can be read from and written to over
an Avalon-MM slave interface.

hls_avalon_slave_memory_argum
ent

Implement the argument, in on-chip memory blocks, which can be read from or
written to over a dedicated slave interface.

hls_stable_argument A stable argument is an argument that does not change while there is live data
in the component (that is, between pipelined function invocations).

hls_conduit_argument Component Macro

Syntax hls_conduit_argument

Description This is the default interface for scalar arguments.

The compiler implements the argument as an input conduit that is
synchronous to the component's call (start and busy).

Example component void foo(
 hls_conduit_argument int b)

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hls_avalon_slave_register_argument Component Macro

Syntax hls_avalon_slave_register_argument

Description The compiler implements the argument as a register that can be read
from and written to over an Avalon-MM slave interface. The argument
will be read into the component's pipeline, similar to the conduit
implementation. The implementation is synchronous to the start and
busy interface.

Changes to the value of this argument made by the component data
path will not be reflected on this register.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/interfaces/mm_slaves.

Example component void foo(
 hls_avalon_slave_register_argument int b)

hls_avalon_slave_memory_argument Component Macro

Syntax hls_avalon_slave_memory_argument(N)

Description The compiler implements the argument, where N specifies the size of
the memory in bytes, in on-chip memory blocks, which can be read from
or written to over a dedicated slave interface. The generated memory
has the same architectural optimizations as all other internal component
memories (such as banking or coalescing).

If the compiler performs static coalescing optimizations, the slave
interface data width is the coalesced width. This attribute applies only to
a pointer argument.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/interfaces/mm_slaves.

Example component void foo(
 hls_avalon_slave_memory_argument(128*sizeof(int)) int *a)

hls_stable_argument Component Macro

Syntax hls_stable_argument

Description A stable argument is an argument that does not change while there is
live data in the component (that is, between pipelined function
invocations).

Changing a stable argument during component execution results in
undefined behavior; each use of the stable argument might be the old
value or the new value, but with no guarantee of consistency. The same
variable in the same invocation can appear with multiple values.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using stable arguments, where appropriate, might save a significant
number of registers in a design.

Stable arguments can be used with conduits, mm_master interfaces,
and slave_registers.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/interfaces/stable_arguments.

Example component int dut(
 hls_stable_argument int a,
 hls_stable_argument int b) {
 return a * b;}

13.13. Systems of Tasks API

Systems of tasks are available only for Intel HLS Compiler Pro Edition.

Table 42. Intel HLS Compiler System of Tasks Summary

Function Description

ihc::launch Marks a function as an Intel HLS Compiler task for hardware generation,
and launches the task function asynchronously.

ihc::collect Synchronizes the completion of the specified task function in the
component.

ihc::stream Allows streaming communication between different task functions.

ihc::launch_always_run Launches a task function at component power-on or reset and
continuously executes the function.

ihc::launch Function

Syntax ihc::launch(<function>,<fuction_argument_list>)

Where the function parameters are defined as follows:

• <function>

The name of the function that you are calling as an Intel HLS
Compiler task in your component.

If the task function is a templated function, wrap the function handle
in a pair of parenthesis. For example:
ihc::launch((foo<int>)), arg_a, arg_b);

• <fuction_argument_list>

The list of arguments to pass to the task function.

This list must match the arguments (in names and types) that the
task function expects.

Description The ihc::launch API function identifies a function as Intel HLS
Compiler task for hardware generation. Calling this function starts the
task function asynchronously.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the task function cannot accept a new thread, the ihc::launch
function can block the function that calls the ihc::launch function.

The list of arguments that supply the ihc::launch API function must
match (in names and types) the list of arguments expected by the task
function.

ihc::collect Function

Syntax ihc::collect(function)

Where the function parameters are defined as follows:

• <function>

The name of the Intel HLS Compiler task function to synchronize the
completion of.

If the task function is a templated function, wrap the function handle
in a pair of parenthesis. For example:
ihc::collect((foo<int>);

Description The ihc::collect API function synchronizes the completion of the
specified task function in the component.

For a non-void task function, the ihc::collect API function collects
the result from the specified task function.

For a void task function, the ihc::collect API function synchronizes
against the done signal of the task function.

The number of ihc::collect calls for a task function must match the
number of ihc::launch calls for the same task function to flush all of
the calls to the task.

Special
Case:

If you do not use ihc::collect at all, the compiler optimizes
and ties-off the return stream of the task to be stall free and
ignores any data on the return stream. Other streaming
interfaces can still back-pressure the task function. Additionally,
the caller might finish before the task function.

ihc::launch_always_run Function

Syntax ihc::launch_always_run<function>()

Where the parameters are defined as follows:

• function

The name of the function that you are calling as a continuously-
executing Intel HLS Compiler task in your component.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Use the ihc::launch_always_run API function to continuously
execute a task function, much like an invoking a component with the
hls_always_run_component invocation interface argument.

The task launches at the power-on or the reset of the component
instead of at a specific point in the datapath.

The task function that you provide to this API must match this
prototype:

void function(void)

Your task function must be have no function arguments and no return
value. You should communicate with your task function through global
streams or by using compile-time constant template parameters.

Example The following example shows a simple use of the
ihc::launch_always_run function.

ihc::stream<int> in_stream, out_stream;

template <ihc::stream<int> &inStream,
 ihc::stream<int> &outStream>

void my_task()
{
 int x = inStream.read();
 x *= 2;
 outStream.write(x);
}

component void foo()
{
 ihc::launch_always_run<my_task<in_stream, out_stream>>();
}

Intel HLS Compiler System of Tasks Code Example

The following code example illustrates how you can use the systems of tasks API.

int mul(int a, int b)
{
 return a * b;
}

Template<typename T>
T add(T a, T b)
{
 return a + b;
}

component int foo(int a, int b)
{
 ihc::launch(mul, a, b);
 ihc::launch((add<int>), a, b);
 int prod = ihc::collect(mul);
 int sum = ihc::collect(add<int>);
 return sum + prod;
}

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel HLS Compiler Pro Edition Component Invocation Interface Control Attributes on
page 126

13.13.1. ihc::stream Class

Table 43. Intel HLS Compiler Systems of Tasks Streaming Interface Template Summary

Template Object or Parameter Description

ihc::stream Streaming interface to the component or task function.

ihc::buffer Specifies the capacity (in words) of the FIFO buffer on the input data
that associates with the stream.

ihc::usesPackets Exposes the startofpacket and endofpacket sideband signals on
the stream interface.

ihc::stream Template Object

Syntax ihc::stream<datatype, template arguments>

Valid Values Any valid C++ datatype

Default Value N/A

Description Streaming interface to the component or task.

The width of the stream data bus is equal to a width of
sizeof(datatype).

ihc::buffer Template Parameter

Syntax ihc::buffer<value>

Valid Values Non-negative integer value.

Default Value 0

Description The capacity, in words, of the FIFO buffer on the input data that
associates with the stream.

ihc::usesPackets Template Parameter

Syntax ihc::usesPackets<value>

Valid Values true or false

Default Value false

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Exposes the startofpacket and endofpacket sideband signals on
the stream interface, which can be accessed by the packet based
reads/writes.

Intel HLS Compiler System of Tasks Streaming Interface stream Function
APIs

Table 44. Intel HLS Compiler Streaming Input Interface stream Function APIs

Function API Description

T read() Blocking read call to be used from within the component or
task

T read(bool& sop, bool& eop) Available only if usesPackets<true> is set.
Blocking read with out-of-band startofpacket and
endofpacket signals.

T tryRead(bool &success) Non-blocking read call to be used from within the
component or task. The success bool is set to true if the
read was valid.

T tryRead(bool& success, bool& sop, bool&
eop)

Available only if usesPackets<true> is set.
Non-blocking read with out-of-band startofpacket and
endofpacket signals.

void write(T data) Blocking write call from the component or task.

void write(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Blocking write with out-of-band startofpacket and
endofpacket signals.

bool tryWrite(T data) Non-blocking write call from the component or task. The
return value represents whether the write was successful.

bool tryWrite(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Non-blocking write with out-of-band startofpacket and
endofpacket signals.
The return value represents whether the write was
successful.

13.14. Intel HLS Compiler Pro Edition Streaming Input Interfaces

Use the stream_in object and template arguments to explicitly declare Avalon
Streaming (ST) input interfaces. You can also use the stream_in Function APIs.

Table 45. Intel HLS Compiler Pro Edition Streaming Input Interface Template Summary

Template Object or Parameter Description

ihc::stream_in Streaming input interface to the component.

ihc::buffer Specifies the capacity (in words) of the FIFO buffer on the input data
that associates with the stream.

ihc::readyLatency Specifies the number of cycles between when the ready signal is
deasserted and when the input stream can no longer accept new inputs.

ihc::bitsPerSymbol Describes how the data is broken into symbols on the data bus.

ihc::firstSymbolInHighOrderBits Specifies whether the data symbols in the stream are in big endian
order.

continued...

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Object or Parameter Description

ihc::usesPackets Exposes the startofpacket and endofpacket sideband signals on
the stream interface.

ihc::usesEmpty Exposes the empty out-of-band signal on the stream interface.

ihc::usesValid Controls whether a valid signal is present on the stream interface.

ihc::stream_in Template Object

Syntax ihc::stream_in<datatype, template parameters>

Valid Values Any valid C++ datatype

Default Value N/A

Description Streaming input interface to the component.

The width of the stream data bus is equal to a width of
sizeof(datatype).

The testbench must populate this buffer (stream) fully before the
component can start to read from the buffer.

To learn more, review the following tutorials:

• <quartus_installdir>/hls/examples/tutorials/
interfaces/explicit_streams_buffer

• <quartus_installdir>/hls/examples/tutorials/
interfaces/explicit_streams_packets_empty

• <quartus_installdir>/hls/examples/tutorials/
interfaces/explicit_streams_packet_ready_valid

• <quartus_installdir>/hls/examples/tutorials/
interfaces/explicit_streams_ready_latency

• <quartus_installdir>/hls/examples/tutorials/
interfaces/mulitple_stream_call_sites

ihc::buffer Template Parameter

Syntax ihc::buffer<value>

Valid Values Non-negative integer value.

Default Value 0

Description The capacity, in words, of the FIFO buffer on the input data that
associates with the stream. The buffer has latency. It immediately
consumes data, but this data is not immediately available to the logic
in the component.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you use the tryRead() function to access this stream and the
stream read is scheduled within the first cycles of operation, the first
(or more) calls to the tryRead() function might return false in co-
simulation (and therefore in hardware).

Review the function viewer in the Graph Viewer of the High Level
Design Reports to see when operations are scheduled in your
component. If you see this behavior, use the blocking read() function
to ensure consistency between emulation and co-simulation.

This parameter is available only on input streams.

ihc::readyLatency Template Parameter

Syntax ihc::readyLatency<value>

Valid Values Non-negative integer value between 0-8.

Default Value 0

Description The number of cycles between when the ready signal is deasserted
and when the input stream can no longer accept new inputs.

ihc::bitsPerSymbol Template Parameter

Syntax ihc::bitsPerSymbol<value>

Valid Values A positive integer value that evenly divides by the data type size.

Default Value Datatype size

Description Describes how the data is broken into symbols on the data bus.

Data is broken down according to how you set the
ihc::firstSymbolInHighOrderBits declaration. By default, data
is broken down in little endian order.

ihc::firstSymbolInHighOrderBits Template Parameter

Syntax ihc::firstSymbolInHighOrderBits<value>

Valid Values true or false

Default Value false

Description Specifies whether the data symbols in the stream are in big endian
order.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

0A0B0C0D

0A

0B

0C

0D

a

a+1

a+2

a+3

0D

0C

0B

0A

a

a+1

a+2

a+3

Bi
g E

nd
ian

Little Endian

Memory Memory

Stream data

ihc::usesPackets Template Parameter

Syntax ihc::usesPackets<value>

Valid Values true or false

Default Value false

Description Exposes the startofpacket and endofpacket sideband signals on
the stream interface, which can be accessed by the packet based
reads/writes.

ihc::usesEmpty Template Parameter

Syntax ihc::usesEmpty<value>

Valid Values true or false

Default Value false

Description Exposes the empty out-of-band signal on the stream interface.

Use this declaration only with streams that read more than one data
symbol per clock cycle.

The empty signal indicates the number of symbols on the data bus
that do not represent valid data during the final stream read of a
packet.

You can control whether the empty symbols are in the low-order bits
or high-order bits with the ihc::firstSymbolInHighOrderBits
declaration.

ihc::usesValid Template Parameter

Syntax ihc::usesValid<value>

Valid Values true or false

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Default Value true

Description Controls whether a valid signal is present on the stream interface. If
false, the upstream source must provide valid data on every cycle
that ready is asserted.

This is equivalent to changing the stream read calls to tryRead and
assuming that success is always true.

If set to false, buffer and readyLatency must be 0.

Intel HLS Compiler Pro Edition Streaming Input Interface stream_in Function
APIs

Table 46. Intel HLS Compiler Pro Edition Streaming Input Interface stream_in Function
APIs

Function API Description

T read() Blocking read call to be used from within the component

T read(bool& sop, bool& eop) Available only if usesPackets<true> is set.
Blocking read with out-of-band startofpacket and
endofpacket signals.

T read(bool& sop, bool& eop, int& empty) Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking read with out-of-band startofpacket,
endofpacket, and empty signals.

T tryRead(bool &success) Non-blocking read call to be used from within the
component. The success bool is set to true if the read was
valid. That is, the Avalon-ST valid signal was high when
the component tried to read from the stream.
The emulation model of tryRead() is not cycle-accurate,
so the behavior of tryRead() might differ between
emulation and co-simulation.

T tryRead(bool& success, bool& sop, bool&
eop)

Available only if usesPackets<true> is set.
Non-blocking read with out-of-band startofpacket and
endofpacket signals.

T tryRead(bool& success, bool& sop, bool&
eop, int& empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Non-blocking read with out-of-band startofpacket,
endofpacket, and emptysignals.

void write(T data) Blocking write call to be used from the testbench to
populate the FIFO to be sent to the component.

void write(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Blocking write call with out-of-band startofpacket and
endofpacket signals.

void write(T data, bool sop, bool eop, int
empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking write call with out-of-band startofpacket,
endofpacket, and empty signals.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel HLS Compiler Streaming Input Interfaces Code Example

The following code example illustrates both stream_in declarations and stream_in
function APIs.

 // Blocking read
void foo (ihc::stream_in<int> &a) {
 int x = a.read();

}
 // Non-blocking read
void foo_nb (ihc::stream_in<int> &a) {
 bool success = false;
 int x = a.tryRead(success);

 if (success) {
 // x is valid
 }
}

int main() {
 ihc::stream_in<int> a;
 ihc::stream_in<int> b;
 for (int i = 0; i < 10; i++) {
 a.write(i);
 b.write(i);
 }
 foo(a);
 foo_nb(b);
}

13.15. Intel HLS Compiler Pro Edition Streaming Output Interfaces

Use the stream_out object and template arguments to explicitly declare Avalon
Streaming (ST) output interfaces. You can also use the stream_out Function APIs.

Table 47. Intel HLS Compiler Pro Edition Streaming Output Interface Template
Summary

Template Object or Parameter Description

ihc::stream_out Streaming output interface from the component.

ihc::readylatency Specifies the number of cycles between when the ready signal is
deasserted and when the input stream can no longer accept new inputs.

ihc::bitsPerSymbol Describes how the data is broken into symbols on the data bus.

ihc::firstSymbolInHighOrderBits Specifies whether the data symbols in the stream are in big endian
order.

ihc::usesPackets Exposes the startofpacket and endofpacket sideband signals on
the stream interface.

ihc::usesEmpty Exposes the empty out-of-band signal on the stream interface.

ihc::usesReady Controls whether a ready signal is present.

ihc::stream_out Template Object

Syntax ihc::stream_out<datatype, template parameter>

Valid Values Any valid POD (plain old data) C++ datatype.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Default Value N/A

Description Streaming output interface from the component. The testbench can
read from this buffer once the component returns.

To learn more, review the following tutorials:

• <quartus_installdir>/hls/examples/tutorials/
interfaces/ explicit_streams_buffer

• <quartus_installdir>/hls/examples/tutorials/
interfaces/ explicit_streams_packets_empty

• <quartus_installdir>/hls/examples/tutorials/
interfaces/ explicit_streams_packet_ready_valid

• <quartus_installdir>/hls/examples/tutorials/
interfaces/ explicit_streams_ready_latency

• <quartus_installdir>/hls/examples/tutorials/
interfaces/ mulitple_stream_call_sites

ihc::readylatency Template Parameter

Syntax ihc::readylatency<value>

Valid Values Non-negative integer value (between 0-8)

Default Value 0

Description The number of cycles between when the ready signal is deasserted
and when the sink can no longer accept new inputs.

Conceptually, you can view this parameter as an almost ready latency
on the input FIFO buffer for the data that associates with the stream.

ihc::bitsPerSymbol Template Parameter

Syntax ihc::bitsPerSymbol<value>

Valid Values Positive integer value that evenly divides the data type size.

Default Value Datatype size

Description Describes how the data is broken into symbols on the data bus.

Data is broken down according to how you set the
ihc::firstSymbolInHighOrderBits declaration. By default, data
is broken down in little endian order.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ihc::firstSymbolInHighOrderBits Template Parameter

Syntax ihc::firstSymbolInHighOrderBits<value>

Valid Values true or false

Default Value false

Description Specifies whether the data symbols in the stream are in big endian
order.

0A0B0C0D

0A

0B

0C

0D

a

a+1

a+2

a+3

0D

0C

0B

0A

a

a+1

a+2

a+3

Bi
g E

nd
ian

Little Endian

Memory Memory

Stream data

ihc::usesPackets Template Parameter

Syntax ihc::usesPackets<value>

Valid Values true or false

Default Value false

Description Exposes the startofpacket and endofpacket sideband signals on
the stream interface, which can be accessed by the packet based
reads/writes.

ihc::usesEmpty Template Parameter

Syntax ihc::usesEmpty<value>

Valid Values true or false

Default Value false

Description Exposes the empty out-of-band signal on the stream interface.

Use this declaration only with streams that write more than one data
symbol per clock cycle.

The empty signal indicates the number of symbols on the data bus
that do not represent valid data during the final stream write of a
packet.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can control whether the empty symbols are in the low-order bits
or high-order bits with the ihc::firstSymbolInHighOrderBits
declaration.

ihc::usesReady Template Parameter

Syntax ihc::usesReady<value>

Valid Values true or false

Default Value true

Description Controls whether a ready signal is present. If false, the downstream
sink must be able to accept data on every cycle that valid is asserted.
This is equivalent to changing the stream read calls to tryWrite and
assuming that success is always true.

If set to false, readyLatency must be 0.

Intel HLS Compiler Pro Edition Streaming Output Interface stream_out
Function APIs

Table 48. Intel HLS Compiler Pro Edition Streaming Output Interface stream_out
Function APIs

Function API Description

void write(T data) Blocking write call from the component

void write(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Blocking write with out-of-band startofpacket and
endofpacket signals.

void write(T data, bool sop, bool eop, int
empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking write with out-of-band startofpacket,
endofpacket, and empty signals.

bool tryWrite(T data) Non-blocking write call from the component. The return
value represents whether the write was successful.

bool tryWrite(T data, bool sop, bool eop) Available only if usesPackets<true> is set.
Non-blocking write with out-of-band startofpacket and
endofpacket signals.
The return value represents whether the write was
successful. That is, the downstream interface was pulling
the ready signal high while the HLS component tried to
write to the stream.

bool tryWrite(T data, bool sop, bool eop, int
empty)

Available only if usesPackets<true> and
usesEmpty<true> are set.
Non-blocking write with out-of-band startofpacket,
endofpacket, and empty signals. The return value
represents whether the write was successful.

continued...

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function API Description

T read() Blocking read call to be used from the testbench to read
back the data from the component

T read(bool &sop, bool &eop) Available only if usesPackets<true> is set.
Blocking read call to be used from the testbench to read
back the data from the component with out-of-band
startofpacket and endofpacket signals.

T read(bool &sop, bool &eop, int &empty) Available only if usesPackets<true> and
usesEmpty<true> are set.
Blocking read call to be used from the testbench to read
back the data from the component with out-of-band
startofpacket, endofpacket, and empty signals.

Intel HLS Compiler Streaming Output Interfaces Code Example

The following code example illustrates both stream_out declarations and
stream_out function APIs.

// Blocking write
void foo (ihc::stream_out<int> &a) {
 static int count = 0;
 for(int idx = 0; idx < 5; idx ++){
 a.write(count++); // Blocking write
 }
}

// Non-blocking write
void foo_nb (ihc::stream_out<int> &a) {
 static int count = 0;
 for(int idx = 0; idx < 5; idx ++){
 bool success = a.tryWrite(count++); // Non-blocking write
 if (success) {
 // write was successful
 }
 }
}

int main() {
 ihc::stream_out<int> a;
 foo(a); // or foo_nb(a);

 // copy output to an array
 int outputData[5];
 for (int i = 0; i < 5; i++) {
 outputData[idx] = a.read();
 }
}

13.16. Intel HLS Compiler Pro Edition Memory-Mapped Interfaces

Use the mm_master object and template arguments to explicitly declare Avalon
Memory-Mapped (MM) Master interfaces for your component.

Table 49. Intel HLS Compiler Pro Edition Memory-Mapped Interfaces Summary

Template Object or Parameter Description

ihc::mm_master The underlying pointer type.

ihc::dwidth The width of the memory-mapped data bus in bits

continued...

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Object or Parameter Description

ihc::awidth The width of the memory-mapped address bus in bits.

ihc::aspace The address space of the interface that associates with the master.

ihc::latency The guaranteed latency from when a read command exits the
component when the external memory returns valid read data.

ihc::maxburst The maximum number of data transfers that can associate with a read
or write transaction.

ihc::align The alignment of the base pointer address in bytes.

ihc::readwrite_mode The port direction of the interface.

ihc::waitrequest Adds the waitrequest signal that is asserted by the slave when it is
unable to respond to a read or write request.

getInterfaceAtIndex This testbench function is used to index into an mm_master object.

ihc::mm_master Template Object

Syntax ihc::mm_master<datatype, template parameter>

Valid values Any valid C++ datatype

Default Value Default interface for pointer arguments.

Description The underlying pointer type. Pointer arithmetic performed on the
master object conforms to this type. Dereferences of the master
results in a load-store site with a width of sizeof(datatype). The
default alignment is aligned to the size of the datatype.

You can use multiple template arguments in any combination as long
the combination of arguments describes a valid hardware
configuration.

Example:

component int dut(
 ihc::mm_master<int,
 ihc::aspace<2>, ihc::latency<3>,
 ihc::awidth<10>, ihc::dwidth<32>
 > &a)

To learn more, review the following tutorials:

• <quartus_installdir>/hls/examples/tutorials/
interfaces/pointer_mm_master

• <quartus_installdir>/hls/examples/tutorials/
interfaces/mm_master_testbench_operators

ihc::dwidth Template Parameter

Syntax ihc::dwidth<value>

Valid Values 8, 16, 32, 64, 128, 256, 512, or 1024

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Default Value 64

Description The width of the memory-mapped data bus in bits.

ihc::awidth Template Parameter

Syntax ihc::awidth<value>

Valid Values Integer value in the range 1 – 64

Default Value 64

Description The width of the memory-mapped address bus in bits.

This value affects only the width of the Avalon MM Master interface.
The size of the conduit of the base address pointer is always set to 64-
bits.

ihc::aspace Template Parameter

Syntax ihc::aspace<value>

Valid Values Integer value greater than 0.

Default Value 1

Description The address space of the interface that associates with the master.
Each unique value results in a separate Avalon MM Master interface
on your component. All masters with the same address space are
arbitrated within the component to a single interface. As such, these
masters must share the same template parameters that describe the
interface.

ihc::latency Template Parameter

Syntax ihc::latency<value>

Valid Values Non-negative integer value

Default Value 1

Description The guaranteed latency from when a read command exits the
component when the external memory returns valid read data. If this
latency is variable (such as when accessing DRAM), set it to 0.

ihc::maxburst Template Parameter

Syntax ihc::maxburst<value>

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Valid Values Integer value in the range 1 – 1024

Default Value 1

Description The maximum number of data transfers that can associate with a read
or write transaction. This value controls the width of the burstcount
signal.

For fixed latency interfaces, this value must be set to 1.

For more details, review information about burst signals and the
burstcount signal role in "Avalon Memory-Mapped Interface Signal
Roles" in Avalon Interface Specifications.

ihc::align Template Parameter

Syntax ihc::align<value>

Valid Values Integer value greater than the alignment of the datatype

Default Value Alignment of the datatype

Description The alignment of the base pointer address in bytes.

The Intel HLS Compiler uses this information to determine how many
simultaneous loads and stores this pointer can permit.

For example, if you have a bus with 4 32-bit integers on it, you should
use ihc::dwidth<128> (bits) and ihc::align<16> (bytes). This
means that up to 16 contiguous bytes (or 4 32-bit integers) can be
loaded or stored as a coalesced memory word per clock cycle.

Important: The caller is responsible for aligning the data to the set
value for the align argument; otherwise, functional failures
might occur.

ihc::readwrite_mode Template Parameter

Syntax ihc::readwrite_mode<value>

Valid Values readwrite, readonly, or writeonly

Default Value readwrite

Description The port direction of the interface. Only the relevant Avalon master
signals are generated.

ihc::waitrequest Template Parameter

Syntax ihc::waitrequest<value>

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

146

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467948258
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467948258
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Valid Values true or false

Default Value false

Description Adds the waitrequest signal that is asserted by the slave when it is
unable to respond to a read or write request. For more information
about the waitrequest signal, see "Avalon Memory-Mapped
Interface Signal Roles" in Avalon Interface Specifications.

getInterfaceAtIndex Testbench Function

Syntax getInterfaceAtIndex(int index)

Description This testbench function is used to index into an mm_master object. It
can be useful when iterating over an array and invoking a component
on different indicies of the array. This function is supported only in
the testbench.

Code Example int main() {
// …….
for(int idx = 0; idx < N; idx++) {
 dut(src_mm.getInterfaceAtIndex(idx));
}
// …….
}

13.17. Intel HLS Compiler Pro Edition Load-Store Unit Control

For variable-latency Avalon Memory-Mapped (MM) Master interfaces
(ihc::latency<0>), you can control the type of load-store unit (LSU) with the
ihc::lsu template object and the corresponding load() and store() functions.

Table 50. Intel HLS Compiler Pro Edition Load-Store Unit Control Summary

Template
Object/Parameter/Function

Description

ihc::lsu The underlying LSU class template object

ihc::style Specifies the type of load-store unit.

ihc::static_coalescing Explicitly allows or prevents static coalescing of a load/store operation
with other load/store operations.

load Loads data from memory into the LSU.

store Stores data from the LSU into memory.

ihc::lsu Template Object

Syntax ihc::lsu<template arguments>

Valid Values N/A.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

147

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467948258
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467948258
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Default Value N/A.

Description The underlying LSU class object.

To learn more, review the following tutorial:
<quartus_installdir>/hls/examples/tutorials/
best_practices/lsu_control

ihc::style Template Parameter

Syntax ihc::style<LSU_type>

Valid Values LSU_type can be one of the following values:

• BURST_COALESCED

• PIPELINED

Default Value BURST_COALESCED

Description Specifies the type of load-store unit to create.

A burst-coalesced LSU buffers requests until the largest possible burst
can be made.

A pipelined LSU submits requests as they are received.

ihc::static_coalescing Template Parameter

Syntax ihc::static_coalescing<value>

Valid Values true or false

Default Value true

Description Specifies whether to allow or prevent static coalescing of the load/
store operation with other load/store operations.

load Function

Syntax load(<memory_location>)

Parameters The <memory_location> argument specifies the memory location to
load data into the LSU from.

Return Type Object of same type as the base type of the argument specified for
<memory_location>.

Description The load function loads data from a memory location specified by the
<memory_location> argument and returns the data that the argument
points to.

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

store Function

Syntax store(<memory_location>, <value_to_store>)

Parameters The <memory_location> argument specifies the memory location to
store data coming from the LSU.

The <value_to_store> argument is the value from the LSU to store in
memory. The type is the same a the pointer base type.

Return Type None.

Description The store function stores data in the LSU to a memory location
specified by the <memory_location> argument.

13.18. Intel HLS Compiler Pro Edition Arbitrary Precision Data
Types

Table 51. Arbitrary Precision Data Types Supported by the Intel HLS Compiler Pro
Edition

Data Type Intel Header File Description

ac_int HLS/ac_int.h Arbitrary-width integer support
To learn more, review the following tutorials:
• <quartus_installdir>/hls/examples/tutorials/

ac_datatypes/ac_int_basic_ops

• <quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_int_overflow

• <quartus_installdir>/hls/examples/tutorials/
best_practices/struct_interfaces

ac_fixed HLS/ac_fixed.h Arbitrary-precision fixed-point number support
To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/ac_datatypes/ac_fixed_constructor

HLS/
ac_fixed_math.h

Support for some nonstandard math functions for arbitrary-precision
fixed-point data types
To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/ac_datatypes/ac_fixed_math_library

ac_complex HLS/ac_complex.h Complex number support

hls_float HLS/hls_float.h Arbitrary-precision floating-point number support

HLS/
hls_float_math.h

Support for commonly used exponential, logarithmic, power, and
trigonometric functions.
To learn more, review the following tutorials:
• <quartus_installdir>/hls/examples/tutorials/

hls_float/1_reduced_doubl

• <quartus_installdir>/hls/examples/tutorials/
hls_float/2_explicit_arithmetic

• <quartus_installdir>/hls/examples/tutorials/
hls_float/3_conversions

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 52. Intel HLS Compiler ac_int Debugging Tools Summary

Tool Description

DEBUG_AC_INT_WARNING Emits a warning for each detected overflow.

DEBUG_AC_INT_ERROR Emits a message for the first overflow that is detected and then exits the component with
an error.

DEBUG_AC_INT_WARNING ac_int Debugging Tool

Macro Syntax #define DEBUG_AC_INT_WARNING

If you use this macro, declare it in your code before you declare
#include HLS/ac_int.h.

i++ Command
Option Syntax

-D DEBUG_AC_INT_WARNING

Description Enables runtime tracking of ac_int data types during x86
emulation (the -march=x86-64 option, which the default option,
of the i++ command).

This tool uses additional resources for tracking the overflow and
empty constructors, and emits a warning for each detected
overflow.

To learn more, review the tutorial:
<quartus_installdir>/hls/examples/tutorials/
ac_datatypes/ac_int_overflow.

DEBUG_AC_INT_ERROR ac_int Debugging Tool

Macro Syntax #define DEBUG_AC_INT_ERROR

If you use this macro, declare it in your code before you declare
#include HLS/ac_int.h.

i++ Command
Option Syntax

-D DEBUG_AC_INT_ERROR

Description Enables runtime tracking of ac_int data types during x86
emulation of your component (the -march=x86-64 option, which
the default option, of the i++ command).

This tool uses additional resources to track the overflow and empty
constructors, and emits a message for the first overflow that is
detected and then exits the component with an error.

To learn more, review the tutorial: <quartus_installdir>/hls/
examples/tutorials/ac_datatypes/ac_int_overflow

13. Intel High Level Synthesis Compiler Pro Edition Reference Summary

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Advanced Math Source Code Libraries
The Intel HLS Compiler Pro Edition comes with templated source code libraries that
help speed the development of your components by providing you with FPGA-
optimized code for some commonly-used algorithms.

The Intel HLS Compiler provides the following libraries:

Library Description Header file

Random number generator Generate random integers or floating point numbers that
follow a uniform distribution, or random floating point
numbers that follow a Gaussian distribution

HLS/rand_lib.h

Matrix multiplication Multiply two 2-D matrices. HLS/matrix_mult.h

A.1. Random Number Generator Library

The random number generator source code library provided with the Intel HLS
Compiler Pro Edition gives you FPGA-optimized random number generator template
classes that you can add to your component without needing to write your own.

The Random Number Generator Library and Cryptography

The use of these pseudo-random number generator (PRNG) algorithms are not
recommended for cryptographic purposes. The PRNGs included in this library are not
cryptographically-secure pseudo-random number generators (CSPRNGs) and should
not be used for cryptography. CSPRNG algorithms are designed so that no polynomial-
time algorithm (PTA) can compute or predict the next bit in the pseudo-random
sequence, nor is there a PTA that can predict past values of the CSPRNG; these
algorithms do not achieve this purpose. Additionally, these algorithms have not been
reviewed nor are they recommended for use as a PRNG component of a CSPRNG,
even if the input values are from a non-deterministic entropy source with an
appropriate entropy extractor.

Table 53. Properties of Values That Can Be Generated by the Intel HLS Compiler
Random Number Generator Library

Value distribution Value type Value range Generation method

Uniform Integer [-2³¹, 2³¹-1] Tausworthe Generator

Floating point [0, 1) (non-inclusive) Tausworthe Generator

Gaussian Floating point [0, 1) Central limit theorem (CLT)
(Default)

Box-Muller

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Header File

To include the random number generator library in your component, add the following
line to your component:

#include "HLS/rand_lib.h"

The header file is self-documented. You can review the header file to learn how to use
the random number generator library in your component.

Random Number Object Declarations

Declare random number objects in your components as follows. In all cases, specifying
<seed_value> is optional.

• Uniform distribution integer random number

static RNG_Uniform<int> <object_name>(<seed_value>)

• Uniform distribution floating point random number

static RNG_Uniform<float> <object_name>(<seed_value>)

• Gaussian distribution floating point random number (CLT method)

static RNG_Gaussian<float> <object_name>(<seed_value>)

or

static RNG_Gaussian<float, ihc::GAUSSIAN_CLT> <object_name>(<seed_value>)

• Gaussian distribution floating point random number (Box-Muller method)

static RNG_Gaussian<float, ihc::GAUSSIAN_BOX_MULLER>
<object_name>(<seed_value>)

A.2. Matrix Multiplication Library

The matrix multiplication source code library provided with the Intel HLS Compiler Pro
Edition gives you an FPGA-optimized templatized source code library to perform
matrix multiplication of two matrices stored in a 2-D array.

When you use the matrix multiplication library, you can affect the number of DSP
blocks and RAM blocks by controlling the dot product vector size and the number of
matrix elements read at one time. Increasing the dot product vector size can achieve
better latency, but at the cost of using more DSP blocks and other FPGA resources.

Header File

To include the matrix multiplication library in your component, add the following line
to your component:

#include "HLS/matrix_mult.h"

The header file is self-documented. You can review the header file to learn how to use
the matrix multiplication library in your component.

A. Advanced Math Source Code Libraries

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Arguments

The matrix multiplication library multiplies two 2-D matrices, A and B. The resulting
product is returned in a third matrix, C. The matrix multiplication library has the
following template arguments:

T The data type of the matrix elements (For example, int,
float, long, double).

t_rowsA The number of rows in matrix A.

t_colsA The number of columns in matrix A. This value also the
number of rows in matrix B.

t_colsB The number of columns in matrix B.

DOT_VEC_SIZE The number of DSP blocks to use in a single computation.
This value must be a factor of t_colsA.

You can achieve better component latency by increasing this
value. However, you use more FPGA area to achieve this.
Keeping this value low lowers your FPGA resource usage,
but increases the latency.

BLOCK_SIZE The number of elements to read at one time from matrix A.
The default value of BLOCK_SIZE is the value of
DOT_VEC_SIZE. You can reduce this number if the
bandwidth needed by matrix A is lower than the value of
DOT_VEC_SIZE, but it must remain a factor of
DOT_VEC_SIZE.

RUNNING_SUM_MULT_L This parameter can be adjusted to try and improve the fMAX
of a component that uses this library. Review the header file
for a detailed description of this argument and its effects.

A. Advanced Math Source Code Libraries

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B. Supported Math Functions
The Intel HLS Compiler has built-in support for generating efficient IP out of standard
math functions present in the math.h C header file. The compiler also has support for
some math functions that are not supported by the math.h header file, and these
functions are provided in extendedmath.h C header file.

To use the Intel implementation of math.h for Intel FPGAs, include HLS/math.h in
your function by adding the following line:

#include "HLS/math.h"

To use the nonstandard math functions that are optimized for Intel FPGAs, include
HLS/extendedmath.h in your function by adding the following line:

#include "HLS/extendedmath.h"

The extendedmath.h header is compatible only with Intel HLS Compiler. It is not
compatible with GCC or Microsoft Visual Studio.

If your component uses arbitrary precision fixed-point datatypes provided in the
ac_fixed.h header, you use some of the datatypes with some math functions by
including the following line:

#include "HLS/ac_fixed_math.h"

To see examples of how to use the math functions provided by these header files,
review the following tutorial: <quartus_installdir>/hls/examples/
tutorials/best_practices/single_vs_double_precision_math.

If your component uses the hls_float arbitrary precision floating point data type,
add the following line to add support for math functions:

#include "HLS/hls_float_math.h"

B.1. Math Functions Provided by the math.h Header File

The Intel HLS Compiler Pro Edition supports a subset of functions that are present in
your native compiler through the HLS/math.h header file.

For each math.h function listed below, "●" indicates that the HLS compiler supports
the function; "X" indicates that the function is not supported.

The math functions supported on Linux operating systems might differ from the math
functions supported on Windows operating systems. Review the comments in the
HLS/math.h header file to see which math functions are supported on the different
operating systems.

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Table 54. Trigonometric Functions

Trigonometric Function Supported
?

Double-precision floating point function Single-precision floating point function

cos cosf ●

sin sinf ●

tan tanf ●

acos acosf ●

asin asinf ●

atan atanf ●

atan2 atan2f ●

Table 55. Hyperbolic Functions

Hyperbolic Function Supported
?

Double-precision floating point function Single-precision floating point function

cosh coshf ●

sinh sinhf ●

tanh tanhf ●

acosh acoshf ●

asinh asinhf ●

atanh atanhf ●

Table 56. Exponential and Logarithmic Functions

Exponential or Logarithmic Function Supported
?

Double-precision floating point function Single-precision floating point function

exp expf ●

frexp frexpf ●

ldexp ldexpf ●

log logf ●

log10 log10f ●

modf modff ●

exp2 exp2f ●

exp10 (Linux only) exp10f (Linux only)(*) ●

expm1 expm1f ●

ilogb ilogbf ●

log1p log1pf ●

log2 log2f ●

continued...

(*) For Windows, support for this function is in the extendedmath.h header file

B. Supported Math Functions

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exponential or Logarithmic Function Supported
?

Double-precision floating point function Single-precision floating point function

logb logbf ●

scalbn scalbnf X

scalbln scalblnf X

Table 57. Power Functions

Power Function Supported
?

Double-precision floating point function Single-precision floating point function

pow powf ●

sqrt sqrtf ●

cbrt cbrtf ●

hypot hypotf ●

Table 58. Error and Gamma Functions

Error or Gamma Function Supported
?

Double-precision floating point function Single-precision floating point function

erf erff ●

erfc erfcf ●

tgamma tgammaf ●

lgamma lgammaf ●

lgamma_r (Linux only)(*) lgamma_rf (Linux only)(*) ●

Table 59. Rounding and Remainder Functions

Rounding or Remainder Function Supported
?

Double-precision floating point function Single-precision floating point function

ceil ceilf ●

floor floorf ●

fmod fmodf ●

trunc truncf ●

round roundf ●

lround lroundf X

llround llroundf X

rint rintf ●

lrint lrintf X

llrint llrintf X

nearbyint nearbyintf X

remainder remainderf ●

remquo remquof ●

B. Supported Math Functions

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 60. Floating-Point Manipulation Functions

Floating-Point Manipulation Function Supported
?

Double-precision floating point function Single-precision floating point function

copysign copysignf ●

nan nanf X

nextafter nextafterf ●

nexttoward nexttowardf X

Table 61. Minimum, Maximum, and Difference Functions

Minimum, Maximum, or Difference Function Supported
?

Double-precision floating point function Single-precision floating point function

fdim fdim ●

fmax fmax ●

fmin fmin ●

Table 62. Other Functions

Function Supported
?

Double-precision floating point function Single-precision floating point function

fabs fabsf ●

fma fmaf ●

Table 63. Classification Macros

Classification Macro Supported
?

Double-precision floating point function Single-precision floating point function

fpclassify (Linux only) fpclassifyf (Linux only) ●

isfinite isfinitef ●

isinf isinff ●

isnan isnanf ●

isnormal (Linux only) isnormalf (Linux only) ●

signbit (Linux only) signbitf (Linux only) ●

Table 64. Comparison Macros

Comparison Macro Supported
?

Double-precision floating point function Single-precision floating point function

isgreater isgreaterf X

isgreaterequal isgreaterequalf X

isless islessf X

continued...

B. Supported Math Functions

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Comparison Macro Supported
?

Double-precision floating point function Single-precision floating point function

islessequal islessequalf X

islessgreater islessgreaterf X

isunordered (Linux only) isunorderedf (Linux only) ●

B.2. Math Functions Provided by the extendedmath.h Header File

The Intel HLS Compiler Pro Edition supports an additional subset of math functions
through the HLS/extendedmath.h header file.

For each extendedmath.h function listed below, "●" indicates that the Intel HLS
Compiler Pro Edition supports the function; "X" indicates that the function is not
supported.

The math functions supported on Linux operating systems might differ from the math
functions supported on Windows operating systems. Review the comments in the
HLS/extendedmath.h header file to see which math functions are supported on the
different operating systems.

Table 65. Extended Math Functions

Extended Math Functions Supported
?

Double-precision floating point function Single-precision floating point function

sincos sincosf ●

acospi acospif ●

asinpi asinpif ●

atanpi atanpif ●

cospi cospif ●

sinpi sinpif ●

tanpi tanpif ●

pown pownf ●

powr powrf ●

rsqrt rsqrtf ●

Table 66. Exponential and Logarithmic Functions

Exponential or Logarithmic Function Supported
?

Double-precision floating point function Single-precision floating point function

exp10 (Windows only) exp10f (Windows only) (*) ●

(*) For Linux, support for this function is in the math.h header file

B. Supported Math Functions

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 67. Error and Gamma Functions

Error or Gamma Function Supported
?

Double-precision floating point function Single-precision floating point function

lgamma_r (Windows only)(*) lgamma_rf (Windows only)(*) ●

Table 68. Minimum, Maximum, and Difference Functions

Minimum, Maximum, or Difference Function Supported
?

Double-precision floating point function Single-precision floating point function

maxmag maxmagf ●

minmag minmagf ●

Table 69. Other Functions

Function Supported
?

Double-precision floating point function Single-precision floating point function

fract fractf ●

mad madf ●

oclnan oclnanf ●

rootn rootnf ●

Table 70. Classification Macros

Classification Macro Supported
?

Double-precision floating point function Single-precision floating point function

isordered isorderedf ●

In addition, the HLS/extendedmath.h header file supports the following versions of
the popcount function:

Table 71. Popcount function

Data type Function

Unsigned char popcountc

Unsigned short popcounts

Unsigned int popcount

Unsigned long popcountl

Unsigned long long popcountll

To see an example of how to use the math functions provided by the
extendedmath.h header file and how to override a math function in the header file
so that you can compile your design with GCC or Microsoft Visual Studio, review the
following example design: <quartus_installdir>/hls/examples/QRD.

B. Supported Math Functions

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B.3. Math Functions Provided by the ac_fixed_math.h Header File

Adding the ac_fixed_math.h header file adds support for the following arbitrary
precision fixed-point (ac_fixed) datatype functions:

• sqrt_fixed

• reciprocal_fixed

• reciprocal_sqrt_fixed

• sin_fixed

• cos_fixed

• sincos_fixed

• sinpi_fixed

• cospi_fixed

• sincospi_fixed

• log_fixed

• exp_fixed

For details about inputs type restrictions, input value limits, and output type
propagation rules, review the comments in the ac_fixed_math.h header file.

B.4. Math Functions Provided by the hls_float.h Header File

Adding the hls_float.h header file adds support for the following arbitrary precision
floating point (hls_float.h) data type functions:

• Arithmetic operators: +,-, *,/

• Arithmetic assignment operators: =, +=, -=, *=, /=

• Comparison operators: >, <, ==, !=, >=, <=

• Unary operators: +(), -(), abs()

• Explicit functions: add(a, b), sub(a, b), mul(a, b), div(a, b)

B.5. Math Functions Provided by the hls_float_math.h Header File

Adding the hls_float_math.h header file adds support for the following arbitrary
precision floating point (hls_float_math.h) data type functions:

• square root: ihc_sqrt

• cube root: ihc_cbrt

• reciprocal (inverse): ihc_recip

• reciprocal (inverse) square root: ihc_rsqrt

• hypotenuse: ihc_hypot

• ex: ihc_exp

• ex-1: ihc_expm1

• 2x: ihc_exp2

B. Supported Math Functions

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• 10x: ihc_exp10

• ln(x): ihc_log

• log2(x): ihc_log2

• log10(x): ihc_log10

• ln(1+x): ihc_log1p

• xy: ihc_pow

Both x and y are hls_float data types

• xn: ihc_pown

x is hls_float data type, n is ac_int data type

• xy: ihc_powr

Both x and y are hls_float data types. With the restriction that x>=0 -> x^y,
x>=0, undefined behavior if x < 0

• sin: ihc_sin

• sinpi: ihc_sinpi

• cos: ihc_cos

• cospi: ihc_cospi

• sincos: ihc_sincos

• sincospi: ihc_sincospi

• arcsin: ihc_asin

• arcsinpi: ihc_asinpi

• arccos: ihc_acos

• arccospi: ihc_acospi

• arctan: ihc_atan

• arctanpi: ihc_atanpi

• arctan(x/y): ihc_atan2

Both x and y are hls_float data types

For details about inputs type restrictions, input value limits, and output type
propagation rules, review the comments in the hls_float_math.h header file.

B. Supported Math Functions

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

C. Intel HLS Compiler Pro Edition Reference Manual
Archives

Intel HLS Compiler
Version

Title

19.4 Intel HLS Compiler Pro Edition Reference Manual

19.3 Intel HLS Compiler Reference Manual

19.2 Intel HLS Compiler Reference Manual

19.1 Intel HLS Compiler Reference Manual

18.1.1 Intel HLS Compiler Reference Manual

18.1 Intel HLS Compiler Reference Manual

18.0 Intel HLS Compiler Reference Manual

17.1.1 Intel HLS Compiler Reference Manual

17.1 Intel HLS Compiler Reference Manual

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-19-4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-19-3.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-19-2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-18-1-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-18-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-18-0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-17-1-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/archives/mnl-hls-reference-17-1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

D. Document Revision History of the Intel HLS Compiler
Pro Edition Reference Manual

Document Version Intel HLS
Compiler Pro

Edition Version

Changes

2020.02.10 19.4 • Corrected the syntax of the ihc::launch_always_run system of
tasks API function in Systems of Tasks API on page 130.

2020.01.27 19.4 • Corrected the spelling of the -ffp-contract=fast and -ffp-
reassoc command options in the following sections:
— Intel HLS Compiler Pro Edition Command Options on page 7
— Intel HLS Compiler Pro Edition i++ Command-Line Arguments on

page 104
— Intel HLS Compiler Pro Edition Scope Pragmas on page 123

2019.12.16 19.4 • Removed information about Intel HLS Compiler Standard Edition.
For reference information for the Intel HLS Compiler Standard Edition,
see Intel HLS Compiler Standard Edition Reference Manual.

• Added ihc::launch_always_run to Systems of Tasks API on page
130.

• Added descriptions of --daz and --rounding command options to
Intel HLS Compiler Pro Edition Command Options on page 7 and Intel
HLS Compiler Pro Edition i++ Command-Line Arguments on page 104

• Updated Operators and Return Types Supported by the hls_float Data
Type on page 69 with addition details about type conversion to and
from the hls_float data type.

• Added Creating an Object Library on page 84.
• Updated Object Manifest File Syntax on page 92 with information about

resetn signal handling.
• Renamed Intel HLS Compiler Pro Edition Quick Reference to Intel HLS

Compiler Pro Edition Reference Summary.

Document Revision History for Intel HLS Compiler Reference Manual

Previous versions of the Intel HLS Compiler Reference Manual contained information
for both Intel HLS Compiler Standard Edition and Intel HLS Compiler Pro Edition.

Document Version Intel Quartus
Prime Version

Changes

2019.09.30 19.3 •
 Expanded and reorganized information about HLS libraries into

a new chapter that starts with Object Libraries on page 83.
•

 Added information about arbitrary precision floating point
number support to Declaring hls_float Data Types on page 67.

•
 Added Intel HLS Compiler Pro Edition Scope Pragmas on page

123.

continued...

MNL-1083 | 2020.02.10

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/apo1572388959915.html#aea1572906832329
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version Intel Quartus
Prime Version

Changes

•
 For variable-latency Avalon Memory-Mapped (MM) Master

interfaces, added information about load-store unit control to Intel HLS
Compiler Pro Edition Load-Store Unit Control on page 147.

•
 Added the --ffp-reassoc and --ffp-contract=fast

options to Intel HLS Compiler Pro Edition i++ Command-Line
Arguments on page 104

• Revised Component Memories (Memory Attributes) on page 41
(formerly Local Variables in Components).

•
 Added information about the hls_max_replicates memory

attribute to the following sections:
— Component Memories (Memory Attributes) on page 41
— Intel HLS Compiler Pro Edition Component Memory Attributes on

page 112
•

 Deprecated the hls_numports_readonly_writeonly
memory attribute throughout this document. Use
hls_max_replicates instead.

•
 Added information about the max_interleaving loop pragma

to the following sections:
— Loop Interleaving Control (max_interleaving Pragma) on page 57
— Intel HLS Compiler Pro Edition Loop Pragmas on page 118

•
 Added information about the hls_fpga_reg function to

Advanced Hardware Synthesis Controls on page 102.
•

 Removed the restriction that task functions cannot have pointer
or reference arguments from Task Functions on page 75.

• In Intel HLS Compiler Pro Edition Component Memory Attributes on
page 112, revised the description of the default value of the
hls_bankbits memory attribute.

• In Intel HLS Compiler Pro Edition Component Memory Attributes on
page 112, removed references to the bank_bits tutorial. This tutorial
has been removed.

2019.09.10 19.2 • Corrected typo in the description of the -c option in Intel HLS Compiler
Pro Edition Command Options on page 7. The sentence that began,
"When you later compile the.o file..." has been corrected to say,
"When you later link the .o file".

2019.07.01 19.2 •
 Added information about datapath pipelining control to the

following sections:
— Loop Pipelining Control (disable_loop_pipelining Pragma) on page

56
— Intel HLS Compiler Pro Edition Loop Pragmas on page 118
— Component Pipelining Control (hls_disable_component_pipelining

Attribute) on page 59
— Intel HLS Compiler Pro Edition Component Attributes on page 124

• Revised and update the following topics about supported math
functions:
— Math Functions Provided by the math.h Header File on page 154
— Math Functions Provided by the extendedmath.h Header File on

page 158

continued...

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2019.06.04 19.1 •
 In Slave Memories on page 36, clarified the use of memory

attributes for slave memories.
• In Component Memories (Memory Attributes) on page 41, clarified

memory attributes support in Intel HLS Compiler Pro Edition and Intel
HLS Compiler Standard Edition.

2019.05.03 19.1 •
 Added information about the

ihc_hls_set_component_wait_cycle testbench API function to
the following sections:
— System of Tasks Simulation on page 81
— Intel HLS Compiler Pro Edition Simulation API (Testbench Only) on

page 110
• Updated diagrams in Task Functions on page 75.
• Updated diagram in Intel HLS Compiler Pipeline Approach on page 13.
• Updated diagram in Creating Objects From RTL Code on page 87.
• Updated diagram in Integration of an RTL Module into the HLS Pipeline

on page 89.

2019.04.01 19.1 •
 Added information about developing your system with HLS

tasks in Systems of Tasks on page 75.
•

 Added information about templated and overloaded functions in
Templated and Overloaded Functions on page 17.

•
 Added information about arbitrary precision complex number

(ac_complex) support to Arbitrary Precision Math Support on page 61.
• Updated Compiler Interoperability on page 11 with details about how to

use GCC and Microsoft Visual Studio to compile your component.
• Added information about the compiler pipeline approach in Intel HLS

Compiler Pipeline Approach on page 13.
• In Intel HLS Compiler Pro Edition Command Options on page 7,

corrected --gcc-toolchain option syntax.
• In Intel HLS Compiler Pro Edition Command Options on page 7,

updated the description of the --quartus-compile to indicate that
your component is not expected to close timing when you compile your
component with this option.

• Updated the following sections with information about the --hyper-
optimized-handshakingoption of the i++ command:
— Intel HLS Compiler Pro Edition Command Options on page 7
— Intel HLS Compiler Pro Edition i++ Command-Line Arguments on

page 104
• Updated Loop-Carried Dependencies (ivdep Pragma) on page 50 to

indicate that arrays specified by the ivdep loop pragma can now be a
reference a reference to an mm_master object.

• Revised and reorganized Intel High Level Synthesis Compiler Pro
Edition Reference Summary on page 104.

• In Declaring ac_int Data Types on page 63, revised the advice for
initializing an ac_int variable to a value larger than 64 bits. To
initialize this size of ac_int variable, use the bit_fill or
bit_fill_hex utility functions.

2019.01.03 18.1.1 • Fixed typos in table headings in Compiler-Defined Preprocessor Macros
on page 19.

2018.12.24 18.1.1 • Removed information about the "HLS/iostream" header file. The
function provided by this header file is replaced by using the standard C
++ iostream header and the HLS_SYNTHESIS macro.

• Added description of the HLS_SYNTHESIS macro to C and C++
Libraries on page 15.

continued...

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2018.12.24 18.1 • Updated Slave Interfaces on page 33 and Quick Reference with
information about slave memory reads and writes that come from
outside of the component.

• Added information about conduit creation and address spaces to Avalon
Memory-Mapped Master Interfaces on page 25.

2018.09.24 18.1 •
 The Intel HLS Compiler has a new front end. For a summary of

the changes introduced by this new front end, see Improved Intel HLS
Compiler Front End in the Intel HLS Compiler Version 18.1 Release
Notes.

•
 The --promote-integers flag and the best_practices/

integer_promotion tutorial are no longer supported in Pro Edition
because integer promotion is now done by default. The flag and tutorial
are still supported in Standard Edition.

• Components invoked with the hls_avalon_slave_component
argument must take slave or stable arguments. If the component
arguments are not slave or stable arguments, compiling the component
generates an error message. The description of the
hls_avalon_slave_component argument in Component Invocation
Interface Control Attributes on page 37 and Quick Reference now
reflects that requirement.

• In Loops in Components on page 48, clarified the pragma statements
that apply to loops must immediately precede the loop that the pragma
applies to.

• In Declaring ac_int Data Types on page 63, added initialization
requirement for ac_int variables larger than 64 bits. You must use
ac::init_array constructors to initialize ac_int variables larger
than 64 bits.

• In Static Variables on page 46, removed the restriction on applying
memory attributes to file-scoped static variables. Both file-scoped and
function-scoped static variables can have memory attributes applied to
them.

2018.07.08 18.0 • In Static Variables on page 46, highlighted paragraph that says that
memory attributes applied to static variables work only if the static
variable is declared within the component function.

• In Control and Status Register (CSR) Slave on page 34, corrected a
typo. The sentence " You do not need to use the
hls_avalon_slave_component attribute to use the
hls_avalon_slave_component attribute" was corrected to say "You
do not need to use the hls_avalon_slave_component attribute to
use the hls_avalon_slave_register_argument attribute".

2018.05.07 18.0 • Starting with Intel Quartus Prime Version 18.0, the features and
devices supported by the Intel HLS Compiler depend on what edition of
Intel Quartus Prime you have. Intel HLS Compiler publications now use
icons to indicate content and features that apply only to a specific
edition as follows:

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Pro Edition.

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Standard
Edition.

•
 Corrected the code example in Intel HLS Compiler Streaming

Input Interfaces Code Example. The corrected line is int x =
a.tryRead(success); (was int x = a.tryRead(&success);).

continued...

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

166

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn-hls-18-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn-hls-18-1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

•
 Added <quartus_installdir>/hls/examples/

tutorials/interfaces/ explicit_streams_packets_empty to
list of tutorials in Table 45 on page 134 and Quick Reference.

•
 Added ihc::firstSymbolInHighOrderBits and

ihc::usesEmpty to the list of stream interface declarations in Table
45 on page 134 and Quick Reference. Also, revised the description of
the ihc::bitsPerSymbol declaration to include the effect of the
ihc::firstSymbolInHighOrderBits declaration.

•
 Added a footnote to the -march MAX10 option in Command

Options about a prerequisite required before you synthesize your
component IP for Intel MAX® 10 devices.

• Added new topic AC Data Types and Native Compilers on page 67
describing use of reference AC datatype headers with the Intel HLS
Compiler.

• Advanced Math Source Code Libraries on page 151 added to document
Intel HLS Compiler libraries. The following Intel HLS Compiler libraries
were added:
—

 Random Number Generator Library on page 151
—

 Matrix Multiplication Library on page 152

2017.12.22 17.1.1 • Updated hls_avalon_slave_memory_argument(N) description in
Slave Memories on page 36 to include the description that the
parameter value N is the size of the memory in bytes.

• Updated Table 19 on page 65 and Table 52 on page 150 to indicate that
the ac_int debug macros have the following restrictions:
— You must declare the macros in your code before you declare

#include HLS/ac_int.h.
— The ac_int debugging tools work only for x86 emulation of your

component.
• Updated -march "<FPGA_family>" options in Intel HLS Compiler Pro

Edition Command Options on page 7 to include FPGA family options
without a space.

• Revised the description of the ihc::align argument in ihc::align
Template Parameter on page 146 in Quick Reference. The same
information also appears in Avalon Memory-Mapped Master Interfaces
on page 25.

2017.11.06 17.1 • Updated Intel HLS Compiler Pro Edition Command Options on page 7 as
follows:
— Revised description of -c i++ command option.
— Added descriptions of the --x86-only and --fpga-only i++

command options.
• Updated Supported Math Functions on page 154 as follows:

— Noted that the HLS/extendedmath.h header file is supported only
by the Intel HLS Compiler, not by the GCC or MSVC compilers.

— Added popcount to the list functions supported by the HLS/
extendedmath.h header file.

— Expanded list of functions provided by HLS/extendedmath.h to
explicitly list double-precision and single-precision floating point
versions of the functions.

— Added a list of popcount function variations available for different
data types.

• Updated Arbitrary Precision Math Support on page 61 to include
restriction that the Intel arbitrary precision header files cannot be
compiled with GCC.

continued...

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

167

https://www.intel.com/content/www/us/en/programmable/documentation/apo1572388959915.html#hwe1572907388410#table_pqn_rpt_xv
https://www.intel.com/content/www/us/en/programmable/documentation/apo1572388959915.html#hwe1572907388410#table_pqn_rpt_xv
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added the ihc::readwrite_mode Avalon-MM interface to Avalon
Memory-Mapped Master Interfaces on page 25 and Quick Reference.

• Added the ihc::waitrequest Avalon-MM interface to Avalon
Memory-Mapped Master Interfaces on page 25 and Quick Reference.

• Added the hls_stall_free_return macro and
stall_free_return attribute to Unstable and Stable Component
Parameters on page 38 and Quick Reference.

• Reorganized the overall structure of the book, breaking up chapter 1
into smaller chapters and changing the order of the chapters.

• Updated mentions of the HLS or i++ installation directory to use the
Intel Quartus Prime Design Suite installation directory as the starting
point.

• Moved the following content to Intel High Level Synthesis Compiler Best
Practices Guide:
— Moved "Avoid Pointer Aliasing" section to "Avoid Pointer Aliasing".

2017.06.23 — • Updated Static Variables on page 46 to add information about static
variable initialization and how to control it.

• Minor changes and corrections.

2017.06.09 — • Revised Declaring ac_int Data Types on page 63 for changes in how to
include ac_int.h.

• Revised Arbitrary Precision Math Support on page 61 to clarify support
for Algorithmic C datatypes.

• Removed all mentions of --device compiler option. This option has
been replaced by the changed function of the -march compiler option.
See Table 3 on page 7 for details about the changed function of the -
march compiler option.

• Updated the generated C header file for the component mycomp_xyz in
Control and Status Register (CSR) Slave on page 34.

• Added information about structs in component interfaces to Component
Interfaces on page 20.

• Revised C and C++ Libraries on page 15 with updates to iostream
behavior.

• Added information about math functions supported by
extendedmath.h header file to Supported Math Functions on page
154.

2017.02.03 — • In Scalar Parameters and Avalon Streaming Interfaces, updated
information in the Available Scalar Parameters for Avalon-ST Interfaces
table.

• In Pointer Parameters, Reference Parameters, and Avalon Memory-
Mapped Master Interfaces, updated information in the Available
Template Arguments for Configuration of the Avalon-MM Interface
table.

• Added new information to Global Variables about area usage and
optimizing for global constants, pointers, and variables.

2016.11.30 — • In HLS Compiler Command Options, modified the table Command
Options that Customize Compilation in the following manner:
— Removed the --rtl-only command option and its description

because it is no longer in use.
— Added the --simulator <name> command option and its

description.
— Remove the -g command option because the HLS compiler now

generates debug information in reports by default for both Windows
and Linux. In addition, debug data is available by default in final
binaries for Linux.

• In Pointer Parameters, Reference Parameters, and Avalon Memory-
Mapped Master Interfaces, added information on the
altera::align<value> template argument in the table.

continued...

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Intel High Level Synthesis Compiler Pro Edition: Reference Manual Send Feedback

168

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#mcs1496429998674
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added the topics Memory-Mapped Test Bench Constructor and Implicit
and Explicit Examples of Creating a Memory-Mapped Master Test
Bench.

• In Usage Examples of Component Invocation Protocol Macros, replaced
component invocation protocol attributes in the code examples with
their corresponding macros.

• Added the line #include "HLS/hls.h" to the code snippets in the
following sections:
— Usage Examples of Interface Synthesis Macros
— Usage Examples of Component Invocation Protocol Macros

• Added the topic Arbitrary Precision Integer Support to introduce the
ac_int datatype and the Intel-provided ac_int.h header file.
Included the following subtopics:
— Defining the ac_int Datatype in Your Component for Arbitrary

Precision Integer Support
— Important Usage Information on the ac_int Datatype

• Updated the content in Area Minimization and Control of On-Chip
Memory Architecture:
— Replaced the numreadports(n) and numwriteports(n) entries

the Attributes for Controlling On-Chip Memory Architecture table
with a single numports_readonly_writeonly(m,n) entry.

— Added information on the hls_simple_dual_port_memory
macro.

— Added information on the hls_merge ("label","direction")
and the hls_bankbits(b0, b1, ..., bn) attributes.

• Added example use cases for the
hls_merge("label","direction") and the hls_bankbits(b0,
b1, ..., bn) attributes.

• Added the topic Relationship between hls_bankbits Specifications and
Memory Address Bits to explain the derivation of a memory address in
the presence of the hls_bankbits and hls_bankwidth attributes.

2016.09.12 — Initial release.

D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

MNL-1083 | 2020.02.10

Send Feedback Intel High Level Synthesis Compiler Pro Edition: Reference Manual

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Pro%20Edition%20Reference%20Manual%20(MNL-1083%202020.02.10)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel High Level Synthesis Compiler Pro Edition: Reference Manual
	Contents
	1. Intel® HLS Compiler Pro Edition Reference Manual
	2. Compiler
	2.1. Intel HLS Compiler Pro Edition Command Options
	2.2. Using Libraries in Your Component
	2.3. Compiler Interoperability
	2.4. Intel HLS Compiler Pipeline Approach

	3. C Language and Library Support
	3.1. Supported C and C++ Subset for Component Synthesis
	3.2. C and C++ Libraries
	3.3. Templated and Overloaded Functions
	3.3.1. Templated Functions
	3.3.2. Overloaded Functions
	3.3.3. Function Name Mapping

	3.4. Compiler-Defined Preprocessor Macros

	4. Component Interfaces
	4.1. Component Invocation Interface
	4.1.1. Scalar Parameters
	4.1.2. Pointer and Reference Parameters
	4.1.3. Interface Definition Example: Component with Both Scalar and Pointer Arguments

	4.2. Avalon Streaming Interfaces
	4.3. Avalon Memory-Mapped Master Interfaces
	4.3.1. Memory-Mapped Master Testbench Constructor
	4.3.2. Implicit and Explicit Examples of Describing a Memory Interface
	4.3.3. Avalon Memory-Mapped Master Interfaces and Load-Store Units
	4.3.3.1. Load-Store Unit Types
	4.3.3.2. Memory-Access Coalescing and Load-Store Units

	4.4. Slave Interfaces
	4.4.1. Control and Status Register (CSR) Slave
	4.4.2. Slave Memories

	4.5. Component Invocation Interface Control Attributes
	4.6. Unstable and Stable Component Parameters
	4.7. Global Variables
	4.8. Structs in Component Interfaces
	4.9. Reset Behavior

	5. Component Memories (Memory Attributes)
	5.1. Static Variables

	6. Loops in Components
	6.1. Loop Initiation Interval (ii Pragma)
	6.2. Loop-Carried Dependencies (ivdep Pragma)
	6.3. Loop Coalescing (loop_coalesce Pragma)
	6.4. Loop Unrolling (unroll Pragma)
	6.5. Loop Concurrency (max_concurrency Pragma)
	6.6. Loop Iteration Speculation (speculated_iterations Pragma)
	6.7. Loop Pipelining Control (disable_loop_pipelining Pragma)
	6.8. Loop Interleaving Control (max_interleaving Pragma)

	7. Component Concurrency
	7.1. Serial Equivalence within a Memory Space or I/O
	7.2. Concurrency Control (hls_max_concurrency Attribute)
	7.3. Component Pipelining Control (hls_disable_component_pipelining Attribute)

	8. Arbitrary Precision Math Support
	8.1. Declaring ac_int Data Types
	8.1.1. Important Usage Information on the ac_int Data Type

	8.2. Integer Promotion and ac_int Data Types
	8.3. Debugging Your Use of the ac_int Data Type
	8.4. Declaring ac_fixed Data Types
	8.5. Declaring ac_complex Data Types
	8.6. AC Data Types and Native Compilers
	8.7. Declaring hls_float Data Types
	8.7.1. Operators and Return Types Supported by the hls_float Data Type

	9. Component Target Frequency
	10. Systems of Tasks
	10.1. Task Functions
	10.2. Internal Streams
	10.3. System of Tasks Simulation

	11. Libraries
	11.1. Object Libraries
	11.2. Creating an Object Library
	11.3. Creating Objects From HLS Code
	11.3.1. Creating an Object File From HLS Code
	11.3.2. Supported OpenCL Language Constructs

	11.4. Creating Objects From RTL Code
	11.4.1. RTL Modules and the HLS Pipeline
	11.4.1.1. Integration of an RTL Module into the HLS Pipeline
	11.4.1.2. RTL Module Interfaces
	11.4.1.3. RTL Reset and Clock Signals
	11.4.1.3.1. Intel Stratix 10 Design-Specific Reset Requirements for Stall-Free and Stallable RTL Modules

	11.4.1.4. Object Manifest File Syntax
	11.4.1.4.1. XML Elements for ATTRIBUTES
	11.4.1.4.2. XML Elements for INTERFACE
	11.4.1.4.3. XML Elements for RESOURCES

	11.4.1.5. Mapping HLS Datatypes to RTL Signals
	11.4.1.6. HLS Emulation Models for RTL-Based Functions
	11.4.1.7. Potential Incompatibility between RTL Modules and Partial Reconfiguration
	11.4.1.8. Stall-Free RTL
	11.4.1.9. RTL Module Restrictions and Limitations for HLS Libraries

	11.4.2. Creating an HLS-Library Object File from an RTL Module

	11.5. Packaging Object Files Into a Library

	12. Advanced Hardware Synthesis Controls
	12.1. The hls_fpga_reg() Function

	13. Intel High Level Synthesis Compiler Pro Edition Reference Summary
	13.1. Intel HLS Compiler Pro Edition i++ Command-Line Arguments
	13.2. Intel HLS Compiler Pro Edition Header Files
	13.3. Compiler-Defined Preprocessor Macros
	13.4. Intel HLS Compiler Pro Edition Keywords
	13.5. Intel HLS Compiler Pro Edition Simulation API (Testbench Only)
	13.6. Intel HLS Compiler Pro Edition Component Memory Attributes
	13.7. Intel HLS Compiler Pro Edition Loop Pragmas
	13.8. Intel HLS Compiler Pro Edition Scope Pragmas
	13.9. Intel HLS Compiler Pro Edition Component Attributes
	13.10. Intel HLS Compiler Pro Edition Component Default Interfaces
	13.11. Intel HLS Compiler Pro Edition Component Invocation Interface Control Attributes
	13.12. Intel HLS Compiler Pro Edition Component Macros
	13.13. Systems of Tasks API
	13.13.1. ihc::stream Class

	13.14. Intel HLS Compiler Pro Edition Streaming Input Interfaces
	13.15. Intel HLS Compiler Pro Edition Streaming Output Interfaces
	13.16. Intel HLS Compiler Pro Edition Memory-Mapped Interfaces
	13.17. Intel HLS Compiler Pro Edition Load-Store Unit Control
	13.18. Intel HLS Compiler Pro Edition Arbitrary Precision Data Types

	A. Advanced Math Source Code Libraries
	A.1. Random Number Generator Library
	A.2. Matrix Multiplication Library

	B. Supported Math Functions
	B.1. Math Functions Provided by the math.h Header File
	B.2. Math Functions Provided by the extendedmath.h Header File
	B.3. Math Functions Provided by the ac_fixed_math.h Header File
	B.4. Math Functions Provided by the hls_float.h Header File
	B.5. Math Functions Provided by the hls_float_math.h Header File

	C. Intel HLS Compiler Pro Edition Reference Manual Archives
	D. Document Revision History of the Intel HLS Compiler Pro Edition Reference Manual

