
DSP Builder for Intel® FPGAs
(Advanced Blockset)
Handbook

Updated for Intel® Quartus® Prime Design Suite: 19.3

Subscribe
Send Feedback

HB_DSPB_ADV | 2020.01.06
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=hco1423077212985
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/dspb/hb_dspb_adv.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html

Contents

1. About DSP Builder for FPGAs... 12
1.1. DSP Builder for Intel® FPGAs Features... 12
1.2. DSP Builder for Intel® FPGAs Design Structure..12
1.3. DSP Builder for Intel® FPGAs Libraries.. 15
1.4. DSP Builder for Intel® FPGAs Device Support...16

2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started.................................. 17
2.1. Starting DSP Builder in MATLAB*... 17
2.2. Browsing DSP Builder Libraries and Adding Blocks to a New Model..............................17
2.3. Browsing and Opening DSP Builder Design Examples... 18
2.4. Creating a New DSP Builder Design with the DSP Builder New Model Wizard................ 19

2.4.1. DSP Builder Menu Options...20
2.4.2. DSP Builder New Model Wizard Setup Script Parameters................................20

2.5. Simulating, Verifying, Generating, and Compiling Your DSP Builder Design...................21

3. DSP Builder Design Flow.. 23
3.1. Implementing your Design in DSP Builder Advanced Blockset....................................24

3.1.1. Dividing your DSP Builder Design into Subsystems...................................... 24
3.1.2. Connecting DSP Builder Subsystems..24
3.1.3. Creating a New Design by Copying a DSP Builder Design Example................. 33
3.1.4. Vectorized Inputs..36

3.2. Verifying your DSP Builder Advanced Blockset Design in Simulink and MATLAB............37
3.2.1. Verifying your DSP Builder Advanced Blockset Design with a Testbench........... 37
3.2.2. Running DSP Builder Advanced Blockset Automatic Testbenches....................38
3.2.3. Using DSP Builder Advanced Blockset References.. 41
3.2.4. Setting Up Stimulus in DSP Builder Advanced Blockset.................................41
3.2.5. Analyzing your DSP Builder Advanced Blockset Design................................. 41

3.3. Exploring DSP Builder Advanced Blockset Design Tradeoffs....................................... 41
3.3.1. Bit Growth... 42
3.3.2. Managing Bit Growth in DSP Builder Advanced Blockset Designs....................42
3.3.3. Using Rounding and Saturation in DSP Builder Advanced Blockset Designs......42
3.3.4. Scaling with Primitive Blocks.. 43
3.3.5. Changing Data Type with Convert Blocks and Specifying Output Types........... 43

3.4. Verifying your DSP Builder Design with C++ Software Models.................................... 47
3.4.1. Example CMakelist File... 49

3.5. Verifying your DSP Builder Advanced Blockset Design in the ModelSim Simulator.........50
3.5.1. Automatic Testbench... 50
3.5.2. DSP Builder Advanced Blockset ModelSim Simulations................................. 51

3.6. Verifying Your DSP Builder Design in Hardware.. 51
3.6.1. Hardware Verification... 52
3.6.2. Hardware Verification with System-in-the-Loop... 56

3.7. Integrating Your DSP Builder Advanced Blockset Design into Hardware.......................62
3.7.1. DSP Builder Generated Files... 62
3.7.2. DSP Builder Designs and the Quartus Prime Project..................................... 63
3.7.3. Interfaces with a Processor Bus.. 64

4. Primitive Library Blocks Tutorial.. 68
4.1. Creating a Fibonacci Design from the DSP Builder Primitive Library............................68

Contents

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2. Setting the Parameters on the Testbench Source Blocks... 70
4.3. Simulating the Fibonacci Design in Simulink... 71
4.4. Modifying the DSP Builder Fibonacci Design to Generate Vector Signals...................... 72
4.5. Simulating the RTL of the Fibonacci Design...72

5. IP Tutorial.. 74
5.1. Creating an IP Design..74
5.2. Simulating the IP Design in Simulink...75
5.3. Viewing Timing Closure and Viewing Resource Utilization for the DSP Builder IP

Design...76
5.4. Reparameterizing the DSP Builder FIR Filter to Double the Number of Channels...........76
5.5. Doubling the Target Clock Rate for a DSP Builder IP Design...................................... 77

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference
Designs..78
6.1. DSP Builder Design Configuration Block Design Examples...79

6.1.1. Scale ..79
6.1.2. Local Threshold ... 79

6.2. DSP Builder FFT Design Examples... 79
6.2.1. FFT .. 80
6.2.2. FFT without BitReverseCoreC Block ...80
6.2.3. IFFT ... 81
6.2.4. IFFT without BitReverseCoreC Block ... 81
6.2.5. Floating-Point FFT .. 81
6.2.6. Floating-Point FFT without BitReverseCoreC Block81
6.2.7. Floating-Point iFFT ... 82
6.2.8. Floating-Point iFFT without BitReverseCoreC Block82
6.2.9. Multichannel FFT ..82
6.2.10. Multiwire Transpose .. 82
6.2.11. Parallel FFT.. 82
6.2.12. Parallel Floating-Point FFT ..82
6.2.13. Single-Wire Transpose ...82
6.2.14. Switchable FFT/iFFT ..83
6.2.15. Variable-Size Fixed-Point FFT ... 83
6.2.16. Variable-Size Fixed-Point FFT without BitReverseCoreC Block83
6.2.17. Variable-Size Fixed-Point iFFT .. 83
6.2.18. Variable-Size Fixed-Point iFFT without BitReverseCoreC Block......................83
6.2.19. Variable-Size Floating-Point FFT.. 83
6.2.20. Variable-Size Floating-Point FFT without BitReverseCoreC Block83
6.2.21. Variable-Size Floating-Point iFFT ...83
6.2.22. Variable-Size Floating-Point iFFT without BitReverseCoreC Block 84
6.2.23. Variable-Size Low-Resource FFT ... 84
6.2.24. Variable-Size Low-Resource Real-Time FFT ...84
6.2.25. Variable-Size Supersampled FFT...84

6.3. DSP Builder DDC Design Example... 85
6.3.1. DDC Design Example Subsystem...92
6.3.2. Building the DDC Design Example... 95

6.4. DSP Builder Filter Design Examples... 99
6.4.1. Complex FIR Filter ..100
6.4.2. Decimating CIC Filter ..100
6.4.3. Decimating FIR Filter .. 100
6.4.4. Filter Chain with Forward Flow Control .. 101

Contents

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.5. FIR Filter with Exposed Bus ... 101
6.4.6. Fractional FIR Filter Chain ..101
6.4.7. Fractional-Rate FIR Filter ...101
6.4.8. Half-Band FIR Filter .. 102
6.4.9. IIR: Full-rate Fixed-point...102
6.4.10. IIR: Full-rate Floating-point... 102
6.4.11. Interpolating CIC Filter ..103
6.4.12. Interpolating FIR Filter .. 103
6.4.13. Interpolating FIR Filter with Multiple Coefficient Banks104
6.4.14. Interpolating FIR Filter with Updating Coefficient Banks 105
6.4.15. Root-Raised Cosine FIR Filter ... 105
6.4.16. Single-Rate FIR Filter .. 105
6.4.17. Super-Sample Decimating FIR Filter ..106
6.4.18. Super-Sample Fractional FIR Filter ..106
6.4.19. Super-Sample Interpolating FIR Filter ..106
6.4.20. Variable-Rate CIC Filter ... 106

6.5. DSP Builder Folding Design Examples...107
6.5.1. Position, Speed, and Current Control for AC Motors107
6.5.2. Position, Speed, and Current Control for AC Motors (with ALU Folding) 111
6.5.3. About FOC..112
6.5.4. Folded FIR Filter ...112

6.6. DSP Builder Floating Point Design Examples..113
6.6.1. Black-Scholes Floating Point ...113
6.6.2. Double-Precision Real Floating-Point Matrix Multiply 113
6.6.3. Fine Doppler Estimator ..113
6.6.4. Floating-Point Mandlebrot Set .. 114
6.6.5. General Real Matrix Multiply One Cycle Per Output115
6.6.6. Newton Root Finding Tutorial Step 1—Iteration ...115
6.6.7. Newton Root Finding Tutorial Step 2—Convergence116
6.6.8. Newton Root Finding Tutorial Step 3—Valid .. 116
6.6.9. Newton Root Finding Tutorial Step 4—Control ...116
6.6.10. Newton Root Finding Tutorial Step 5—Final .. 116
6.6.11. Normalizer ...116
6.6.12. Single-Precision Complex Floating-Point Matrix Multiply 116
6.6.13. Single-Precision Real Floating-Point Matrix Multiply 117
6.6.14. Simple Nonadaptive 2D Beamformer ... 117

6.7. DSP Builder Flow Control Design Examples... 118
6.7.1. Avalon-ST Interface (Input and Output FIFO Buffer) with Backpressure 118
6.7.2. Avalon-ST Interface (Output FIFO Buffer) with Backpressure118
6.7.3. Kronecker Tensor Product ..119
6.7.4. Parallel Loops .. 119
6.7.5. Primitive FIR with Back Pressure .. 119
6.7.6. Primitive FIR with Forward Pressure ..120
6.7.7. Primitive Systolic FIR with Forward Flow Control 121
6.7.8. Rectangular Nested Loop ...121
6.7.9. Sequential Loops ..122
6.7.10. Triangular Nested Loop ..122

6.8. DSP Builder HDL Import Design Example...122
6.8.1. Performing a Cosimulation...131

6.9. DSP Builder Host Interface Design Examples...135
6.9.1. Memory-Mapped Registers ...135

Contents

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10. DSP Builder Platform Design Examples... 136
6.10.1. 16-Channel DDC .. 136
6.10.2. 16-Channel DUC ...136
6.10.3. 2-Antenna DUC for WiMAX ...137
6.10.4. 2-Channel DUC .. 138
6.10.5. Super-Sample Rate Digital Upconverter ... 138

6.11. DSP Builder Primitive Block Design Examples.. 138
6.11.1. 8×8 Inverse Discrete Cosine Transform... 139
6.11.2. Automatic Gain Control ... 139
6.11.3. Bit Combine for Boolean Vectors ...140
6.11.4. Bit Extract for Boolean Vectors ... 140
6.11.5. Color Space Converter ...140
6.11.6. CORDIC from Primitive Blocks .. 141
6.11.7. Digital Predistortion Forward Path ... 141
6.11.8. Fibonacci Series ... 141
6.11.9. Folded Vector Sort .. 142
6.11.10. Fractional Square Root Using CORDIC ..142
6.11.11. Fixed-point Maths Functions ... 142
6.11.12. Gaussian Random Number Generator.. 142
6.11.13. Hello World .. 143
6.11.14. Hybrid Direct Form and Transpose Form FIR Filter 143
6.11.15. Loadable Counter ..143
6.11.16. Matrix Initialization of LUT ... 144
6.11.17. Matrix Initialization of Vector Memories ..144
6.11.18. Multichannel IIR Filter ... 145
6.11.19. Quadrature Amplitude Modulation ... 145
6.11.20. Reinterpret Cast for Bit Packing and Unpacking145
6.11.21. Run-time Configurable Decimating and Interpolating Half-Rate FIR Filter ..146
6.11.22. Square Root Using CORDIC .. 146
6.11.23. Test CORDIC Functions with the CORDIC Block 146
6.11.24. Uniform Random Number Generator..146
6.11.25. Vector Sort—Sequential ... 147
6.11.26. Vector Sort—Iterative ..147
6.11.27. Vector Initialization of Sample Delay ... 147
6.11.28. Wide Single-Channel Accumulators ... 148

6.12. DSP Builder Reference Designs..148
6.12.1. 1-Antenna WiMAX DDC ..150
6.12.2. 2-Antenna WiMAX DDC ..150
6.12.3. 1-Antenna WiMAX DUC ..151
6.12.4. 2-Antenna WiMAX DUC ..151
6.12.5. 4-Carrier, 2-Antenna W-CDMA DDC ...152
6.12.6. 1-Carrier, 2-Antenna W-CDMA DDC ...153
6.12.7. 4-Carrier, 2-Antenna W-CDMA DUC ... 153
6.12.8. 4-Carrier, 4-Antenna DUC and DDC for LTE.. 154
6.12.9. 1-Carrier, 2-Antenna W-CDMA DDC ...155
6.12.10. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with

Total Rate Change 32 ...156
6.12.11. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with

Total Rate Change 48 ...156
6.12.12. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 307.2 MHz with

Total Rate Change 40 ...157

Contents

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.13. Cholesky-based Matrix Inversion...158
6.12.14. Cholesky Solver Single Channel .. 162
6.12.15. Cholesky Solver Multiple Channels .. 163
6.12.16. Crest Factor Reduction ...163
6.12.17. Direct RF with Synthesizable Testbench ..164
6.12.18. Dynamic Decimating FIR Filter ..164
6.12.19. Multichannel QR Decompostion ...164
6.12.20. QR Decompostion ... 164
6.12.21. QRD Solver..165
6.12.22. Reconfigurable Decimation Filter ... 166
6.12.23. Single-Channel 10-MHz LTE Transmitter ...166
6.12.24. STAP Radar Forward and Backward Substitution167
6.12.25. STAP Radar Steering Generation ... 168
6.12.26. STAP Radar QR Decomposition 192x204 .. 168
6.12.27. Time Delay Beamformer .. 168
6.12.28. Transmit and Receive Modem.. 168
6.12.29. Variable Integer Rate Decimation Filter .. 169

6.13. DSP Builder Waveform Synthesis Design Examples.. 169
6.13.1. Complex Mixer ... 169
6.13.2. Four Channel, Two Banks NCO ..170
6.13.3. Four Channel, Four Banks NCO ...171
6.13.4. Four Channel, Eight Banks, Two Wires NCO ..172
6.13.5. Four Channel, 16 Banks NCO ... 172
6.13.6. IP .. 173
6.13.7. NCO ... 173
6.13.8. NCO with Exposed Bus .. 173
6.13.9. Real Mixer ... 174
6.13.10. Super-sample NCO .. 174

7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting............... 176
7.1. DSP Builder Design Rules and Recommendations..176
7.2. Troubleshooting DSP Builder Designs.. 178

7.2.1. About Loops... 179
7.2.2. DSP Builder Timed Feedback Loops..180
7.2.3. DSP Builder Loops, Clock Cycles, and Data Cycles.......................................181

8. About DSP Builder for Intel FPGAs Optimization.. 182
8.1. Associating DSP Builder with MATLAB..182
8.2. Setting Up Simulink for DSP Builder Designs...182

8.2.1. Setting Up Simulink Solver.. 182
8.2.2. Setting Up Simulink Signal Display Option... 183

8.3. The DSP Builder Windows Shortcut...183
8.4. Setting DSP Builder Design Parameters with MATLAB Scripts...................................183

8.4.1. Running Setup Scripts Automatically...184
8.4.2. Defining Unique DSP Builder Design Parameters... 184
8.4.3. Example DSP Builder Custom Scripts... 184

8.5. Managing your Designs..186
8.5.1. Managing Basic Parameters.. 186
8.5.2. Creating User Libraries and Converting a Primitive Subsystem into a

Custom Block.. 187
8.5.3. Revision Control..187

8.6. How to Manage Latency... 187

Contents

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8.6.1. Reading the Added Latency Value for a IP Block..188
8.6.2. Zero Latency Example..188
8.6.3. Implicit Delays in DSP Builder Designs.. 189
8.6.4. Distributed Delays in DSP Builder Designs.. 190
8.6.5. Latency and fMAX Constraint Conflicts in DSP Builder Designs.......................192
8.6.6. Control Units Delays.. 192

8.7. Flow Control in DSP Builder Designs.. 194
8.8. Reset Minimization... 196
8.9. About Importing HDL..198

9. About Folding...200
9.1. ALU Folding..200

9.1.1. ALU Folding Limitations..201
9.1.2. ALU Folding Parameters... 201
9.1.3. ALU Folding Simulation Rate.. 201
9.1.4. Using ALU Folding... 205
9.1.5. Using Automated Verification.. 206
9.1.6. Ready Signal.. 206
9.1.7. Connecting the ALU Folding Ready Signal... 206
9.1.8. About the ALU Folding Start of Packet Signal...207

9.2. Removing Resource Sharing Folding...207

10. Floating-Point Data Types.. 208
10.1. DSP Builder Floating-Point Data Type Features.. 209
10.2. DSP Builder Supported Floating-Point Data Types..209
10.3. DSP Builder Round-Off Errors...210
10.4. Trading Off Logic Utilization and Accuracy in DSP Builder Designs...........................210
10.5. Upgrading Pre v14.0 Designs.. 211
10.6. Floating-Point Sine Wave Generator Tutorial.. 211

10.6.1. Creating a Sine Wave Generator in DSP Builder....................................... 211
10.6.2. Using Data Type Variables to Parameterize Designs.................................. 212
10.6.3. Using Data-Type Propagation in DSP Builder Designs................................ 212
10.6.4. DSP Builder Testbench Verification... 213

10.7. Newton-Raphson Root Finding Tutorial..216
10.7.1. Implementing the Newton Design.. 216
10.7.2. Improving DSP Builder Floating-Point Designs... 216

10.8. Forcing Soft Floating-point Data Types with the Advanced Options.......................... 217

11. Design Configuration Library... 219
11.1. Avalon-MM Slave Settings (AvalonMMSlaveSettings) ... 219
11.2. Control ... 221

11.2.1. DSP Builder Memory and Multiplier Trade-Off Options............................... 224
11.3. Device .. 224
11.4. Edit Params ... 225
11.5. LocalThreshold ...225

12. IP Library..227
12.1. Channel Filter and Waveform Library...227

12.1.1. DSP Builder FIR and CIC Filters... 228
12.1.2. DSP Builder FIR Filters.. 231
12.1.3. Channel Viewer (ChanView) ... 233
12.1.4. Complex Mixer (ComplexMixer) .. 234

Contents

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12.1.5. Decimating CIC .. 236
12.1.6. Decimating FIR .. 237
12.1.7. Fractional Rate FIR ... 239
12.1.8. Interpolating CIC ..242
12.1.9. Interpolating FIR .. 243
12.1.10. NCO ..245
12.1.11. Real Mixer (Mixer) ...250
12.1.12. Scale .. 252
12.1.13. Single-Rate FIR .. 253

12.2. Dependent Delay Library... 255
12.3. FFT IP Library.. 256

12.3.1. Bit Reverse Core C (BitReverseCoreC and VariableBitReverse) 256
12.3.2. FFT (FFT, FFT_Light, VFFT, VFFT_Light) ..257

13. Interfaces Library... 260
13.1. Memory-Mapped Library...260

13.1.1. Bus Slave (BusSlave) .. 260
13.1.2. Bus Stimulus (BusStimulus) ...261
13.1.3. Bus Stimulus File Reader (Bus StimulusFileReader) 262
13.1.4. External Memory, Memory Read, Memory Write.. 264
13.1.5. Register Bit (RegBit) ... 268
13.1.6. Register Field (RegField) ..269
13.1.7. Register Out (RegOut) ...269
13.1.8. Shared Memory (SharedMem) ..270

13.2. Streaming Library...271
13.2.1. Avalon-ST Input (AStInput) ... 272
13.2.2. Avalon-ST Input FIFO Buffer (AStInputFIFO) .. 272
13.2.3. Avalon-ST Output (AStOutput) ... 272

14. Primitives Library...274
14.1. Vector and Complex Type Support... 274

14.1.1. Vector Type Support.. 274
14.1.2. Complex Support...275

14.2. FFT Design Elements Library... 276
14.2.1. About Pruning and Twiddle for FFT Blocks.. 277
14.2.2. Bit Vector Combine (BitVectorCombine) ... 279
14.2.3. Butterfly Unit (BFU) .. 279
14.2.4. Butterfly I C (BFIC) (Deprecated) ... 280
14.2.5. Butterfly II C (BFIIC) (Deprecated) ... 280
14.2.6. Choose Bits (ChooseBits) ...281
14.2.7. Crossover Switch (XSwitch) ... 282
14.2.8. Dual Twiddle Memory (DualTwiddleMemoryC) ... 282
14.2.9. Edge Detect (EdgeDetect) ..283
14.2.10. Floating-Point Twiddle Generator (TwiddleGenF) (Deprecated)283
14.2.11. Fully-Parallel FFTs (FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and FFT64P)283
14.2.12. Fully-Parallel FFTs with Flexible Ordering (FFT2X, FFT4X, FFT8X,

FFT16X, FFT32X, and FFT64X) .. 284
14.2.13. General Multitwiddle and General Twiddle (GeneralMultiTwiddle,

GeneralMultVTwiddle, GeneralTwiddle, GeneralVTwiddle)285
14.2.14. Hybrid FFT (Hybrid_FFT, HybridVFFT) .. 286
14.2.15. Multiwire Transpose (MultiwireTranspose) ... 287
14.2.16. Parallel Pipelined FFT (PFFT_Pipe) ... 288

Contents

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.17. Pulse Divider (PulseDivider) ... 289
14.2.18. Pulse Multiplier (PulseMultiplier) ..289
14.2.19. Single-Wire Transpose (Transpose) ..290
14.2.20. Split Scalar (SplitScalar) ..290
14.2.21. Streaming FFTs (FFT2, FFT4, VFFT2, and VFFT4)291
14.2.22. Stretch Pulse (StretchPulse)...291
14.2.23. Twiddle Angle (TwiddleAngle) ... 291
14.2.24. Twiddle Generator (TwiddleGenC) Deprecated292
14.2.25. Twiddle and Variable Twiddle (Twiddle and VTwiddle) 293
14.2.26. Twiddle ROM (TwiddleRom, TwiddleMultRom and TwiddleRomF

(deprecated)) ... 294
14.3. Primitive Basic Blocks Library...294

14.3.1. Absolute Value (Abs) ...296
14.3.2. Accumulator (Acc) .. 297
14.3.3. Add .. 298
14.3.4. Add SLoad (AddSLoad) ..299
14.3.5. AddSub ...300
14.3.6. AddSubFused ...301
14.3.7. AND Gate (And) ... 301
14.3.8. Bit Combine (BitCombine) ... 301
14.3.9. Bit Extract (BitExtract) .. 302
14.3.10. Bit Reverse (BitReverse) .. 303
14.3.11. Compare (CmpCtrl) ...303
14.3.12. Complex Conjugate (ComplexConjugate) ... 304
14.3.13. Compare Equality (CmpEQ) ..305
14.3.14. Compare Greater Than (CmpGE) .. 305
14.3.15. Compare Less Than (CmpLT) ..305
14.3.16. Compare Not Equal (CmpNE) ... 306
14.3.17. Constant (Const) .. 306
14.3.18. Constant Multiply (Const Mult) ..307
14.3.19. Convert ... 308
14.3.20. CORDIC ...309
14.3.21. Counter ...311
14.3.22. Count Leading Zeros, Ones, or Sign Bits (CLZ)312
14.3.23. Dual Memory (DualMem) ... 313
14.3.24. Demultiplexer (Demux) ... 315
14.3.25. Divide ... 315
14.3.26. Fanout.. 316
14.3.27. FIFO ... 317
14.3.28. Floating-point Classifier (FloatClass) ..318
14.3.29. Floating-point Multiply Accumulate (MultAcc) ..318
14.3.30. ForLoop ...319
14.3.31. Load Exponent (LdExp) ..320
14.3.32. Left Shift (LShift) ...321
14.3.33. Loadable Counter (LoadableCounter) ...321
14.3.34. Look-Up Table (Lut) ...322
14.3.35. Loop ... 324
14.3.36. Math ... 325
14.3.37. Minimum and Maximum (MinMax) ...326
14.3.38. MinMaxCtrl .. 327
14.3.39. Multiply (Mult) ..328

Contents

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.40. Multiplexer (Mux) ... 328
14.3.41. NAND Gate (Nand) ..329
14.3.42. Negate .. 330
14.3.43. NOR Gate (Nor) ..330
14.3.44. NOT Gate (Not) .. 331
14.3.45. OR Gate (Or) ... 332
14.3.46. Polynomial ...332
14.3.47. Ready ... 333
14.3.48. Reinterpret Cast (ReinterpretCast) .. 333
14.3.49. Round ... 334
14.3.50. Sample Delay (SampleDelay) ... 334
14.3.51. Scalar Product ..335
14.3.52. Select ... 336
14.3.53. Sequence .. 337
14.3.54. Shift ... 338
14.3.55. Sqrt ..339
14.3.56. Subtract (Sub) ... 339
14.3.57. Sum of Elements (SumOfElements) ...340
14.3.58. Trig ...341
14.3.59. XNOR Gate (Xnor) .. 343
14.3.60. XOR Gate (Xor) .. 343

14.4. Primitive Configuration Library... 344
14.4.1. Channel In (ChannelIn) ... 344
14.4.2. Channel Out (ChannelOut) ...345
14.4.3. General Purpose Input (GPIn) .. 346
14.4.4. General Purpose Output (GPOut) .. 346
14.4.5. Synthesis Information (SynthesisInfo) ...347

14.5. Primitive Design Elements Library...348
14.5.1. Anchored Delay ..349
14.5.2. Complex to Real-Imag...349
14.5.3. Enabled Delay Line... 349
14.5.4. Enabled Feedback Delay..349
14.5.5. Expand Scalar (ExpandScalar)..349
14.5.6. Nested Loops (NestedLoop1, NestedLoop2, NestedLoop3)..........................349
14.5.7. Pause... 351
14.5.8. Reset-Priority Latch (SRlatch_PS) ... 352
14.5.9. Same Data Type (SameDT)..352
14.5.10. Set-Priority Latch (SRlatch) ...352
14.5.11. Single-Cycle Latency Latch (latch_1L) ..352
14.5.12. Tapped Line Delay (TappedLineDelay)..353
14.5.13. Variable Super-Sample Delay (VariableDelay)... 353
14.5.14. Vector Fanout (VectorFanout)... 353
14.5.15. Vector Multiplexer (VectorMux)... 354
14.5.16. Zero-Latency Latch (latch_0L) .. 354

15. Utilities Library... 355
15.1. Analyze and Test Library..355

15.1.1. Capture Values...355
15.1.2. HDL Import... 355
15.1.3. HDL Import Config..357
15.1.4. Pause... 358

Contents

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

16. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset)
Handbook.. 359

Contents

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. About DSP Builder for FPGAs
DSP Builder is a high-level synthesis technology that optimizes the high-level, untimed
netlist into low level, pipelined hardware for your target FPGA device and desired clock
rate. DSP Builder for FPGAs consists of several Simulink* libraries that allow you to
implement DSP designs quickly and easily. DSP Builder implements the hardware as
VHDL or Verilog HDL with scripts that integrate with the software and the simulator.

You can create designs without needing detailed device knowledge and generate
designs that run on a variety of FPGA families with different hardware architectures.
DSP Builder allows you to manually describe algorithmic functions and apply rule-
based methods to generate hardware optimized code. The advanced blockset is
particularly suited for streaming algorithms characterized by continuous data streams
and occasional control. For example, use DSP Builder to create RF card designs that
comprise long filter chains.

After specifying the desired clock frequency, target device family, number of channels,
and other top-level design constraints, DSP Builder pipelines the generated RTL to
achieve timing closure. By analyzing the system-level constraints, DSP Builder can
optimize folding to balance latency versus resources, with no need for manual RTL
editing.

DSP Builder advanced blockset includes its own timing-driven IP blocks that can
generate high performance FIR, CIC, and NCO models.

1. DSP Builder for Intel FPGAs Features on page 12

2. DSP Builder for Intel FPGAs Design Structure on page 12

3. DSP Builder for Intel FPGAs Libraries on page 15

4. DSP Builder for Intel FPGAs Device Support on page 16

1.1. DSP Builder for Intel® FPGAs Features

• Automatic pipelining to enable timing closure

• Automatic folding

• Easy to compare and target different device families

• High-performance floating-point designs

• Wizard-based interface (system-in-the-loop) to configure, generate, and run
hardware verification system.

1.2. DSP Builder for Intel® FPGAs Design Structure

Organize your DSP Builder designs into hierarchical Simulink subsystems. Every top-
level design must contain a Control block; the synthesizable top-level design must
contain a Device block.

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Note: DSP Builder design can only have one synthesizable top-level design, which can
contain many subsystems (primitive and IP blocks) to help organize your design. Any
primitive blocks must be within a primitive subsystem hierarchy and any IP blocks
must be outside primitive subsystem hierarchies.

Figure 1. DSP Builder Design
Shows the relationship of the synthesizable top-level design and a primitive subsystem. Mandatory blocks are
in red.

Top-Level Design

Control
Block

External
Memory

Block

BusStimulus
FileReader

Block

BusStimulus
Block

Testbench

Synthesizable Top-Level Design

IP
Block

IP
Block

IP
Block

Device
Block

Primitive Subsystem

GPIn
Block

GPOut
Block

ChannelOut
Block

ChannelIn
Block

SynthesisInfo
Block

The Top-Level Design

A DSP Builder advanced blockset top-level design consists of:

• A Simulink testbench, which provides design inputs and allows you to analyze
inputs and outputs

• Top-level configuration blocks

• Optional memory interface specification and stimulus blocks.

— External Memory block to configure an external memory interface

— BusStimulus and BusStimulusFileReader blocks to stimulate Avalon-MM
interfaces during simulation

— Edit Params block as a shortcut to opening a script setup_<model
name>.m for editing.

The top-level design must have a Control block to specify RTL output directory and
top-level threshold parameters

1. About DSP Builder for FPGAs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Every DSP Builder design must have Control block to allow you to simulate or compile
your design. Do not place the Device block in the top-level design. DSP Builder
propogates data types from the testbench to the synthesizable top-level design.

The Synthesizable Top-Level Design

The synthesizable top-level design is a Simulink subsystem that contains a Device
block, which sets which family, part, and speed grade to target. The synthesizable top-
level design is at the top level of the generated hardware files. The synthesizable top-
level design can consist of further level of hierarchies that include primitive
subsystems.

Note: Only use primitive blocks inside primitive subsystems.

Optionally, you can include more LocalThreshold blocks to override threshold
settings defined higher up the hierarchy.

The Primitive Subsystem

Primitive subsystems are scheduled domains for Primitive and IP library blocks. A
primitive subsystem must have:

• A SynthesisInfo block, with synthesis style set to Scheduled, so that DSP
Builder can pipeline and redistribute memories optimally to achieve the desired
clock frequency.

• Boundary blocks that delimit the primitive subsystem:

— ChannelIn (channelized input),

— ChannelOut (channelized output),

— GPIn (general purpose input)

— GPOut (general purpose output).

DSP Builder synchronizes connections that pass through the same boundary block.

Use system interface blocks to delimit the boundaries of scheduled domains within a
subsystem. Within these boundary blocks DSP Builder optimizes the implementation
you specify by the schematic. DSP Builder inserts pipelining registers to achieve the
specified system clock rate. When DSP Builder inserts pipelining registers, it adds
equivalent latency to parallel signals that need to be kept synchronous so that DSP
Builder schedules them together. DSP Builder schedules signals that go through the
same input boundary block (ChannelIn or GPIn) to start at the same point in time;
signals that go through the same output boundary block (ChannelOut or GPOut) to
finish at the same point in time. DSP Builder adds any pipelining latency that you add
to achieve fMAX in balanced cuts through the signals across the design. DSP Builder
applies the correction to the simulation at the boundary blocks to account for this
latency in HDL generation. The primitive subsystem as a whole remains cycle
accurate. You can specify further levels of hierarchy within primitive subsystems
containing primitive blocks, but no further primitive boundary blocks or IP blocks.

Use SampleDelay blocks only to specify relative sample offsets of data-streams; do
not use for pipelining.

Related Information

• Synthesis Information (SynthesisInfo) on page 347

• Primitives Library on page 274

1. About DSP Builder for FPGAs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• DSP Builder Design Rules and Recommendations on page 176

• Control on page 221

• Device on page 224

• Edit Params on page 225

• LocalThreshold on page 225

• Primitives Library on page 274

• Scheduled Synthesis on page 348

1.3. DSP Builder for Intel® FPGAs Libraries

Table 1. Block Types
This table describes the types of blocks that DSP Builder offers.

Block Type Description

Configuration blocks Blocks that configure how DSP Builder synthesizes the design or subsystem

Low-level building blocks
(primitives)

Basic operator, logic, and memory primitive blocks for scheduled subsystems delimited
by boundary configuration blocks (primitive subsystems).

Common design elements Common functions for parameterizable subsystems of primitives and within scheduled
subsystems delimited by boundary configuration blocks

IP function-level functions (IP) Stand-alone IP-level blocks comprising functions such as entire FFTs, FIRs and NCOs. Use
these blocks only outside of primitive subsystems.

System interface blocks Blocks that expose Avalon-ST and Avalon-MM interfaces for interaction with other IP
(such as external memories) in Platform Designer.

Non-synthesizable blocks Blocks that play no part in the synthesized design. For example, blocks that provide
testbench stimulus, blocks that provide information, or enable design analysis.

Table 2. Simulink Libraries
This table lists the Simulink libraries and describes the DSP Builder blocks in those libraries

Library Description

Design Configuration Blocks that set the design parameters, such as device family, target fMAX and
bus interface signal width.

Primitives Blocks for primitive subsystems.

Primitives ➤ Primitive Configuration Blocks that change how DSP Builder synthesizes primitive subsystems,
including boundary delimiters.

Primitives ➤ Primitive Basic Blocks Low-level functions.

Primitives ➤ Primitive Design
Elements

Configurable blocks and common design patterns built from primitive blocks.

Primitives ➤ FFT Design Elements Configurable FFT component blocks built from primitive blocks. Use in
primitive subsystems to build custom FFTs.

IP Full IP functions. Use outside of primitive subsystems.

IP FFT IP Full FFT IP functions. These blocks are complete primitive subsystems. Click
Look under the Mask to see how DSP Builder builds these blocks from the
primitive FFT design elements.

continued...

1. About DSP Builder for FPGAs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Library Description

IP ➤ Channel Filter And Waveform Functions to construct digital up- and down-conversion chains: FIR, CIC, NCO,
mixers, complex mixers, channel view, and scale IP.

Interfaces Blocks that set and use Avalon interfaces. DSP Builder treats design-level
ports that do not route via Avalon interface blocks as individual conduits.

Interfaces ➤ Memory Mapped Blocks that set and use Avalon-MM interfaces, including memory-mapped
blocks, memory-mapped stimulus blocks, and external memory blocks.

Interfaces ➤ Streaming Avalon-ST blocks.

Utilities Miscellaneous blocks that support building and refining designs

Utilities ➤ Analyze And Test Blocks that help with design testing and debugging.

Utilities ➤ Beta Blocks Blocks that are in development.

Related Information

• Design Configuration Library on page 219

• IP Library on page 227

• Interfaces Library on page 260

• Primitives Library on page 274

• Utilities Library on page 355

• Scheduled Synthesis on page 348

• Avalon Interface Specification
Avalon interfaces simplify system design by allowing you to easily connect
components in an Intel® FPGA

1.4. DSP Builder for Intel® FPGAs Device Support

Device family support depends on the Intel® Quartus® Prime edition: Intel Quartus
Prime Standard Edition or Intel Quartus Prime Pro Edition

DSP Builder Advanced blockset supports the following device families:

• Arria® II

• Intel Arria 10

• Arria V

• Arria V GZ

•

• Cyclone® IV

• Cyclone V

• Intel Cyclone 10

• Intel MAX® 10

• Stratix® IV

• Stratix V

• Intel Stratix 10

1. About DSP Builder for FPGAs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

16

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467919954
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. DSP Builder for Intel FPGAs Advanced Blockset Getting
Started

1. Starting DSP Builder in MATLAB on page 17

2. Browsing DSP Builder Libraries and Adding Blocks to a New Model on page 17

3. Browsing and Opening DSP Builder Design Examples on page 18

4. Creating a New DSP Builder Design with the DSP Builder New Model Wizard on
page 19

5. Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page
21

Related Information

• IP Tutorial

• Primitives Tutorial

2.1. Starting DSP Builder in MATLAB*

STEPS:

1. On Windows* OS, click Start ➤ All Programs ➤ Intel FPGA version ➤ DSP
Builder ➤ Start in MATLAB version. On Linux OS, from the command prompt,
run "dsp_builder.sh".

2. In MATLAB on the Home tab, click on the Simulink Library icon, to start
Simulink.

Related Information

• The DSP Builder Windows Shortcut Menu
Create the shortcut to set the file paths to DSP Builder and run a batch file with
an argument for the MATLAB executable to use.

• Browsing DSP Builder Libraries and Adding Blocks to a New Model

• Browsing and Opening DSP Builder Design Examples

2.2. Browsing DSP Builder Libraries and Adding Blocks to a New
Model

BEFORE YOU BEGIN:
Start DSP Builder in MATLAB.

STEPS:

1. In the Simulink Library Browser, in the left-hand pane, expand DSP Builder for
Intel FPGAs - Advanced Blockset.

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076499416
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076507867
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450783512175
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450782829807
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076535443%20
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Simulink lists the DSP Builder advanced blockset libraries.

2. Click on a library.
Simulink shows the library in the right-hand pane.

3. To find more information about a block, right click on a block and click Help for
the block.

4. To add a block to a model, right click on a block and click Add block to a new
model .

Related Information

• Starting DSP Builder in MATLAB

• Browsing and Opening DSP Builder Design Examples

• DSP Builder Advanced Blockset Libraries

• Creating a DSP Builder Design in Simulink
Intel recommends you create new designs with the DSP Builder New Model
Wizard or copy and rename a design example.

2.3. Browsing and Opening DSP Builder Design Examples

BEFORE YOU BEGIN:
Start DSP Builder in MATLAB.

STEPS:

1. In MATLAB, on the Home tab, click the Help icon
The Help window opens.

2. Under Supplemental software, click Examples for DSP Builder for Intel(R)
FPGAs - Advanced Blockset.

3. In the left-hand TOC pane, expand Examples for DSP Builder for Intel(R)
FPGAs - Advanced Blockset Examples

4. Expand Floating Point for example to see the floating-point design examples.

5. Click on a design example to see a description.

6. Click Open this model, to open the design example.

7. You can also open a design example by typing a command in the MATLAB window,
for example:

demo_nco

Related Information

• Starting DSP Builder in MATLAB on page 17

• Starting DSP Builder in MATLAB

• DSP Builder Advanced Blockset Libraries

• Browsing DSP Builder Libraries and Adding Blocks to a New Model

• Creating a DSP Builder Design in Simulink
Intel recommends you create new designs with the DSP Builder New Model
Wizard or copy and rename a design example.

2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

18

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1441718709335
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076535443
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450959904968
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076491536
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1441718709335
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450959904968
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450782829807
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076491536
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4. Creating a New DSP Builder Design with the DSP Builder New
Model Wizard

Intel recommends you create new designs with the DSP Builder New Model Wizard.
Alternatively, you can copy and rename a design example.

BEFORE YOU BEGIN:
Start DSP Builder in MATLAB.

STEPS:

1. In the Simulink Library browser, click New Model.

2. Click DSP Builder ➤ New Model Wizard.
The New Model Wizard opens.

3. Select a fixed- or floating-point model.

4. Select the type (simple or with channelizer).

5. Enter the model name and select where to save the model.

6. Click Generate.

DSP Builder creates a new model <model name>.mdl and setup script
setup_<model name>.m that contains everything you need for a DSP Builder
model. DSP Builder automatically runs the set-up script when you open the model
and before each simulation. To open and edit the script, double click the Edit
Params block in the model.

Note: When you open a model, DSP Builder produces a
model_name_params.xml file that contains settings for the model. You
must keep this file with the model.

1. DSP Builder Menu Options on page 20

2. DSP Builder New Model Wizard Setup Script Parameters on page 20

Related Information

• Starting DSP Builder in MATLAB on page 17

• Starting DSP Builder in MATLAB

• DSP Builder Advanced Blockset Libraries

• Simulating, Generating, and Compiling Your Design

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

• DSP Builder New Model Wizard Setup Script Parameters
Use the setup script to set name-spaced workspace variables that DSP Builder
uses to configure the design.

• DSP Builder Design Rules and Recommendations
Use the design rules and recommendations to ensure your design performs
correctly.

2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

19

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1441718709335
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450959904968
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450871292415
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450794303067
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450795438934
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076469495
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. DSP Builder Menu Options

Simulink includes a DSP Builder menu on any Simulink model window. Use this menu
to start all the common tasks you need to perform on your DSP Builder model.

Figure 2. DSP Builder Menu

Table 3. DSP Builder Menu Options

Action Menu Option Description

Create new design New Model Wizard Create a new model from a simple template.

New SIL Wizard Create a version of the existing design setup for hardware
cosimulation.

Verification Design Checker Verify your design against basic design rules.

Verify Design Verify the Simulink simulation matches ModelSim simulations of
the generated hardware by batch running the automatically
generated testbenches.

Parameterization Avalon Interfaces … Configure the memory mapped interface.

Generated hardware details Resource Usage … View resource estimates of the generated hardware.

Memory Map… View the generated memory map interface.

Run other software tools Run Quartus Prime
Software

Run a Quartus Prime project for the generated hardware.

Run ModelSim Verify the Simulink simulation matches ModelSim simulation of
the generated hardware by running an automatically generated
testbench in an open ModelSim window.

2.4.2. DSP Builder New Model Wizard Setup Script Parameters

The setup script sets name-spaced workspace variables that DSP Builder uses to
configure the design

2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The setup script offers the following options:

• Fixed-point IP (simple testbench)

• Fixed-point IP (with Channelizer)

• Fixed-point Primitive subsystem (simple testbench)

• Fixed-point Primitive subsystem (with Channelizer

• Floating-point Primitive subsystem (simple testbench)

• Floating-point Primitive subsystem (with Channelizer)

Table 4. Setup Script Parameters

Option Description

Floating The testbench propagates single precision floating-point data into the synthesizable system.

Fixed The testbench propagates signed fixed-point data into the synthesizable system.

'(simple testbench)' The testbench consists of simple Simulink source blocks.

Channelizer The testbench consists of a Channelizer block, which outputs data from a MATLAB array in the DSP
Builder valid-channel-data protocol

'IP' The synthesizable system has two IP function-level subsystems (lP library blocks) a FIR and a Scale
block

'Primitive' The synthesizable system is a scheduled primitive subsystem with ChannelIn and ChannelOut
boundary blocks. Use this start point to create your own function using low-level (primitive) building
blocks .

Related Information

• Creating a New DSP Builder Design with the DSP Builder New Model Wizard
Intel recommends you create new designs with the DSP Builder New Model
Wizard. Alternatively, you can copy and rename a design example.

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

2.5. Simulating, Verifying, Generating, and Compiling Your DSP
Builder Design

BEFORE YOU BEGIN:

• Create a design

• Check your design for errors

STEPS:

1. In Simulink, click Simulation ➤ Run.

Note: Simulink generates the HDL then starts the simulation

2. Analyze the simulation results.

3. Verify generated hardware (optional).

a. Click DSP Builder Verify Design.

b. Turn on Verify at subsystem level, turn off Run Quartus Prime Software,
and click Run Verification.

2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

21

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076491536
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#dmi1450794303067
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you turn on Run Quartus Prime Software, the verification script
also compiles the design in the Quartus Prime software. MATLAB reports
the postcompilation resource usage details in the verification window.

MATLAB verifies that the Simulink simulation results match a simulation of the
generated HDL in the ModelSim simulator.

c. Close both verification windows when MATLAB completes the verification.

4. Examine the generated resource summaries:

a. Click Simulation ➤ Start.

b. Click Resource Usage ➤ Design for a top-level design summary.

5. View the Avalon-MM register memory map:

a. Click Simulation ➤ Start.

b. Click Memory Map ➤ Design. DSP Builder highlights in red any memory
conflicts.

Note: DSP Builder also generates the memory map in the <design
name>_mmap.h file.

6. Compile your design in the Quartus Prime software by clicking Run Quartus
Prime. When the Quartus Prime software opens, click Processing ➤ Start
Compilation.

Related Information

• DSP Builder Generated Files on page 62

• Creating a New DSP Builder Design with the DSP Builder New Model Wizard
Intel recommends you create new designs with the DSP Builder New Model
Wizard. Alternatively, you can copy and rename a design example.

• Creating a New Design by Copying a DSP Builder Design Example

• DSP Builder Advanced Blockset Generated Files
DSP Builder generates the files in a directory structure at the location you
specify in the Control block, which defaults to ..\rtl (relative to the
working directory that contains the .mdl file)

• Control
The Control block specifies information about the hardware generation
environment and the top-level memory-mapped bus interface widths.

2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

22

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076491536
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076536643
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423076464035
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423077212985.html#hco1423077006463
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. DSP Builder Design Flow
Figure 3. Design Flow

Implement design in
DSP Builder advanced

blockset

Explore design
tradeoffs

Verify in MATLAB and
ModelSim

Verify in hardware

Meeting resource
requirement?

Successful?

Hardware and system
integration in the

Quartus Prime
software

Y

Verify in MATLAB
or Simulink

Functionality correct?
N

N

N

Y

1. Implementing your Design in DSP Builder Advanced Blockset on page 24

2. Verifying your DSP Builder Advanced Blockset Design in Simulink and MATLAB on
page 37

3. Exploring DSP Builder Advanced Blockset Design Tradeoffs on page 41

4. Verifying your DSP Builder Design with C++ Software Models on page 47

5. Verifying your DSP Builder Advanced Blockset Design in the ModelSim Simulator
on page 50

6. Verifying Your DSP Builder Design in Hardware on page 51

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7. Integrating Your DSP Builder Advanced Blockset Design into Hardware on page
62

3.1. Implementing your Design in DSP Builder Advanced Blockset

1. Dividing your DSP Builder Design into Subsystems on page 24

2. Connecting DSP Builder Subsystems on page 24

3. Creating a New Design by Copying a DSP Builder Design Example on page 33

4. Vectorized Inputs on page 36

3.1.1. Dividing your DSP Builder Design into Subsystems

1. Consider how to divide your design into subsystems. A hierarchical approach
makes a design easier to manage, more portable thus easier to update, and easier
to debug. If it is a large design, it also makes design partition more manageable.

2. Decide on your timing constraints. DSP Builder advanced blockset achieves timing
closure based on your timing constraints, namely sample rate and clock rate. A
modular design with well-defined subsystem boundaries, allows you to precisely
manage latency and speed of different modules thus achieving timing closure
effortlessly.

3. Consider the following factors when dividing your design into subsystems:

• Identify the functionality of each submodule of your algorithm, and if you can
partition your design into different functional subsystems.

• In multirate designs consider the sample rate variation at different stages of a
datapath. Try not to involve too many different sample rates within a
subsystem.

• If your design has a tight latency requirement, use latency management to
define the boundary of a subsystem. DSP Builder advanced blockset applies
latency constraints on a subsystem basis.

4. To simplify synchronization, implement modules, which DSP Builder can compute
in parallel, in the same subsystem. DSP Builder can apply the same rules more
easily to each of the parallel paths. Do not worry about constraining the two paths
that may otherwise have different latencies.

3.1.2. Connecting DSP Builder Subsystems

To connect DSP Builder IP library blocks or Primitive subsystems, connect <valid,
channel, data> sets.

1. DSP Builder Block Interface Signals on page 25

2. Periods on page 28

3. Sample Rate on page 28

4. Building Multichannel Systems on page 29

5. Channelization for Two Channels with a Folding Factor of 3 on page 29

6. Channelization for Four Channels with a Folding Factor of 3 on page 30

7. Synchronization and Scheduling of Data with the Channel Signal on page 31

8. Simulink vs Hardware Design Representations on page 32

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.2.1. DSP Builder Block Interface Signals

DSP Builder designs have three basic interface signals: valid, channel, and data.

The channel (uint8) signal is a synchronization counter for multiple channel data on
the data signals. Typically, it increments from 0 with the changing channels across the
data signals within a frame of data

The data signals can be any number of synchronized signals carrying single or
multichannel data.

The valid (ufix(1) or bool)) signal indicates whether the concurrent data and
channel signals have valid information (1), are unknown (0), or do not care (0).

DSP Builder uses these three synchronized signals, to internally connect IP or
synthesized subsystems and externally connect upstream and downstream blocks.
Thus these three signals connect most of the blocks in a DSP Builder advanced
blockset design.

Only one set of valid, channel,and data signals can exist in a IP and synthesized
subsystem. But multiple data signals can exist in a customized synthesizable
subsystem.

Data on the data wire is only valid when DSP Builder asserts valid high. During this
clock cycle, channel carries an 8-bit integer channel identifier. DSP Builder preserves
this channel identifier through the datapath, so that you can easily track and decode
data.

This simple protocol is easy to interface with external circuitry. It avoids balancing
delays, and counting cycles, because you can simply decode the valid and channel
signals to determine when to capture the data in any downstream blocks. DSP Builder
distributes the control structures in each block of your design.

In Primitive subsystems, DSP Builder guarantees all signals that connect to
ChannelOut blocks line up in the same clock cycle. That is, the delays balance on all
paths from and to these blocks. However, you must ensure all the signals arrive at a
ChannelIn block in the same clock cycle.

The IP library blocks follow the same rules. Therefore, it is easy to connect IP blocks
and Primitive subsystems.

The IP library filters all use the same protocol with an additional simplification—DSP
Builder produces all the channels for a frame in a multichannel filter in adjacent
cycles, which is also a requirement on the filter inputs. If a FIR filter needs to use flow
control, pull down the valid signal between frames of data—just before you transmit
channel 0 data.

The same <data, valid, channel> protocol connects all CIC and FIR filter blocks
and all subsystems with Primitive library blocks. The blocks in the Channel Filter
and Waveform library support separate real and imaginary (or sine and cosine)
signals. The design may require some splitting or combining logic when using the
mixer blocks. Use a Primitive subsystem to implement this logic.

1. Multichannel Systems with IP Library Blocks on page 26

2. Valid, Channel, and Data Examples on page 26

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Channel In (ChannelIn) on page 344

• Channel Out (ChannelOut) on page 345

3.1.2.1.1. Multichannel Systems with IP Library Blocks

IP library blocks are vectorizable, if data going into a block is a vector requiring
multiple instances. For example, for a FIR filter, DSP Builder creates multiple FIR
blocks in parallel behind a single IP block. If a decimating filter requires a smaller
vector on the output, DSP Builder multiplexes data from individual subfilters onto the
output vector automatically, to avoid custom glue logic.

IP library blocks typically take a channel count as a parameter, which is simple to
conceptualize. DSP Builder numbers the channels 0 to (N – 1), and you can use the
channel indicator at any point to filter out some channels. To merge two streams, DSP
Builder creates some logic to multiplex the data. Sequence and counter blocks
regenerate valid and channel signals.

3.1.2.1.2. Valid, Channel, and Data Examples

In your design you have a clock rate N (MHz) and a per-channel sample rate M
(Msps). If N = M, DSP Builder receives one new data sample per channel every clock
cycle.

Figure 4. Single Channel Design
The frame length, which is the number of clock cycles between data updates for a particular channel, is 1. The
out channel count starts (from zero) every clock cycle. sPQ = the Qth data sample for channel P.

1 1 1

0 0 0

s00 s01 s02

valid

channel

data

Figure 5. Multichannel Design
If the data is spread across multiple wires, even for multiple channels, the frame length is 1. The channel
signal number, which is a channel synchronization counter, rather than an explicit number expressing the actual
channels, is again zero on each clock cycle.

1 1 1

0 0 0

s00 s01 s02

valid

channel

data

s10 s11 s12

s20 s21 s22

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Single Channel n > M
DSP Builder receives new data samples only every N/M clocks. If N = 300 MHz and M = 100Msps, DSP Builder
gives new data every 3 clock cycles. DSP Builder does not know what the data is on the intervening clocks, and
sets the valid to low (0). X is unknown or do not care. The frame length is 3 because of a repeating pattern of
channel data every 3 clock cycles

1 0 0

0 X X

s00 X X

valid

channel

data

1 0 0

0 X X

s01 X X

1 0 0

0 X X

s02 X X

Figure 7. Single Channel n > M and Two Data Channels
If N = 300 MHz and M = 100 Msps, with two data channels, the data wire carries the sample for the first
channel, the data for the second channel, then a cycle of unknown: The channel signal now increments as DSP
Builder receives the different channel data through the frame.

1 1 0

0 1 X

s00 s10 X

valid

channel

data

1 1 0

0 1 X

s01 s11 X

1 1 0

0 1 X

s02 s12 X

Figure 8. Three Channels
If N = 300 MHz and M = 100Msps, the frame is full along the single data wire.

1 1 1

0 1 2

s00 s10 s20

valid

channel

data

1 1 1

0 1 2

s01 s11 s21

1 1 1

0 1 2

s02 s12 s22

Figure 9. Four Channels
The data now spreads across multiple data signals as one wire is not enough to transmit four channels of data
in three clock cycles. DSP Builder attempts to distribute the channels evenly on the wires that it has to use:

1 1 0

0 1 X

s00 s10 X

valid

channel

data

1 1 0

0 1 X

s01 s11 X

1 1 0

0 1 X

s02 s12 X

s20 s30 X s21 s31 X s22 s32 X

Figure 10. Five Channels
The data spreads across two data signals that transmit five channels of data in three clock cycles. DSP Builder
packs the five channels of data as three on the first wire and two on the second. The channel signal still counts
up from zero at the start of each frame and that it specifies a channel synchronization count, rather than
expressing all the channels received on a particular clock (which requires as many channel signals as data
signals). The valid signal also remains one-dimensional, which can under-specify the validity of the
concurrent data if, in a particular frame, channel 0 is valid but channel 3 (received on the same clock) is not. In
the five-channel example, DSP Builder receives data for channel 2 on the first data signal at the same time as
the invalid data on the second data signal. You require some knowledge of the number of channels transmitted.

1 1 1

0 1 2

s00 s10 s20

valid

channel

data

1 1 1

0 1 2

s01 s11 s21

1 1 1

0 1 2

s02 s12 s22

s30 s40 X s31 s41 X s32 s42 X

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Single Channel n < M
DSP Builder receives multiple (M/N) data samples for a particular channel every clock cycle—super-sample
data. If N = 200 MHz and M = 800 Msps, you see a single channel with four new data samples every clock

1 1 1

0 0 0

s00 s04 s08

valid

channel

data

s01 s05 s09

s02 s06 s0A

s03 s07 s0B

3.1.2.2. Periods

For any data signal in a DSP Builder design, the FPGA clock rate to sample rate ratio
determines the period value of this data signal. In a multirate design, the signal
sample rate can change as the data travels through a decimation or interpolation filter.
Therefore period at different stages of your design may be different.

In a multichannel design, period also decides how many channels you can process on
a wire, or on one signal. Where you have more channels than you can process on one
path, or wire, in a conventional design, you need to duplicate the datapath and
hardware to accommodate the channels that do not fit in a single wire. If the
processing for each channel or path is not exactly the same, DSP Builder advanced
blockset supports vector or array data and performs the hardware and datapath
duplication for you. You can use a wire with a one dimensional data type to represent
multiple parallel datapaths. DSP Builder IP and Primitive library blocks, such as
adder, delay and multiplier blocks, all support vector inputs, or fat wires, so that you
can easily connect models using a single bus as if it is a single wire.

3.1.2.3. Sample Rate

The DSP Builder sample rate may exceed the FPGA clock rate, such as in a super
sample rate system, for example in high-speed wireless front-end designs. In a radar
or direct RF system with GHz digital-to-analog converters (DAC), the signal driving the
DAC can have a sample rate in the GHz range. These high-speed systems require
innovative architectural solutions and support for high-speed parallel processing. DSP
Builder advanced blockset interpolation filter IP has built in support for super-sample
rate signals, and the vector support of its Primitive library makes it easy for you to
design your super-sample rate module. However, for a super-sample rate design, you
must understand how channels are distributed across multiple wires as arrays, and
how they are allocated among time slots available on each wire.

Use the following variables to determine the number of wires and the number of
channels each wire carries by parameterization:

• ClockRate is the system clock frequency.

• SampleRate is the data sample rate per channel (MSPS).

• ChanCount is the number of channels.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Channels are enumerated from 0 to ChanCount – 1.

• The Period (or folding factor) is the ratio of the clock rate to the sample rate and
determines the number of available time slots:

Period = max(1, floor(ClockRate/SampleRate))

• The WiresPerChannel is the number of wires per channel:

WiresPerChannel = ceil(SampleRate/ClockRate)

• The WireGroups is the number of wire groups to carry all the channels regardless
of channel rate:

WireGroups = ceil(ChanCount / Period);

• The number of channel wires the design requires to carry all the channels is the
number of channels divided by the folding factor (except for supersampled filters):

ChanWireCount = WiresPerChannel × WireGroups

• The number of channels carried per wire is the number of channels divided by the
number of channels per wire:

ChanCycleCount = ceil(ChanCount/WireGroups)

Note: The channel signal counts through 0 to ChanCycleCount – 1.

3.1.2.4. Building Multichannel Systems

To build multichannel systems, use the required channel count, rather than a single
channel system and scaling it up. Primitive subsystems contain ChannelIn and
ChannelOut blocks, but do not have explicit support for multiple channels.

1. To create multichannel logic, draw out the logic required for your design to create
a single channel version.

2. To transform to a multichannel system, increase all the delays by the channel
count required.

3. Use a mask variable to create a parameterizable component.

3.1.2.4.1. Multichannel Systems with IP Library Blocks

IP library blocks are vectorizable, if data going into a block is a vector requiring
multiple instances. For example, for a FIR filter, DSP Builder creates multiple FIR
blocks in parallel behind a single IP block. If a decimating filter requires a smaller
vector on the output, DSP Builder multiplexes data from individual subfilters onto the
output vector automatically, to avoid custom glue logic.

IP library blocks typically take a channel count as a parameter, which is simple to
conceptualize. DSP Builder numbers the channels 0 to (N – 1), and you can use the
channel indicator at any point to filter out some channels. To merge two streams, DSP
Builder creates some logic to multiplex the data. Sequence and counter blocks
regenerate valid and channel signals.

3.1.2.5. Channelization for Two Channels with a Folding Factor of 3

If the number of channels is greater than the period, multiple wires are required. Each
IP block in your design is internally vectorized to build multiple blocks in parallel.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Channelization for Two Channels with a Folding Factor of 3
Combines two input channels into a single output wire (ChanCount = 2, ChanWireCount = 1, ChanCycleCount
= 2). Three available time slots exist in the output channel and every third time slot has a “don’t care” value
when the valid signal is low. The value of the channel signal while the valid signal is low does not matter.

3.1.2.6. Channelization for Four Channels with a Folding Factor of 3

Figure 13. Channelization for Four Channels with a Folding Factor of 3
Combines four input channels into two wires (ChanCount = 4, ChanWireCount = 2, ChanCycleCount = 2). In
Two wires are required to carry the four channels and the cycle count is two on each wire. DSP Builder
distributes the channels evenly on each wire leaving the third time slot as do not care on each wire

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The generated Help page for the block shows the input and output data channel
format that the FIR or CIC filter use after you have run a Simulink simulation.

3.1.2.7. Synchronization and Scheduling of Data with the Channel Signal

DSP Builder specifies the channel data separation per wire. The channel signal counts
from 0 to ChanCycleCount – 1 in synchronization with the data. Thus, for
ChanCycleCount = 1, the channel signal is the same as the channel count,
enumerated 0 to ChanCount – 1.

For more than a single data wire, it is not equal to the channel count on data wires,
but specifies the synchronous channel data alignment across all the data wires. For
example,

Figure 14. Four Channels on One Wire with no invalid cycles.

For a single wire, the channel signal is the same as a channel count. However, for
ChanWireCount > 1, the channel signal specifies the channel data separation per
wire, rather than the actual channel number: it counts from 0 to ChanCycleCount –1
rather than 0 to ChanCount –1.

Figure 15. Four Channels on Two Wires with no invalid cycles.

The channel signal remains a single wire, not a wire for each data wire. It counts over
0 to ChanCycleCount –1.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Four Channels on Four Wires

3.1.2.8. Simulink vs Hardware Design Representations

Simulink shows the IP block as a single block, but the data input and output wires
from the IP blocks show as a vector with multiple dimension. Multiple wires
accommodate all the channels and the Simulink model uses a vector of width 2.

Figure 17. Simulink and Hardware Representations of a Single Rate FIR Filter

Note: To display the ChanWireCount in Simulink, point to Port/Signal Displays in the
Format menu and click Signal Dimensions.

In a typical wideband CDMA macro-cell system, the DUC module in the RF card needs
to process eight inphase (I) and quadrature (Q) data pairs, resulting in 16
independent channels on the datapath. The input sample rate to a DUC is at sample
rate 3.84 MHz as defined in the 3GPP specification. A high-performance FPGA running
at 245.76 MHz typically maximizes parallel processing power.

Figure 18. 16-channel WCDMA DUC DesignShows how channel's distribution on wires
change in a multirate system.

FIR1

data
valid

channel
FIR2

data
valid

channel
CIC

data
valid

channel

data
valid

channel

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 5. 16-channel WCDMA DUC Design

Signals Clock Rate
(MHz)

ChanCount Data Sample
Rate (MSPS)

Period Data Signal Pattern Interpolatio
n Factor

Input to FIR1 245.76 16 3.48 64 I1, I2, ...I8, Q1, ... Q8, zeros(1,
64–16)

2

Input to FIR2 245.76 16 7.68 32 I1, I2, ...I8, Q1, ... Q8, zeros(1,
32–16)

2

Input to CIC 245.75 16 15.36 16 I1, I2, ...I8, Q1, ... Q8 8

Output of CIC 245.75 16 122.88 2 I1, I2, I3, I4, I5, I6, I7, I8, Q1,
Q2, Q3, Q4, Q5, Q6, Q7, Q8

8

In this example, the input data at low sample rate 3.84 can accommodate all channels
on a single wire. So the ChanWireCount is 1. In fact more time slots are available for
processing, since period is 64 and only 16 channels are present to occupy the 64 time
slots. Therefore the ChanCycleCount is 16, which is the number of cycles occupied on
a wire. As the data travels down the up conversion chain, its sample rate increases
and in turn period reduces to a smaller number. At the output of CIC filter, the data
sample rate increases to 122.88 Msps, which means only two time slots are available
on a wire. As there are 16 channels, spread them out on 8 wires, where each wire
supports two channels. At this point, the ChanWireCount becomes 8, and
ChanCycleCount becomes 2. The ChanCycleCount does not always equal period, as
the input data to FIR1 shows.

For most systems, sample rate is less than clock rate, which gives WirePerChannel=1.
In this case, ChanWireCount is the same as WireGroups, and it is the number of wires
to accommodate all channels. In a super-sample rate system, a single channel's data
needs to be split onto multiple wires. Use parallel signals at a clock rate to give an
equivalent sample rate that exceeds the clock rate. In this case, WiresPerChannel is
greater than one, and ChanWireCount = WireGroups × WiresPerChannel because one
channel requires multiple wires.

When connecting two modules in DSP Builder, the output interface of the upstream
module must have the same ChanWireCount and ChanCycleCount parameters as the
input interface of the downstream module.

Related Information

AN 544: Digital Modem Design with the DSP Builder Advanced Blockset.
For more information about channelization in a real design

3.1.3. Creating a New Design by Copying a DSP Builder Design Example

Start DSP Builder in MATLAB.

1. Copy and rename the model file to <model_name>.mdl (MDL format, not SLX)
and the set-up script to setup_<model_name>.m.

2. Open the set-up script in the MATLAB Editor.

3. Change the name of the parameter structure so that it does not conflict with the
original design example.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

33

http://www.altera.com/literature/an/an544.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Renaming the Parameter

4. Open the new model file as text and globally replace the parameter structure to
match.

Figure 20. Replace Parameter Structure

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Open the model.

6. Click File ➤ Model Properties ➤ Model Properties ➤ Callbacks to call the new
set-up script.

7. Save the model in .mdl format

Intel recommends that you create a Simulink project for your new design.

Related Information

• Starting DSP Builder in MATLAB

• DSP Builder Advanced Blockset Libraries

• Simulating, Generating, and Compiling Your Design

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

3.1.3.1. Creating a New Design From the DSP Builder FIR Design Example and
Changing the Namespaces

1. Open the FIR design example (demo_firi) from the Filters directory, by typing the
following command at the MATLAB command prompt:

demo_firi

2. In the demo_firi window (the schematic), double-click on the EditParams block
to open the setup script setup_demo_firi.m in the MATLAB Editor.

3. In the Editor, click File ➤ Save As and save as setup_mytutorial.m in a
different directory, for example \myexamples.

4. In the demo_firi window, click File ➤ Save As and save as mytutorial.mdl in
the \myexamples directory.

5. In the main MATLAB window, navigate to the \myexamples directory.

6. In the Editor, click Edit ➤ Find And Replace, enter dspb_firi in Find what:
and my_tutorial in Replace with:. Click Replace All. Click Close. This step
ensures all the setup variables do not interfere with any other workspace
variables.

7. Save setup_mytutorial.m.

8. On the Debug menu click Run setup_mytutorial.m to run the script, which
creates the workspace variables to use the schematic design.

9. To ensure MATLAB runs the setup script on opening (so that the design displays
correctly) and just before simulation (so that the parameters are up-to-date and
reflect any edits made since opening), perform the following steps:

a. In the mytutorial window (schematic), on the File menu click Model
Properties.

b. On the Callbacks tab click on PreLoadFcn and replace setup_demo_firi;
with setup_mytutorial;.

c. Repeat for the InitFnc.

d. Click OK.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

35

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1441718709335
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450959904968
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450871292415
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450794303067
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10. In the mytutorial window, double-click on the FilterSystem subsystem, then
double-click on InterpolatingFIR block. Replace all instances of dspb_firi with
mytutorial. Click OK. These parameters set up the FIR filter.

11. Double-click on InChanView, block replace all instances of dspb_firi with
mytutorial, click OK.

12. Repeat for the OutChanView block and the following blocks:

• The input stimulus generation blocks:

— Sine Wave

— Const

— Impulse

— Random

— Channel Counter

— Valid Sequence

• The downsample blocks:

— InDownsample

— OutDownsample.

• Spectrum analyzers

— InSpectrum (on the axis properties tab)

— Outspectrum (on the axis properties tab)

13. Change the simulation stop time from 20000*dspb_firi.SampleTime to
20000*mytutorial.SampleTime.

14. Change the title and save your new design.

3.1.4. Vectorized Inputs

Use vector data inputs and outputs for DSP Builder IP and Primitive library blocks
when the clock rate is insufficiently high to carry the total aggregate data. For
example, 10 channels at 20 MSPS require 10 × 20 = 200 MSPS aggregate data rate.
If the system clock rate is set to 100 MHz, two wires must carry this data, and so the
Simulink model uses a vector of width 2.

Unlike traditional methods, you do not need to manually instantiate two IP blocks and
pass a single wire to each in parallel. Each IP block internally vectorizes. DSP Builder
uses the same paradigm on outputs, where it represents high data rates on multiple
wires as vectors.

Each IP block determines the input and output wire counts, based on the clock rate,
sample rate, and number of channels.

Any rate changes in the IP block affect the output wire count. If a rate change exists,
such as interpolating by two, the output aggregate sample rate doubles. DSP Builder
packs the output channels into the fewest number of wires (vector width) that
supports that rate. For example, an interpolate by two FIR filter may have two wires
at the input, but three wires at the output.

The IP block performs any necessary multiplexing and packing. The blocks connected
to the inputs and outputs must have the same vector widths, which Simulink enforces.
Resolve vector width errors by carefully changing the sample rates.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Most Primitive library blocks also accept vector inputs.

3.2. Verifying your DSP Builder Advanced Blockset Design in
Simulink and MATLAB

Use this early verification to focus on the functionality of your algorithm, then iterate
the design implementation if needed. DSP Builder generates synthesizable VHDL for
the design at the start of every Simulink simulation. DSP Builder generates an
automatic testbench for the whole design and each subsystem. You can use these
testbenches to play data that the Simulink simulation captures through the generated
VHDL in ModelSim and confirm the results are identical.

1. Verifying your DSP Builder Advanced Blockset Design with a Testbench on page
37

2. Running DSP Builder Advanced Blockset Automatic Testbenches on page 38

3. Using DSP Builder Advanced Blockset References on page 41

4. Setting Up Stimulus in DSP Builder Advanced Blockset on page 41

5. Analyzing your DSP Builder Advanced Blockset Design on page 41

3.2.1. Verifying your DSP Builder Advanced Blockset Design with a
Testbench

A DSP Builder design testbench is all the subsystems above the subsystem with the
Device block. Many of the features of DSP Builder are more accessible if you develop
the testbench flexibly.

1. Before you start implementing your algorithm, consider the modules that connect
to and from your design. Understanding the interface to neighboring modules
helps you to use the correct stimulus.

2. Consider the sequence of events that you want to test.

3. If multiple channels of data enter your design, align them properly to follow the
DSP Builder advanced blockset data format.

4. Plan your testbench, before you start your design, to allow you to verify and
debug your implementation during the design phase.

5. DSP Builder advanced blockset uses a standard interface protocol. Ensure every
IP or customized block follows this protocol. The input and output signals of your
hierarchical design have a common interface.

6. Bring the output signals of subsystems to the top-level design.

7. When you have the top-level testbench in place, debug your subsystems at all
levels with the visualization features in Simulink and MATLAB.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.1.1. Visualization Features

When designing with DSP Builder advanced blockset, use the following visualization
features of MATLAB and Simulink:

• OutScope block. In addition to exporting data to work space for analysis, you can
use the OutScope block to visualize a signal or multiple signals. The OutScope
block probes and displays data on a wire or a bus relative to the time samples,
which is useful when debugging your design.

• OutputSpectrum block. You can also use the OutputSpectrum block, which
displays the signal spectrum in real time, when your design has filtering or FFT.

• Fixed-point toolbox. When dealing with bit growth and quantization, the fixed-
point toolbox can be a valuable tool. You can even visualize the dynamic range of
a signal by looking at the histogram of the signal.

3.2.2. Running DSP Builder Advanced Blockset Automatic Testbenches

Generally, for testbenches, click DSP Builder ➤ Verify Design. To run a single
subsystem (or the whole design) in an open ModelSim window, click via DSP Builder
➤ Run ModelSim. You can use the command line if you want to script testing flows.

• To get a list of the blocks in a design that have automatic testbenches, run the
following command in MATLAB:

getBlocksWithATBs('model')

• To load an automatic testbench from the ModelSim simulator, use the following
command:

source <subsystem>_atb.do

Alternatively, in ModelSim click Tools ➤ Execute Macro and select the
required .do file.

• You can run an automatic testbench targeting a subsystem or a IP block in your
design, or you can run an automatic testbench on all of your design.

• To run an automatic testbench from the MATLAB command line on a single entity,
use the command dspba.runModelsimATB.

• To run testbenches for all subsystems and the device level and set testbench
options: in the simulink window, click DSP Builder > Verify Design or type:

run_all_atbs(<model name>, Run simulation? (0:1), run Quartus
(0:1))

• To run the device level testbench in the ModelSim simulator, click DSP Builder >
Run ModelSim.

1. The dspba.runModelsimATB Command Syntax on page 38

2. Running All Automatic Testbenches on page 39

3. The command run_all_atbs Command Syntax on page 39

4. Testbench Error Messages on page 40

3.2.2.1. The dspba.runModelsimATB Command Syntax

Use this command to run ModelSim tests.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The dspba.runModelsimATB command has the following syntax:

dspba.runModelsimATB('model', 'entity', ['rtl_path']);

where:

• model = design name (without extension, in single quotes)

• entity = entity to test (the name of a Primitive subsystem or a ModelIP block, in
single quotes)

• rtl_path = optional path to the generated RTL (in single quotes, if not specified
the path is read from the Control block in your model)

For example:

dspba.runModelsimATB('demo_fft16_radix2', 'FFTChip');

The return values are in the format [pass, status, result] where:

• pass = 1 for success, or 0 for failure

• status = should be 0

• result = should be a string such as:

"# ** Note: Arrived at end of stimulus data on clk <clock name>"

DSP Builder writes an output file with the full path to the component under test in the
working directory. DSP Builder creates a new file with an automatically incremented
suffix each time the testbench is run. For example:

demo_fft_radix2_DUT_FFTChip_atb.6.out

This output file includes the ModelSim transcript and is useful for debugging if you
encounter any errors.

3.2.2.2. Running All Automatic Testbenches

To automatically run all the individual automatic testbenches in a design use the
command run_all_atbs. Run this command from the same directory that contains
the .mdl file.

3.2.2.3. The command run_all_atbs Command Syntax

This command has the syntax:

run_all_atbs('model', [runSimulation], [runFit]);

where:

• model = design name (without extension, in single quotes)

• runSimulation = optional flag that runs a simulation when specified (if not
specified, a simulation must run previously to generate the required files)

• runFit = optional flag which runs the Quartus Prime Fitter when specified

For example:

run_all_atbs('demo_agc');

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

run_all_atbs('demo_agc', true);

run_all_atbs('demo_agc', false, true);

run_all_atbs('demo_agc', true, true);

The return value is 1 if all tests are successful or 0 if any tests fail. The output is
written to the MATLAB command window.

3.2.2.4. Testbench Error Messages

Typical error messages have the following form:

** Error (vcom-13) Recompile <path>altera_mf.altera_mf_components because
<path>iee.std_logic_1164 has changed.

...

** Error: <path>mdl_name_system_subsystem_component.vhd(30): (vcom-1195)
Cannot find expanded name: 'altera_mf.altera_mf_components'.

...

** Error: <path>vcom failed.

...

At least one module failed to compile, not starting simulation.

These errors may occur when a ModelSim precompiled model is out of date, but not
automatically recompiled. A similar problem may occur after making design changes
when ModelSim has cached a previously compiled model for a component and does
not detect when it changes. In either of these cases, delete the rtl directory,
resimulate your design and run the dspba.runModelsimATB or run_all_atbs
command again.

If you run the Quartus Prime Fitter, the command also reports whether the design
achieves the target fMAX. For example:

Met FMax Requirement (FMax(291.04) >= Required(200))

A summary also writes to a file results.txt in the current working directory. For
example:

Starting demo_agc Tests at 2009-01-23 14:58:48

demo_agc: demo_agc/AGC_Chip/AGC hardware matches simulation (atb#1):

PASSED

demo_agc: Quartus Prime compilation was successful.

(Directory=../quartus_demo_agc_AGC_Chip_2): PASSED

demo_agc: Met FMax Requirement (FMax(291.04) >= Required(200)):

PASSED

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Finished demo_agc Tests at 2009-01-23 15:01:59 (3 Tests, 3 Passes, 0 Skipped, 0
Failed (fmax), 0 Failed (non-fmax))

3.2.3. Using DSP Builder Advanced Blockset References

All the signals in a DSP Builder advanced blockset design use the built-in Simulink
fixed-point types. Be careful if you compare your design with a floating-point
reference.

1. Compare your implementation against a reference—a C/C++ bit accurate model, a
MATLAB model, or a Simulink design.

2. For a C/C++ model, save your output into a text file and write your C/C++
comparison script.

3. For a MATLAB model, output the DSP Builder advanced blockset testbench data
into a workspace or save it into data files.

4. For a Simulink design, put the Simulink model in parallel with your synthesizable
design.

5. Use the Simulink scope to compare the two designs.

3.2.4. Setting Up Stimulus in DSP Builder Advanced Blockset

1. In your top-level testbench, generate stimulus at real time for both data and
control signals. Commonly used test data signals include sine waves, random
noise, step functions and constants.

2. Generate channel signals and valid signals as repeated sequences.

3. For simulations and tests, format your data, valid, or channel pair according
to the DSP Builder advanced blockset interface protocol in MATLAB or Simulink.

3.2.5. Analyzing your DSP Builder Advanced Blockset Design

1. Use Simulink scope blocks.

2. Use the SpectrumScope block to check signal spectrum properties, especially in
evaluating filter performance.

3.3. Exploring DSP Builder Advanced Blockset Design Tradeoffs

Get early estimates of resource utilization before you go to hardware verification,
which allows you to experiment with various implementation optimizations early.
Access memory-logic tradeoff, or logic-multiplier tradeoff by modifying threshold
parameters. You may not need to physically modify the design. DSP Builder can
automate design space exploration based on your tradeoff options

1. Bit Growth on page 42

2. Managing Bit Growth in DSP Builder Advanced Blockset Designs on page 42

3. Using Rounding and Saturation in DSP Builder Advanced Blockset Designs on page
42

4. Scaling with Primitive Blocks on page 43

5. Changing Data Type with Convert Blocks and Specifying Output Types on page
43

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.1. Bit Growth

DSP Builder uses the built-in Simulink fixed-point types to specify all fixed-point data.
You can display the signals as familiar floating-point types.

Using fixed-point types preserves the extra information of binary point position
through hardware blocks, so that it is easy to perform rounding and shifting
operations without having to manually track the interpretation of an integer value. A
fixed-point type change propagates through your design, with all downstream
calculations automatically adjusted.

In a typical mathematical algorithm involving multiplication and addition, data width
grows as signals travel through the arithmetic blocks. A large data width implies better
accuracy generally, but more hardware resources and potentially lower fMAX (such as
in large adders).

3.3.2. Managing Bit Growth in DSP Builder Advanced Blockset Designs

Manage bit growth after you update your design or run a simulation.

1. To display the signal type and width turn on Simulink display of signal types.

2. Manage and control bit width at various stages of your design, either because of
hardware resource limitation or fMAX speed concerns.

3. Track bit growth by studying the algorithm and determining bit width at various
stage of the design from the mathematical model of the design.

4. Use Simulink Fixed-Point Toolbox to visualize the bit width distribution at various
places of the design. The fixed-point toolbox displays the histogram of datapath
signals you log.

5. To log a data signal in your Simulink design, right-click on the wire and select
Signal Properties.

6. With the histogram decide how many MSBs are unused in the current fixed-point
representation, which helps you decide how many MSBs to discard, thus
maximizing the dynamic range of your scaled data.

3.3.3. Using Rounding and Saturation in DSP Builder Advanced Blockset
Designs

IP library blocks such as FIR filters produce output data that use full resolution. DSP
Builder performs no rounding or saturation on the output data.

1. Use a Scale block to provide scaling and control your bit growth before data
enters the next stage of your IP or primitive subsystems.

Note: For primitive subsystems, use a Convert block to apply rounding and
saturation. The Convert block does not perform scaling.

2. To reduce bit width of a wide word, use a Convert block instead of just forcing
output data type in an arithmetic block.

Whether you choose the Scale block or Convert block to perform rounding and
saturation, depends on your algorithm and resource requirement. The Convert
block does not support scaling, although you can combine a few Primitive library
blocks to implementing scaling. The Scale block allows you to use a different
scaling factor on a cycle basis. It supports both amplification and attenuation of
data.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.3.4. Scaling with Primitive Blocks

Use Primitive library blocks to build your own run-time reconfigurable scaling.

1. Use the left shift operation to remove redundant MSBs; use bit extract to remove
LSBs and preserve the MSBs.

2. Choose the number of MSBs to discard with the run-time reconfigurable parameter
that comes from an input port.

3. Use a control register to connect to this port, and update the shift value by a
processor such as a Nios II processor.

4. If the FPGA clock is low, use this implementation to realize different scaling for
different channels. If it is a high speed application and your processor bus updates
much slower than logic clock rate, you cannot use this circuit to apply different
scaling for different channels.

3.3.5. Changing Data Type with Convert Blocks and Specifying Output
Types

1. Preserve the real-world value using a Convert block.

2. Preserve bit pattern by setting the output data type mode on any other Primitive
library block or use a Reinterpretcast block.

Related Information

Convert on page 308

3.3.5.1. The Convert Block and Real-world Values

The Convert block converts a data type to preserve the real-word value and
optionally rounds and saturates the data type when not possible. Convert blocks can
sign extend or discard bits as necessary. Similarly you can convert the same number
of bits while preserving the real world value (as far as possible, subject to rounding
and saturation).

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Convert Block Changing Data Type while preserving real-world value

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Convert Block Using Same Number of Bits while preserving real-world value

Related Information

Convert on page 308

3.3.5.2. Output Data Types on Primitive Blocks

Set the output data type with Specify via dialog on any(except Convert) DSP
Builder Primitive library block. For example you can use a zero-length sample delay.
Specifying the output type with the dialog box is a casting operation. This operation
does not preserve the numerical value, it just preserves the underlying bits, This
operation never adds hardware to a block—it just changes the interpretation of the
output bits. DSP Builder implements this reinterpretation by aligning the LSBs of the
old and new data types. For example, if the new data type has fewer fractional bits
than the old data type, the new numerical value is larger than the old numerical value.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. SampleDelay Block with number of delays set to 0

For example, a Mult block with both input data types specified as sfix16_En15
naturally has an output type of sfix32_En30. The specified output data type has two
fewer fractional bits than the natural input data type. Therefore, if you specify the
output data type as sfix32_En28, the output numerical value is effectively multiplied
by four, and a 1*1 input gives an output value of 4.

If you specify output data type of sfix32_En31, the output numerical value is
effectively divided by two and a 1*1 input gives an output value of 0.5.

If you want to change the data type format in a way that preserves the numerical
value, use a Convert block, which adds the corresponding hardware. Adding a
Convert block directly after a Primitive library block allows you to specify the data
type in a way that preserves the numerical value. For example, a Mult block followed
by a Convert block, with input values 1*1 always gives output value 1.

To reinterpret the bit pattern and also discard bits, if the type you specify with the
Output data type is smaller than the natural (inherited) output type, DSP Builder
discards the MSBs (most significant bits).

Never set Specify via dialog to be bigger than the natural (inherited) bit pattern—
DSP Builder performs no zero-padding or sign extension, and the result may generate
hardware errors due to signal width mismatches. Use the Convert block for any sign
extension or zero padding.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24. SampleDelay Block and Reducing Bit Width

If you want to use sign extends and zero pads to reinterpret the bit pattern, you can
combine these methods.

To set a specific format so that DSP Builder can resolve types, for example, in
feedback loops, set Specify via dialog on an existing Primitive library block or
insert a zero-cycle sample delay (which generates no hardware and just casts the type
interpretation).

To ensure the data type is equal to some other signal data type, force the data type
propagation with a Simulink data type propagation block.

Related Information

Primitives Library on page 274

3.4. Verifying your DSP Builder Design with C++ Software Models

DSP Builder supports C++ software models for designs that support bit-accurate
simulation.

The software model includes a testbench, which is an executable program to check the
output of the software models matches the output of Simulink simulation. The
generated CMake script creates projects and makefiles (depending on parameters)

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

that you can use to compile the software model and testbench. The testbench and the
CMake script allow you to verify the model functionality. Also, you can use the
testbench as a starting point for integration of generated models into a larger, system-
level, simulation.

1. In th e design’s Control block turn on Generate software model.

The default language is cpp03 (C++ 2003 standard conformant) and Generate
an ATB (automatic testbench) and CMake build script is turned on (by
default).

2. Turn on Bit Accurate Simulation on the SynthesisInfo blocks in all
subsystems.

You must enable bit-accurate simulation for all subsystems otherwise DSP Builder
generates incomplete software models.

3. Compile the design.
DSP Builder creates a directory, cmodel, which contains the following files:

• A csl.h header file containing utility functions and implementation details for
the generated models.

A [model/subsystem name]_CModel(.h/.cpp) pair for each subsystem
and the device level system.

A [model/subsystem name]_atb.cpp file containing the device level test
bench for the model.

A CMakeFiles.txt/CMakeLists.txt file containing CMake build scripts
for building the ATB executable and model files.

4. Generate the project or makefiles using CMakeLists.txt.

For example, to generate Visual Studio 2017 projects, run:

cmake -G "Visual Studio 15 2017 Win64

Or to generate a makefile for the release build with symbols on Linux:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=RelWithDebInfo

Refer to the CMake documentation for more options.

5. Set the MPIR_INC_PATH, MPIR_LIB_PATH, MPFR_INC_PATH, MPFR_LIB_PATH
options to the include and library directories of builds of the mpfr or mpir
libraries if you generate models with types larger than 64-bits.

Build instructions and prebuilt binaries are on the mpfr or mpir websites: https://
www.mpfr.org/ and http://mpir.org/

6. On Windows, open the generated solution file and run the compilation. On Linux,
run make.
After compilation, DSP Builder creates an executable of the same name as the
generated testbench, <design name>_CModel_atb.exe.

7. Run the .exe with the cmodel directory as the working directory so that the
generated stimulus file paths are correct.
If simulation was successful, the executable produces the following output to
stdout:

Opening stimulus files...
Simulating...
Success! Stimulation matches output stimulus results.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

48

http://www.mpfr.org/
http://www.mpfr.org/
http://mpir.org/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Refer to the testbench to see how you can integrate the generated models into an
existing system.

Subsystems contain structs representing their inputs and outputs. These structs
have a generated constructor that reads values from a stimulus file for the
testbench.

struct IO_xIn
{
 int64_t v; int64_t c; int64_t x; int64_t y;

 IO_xIn()
 : v(0)
 , c(0)
 , x(0)
 , y(0)
 {
 }

 IO_xIn(csl::StimulusFile& stm)
 {
 stm.Get<1>(v); stm.Get<8>(c); stm.Get<27>(x); stm.Get<27>(y);
 }
};

When integrating the model, replace the stimulus file constructor by manually
setting the input or output values on the struct before using them to drive the
model using read(), write(), or execute() functions.

3.4.1. Example CMakelist File

Generate project or makefiles using CMakeLists.txt

cmake_minimum_required (VERSION 2.11) project (simple_dut_CModel_atb)
set (simple_dut_CModel_atb 1)
set (simple_dut_CModel_atb 0)

set by user as a hint
set (MPIR_INC_PATH "" CACHE PATH "MPIR include path (hint)") set (MPIR_LIB_PATH
"" CACHE PATH "MPIR library path (hint)") set (MPFR_INC_PATH "" CACHE PATH
"MPFR include path (hint)") set (MPFR_LIB_PATH "" CACHE PATH "MPFR library path
(hint)")

option(USE_MPIR "Include and link against the MPIR library for models that
require arbitrary precision" OFF)
option(USE_MPFR "Include and link against the MPFR library for models that
require arbitrary precision floating point" OFF)

include("CMakeFiles.txt")

add_executable(simple_dut_CModel_atb ${cmodel_SRC}) add_definitions(-
D_CRT_SECURE_NO_WARNINGS)
if (MSVC)
else()
set(CMAKE_CXX_FLAGS_RELEASE "-O1 -DNDEBUG")
endif()

if(USE_MPIR)
add_definitions(-DCSL_USE_MPIR) find_path(MPIR_INC
NAMES mpir.h
HINTS ${MPIR_INC_PATH}
)
find_library(MPIR_LIB NAMES mpir altera_mpir HINTS ${MPIR_LIB_PATH}
)

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5. Verifying your DSP Builder Advanced Blockset Design in the
ModelSim Simulator

Verify your design in Simulink or the ModelSim simulator with the automatic testbench
flow. Also, compare Simulink results with the generated RTL, on all synthesizable IP
and primitive subsystems. This final verification before you port the design to system-
level integration ensures you should not need to iterate your design.

Note: Intel recommends the automatic testbench flow.

1. Automatic Testbench on page 50

2. DSP Builder Advanced Blockset ModelSim Simulations on page 51

3.5.1. Automatic Testbench

Each IP library block, and each synthesized Primitive library block writes out test
vectors to a stimulus file (*.stm) during a Simulink simulation run. DSP Builder
creates an RTL testbench for each separate entity in your design (that is, for each IP
block and Primitive subsystem). These testbenches replay the test vectors through
the generated RTL, and compare the output from the RTL to the output from the
Simulink model. If a mismatch at any cycle exists, the simulation stops and DSP
Builder indicates an error. Use these DSP Builder automatic testbenches, to verify the
correct behavior of the synthesis engine.

The automatic testbench flow uses a stimulate-and-capture method and is therefore
not restricted to a limited set of source blocks. The Simulink simulation stores data at
the inputs and outputs of each entity during simulation. Tthen the testbench for each
entity uses this data as a stimulus and compares the ModelSim output to the Simulink
captured output. The result indicates whether the outputs match when the valid
signal is high.

3.5.1.1. DSP Builder Advanced Blockset Automatic Testbench Files

Table 6. Files for an Automatic Testbench

File Name Description

<name>.vhd The HDL that is generated as part of the design (regardless of automatic testbenches).

<name>_stm.vhd An HDL file that reads in data files of captured Simulink simulation inputs and outputs on
<name>

<name>_atb.vhd A wrapper HDL file that performs the following actions:
• Declares <name>_stm and <name> as components
• Wires the input stimuli read by <name>_atb to the inputs of <name> and the output

stimuli and the outputs of <name> to a validation process that checks the captured
Simulink data

• Channel matches the VHDL simulation of <name> for all cycles where valid is high
• Checks that the valid signals match

<input>/<output>.stm The captured Simulink data that the ChannelIn, ChannelOut, GPIn, GPout and IP
blocks write.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each block writes a single stimulus file capturing all the signals through it writing them
in columns as doubles with one row for each timestep.

The device-level testbenches use these same stimulus files, following connections
from device-level ports to where the signals are captured. Device-level testbenches
are therefore restricted to cases where the device-level ports are connected to
stimulus capturing blocks.

3.5.2. DSP Builder Advanced Blockset ModelSim Simulations

ModelSim simulations compare the complete Simulink model with hardware. This
comparison uses the same stimulus capture and comparison method as the automatic
testbenches.

DSP Builder captures stimulus files on the device level inputs and records Simulink
output data on the device level outputs. It creates a ModelSim testbench that contains
the HDL generated for the device that the captured inputs feed. It compares the
Simulink outputs to the ModelSim simulation outputs in an HDL testbench process,
reports any mismatches, and stops the ModelSim simulation.

3.6. Verifying Your DSP Builder Design in Hardware

Alternatively, verify the hardware with the system in the loop.

1. Set up verification structures around the DUT using on-chip RAMs. If the design
interfaces to off-chip RAM for reading and storing data, the design requires no
additional verification structures.

a. Add buffers to load with test vectors for DUT inputs and logic to drive DUT
inputs with this data.

b. Add buffers to store the DUT results.

• Use a SharedMem block from the Interface library to implement buffers.
DSP Builder automatically generates processor interface to these blocks
that it requires to load and read the buffers from MATLAB (with MATLAB
API).

• Use Counter blocks from the Primitive library or custom logic to
implement a connection between the test buffers and DUT inputs and
outputs.

• Consider using RegField, RegBit, and RegOut blocks from the Interface
library to control the system and poll the results from MATLAB. DSP
Builder automatically generates a processor interface for these blocks.

2. Assemble the high-level system in Platform Designer.

3. Use appropriate Platform Designer library blocks to add debugging interfaces and
data storage.

a. Add PLLs to generate clocks with the required frequency. You can use separate
clocks for the processor interface clock and system clock of the DSP Builder
design, if you generate the DSP Builder design with Use separate bus clock
option.

b. Add debug Master (JTAG/USB). All memory-mapped read and write requests
go through this IP core. Connect it to DSPBA processor interface (Avalon MM
Slave) and any other IP that needs to be accessed from host.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

c. Add the DSP Builder top-level design with the source and sink buffers.

d. If you assemble a system with a DSP Builder design that connects to off-chip
memory, add an appropriate block to the Platform Designer system and
connect it to the DSP Builder block interfaces (Avalon-MM master). Also,
connect the debug master to off-chip RAM so the host can access it.

4. Create a Quartus Prime project.

5. Add your high-level Platform Designer system into a top-level module and connect
up all external ports.

6. Provide port placement constraints.

If you are using on-chip RAMs for testing and JTAG-based debugging interface,
you mainly need to place clock and reset ports. If you use off-chip RAM for data
storage, provide more complex port assignments. Other assignments may be
required based on the specific design and external interfaces it uses.

7. Provide timing constraints.

Compile the design and load it into the FPGA.

3.6.1. Hardware Verification

DSP Builder provides an interface for accessing the FPGA directly from MATLAB. This
interface allows you to use MATLAB data structures to provide stimuli for the FPGA and
read the results from the FPGA.

This interface provides memory-mapped read and write accesses to your design
running on an FPGA using the System Console system debugging tool.

Table 7. Methods for SystemConsole Class
Call these methods as SystemConsole.<method_name>[arguments]. Use these methods to scan and
establish the master connection to the FPGA.

Method Description

executeTcl(script) Executes a Tcl script specified through <script> string in SystemConsole.

designLoad(path) Loads the design (.sof) file specified through <path> parameter to FPGA.

refreshMasters Detects and lists all available master connections.

openMaster(index) Creates and returns a master connection to a specified master link. The <index> specifies the
index (starting 1) of the connection from the list returned by refreshMasters function.
For example, M=SystemConsole.openMaster(1);

Table 8. Methods for Master Class
Read and write through a master connection. Call these methods on a master object returned by
SystemConsole.openMaster(index) method.

Method Description

close() Closes the connection associated with the master object.
Note: Always call this method when you finish working with current master connection.

setTimeOutValue(timeout) Use this method to override the default timeout value of 60 seconds for the master
connection object. The specified <timeout> value in seconds.

read(type, address, size [,
timeout])

Returns a list of <size> number of values of type <type> read from memory on FPGA
starting at address <address>.

continued...

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Method Description

For example,
data = masterObj.read(‘single’, 1024, 10)

Reads consequent 10 4-byte values (40 bytes overall) with a starting address of 1,024
and returns the results as list of 10 ‘single’ typed values.

write(type, address, data [,
timeout])

Writes <data> (a list of values of type <type>) to memory starting at address
<address>.
For example:
masterObj.write(‘uint16’, 1024, 1:10);

Writes values 1 to 10 to memory starting address 1,024, where each value occupies 2
bytes in memory (overall 20 bytes are written).

Table 9. Parameters for read(type, address, size [, timeout])

Parameter Description

<type> The type of each element in returned array.
• 1 byte : ‘char’, ‘uint8’, ‘int8’
• 2 bytes: ‘uint16’, ‘int16’
• 4 bytes: ‘uint32’, ‘int32’, ‘single’
• 8 bytes: ‘uint64’, ‘int64’, ‘double’

<address> The start address for the read operation. You can specify as a hexadecimal string.
Note: The address should specify a byte address

<size> The number of <type> (type specifies 1/2/4/8 bytes based on value) values to read.

<timeout> An optional parameter to override the default timeout value for this operation only.

Table 10. Parameters for write(type, address, data [, timeout])

Parameter Description

<type> The type each element in specified <data>. Each type specifies 1/2/4/8 bytes:
• 1 byte : ‘char’, ‘uint8’, ‘int8’
• 2 bytes: ‘uint16’, ‘int16'
• 4 bytes: ‘uint32’, ‘int32’, ‘single’
• 8 bytes: ‘uint64’, ‘int64’, ‘double’

<address> The start address for the write operation. You can specify as a hexadecimal string.
Note: The address should be specified as a byte address

<data> An array or single element data to be written to memory.

<timeout> An optional parameter to override the default timeout value for this operation only.

1. Hardware Verification Design Example on page 53

3.6.1.1. Hardware Verification Design Example

DSP Builder design example for off chip source and sink buffers.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Top-Level System
Shows source and sink buffers and DUT.

Figure 26. Source Buffer
AddressGen block triggers reads from SharedMem to drive DUT input. RegField initiates execution of the
AddressGen block from host.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Sink Buffer

Figure 28. Platform Designer System
master_0 is the instance of JTAG debug master. syscon_api_sil_ex_0 is the instance of the top-level DSP
Builder system, which contains test buffers.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. MATLAB API

3.6.2. Hardware Verification with System-in-the-Loop

Intel provides the system-in-the-loop flow for hardware verification.

System-in-the-loop:

• Automatically generates HW verification system for DSP Builder designs based on
your configuration.

• Provides a wizard-based interface to configure, generate, and run HW verification
system.

• Provides two separate modes:

— Run Test Vectors loads and runs test vectors with large chunks (based on
test memory size on target verification platform)

— Data Sample Stepping loads one set sample at a time while stepping
through Simulink simulation

Data Sample Stepping generates a copy of the original model and replaces the DSP
Builder block with a special block providing connection to the FPGA to process data.

1. Preparing for DSP Builder System-In-The-Loop on page 56

2. System-In-The-Loop Supported Blocks on page 57

3. Building Custom JTAG-Based Board Support Packages on page 57

4. Running System-In-the-Loop on page 60

5. System-In-The-Loop Parameters on page 60

3.6.2.1. Preparing for DSP Builder System-In-The-Loop

1. Ensure you have a full installation of the Intel FPGA for OpenCL SDK.

2. Ensure ALTERAOCLSDKROOT variable points to the installation root directory.

3. For Windows, if you intend to use Data Sample Stepping, add the following
suffix to PATH environment variable:

<YOUR_OPEN_CL_INSTALLATION_ROOT>/host/windows64/
bin:<YOUR_DSPBA_INSTALLATION_ROOT>/backend/windows64

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6.2.2. System-In-The-Loop Supported Blocks

System-in-the-loop only supports DSP Builder device-level blocks. The block interface
may have complex and vector type ports.

All block input and output ports should pass through a single DSP Builder ChannelIn
or ChannelOut interface, or be connected to a single IP block. The block may contain
memory-mapped registers and memory blocks (accessible through the autogenerated
Avalon-MM slave interface). Observe the following limitations:

• The design should use the same clock for system and bus interfaces. The design
does not support separate clocks.

• For autogenerated Avalon MM slave interfaces, use the name bus.

• The design does not support any other combination of DSP Builder block interface,
including Avalon-MM master interfaces.

The overall bitwidth of block input and output ports should not exceed 512 bits
(excluding the valid signal).

Running hardware verification with Data Sample Stepping loads a new set of test
data to FPGA every simulation step (if the data set is valid), which gives big timing
gaps between two subsequent cycles for DSP Builder blocks running on hardware. If
your DSP Builder block implementation cannot handle such gaps, system-in-the-loop
simulation results may be incorrect.

3.6.2.3. Building Custom JTAG-Based Board Support Packages

1. Setting up Board Support Package for 28 nm Device Families on page 57

2. Setting up Board Support Packages for Other Device Families on page 58

3. Publishing the Package in the System-In-The-Loop Wizard on page 58

4. System-in-the-Loop Third-Party Board Support Packages on page 59

5. Template Values in the System-in-the-Loop boardinfos.xml File on page 59

3.6.2.3.1. Setting up Board Support Package for 28 nm Device Families

1. Copy the <ALTERAOCLSDKROOT>/board/dspb_sil_jtag directory to a location
where you have write access (for example CUSTOM_BOARDS).

2. Change <CUSTOM_BOARDS>/dspba_sil_jtag/hardware directory

3. Rename jtag_c5soc directory to desired name (for example jtag_myboard),
remove the second directory.

4. Change to the jtag_myboard directory

5. In the top.qsf file, in board specific section:

a. Change the device family and name setting according to device in your board

b. Change clk and resetn port location and IO standard assignments according
to your board specification

6. In top.sdc file, in the call for create_clock command. Change the clock period
according to a clock specification you have set in top.qsf file

7. Open board.qsys file in Platform Designer

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Update REF_CLK_RATE parameter value for kernel_clk_generator
instance according to clock specification you have set in top.qsf/sdc files

b. Update the device family setting according to your board specification

8. Open system.qsys file in Platform Designer. Update device family setting
according to your board specification.

9. In the <CUSTOM_BOARDS>/dspba_sil_jtag/board_env.xml file change the
default hardware name to your directory (for example jtag_myboard).

3.6.2.3.2. Setting up Board Support Packages for Other Device Families

1. In the scripts/post_flow.tcl file remove the following line:

source $::env(ALTERAOCLSDKROOT)/ip/board/bsp/adjust_plls.tcl

2. Open board.qsys file in Platform Designer

a. Remove the kernel_clk_generator instance.

b. Add instance of Intel PLL with one output clock. Set the reference clock
frequency.

c. Export the refclk clock input interface with kernel_pll_refclk name

d. Connect outclk0 to the initial source of
kernel_clk_generator.kernel_clk output.

e. Connect the global_rest_in.out_reset output to reset input of PLL
instance.

f. Set the generated clock frequency

Note: The design must meet timing on this clock domain. Intel advises that
you use a low target frequency.

3.6.2.3.3. Publishing the Package in the System-In-The-Loop Wizard

1. Create a file named boardinfos.xml file in the directory where you copy the
dspba_sil_jtag directory.

2. Before you start MATLAB, set the DSPBA_SIL_BSP_ROOT variable to point to the
directory where this file and your custom board is located.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Boardinfo.xml File Content

3.6.2.3.4. System-in-the-Loop Third-Party Board Support Packages

System-in the-loop supports the following third-party board support packages that are
available for OpenCL:

• Bittware

• Nallatech

• ProcV

These packages are not available in the system-in-the-loop wizard by default. After
you install these boards, publish the packages to the system-in-the-loop wizard.

3.6.2.3.5. Template Values in the System-in-the-Loop boardinfos.xml File

Table 11. Template Values in boardinfos.xml File

Board Support Package Value of 'Template' field

Bittware bittware_s5phg

Nallatech nallatech_pcie3x5

Gidel ProcV gidel_procev

Custom packages based on dspa_sil_jtag dspba_sil_jtag

Custom packages based on dspba_sil_pci dspba_sil_pcie

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6.2.4. Running System-In-the-Loop

This walkthrough uses a DSP Builder design that implements a primitive FIR filter with
memory-mapped registers for storing coefficients

Figure 31. FIR Filter with Memory-Mapped Registers

1. In the design’s Control block ensure you turn on Generate Hardware.

2. Simulate the model to generate RTL.

3. Select a device-level sub-system in your design and click DSP Builder ➤ New
SIL Wizard.

4. On the Parameters tab, specify the parameters.

5. Click the Run tab and specify the run parameters

3.6.2.5. System-In-The-Loop Parameters

The design interface settings only generate appropriate adapters between the DSP
Builder ChannelIn and ChannelOut interfaces and test Avalon-ST interface. The
hardware platform always runs at fixed clock rate.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 12. System-In-The-Loop Parameters

Section Option Description

BSP Settings BSP Select the target BSP you want to run the hardware test on.

Device Device on the selected board.

BSP Memory
Allocation

Total Memory Size Specify the total size for test memory to use.

Input Memory Size Specify the amount of memory (from total memory size) for storing input
test data. The remaining memory is for storing output data.
You might require several iterations to load and process all input test
vectors because of memory limitations.

Design Interface Clock Rate Specify the same value as in the DSP Builder block setup file.

Sample Rate Specify the same value as in the DSP Builder block setup file.

Number of Channels The number of channels for the DSP Builder block. Specify the same
value as in the DSP Builder block setup file.

Frame Size This value represents a number of valid data samples that you should
supply to the DSP Builder block without timing gaps in between.
If this value is more than 1, the wizard inserts a specific block in
between test data provider and the DSP Builder block. This block enables
data transmission to the DSP Builder block only when the specified
amount of data is already available.
An example of such a design is a folded multichannel design.

- Destination
Directory

Specify the directory where DSP Builder should generate the system- in-
the-loop related files.
You should change to this directory to simulate the system-in-the-loop
generated model with an FPGA proxy.

Table 13. System-In-The-Loop Run Settings

Setting Description

Select SIL Flow Select the system- in-the-loop flow to use. The options are:
Run Test Vectors runs all test vectors through the hardware verification system. The
test vectors are based on simulation data recorded in DSP Builder .stm format files
during Simulink simulation.
Step Through Simulation allows processing every different set of valid input data on
hardware separately, while simulating a design from Simulink. The wizard generates a
separate model <model_name>_SIL in the SIL destination directory, which you should
use for hardware verification. The original DSP Builder device level block is replaced with
a specific block providing communication with the FPGA.
You should change to SIL destination directory before you can simulate this model.
If you change the flow, regenerate and recompile the system into a new destination
directory.

Generate Generates the infrastructure, files, and blocks for the hardware verification platform.

Compile Compiles the entire hardware verification system in the Quartus Prime software to the
generation configuration file.
Allow at least 10-15 minutes for this step to run (more time for large DSP Builder
designs). During this time the MATLAB input interface is unavailable.

Select JTAG Cable Press Scan to scan available JTAG connections for programming the board.
Choose the required JTAG cable from the discovered list.

Program Program the board through selected JTAG cable.
Go directly to this step if you have a pregenerated design with no changes with the flow
parameters and in DSP Builder design under test.

Run Run the test on hardware. Run Test Vectors only.

continued...

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description

The hardware test automatically detects and executes write requests over the DSP
Builder autogenerated Avalon-MM slave interface. The wizard cannot keep the sequence
of transfers for write requests over Avalon-MM slave interface and the DSP Builder data
interface on hardware exactly the same as during simulation. Therefore, you may see
data mismatches for a few sets of output samples at points where write requests are
issued.

Compare Compare the hardware verification results with simulation outputs. Run Test Vectors
only.
The wizard compares only valid output samples.

Simulate
<original_model>_SIL system

During simulation, the FPGA proxy block that replaces the original DSP Builder design in
the system-in-the-loop:
• Every time you update inputs, it loads data to DSP Builder if valid input is high
• Every time you request outputs, it populates outputs with data read from hardware if

output memory contains valid sample.
Step through simulation only.
Because the FPGA proxy updates its output only with valid samples, you see the same
results repeated on the outputs until hardware has a new valid set of data. This
behavior may differ from simulation results, where outputs are populated at every
simulation cycles with available values.

3.7. Integrating Your DSP Builder Advanced Blockset Design into
Hardware

Integrate your DSP Builder advanced blockset design as a black-box design in your
top-level design. Integrate into Platform Designer to create a complete project that
integrates a processor, memory, datapath, and control.

1. DSP Builder Generated Files on page 62

2. DSP Builder Designs and the Quartus Prime Project on page 63

3. Interfaces with a Processor Bus on page 64

3.7.1. DSP Builder Generated Files

DSP Builder generates the files in a directory structure at the location you specify in
the Control block, which defaults to ../rtl (relative to the working directory that
contains the .mdl file). If you turn on the Generate Hardware option in the
parameters for the DSP Builder Control block, every time the simulation runs, the
underlying hardware synthesizes, and VHDL writes out into the specified directory.

Table 14. Generated Files

DSP Builder creates a directory structure that mirrors the structure of your design. The root to this directory
can be an absolute path name or a relative path name. For a relative path name (such as ../rtl), DSP Builder
creates the directory structure relative to the MATLAB current directory.

File Description

rtl directory

<model name>.xml An XML file that describes the attributes of your model.

<model name>_entity.xml An XML file that describes the boundaries of the system.

<model name>_params.xml When you open a model, DSP Builder produces a model_name_params.xml
file that contains settings for the model. You must keep this file with the
model.

continued...

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Description

rtl/<model name> subdirectory

<block name>.xml An XML file containing information about each block in the advanced blockset,
which translates into HTML on demand for display in the MATLAB Help viewer
and for use by the DSP Builder menu options.

<model name>.vhd This is the top-level testbench file. It may contain non-synthesizable blocks,
and may also contain empty black boxes for Simulink blocks that are not fully
supported.

<model name>.add.tcl This script loads the VHDL files in this subdirectory and in the subsystem
hierarchy below it into the Quartus Prime project.

<model name>.qip This file contains information about all the files DSP Builder requires to process
your design in the Quartus Prime software. The file includes a reference to
any .qip file in the next level of the subsystem hierarchy.

<model name>_<block name>.vhd DSP Builder generates a VHDL file for each component in your model.

<model
name>_<subsystem>_entity.xml

An XML file that describes the boundaries of a subsystem as a black-box
design.

<subsystem>.xml An XML file that describes the attributes of a subsystem.

*.stm Stimulus files.

safe_path.vhd Helper function that the .qip and .add.tcl files reference to ensure that
pathnames read correctly in the Quartus Prime software.

safe_path_msim.vhd Helper function that ensures a path name reads correctly in ModelSim.

<subsystem>_atb.do Script that loads the subsystem automatic testbench into ModelSim.

<subsystem>_atb.wav.do Script that loads signals for the subsystem automatic testbench into ModelSim.

<subsystem>/<block>/*.hex Files that initialize the RAM in your design for either simulation or synthesis.

<subsystem>.sdc Design constraint file for TimeQuest support.

<subsystem>.tcl This Tcl script exists only in the subsystem that contains a Device block. You
can use this script to setup the Quartus Prime project.

<subsystem>_hw.tcl A Tcl script that loads the generated hardware into Platform Designer.

Related Information

• Simulating the Fibonacci Design in Simulink on page 71

• Simulating the IP Design in Simulink on page 75

• Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page
21

• Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page
21

• Control on page 221

3.7.2. DSP Builder Designs and the Quartus Prime Project

DSP Builder creates a Quartus Prime project in the design directory that contains
the .mdl file when you add your design to the Quartus Prime project.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime project file (.qpf), Quartus Prime settings file (.qsf), and .qip
files have the same name as the subsystem in your design that contains the Device
block. For example, DSP Builder creates the files DDCChip.qpf, DDCChip.qsf, and
DDCChip.qip for the demo_ddc design.

These files contain all references to the files in the hardware destination directory that
the Control block specifies. DSP Builder generates these files when you run a
Simulink simulation. The project automatically loads into the Quartus Prime software.

When you compile your design the project compiles with the .tcl scripts in the
hardware destination directory.

The .qip file references all the files that the project requires. Use the Archive
Project command in the Quartus Prime software to use this file to archive the project.

For information about archiving projects, refer to the Quartus Prime Help.

3.7.2.1. Adding a DSP Builder Advanced Blockset Design to an Existing Quartus
Prime Project

1. Find the .add.tcl file in the subsystem that contains the Device block.

2. Alternatively, you can add a reference to the .qip file in this subsystem from
the .qip file for the top-level Quartus Prime project.

For information about using Tcl files in the Quartus Prime software, refer to the
Quartus Prime Help.

3.7.3. Interfaces with a Processor Bus

DSP Builder designs can interface with a processor bus. You can drag and drop any
register in your design without manually creating address decoding logic and memory-
mapped switch fabric generation.

1. Assigning Base Addresses in DSP Builder Designs on page 64

2. Adding a DSP Builder Design to a Platform Designer System on page 65

3. Updating Registers with the Nios II Processor on page 67

3.7.3.1. Assigning Base Addresses in DSP Builder Designs

You can add or drop IP or Primitive library control register fields and memory into
your design.

1. Record the base address of the modules that connect to the Avalon-MM interface.

2. Start from address 0 in your design or any other arbitrary integer. The base
address is a relative address and is expressed as an integer.

The base address depends on the data width of the bus and the width of the
parameterizable variables. For example, FIR coefficients, where a register for a
32-bit FIR coefficient requires two words on a 16-bit bus.

3. Note the relative base addresses of modules within your design.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you integrate your model into a Platform Designer system, Platform
Designer generates a base address for the entire DSP Builder model. Platform
Designer references individual modules within the .mdl design based on the
model base address (autogenerated) and relative base address you assign in
the .mdl file or its setup script.

4. Manage base addresses, by specifying the bus data width in the Control block.

5. For IP designs consider the number of registers each IP core needs and the
number of words each register requires

6. For Primitive subsystems, treat registers independently.

7. Ensure each IP library block and register or memory in a Primitive subsystem
has a unique base address.

3.7.3.2. Adding a DSP Builder Design to a Platform Designer System

You can use the DSP Builder design with other Platform Designer components that
have Avalon Streaming (Avalon-ST) interfaces. You should design the system in
Platform Designer, where you can connect the Avalon-ST interfaces. Hardware Tcl
(_hw.tcl) files describe the interfaces.

The output of a DSP Builder design is a source of Avalon-ST data for downstream
components. It supplies data (and corresponding valid, channel, and start and end of
packet information) and accepts a Boolean flag input from the downstream
components, which indicates the downstream block is ready to accept data.

The input of the DSP Builder design is a sink of Avalon-ST data for upstream
components. It accepts data (and corresponding valid, channel, and start and end of
packet information) and provides a Boolean flag output to the upstream component,
which indicates the DSP Builder component is ready to accept data.

1. Simulate your design with Hardware Generation turned on in Control block.
DSP Builder generates a <model>_hw.tcl file for the subsystem containing the
Device block. This file marks the boundary of the synthesizable part of your
design and ignores the testbench blocks.

2. Add the synthesizable model to Platform Designer by including <model>_hw.tcl
at the IP search path.

Platform Designer native streaming data interface is the Avalon Streaming
(Avalon-ST) interface, which DSP Builder advanced blockset does not support. The
DSP Builder advanced blockset native interface <valid, channel, data> ports
are exported to the top-level as conduit signals.

3. Add DSP Builder components to Platform Designer by adding a directory that
contains generated hardware to the IP Search Path in the Platform Designer
Options dialog box.

4. Define Avalon-ST interfaces to build system components that Platform Designer
can join together.

Upstream and downstream components are part of the system outside of the DSP
Builder design.

5. Register all paths across the DSP builder design to avoid algebraic loops.

A design may have multiple Avalon-ST input and output blocks.

6. Generate the Platform Designer system.

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the hw.tcl file, the name of the Avalon-ST masked subsystem block is the
name of the interface.

7. Add FIFO buffers on the output (and if required on the input) to build designs that
supporting backpressure, and declare the collected signals as an Avalon-ST
interface in the hw.tcl file generated for the device level.

These blocks do not enforce Avalon-ST behavior. They encapsulate the common
Avalon-ST signals into an interface.

1. Modifying Avalon-ST Blocks on page 66

2. Restrictions for DSP Builder Designs with Avalon Streaming Interface Blocks on
page 66

Related Information

Interfaces Library on page 260

3.7.3.2.1. Modifying Avalon-ST Blocks

Modify Avalon-ST blocks to add more ports, to add custom text or to extend the blocks

1. Look under the mask to see the implementation of the DSP Builder Avalon-ST
blocks masked subsystems.

2. Extend the definition further, by breaking the link and adding further ports that
the hw.tcl file declares, or add text that DSP Builder writes unevaluated directly
into the interface declaration in the hw.tcl file.

Note: When you edit the mask do not edit the mask type, as DSP Builder uses it
to identify the subsystems defining the interfaces.

3. Add more ports to Avalon ST blocks by connecting these ports internally in the
same way as the existing signals. For example, with FIFO buffers.

4. If you add inputs or output ports that you connect to the device level ports, tag
these ports with the role the port takes in the Avalon-ST interface. For example,
you may want to add error and empty ports.

5. Add custom text to the description field.
Any text you write to the description field of the DSP Builder masked subsystem
writes with no evaluation into the hw.tcl file immediately after the standard
parameters for the interface and before the port declarations. Ensure you correctly
add the text of any additions.

Related Information

Streaming Library on page 271

3.7.3.2.2. Restrictions for DSP Builder Designs with Avalon Streaming Interface Blocks

You can place the Avalon streaming interface blocks in different levels of hierarchy.
However, never place Simulink, IP or Primitive library blocks between the interface
and the device level ports.

The Avalon streaming interface specification only allows a single data port per
interface. Thus you may not add further data ports, or even using a vector through
the interface and device-level port (which creates multiple data ports).

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To handle multiple data ports through a single Avalon streaming interface, pack them
together into a single (not vector or bus) signal, then unpack on the other side of the
interface. For the maximum width for a data signal, refer to the Avalon Interface
Specifications.

Use the BitCombine and BitExtract blocks to pack and unpack.

Related Information

• Streaming Library on page 271

• Avalon Interface Specification

3.7.3.3. Updating Registers with the Nios II Processor

You can use a processor such as a Nios II processor to read or modify a control
register, or to update memory contents in your DSP Builder design.

1. Identify the Platform Designer base address assigned to your DSP Builder design.
You can also find the base address information in system.h file in your Nios II
project, after you have loaded the SOPC library information into your Nios II IDE.

2. Identify the base address for the IP block of interest in your DSP Builder advanced
blockset design. It is the base address assigned to your DSP Builder advanced
blockset model for step 1, plus the address offset you specified in your IP block or
in your setup script. You can also identify the address offset by right clicking on
the IP block and selecting Help.

3. Identify the base address for the register of interest in your DSP Builder advanced
blockset design. It is the base address assigned to your DSP Builder advanced
blockset model which you identify in step 1, plus the address offset you specified
in your register or in your setup script.

a. Identify the address offset in the <design name>_mmap.h file, which DSP
Builder generates with each design.

b. Alternatively, identify the address offset by right clicking on the register and
select Help.

4. When you identify the base address, use IOWR and IORD commands to write
and read registers and memory. For example:

IOWR(base_addr_SOPC + base_addr_FIR, coef_x_offset, data)

IORD(base_addr_SOPC + base_addr_FIR, coef_x_offset)

3. DSP Builder Design Flow

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

67

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Primitive Library Blocks Tutorial
This tutorial shows how to build a simple design example that uses blocks from the
Primitive library to generate a Fibonacci sequence.

The Fibonacci sequence is the sequence of numbers that you can create when you add
1 to 0 then successively add the last two numbers to get the next number:0, 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...

Each Primitive library block in the design example is parameterizable. When you
double-click a block in the model, a dialog box appears where you can enter the
parameters for the block. Click the Help button in these dialog boxes to view help for
a specific block.

You can use the demo_fibonacci.mdl model in the <DSP Builder Advanced
install path>/Examples/Primitive directory or you can create your own
Fibonacci model.

1. Creating a Fibonacci Design from the DSP Builder Primitive Library on page 68

2. Setting the Parameters on the Testbench Source Blocks on page 70

3. Simulating the Fibonacci Design in Simulink on page 71

4. Modifying the DSP Builder Fibonacci Design to Generate Vector Signals on page
72

5. Simulating the RTL of the Fibonacci Design on page 72

4.1. Creating a Fibonacci Design from the DSP Builder Primitive
Library

Start DSP Builder in MATLAB

1. From an open Simulink model click DSP Builder ➤ New Model Wizard.

Note: When you open a model, DSP Builder produces a
model_name_params.xml file that contains settings for the model. You
must keep this file with the model.

2. Specify the following New Model Settings:

• Fixed

• Fixed-point Primitive (simple)

• my_fibonacci

3. Browse to an appropriate output directory.

4. Click Generate.

5. In the Simulink Library Browser, click DSP Builder Advanced Blockset ➤
Primitive ➤ Primitive Basic Blocks .

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

6. Open the my_fibonacci generated model.

7. Open the dut ➤ prim subsystem, which has a ChannelIn and ChannelOut
block.

8. Drag and drop two SampleDelay blocks into your model.

Note: Specify the data type because this design contains loops and DSP Builder
cannot determine the type if one of the inherit data options is set.

Figure 32. Updated Fibonacci Subsystem

9. Select both of the SampleDelay blocks and point to Rotate and Flip on the
popup menu and click Flip Block to reverse the direction of the blocks.

10. Drag and drop Add and Mux blocks into your model.

11. Drag and drop a Const block. Double-click the block and:

a. Select Specify via Dialog for Output data type mode.

b. For Output type enter ufix(1).

c. For Scaling enter 1

d. For Value enter 1.

e. Click OK.

12. Connect the blocks.

13. Double-click on the second SampleDelay block (SampleDelay1) to display the
Function Block Parameters dialog box and change the Number of delays
parameter to 2.

14. Double-click on the Add block to display the Function Block Parameters dialog
box and set the parameters.

a. For Output data type mode, select Specify via Dialog .

b. For Output type enter ufix(120).

c. For Output scaling value enter 2^-0

4. Primitive Library Blocks Tutorial

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

d. For Number of inputs enter 2.

e. Click OK.

Related Information

• Starting DSP Builder in MATLAB on page 17

• Starting DSP Builder in MATLAB on page 17

• DSP Builder Menu Options on page 20

4.2. Setting the Parameters on the Testbench Source Blocks

Set the testbench parameters to finish the DSP Builder Fibonacci design.

1. Double-click on the Real block to display the Source Block Parameters dialog
box.

2. Set the Vector of output values to [0 1 1 1 zeros(1,171)].' in the Main tab.

3. Switch to the Editor window for setup_my_fibonacci.m.

4. Change the parameters to:

• my_fibonacci_param.ChanCount = 1;

• my_fibonacci_param.SampleRate = fibonacci_param.ClockRate;

• my_fibonacci_param.input_word_length = 1;

• my_fibonacci_param.input_fraction_length = 0;

5. In the top-level design, delete the ChannelView, the Scope Deserialized
Outputs scope and any dangling connections.

6. Double-click the Convert block and make the input unsigned by changing:

fixdt(1,fibonacci_param.input_word_length,fibonacci_param.inpu
t_fraction_length)

to:

fixdt(0,fibonacci_param.input_word_length,fibonacci_param.inpu
t_fraction_length)

7. Save the Fibonacci model.

4. Primitive Library Blocks Tutorial

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Completed Fibonacci Model

4.3. Simulating the Fibonacci Design in Simulink

1. Click Simulation ➤ Run.

2. Double-click on the Scope block and click Autoscale in the scope to display the
simulation results .

Figure 34. Fibonacci Sequence in the Simulink Scope

4. Primitive Library Blocks Tutorial

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can verify that the fib output continues to increment according to the
Fibonacci sequence by simulating for longer time periods.

The sequence on the fib output starts at 0, and increments to 1 when q_v and
q_c are both high at time 21.0. It then follows the expected Fibonacci sequence
incrementing through 0, 1, 1, 2, 3, 5, 8, 13 and 21 to 34 at time 30.0.

Related Information

• DSP Builder Generated Files on page 62

• Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page
21

4.4. Modifying the DSP Builder Fibonacci Design to Generate Vector
Signals

Simulate the design.

1. In the Scope Design Outputs scope zoom in on the y axis to see the short
Fibonacci cycle.

Figure 35. Fibonacci Scope Design Outputs

2. Copy the real input block, add a Simulink mux and connect to the Convert block.

3. Edit the timing of the real1 block, for example [0 1 1 1 zeros(1,50)].

4.5. Simulating the RTL of the Fibonacci Design

1. To verify that DSP Builder gives the same results when you simulate the generated
RTL, click on the Run ModelSim block.

4. Primitive Library Blocks Tutorial

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Fibonacci Sequence in the ModelSim Wave Window

Compile the design in the Quartus Prime software.

Related Information

Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page 21

4. Primitive Library Blocks Tutorial

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. IP Tutorial
This tutorial demonstrates how to use blocks from the DSP Builder IP library. It shows
how you can double the number of channels through a filter, increase the fMAX, and
target a different device family by editing top-level parameters in Simulink.

1. Creating an IP Design on page 74

2. Simulating the IP Design in Simulink on page 75

3. Viewing Timing Closure and Viewing Resource Utilization for the DSP Builder IP
Design on page 76

4. Reparameterizing the DSP Builder FIR Filter to Double the Number of Channels on
page 76

5. Doubling the Target Clock Rate for a DSP Builder IP Design on page 77

5.1. Creating an IP Design

Start DSP Builder in MATLAB.

1. Type demo_firi at the MATLAB command prompt, which opens the FIR design
example.

Note: When you open a model, DSP Builder produces a
model_name_params.xml file that contains settings for the model. You
must keep this file with the model.

2. From an open Simulink model click DSP Builder menu ➤ New Model Wizard.

Note: You must have a model open, before you use the DSP Builder menu.

3. Specify the following New Model Settings:

• Fixed

• IP (simple)

• my_firi

4. Browse to an appropriate output directory.

5. Click Generate.

6. Edit the basic parameter values in setup_my_firi.m to match the equivalent
settings in setup_demo_firi.m.

Simulate the design in MATLAB.

Related Information

• Starting DSP Builder in MATLAB on page 17

• Starting DSP Builder in MATLAB on page 17

• DSP Builder Menu Options on page 20

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Simulating the IP Design in Simulink on page 75

• Starting DSP Builder in MATLAB on page 17

• DSP Builder Menu Options on page 20

• Starting DSP Builder in MATLAB

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

• Simulating the IP Design

5.2. Simulating the IP Design in Simulink

Create an IP design.

1. In the demo_firi window, click Start ➤ Simulation .
MATLAB generates output HDL for the design.

2. Click DSP Builder Resource Usage Design.

You can view the resources of the whole design and the subsystems.

3. Click Close.

4. Double click the FilterSystem subsystsem, right-click on the filter1
InterpolatingFIR block, and click Help.

After simulation, DSP Builder updates this help to include the following
information:

• The latency of the filter

• The port interface

• The input and output data format

• The memory interface for the coefficients.

5. To display the latency of the filter on the schematic, right-click on
InterpolatingFIR block and click Block Properties.

6. On the Block Annotation tab, in block property tokens double-click on
%<latency>.

7. In Enter text and tokens for annotation, type Latency = before
%<latency>. Click OK.

DSP Builder shows the latency beneath the block.

Verify the design in MATLAB. Compile the design in the Quartus Prime software

Related Information

• Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page
21

• DSP Builder Generated Files on page 62

• Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page
21

5. IP Tutorial

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

75

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1441718709335
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450794303067
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076507077.html#hco1423076501956
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

5.3. Viewing Timing Closure and Viewing Resource Utilization for
the DSP Builder IP Design

Compile the IP design in the Quartus Prime software

1. View timing closure:

a. In the Task pane, expand TimeQuest Timing Analyzer.

b. Double-click View Report.

c. In the Table of Contents pane expand Slow 900mV 85C Model and click
Fmax Summary.

2. View the resource utilization:

a. On the Task pane expand Fitter (Place & Route).

b. Double-click View Report.

c. In the Table of Contents pane expand Resource Section and click
Resource Usage Summary, which shows the number of DSP block 18-bit
elements.

Related Information

Simulating, Verifying, Generating, and Compiling Your DSP Builder Design on page 21

5.4. Reparameterizing the DSP Builder FIR Filter to Double the
Number of Channels

Create an IP design.

1. Double-click the EditParams block to open setup_my_firi.m in the MATLAB
Editor. Change my_firi_param.ChanCount to 32 and click Save.

2. Simulate the design.
On the filter1 InterpolatingFIR block the latency and the number of multipliers
increases

3. On the DSP Builder menu, click Verify Design, and click Clear Results to clear the
output pane. Turn on Verify at device level and Run Quartus Prime Software
only, turn off Verify at subsystem level, and click Run Verification
The Simulink simulation matches a ModelSim simulation of the generated HDL.
The design meets timing but the number of multipliers and logic increases. The
number of channels doubles, but the number of multipliers does not double,
because the design shares some multipliers.

The design now closes timing above 480 MHz. At the higher clock rate, the design
shares multiplier resources, and the multiplier count decreases back to 6.

5. IP Tutorial

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

76

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450794303067
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

• Creating an IP Design

5.5. Doubling the Target Clock Rate for a DSP Builder IP Design

Create an IP design.

1. Double-click the EditParams block to open my_firi.m in the MATLAB Editor.
Change my_firi_param.ClockRate to 480.0 and click Save.

2. Simulate the design.

3. Click DSP Builder ➤ Verify Design, and click Clear Results to clear the output
pane.

4. Click Run Verification.

Related Information

• DSP Builder Menu Options
Simulink includes a DSP Builder menu on any Simulink model window. Use
this menu to easily start all the common tasks you need to perform on your
DSP Builder model.

• Creating an IP Design

• Simulating the IP Design

5. IP Tutorial

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

77

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450794303067
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076507077.html#hco1423076500596
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1450794303067
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076507077.html#hco1423076500596
https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076507077.html#hco1423076501956
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. DSP Builder for Intel FPGAs (Advanced Blockset)
Design Examples and Reference Designs

DSP Builder provides a variety of design examples, which you can learn from or use as
a starting point for your own design.

All the design examples have the same basic structure: a top-level testbench
containing an instantiated functional subsystem, which represents the hardware
design.

The testbench typically includes Simulink source blocks that generate the stimulus
signals and sink blocks that display simulation results. You can use other Simulink
blocks to define the testbench logic.

The testbench also includes the following blocks from the DSP Builder advanced
blockset:

• The Control block specifies information about the hardware generation
environment, and the top-level memory-mapped bus interface widths.

• The ChanView block in a testbench allows you to visualize the contents of the
<valid, channel, data> time-division multiplex (TDM) protocol. This block
generates synthesizable HDL and can therefore also be useful in a functional
subsystem.

The functional subsystem in each design contains a Device block that marks the top-
level of the FPGA device and controls the target device for the hardware.

1. DSP Builder Design Configuration Block Design Examples on page 79

2. DSP Builder FFT Design Examples on page 79

3. DSP Builder DDC Design Example on page 85

4. DSP Builder Filter Design Examples on page 99

5. DSP Builder Folding Design Examples on page 107

6. DSP Builder Floating Point Design Examples on page 113

7. DSP Builder Flow Control Design Examples on page 118

8. DSP Builder HDL Import Design Example on page 122

9. DSP Builder Host Interface Design Examples on page 135

10. DSP Builder Platform Design Examples on page 136

11. DSP Builder Primitive Block Design Examples on page 138

12. DSP Builder Reference Designs on page 148

13. DSP Builder Waveform Synthesis Design Examples on page 169

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

6.1. DSP Builder Design Configuration Block Design Examples

1. Scale on page 79

2. Local Threshold on page 79

6.1.1. Scale

This design example demonstrates the Scale block.

The testbench allows you to see a vectorized block in action. Displays in the testbench
track the smallest and largest values to be scaled and verify the correct behavior of
the saturation modes.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus a ChanView block that deserializes the output bus.

The ScaleSystem subsystem includes the Device and Scale blocks.

The model file is demo_scale.mdl.

6.1.2. Local Threshold

This design example has two identical NCOs—one is in a subsystem with a
LocalThreshold block that is set to force soft rather than hard multipliers.

After simulation, in the resource table, you can compare the resources for NCO and
NCO1. NCO1 uses no multipliers at the expense of extra logic. The resource table also
contains resources for the ChannelViewer blocks—synthesizable blocks, that the
design example uses outside the device system.

The model file is demo_nco_threshold.mdl.

6.2. DSP Builder FFT Design Examples

1. FFT on page 80

2. FFT without BitReverseCoreC Block on page 80

3. IFFT on page 81

4. IFFT without BitReverseCoreC Block on page 81

5. Floating-Point FFT on page 81

6. Floating-Point FFT without BitReverseCoreC Block on page 81

7. Floating-Point iFFT on page 82

8. Floating-Point iFFT without BitReverseCoreC Block on page 82

9. Multichannel FFT on page 82

10. Multiwire Transpose on page 82

11. Parallel FFT on page 82

12. Parallel Floating-Point FFT on page 82

13. Single-Wire Transpose on page 82

14. Switchable FFT/iFFT on page 83

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15. Variable-Size Fixed-Point FFT on page 83

16. Variable-Size Fixed-Point FFT without BitReverseCoreC Block on page 83

17. Variable-Size Fixed-Point iFFT on page 83

18. Variable-Size Fixed-Point iFFT without BitReverseCoreC Block on page 83

19. Variable-Size Floating-Point FFT on page 83

20. Variable-Size Floating-Point FFT without BitReverseCoreC Block on page 83

21. Variable-Size Floating-Point iFFT on page 83

22. Variable-Size Floating-Point iFFT without BitReverseCoreC Block on page 84

23. Variable-Size Low-Resource FFT on page 84

24. Variable-Size Low-Resource Real-Time FFT on page 84

25. Variable-Size Supersampled FFT on page 84

6.2.1. FFT

This design example implements a 2,048 point, radix 22 FFT. This design example
accepts natural order data at the input and produces natural order data at the output.
The design example includes a BitReverseCoreC block, which converts the input data
stream from natural order to bit-reversed order, and an FFT block, which performs an
FFT on bit-reversed data and produces its output in natural order.

Note: The FFT designs do not inherit the width in bits and scaling information. The design
example specifies these values with the Wordlength and FractionLength variables in
the setup script, which are 16 and 19 for this design example. You can also set the
maximum width in bits by setting the MaxOut variable. Most applications do not need
the maximum width in bits. To save resources, set a threshold value for this variable.
The default value of inf allows worst case bit growth.

The model file is demo_fft.mdl.

6.2.2. FFT without BitReverseCoreC Block

This design example implements a 2,048 point, radix 22 FFT. This design example
accepts natural order or bit-reversed data at the input and produces bit-reversed or
natural order data at the output, respectively. The design example is identical to the
FFT design example, but it does not include a BitReverseCoreC block, which converts
the input data stream from natural order to bit-reversed order.

Note: The FFT designs do not inherit width in bits and scaling information. The design
example specifies these values with the Wordlength and FractionLength variables in
the setup script, which are 16 and 19 for this design example. You can also set the
maximum width in bits by setting the MaxOut variable. Most applications do not need
the maximum width in bits. To save resources, set a threshold value for this variable.
The default value of inf allows worst case bit growth.

The model file is demo_fft_core.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.3. IFFT

This design example implements a 2,048 point, radix 22 iFFT. This design example
accepts natural order data at the input and produces natural order data at the output.
The design example includes a BitReverseCoreC block, which converts the input data
stream from natural order to bit-reversed order, and an FFT block, which performs an
FFT on bit-reversed data and produces its output in natural order.

Note: The FFT designs do not inherit the width in bits and scaling information. The design
example specifies these values with the Wordlength and FractionLength variables in
the setup script, which are 16 and 19 for this design example. To set the maximum
width in bits, set the MaxOut variable. Most applications do not need the maximum
width in bits. To save resources, set a threshold value for this variable. The default
value of inf allows worst case bit growth.

The model file is demo_ifft.mdl.

6.2.4. IFFT without BitReverseCoreC Block

This design example implements a 2,048 point, radix 22 iFFT. This design example
accepts natural order data at the input and produces natural order data at the
output.The design example is identical to the iFFT design example, but it does not
include a BitReverseCoreC block, which converts the input data stream from natural
order to bit-reversed order.

Note: The FFT designs do not inherit width in bits and scaling information. The design
example specifies these values with the Wordlength and FractionLength variables in
the setup script, which are 16 and 19 for this design example. To set the maximum
width in bits, set the MaxOut variable. Most applications do not need the maximum
width in bits. To save resources, set a threshold value for this variable. The default
value of inf allows worst case bit growth.

The model file is demo_ifft_core.mdl.

6.2.5. Floating-Point FFT

This design example implements a floating-point, 512 point, radix 22 FFT. This design
example accepts natural order data at the input and produces natural order data at
the output. The design example includes a BitReverseCoreC block, which converts
the input data stream from natural order to bit-reversed order, and an FFT_Float
block, which performs an FFT on bit-reversed data and produces its output in natural
order.

The model file is demo_fpfft.mdl.

6.2.6. Floating-Point FFT without BitReverseCoreC Block

This design example implements a floating-point, 512 point, radix 22 FFT. This design
example accepts natural order data at the input and produces natural order data at
the output. The design example is identical to the floating-point FFT design example,
but it does not include a BitReverseCoreC block, which converts the input data
stream from natural order to bit-reversed order.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The model file is demo_fpfft_core.mdl.

6.2.7. Floating-Point iFFT

This design example implements a floating-point 512 point, radix 22 iFFT. This design
example accepts bit-reversed order data at the input and produces natural order data
at the output. The design example includes a BitReverseCoreC block. which converts
the input data stream from natural order to bit-reversed order, and an FFT_Float
block, which performs an FFT on bit-reversed data and produces its output in natural
order.

The model file is demo_fpifft.mdl.

6.2.8. Floating-Point iFFT without BitReverseCoreC Block

This design example implements a floating-point 512 point, radix 22 iFFT. This design
example accepts natural order data at the input and produces natural order data at
the output. The design example is identical to the floating-point iFFT design example,
but it does not include a BitReverseCoreC block, which converts the input data
stream from natural order to bit-reversed order.

The model file is demo_fpifft_core.mdl.

6.2.9. Multichannel FFT

The FFT processes the input in blocks of 2K points. Each block contains 4 interleaved
sub-channels. A 512-point FFT is performed on each sub-channel.

The model file is demo_fft_multichannel.mdl.

6.2.10. Multiwire Transpose

This design example demonstrates how to use the MultiwireTranspose block.

The model file is demo_multiwiretranspose.mdl.

6.2.11. Parallel FFT

The model file is demo_parallel_fft.mdl.

6.2.12. Parallel Floating-Point FFT

The model file is demo_parallel_fpfft.mdl.

6.2.13. Single-Wire Transpose

This design example demonstrates how to use the Transpose block.

The model file is demo_transpose.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.14. Switchable FFT/iFFT

This design example demonstrates a switchable FFT block.

The model file is demo_dynamic_fft.mdl.

6.2.15. Variable-Size Fixed-Point FFT

This design example demonstrates the FFT block.

The model file is demo_vfft.mdl.

6.2.16. Variable-Size Fixed-Point FFT without BitReverseCoreC Block

This design example demonstrates the FFT block.

The model file is demo_vfft_core.mdl.

6.2.17. Variable-Size Fixed-Point iFFT

This design example demonstrates the iFFT block.

The model file is demo_vifft.mdl.

6.2.18. Variable-Size Fixed-Point iFFT without BitReverseCoreC Block

This design example demonstrates the iFFT block.

The model file is demo_vifft_core.mdl.

6.2.19. Variable-Size Floating-Point FFT

This design example demonstrates the FFT block.

The model file is demo_fpvfft.mdl.

6.2.20. Variable-Size Floating-Point FFT without BitReverseCoreC Block

This design example demonstrates the FFT block.

The model file is demo_fpvfft_core.mdl.

6.2.21. Variable-Size Floating-Point iFFT

This design example demonstrates the iFFT block.

The model file is demo_fpvifft.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.2.22. Variable-Size Floating-Point iFFT without BitReverseCoreC Block

This design example demonstrates the iFFT block.

The model file is demo_fpvifft_core.mdl.

6.2.23. Variable-Size Low-Resource FFT

This design example implements a low data-rate, low-resource usage FFT suitable for
applications such as vibration suppression. The maximum size of the FFT is 4K
points.The actual size of each FFT iteration may be any power of 2 that is smaller than
4K points. You dynamically control the size using the size input. Irrespective of the
size of the FFT, a new FFT iterates whenever it receives an additional 64 inputs.
Successive FFT iterations usually use overlapping input data.

The FFT accepts 16-bit fixed-point inputs. The FFT produces block floating-point
output using an 18-bit mantissa and a shared 6-bit exponent.

This FFT implementation is unusual because the FFT gain is 1. Therefore the sum-of-
squares of the input values is equal (allowing for rounding errors) to the sum-of-
squares of the output values.

This method of scaling gives two advantages:

• The exponent can be smaller.

• The output remains consistently scaled when the FFT dynamic size changes.

To configure the design example, edit any of the parameters in the setup file.

The model file is demo_servofft.mdl.

6.2.24. Variable-Size Low-Resource Real-Time FFT

This design example is an extension of the Variable-Size Low-Resource FFT design
example. This example runs the Variable-Size Low-Resource FFT in Simulink in real
time alongside the DSP System Toolbox FFT block.It produces vector scope outputs
that are the same (or as near as) from both.

This design example takes care of the faster sample rate needed by the DSP Builder
FFT. The setup file chooses a sample rate that is fast enough for calculation but not so
fast that it slows down the simulation unnecessarily. The design also adds buffering to
the original MATLAB fft signal path to make the signal processing delays the same in
both paths.

The model file is demo_dspba_ex_fft_tut.mdl.

6.2.25. Variable-Size Supersampled FFT

This DSP Builder design example implements a variable-size supersampled FFT, with
sizes ranging from 256 to 2,048 points, and a parallelism of 4 wires.

The incoming data is of fixed-point type and arrives in natural order. The number of
radix-2 stages assigned to the serial section of the hybrid FFT is 7.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.3. DSP Builder DDC Design Example

The DDC design example uses NCO/DDS, mixer, CIC, and FIR filter IP library blocks to
build a 16-channel programmable DDC for use in a wide range of radio applications.

Intermediate frequency (IF) modem designs have multichannel, multirate filter
lineups. The filter lineup is often programmable from a host processor, and has
stringent demands on DSP performance and accuracy.The DDC design example is a
high-performance design running at over 350 MHz in an Intel Arria 10 device. The
design example is very efficient and at under 4,000 logic registers gives a low cost per
channel.

View the DDCChip subsystem to see the components you require to build a complex,
production ready system.

Figure 37. Testbench for the DDC Design

The top-level testbench includes Control and Signals blocks, and some Simulink
blocks to generate source signals and visualize the output. The full power of the
Simulink blocksets is available for your design.

The DDCChip subsystem block contains the following blocks that form the lowest level
of the design hierarchy:

• The NCO and mixer

• Decimate by 16 CIC filter

• Two decimate by 4 FIR odd-symmetric filters: one with length 21, the other length
with 63.

The other blocks in this subsystem perform a range of rounding and saturation
functions. They also allow dynamic scaling. The Device block specifies the target
FPGA.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DDC Signals Block

The Signals block allows you to define the relationship between the sample rates and
the system clock, to tell the synthesis engines how much folding or time sharing to
perform. Increasing the system clock permits more folding, and therefore typically
results in more resource sharing, and a smaller design.

You also need a system clock rate so that the synthesis engines know how much to
pipeline the logic. For example, by considering the device and speed grade, the
synthesis tool can calculate the maximum length that an adder can have. If the design
exceeds this length, it pipelines the adder and adjusts the whole pipeline to
compensate. This adjustment typically results in a small increase in logic size, which is
usually more than compensated for by the decrease in logic size through increased
folding.

The Signals block specifies the clock and reset names, with the system clock
frequency. The bus clock or FPGA internal clock for the memory-mapped interfaces
can be run at a lower clock frequency. This lets the design move the low-speed
operations such as coefficient update completely off the critical path.

Note: To specify the clock frequency, clock margin, and bus clock frequency values in this
design, use the MATLAB workspace variables ClockRate and ClockMargin, which you
can edit by double-clicking on the Edit Params block.

DDC Control Block

The Control block controls the whole DSP Builder advanced blockset environment. It
examines every block in the system, controls the synthesis flow, and writes out all RTL
and scripts. A single control block must be present in every top-level model.

In this design, hardware generation creates RTL. DSP Builder places the RTL and
associated scripts in the directory ../rtl, which is a relative path based on the current
MATLAB directory. DSP Builder creates automatic self-checking testbenches, which
saves the data that a Simulink simulation captures to build testbench stimulus for
each block in your design. DSP Builder generates scripts to run these simulations.

The threshold values control the hardware generation. They control the trade-offs
between hardware resources, such as hard DSP blocks or soft LE implementations of
multipliers. You can perform resource balancing for your particular design needs with a
few top-level controls.

DDC Memory Maps

Many memory-mapped registers in the design exist such as filter coefficients and
control registers for gains. You can access these registers through a memory port that
DSP Builder automatically creates at the top-level of your design. DSP Builder can
create all address decode and data multiplexing logic automatically. DSP Builder
generates a memory map in XML and HTML that you can use to understand the
design.

To access this memory map, after simulation, on the DSP Builder menu, point to
Resource Usage and click Design, Current Subsystem, or Selected block. The
address and data widths are set to 8 and 32 in the design.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DDC EditParams Blocks

The EditParams block allows you to edit the script setup_demo_ddc.m, which sets
up the MATLAB variables that configure your model. Use the MATLAB design example
properties callback mechanism to call this script.

Note: The PreloadFCn callback uses this script to setup the parameters when your design
example opens and the InitFcn callback re-initializes your design example to take
account of any changes when the simulation starts.

You can edit the parameters in the setup_demo_ddc.m script by double-clicking on
the Edit Params block to open the script in the MATLAB text editor.

The script sets up MATLAB workspace variables. The SampleRate variable is set to
61.44 MHz, which typical of a CDMA system, and represents a quarter of the system
clock rate that the FPGA runs at. You can use the feature to TDM four signals onto any
given wire.

DDC Source Blocks

The Simulink environment enables you to create any required input data for your
design. In the DDC design, use manual switches to select sine wave or random noise
generators. DSP Builder encodes a simple six-cycle sine wave as a table in a
Repeating Sequence Stair block from the Simulink Sources library. This sine wave is
set to a frequency that is close to the carrier frequencies that you specify in the NCOs,
allowing you to see the filter lineup decoding some signals. DSP Builder creates VHDL
for each block as part of the testbench RTL.

DDC Sink Blocks

Simulink Sink library blocks display the results of the DDC simulation. The Scope
block displays the raw output from the DDC design. The design has TDM outputs and
all the data shows as data, valid and channel signals.

At each clock cycle, the value on the data wire either carries a genuine data output,
or data that you can safely discard. The valid signal differentiates between these two
cases. If the data is valid, the channel wire identifies the channel where the data
belongs. Thus, you can use the valid and channel wires to filter the data. The
ChanView block automates this task and decodes 16 channels of data to output
channels 0 and 15. The block decimates these channels by the same rate as the whole
filter line up and passes to a spectrum scope block (OutSpectrum) that examines the
behavior in the frequency domain.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DDC DecimatingCIC and Scale Blocks

Figure 38. DDCChip Datapath (DecimatingCIC and Scale Blocks)

Two main blocks exist—the DecimatingCIC and the Scale block. To configure the CIC
Filter, double click on the DecimatingCIC block.

The input sample rate is still the same as the data from the antenna. The
dspb_ddc.SampleRate variable specifies the input sample rate. The number of
channels, dspb_ddc.ChanCount, is a variable set to 16. The CIC filter has 5 stages,
and performs decimation by a factor of 16. 1/16 in the dialog box indicates that the
output rate is 1/16th of the input sample rate. The CIC parameter differential delay
controls how many delays each CIC section uses—nearly always set to 1.

The CIC has no registers to configure, therefore no memory map elements exist.

The input data is a vector of four elements, so DSP Builder builds the decimating CIC
from four separate CICs, each operating on four channels. The decimation behavior
reduces the data rate at the output, therefore all 16 data samples (now at 61.44/16
MSPS each channel) can fit onto 1 wire.

The DecimatingCIC block multiplexes the results from each of the internal CIC filters
onto a single wire. That is, four channels from vector element 1, followed by the four
channels from vector element 2. DSP Builder packs the data onto a single TDM wire.
Data is active for 25% of the cycles because the aggregate sample rate is now 61.44
MSPS × 16 channels/16 decimation = 61.44 MSPS and the clock rate for the system is
245.76 MHz.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bursts of data occur, with 16 contiguous samples followed by a gap. Each burst is
tagged with the valid signal. Also the channel indicator shows that the channel order is
0..15.

Figure 39. CIC_All_Scope Showing Output From the DecimatingCIC Block

The number of input integrator sections is 4, and the number of output comb sections
is 1. The lower data rate reduces the size of the overall group of 4 CICs. The Help
page also reports the gain for the DCIC to be 1,048,576 or approximately 2^20. The
Help page also shows how DSP Builder combines the four channels of input data on a
single output data channel. The comb section utilization (from the DSP Builder menu)
confirms the 25% calculation for the folding factor.

The Scale block reduces the output width in bits of the CIC results.

In this case, the design requires no variable shifting operation, so it uses a Simulink
constant to tie the shift input to 0. However, because the gain through the
DecimatingCIC block is approximately 2^20 division of the output, enter a scalar
value -20 for the Number of bits to shift left in the dialog box to perform data.

Note: Enter a scalar rather than a vector value to indicate that the scaling is static.

DDC Decimating FIR Blocks

The last part of the DDC datapath comprises two decimating finite impulse response
(FIR) blocks (DecimatingFIR1 and DecimatingFIR2) and their corresponding scale
blocks (Scale1 and Scale2).

These two stages are very similar, the first filter typically compensates for the
undesirable pass band response of the CIC filter, and the second FIR fine tunes the
response that the waveform specification requires.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. DDCChip Datapath (Decimating FIR and Scale Blocks)

The first decimating FIR decimates by a factor of 4.

The input rate per channel is the output sample rate of the decimating CIC, which is
16 times lower than the raw sample rate from the antenna.

Note: You can enter any MATLAB expression, so DSP Builder can extract the 16 out as a
variable to provide additional parameterization of the whole design.

This filter performs decimation by a factor of 4 and the calculations reduce the size of
the FIR filter. 16 channels exist to process and the coefficients are symmetrical.

The Coefficients field contains information that passes as a MATLAB fixed-point
object (fi), which contains the data, and also the size and precision of each coefficient.
Specifying an array of floating-point objects in the square brackets to the constructor
to achieve this operation. The length of this array is the number of taps in the filter. At
the end of this expression, the numbers 1, 16, 15 indicate that the fixed-point object
is signed, and has 16-bit wide elements of which 15 are fractional bits.

For more information about fi objects, refer to the MATLAB Help.

This simple design uses a low-pass filter. In a real design, more careful generation of
coefficients may be necessary.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. DecimatingFIR1 Magnitude and Phase Responses

The output of the FIR filter fits onto a single wire, but because the data reduces
further, there is a longer gap between frames of data.

Access a report on the generated FIR filter from the Help page.

You can scroll down in the Help page to view the port interface details. These match
the hardware block, although the RTL has additional ports for clock, reset, and the bus
interface.

The report shows that the input data format uses a single channel repeating every
64 clock cycles and the output data is on a single channel repeating every 256 clock
cycles.

Details of the memory map include the addresses DSP Builder requires to set up the
filter parameters with an external microprocessor.

You can show the total estimated resources by clicking on the DSP Builder menu,
pointing to Resources, and clicking Device. Intel estimates this filter to use 338
LUT4s, 1 18×18 multiplier and 7844 bits of RAM.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Scale1 block that follows the DecimatingFIR1 block performs a similar function
to the DecimatingCIC block.

The DecimatingFIR2 block performs a second level of decimation, in a very similar
way to DecimatingFIR1. The coefficients use a MATLAB function. This function (fir1)
returns an array of 63 doubles representing a low pass filter with cut off at 0.22. You
can wrap this result in a fi object:

fi(fir1(62, 0.22),1,16,15)

1. DDC Design Example Subsystem on page 92

2. Building the DDC Design Example on page 95

6.3.1. DDC Design Example Subsystem

DSP Builder generates VHDL for all levels of the hierarchy, but subsystems have
additional script files that build a project in the Quartus Prime software.

The DDCChip subsystem contains a Device block. This block labels this level of
design hierarchy that compiles onto the FPGA. The Device block sets the FPGA family,
device and speed grade. The family and speed grade optimize the hardware. In
combination with the target clock frequency, the device determines the degree of
pipelining.

The DDCChip subsystem has three types of block:

• The grey blocks are IP blocks. These represent functional IP such as black box
filters, NCOs, and mixers.

• The blue blocks are processor visible registers.

• The black and white blocks are Simulink blocks.

Figure 42. DDCChip Datapath (NCO and Mixer)

Note: The inputs, NCO, and mixer stages show with Simulink signal formats turned on.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DDCChip Primary Inputs

The primary inputs to the hardware are two parallel data signals (DataInMain and
DataInDiversity), a channel signal (DataChan), and a valid signal (DataValid).
The parallel data signals represent inputs from two antennas. They are of type
sfix14_13 which is a Simulink fixed-point type of total width 14 bits. The type is
signed with 13 bits of fraction, which is a typical number format that an analog-to-
digital converter generates.

The data channel DataChan is always an 8-bit unsigned integer (uint8) and DSP
Builder synthesizes away the top bits if not used. The valid signal DataValid
indicates when real data transmits. The first rising edge of the valid signal starts
operation of the first blocks in the chain. As the first blocks start producing outputs,
their valid outputs start the next blocks in the chain. This mechanism ensures that
filter chain start up is coordinated without having a global controller for the latencies
of each block. The actual latencies of the blocks may change based on the clock
frequency and FPGA selection.

DDC Merge Multiplexer

The IP blockset supports vectors on its input and output data wires, which ensures
that a block diagram is scalable when, for example, changing channel counts and
operating frequencies. The merge multiplexer (DDCMerge1) takes two individual
wires and combines them into a vector wire of width 2. This Simulink Mux block does
not perform any multiplexing in hardware—it is just as a vectorizing block. If you
examine the RTL, it contains just wires.

DDC NCO

The NCO block generates sine and cosine waveforms to a given precision. These
waveforms represent a point in the complex plane rotating around the origin at a
given frequency. DSP Builder multiplies this waveform by the incoming data stream to
obtain the data from the transmitted signal.

Note: Four frequencies exist, because the vector in the Phase Increment and Inversion
field is of length 4.

DSP Builder configures the NCO block to produce a signed 18-bit value with 17 bits of
fraction. The internal accumulator width is set to 24 bits. This internal precision affects
the spurious-free dynamic range (SFDR). DSP Builder specifies the initial frequencies
for the simulation as phase increments. The phase accumulator width in bits is 2^24,
thus one complete revolution of the unit circle corresponds to a value of 2^24.
Dividing this number by 5.95, means that the design requires 5.95 cycles to perform
one complete rotation. That is, the wavelength of the sine and cosine that the design
produces are 5.95 cycles. The sample rate is 61.44 MHz, therefore the frequency is
61.44/5.95, which is 10.32 MHz.

The input frequency in the testbench rotates every 6 cycles for a frequency of
61.44/6=10.24 MHz. Therefore, you can expect to recover the difference of these
frequencies (0.08 MHz or 80 kHz), which fall in the low-pass filters pass bands,
because DSP Builder mixes these signals.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The design exposes phase values through a memory-mapped interface at the address
specified by the variable DDC_NCO_PHASE_INCR, which is set to address 0x0000 in
the setup script. After simulation, to view resource usage for the design example, the
subsystem, or a selected block, on the DSP Builder menu, point to Resource Usage
and click Design, Current Subsystem, or Selected block.

DSP Builder reports for each register, the name, width, reset value, and address. This
report collates all the registers from your design into a single location.

You can view the estimated results for this NCO configuration in the Results tab of
the dialog box).

Based on the selected accumulator width and output width, DSP Builder calculates an
estimated SFDR and accumulator precision. To verify this precision in a separate
testbench, use demo_nco.mdl as a start.

DDC Mixer

The Mixer block performs the superheterodyne operation by multiplying each of the
two received signals (DataInMain and DataInDiversity) by each of the four
frequencies. This action produces eight complex signals or 16 scalar signals (the 16
channels in the DDC design).

The mixer requires sufficient multipliers to perform this calculation. The total number
of real × complex multipliers required for each sample is 2 signals × 4 frequencies =
8.

Thus, 8 real × complex multiplies require 8 × 2 = 16 scalar multipliers. This
processing is spread over four cycles (the folding factor given by the ratio of clock rate
to sample rate), therefore DSP Builder requires four physical multipliers.

After simulation, to view resource usage for the design example, the subsystem, or a
selected block, on the DSP Builder menu, point to Resource Usage and click Design,
Current Subsystem, or Selected block.

You can list the input and output ports that DSP Builder creates for this block, with the
data width and brief description, by right-clicking on the block and clicking Help. DSP
Builder suffixes the vector inputs with 0 and 1 to implement the vector. This list of
signals corresponds to the signals in the VHDL entity.

DSP Builder provides the results for the mixer as separate in phase and quadrature
outputs—each is a vector of width 2. It performs the remaining operations on both the
I and Q signals, so that DSP Builder can combine them with another Simulink
multiplexer to provide a vector of width 4. This operation carries the 16 signals, with a
folding factor of 4. At this point the channel counts count 0, 1, 2, 3, 0, 1,

DDC Mixer Scale Block

At this point in the datapath, the data width is 32 bits representing the full precision
output of multiplying a 14-bit data signal with an 18-bit sine or cosine signal. DSP
Builder needs to reduce the data width to a lower precision to pass on to the
remaining filters, which reduces the resource count considerably, and does not cause
significant information loss. The Scale3 block performs a shift-round-saturate
operation to achieve this reduction. The shift is usually a 1 or 2 bit shift that you can
set to adjust the gain in your design at run time.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To determine the setup, DSP Builder usually uses a microprocessor, which writes to a
register to set the shift amount. This design uses a RegField block
(Mixer_Scaling_Register). This block behaves like a constant in the Simulink
simulation, but in hardware the block performs as a processor-writable register that
initializes to the value in your design example.

This parameterization results in a register mapped to address DDC_GAINS, which is a
MATLAB variable that you specify in the setup_demo_ddc.m script.

The register is writable from the processor, but not readable.

The register produces a 2-bit output of type ufix(2)—an unsigned fixed-point number.
The scaling is 2^-0 so is, in effect, a 2-bit unsigned integer. These 2 bits are mapped
into bits 0 and 1 of the word (another register may use other bits of this same
address). The initial value for the register is set to 0. DSP Builder provides a
description of the memory map in the resource usage. Sometimes, Simulink needs an
explicit sample time, but you can use the default value of –1 for this tutorial.

The 2-bit unsigned integer is fed to the Scale3 block. This block has a vector of width
4 as its data input. The Scale3 block builds a vector of 4 internal scale units. These
parameters are not visible through the user interface, but you can see them in the
resource usage.

The block produces four outputs, which DSP Builder presents at the output as a vector
of width 4. DSP Builder preserves the order in the vector. You can create quite a large
block of hardware by passing many channels through a IP block. The exception output
of the scale block provides signals to say when saturation occurs, which this design
does not require, so this design terminates them.

The design sets the output format to 16-bit signed with 15 bits of fraction and uses
the Unbiased rounding method. This method (convergent rounding or round-to-even)
typically avoids introducing a DC bias.

The saturation method uses Symmetric rounding which clips values to within
+0.9999 and –0.9999 (for example) rather than clipping to –1. Again this avoids
introducing a DC bias.

The number of bits to shift is a vector of values that the scaling register block
(Mixer_Scaling_Register) indexes. The vector has 4 values, therefore DSP Builder
requires a 2-bit input.

An input of 0 uses the 0th value in the vector (address 1 in Simulink), and so on.
Therefore, in this example inout0 shifts by 0 and the result at the input has the same
numerical range as the input. An input of 1 shifts left by 1, and so multiplies the input
value by 2, thus increasing the gain.

6.3.2. Building the DDC Design Example

1. Open the model, by typing the following command in the MATLAB window:

demo_ddc r

2. Simulate the design example in Simulink, by typing the following command in the
MATLAB window:

sim('demo_ddc', 550000.0*demo_ddc.SampleTime);

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Simulation Results Shown in the IScope Block
The IScope block shows the first two channels (1 real and 1 complex for the first carrier) of data (magenta
and yellow) as the input signals. The first trace shows the rapidly changing input signal that the testbench
generates. The second signal shows the result of the mixer. This slowly changing signal contains the
information to be extracted, plus a lot of high frequency residue. Applying the series of low-pass filters and
decimating results in the required data.

Note: If you turn on the Generate Hardware option in the parameters for the
Control block, every time the simulation runs, DSP Builder synthesizes the
underlying hardware, and writes out VHDL into the directory you specify.

3. Simulate the generated RTL in the ModelSim simulator.

4. Synthesize and fit the RTL in the Quartus Prime software.

6.3.2.1. DDC Design Example Generated Files

DSP Builder creates a directory structure that mirrors the structure of your model. The
root to this directory can be an absolute path name or as a relative path name; for a
relative path name (such as ../rtl), the directory structure is relative to the MATLAB
current directory.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Generated Directory Structure for the DDC Design Example

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Separate subdirectories exist corresponding to each hierarchical level in your design.

Table 15. Generated Files for the DDC Design Example

File Description

rtl directory

demo_ddc.xml An XML file that describes the attributes of your model.

demo_ddc_entity.xml An XML file that describes the boundaries of the system (for Signal
Compiler in designs that combine blocks from the standard and advanced
blocksets).

rtl\demo_ddc subdirectory

<block name>.xml An XML file containing information about each block in the advanced
blockset which translates into HTML on demand for display in the MATLAB
Help viewer and for use by the DSP Builder menu options.

demo_ddc.vhd This is the top-level testbench file. It may contain non-synthesizable
blocks, and may also contain empty black boxes for Simulink blocks that
are not fully supported.

demo_ddc.add.tcl This script loads the VHDL files in this subdirectory and in the subsystem
hierarchy below it into the Quartus Prime project.

demo_ddc.qip This file contains all the assignments and other information DSP Builder
requires to process the demo_ddc design example in the Quartus Prime
software. The file includes a reference to the .qip file in the DDCChip
subsystem hierarchy.

<block name>.vhd DSP Builder generates a VHDL file for each component in your model.

demo_ddc_DDCChip_ent
ity.xml

An XML file that describes the boundaries of the DDCChip subsystem as a
black box (for Signal Compiler in designs that combine blocks from the
standard and advanced blocksets).

DDCChip.xml An XML file that describes the attributes of the DDCChip subsystem.

*.stm Stimulus files.

safe_path.vhd Helper function that ensures a pathname is read correctly in the Quartus
Prime software.

safe_path_msim.vhd Helper function that ensures a pathname is read correctly in ModelSim.

rtl\demo_ddc\<subsystem> subdirectories

Separate subdirectories exist for each hierarchical level in your design. These subdirectories include
additional .xml .vhd, qip and .stm files describing the blocks contained in each level. Also
additional .do and .tcl files exist, which it automatically calls from the corresponding files in the top-
level of your model.

<subsystem>_atb.do Script that loads the subsystem automatic testbench into ModelSim.

<subsystem>_atb.wav.d
o

Script that loads signals for the subsystem automatic testbench into
ModelSim.

<subsystem>/<block>/
*.hex

Intel format .hex files that initialize the RAM blocks in your design for
either simulation or synthesis.

<subsystem>.sdc Design constraint file for TimeQuest support.

<subsystem>.tcl Use this Tcl file to setup a Quartus Prime project.

<subsystem>_hw.tcl A Tcl script that loads the generated hardware into Platform Designer.

To display a particular signal, attach a Simulink scope, regenerate, and resimulate.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45. Simulation Results in the ModelSim Wave Window for the DDC Design
Example

6.4. DSP Builder Filter Design Examples

This folder contains design examples of cascaded integrator-comb (CIC) and finite
impulse response (FIR) filters.

1. Complex FIR Filter on page 100

2. Decimating CIC Filter on page 100

3. Decimating FIR Filter on page 100

4. Filter Chain with Forward Flow Control on page 101

5. FIR Filter with Exposed Bus on page 101

6. Fractional FIR Filter Chain on page 101

7. Fractional-Rate FIR Filter on page 101

8. Half-Band FIR Filter on page 102

9. IIR: Full-rate Fixed-point on page 102

10. IIR: Full-rate Floating-point on page 102

11. Interpolating CIC Filter on page 103

12. Interpolating FIR Filter on page 103

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13. Interpolating FIR Filter with Multiple Coefficient Banks on page 104

14. Interpolating FIR Filter with Updating Coefficient Banks on page 105

15. Root-Raised Cosine FIR Filter on page 105

16. Single-Rate FIR Filter on page 105

17. Super-Sample Decimating FIR Filter on page 106

18. Super-Sample Fractional FIR Filter on page 106

19. Super-Sample Interpolating FIR Filter on page 106

20. Variable-Rate CIC Filter on page 106

6.4.1. Complex FIR Filter

This design example demonstrates how to implement a complex FIR filter using three
real filters. The resource efficient implementation (three real multipliers per complex
multiply) maps optimally onto Intel Arria 10 DSP blocks, using the scan and cascade
modes.

The model file is demo_complex_fir.mdl.

6.4.2. Decimating CIC Filter

This design example implements a decimating CIC filter.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_dcic.m script.

The CICSystem subsystem includes the Device and DecimatingCIC blocks.

The model file is demo_dcic.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.3. Decimating FIR Filter

This design example implements a decimating FIR filter.

This design example uses the Decimating FIR block to build a 20-channel decimate
by 5, 49-tap FIR filter with a target system clock frequency of 240 MHz.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_fird.m script.

The FilterSystem subsystem includes the Device and Decimating FIR blocks.

The model file is demo_fird.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.4. Filter Chain with Forward Flow Control

This design example builds a filter chain with forward flow control.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_filters_flow_control.m script.

The FilterSystem subsystem includes FractionalRateFIR, InterpolatingFIR,
InterpolatingCIC, Const and Scale blocks.

The model file is demo_filters_flow_control.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.5. FIR Filter with Exposed Bus

This design example is a multichannel single-rate FIR filter with rewritable coefficients.
The initial configuration is a high-pass filter, but halfway through the testbench
simulation, DSP Builder reconfigures it as a low-pass filter. The testbench feeds in the
sum of a fast and a slow sine wave into the filter. The fast one emerges from the
originally configured FIR filter; the slow one is all that is left after DSP Builder
reconfigures the filter.

The model file is demo_fir_exposed_bus.mdl.

6.4.6. Fractional FIR Filter Chain

This design example uses a chain of InterpolatingFIR and DecimatingFIR blocks to
build a 16-channel fractional rate filter with a target system clock frequency of 360
MHz.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_fir_fractional.m script.

The FilterSystem subsystem includes ChanView, Decimating FIR,
InterpolatingFIR, and Scale blocks.

The model file is demo_fir_fractional.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.7. Fractional-Rate FIR Filter

This design example implements a fractional rate FIR filter.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_firf.m script.

The FilterSystem subsystem includes the Device and FractionalRateFIR blocks.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

101

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The model file is demo_firf.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.8. Half-Band FIR Filter

This design example implements a half band interpolating FIR filter.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_firih.m script.

The FilterSystem subsystem includes the Device block and two separate
InterpolatingFIR blocks for the regular and interpolating filters.

The model file is demo_firih.mdl.

This design example uses the Simulink Signal Processing Blockset.

6.4.9. IIR: Full-rate Fixed-point

This design example implements a full-rate fixed-point IIR filter.

This design demonstrates a single-channel second-order Infinite Impulse Response
(IIR) filter running at the clock rate. Usually with such designs, closing the feedback
loop is difficult at high clock rates. This design recursively expands the mathematical
expression from the feedback in terms of earlier samples, which gives a feed-forward
scalar product and a longer feedback loop. You can make the feedback loop long
enough to add any length of pipelining at the expense of more resources for the
expansion.

The model file is demo_full_rate_iir_fixed.mdl.

Figure 46. IIR Second-Order Biquad

6.4.10. IIR: Full-rate Floating-point

This design example implements a full-rate floating-point IIR filter.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

102

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This design demonstrates a single-channel second-order Infinite Impulse Response
(IIR) filter running at the clock rate. Usually with such designs, closing the feedback
loop is impossible at high clock rates. This design recursively expands the
mathematical expression from the feedback in terms of earlier samples, which gives a
feed-forward scalar product and a longer feedback loop. You can make the feedback
loop long enough to add any length of pipelining at the expense of more resources for
the expansion.

The model file is demo_full_rate_iir_floating.mdl.

Figure 47. IIR Second-Order Biquad

6.4.11. Interpolating CIC Filter

This design example implements an interpolating CIC filter.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_icic.m script.

The FilterSystem subsystem includes the Device and InterpolatingCIC blocks.

The model file is demo_icic.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.12. Interpolating FIR Filter

This design example uses the InterpolatingFIR block to build a 16-channel
interpolate by 2, symmetrical, 49-tap FIR filter with a target system clock frequency of
240 MHz.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_firi.m script.

The FilterSystem subsystem includes the Device and InterpolatingFIR blocks.

The model file is demo_firi.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.13. Interpolating FIR Filter with Multiple Coefficient Banks

This design example builds an interpolating FIR filter that regularly switches between
coefficient banks.

Multiple sets of coefficients requires storage in memory so that the design can switch
easily from one set, or bank, of coefficients in use to another in a single clock cycle.

The design must perform the following actions:

• Specify the number of coefficient banks

• Initialize the banks

• Update the coefficients in a particular bank

• Select the bank in use in the filter

You specify the coefficient array as a matrix rather than a vector—(bank rows) by
(number of coefficient columns).

The addressing scheme has address offsets of base address + (bank number *
number of coefficients for each bank).

If the number of rows is greater than one, DSP Builder creates a bank select input
port on the FIR filter. In a design, you can drive this input from either data or bus
interface blocks, allowing either direct or bus control. The data type is unsigned
integer of width ceil(log2(number of banks)).

The bank select is a single signal. For example, for a FIR filter with four input channels
over two timeslots:

<0><1>

<2><3>

The corresponding input channel signal is:

<0><1>

Here the design receives more than one channel at a time, but can only choose a
single bank of coefficients. Channels 0 and 2 use one set of coefficients and channels
1 and 3 another. Channel 0 cannot use a different set of coefficients to channel 2 in
the same filter.

For multiple coefficient banks, you enter an array of coefficients sets, rather than a
single coefficient set. For example, for a MATLAB array of 1 row and 8 columns [1 x
8], enter:

fi(fir1(7, 0.5),1,16,15)

For a MATLAB array of 2 rows and 8 columns [2 x 8] enter:

[fi(fir1(7, 0.5),1,16,15);fi(fir1(7, 0.5),1,16,15)]

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

104

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Therefore, you can determine the number of banks by the number of rows without
needing the number of banks. If the number of banks is greater than 1, add an
additional bank select input on the block.

The model file is demo_firi_multibank.mdl.

6.4.14. Interpolating FIR Filter with Updating Coefficient Banks

This design example is similar to the Interpolating FIR Filter with Multiple Coefficient
Banks design example. While one bank is in use DSP Builder writes a new set of FIR
filter coefficients to the other bank. You can see the resulting change in the filter
output when the bank select switches to the updated bank.

Write to the bus interface using the BusStimulus block with a sample rate
proportionate with the bus clock. Generally, DSP Builder does not guarantee bus
interface transactions to be cycle accurate in Simulink simulations. However, in this
design example, DSP Builder updates the coefficient bank while it is not in use.

The model name is demo_firi_updatecoeff.mdl.

6.4.15. Root-Raised Cosine FIR Filter

This design example uses the Decimating FIR block to build a 4-channel decimate by
5, 199-tap root raised cosine filter with a target system clock frequency of 304 MHz.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_fir_rrc.m script.

The FilterSystem subsystem includes the Device and Decimating FIR blocks.

The model file is demo_fir_rrc.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.16. Single-Rate FIR Filter

This design example uses the SingleRateFIR block to build a 16-channel single rate
49-tap FIR filter with a target system clock frequency of 360 MHz.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_firs.m script.

The FilterSystem subsystem includes the Device and SingleRateFIR blocks.

The model file is demo_firs.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.4.17. Super-Sample Decimating FIR Filter

This design example shows how the filters cope with data rates greater than the clock
rate. The design example uses the DecimatingFIR block to build a single channel
decimate by 2, symmetrical, 33-tap FIR filter.

The input sample rate is six times the clock rate. The filter decimates by two the input
sample rate to three times the clock rate, which is visible in the vector input and
output data connections. The input receives six samples in parallel at the input, and
three samples are output each cycle.

After simulation, you can view the resource usage.

The model file is demo_ssfird.mdl.

6.4.18. Super-Sample Fractional FIR Filter

This design example shows how the filters cope with data rates greater than the clock
rate. The design example uses the FractionalFIR block to build a single channel
interpolate by 3, decimate by 2, symmetrical, 33-tap FIR filter.

The input sample rate is two times the clock rate. The filter upconverts the input
sample rate to three times the clock rate, which is visible in the vector input and
output data connections. The input receives two samples in parallel at the input, and
three samples are output each cycle.

The model file is demo_ssfirf.mdl.

6.4.19. Super-Sample Interpolating FIR Filter

This design example shows how the filters cope with data rates greater than the clock
rate. The design example uses the InterpolatingFIR block to build a single channel
interpolate by 3, symmetrical, 33-tap FIR filter.

The input sample rate is twice the clock rate and is interpolated by three by the filter
to six times the clock rate, which is visible in the vector input and output data
connections. The input receives two samples in parallel at the input, and six samples
are output each cycle.

After simulation, you can view the resource usage.

The model file is demo_ssfiri.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.4.20. Variable-Rate CIC Filter

CIC filters are extremely hardware efficient, as they require no multipliers. You see
CIC filters commonly in applications that require large interpolation and decimation
factors. Usually the interpolation and decimation factors are fixed, and you can use
the CIC IP block. However, a subset of applications require you to change the
interpolation and decimation factors at run time. This design example shows how to
build a variable-rate CIC filter from primitives. It contains a variable-rate decimating
CIC filter, which consists of a number of integrators and differentiators with a
decimation block between them, where the rate change occurs.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can control the rate change with a register field, which is part of the control
interface. The register field controls the generation of a valid signal that feeds into the
differentiators.

The design example also contains a gain compensation block that compensates for the
rate change dependent gain of the CIC. It shifts the input up so that the MSB at the
output is always at the same position, regardless of the rate change that you select.

The associated setup file contains parameters for the minimum and maximum
decimation rate, and calculates the required internal data widths and the scaling
number. To change the decimation factor for simulation, adjust variable CicDecRate
to the desired current decimation rate.

The model file is demo_vcic.mdl.

6.5. DSP Builder Folding Design Examples

1. Position, Speed, and Current Control for AC Motors on page 107

2. Position, Speed, and Current Control for AC Motors (with ALU Folding) on page
111

3. About FOC on page 112

4. Folded FIR Filter on page 112

6.5.1. Position, Speed, and Current Control for AC Motors

This design example implements a field-oriented control (FOC) algorithm for AC
motors such as permanent magnet synchronous machines (PMSM). Industrial servo
motors, where the precise control of torque is important, commonly use these
algorithms. This design example includes position and speed control, which allow the
control of rotor speed and angle.

Note: Intel has not tested this design on hardware and Intel does not provide a model of a
motor.

The model file is psc_ctrl.mdl. Also, an equivalent fixed-point design,
psc_ctrl_fixed.mdl, exists. To change the precision this design uses, refer to the
setup_position_speed_current_controller_fixed.m script.

Functional Description

An encoder measures the rotor position in the motor, which the FPGA then reads. An
analog-to-digital converter (ADC) measures current feedback, which the FPGA then
reads.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 48. AC Motor Control System Block Diagram

Ethernet
MAC

ADC

Encoder

Nios II
Processor

SOPC Builder

Industrial
Ethernet

PHY

ADC
Interface

AC
Motor

IGBT
Control

Interface

Power
Stage

FPGA

Position,
Speed,

and Current
Control

for AC Motors
Example Design
In DSP Builder

Position
Encoder
Interface

Each of the FOC, speed, and position feedback loops use a simple PI controller to
reduce the steady state error to zero. In a real-world PI controller, you may also need
to consider integrator windup and tune the PI gains appropriately. The feedback loops
for the integral portion of the PI controllers are internal to the design.

The example assumes you sample the inputs at a rate of 100 kHz and the FPGA clock
rate is 100 MHz (suitable for Cyclone IV devices). ALU folding reduces the resource
usage by sharing operators such as adders, multipliers, cosine. The folding factor is
set to 100 to allow each operator to be timeshared up 100 times, which gives an input
sample rate of 1 Msps, but as the real input sample rate is 100 ksps, only one out of
every ten input timeslots are used. DSP Builder identifies the used timeslots when
valid_in is 1. Use valid_in to enable the latcher in the PI controller, which stores
data for use in the next valid timeslot. The valid_out signal indicates when the
ChannelOut block has valid output data. You can calculate nine additional channels
on the samedesign without incurring extra latency (or extra FPGA resources).

You should adjust the folding factor to see the effect it has on hardware resources and
latency. To adjust, change the Sample rate (MHz) parameter in the ChannelIn and
ChannelOut blocks of the design either directly or change the FoldingFactor
parameter in the setup script. For example, a clock frequency of 100 MHz and sample
rate of 10 MHz gives a folding factor of 10. Disabling folding, or setting the factor to 1,
results in no resource sharing and minimal latency. Generally, you should not set the
folding factor greater than the number of shareable operators, that is, for 24 adders
and 50 multipliers, use a maximum folding factor 50.

Note: The testbench does not support simulations if you adjust the folding factor.

The control algorithm, with the FOC, position, speed, control loops, vary the desired
position across time. The three control loops are parameterized with minimum and
maximum limits, and Pl values. These values are not optimized and are for
demonstrations only.

Resource Usage

Table 16. Position, Speed, and Current Control for AC Motors Design Example Resource
Usage

Folding Factor Add and Sub Blocks Mult Blocks Cos Blocks Latency

No folding 22 22 4 170

>22 1 1 1 279

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example uses floating-point arithmetic that automatically avoids arithmetic
overflow, but you can implement it in a fixed-point design and tune individual
accuracies while manually avoiding overflows.

Hardware Generation
When hardware generation is disabled, the Simulink system simulates the design at
the external sample rate of 100 kHz, so that it outputs a new value once every 100
kHz. When hardware generation is enabled, the design simulates at the FPGA clock
rate (100 MHz), which represents real-life latency clock delays, but it only outputs a
new value every 100 kHz. This mode slows the system simulation speed greatly as the
model is evaluated 1,000 times for every output. The setup script for the design
example automatically detects whether hardware generation is enabled and sets the
sample rates accordingly. The example is configured with hardware generation
disabled, which allows fast simulations. When you enable hardware generation, set a
very small simulation time (for example 0.0001 s) as simulation may be very slow.

Figure 49. Input Position Request
At 0 s, a position of 3 is requested and then at 0.5 s a position of 0 is requested. Also shows the actual position
and motor feedback currents

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 50. Output Response for Speed and Torque
The maximum speed request saturates at 10 and the torque request saturates at 5 as set by parameters of the
model. Also, some oscillation exists on the speed and torque requests because of nonoptimal settings for the PI
controller causing an under-damped response.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

110

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 51. Output Current
From 0 to 0.1, the motor is accelerating; 0.1 to 0.3, it is at a constant speed; 0.3 to 0.5, it is decelerating to
stop. From 0.5 to 0.6, the motor accelerates in the opposite direction; from 0.6 to 0.8, it is at a constant
speed; from 0.8 to 1, it is decelerating to stop.

6.5.2. Position, Speed, and Current Control for AC Motors (with ALU
Folding)

The position, speed, and current control for AC motors (with ALU folding) design
example is a FOC algorithm for AC motors, which is identical to the position, speed,
and current control for AC motors design example. However this design example uses
ALU folding.

The model file is psc_ctrl_alu.mdl.

The design example targets a Cyclone V device (speed grade 8). Cyclone V devices
have distributed memory (MLABs). ALU folding uses many distributed memory
components. ALU folding performs better in devices that have distributed memories,
rather than devices with larger block memories.

The design example includes a setup script
setup_position_speed_current_controller_alu.m.

Table 17. Setup Script Variables

Variables Description

dspb_psc_ctrl.SampleRateHz = 10000 Sample rate. Default set to 10000, which is 10 kHz sample rate.

dspb_psc_ctrl.ClockRate = 100 FPGA clock frequency. Default set to 100, which is 100 MHz clock

dspb_psc_ctrl.LatencyConstraint = 1000 Maximum latency. Default 1,000 clock cycles

This design example uses a significantly large maximum latency, so resource
consumption is the factor to optimize in ALU folding rather than latency.

Generally, industrial designs require a testbench that operates at the real-world
sample rate. This example emulates the behavior of a motor sending current, position,
and speed samples at a rate of 10 kHz.

When you run this design example without folding, the DSP Builder system operates
at the same 10 kHz sample rate. Therefore, the system calculates a new packet of
data for every Simulink sample. Also, the sample times of the testbench are the same
as the sample times for the DSP Builder system.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Rate Transition blocks translate between the Simulink testbench and the DSP
Builder system. These blocks allow Simulink to manage the different sample times
that the DSP Builder system requires. You need not modify the design example when
you run designs with or without folding.

The Rate Transition blocks produce Simulink samples with a sample time of
dspb_psc_ctrl.SampleTime for the testbench and
dspb_psc_ctrl.DSPBASampleTime for the DSP Builder system. The samples are in
the stimuli system, within the dummy motor. To hold the data consistent at the inputs
to the Rate Transition blocks for the entire length of the output sample
(dspb_psc_ctrl.SampleTime), turn on Register Outputs.

The data valid signal consists of a one Simulink sample pulse that signifies the
beginning of a data packet followed by zero values until the next data sample, as
required by ALU folding. The design example sets the period of this pulsing data valid
signal to the number of Simulink samples for the DSP Builder system (at
dspb_psc_ctrl.DSPBASampleTime) between data packets. This value is
dspb_psc_ctrl.SampleTime/dspb_psc_ctrl.DSPBASampleTime.

The verification script within ALU folding uses the To Workspace blocks. The
verification script searches for To Workspace blocks on the output of systems to fold.
The script uses these blocks to record the outputs from both the design example with
and without folding. The script compares the results with respect to valid outputs. To
run the verification script, enter the following command at the MATLAB prompt:

Folder.Testing.RunTest('psc_ctrl_alu');

6.5.3. About FOC

FOC involves controlling the motor's sinusoidal 3-phase currents in real time, to create
a smoothly rotating magnetic flux pattern, where the frequency of rotation
corresponds to the frequency of the sine waves. FOC controls the amplitude of the
current vector that is at 90 degrees with respect to the rotor magnet flux axis
(quadrature current) to control torque.

The direct current component (0 degrees) is set to zero. The algorithm involves the
following steps:

• Converting the 3-phase feedback current inputs and the rotor position from the
encoder into quadrature and direct current components with the Clarke and Park
transforms.

• Using these current components as the inputs to two proportional and integral (PI)
controllers running in parallel to control the direct current to zero and the
quadrature current to the desired torque.

• Converting the direct and quadrature current outputs from the PI controllers back
to 3-phase currents with inverse Clarke and Park transforms.

6.5.4. Folded FIR Filter

This design example implements a simple non-symmetric FIR filter using primitive
blocks, with a data sample rate much less than the system clock rate. This design
example uses ALU folding to minimize hardware resource utilization.

The model file is demo_alu_fir..mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

112

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.6. DSP Builder Floating Point Design Examples

1. Black-Scholes Floating Point on page 113

2. Double-Precision Real Floating-Point Matrix Multiply on page 113

3. Fine Doppler Estimator on page 113

4. Floating-Point Mandlebrot Set on page 114

5. General Real Matrix Multiply One Cycle Per Output on page 115

6. Newton Root Finding Tutorial Step 1—Iteration on page 115

7. Newton Root Finding Tutorial Step 2—Convergence on page 116

8. Newton Root Finding Tutorial Step 3—Valid on page 116

9. Newton Root Finding Tutorial Step 4—Control on page 116

10. Newton Root Finding Tutorial Step 5—Final on page 116

11. Normalizer on page 116

12. Single-Precision Complex Floating-Point Matrix Multiply on page 116

13. Single-Precision Real Floating-Point Matrix Multiply on page 117

14. Simple Nonadaptive 2D Beamformer on page 117

6.6.1. Black-Scholes Floating Point

The DSP Builder Black-Scholes single- and double-precision floating-point design
examples implement the calculation of a Black-Scholes equation and demonstrate the
load exponent, reciprocal square root, logarithm and divide floating-point Primitive
library blocks for single- or double-precision floating-point designs.

The model files are blackScholes_S.mdl and blackScholes_D.mdl.

6.6.2. Double-Precision Real Floating-Point Matrix Multiply

A simpler design example of a floating-point matrix multiply implementation than the
complex multiply example. Each vector multiply is performed simultaneously, using
many more multiply-adds in parallel.

The model file is matmul_flash_RD.mdl.

6.6.3. Fine Doppler Estimator

The fine Doppler estimator design example is an interpolator for radar applications.
The example has three complex input values. It calculates the magnitude of each
value, then performs a parabolic curve fit, identifies the location of the peak, and
calculates the peak magnitude. The example performs all processing in single-
precision floating-point data.

For more information about fine Doppler estimators, refer to Fundamentals of Radar
Signal Processing by Mark A. Richards, McGraw-Hill, ISBN 0-07-144474-2, ch. 5.3.4.

The model file is FineDopplerEstimator.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.6.4. Floating-Point Mandlebrot Set

This design example plots the Mandlebrot set for a defined region of the complex
plane, shows many advanced blockset features, and highlights recommended design
styles.

A complex number C is in the Mandelbrot set if for the following equation the value
remains finite when repeatedly iterated:

z(n + 1) = zn
2 + C

where n is the iteration number and C is the complex conjugate

The system takes longer to perform floating-point calculations than for the
corresponding fixed-point calculations. You cannot wait around for partial results to be
ready, if you want to achieve maximum efficiency. Instead, you must ensure your
algorithm fully uses the floating-point calculation engines. The design contains two
floating-point math subsystems: one for scaling and offsetting pixel indices to give a
point in the complex plane; the other to perform the main square-and-add iteration
operation.

For this design example, the total latency is approximately 19 clock cycles, depending
on target device and clock speed. The latency is not excessive; but long enough that it
is inefficient to wait for partial results.

FIFO buffers control the circulation of data through the iterative process. The FIFO
buffers ensure that if a partial result is available for a further iteration in the
z(n +1) = zn

2 + C progression, the design works on that point.

Otherwise, the design starts a new point (new value of C). Thus, the design maintains
a full flow of data through the floating-point arithmetic. This main iteration loop can
exert back pressure on the new point calculation engine. If the design does not read
new points off the command queue FIFO buffers quickly enough, such that they fill up,
the loop iteration stalls. The design does not explicitly signal the calculation of each
point when it is required (and thus avoid waiting through the latency cycles before you
can use it). The design does not attempt to exactly calculate this latency in clock
cycles. The design tries to issue generate point commands the exact number of clock-
cycles before you need them. You must change them each time you retarget a device,
or change target clock rate. Instead, the design calculates the points quickly from the
start and catches them in a FIFO buffer. If the FIFO buffer starts to get full—a
sufficient number of cycles ahead of full—The design stops the calculation upstream
without loss of data. This selfregulating flow mitigates latency while remaining flexible.

Avoid inefficiencies by designing the algorithm implementation around the latency and
availability of partial results. Data dependencies in processing can stall processing.

The design example uses the FinishedThisPoint signal as the valid signal. Although
the system constantly produces data on the output, it marks the data as valid only
when the design finishes a point. Downstream components can then just process valid
data, just as the enabled subsystem in the testbench captures and plot the valid
points.

In both feedback loops, you must provide sufficient delay for the scheduler to
redistribute as pipelining. In feed-forward paths you can add pipelining without
changing the algorithm—DSP Builder changes only the timing of the algorithm. But in
feedback loops, inserting a delay can alter the meaning of an algorithm. For example,

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

adding N cycles of delay to an accumulator loop increments N different numbers, each
incrementing every N clock cycles. The design must provide enough slack in each loop
for the scheduler, which redistributes delays and pipelines operators, to be able to
close timing by redistributing this slack. The scheduler must not change the total
latency around the loop. The scheduler must ensure the function of the algorithm is
unaltered. It must not change the total latency around the loop. It must ensure the
function of the algorithm is unaltered. Such slack delays are in the top-level design of
the synthesizable design in the feedback loop controlling the generation of new points,
and in the FeedBackFIFO subsystem controlling the main iteration calculation. DSP
Builder uses the minimum delay feature on the SampleDelay blocks to set these
slack delays to the minimum possible delay that satisfies the scheduling solver. The
example sets the SampleDelay block to the minimum latency that satisfies the
schedule, which the DSP Builder solves as part of the integer linear programming
problem that finds an optimum pipelining and scheduling solution. You can group
delays into numbered equivalence groups to match other delays. In this design
example, the single delay around the coordinate generation loop is in one equivalence
group, and all the slack delays around the main calculation loop are in another
equivalence group. The equivalence group field can contain any MATLAB expression
that evaluates to a string. The SampleDelay block displays the delay that DSP Builder
uses.

The FIFO buffers operate in show-ahead mode—they display the next value to be
read. The read signal is a read acknowledgement, which reads the output value,
discards it, and shows the next value. The design uses multiple FIFO buffers with the
same control signal, which are full and give a valid output at the same time. The
design only needs the output control signals from one of the FIFO buffers and can
ignore the corresponding signals from the other FIFO buffers. As floating-point
simulation is not bit accurate to the hardware, some points in the complex plane take
fewer or more iterations to complete in hardware compared to the Simulink
simulation. The results, when you are finished with a particular point, may come out in
a different order. You must build a testbench mechanism that is robust to this feature.
Use the testbench override feature in the Run All Testbenches block:

• Set the condition on mismatches to Warning

• Use the Run All Testbenches block to set an import variable, which brings the
ModelSim results back into MATLAB and a custom verification function that sets
the pass or fail criteria.

The model file is Mandelbrot_S.mdl.

6.6.5. General Real Matrix Multiply One Cycle Per Output

This design example implements a floating-point matrix multiply. The design performs
each vector multiply simultaneously, using many multiply-adds in parallel.

The model file is gemm_flash.mdl.

6.6.6. Newton Root Finding Tutorial Step 1—Iteration

This design example is part of the Newton-Raphson tutorial. It demonstrates a naive
test for convergence and exposes problems with rounding and testing equality with
zero.

The model file is demo_newton_iteration.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.6.7. Newton Root Finding Tutorial Step 2—Convergence

This design example is part of the Newton-Raphson tutorial. It demonstrates
convergence criteria exposing mismatches between Simulink and ModelSim that you
can correct by bit-accurate simulation. The discrepancies are worse when you use
faithful rounding.

The model file is demo_newton_convergence.mdl.

6.6.8. Newton Root Finding Tutorial Step 3—Valid

This design example is part of the Newton-Raphson tutorial. It demonstrates how you
avoid having the same answer multiple times on the output. It introduces a valid
control signal, parallel to the datapath, to keep track of which pipeline slots the design
empties. It uses equivalence groups in the minimum SampleDelay blocks.

The model file is demo_newton_valid.mdl.

6.6.9. Newton Root Finding Tutorial Step 4—Control

This design example is part of the Newton-Raphson tutorial. It demonstrates flow
control which allows the design to buffer inputs in a FIFO buffer and insert data into
pipeline slots as they become available.

The model file is demo_newton_control.mdl.

6.6.10. Newton Root Finding Tutorial Step 5—Final

This design example is part of the Newton-Raphson tutorial. It demonstrates a parallel
integer datapath for counting iterations. It detects divergence in cases where the
Newton method oscillates between two finite values.

The model file is demo_newton_final.mdl.

6.6.11. Normalizer

The normalizer design example demonstrates the ilogb block and the multifunction
ldexp block. The parameters allow you to select the ilogb or ldexp. The design
example implements a simple floating-point normalization. The magnitude of the
output is always in the range 0.5 to 1.0, irrespective of the (non-zero) input.

The model file is demo_normalizer.mdl.

6.6.12. Single-Precision Complex Floating-Point Matrix Multiply

This design example uses a similar flow control style to that in the floating-point
Mandlebrot set design example. The design example uses a limited number of
multiply-adds, set by the vector size, to perform a complex single precision matrix
multiply.

A matrix multiplication must multiply row and column dot product for each output
element. For 8×8 matrices A and B:

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

116

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Equation 1. Matrix Multiply Equation

ABi j = ∑
k = 1

8
AikBk j

You may accumulate the adjacent partial results, or build adder trees, without
considering any latency. However, to implement with a smaller dot product, consider
resource usage folding, which uses a smaller number of multipliers rather than
performing everything in parallel. Also split up the loop over k into smaller chunks.
Then reorder the calculations to avoid adjacent accumulations.

A traditional implementation of a matrix multiply design is structured around a delay
line and an adder tree:

A11B11 +A12B21 +A13B31 and so on.

The traditional implementation has the following features:

• The length and size grow with folding size (typically 8 to 12)

• Uses adder trees of 7 to 10 adders that are only used once every 10 cycles.

• Each matrix size needs different length, so you must provide for the worst case

A better implementation is to use FIFO buffers to provide self-timed control. New data
is accumulated when both FIFO buffers have data. This implementation has the
following advantages:

• Runs as fast as possible

• Is not sensitive to latency of dot product on devices or fMAX

• Is not sensitive to matrix size (hardware just stalls for small N)

• Can be responsive to back pressure, which stops FIFO buffers emptying and full
feedback to control

The model file is matmul_CS.mdl.

6.6.13. Single-Precision Real Floating-Point Matrix Multiply

This design example is a simpler design example of a floating-point matrix multiply
implementation than the complex multiply example. The design example uses many
more multiply-adds in parallel (128 single precision multiply adds in the default
parameterization), to perform each vector multiply simultaneously.

The model file is matmul_flash_RS.mdl.

6.6.14. Simple Nonadaptive 2D Beamformer

This design example demonstrates a simple nonadaptive 2D beamformer using
vectors and single precision arithmetic. The parameters are the number of beams,
angle, focus and intensity of each beam.

A beamformer is a key algorithm in radar and wireless and is a signal processing
technique that sensor arrays use for directional signal transmission or reception. In
transmission, a beamformer controls the phase and amplitude of the individual array
elements to create constructive or destructive interference in the wavefront. In

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

reception, information from different elements are combined such that the expected
pattern of radiation is preferentially observed. A number of different algorithms exist.
An efficient scheme combines multiple paths constructively.

The simulation calculates the phases in MATLAB code (as a reference), simulates the
beamformer 2D design to calculate the phases in DSP Builder Advanced Blockset,
compares the reference to the simulation results and plots the beam pattern.

The design example uses vectors of single precision floating-point numbers, with
state-machine control from two for loops.

The model file is beamform_2d.mdl.

6.7. DSP Builder Flow Control Design Examples

1. Avalon-ST Interface (Input and Output FIFO Buffer) with Backpressure on page
118

2. Avalon-ST Interface (Output FIFO Buffer) with Backpressure on page 118

3. Kronecker Tensor Product on page 119

4. Parallel Loops on page 119

5. Primitive FIR with Back Pressure on page 119

6. Primitive FIR with Forward Pressure on page 120

7. Primitive Systolic FIR with Forward Flow Control on page 121

8. Rectangular Nested Loop on page 121

9. Sequential Loops on page 122

10. Triangular Nested Loop on page 122

6.7.1. Avalon-ST Interface (Input and Output FIFO Buffer) with
Backpressure

This example demonstrates the Avalon-ST input interface with FIFO buffers and the
AvalonST output interface blocks. This example has FIFO buffers in the input and
output interfaces. Use the manual switches in the testbench to change when
downstream is ready for data or to turn off input. The simulation ends by turning off
incoming data and ensures that it writes out as many valid data cycles as it receives.

The model file is demo_avalon_st_input_fifo.mdl.

6.7.2. Avalon-ST Interface (Output FIFO Buffer) with Backpressure

This example demonstrates the Avalon-ST input interface and the Avalon-ST output
interface blocks. This example has FIFO buffers in the output interface only. Use
manual switches in the testbench to change when downstream is ready for data or to
turn off input. The simulation ends by turning off incoming data and ensures that it
writes out as many valid data cycles as it receives.

The model file is demo_avalon_st.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.3. Kronecker Tensor Product

This design example generates a Kronecker tensor product. The design example
shows how to use the Loop block to generate datapaths that operate on regular data.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks.

The Chip subsystem includes the Device block and a lower-level
KroneckerSubsystem subsystem.

The KroneckerSubsystem subsystem includes ChannelIn, ChannelOut, Loop,
Const, DualMem, Mult, and SynthesisInfo blocks.

In this design example, the top level of the FPGA device (marked by the Device
block) and the synthesizable KroneckerSubsystem subsystem (marked by the
SynthesisInfo block) are at different hierarchy levels.

The model file is demo_kronecker.mdl.

6.7.4. Parallel Loops

This design example has two inner loops nested within the outer loop. The inner loops
execute in parallel rather than sequentially. The two inner loops are started
simultaneously by duplicating the control token but finish at different times. The
Rendezvous block waits until both of them finish and then passes the control token
back to the outer loop.

The model file is forloop_parloop.mdl.

6.7.5. Primitive FIR with Back Pressure

This DSP Builder design example uses Primitive library blocks to implement a FIR
design with flow control and back pressure.The design example shows how you use
the Primitive FIFO block to implement back pressure and flow control.

The top-level testbench includes Control and Signals blocks.

The FirChip subsystem includes the Device block and a lower-level primitive FIR
subsystem.

The primitive FIR subsystem includes ChannelIn, ChannelOut, FIFO, Not, And,
Mux, SampleDelay, Const, Mult, Add, and SynthesisInfo blocks.

In this design example, the top level of the FPGA device (marked by the Device
block) and the synthesizable Primitive FIR subsystem (marked by the SynthesisInfo
block) are at different hierarchy levels.

The model file is demo_back_pressure.mdl.

This design example shows how back pressure from a downstream block can halt
upstream processing. This design example provides three FIR filters. A FIFO buffer
follows each FIR filter that can buffer any data that is flowing through the FIFO buffer.
If the FIFO buffer becomes half full, the design asserts the ready signal back to the
upstream block. This signal prevents any new input (as flagged by valid) entering the
FIR block. The FIFO buffers always show the next data if it is available and the valid

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

signal is asserted high. You must AND this FIFO valid signal with the ready signal to
consume the data at the head of the FIFO buffer. If the AND result is high, you can
consume data because it is available and you are ready for it.

You can chain several blocks together in this way, and no ready signal has to feed
back further than one block, which allows you to use modular design techniques with
local control.

The delay in the feedback loop represents the lumped delay that spreads throughout
the FIR filter block. The delay must be at least as big as the delay through the FIR
filter. This delay is not critical. Experiment with some values to find the right one. The
FIFO buffer must be able to hold at least this much data after it asserts full. The full
threshold must be at least this delay amount below the size of the FIFO buffer (64 –
 32 in this design example).

The final block uses an external ready signal that comes from a downstream block in
the system.

6.7.6. Primitive FIR with Forward Pressure

This DSP Builder design example uses Primitive library blocks to implement a FIR
design with forward flow control. The design example shows how you can add a simple
forward flow control scheme to a FIR design so that it can handle invalid source data
correctly.

The top-level testbench includes Control and Signals blocks.

The FirChip subsystem includes the Device block and a lower-level Primitive FIR
subsystem.

The primitive FIR subsystem includes ChannelIn, ChannelOut, Mux, SampleDelay,
Const, Mult, Add, and SynthesisInfo blocks.

In this design example, the top level of the FPGA device (marked by the Device
block) and the synthesizable primitive FIR subsystem (marked by the SynthesisInfo
block) are at different hierarchy levels.

The model file is demo_forward_pressure.mdl.

The design example has a sequence of three FIR filters that stall when the valid signal
is low, preventing invalid data polluting the datapath. The design example has a
regular filter structure, but with a delay line implemented in single-cycle latches—
effectively an enabled delay line.

You need not enable everything in the filter (multipliers, adders, and so on), just the
blocks with state (the registers). Then observe the output valid signal, which DSP
Builder pipelines with the logic, and observe the valid output data only.

You can also use vectors to implement the constant multipliers and adder tree, which
also speeds up simulation.

You can improve the design example further by using the TappedDelayLine block.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.7. Primitive Systolic FIR with Forward Flow Control

This DSP Builder design example uses Primitive library blocks to implement a systolic
FIR design with forward flow control. The design example shows how you can add a
simple forward flow control scheme to a FIR design so that it can handle invalid source
data correctly.

The top-level testbench includes Control and Signals blocks.

The FirChip subsystem includes the Device block and a lower-level Primitive FIR
subsystem.

The Primitive FIR subsystem includes ChannelIn, ChannelOut, Mux, SampleDelay,
Const, Mult, Add, and SynthesisInfo blocks.

In this design example, the top level of the FPGA device (marked by the Device
block) and the synthesizable primitive FIR subsystem (marked by the SynthesisInfo
block) are at different hierarchy levels.

The design example has a sequence of three FIR filters that stall when the valid signal
is low, preventing invalid data polluting the datapath. The design example has a
regular filter structure, but with a delay line implemented in single-cycle latches—
effectively an enabled delay line.

You need not enable everything in the filter (multipliers, adders, and so on), just the
blocks with state (the registers). Then observe the output valid signal, which DSP
Builder pipelines with the logic, and observe the valid output data only.

You can also use vectors to implement the constant multipliers and adder tree, which
also speeds up simulation. You can improve the design example further with the
TappedDelayLine block.

The model file is demo_forward_pressure.mdl.

6.7.8. Rectangular Nested Loop

In this design example all initialization, step, and limit values are constant. At the
corners (at the end of loops) there may be cycles where the count value goes out of
range, then the output valid signal from the loop is low.

The token-passing structure is typical for a nested-loop structure. The bs port of the
innermost loop (ForLoopB) connects to the bd port of the same loop, so that the next
loop iteration of this loop starts immediately after the previous iteration.

The bs port of the outer loop (ForLoopA) connects to the ls port of the inner loop;
the ld port of the inner loop loops back to the bd port of the outer loop. Each iteration
of the outer loop runs a full activation of the inner loop before continuing on to the
next iteration.

The ls port of the outer loop connect to external logic and the ld port of the outer
loop is unconnected, which is typical of applications where the control token is
generated afresh for each activation of the outermost loop.

The model file is forloop_rectangle.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.7.9. Sequential Loops

This design example nests two inner loops (InnerLoopA and InnerLoopB) within the
outer loop. The design example daisy chains the ld port of InnerLoopA to the ls
port of InnerLoopB rather than connecting it directly to the bd port of
OuterLoop.Thus each activation of InnerLoopA is followed by an activation of
InnerLoopB

The model file is forloop_seqloop.mdl.

6.7.10. Triangular Nested Loop

The initialization, step, and limit values do not have to be constants. By using the
count value from an outer loop as the limit of an inner loop, the counter effectively
walks through a triangular set of indices.

The token-passing structure for this loop is identical to that for the rectangular loop,
except for the parameterization of the loops.

The model file is forloop_triangle.mdl.

6.8. DSP Builder HDL Import Design Example

This digital up-converter resamples 20 MSPS complex base-band data to 80 MHz
intermediate frequency, mixes it to center on +25 MHz, and applies some simple
digital predistortion (DPD). This design example takes FIR and DPD VHDL components
to create a complete up-conversion chain by importing existing IP and adding the up-
conversion, mixer and pre-DPD scaling.

The digital upconverter includes: input memory, upconverter, FIR filter, scaler, mixer
and digital predistortion (DPD).

Table 18. Example Design Files

hdl_import_duc.mdl The DSP Builder design.

hdl_import_duc_params.xml The design's parameter file.

hdl_import_calc_fir_coefs.m A script to generate the FIR coefficients using MATLAB's cfirpm function. DSP Builder
prints the coefficients to MATLAB's Command Window and you can copy and paste
them into coefficients.vhd.

calc_dpd_coefs.m A script to generate the DPD coefficients using a simple polynomial model of a power
amplifier. DSP Builder prints the coefficients MATLAB's Command Window and you
can copy and paste them into lut_dpd.vhd.

to_import This directory contains 12 VHDL source files.

VHDL Components

The design example includes a complex FIR filter in VHDL optimized for Intel Stratix
10 devices. This FIR filter has one valid data sample every eight clock cycles.
See Designing Filters for High Performance.

The simple LUT-based DPD is initialized with a third-order polynomial.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Top-Level Design

The top-level design contains the device-level subsystem and five downsample and
spectrum analyzer blocks from MathWork's DSP System Toolbox. These blocks show
the spectral output from the various stages of the up-conversion chain.

Figure 52. Top-Level Design

Digital Up Converter

The digital_up_converter subsystem is the device-level subsystem. It contains all of
the design's DSP Builder-based components and two gaps for HDL Import blocks.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53. Digital Upconverter

Buffer and Upsample

This scheduled subsystem contains two SharedMem blocks, which contain the 20
MSPS baseband source: one for the real part of the signal and one for the imaginary
part. You can write to the blocks via the bus or use the preloaded tones.

The read_counter block drives the upconversion. It counts modulo 32 because it
upsamples the 20 MSPS baseband by 4 to 80 MSPS and then holds each sample for 8
clock cycles at a clock rate of 640 MHz. The FIR filter accepts one sample every eight
cycles. By holding the samples, the FIR does not need synchronization logic.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

124

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 54. Buffer and Up-Sample

Mixer

This single-channel mixer consists of NCO and ComplexMixer IP blocks and a
scheduled subsystem for controlling the NCO. The control subsystem asserts the valid
signal once every eight cycles. The NCO generates a 16 MHz complex tone, which the
ComplexMixer uses to mix the filtered signal.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 55. Mixer

Scale

The scale scheduled subsystem scales the data so that it fits within the DPD's range of
operation by bit-shifting from the mixer's output. You can use the optional multiplier
for increasing the signal level if bit-shifting is insufficient.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 56. Scale

FIR Coefficients

The FIR coefficients are defined in coefficients.vhd.

The coefficients are calculated in hdl_import_calc_fir_coefs.m. This script uses
MATLAB’s cfirpm command to create complex coefficients.

DPD

The file lut_dpd.vhd contains the DPD for this design example. The DPD consists of
an address generator that indexes a LUT. The output of the LUT is then multiplied with
the complex input data. The LUT contents are calculated in
hdl_import_calc_dpd_coefs.m. This script uses a simple, real-numbered, third-
order model of an amplifier to calculate predistortion coefficients. DSP Builder uses
these coefficients to calculate the LUT contents.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulink Simulations Results

Figure 57. Simulation

The first four waveforms are the real and imaginary input and output of the the FIR. The FIR smooths the zero-
padded signals.

The next four waveforms are the real and imaginary input and output of the the DPD.

Figure 58. Upconverted

The two preloaded memory signals are clearly visible about 0, as are their four aliases because of the zero-
insert upsampling.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 59. Filtered

The aliased signals are attenuated by 40dB, as expected from the analysis in calc_fir_coefs.m.

Figure 60. Mixed

The mixed spectrum shows the baseband signal moving over to be centered on 16 MHz. This view shows the
Simulink clock rate of 1 Hz rather than the FPGA clock rate of 640 MHz, so 16 MHz becomes 25 mHz.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 61. Scaled

Scaled looks identical to mixed, except that the signal amplitude is much greater.

Figure 62. Output

The post-DPD output signal is a noiser version of the scaled signal. Observe the two third-order harmonics in
the pass-band.

Related Information

Designing Filters for High Performance

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

130

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01260-stratix10-designing-filters-for-high-performance.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8.1. Performing a Cosimulation

This tutorial uses the DSP Builder HDL import design example.

The design example has two HDL entities: the DPD (lut_dpd.vhd) and the FIR
(complex_fir.vhd).

In DSP Builder cosimulation, each HDL Import block represents an HDL instance. You
must instantiate both of these entities in a top-level VHDL file. For this design
example, Intel provides top.vhd.

In addition, the FIR filter uses a signed data type with a generic for the data width.
When DSP Builder instantiates the FIR filter, it uses its own paradigm (i.e.
std_logic_vector and no generics). This design example adds a wrapper entity:
complex_fir_wrapper.vhd. This entity instantiates complex_fir, including setting
the generic to the appropriate value, and converts signed to std_logic_vector.

These two files, top.vhd and complex_fir_wrapper.vhd are in the to_import
directory.

1. Add a HDL Import Config block to the top-level design.

Figure 63. Top-level Design with HDL Import Config Block

2. Parameterize the HDL Import Config block.

a. Click Add to add all of the files from the to_import directory.

The order of the files does not matter. DSP Builder determines the type of HDL
file by the extension, but you can change the type manually.

b. Enter top in the Top level instance.

c. Turn on Top-level is a wrapper.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

d. Click the Compile button.

e. Set the Simulink sample time field to 1.

f. When the status light is green, click Launch Cosim.

Figure 64. HDL Import Configuration

3. Add a HDL Import block to the digital_up_converter subsystem.

a. Double click the HDL Import block

b. Click Instance and select inst_fir.

c. Set the fractional bits of the two output signals to 16.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 65. HDL Import Block inst_fir Parameters

4. Add a second HDL Import block to the digital_up_converter subsystem.

a. Double click the HDL Import block

b. Click Instance and select inst_dpd.

c. Set the fractional bits of the two output signals to 27.

d. Set the valid output to unsigned.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 66. HDL Import inst_dpd Parameters

5. Wire up HDL import blocks.

The HDL Import block port names are in alphabetical order.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 67. Wire up HDL Import Blocks

6. Press the play button or advance through the simulation a cycle at a time.

7. Verify HDL import with the ModelSim simulator, in DSP Builder, select DSP
Builder ➤ Run ModelSim ➤ Device.

The cosimulation turns any non-high state (e.g. U or X) to a zero.

8. Compile the design in Intel Quartus Prime, by selecting DSP Builder > Run
Quartus Prime Software.

6.9. DSP Builder Host Interface Design Examples

1. Memory-Mapped Registers on page 135

6.9.1. Memory-Mapped Registers

This design example is an extreme example of using the processor registers to
implement a simple calculator. Registers and shared memories write arguments and
read results.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks.

This design also includes BusStimulus and BusStimulusFileReader blocks.

The RegChip subsystem includes RegField, RegBit, RegOut, SharedMem, Const,
Add, Sub, Mult, Convert, Select, BitExtract, Shift, and SynthesisInfo blocks.

The model file is demo_regs.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

135

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10. DSP Builder Platform Design Examples

This folder contains design examples that illustrate how you can implement a DDC or
digital up converter (DUC) for use in a radio basestation. Use these designs as a
starting point to build your own filter chain that meets your exact needs.

1. 16-Channel DDC on page 136

2. 16-Channel DUC on page 136

3. 2-Antenna DUC for WiMAX on page 137

4. 2-Channel DUC on page 138

5. Super-Sample Rate Digital Upconverter on page 138

6.10.1. 16-Channel DDC

This design example shows how to use using IP and Interface blocks to build a 16-
channel digital-down converter for modern radio systems.

Decimating CIC and FIR filters down convert eight complex carriers (16 real channels)
from 61.44 MHz. The total decimation rate is 64. A real mixer and NCO isolate the
eight carriers. The testbench isolates two channels of data from the TDM signals using
a channel viewer.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus a ChanView block that deserializes the output bus. An
Edit Params block allows easy access to the setup variables in the
setup_demo_ddc.m script.

The DDCChip subsystem includes Device, Decimating FIR, DecimatingCIC,
Mixer, NCO, Scale, RegBit, and RegField blocks.

The model file is demo_ddc.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.10.2. 16-Channel DUC

This design example shows how to build a 16-channel DUC as found in modern radio
systems using Interface, IP, and Primitive blocks.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This design example shows an interpolating filter chain with interpolating CIC and FIR
filters that up convert eight complex channels (16 real channels). The total
interpolation rate is 50. DSP Builder integrates several Primitive subsystems into the
datapath. This design example shows how you can integrate IP blocks with Primitive
subsystems:

• The programmable Gain subsystem, at the start of the datapath, shows how you
can use processor-visible register blocks to control a datapath element.

• The Sync subsystem is a Primitive subsystem that shows how to manage two
data streams coming together and synchronizing. The design writes the data from
the NCOs to a memory with the channel as an address. The data stream uses its
channel signals to read out the NCO signals, which resynchronizes the data
correctly. Alternatively, you can simply delay the NCO value by the correct number
of cycles to ensure that the NCO and channel data arrive at the Mixer on the
same cycle.

Extensive use is made of Simulink multiplexer and demultiplexer blocks to manage
vector signals.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus a ChanView block that deserializes the output bus. An
Edit Params block allows easy access to the setup variables in the
setup_demo_duc.m script.

The DUCChip subsystem includes a Device block and a lower level DUC16
subsystem.

The DUC16 subsystem includes InterpolatingFIR, InterpolatingCIC,
ComplexMixer, NCO, and Scale blocks.

It also includes lower level Gain, Sync, and CarrierSum subsystems which make use
of other Interface and Primitive blocks including AddSLoad, And, BitExtract,
ChannelIn, ChannelOut, CompareEquality, Const, SampleDelay, DualMem,
Mult, Mux, Not, Or, RegBit, RegField blocks, and SynthesisInfo blocks.

The model file is demo_duc.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.10.3. 2-Antenna DUC for WiMAX

This design example shows how to build a 2-antenna DUC to meet a WiMAX
specification.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus a ChanView block that deserializes the output bus.

The DUCChip subsystem includes a Device block and a lower level DUC2Antenna
subsystem.

The DUC2Antenna subsystem includes InterpolatingFIR, SingleRateFIR, Const,
ComplexMixer, NCO, and Scale blocks.

The model file is demo_wimax_duc.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.10.4. 2-Channel DUC

This design example shows how to build a 2-channel DUC.

Interpolating CIC and FIR filters up convert a single complex channel (2 real
channels). A NCO and Mixer subsystem combine the complex input channels into a
single output channel.

This design example shows how quick and easy it is to emulate the contents of an
existing datapath. A Mixer block implements the mixer in this design example as the
data rate is low enough to save resource using a time-shared hardware technique.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus a ChanView block that deserializes the output bus. An
Edit Params block allows easy access to the setup variables in the
setup_demo_AD9856.m script.

The AD9856 subsystem includes a Device block and a lower level DUCIQ
subsystem.

The DUCIQ subsystem includes Const, InterpolatingFIR, SingleRateFIR,
InterpolatingCIC, NCO, Scale blocks, and a lower level Mixer subsystem.

The Mixer subsystem includes ChannelIn, ChannelOut, Mult, Const, BitExtract,
CompareEquality, And, Delay, Sub, and SynthesisInfo blocks.

The model file is demo_AD9856.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.10.5. Super-Sample Rate Digital Upconverter

The model file is demo_ssduc.mdl.

6.11. DSP Builder Primitive Block Design Examples

1. 8×8 Inverse Discrete Cosine Transform on page 139

2. Automatic Gain Control on page 139

3. Bit Combine for Boolean Vectors on page 140

4. Bit Extract for Boolean Vectors on page 140

5. Color Space Converter on page 140

6. CORDIC from Primitive Blocks on page 141

7. Digital Predistortion Forward Path on page 141

8. Fibonacci Series on page 141

9. Folded Vector Sort on page 142

10. Fractional Square Root Using CORDIC on page 142

11. Fixed-point Maths Functions on page 142

12. Gaussian Random Number Generator on page 142

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13. Hello World on page 143

14. Hybrid Direct Form and Transpose Form FIR Filter on page 143

15. Loadable Counter on page 143

16. Matrix Initialization of LUT on page 144

17. Matrix Initialization of Vector Memories on page 144

18. Multichannel IIR Filter on page 145

19. Quadrature Amplitude Modulation on page 145

20. Reinterpret Cast for Bit Packing and Unpacking on page 145

21. Run-time Configurable Decimating and Interpolating Half-Rate FIR Filter on page
146

22. Square Root Using CORDIC on page 146

23. Test CORDIC Functions with the CORDIC Block on page 146

24. Uniform Random Number Generator on page 146

25. Vector Sort—Sequential on page 147

26. Vector Sort—Iterative on page 147

27. Vector Initialization of Sample Delay on page 147

28. Wide Single-Channel Accumulators on page 148

6.11.1. 8×8 Inverse Discrete Cosine Transform

This design example uses the Chen-Wang algorithm to implement a fully pipelined
8×8 inverse discrete cosine transform (IDCT).

Separate subsystems perform the row transformation (Row), corner turner
(CornerTurn), and column transformation (Col) functions. The design example
synthesizes each separate subsystem separately. The Row and Col subsystems have
additional levels of hierarchy for the different stages. The SynthesisInfo block is at
the row or column level, so the design example flattens these subsystems before
synthesis.

The CornerTurn turn block makes extensive use of Simulink Goto/From blocks to
reduce the wiring complexity. The top-level testbench includes Control and Signals
blocks. The IDCTChip subsystem includes the Device block and a lower level IDCT
subsystem. The IDCT subsystem includes lower level subsystems that it describes
with the ChannelIn, ChannelOut, Const, BitCombine, Shift, Mult, Add, Sub,
BitExtract, SampleDelay, OR Gate, Not, Sequence, and SynthesisInfo blocks.

The model file is demo_idct8x8.mdl.

6.11.2. Automatic Gain Control

This design example implements an automatic gain control.

This design example shows a complex loop with several subloops that it schedules and
pipelines without inserting registers. The design example spreads a lumped delay
around the circuit to satisfy timing while maintaining correctness. Processor visible
registers control the thresholds and gains.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

139

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In complex algorithmic circuits, the zero-latency blocks make it easy to follow a data
value through the circuit and investigate the algorithm without offsetting all the
results by the pipelining delays.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks.

The AGC_Chip subsystem includes the Device block, a RegField block and a lower
level AGC subsystem.

The AGC subsystem includes RegField, ChannelIn, ChannelOut, Mult,
SampleDelay, Add, Sub, Convert, Abs, CmpGE, Lut, Const, SharedMem, Shift,
BitExtract, Select, and SynthesisInfo blocks.

The model file is demo_agc.mdl.

6.11.3. Bit Combine for Boolean Vectors

This design example demonstrates different ways to use the BitCombine primitive
block to create signals of different widths from a vector of Boolean signals.

The one input BitCombine block is a special case that concatenates all the
components of the input vector and produces one wide scalar output signal. You can
apply 1-bit reducing operators to vectors of Boolean signals. The BitCombine block
supports multiple input concatenation. When vectors of Boolean signals are input on
multiple ports, corresponding components from each vector are combined so that the
output is a vector of signals.

The model file is demo_bitcombine.mdl.

6.11.4. Bit Extract for Boolean Vectors

This design example demonstrates different ways to use the BitExtract block to split
a wide signal into a vector of narrow signal components.

This block converts a scalar signal into a vector of Boolean signals. You use the
initialization parameter to arbitrarily order the components of the vector output by the
BitExtract block. If the input to a BitExtract block is a vector, different bits can be
extracted from each of the components. The output does not always have to be a
vector of Boolean signals. You may split a 16-bit wide signal into four components
each 4-bits wide.

The model file is demo_bitextract.mdl.

6.11.5. Color Space Converter

This design example demonstrates DSP Builder Primitive subsystems with simple
RGB to Y'CbCr color space conversion

• Y = 0.257R + 0.504G + 0.098B + 16

• Cb = -0.148R - 0.291G + 0.439B + 128

• Cr = 0.439R - 0.368G - 0.071B + 128

The RGB data arrives as three parallel signals each clock cycle. The model file is
demo_csc.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11.6. CORDIC from Primitive Blocks

This design example demonstrates building a CORDIC out of basic operators. This
design has the same functionality as the CORDIC library block in the
demo_cordic_lib_block example

The model file is demo_cordic_primitives.mdl.

6.11.7. Digital Predistortion Forward Path

This design example demonstrates forward paths that implement digital predistortion
(DPD).

Forward paths compensate for nonlinear power amplifiers by applying the inverse of
the distortion that the power amplifier generates, such that the pre-distortion and the
distortion of the power amplifier cancel each other out. The power amplifier's non-
linearity may change over time, therefore such systems are typically adaptive.

This design example is based on "A robust digital baseband pre-distorter constructed
using memory polynomials," L. Ding, G. T. Zhou, D. R. Morgan, et al., IEEE
Transactions on Communications, vol. 52, no. 1, pp. 159-165, 2004.

This design example only implements the forward path, which is representative of
many systems where you implement the forward path in FPGAs, and the feedback
path on external processors. The design example sets the predistortion memory, Q, to
8; the highest nonlinearity order K is 5 in this design example. The file
setup_demo_dpd_fwdpath initializes the complex valued coefficients, which are
stored in registers. During operation, the external processor continuously improves
and adapts these coefficients with a microcontroller interface.

The model file is demo_dpd_fwdpath.mdl.

6.11.8. Fibonacci Series

This DSP Builder design example generates a Fibonacci sequence.

This design example shows that even for circuitry with tight feedback loops and 120-
bit adders, designs can achieve high data rates by the pipelining algorithms. The top-
level testbench includes Control, Signals, Run ModelSim, and Run Quartus Prime
blocks. The Chip subsystem includes the Device block and a lower level FibSystem
subsystem. The FibSystem subsystem includes ChannelIn, ChannelOut,
SampleDelay, Add, Mux, and SynthesisInfo blocks.

Note: In this design example, the top-level of the FPGA device (marked by the Device
block) and the synthesizable Primitive subsystem (marked by the SynthesisInfo
block) are at different hierarchy levels.

The model file is demo_fibonacci.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

141

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11.9. Folded Vector Sort

This design sorts the values on the input vector from largest to smallest. The design is
a masked subsystem that allows for sorting with either a comparator and mux block,
or a minimum and a maximum block. The first implementation is more efficient. Both
use the reconfigurable subsystem to choose between implementations using the
BlockChoice parameter.

Folded designs repeatedly use a single dual sort stage. The throughput of the design is
limited in the number of channels, vector width, and data rate. The data passes
through the dual sort stage (vector width)/2 times. The vector sort design example
uses full throughput with (vector width)/2 dual sort stages in sequence.

Look under the mask to view the implementation of reconfigurable subsystem
templates and the blocks that reorder and interleave vectors.

The model file is demo_foldedsort.mdl.

6.11.10. Fractional Square Root Using CORDIC

This design example demonstrates CORDIC techniques, but does not use the CORDIC
block. This design example is fully iterative.

The design example allows you to generate a valid signal. The design example only
generates output and can only accept input every N cycles, where N depends on the
number of stages, the data output format, and the target fMAX. The valid signal goes
high when the output is ready. You can use this output signal to trigger the next input,
for example, a FIFO buffer read for bursty data.

The model file is demo_cordic_fracsqrt.mdl.

6.11.11. Fixed-point Maths Functions

This design example demonstrates how the Math, Trig and Sqrt functions support
fixed-point types and the fixed-point Divide function. You can use fixed-point types of
width up to and including 32 bits.

DSP Builder generates results using the same techniques as in the floating point
functions but at generally reduced resource usage, depending on data bit width.
Outputs are faithfully rounded. If the exact result is between two representable
numbers within the data format, DSP Builder uses either of them. In some instances
you see a difference in output result between simulation and hardware by one LSB. To
get bit-accurate results at the subsystem level, this example uses the Bit Exact
option on the SynthesisInfo block.

The model file is demo_fixed_math.mdl.

6.11.12. Gaussian Random Number Generator

This DSP Builder design example demonstrates a random number generator (CLT
component method) that produces random numbers with normal distribution and
standard deviation that you specify using the input sigma_input.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also specify the seed value for the random sequence using the seed_value
input. The reset input resets the sequence to the initial state defined by the
seed_value. The output is a 32-bit single-precision floating-point number.

6.11.13. Hello World

This DSP Builder design example produces a simple text message that it stores in a
look-up table.

An external input enables a counter that addresses a lookup-table (LUT) that contains
some text. The design example writes the result to a MATLAB array. You can examine
the contents with a char(message) command in the MATLAB command window.

This design example does not use any ChannelIn, ChannelOut, GPIn, or GPOut
blocks. The design example uses Simulink ports for simplicity although they prevent
the automatic testbench flow from working.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks.

The Chip subsystem includes Device, Counter, Lut, and SynthesisInfo blocks.

Note: In this design example, the top-level of the FPGA device (marked by the Device
block) and the synthesizable Primitive subsystem (marked by the SynthesisInfo
block) are at the same level.

The model file is helloWorld.mdl.

6.11.14. Hybrid Direct Form and Transpose Form FIR Filter

The design example uses small, four-tap direct form filters to use the structure inside
the DSP block efficiently. The design example combines these direct form minifilters
into a transpose structure, which minimizes the logic and memory that the sample
pipe uses. This FIR filter shows a FIR architecture that is a hybrid between the direct
form and transpose form FIR filter. It combines the advantages of both.

The model file is demo_hybrid_fir_mc.mdl.

6.11.15. Loadable Counter

This design example demonstrates the LoadableCounter block.

The testbench reloads the counter with new parameters every 64 cycles. A manual
switch allows you to control whether the counter is permanently enabled, or only
enabled on alternate cycles. You can view the signals input and output from the
counter with the provided scope.

The model file is demo_ld_counter.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11.16. Matrix Initialization of LUT

This design example feeds a vector of addresses to the Primitive block such that DSP
Builder gives each vector component a different address. This design example also
shows Lut blocks working with complex data types. You can initialize Lut blocks in
exactly the same way.

Using this design example avoids demultiplexing, connecting, and multiplexing, so
that you can build parameterizable systems.

You can use one of the following ways to specify the contents of the Lut block:

• Specify table contents as single row or column vector. The length of the 1D row or
column vector determines the number of addressable entries in the table. If DSP
Builder reads vector data from the table, all components of a given vector share
the same value.

• When a look-up table contains vector data, you can provide a matrix to specify the
table contents. The number of rows in the matrix determines the number of
addressable entries in the table. Each row specifies the vector contents of the
corresponding table entry. The number of columns must match the vector length,
otherwise DSP Builder issues an error.

Note: The default initialization of the LUT is a row vector round([0:255]/17). This vector
is inconsistent with the default for the DualMem block, which is a column vector
[zeros(16, 1)]. The latter form is consistent with the new matrix initialization form in
which the number of rows determines the addressable size.

The model file is demo_lut_matrix_init.mdl.

6.11.17. Matrix Initialization of Vector Memories

Use this feature in DSP Builder designs that handle vector data and require individual
components of each vector in the dual memory to be initialized uniquely.

The design example file is demo_dualmem_matrix_init.mdl.

You can initialize both the dual memory and LUT Primitive library blocks with matrix
data.

The number of rows in the 2D matrix that you provide for initialization determines the
addressable size of the dual memory. The number of columns must match the width of
the vector data. So the nth column specifies the contents of the nth dual memory.
Within each of these columns the ith row specifies the contents at the (i –- 1)th
address (the first row is address zero, second row address 1, and so on).

The exception for this row and column interpretation of the initialization matrix is for
1D data, where the initialization matrix consists of either a single column or single
row. In this case, the interpretation is flexible and maps the vector (row or column)
into the contents of each dual memory. In the previous behavior all dual memories
have identical initial contents.

The demo_dualmem_matrix_init design example uses complex values in both the
initialization and the data that it later writes to the dual memory. You set up the
contents matrix in the model's set-up script, which runs on model initialization.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

144

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11.18. Multichannel IIR Filter

This DSP Builder design example implements a masked multi-channel infinite impulse
response (IIR) filter with a masked subsystem that it builds from Primitive library
blocks.

This design example has many feedback loops. The design example implements all the
pipelined delays in the circuit automatically. The multiple channels provide more
latency around the circuit to ensure a high clock frequency result. Lumped delays
allow you to easily parameterize the design example when changing the channel
counts. For example, masking the subsystem provides the benefits of a black-box IP
block but with visibility.

The top-level testbench includes Control and Signals blocks, plus ChanView block
that deserialize the output buses.

The IIRChip subsystem includes the Device block and a masked IIRSubsystem
subsystem. The coefficients for the filter are set from [b, a] = ellip(2, 1, 10, 0.3); in
the callbacks for the masked subsystem. You can look under the mask to see the
implementation details of the IIRSubsystem subsystem which includes ChannelIn,
ChannelOut, SampleDelay, Const, Mult, Add, Sub, Convert, and SynthesisInfo
blocks.

The model file is demo_iir.mdl.

6.11.19. Quadrature Amplitude Modulation

This design example implements a simple quadrature amplitude modulation (QAM256)
design example with noise addition. The testbench uses various Simulink blocks.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks.

The QAM256Chip subsystem includes Add, GPIn, GPOut, BitExtract, Lut,
BitCombine, and SynthesisInfo blocks.

The model file is demo_QAM256.mdl.

Note: This design example uses the Simulink Communications Blockset.

6.11.20. Reinterpret Cast for Bit Packing and Unpacking

This design example demonstrates the ReinterpretCast block, which packs signals
into a long word and extracts multiple signals from a long word.

The first datapath reinterprets a single precision complex signal into raw 32-bit
components that separate into real and imaginary parts. A BitCombine block then
merges it into a 64-bit signal. The second datapath uses the BitExtract block to split
a 64-bit wide signal into a two component vectors of 32-bit signals. The
ReinterpretCast block then converts the raw bit pattern into single-precision IEEE
format. The HDL that the design synthesizes is simple wire connections, which
performs no computation.

The model file is demo_reinterpret_cast.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.11.21. Run-time Configurable Decimating and Interpolating Half-Rate
FIR Filter

This design example contains a half-rate FIR filter, which can perform either
decimation or interpolation by a factor of two during run time.

In decimation mode, the design example accepts a new sample every clock cycle, and
produces a new result every two clock cycles. When interpolating, the design example
accepts a new input every other clock cycle, and produces a new result every clock
cycle. In both cases, the design example fully uses multipliers, making this structure
very efficient compared to parallel instantiations of interpolate and decimate filters, or
compared to a single rate filter with external interpolate and decimate stages.

The coefficients are set to [1 0 3 0 5 6 5 0 3 0 1] to illustrate the operation of the
filter in setup_demo_fir_tdd.m.

The model file is demo_fir_tdd.mdl.

6.11.22. Square Root Using CORDIC

This design example demonstrates the CORDIC block. It configures the CORDIC
block for uint(32) input and uint(16) output. The example is partially parallelized
(four stages).

The design example allows you to generate a valid signal. The design example only
generates output and can only accept input every N cycles, where N depends on the
number of stages, the data output format, and the target fMAX. The valid signal goes
high when the output is ready. You can use this output signal to trigger the next input,
for example, a FIFO buffer read for bursty data.

The model file is demo_cordic_sqrt.mdl.

6.11.23. Test CORDIC Functions with the CORDIC Block

This design example demonstrates how to use the DSP Builder Primitive CORDIC
block to implement the coordinate rotation digital (CORDIC) algorithm.

The Mode input can either rotate the input vector by a specified angle, or rotate the
input vector to the x-axis while recording the angle required to make that rotation.
You can experiment with different size of inputs to control the precision of the CORDIC
output.

The top-level testbench includes Control and Signals blocks.

The SinCos and AGC subsystem includes ChannelIn, ChannelOut, CORDIC, and
SynthesisInfo blocks.

The model file is demo_cordic_lib_block.mdl.

6.11.24. Uniform Random Number Generator

This DSP Builder design example demonstrates a random number generator
(Tausworthe-88) that produces uniformly distributed random numbers.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify the seed value for the random sequence using the seed_value input.
The reset input resets the sequence to the initial state defined by the seed_value.
The output is a 32-bit random number, which can be interpreted as a random integer
sampled from the uniform distribution.

6.11.25. Vector Sort—Sequential

This design example sorts the values on the input vector from largest to smallest. The
sorting is a configurable masked subsystem: sortstages.

For sorting, the sortstages subsystem allows either a comparator and mux based
block, or one based on a minimum and a maximum block. The first is more efficient.
Both use the reconfigurable subsystem to choose between implementations using the
BlockChoice parameter.

The design repeatedly uses a dual sort stage in series. The data passes through the
dual sort stage (vector width)/2 times.

Look under the mask to view the implementation of reconfigurable subsystem
templates and the blocks that reorder and interleave vectors.

The model file is demo_vectorsort.mdl.

6.11.26. Vector Sort—Iterative

This design sorts the values on the input vector from largest to smallest. The design is
a masked subsystem that allows for sorting with either a comparator and mux block,
or a minimum and a maximum block. The first implementation is more efficient. Both
use the reconfigurable subsystem to choose between implementations using the
BlockChoice parameter.

Folded designs repeatedly use a single dual sort stage. The throughput of the design is
limited in the number of channels, vector width, and data rate. The data passes
through the dual sort stage (vector width)/2 times. The vector sort design example
uses full throughput with (vector width)/2 dual sort stages in sequence.

Look under the mask to view the implementation of reconfigurable subsystem
templates and the blocks that reorder and interleave vectors.

The model file is demo_foldedsort.mdl.

6.11.27. Vector Initialization of Sample Delay

This DSP Builder design example shows that one sample delay can replace what
usually requires a Demultiplex, SampleDelay, and Multiplex combination.

When the SampleDelay Primitive library block receives vector input, you can
independently specify a different delay for each of the components of the vector.

You may give individual components zero delay resulting in a direct feed through of
only that component. Avoid algebraic loops if you select some components to be zero
delays.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This rule only applies when DSP Builder is reading and outputting vector data. A scalar
specification of delay length still sets all the delays on each vector component to the
same value. You must not specify a vector that is not the same length as the vector on
the input port. A negative delay on any one component is also an error. However, as in
the scalar case, you can specify a zero length delay for one or more of the
components.

The model file is demo_sample_delay_vector.mdl.

6.11.28. Wide Single-Channel Accumulators

This example design shows various ways to connect up an adder, sample delay
(depth=1), and optional multiplexer to implement reset or load.

The output type of the adder is propagated from one of the inputs. You must select
the correct input, otherwise the accumulator fails to schedule. You may add a Convert
block to ensure the accumulator also maintains sufficient precision.

The wide single-channel accumulator consists of a two-input adder and sample-delay
feedback with one cycle of latency. If you use a fixed-point input to this accumulator,
you can make it arbitrarily wide provided the types of the inputs match with a data
type prop duplicate block. The output type of the Add block can be with or without
word growth. Alternatively, you can propagate the input type to the output of the
adder.

The optional use of a two-to-one multiplexer allows the accumulator to load values
according to a Boolean control signal. The inputs differ in precision, so the type with
wider fractional part must be propagated to the output type of the adder, otherwise
the accumulator fails to schedule. Converting both inputs to the same precision
ensures that the single-channel accumulator can always be scheduled even at high
fMAX targets.

If neither input has a fixed-point type that is suitable for the adder to output, use a
Convert block to ensure that the precision of both inputs to the Add block are the
same. Scheduling of this accumulator at high fMAX fails.

The model file is demo_wide_accumulators.mdl.

6.12. DSP Builder Reference Designs

DSP Builder also includes reference designs that demonstrate the design of DDC and
DUC systems for digital intermediate frequency (IF) processing.

This folder accesses groups of reference designs that illustrate the design of DDC and
DUC systems for digital intermediate frequency (IF) processing.

The first group implements IF modem designs compatible with the Worldwide
Interoperability for Microwave Access (WiMAX) standard. Intel provides separate
models for one and two antenna receivers and transmitters.

The second group implement IF modem designs compatible with the wideband Code
Division Multiple Access (W-CDMA) standard.

This folder also contains reference designs.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

STAP for radar systems applies temporal and spatial filtering to separate slow moving
targets from clutter and null jammers. Applications demand highprocessing
requirements and low latency for rapid adaptation. High-dynamic ranges demand
floating-point datapaths.

1. 1-Antenna WiMAX DDC on page 150

2. 2-Antenna WiMAX DDC on page 150

3. 1-Antenna WiMAX DUC on page 151

4. 2-Antenna WiMAX DUC on page 151

5. 4-Carrier, 2-Antenna W-CDMA DDC on page 152

6. 1-Carrier, 2-Antenna W-CDMA DDC on page 153

7. 4-Carrier, 2-Antenna W-CDMA DUC on page 153

8. 4-Carrier, 4-Antenna DUC and DDC for LTE on page 154

9. 1-Carrier, 2-Antenna W-CDMA DDC on page 155

10. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with Total Rate
Change 32 on page 156

11. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with Total Rate
Change 48 on page 156

12. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 307.2 MHz with Total Rate
Change 40 on page 157

13. Cholesky-based Matrix Inversion on page 158

14. Cholesky Solver Single Channel on page 162

15. Cholesky Solver Multiple Channels on page 163

16. Crest Factor Reduction on page 163

17. Direct RF with Synthesizable Testbench on page 164

18. Dynamic Decimating FIR Filter on page 164

19. Multichannel QR Decompostion on page 164

20. QR Decompostion on page 164

21. QRD Solver on page 165

22. Reconfigurable Decimation Filter on page 166

23. Single-Channel 10-MHz LTE Transmitter on page 166

24. STAP Radar Forward and Backward Substitution on page 167

25. STAP Radar Steering Generation on page 168

26. STAP Radar QR Decomposition 192x204 on page 168

27. Time Delay Beamformer on page 168

28. Transmit and Receive Modem on page 168

29. Variable Integer Rate Decimation Filter on page 169

Related Information

AN 544: Digital IF Modem Design with the DSP Builder Advanced Blockset
For more information about these designs

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

149

http://www.altera.com/literature/an/an544.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.1. 1-Antenna WiMAX DDC

This reference design uses IP and Interface blocks to build a 2-channel, 1-antenna,
single-frequency modulation DDC for use in an IF modem design compatible with the
WiMAX standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
the design includes an Edit Params block to allow easy access to the setup variables
in the setup_wimax_ddc_1rx.m script.

The DDCChip subsystem includes Device, Decimating FIR, Mixer, NCO,
SingleRateFIR, and Scale blocks. Also, an Interleaver subsystem extracts the
correct I and Q channel data from the demodulated data stream.

The FIR filters implement a decimating filter chain that down convert the two channels
from a frequency of 89.6 MSPS to a frequency of 11.2 MSPS (a total decimation rate
of eight). The real mixer, NCO, and Interleaver subsystem isolate the two channels.
The design configures the NCO with a single-channel to provide one sine and one
cosine wave at a frequency of 22.4 MHz. The NCO has the same sample rate (89.6
MSPS) as the input data sample rate.

A system clock rate of 179.2 MHz drives the design on the FPGA that the Device block
defines inside the DDCChip subsystem.

The model file is wimax_ddc_1rx.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.2. 2-Antenna WiMAX DDC

This reference design uses IP and Interface blocks to build a 4-channel, 2-antenna,
2-frequency modulation DDC for use in an IF modem design compatible with the
WiMAX standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
the design includes an Edit Params block to allow easy access to the setup variables
in the setup_wimax_ddc_2rx_iiqq.m script.

The DDCChip subsystem includes Device, Decimating FIR, Mixer, NCO,
SingleRateFIR, and Scale blocks.

The FIR filters implement a decimating filter chain that down convert the two channels
from a frequency of 89.6 MSPS to a frequency of 11.2 MSPS (a total decimation rate
of 8). The real mixer and NCO isolate the two channels. The design configures the
NCO with two channels to provide two sets of sine and cosine waves at the same
frequency of 22.4 MHz. The NCO has the same sample rate of (89.6 MSPS) as the
input data sample rate.

A system clock rate of 179.2 MHz drives the design on the FPGA, which the Device
block defines inside the DDCChip subsystem.

The model file is wimax_ddc_2rx_iiqq.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.3. 1-Antenna WiMAX DUC

This reference design uses IP, Interface, and Primitive library blocks to build a 2-
channel, 1-antenna, single-frequency modulation DUC for use in an IF modem design
compatible with the WiMAX standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
The design includes an Edit Params block to allow easy access to the setup variables
in the setup_wimax_duc_1tx.m script.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC2Channel subsystem which contains SingleRateFIR, Scale,
InterpolatingFIR, NCO, and ComplexMixer blocks. The deinterleaver subsystem
contains a series of Primitive blocks including delays and multiplexers that
deinterleave the two I and Q channels.

The FIR filters implement an interpolating filter chain that up converts the two
channels from a frequency of 11.2 MSPS to a frequency of 89.6 MSPS (a total
interpolating rate of 8). The complex mixer and NCO modulate the two input channel
baseband signals to the IF domain. The design configures the NCO with a single
channel to provide one sine and one cosine wave at a frequency of 22.4 MHz. The
NCO has the same sample rate (89.6 MSPS) as the input data sample rate.

A system clock rate of 179.2 MHz drives the design on the FPGA, which the Device
block defines inside the DUCChip subsystem.

The model file is wimax_duc_1tx.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.4. 2-Antenna WiMAX DUC

This reference design uses IP, Interface, and Primitivelibrary blocks to build a 4-
channel, 2-antenna, single-frequency modulation DUC for use in an IF modem design
compatible with the WiMAX standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
The design includes an Edit Params block to allow easy access to the setup variables
in the setup_wimax_duc_2tx_iiqq.m script.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC2Channel subsystem which contains SingleRateFIR, Scale,
InterpolatingFIR, NCO, ComplexMixer, and Const blocks. It also contains a Sync
subsystem, which shows how to manage two data streams coming together and
synchronizing. The design writes the data from the NCOs to a memory with the
channel index as an address. The data stream uses its channel signals to read out the
NCO signals, which resynchronizes the data correctly. (Alternatively, you can simply
delay the NCO value by the correct number of cycles to ensure that the NCO and
channel data arrive at the Mixer on the same cycle). The deinterleaver subsystem
contains a series of Primitive blocks including delays and multiplexers that de-
interleave the four I and Q channels.

The FIR filters implement an interpolating filter chain that up converts the two
channels from a frequency of 11.2 MSPS to a frequency of 89.6 MSPS (a total
interpolating rate of 8).

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A complex mixer and NCO modulate the two input channel baseband signals to the IF
domain. The design configures the NCO to provide two sets of sine and cosine waves
at a frequency of 22.4 MHz. The NCO has the same sample rate (89.6 MSPS) as the
input data sample rate.

The Sync subsystem shows how to manage two data streams coming together and
synchronizing. The design writes the data from the NCOs to a memory with the
channel as an address. The data stream uses its channel signals to read out the NCO
signals, which resynchronizes the data correctly.

A system clock rate of 179.2 MHz drives the design on the FPGA, which the Device
block defines inside the DUCChip subsystem.

The model file is wimax_duc_2tx_iiqq.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.5. 4-Carrier, 2-Antenna W-CDMA DDC

This reference design uses IP and Interface blocks to build a 16-channel, 2-antenna,
multiple-frequency modulation DDC for use in an IF modem design compatible with
the W-CDMA standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks,
plus a ChanView block that isolates two channels of data from the TDM signals.

The DDCChip subsystem includes Device, DecimatingCIC, Decimating FIR,
Mixer, NCO, and Scale blocks. It also contains a Sync subsystem which provides the
synchronization of the channel data to the NCO carrier waves.

The CIC and FIR filters implement a decimating filter chain that down converts the
eight complex carriers (16 real channels from two antennas with four pairs of I and Q
inputs from each antenna) from a frequency of 122.88 MSPS to a frequency of 7.68
MSPS (a total decimation rate of 16). The real mixer and NCO isolate the four
channels. The design configures the NCO with four channels to provide four pairs of
sine and cosine waves at frequencies of 12.5 MHz, 17.5 MHz, 22.5 MHz, and 27.5
MHz, respectively. The NCO has the same sample rate (122.88 MSPS) as the input
data sample rate.

The Sync subsystem shows how to manage two data streams that come together and
synchronize. The data from the NCOs writes to a memory with the channel as an
address. The data stream uses its channel signals to read out the NCO signals, which
resynchronizes the data correctly.

A system clock rate of 245.76 MHz drives the design on the FPGA, which the Device
block defines inside the DDCChip subsystem.

The model file is wcdma_multichannel_ddc_mixer.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.6. 1-Carrier, 2-Antenna W-CDMA DDC

This reference design uses IP and Interface blocks to build a 4-channel, 2-antenna,
single-frequency modulation DDC for use in an IF modem design compatible with the
W-CDMA standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks,
plus a ChanView block that isolates two channels of data from the TDM signals.

The DDCChip subsystem includes Device, DecimatingCIC, Decimating FIR,
Mixer, NCO, and Scale blocks.

The CIC and FIR filters implement a decimating filter chain that down converts the two
complex carriers (4 real channels from two antennas with one pair of I and Q inputs
from each antenna) from a frequency of 122.88 MSPS to a frequency of 7.68 MSPS (a
total decimation rate of 16). The real mixer and NCO isolate the four channels. The
design configures the NCO with a single channel to provide one sine and one cosine
wave at a frequency of 17.5 MHz. The NCO has the same sample rate (122.88 MSPS)
as the input data sample rate.

A system clock rate of 122.88 MHz drives the design on the FPGA, which the Device
block defines inside the DDCChip subsystem.

The model file is wcdma_picocell_ddc_mixer.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.7. 4-Carrier, 2-Antenna W-CDMA DUC

This reference design uses IP and Interface blocks to build a 16-channel, 2-antenna,
multiple-frequency modulation DUC for use in an IF modem design compatible with
the W-CDMA standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
A Spectrum Scope block computes and displays the periodogram of the outputs from
the two antennas.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC subsystem that contains InterpolatingFIR, InterpolatingCIC, NCO,
ComplexMixer, and Scale blocks.

The FIR and CIC filters implement an interpolating filter chain that up converts the 16-
channel input data from a frequency of 3.84 MSPS to a frequency of 122.88 MSPS (a
total interpolation factor of 32). The complex mixer and NCO modulate the four
channel baseband input signal onto the IF region. The design configures the NCO with
four channels to provide four pairs of sine and cosine waves at frequencies of 12.5
MHz, 17.5 MHz, 22.5 MHz, and 27.5 MHz, respectively. The NCO has the same sample
rate (122.88 MSPS) as the final interpolated output sample rate from the last CIC filter
in the interpolating filter chain.

The subsystem SyncMixSumSel uses Primitive blocks to implement the
synchronization, mixing, summation, scaling, and signal selection. This subsystem
separates each operation into further subsystems. The Sync subsystem shows how to
manage two data streams that come together and synchronize. The data from the
NCOs writes to a memory with the channel as an address. The data stream uses its
channel signals to read out the NCO signals, which resynchronizes the data correctly.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Sum and SampSelectr subsystems sum up the correct modulated signals to the
designated antenna.

A system clock rate of 245.76 MHz drives the design on the FPGA, which the Device
block defines inside the DUC subsystem.

The model file is wcdma_multichannel_duc_mixer.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.8. 4-Carrier, 4-Antenna DUC and DDC for LTE

These DUC and matching DDC designs connect to 4 antennas and can process 4
channels per antenna. With a sample rate of 61.44 MHz and a clock rate of 491.52
MHz, these designs represent up- and downconverters used in LTE.

DUC

The top-level design of the upconverter contains a TEST_BENCH block with signal
sources, the upconverter, and a SINKS block that stores the datastreams coming out
of the upconverter in MATLAB variables. Depending on which simulation you run, the
TEST_BENCH block uses either real LTE sample streams or specialized debugging
patterns. The upconverter consists of the LDUC module, the lower DUC, which
contains a channel filter and two interpolating filters, each interpolating by a factor of
2. The filtered sample stream feeds into the COMPLEX MIXER block, where a NCO
generates separate frequencies for each of the four channels, and multiplies the
generated sinewaves with the filtered sample stream. A delay match block ensures
that the sample stream and the generated frequencies align correctly. After the
COMPLEX MIXER block is an antenna summer block, which adds up the different
channels for each antenna, multiplies each with a different frequency, and outputs
them to the four separate antennas.

The model file is duc_4c4ant.mdl.

DDC

The top-level design of the DDC also contains a TESTBENCH block, which contains
source blocks that read from workspace. It uses the data that DSP Builder generates
during the simulation of the DUC. The SINKS block again traces the outputs of the
design in MATLAB variables, which you can analyze and manipulate in MATLAB. The
DDC consists of a complex mixer that matches the complex mixer of the DUC, and the
LDDC (Lower DownConverter), which contains two decimate-by-2 filters and a channel
filter.

The model file is ddc_4c4ant.mdl.

Simulation Scripts

The design, which is in the Examples\ReferenceDesigns\DDC4c4ant
\4C4T4R_echodemo\4C4T4R\Design directory, contains two separate parts:
duc_4c4ant.mdl contains the upconverter, and ddc_4c4ant.mdl contains the
downconverter. The directory also contains two scripts that allow you to run the
simulation of both designs: Both Run_DUC_DDC_demo.m and
Test_DUC_DDC_demo.m create test vectors, run the upconverter first, which

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

154

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

generates the input vectors for the downconverter, - then run the downconverter and
analyze the outputs. The designs contains no channel model, but you can add your
own channel model and apply it to the output data of the DUC before running the DDC
to simulate more realistic operating conditions. Run_DUC_DDC_demo.m uses typical
LTE waveforms; Test_DUC_DDC_demo.m works with ramps that help visualizing
which data goes into which channel and which antenna it transmits on. In the test
pattern, an impulse is set first, followed by a ramp on channel 1 on antenna 1. All
other channels and antenna are 0. The next section transmits channel 1 on antenna 1,
channel 2 on antenna 2 … channel 4 on antenna 4. The last section transmits all 4
channels on all 4 antennas, using the full capacity of the system. Use this debug
pattern, if you want to modify or extend the design. Run the scripts using the
echodemo command, to step through the script section by section, by typing
echodemo Run_DUC_DDC_demo.m at the MATLAB command prompt, and then
clicking Next several times to step through the simulation script. Alternatively, you
can run the entire script by typing Run_DUC_DDC_demo.m at the MATLAB command
prompt. The last step of the script calls up a plot function that generates input vs
output plots for each channel, with overlaid input and output plots. These plots should
match closely, displaying only a small quantization error. The script also produces
channel scopes, which show each channel’s data in time and frequency domains.

6.12.9. 1-Carrier, 2-Antenna W-CDMA DDC

This reference design uses IP and Interface blocks to build a 4-channel, 2-antenna,
single-frequency modulation DUC for an IF modem design compatible with the W-
CDMA standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
A Spectrum Scope block computes and displays the periodogram of the outputs from
the two antennas.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC subsystem that contains InterpolatingFIR, InterpolatingCIC, NCO,
ComplexMixer, and Scale blocks.

The FIR and CIC filters implement an interpolating filter chain that up convert the four
channel input data from a frequency of 3.84 MSPS to a frequency of 122.88 MSPS (a
total interpolation factor of 32). The complex mixer and NCO modulate the four
channel baseband input signal onto the IF region.

The design example configures the NCO with a single channel to provide one sine and
one cosine wave at a frequency of 17.5 MHz. The NCO has the same sample rate
(122.88 MSPS) as the final interpolated output sample rate from the last CIC filter in
the interpolating filter chain.

A system clock rate of 122.88 MHz drives the design on the FPGA, which the Device
block defines inside the DDC subsystem.

The model file is wcdma_picocell_duc_mixer.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.10. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz
with Total Rate Change 32

This reference design uses IP and Interface blocks to build a high-speed 16-channel,
2-antenna, multiple-frequency modulation DUC for use in an IF modem design
compatible with the W-CDMA standard.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
A Spectrum Scope block computes and displays the periodogram of the outputs from
the two antennas.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC subsystem that contains InterpolatingFIR, InterpolatingCIC, NCO,
ComplexMixer, and Scale blocks.

The FIR and CIC filters implement an interpolating filter chain that up converts the 16-
channel input data from a frequency of 3.84 MSPS to a frequency of 122.88 MSPS (a
total interpolation factor of 32). This design example uses dummy signals and carriers
to achieve the desired rate up conversion, because of the unusual FPGA clock
frequency and total rate change combination. The complex mixer and NCO modulate
the four channel baseband input signal onto the IF region. The design example
configures the NCO with four channels to provide four pairs of sine and cosine waves
at frequencies of 12.5 MHz, 17.5 MHz, 22.5 MHz and 27.5 MHz, respectively. The NCO
has the same sample rate (122.88 MSPS) as the final interpolated output sample rate
from the last CIC filter in the interpolating filter chain.

The Sync subsystem shows how to manage two data streams that come together and
synchronize. The data from the NCOs writes to a memory with the channel as an
address. The data stream uses its channel signals to read out the NCO signals, which
resynchronizes the data correctly.

The GenCarrier subsystem manipulates the NCO outputs to generate carrier signals
that can align with the datapath signals.

The CarrierSum and SignalSelector subsystems sum up the right modulated signals
to the designated antenna.

A system clock rate of 368.64 MHz, which is 96 times the input sample rate, drives the
design on the FPGA, which the Device block defines inside the DUC subsystem. The
higher clock rate can potentially allow resource re-use in other modules of a digital
system implemented on an FPGA.

The model file is mcducmix96x32R.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.11. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz
with Total Rate Change 48

This reference design uses IP and Interface blocks to build a high-speed 16-channel,
2-antenna, multiple-frequency modulation DUC for use in an IF modem design
compatible with the W-CDMA standard.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

156

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
A Spectrum Scope block computes and displays the periodogram of the outputs from
the two antennas.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC subsystem that contains InterpolatingFIR, InterpolatingCIC, NCO,
ComplexMixer, and Scale blocks.

The FIR and CIC filters implement an interpolating filter chain that up converts the 16-
channel input data from a frequency of 3.84 MSPS to a frequency of 184.32 MSPS (a
total interpolation factor of 48).

The complex mixer and NCO modulate the four channel baseband input signal onto
the IF region. The design configures the NCO with four channels to provide four pairs
of sine and cosine waves at frequencies of 12.5 MHz, 17.5 MHz, 22.5 MHz, and 27.5
MHz, respectively. The NCO has the same sample rate (184.32 MSPS) as the final
interpolated output sample rate from the last CIC filter in the interpolating filter chain.

The Sync subsystem shows how to manage two data streams that come together and
synchronize. The data from the NCOs writes to a memory with the channel as an
address. The data stream uses its channel signals to read out the NCO signals, which
resynchronizes the data correctly.

The CarrierSum and SignalSelector subsystems sum up the right modulated signals
to the designated antenna.

A system clock rate of 368.64 MHz, which is 96 times the input sample rate, drives the
design on the FPGA, which the Device block defines inside the DUC subsystem. The
higher clock rate can potentially allow resource re-use in other modules of a digital
system implemented on an FPGA.

The model file is mcducmix96x48R.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.12. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 307.2 MHz
with Total Rate Change 40

This reference design uses IP and Interface blocks to build a high-speed 16-channel,
2-antenna, multiple-frequency modulation DUC for use in an IF modem design
compatible with the W-CDMA standard

The top-level testbench includes Control, Signals, and Run Quartus Prime blocks.
A Spectrum Scope block computes and displays the periodogram of the outputs from
the two antennas.

The DUCChip subsystem includes a Device block to specify the target FPGA device,
and a DUC subsystem that contains InterpolatingFIR, InterpolatingCIC, NCO,
ComplexMixer, and Scale blocks.

The FIR and CIC filters implement an interpolating filter chain that up converts the 16-
channel input data from a frequency of 3.84 MSPS to a frequency of 153.6 MSPS (a
total interpolation factor of 40).

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The complex mixer and NCO modulate the four channel baseband input signal onto
the IF region. The design configures the NCO with four channels to provide four pairs
of sine and cosine waves at frequencies of 12.5 MHz, 17.5 MHz, 22.5 MHz, and 27.5
MHz, respectively. The NCO has the same sample rate (153.6 MSPS) as the final
interpolated output sample rate from the last CIC filter in the interpolating filter chain.

The Sync subsystem shows how to manage two data streams that come together and
Synchronize. The design writes data from the NCOs to a memory with the channel as
an address. The data stream uses its channel signals to read out the NCO signals,
which resynchronizes the data correctly.

The CarrierSum and SignalSelector subsystems sum up the right modulated signals
to the designated antenna.

A system clock rate of 307.2 MHz, which is 80 times the input sample rate, drives the
design on the FPGA, which the Device block defines inside the DUC subsystem. The
higher clock rate can potentially allow resource re-use in other modules of a digital
system implemented on an FPGA.

The model file is mcducmix80x40R.mdl.

Note: This reference design uses the Simulink Signal Processing Blockset.

6.12.13. Cholesky-based Matrix Inversion

Matrix inversion has many applications in wireless communications, e.g. digital
predistortion (DPD) for RF linearization and multiple-input multiple-output (MIMO)
detection. Matrix inversion algorithms typically require high-resolution numerics to
guarantee accuracy and numerical stability. The implementation is normally resource
demanding in particular if the matrix dimension grows. The DSP Builder Cholesky-
based Matrix Inversion reference design offers an efficient implementation of matrix
inversion for minimized resource utilization and improved latency and throughput. The
Cholesky decomposition technique inverts a positive-definite real or complex square
matrix. Cholesky decomposition-based matrix inversion is more efficient than direct
matrix inversion.

Figure 68. Matrix inversion based on Cholesky decomposition
The figure shows the three steps of implementing a Hermitian matrix inversion using Cholesky decomposition:

1. Cholesky decomposition

2. Triangular matrix inversion through forward substitution

3. Triangular matrix multiplication

Triangular
Matrix Inversion

Diagonal
Reciprocal

Values 1/Lkk

Cholesky
Decomposition

Input
Matrix (A)

Triangular
Matrix Mult

Lower
Triangle
Matrix J

A_inverse

The Cholesky decomposition calculates the reciprocal values of the diagonal elements
of L, 1

Lkk
which the triangular matrix inversion requires. The design propagates those

values to the output interface of the Cholesky decomposition reducing resource usage
and latency.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assuming matrix A is an NxN positive-definite square matrix, Cholesky decomposition
of A into lower and upper triangular matrices, L, and LH is given by:

A = LH

The inverse of Hermitian A, A-1 is:

A−1 = L−1 H ∙ L−1

The design performs Cholesky decomposition and calculates the inverse of L, J = L−1,
through forward substitution. J is a lower triangle matrix. The inverse of the input
matrix requires a triangular matrix multiplication, followed by a Hermitian matrix
multiplication:
A−1 = JH ∙ J

The Cholesky-based matrix inversion reference design comprises a Cholseky
decomposition design and a triangular matrix inversion design. Both designs are fully
pipelined, with multichannel input and output streaming to maximize throughput. The
size of dot-product engines in both designs are compile-time configurable according to
the size of the input matrices. The datapath and control logic are split.

Figure 69. Cholesky Decomposition Top-level Design
Input = Size* (size +1)* channel/2

Input
Memory

Scalar Product
and Subtract

Li, j

1/Li, j

18s17

18s17 (c)1/√
and

Multiplier
Operators

Top Datapath Bottom Datapath

Control Logic

Data
Mux

Vectorization
16s15(c)

Circular
Memory
and FIFO

Cholesky Decomposition

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. Triangular Matrix Inversion Top-level Design

Li,j

18s17(c)

Li,j

18s12(c)

1/Li,j

18s12

L Input
Memory

Inv Ljj

Input
Memory

Control Logic

Scale ScaleXX Σ
M

uxNegate

0 Cycles

5 Cycles1 Cycle3 Cycles

Write Back

Diagonal

5 Cycles7 Cycles

1 Cycle

4 Cycles

2 Cycles

Columns-1

Columns

Rows

Channels

Rows* Channels
Rows* Channels

Circular
Memory

Feedback
Write Controller

J Output
FIFO

Input
Write

Controller

Triangular Matrix Inversion
Colum

ns* Rows* Channels

This design supports single-precision floating-point Cholesky matrix inversion. DSP
Builder requires a single-precision floating-point input for the floating point inversion.

Matrix inversion takes multiple matrices and interleaves the inverse computations for
all matrices. This method hides the latency in computing each element by pipelining
inversion of a completely different channel. Multichannel designs use the idle cycles in
the computation chain to process the next channel. Two buffers at the input and
output of the design create channels for streaming matrices into multichannel
interfaces.

Table 19. Top-level matrix inversion input and output ports
The input and output interfaces follow Avalon™ streaming (Avalon-ST) standard.

Signal Direction Type Width Description

Sink_Valid Input Boolean 1 Avalon streaming sink valid signal for the input matrix
interface. Number of valid input = (matrix size*(matrix size
+ 1))/2

Sink_Channel Input unsigned integer 8 Avalon streaming sink channel bus for the input matrix
interface.

Sink_Data Input Single floating-
point complex

64 bit I/Q Avalon streaming sink data bus for the input matrix
interface. Lower matrix elements are streamed in column
major order.

Source_Valid Output Boolean 1 Avalon streaming source valid signal for output interface.
This signal is asserted for (size*(size+1))/2 clocks

Source_Channel Output unsigned integer 8 Avalon streaming source channel bus for output interface.

Source_Data Output Single floating-
point complex

64 bit I/Q Avalon streaming source data bus for output interface.
Lower matrix elements are streamed in column major
order.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameters

Table 20. Parameters of the matrix inversion design
The parameters are compile-time configurable using the setup file. .

Parameter Description

Size of Matrix The size of matrix to invert.

Channels Number of matrices inverted in a burst. Minimum of 16 channel.

Latency The period in cycles the module waits before receiving the next set of matrices.

DSP Builder calculates the throughput of the design by setting the latency value and
the system clock:

Throughput (matrix inversion per second) = System clock/Latency

Although elements of input matrices arrive in streaming format, the internal
channelizer vectorizes the input matrices into several channels (the default is 16). This
vectorization significantly improves the throughput.

Figure 71. Input streaming interface for 8x8 Hermitian input matrix

The figure shows the latency configuration parameter in the input interface including data, valid, and channel
signals. In this example of 8x8 matrix inversion, the valid signal remains high for 36 clock cycles (total number
of lower triangle elements of the Hermitian matrix of 8x8) and remains low for (latency – 36) cycles before
inserting the next matrix elements. The minimum duration to remain low and hence the minimum latency
period may vary depending on the matrix size and the pipelining required to meet timing constraints.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 21. Recommended Values for the Minimum Latency (maximum throughput)
In Intel Stratix 10 and Intel Arria 10 devices, speed grade –1 and –2, for three different matrix sizes.

Matrix Dimension Latency in clock cycles

Intel Arria 10 Devices Intel Stratix 10 Devices

4x4 ≥ 30 ≥ 30

8x8 ≥ 75 ≥ 74

16x16 ≥ 230 ≥ 220

Performance and Resource Usage

Table 22. Floating-point implementation resource utilization targeting GX/SX/TX 280
FPGA
The table shows the resource count of the floating-point Cholesky-based matrix inversion design including the
channelizing input and output buffers.

Matrix Dimension Number of channels Logic Elements (ALMs) DSP Blocks Memory bits RAM blocks Registers

4x4 16 8,236 55 548,448 55 22,066

8x8 16 16,665 103 2,001,664 194 45,463

16x16 16 35,025 199 7,085,088 521 95,079

Table 23. Performance of the floating-point matrix inversion module for different
matrix dimensions
This table shows the fMAX performance of the floating-point design for different matrix sizes with a system clock
of 368.64 MHz and targeting a FPGA device. The maximum throughput is in millions of matrix inversions per
second.

Matrix Dimension Number of channels Target System clock (MHz) fMAX (MHz) ThroughputMAX

4x4 16 368.64 468.06 12.2

8x8 16 368.64 403.88 5.0

16x16 16 368.64 392.77 1.67

6.12.14. Cholesky Solver Single Channel

The Cholesky Solver Single Channel reference design performs Cholesky
decomposition to solve column vector x in Ax = b

A is a Hermitian, positive definite matrix (for example covariance matrix) and
b is a column vector.

The design uses forward and backward substitution to solve x.

The design decomposes A into L*L', therefore L*L'*x = b, or L*y = b, where y = L'*x.
The design solves y with forward substitution and x with backward substitution.

The design calculates the diagonal element of the matrix first before proceeding to
subsequent rows to hide the processing latency of the inverse square root function as
much as possible. Performance of multiple banks operations with vector size of about
30 may increase up to 6%. Expect no performance gain when the vector size is the
same as the matrix size.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To input the lower triangular elements of matrix A and b with the input bus, specify
the column, row, and channel index of each element. The design transposes and
appends the column vector b to the bottom of A and treats it as an extension of A in
terms of column and row addressing.

The output is column vector x with the bottom element output first.

A multiple channel design uses different techniques to enhance performance.

The single-channel model file is cholseky_solver_sc.mdl; the multiple-channel
model file is cholseky_solver_mc.mdl.

6.12.15. Cholesky Solver Multiple Channels

The Cholesky Solver Multiple Channels reference design performs Cholesky
decomposition to solve column vector x in Ax = b

A is a Hermitian, positive definite matrix (for example covariance matrix) and
b is a column vector.

The design uses forward and backward substitution to solve x.

The design decomposes A into L*L', therefore L*L'*x = b, or L*y = b, where y = L'*x.
The design solves y with forward substitution and x with backward substitution.

This design uses cycle stealing and command FIFO techniques to enhance
performance. Although it targets multiple channels, it also works well with single
channels.

To input the lower triangular elements of matrix A and b with the input bus, specify
the column, row, and channel index of each element. The design transposes and
appends the column vector b to the bottom of A and treats it as an extension of A in
terms of column and row addressing.

The output is column vector x with the bottom element output first.

A multiple channel design optimizes performance by prioritizing diagonal element
calculation over non-diagonal ones.

The single-channel model file is cholseky_solver_sc.mdl; the multiple-channel
model file is cholseky_solver_mc.mdl.

6.12.16. Crest Factor Reduction

This reference design implements crest factor reduction, based on the peak cancelling
algorithm.

For further information refer to the web page.

You can change the simulation length by clicking on the Simulink Length block.

The model file is demo_cfr.mdl.

Related Information

Crest factor reduction for wireless systems

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

163

http://www.altera.com/end-markets/wireless/advanced-dsp/cfr/wir-cfr.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.12.17. Direct RF with Synthesizable Testbench

This very large reference design implements a digital upconversion to RF and digital
predistortion, with a testbench that you can synthesize to hardware for easier on-chip
testing.

The model file is DirectRFTest_and_DPD_SV.mdl.

6.12.18. Dynamic Decimating FIR Filter

The dynamic decimating FIR reference design offers multichannel run-time decimation
ratios in integer power of 2 and run-time control of channel count (in trading with
bandwidth).The design supports dynamic channel count to signal bandwidth trade off
(if you halve the channel count, the input sample rate doubles).

The FIR filter length is 2 x (Dmax / Dmin) x N + 1 where Dmax and Dmin are the
maximum and minimum decimation ratios and N is the number of (1 sided) symmetric
coefficients at Dmin.

All channels must have the same decimation ratio. The product of the number of
channels and the minimum decimation ratio must be 4 or more. The design limits the
wire count to 1 and:

number of channels x sample rate = clock rate.

The model file is demo_dyndeci.mdl

6.12.19. Multichannel QR Decompostion

This reference design is a complete linear equations system solution that uses QR
decomposition.

To optimize the overall throughput the solver can interleave multiple data instances at
the same time. The inputs of the design are system matrices A [n × m] and input
vectors.

The reference design uses the Gram-Schmidt method to decompose system matrix A
to Q and R matrices. It calculates the solution of the system by completing backward
substitution.

The reference design is fully parametrizable: system dimensions n and m, the
processing vector size, which defines the parallelization ratio of the dot product
engine, and the number of channels that the design processes in parallel. This design
uses single-precision Multiply and Add blocks that perform most of the floating-point
calculations to implement a parallel dot product engine. The design uses a processor,
which executes a fixed set of micro-instructions and generates operation indexes, to
route different phases of the calculation through these blocks. The design uses for-
loop macro blocks, which allow very efficient, flexible, and high-level implementation
of iterative operations, to implement the processor.

The model file is demo_mcqrd.mdl.

6.12.20. QR Decompostion

This reference design is a complete linear equations system solution that uses QR
decomposition.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The input of the design is a system matrix A [n × m] and input vector.

The reference design uses the Gram-Schmidt method to decompose system matrix A
to Q and R matrices, and calculates the solution of the system by completing
backward substitution.

The reference design is fully parametrizable—system dimensions n and m, and the
processing vector size, which defines the parallelization ratio of the dot product
engine. This design uses single-precision Multiply and Add blocks that perform most
of the floating-point calculations to implement a parallel dot product engine. The
design uses a processor, which executes a fixed set of microinstructions and generates
operation indexes, to route different phases of the calculation through these blocks.
The design uses for-loop macro blocks, which allow very efficient, flexible and high-
level implementation of iterative operations, to implement the processor.

This design uses the Run All Testbenches block to access enhanced features of the
automatically-generated testbench. An application-specific m-function verifies the
simulation output, to correctly handle the complex results and the numerical
approximation because of the floating-point format.

The model file is demo_qrd.mdl.

6.12.21. QRD Solver

The QRD Solver reference design is a complete linear equations system solution using
QR decomposition. The input of the design is a system matrix A [n x m] and input
vector [b].

Figure 72. QRD Solver
The design decomposes the system matrix A to Q and R matrices using the Gram-Schmidt method. The design
calculates the solution of the system by completing backward substitution.

[A]

[x]

[R]

[Q] Backward
Substitution

QR
Decomposition

Q x b

[b=Ax]

[b]

The reference design is fully parameterizable over system dimensions n and m and the
processing vector size, which defines the parallelization ratio of the dot product
engine. This design implements parallel dot product engine using single-precision
Multiply and Add blocks that perform most of the floating-point calculations. The
design routes different phases of the calculation through these blocks with a
controlling processor that executes a fixed set of microinstructions and generates
operation indexes. The design implements the controlling processor using for-loop
macro blocks, which allow very efficient, flexible, and high-level implementation of
iterative operations.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This design uses the Run All Testbenches block to access enhanced features of the
automatically generated testbench. An application-specific m-function verifies the
simulation output, to correctly handle the complex results and the numerical
approximation because of the floating-point format. Intel optimized the design for
Intel Stratix 10 FPGAs. The design implements hardened floating-point operators in
the FPGA DSP blocks.

Table 24. Performance

Intel tested the design with Intel Quartus Prime v18.1.1 build 259, targeting a 1SG280LN3F43E2VG device

Matrix Size Parallel
Processing
Vector Size

fMAX
(MHz)

Resources Throughput Latency

ALM DSPs M20K Cycles Matrices/s Cycles ms

512x256 512 320 461K
(49%)

4,370
(76%)

1,313
(11%)

71,232 4,492 137,545 0.43

64x64 64 418 60.5 (6%) 562 (10%) 160 (1%) 7,920 52,777 12,392 0.03

The model file is demo_qrd_s10.mdl.

6.12.22. Reconfigurable Decimation Filter

The reconfigurable decimation filter reference design uses primitive blocks to build a
variable integer rate decimation FIR filter.

The reference design has the following features:

• Supports arbitrary integer decimation rate (including the cases without rate
change), arbitrary number of channels and arbitrary clock rate and input sample
rate, if the clock rate is high enough to process all channels in a single data path
(i.e. no hardware duplication).

• Supports run-time reconfiguration of decimation rate.

• Uses two memory banks for filter coefficients storage instead of prestoring
coefficients for all rates in memory. Updates one memory bank while the design is
reading coefficients from the other bank.

• Implements real time control of scaling in the FIR datapath.

You can modify the parameters in the setup_vardownsampler.m file, which you
access from the Edit Params icon.

The model file is vardownsampler.mdl.

6.12.23. Single-Channel 10-MHz LTE Transmitter

This reference design uses IP, Primitive, and blocks from the FFT Blockset library to
build a single-channel 10-MHz LTE transmitter.

The top-level testbench includes blocks to access control and signals, and to run the
Quartus Prime software. It also includes an Edit Params block to allow easy access to
the configuration variables in the setup_sc_LTEtxr.m script. A discrete-time scatter
plot scope displays the constellation of the modulated signal in inphase versus
quadrature components.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The LTE_txr subsystem includes a Device block to specify the target FPGA device,
and 64QAM, 1K_IFFT, ScaleRnd, CP_bReverse, Chg_Data_Format, and DUC
blocks.

The 64QAM subsystem uses a lookup table to convert the source input data into 64
QAM symbol mapped data. The 1K_IFFT subsystem converts the frequency domain
quadrature amplitude modulation (QAM) modulated symbols to the time domain. The
ScaleRnd subsystem follows the conversion, which scales down the output signals
and converts them to the specified fixed-point type.

The bit CP_bReverse subsystem adds extended cycle prefix (CP) or guard interval
for each orthogonal frequency-domain multiplexing (OFDM) symbol to avoid
intersymbol interference (ISI) that causes multipaths. The CP_bReverse block
reorders the output bits of IFFT subsystems, which are in bit-reversed order, so that
they are in the correct order in the time domain. The design adds the cyclic prefix bit
by copying the last 25% of the data frame, then appends to the beginning of it.

The Chg_Data_Format subsystem changes the output data format of CP_bReverse
subsystem to match the working protocol format of DUC subsystem.

The DUC subsystem uses an interpolating filter chain to achieve an interpolation
factor of 16, such that the design interpolates the 15.36 Msps input channel to 245.76
Msps. In this design, an interpolating finite impulse response (FIR) filter interpolates
by 2, followed by a cascaded integrator-comb (CIC) filter with an interpolation rate of
8. An NCO generates orthogonal sinusoids at specified carrier frequency. The design
mixes the signals with complex input data with a ComplexMixer block. The final SINC
compensation filter compensates for the digital analog converter (DAC) frequency
response roll-off.

A system clock rate of 245.76 MHz drives the design on the FPGA. The Signals block
of the design defines this clock. The input random data for the 64QAM symbol
mapping subsystem has a data rate of 15.36 Msps.

The model file is sc_LTEtxr.mdl.

6.12.24. STAP Radar Forward and Backward Substitution

The QR decomposition reference design produces an upper triangular matrix and a
lower triangular matrix.

The design applies this linear system of equations to the steering vector in the
following two steps:

• Forward substitution with the lower triangular matrix

• Backward substitution with the lower triangular matrix

A command pipeline controls the routing of floating-point vectors. Nested ForLoop
blocks generate these commands. Another FIFO unit queues the commands. This
decoupled system of FIFO buffers maximizes the usage of the shared vector floating-
point block while automatically throttling the rate of the ForLoop system.

This design uses advanced settings from the DSP Builder > Verify Design menu to
access enhanced features of the automatically generated testbench. An application
specific m-function verifies the simulation output, to correctly compare complex
results and properly handle floating-point errors that arise from the ill-conditioning of
the QRD output.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The model file is STAP_ForwardAndBackwardSubstitution.mdl.

6.12.25. STAP Radar Steering Generation

The STAP radar steering generation reference design uses ForLoop blocks and
floating-point primitives to generate the steering vector. You input the angle of arrival
and Doppler frequency.

The model file is STAP_steeringGen.mdl.

6.12.26. STAP Radar QR Decomposition 192x204

The QR decomposition reference design implements a sequence of floating-point
vector operations.

Single-precision Multiply and Add blocks perform most of the floating-point
calculations. The design routes different phases of the calculation through these blocks
with a controlling processor that executes a fixed set of microinstructions. FIFO units
ensure this architecture maximizes the usage of the Multiply and Add blocks.

This design uses the Run All Testbenches block to access enhanced features of the
automatically generated testbench. An application specific m-function verifies the
simulation output, to correctly handle the complex results and the numerical
approximation due to the floating-point format.

The model file is STAP_qrd192x204.mdl. The parallel version model file is
STAP_qrd192x204_p.mdl.

6.12.27. Time Delay Beamformer

The time delay beamformer reference design implements a time-delay beamformer
that has many advantages over traditional phase-shifted beamformer. It uses a (full-
band) Nyquist filter and Farrow-like structure for optimal performance and resource
usages.

The design includes the following features so you can simulate and verify the transmit
and receive beamforming operations:

• Waveform (chirp) generation

• Target emulation

• Receiver noise emulation

• Aperture tapering

• Pulse compression

6.12.28. Transmit and Receive Modem

The transmit and receive modem design contains a QAM transmitter, a synthesizeable
channel model and a receiver, working at sample rates that match or exceed the clock
rate. The design works at different sample rates, and can provide up to 16 parallel
data streams between transmitter and receiver.

The transmitter can produce random data, which is useful for generating a hardware
demo, or you can feed it with data from the MATLAB environment. You can modulate
the data, where the modulation order can be QAM4 or QAM64. The design filters the

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

signal, and then feeds it into optional crest factor reduction (CFR) and digital
predistortion (DPD) blocks. Intel assumes you have a control processor that configures
modulation scheme and CFR and DPD parameters.

The channel model contains a random noise source, and a channel model, which you
can configure through the setup script. This channel model allows you to build a
hardware demonstrator on a standard FPGA development platform, without DA or AD
converters and analogue components. Following the channel model is the model of a
decimating ADC, which emulates the behavior of some existing ADC components that
provide this functionality.

The receiver contains an RRC filter, followed by an equalizer. Intel assumes that a
control processor calculates the equalizer coefficients. The equalizer feeds into an AGC
block, which feeds into a demapper. You can configure the demapper to different
modulation orders.

The model file is tx_ch_rx.mdl

6.12.29. Variable Integer Rate Decimation Filter

The variable integer rate decimation filter reference design iimplements a 16-channel
interpolate-by-2 symmetrical 49-tap FIR filter. The target system clock frequency is
320 MHz.

You can modify the parameters in the setup_vardecimator_rt.m file, which you
access from the Edit Params icon.

The model file is vardecimator_rt.mdl.

6.13. DSP Builder Waveform Synthesis Design Examples

This folder contains design examples that synthesize waveforms with a NCO or direct
digital synthesis (DDS).

1. Complex Mixer on page 169

2. Four Channel, Two Banks NCO on page 170

3. Four Channel, Four Banks NCO on page 171

4. Four Channel, Eight Banks, Two Wires NCO on page 172

5. Four Channel, 16 Banks NCO on page 172

6. IP on page 173

7. NCO on page 173

8. NCO with Exposed Bus on page 173

9. Real Mixer on page 174

10. Super-sample NCO on page 174

6.13.1. Complex Mixer

This design example shows how to mix complex signals.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_complex_mixer.m script.

The FilterSystem subsystem includes the Device and ComplexMixer blocks.

The model file is demo_complex_mixer.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.2. Four Channel, Two Banks NCO

This design example implements an NCO with four channels and two banks.

This design example demonstrates frequency-hopping with the NCO block to generate
four channels of sinusoidal waves that you can switch from one set (bank) of
frequencies to another.

The phase increment values are set directly into the NCO Parameter dialog box as a
2 (rows) × 4 (columns) matrix. The input for the bank index is set up so that it
alternates between the two predefined banks with each one lasting 2000 steps.

A BusStimulus block sets up an Avalon-MM interface that writes into the phase
increment memory registers. It shows how you can use the Avalon-MM interface to
dynamically change the frequencies of the NCO-generated sinusoidal signals at run
time. This design example uses a 16-bit memory interface (as the Control block
specifies) and a 24-bit the accumulator in the NCO block. The design example
requires two registers for each phase increment value. With the base address of the
phase increment memory map set to 1000 in this design example, the addresses
[1000 1001 1002 1003 1012 1013 1014 1015] write to the phase increment memory
registers of channels 1 and 2 in bank 1, and to the registers of channels 3 and 4 in
bank 2. The write data is also made up of two parts with each part writing to one of
the registers feeding the selected phase increment accumulators.

This design example has two banks of frequencies with each bank processes 2,000
steps before switching to the other. You should write a new value into the phase
increment memory register for each bank to change the NCO output frequencies after
8,000 steps during simulation. To avoid writing new values to the active bank, the
design example configures the write enable signals in the following way:

[zeros(1,7000) 1 1 1 1 zeros(1,2000) 1 1 1 1 zeros(1,8000)]

This configuration ensures that a new phase increment value for bank 0 is written at
7000 steps when the NCO is processing bank 1; and a new phase increment value for
bank 1 is written at 9000 steps when the NCO is processing bank 0.

Four writes for each bank exist to write new values for channel 1 and 2 into bank 0,
and new values for channel 3 and 4 into bank 1. Each new phase value needs two
registers due to the size of the memory interface.

The Spectrum Scope block shows three peaks for a selected channel with the first
two peaks representing the two banks and the third peak showing the frequency that
you specify through the memory interface. The scope of the select channel shows the
sinusoidal waves of the channel you select. You can zoom in to see the smooth and

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

continuous sinusoidal signals at the switching point. You can also see the frequency
changes after 8000 steps where the phase increment value alters through the memory
interface.

The top-level testbench includes Control, Signals, BusStimulus, Run ModelSim,
and Run Quartus Prime blocks, plus ChanView blocks that deserialize the output
buses. An Edit Params block allows easy access to the setup variables in the
setup_demo_mc_nco_2banks_mem_interface.m script.

The NCOSubSystem subsystem includes the Device and NCO blocks.

The model file is demo_mc_nco_2banks_mem_interface.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.3. Four Channel, Four Banks NCO

This design example implements a NCO with four channels and four banks.

This design example is similar to the Four Channel, Two Banks NCO design, but it has
four banks of frequencies defined for the phase increment values. Each spectrum plot
has five peaks: the fifth peak shows the changes the design example writes through
the memory interface.

The design example uses a 32-bit memory interface with a 24-bit accumulator. Hence,
the design example requires only one phase increment memory register for each
phase increment value—refer to the address and data setup on the BusStimulus
block inside this design example.

This design example has four banks of frequencies with each bank processed for 2,000
steps before switching to the other. You should write a new value into the phase
increment memory register for each bank to change the NCO output frequencies after
16,000 steps during simulation. To avoid writing new values to the active bank, the
design example configures the write enable signals in the following way:

[zeros(1,15000) 1 zeros(1,2000) 1 zeros(1,2000) 1 zeros(1,2000) 1 zeros(1,8000)]

This configuration ensures that a new phase increment value for bank 0 is written at
15000 steps when the NCO is processing bank 3; a new phase increment value for
bank 1 is written at 17000 steps when the NCO is processing bank 0; a new phase
increment value for bank 2 is written at 19000 steps when the NCO is processing
bank 1; and a new phase increment value for bank 3 is written at 21000 steps when
the NCO is processing bank 2.

There is one write for each bank to write a new value for channel 1 into bank 0; a new
value for channel 2 into bank 1; a new value for channel 3 into bank 2; and a new
value for channel 4 into bank 3. Each new phase value needs only one register due to
the size of the memory interface.

The top-level testbench includes Control, Signals, BusStimulus, Run ModelSim,
and Run Quartus Prime blocks, plus ChanView blocks that deserialize the output
buses. An Edit Params block allows easy access to the setup variables in the
setup_demo_mc_nco_4banks_mem_interface.m script.

The NCOSubSystem subsystem includes the Device and NCO blocks.

The model file is demo_mc_nco_4banks_mem_interface.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.4. Four Channel, Eight Banks, Two Wires NCO

This design example implements a NCO with four channels and eight banks.

This design example is similar to the Four Channel, 16 Banks NCO design, but has
only eight banks of phase increment values (specified in the setup script for the
workspace variable) feeding into the NCO. Furthermore, the sample time for the NCO
requires two wires to output the four channels of the sinusoidal signals. Two wires
exist for the NCO output, each wire only contains two channels. Hence, the channel
indicator is from 0 .. 3 to 0 .. 1.

You can inspect the eight peaks on the spectrum graph for each channel and see the
smooth continuous sinusoidal waves on the scope display.

This design example uses an additional subsystem (Select_bank_out) to extract the
NCO-generated sinusoidal signal of a selected bank on a channel.

The design example outputs the data to the workspace and plots through with the
separate demo_mc_nco_extracted_waves.mdl, which demonstrates that the
output of the bank you select does represent a genuine sinusoidal wave. However,
from the scope display, you can see that the sinusoidal wave is no longer smooth at
the switching point, because the design example uses the different values of phase
increment values between the selected banks. You can only run the
demo_mc_nco_extracted_waves.mdl model after you run
demo_mc_nco_8banks_2wires.mdl.

The top-level testbench includes Control, Signals, BusStimulus, Run ModelSim,
and Run Quartus Prime blocks, plus ChanView blocks that deserialize the output
buses. An Edit Params block allows easy access to the setup variables in the
setup_demo_mc_nco_8banks_2wires.m script.

The NCOSubSystem subsystem includes the Device and NCO blocks.

The Select_bank_out subsystem contains Const, CompareEquality, and AND
Gate blocks.

The model file is demo_mc_nco_8banks_2wires.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.5. Four Channel, 16 Banks NCO

This design example implements a NCO with four channels and 16 banks. This design
example demonstrates frequency-hopping with the NCO block to generate 4 channels
of sinusoidal waves, which you can switch from one set (bank) of frequencies to
another in the 16 predefined frequency sets.

A workspace variable phaseIncr defines the 16 (rows) × 4 (columns) matrix for the
phase increment input with the phase increment values that the setup script
calculates.

The input for the bank index is set up so that it cycles from 0 to 15 with each bank
lasting 1200 steps.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The spectrum display shows clearly 16 peaks for the selected channel indicating that
the design example generates 16 different frequencies for that channel. The scope of
the selected channel shows the sinusoidal waves of the selected channel. You can
zoom in to see that the design example generates smooth and continuous sinusoidal
signals at the switching point.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView blocks that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_mc_nco_16banks.m script.

The NCOSubSystem subsystem includes the Device and NCO blocks.

The model file is demo_mc_nco_16banks.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.6. IP

The IP design example describes how you can build a NCO design with the NCO block
from the Waveform Synthesis library.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.7. NCO

This design example uses the NCO block from the Waveform Synthesis library to
implement an NCO. A Simulink double precision sine or cosine wave compares the
results.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView blocks that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_nco.m script.

The NCOSubSystem subsystem includes the Device and NCO blocks.

The model file is demo_nco.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

Related Information

NCO on page 245

6.13.8. NCO with Exposed Bus

This design example is a multichannel NCO that outputs four waveforms with slightly
different frequencies. Halfway through the simulation, DSP Builder reconfigures the
NCO for smaller increments, which gives a waveform with a longer period.

The model file is demo_nco_exposed_bus.mdl.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.13.9. Real Mixer

This design example shows how to mix non-complex signals.

The top-level testbench includes Control, Signals, Run ModelSim, and Run
Quartus Prime blocks, plus ChanView block that deserialize the output buses. An
Edit Params block allows easy access to the setup variables in the
setup_demo_mix.m script.

The MixerSystem subsystem includes the Device and Mixer blocks.

The model file is demo_mix.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6.13.10. Super-sample NCO

This design example uses the NCO block from the Waveform Synthesis library to
implement a super-sample NCO. The design demonstrates run-time reconfiguring of
the frequency using a register bus.

A super-sample NCO uses multiple NCOs that each have an initial phase offset. When
you combine the parallel outputs into a serial stream, they can describe frequencies N
times the Nyquist frequency of a single NCO. Where N is the total number of NCOs
that the design uses.

The NCO block produces four outputs, which all have the same phase increment but
each have a different, evenly distributed initial phase offset. With the four parallel
outputs in series they describe frequencies up to four times higher than the Nyquist
frequency of an individual NCO.

To change the frequency of the super-sample NCO using the bus, write a new phase
increment and offset to each of the four constituent NCOs and then strobe the
synchronization register. The NCO block includes the phase increment register; a
separate primitive subsystem implements the phase offset and synchronization
registers.

The setup_demo_nco_super_sample scripts allows you to configure the clock rate,
number of NCOs, NCO accumulator size, and many other parameters. This script
calculates the required phase increment and offsets required to sweep the super-
sample NCO through five frequencies. The script defines the memory map and creates
the bus stimulus.

DSP Builder writes the output of the super-sample NCO into a MATLAB workspace
variable and compares it with a MATLAB-generated waveform in the script
test_demo_nco_super_sample.

DSP Builder schedules the bus in HDL but not in Simulink, so bus writes occur at
different clock cycles. Therefore, the function verify_demo_nco_super_sample
function verifies the design, which checks that the Simulink and ModelSim frequency
distributions match within a tolerance.

The output of the Spectrum Analyser block show the simulation initializes to the last
frequency in dspb_super_nco.frequencies and then rotates through the list.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The model file is demo_nco_super_sample.mdl.

Note: This design example uses the Simulink Signal Processing Blockset.

6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. DSP Builder Design Rules, Design Recommendations,
and Troubleshooting

1. DSP Builder Design Rules and Recommendations on page 176

2. Troubleshooting DSP Builder Designs on page 178

7.1. DSP Builder Design Rules and Recommendations

Use the design rules and recommendations to ensure your design performs correctly.

Design Rules for the Top-Level Design

• Ensure the top-level design has a Control block and a Signals block.

• Ensure the synthesizable part of your design is a subsystem or contained within a
subsystem of the top-level design.

• Ensure testbench stimulus data types that feed into the synthesizable design are
correct, as DSP Builder propagates them.

• Ensure you place Interface ➤ ExternalMemory and AvalonMMSlaveSettings
blocks only in the top-level design

Design Rules for the Synthesized Top-Level Design

• Ensure your synthesized hardware top-level subsystem has a Device block.

• Ensure you place some non-synthesizable blocks (from the Interface ➤
MemoryMapped ➤ Stimulus and Utillities ➤ Testbench libraries outside the
synthesized system.

Design Rules for the Primitive Top-Level Design

• Ensure the primitive top-level subsystem contain a SynthesisInfo block with
style set to Scheduled.

• Ensure the Primitive subsystems do not contain IP blocks.

• Only use primitive blocks in primitive subsystems and delimit them by primitive
boundary blocks.

• If using ALU folding, ensure the ALU Folding block is in the primitive top-level
subsystem.

• Route all subsystem inputs with associated valid and channel signals that are
to be scheduled together through the same ChannelIn blocks immediately
following the subsystem inputs. Route any other subsystem inputs through GPIn
blocks.

• Route all subsystem outputs with associated valid and channel signals that are
to be scheduled together through the same ChannelOut blocks immediately
before the subsystem outputs. Route any other subsystem outputs through
GPOut blocks.

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Ensure all primitive subsystem input boundary blocks (GPIn or ChannelIn) or
output boundary blocks (GPOut or ChannelOut) are in primitive top-level
subsystem.

Note: Also Avalon-MM interface blocks can be subsystem schedule boundaries

• Ensure the valid signal is a scalar Boolean signal or ufix(1).

• Ensure the channel signal is a scalar uint(8)

Design Rules for Avalon-MM Interface Blocks

• Place shared memory blocks inside primitive scheduled subsystem.

• Ensure the RegField and RegBit blocks output type width exactly match the
range you specify for these blocks through MSB and LSB parameters.

• Ensure the specified ranges through MSB and LSB parameters fit within Avalon-
MM word width set from Avalon Interfaces ➤ Avalon-MM Slave Settings.

• Ensure different instances of register blocks (RegBit, RegField, or RegOut) that
map to the same Avalon-MM address specify disjoint ranges.

• For shared memory blocks, ensure output data width matches or is twice the size
of Avalon-MM data width set from Avalon Interfaces ➤ Avalon-MM Slave
Settings.

• Locate the BusStimulus and BusStimulusFileReader blocks in the testbench,
which is outside the synthesizable system.

Recommendations for your Top-Level Design

• Create a Simulink project for your model file, libraries, and scripts.

• Use workspace variables to set parameters, which allows you to globally organize
and change them.

• Use set-up scripts to set the workspace variables and clear-up scripts to clear
them from the workspace afterwards.

• Run set-up, analysis, and clear-up scripts automatically by adding them to the
model callbacks.

• Build a testbench that is parameterizable with system parameters such as sample
rate, clock rate, and number of channels. Use the Channelizer block to create
data in the valid-channel-data protocol.

• Hierarchically structure your design into subsystems. A modular design with well-
defined subsystem boundaries allows you to precisely manage latency and speed
of different modules and achieve timing closure.

• Save repeated subsystems as library blocks. Replace the design blocks with copies
from the library.

• Make library blocks configurable and self-modifying.

• Create and use your own libraries of reusable components. Organize them into
separate library files.

• Use configurable subsystem blocks in libraries to switch implementations in place.

7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

177

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Build separate testbenches for library blocks

• Keep block and subsystem names short, but descriptive. Do not use names with
special characters, slashes, or that begin with numbers.

• Use vectors to build parameterizable designs. DSP Builder does not need to redraw
them when parameters such as the number of channels change. A design that
uses a vector input of width N is the same as connecting N copies of the block with
a single scalar connection to each.

Recommendations for Loops in Primitive Subsystems

• Ensure sufficient sample delays (SampleDelay blocks) exist around loops to allow
for pipelining

• To determine the minimum loop latency, turn on Minimum Delay on the
SampleDelay block

• Simulink performs data type, complexity, and vector width propagation.
Sometimes Simulink does not successfully resolve propagation around loops,
particularly multiple nested loops.

• If Simulink is unsuccessful, look for where data types are not annotated.

• You may have to explicitly set data types. Simulink provides a library of blocks to
help in such situations, which duplicate data types. For example, the data type
prop duplicate block, fixpt_dtprop, (type open fixpt_dtprop from the
MATLAB command prompt), which the control library latches use.

• Avoid primitive subsystems with logic that clocked inputs do not drive, because
either reset behavior determines hardware behavior or the hardware is inefficient.

• Avoid examples that start from reset, as the design simulation in Simulink may
not match that of the generated hardware. You should start a counter from the
valid signal, rather than the constant. If the counter repeats without stopping after
the first valid, add a zero-latency latch into this connection.

• Avoid loops that DSP Builder drives without clocked inputs.

Related Information

• Control on page 221

• Avalon-MM Slave Settings (AvalonMMSlaveSettings) on page 219

• External Memory, Memory Read, Memory Write on page 264

• Channel In (ChannelIn) on page 344

• Channel Out (ChannelOut) on page 345

• Synthesis Information (SynthesisInfo) on page 347

• Setting DSP Builder Design Parameters with MATLAB Scripts on page 183

7.2. Troubleshooting DSP Builder Designs

You might see errors when you build, test, update, simulate, or verify your DSP
Builder design.

1. Check your design construction:

7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Follow the recommendations for structuring and managing your model.

• Follow the Simulink setup guidelines.

• Follow the design rules

• Follow the rules for Primitive and IP library blocks and specific blocks like
SampleDelays blocks

2. Check for common Simulink errors including algebraic loops and unresolved data
types.

3. Ensure your DSP Builder does not use Primitive library blocks in unsupported
modes – either outside of primitive subsystems or in loops without sufficient start
to end of loop timing offset.

4. Read DSP Builder error messages to see the root cause.

5. Click DSP Builder ➤ Design Checker, to check your design for common
mistakes.

6. Select individual steps and click Check.

The output only matches the hardware when valid is high.

If your design uses FIFO buffers within multiple feedback loops, while the data
throughput and frequency of invalid cycles is the same, their distribution over a
frame of data might vary (because of the final distribution of delays around the
loop). If you find a mismatch, step past errors.

1. About Loops on page 179

2. DSP Builder Timed Feedback Loops on page 180

3. DSP Builder Loops, Clock Cycles, and Data Cycles on page 181

Related Information

DSP Builder Design Rules and Recommendations on page 176

7.2.1. About Loops

Your design can contain many loops that can interact with or be nested inside each
other. DSP Builder uses standard mathematical linear programming techniques to
solve a set of simultaneous timing constraints.

Consider the following two main cases:

• The simpler case is feed-forward. When no loops exist, feed-forward datapaths are
balanced to ensure that all the input data reaches each functional unit in the same
cycle. After analysis, DSP Builder inserts delays on all the non-critical paths to
balance out the delays on the critical path.

• The case with loops is more complex. Loops cannot be combinational—all loops in
the Simulink design must include delay memory. Otherwise Simulink displays an
'algebraic loop' error. In hardware, the signal has to have a specified number of
clock cycles latency round the feedback loop. Typically, one or more lumped delays
exist with SampleDelay blocks specifying the latency around some or all of the
loop. DSP Builder preserves the latency around the loop to maintain correct
functional operation. To achieve the target clock frequency, the total delay of the
sum of SampleDelay blocks around the loop must be greater or equal to the
required pipelining.

7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

179

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the pipelining requirements of the functional units around the loop are greater than
the delay specified by the SampleDelay blocks on the loop path, DSP Builder
generates an error message. The message states that distribution of memory failed as
there was insufficient delay to satisfy the fMAX requirement. DSP Builder cannot
simultaneously satisfy the pipelining to achieve the given fMAX and the loop criteria to
re-circulate the data in the number of clock cycles specified by the SampleDelay
blocks.

DSP Builder automatically adjusts the pipeline requirements of every Primitive block
according to these factors

• The type of block

• The target fMAX

• The device family and speedgrade

• The inputs of inputs

• The bit width in the data inputs

Note: Multipliers on Cyclone devices take two cycles at all clock rates. On Stratix V, Arria V,
and Cyclone V devices, fixed-point multipliers take two cycles at low clock rates, three
cycles at high clock rates. Very wide fixed-point multipliers incur higher latency when
DSP Builder splits them into smaller multipliers and adders. You cannot count the
multiplier and adder latencies separately because DSP Builder may combine them into
a single DSP block. The latency of some blocks depends on what pipelining you apply
to surrounding blocks. DSP Builder avoids pipelining every block but inserts pipeline
stages after every few blocks in a long sequence of logical components, if fMAX is
sufficiently low that timing closure is still achievable.

In the SynthesisInfo block, you can optionally specify a latency constraint limit that
can be a workspace variable or expression, but must evaluate to a positive integer.
However, only use this feature to add further latency. Never use the feature to reduce
latency to less than the latency required to pipeline the design to achieve the target
fMAX.

After you run a simulation in Simulink, the help page for the SynthesisInfo block
shows the latency, port interface, and estimated resource utilization for the current
Primitive subsystem.

When no loops exist, feed-forward datapaths are balanced to ensure that all the input
data reaches each functional unit in the same cycle. After analysis, DSP Builder inserts
delays on all the non-critical paths to balance out the delays on the critical path.

In designs with loops, DSP Builder advanced blockset must synthesize at least one
cycle of delay in every feedback loop to avoid combinational loops that Simulink
cannot simulate. Typically, one or more lumped delays exist. To preserve the delay
around the loop for correct operation, the functional units that need more pipelining
stages borrow from the lumped delay.

7.2.2. DSP Builder Timed Feedback Loops

Take care with feedback loops generally, in particular provide sufficient delay around
the loop.

Designs that have a cycle containing two adders with only a single sample delay are
not sufficient. In automatically pipelining designs, DSP Builder creates a schedule of
signals through the design. From internal timing models, DSP Builder calculates how

7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

180

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

fast certain components, such as wide adders, can run and how many pipelining
stages they require to run at a specific clock frequency. DSP Builder must account for
the required pipelining while not changing the order of the schedule. The single
sample delay is not enough to pipeline the path through the two adders at the specific
clock frequency. DSP Builder is not free to insert more pipelining, as it changes the
algorithm, accumulating every n cycles, rather than every cycle. The scheduler detects
this change and gives an appropriate error indicating how much more latency the loop
requires for it to run at the specific clock rate. In multiple loops, this error may be hit
a few times in a row as DSP Builder balances and resolves each loop.

7.2.3. DSP Builder Loops, Clock Cycles, and Data Cycles

Never confuse clock cycles and data cycles in relation to feedback loops. For example,
you may want to accumulate previous data from the same channel. The DSP Builder
multichannel IIR filter design example (demo_iir) shows feedback accumulators
processing multiple channels. In this example, consecutive data samples on any
particular channel are 20 clock cycles apart. DSP Builder derives this number from
clock rate and sample rate.

The folded IIR filter design example (demo_iir_fold2) demonstrates one channel, at
a low data rate. This design example implements a single-channel infinite impulse
response (IIR) filter with a subsystem built from Primitive blocks folded down to a
serial implementation.

The design of the IIR is the same as the IIR in the multichannel example, demo_iir.
As the channel count is one, the lumped delays in the feedback loops are all one. If
you run the design at full speed, there is a scheduling problem. With new data arriving
every clock cycle, the lumped delay of one cycle is not enough to allow for pipelining
around the loops. However, the data arrives at a much slower rate than the clock rate,
in this example 32 times slower (the clock rate in the design is 320 MHz, and the
sample rate is 10 MHz), which gives 32 clock cycles between each sample.

You can set the lumped delays to 32 cycles long—the gap between successive data
samples—which is inefficient both in terms of register use and in underused multipliers
and adders. Instead, use folding to schedule the data through a minimum set of fully
used hardware.

Set the SampleRate on both the ChannelIn and ChannelOut blocks to 10 MHz, to
inform the synthesis for the Primitive subsystem of the schedule of data through the
design. Even though the clock rate is 320 MHz, each data sample per channel is
arriving only at 10 MHz. The RTL is folded down—in multiplier use—at the expense of
extra logic for signal multiplexing and extra latency.

7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. About DSP Builder for Intel FPGAs Optimization
Improve your designs and learn about folding and floating-point data types.

1. Associating DSP Builder with MATLAB on page 182

2. Setting Up Simulink for DSP Builder Designs on page 182

3. The DSP Builder Windows Shortcut on page 183

4. Setting DSP Builder Design Parameters with MATLAB Scripts on page 183

5. Managing your Designs on page 186

6. How to Manage Latency on page 187

7. Flow Control in DSP Builder Designs on page 194

8. Reset Minimization on page 196

9. About Importing HDL on page 198

8.1. Associating DSP Builder with MATLAB

If you install another version of MATLAB or you install DSP Builder without associating
it with a version of MATLAB, you can associate DSP Builder with MATLAB

1. Type the following command into a command window:

<path to dsp_builder.bat> -m “<path to matlab executable>” For
example:c:\intel_FPGA_pro\quartus\dspba\dsp_builder.bat -m "c:\tools\matlab
\R2015a\windows64\bin\matlab.exe"

8.2. Setting Up Simulink for DSP Builder Designs

1. Setting Up Simulink Solver on page 182

2. Setting Up Simulink Signal Display Option on page 183

8.2.1. Setting Up Simulink Solver

1. On the File menu, click Preferences.

2. Expand Configuration defaults and click Solver.

3. For Type, select Fixed-step solver, unless you have folding turned on in some
part of your design. In that case, you need to select Variable-step solver.

4. For Solver select Discrete (no continuous states).

5. Click on Display Defaults and turn on Show port data types.

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

8.2.2. Setting Up Simulink Signal Display Option

Display various port and signal properties to aid debugging and visualization.

1. In Simulink, click Format ➤ Port/Signal Displays.

2. Click Sample Time Colors to change the color of blocks and wires in particular
clock domain—useful when creating multirate designs.

3. Click Port Data Type option to display the data type of the blocks. You can only
connect ports of same data type.

4. Click Signal Dimensions to display the dimensions of particular signal wire.

5. Make show data types and wide non-scalar lines the default for new models:

a. Click File ➤ Preferences.

a. Select Display Defaults for New Models

b. Turn on Wide nonscalar lines and Show port data types.

8.3. The DSP Builder Windows Shortcut

Create a shortcut to set the file paths to DSP Builder and run a batch file with an
argument for the MATLAB executable to use

The shortcut target is:

<dsp_builder.bat from the DSP Builder release to use> -m “<path
to the MATLAB executable to use>”

For example

C:\Altera\16.0\quartus\dspba\dsp_builder.bat -m "C:\tools\matlab
\R2013a\windows64\bin\matlab.exe"

You can copy the shortcut from the Start menu and paste it to your desktop to create
a desktop shortcut. You can edit the properties to use different installed DSP Builder
releases, different MATLAB releases, or different start directories.

Related Information

Starting DSP Builder in MATLAB

8.4. Setting DSP Builder Design Parameters with MATLAB Scripts

1. Set block and design parameters using MATLAB workspace variables with names
unique to your model.

2. Define the MATLAB workspace variables in a MATLAB script or set of scripts, where
you can manage them.

3. Run the scripts run automatically on opening the model and again before
simulation.

DSP Builder evaluates and updates all parameters before it generates hardware.

4. Clean up the workspace using a separate script when you close the design.

1. Running Setup Scripts Automatically on page 184

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

183

https://www.intel.com/content/www/us/en/programmable/documentation/hco1423076498466.html#dmi1441718709335
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Defining Unique DSP Builder Design Parameters on page 184

3. Example DSP Builder Custom Scripts on page 184

8.4.1. Running Setup Scripts Automatically

1. In a Simulink model file .mdl, click File ➤ Model properties.

2. Select Callbacks tab.

3. Select PreLoadFcn and type the setup script name in the window on the right
hand side. When you open your Simulink design file, the setup script runs.

4. Select InitFcn and type the setup script name in the window on the right hand
side. Simulink runs your setup script first at the start of each simulation before it
evaluates the model design file .mdl.

8.4.2. Defining Unique DSP Builder Design Parameters

Define unique parameters to avoid parameters clashing with other open designs and
to help clear the workspace.

1. Create named structures and append a common root to all parameter names.

For example;

my_design_params.clockrate = 200;
my_design_params.samplerate = 50;
my_design_params.inputChannels = 4;

2. Clear the specific workspace variables you create with a clear-up script that run
when you close the model. Do not use clear all.

For example,. if you use the named structure my_design_params, run clear
my_design_params;. You may have other temporary workspace variables to
clear too.

8.4.3. Example DSP Builder Custom Scripts

You can write scripts that directly change parameters (such as the hardware
destination directory) on the Control and Signals blocks.

For example, in a script that passes the design name (without .mdl extension) as
model you can use:

%% Load the model
load_system(model);
%% Get the Signals block
signals = find_system(model, 'type', 'block', 'MaskType', 'DSP Builder Advanced
Blockset Signals Block');
if (isempty(signals))
 error('The design must contain a Signals Block. ');
end;
%% Get the Controls block
control = find_system(model, 'type', 'block', 'MaskType', 'DSP Builder Advanced
Blockset Control Block');
if (isempty(control))
 error('The design must contain a Control Block. ');
end;%%
Example: set the RTL destination directory
dest_dir = ['../rtl' num2str(freq)];
dspba.SetRTLDestDir(model, rtlDir);

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

184

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Similarly you can get and set other parameters. For example, on the Signals block
you can set the target clock frequency:
fmax_freq = 300.0;dspba.set_param(signals{1},'freq', fmax_freq);

You can also change the following threshold values that are parameters on the
Control block:

• distRamThresholdBits

• hardMultiplierThresholdLuts

• mlabThresholdBits

• ramThresholdBits

You can loop over changing these values, change the destination directory, run the
Quartus Prime software each time, and perform design space exploration. For
example:

%% Run a simulation; which also does the RTL generation.
t = sim(model);
%% Then run the Quartus Prime compilation flow.
[success, details] = run_hw_compilation(<model>, './')%%
where details is a struct containing resource and timing information
 details.Logic,
 details.Comb_Aluts,
 details.Mem_Aluts,
 details.Regs,
 details.ALM,
 details.DSP_18bit,
 details.Mem_Bits,
 details.M9K,
 details.M144K,
 details.IO,
 details.FMax,
 details.Slack,
 details.Required,
 details.FMax_unres,
 details.timingpath,
 details.dir,
 details.command,
 details.pwd
such that >> disp(details) gives output something like:
 Logic: 4915
 Comb_Aluts: 3213
 Mem_Aluts: 377
 Regs: 4725
 ALM: 2952
 DSP_18bit: 68
 Mem_Bits: 719278
 M9K: 97
 M144K: 0 IO: 116
 FMax: 220.1700
 Slack: 0.4581
 Required: 200
 FMax_unres: 220.1700
 timingpath: [1x4146 char]
 dir: '../quartus_demo_ifft_4096_for_SPR_FFT_4K_n_2'
 command: [1x266 char]
 pwd: 'D:\test\script'

Note: The Timing Report is in the timingpath variable, which you can display by
disp(details.timingpath). Unused resources may appear as -1, rather than 0.

You must previously execute load_system before commands such as find_system
and run_hw_compilation work.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

185

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A useful set of commands to generate RTL, compile in the Quartus Prime software and
return the details is:

load_system(<model>);
sim(<model>);
[success, details] = run_hw_compilation(<model>, './')

8.5. Managing your Designs

DSP Builder supports parameterization through scripting.

1. To define many of DSP Builder advanced blockset parameters as a MATLAB
workspace variables, such as clock rate, sample rate, and bit width, define these
variables in a .m file.

2. Run this setup script before running your design.

3. Explore different values for various parameters, without having to modify the
Simulink design.

For instance, you can evaluate the performance impact of varying bit width at
different stages of your design.

4. Define the data type and width of Primitive library blocks in the script

5. Experiment with different values. DSP Builder advanced blockset vector signal and
ALU folding support allows you to use the same design file to target single and
multiple channels designs.

6. Use a script for device options in your setup script, which eases design migration,
whether you are targeting a new device or you are upgrading the design to
support more data channels.

7. Use advanced scripting to fine tune Quartus Prime settings and to build automatic
test sweeping, including parameter changes and device changes.

1. Managing Basic Parameters on page 186

2. Creating User Libraries and Converting a Primitive Subsystem into a Custom Block
on page 187

3. Revision Control on page 187

8.5.1. Managing Basic Parameters

Before you start implementing your design, you should define key parameters in a
script.

Based on the FPGA clock rate and data sample rates, you can derive how many clock
cycles are available to process unique data samples. This parameter is called Period in
many of the design examples. For example, for a period of three, a new sample for
the same channel appears every three clock cycles. For multiplication, you have three
clock cycles to compute one multiplication for this channel. In a design with multiple
channels, you can accommodate three different channels with just one multiplier. A
resource reuse potential exists when the period is greater than one.

1. Define the following parameters:

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

186

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• FPGA clock rate

• Data sample rates at various stages of your design

• Number of channels or data sources

• Bit widths of signals at various stages of your design, including possible bit
growth throughout the computational datapath

• Coefficients of filters

8.5.2. Creating User Libraries and Converting a Primitive Subsystem into
a Custom Block

You can group frequently used custom blocks into libraries for future use.

1. Mask the block to hide the block's contents and provide a custom block dialog.

2. Place the block in a library to prohibit modifications and allow you to easily update
copies of the block.

Note: This procedure is similar to creating a Simulink custom block and custom
library. You can also add a custom library to the Simulink library browser.

8.5.3. Revision Control

Use Simulink revision control to manage your DSP Builder advanced blockset design
revision control.

The Simulink Model Info block displays revision control information about a model as
an annotation block in the model's block diagram. It shows revision control
information embedded in the model and information maintained by an external
revision control or configuration management system.

You can customize some revision control tools to use the Simulink report generator
XML comparison, which allows you to compare two versions of the same file.

You must add the following files to revision control:

• Your setup script (.m file)

• Model design files .mdl.

• All the customized library files.

• _params.xml file

Note: You do not need to archive autogenerated files such as Quartus Prime project files or
synthesizable RTL files.

8.6. How to Manage Latency

The Primitive library blocks are untimed circuits, so they are not cycle accurate. A
one-to-one mapping does not exist between the blocks in the Simulink model and the
blocks you implement in your design in RTL. This decoupling of design intent from
design implementation gives productivity benefits. The ChannelOut block is the
boundary between the untimed section and the cycle accurate section. This block
creates the additional delay that the RTL introduces, so that data going in to the
ChannelOut block delays internally, before DSP Builder presents it externally. The
latency of the block shows on the ChannelOut mask. You may want to fix or constrain

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

187

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the latency after you complete part of a DSP Builder design, for example on an IP
library block or for a Primitive subsystem. In other cases, you may want to limit the
latency in advance, which allows future changes to other subsystems without causing
undesirable effects upon the overall design.

To accommodate extra latency, insert registers. This feature applies only to Primitive
subsystems. To access, use the Synthesis Info block.

Latency is the number of delays in the valid signal across the subsystem. The DSP
Builder advanced blockset balances delays in the valid and channel path with
delays that DSP Builder inserts for autopipelining in the datapath.

Note: User-inserted sample delays in the datapath are part of the algorithm, rather than
pipelining, and are not balanced. However, any uniform delays that you insert across
the entire datapath optimize out. If you want to constrain the latency across the entire
datapath, you can specify this latency constraint in the SynthesisInfo block.

1. Reading the Added Latency Value for a IP Block on page 188

2. Zero Latency Example on page 188

3. Implicit Delays in DSP Builder Designs on page 189

4. Distributed Delays in DSP Builder Designs on page 190

5. Latency and fMAX Constraint Conflicts in DSP Builder Designs on page 192

6. Control Units Delays on page 192

8.6.1. Reading the Added Latency Value for a IP Block

1. Select the block and type the following command:

get_param(gcb, 'latency')

You can also use this command in an M-script. For example when you want to use
the returned latency value to balance delays with external circuitry.

Note: If you use an M-script to get this parameter and set latency elsewhere in
your design, by the time it updates and sets on the IP block, it is too late to
initialize the delays elsewhere. You must run your design twice after any
changes to make sure that you have the correct latency. If you are scripting
the whole flow, your must run once with end time 0, and then run again
immediately with the desired simulation end time.

8.6.2. Zero Latency Example

In this example, sufficient delays in the design ensure that DSP Builder requires no
extra automatic pipelining to reach the fMAX target (although DSP Builder distributes
this user-added delay through the datapath). Thus, the reported latency is zero. DSP
Builder inserts no extra pipelining registers in the datapath to meet fMAX and thus
inserts no balancing registers on the channel and valid paths. The delay of the valid
signal across the subsystem is zero clock cycles, as the Lat: 0 latency value on the
ChannelOut block shows.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 73. Latency Example with a User-Specified Delay

8.6.3. Implicit Delays in DSP Builder Designs

The DSP Builder scheduler may add extra delays on paths between the ChannelIn
and ChannelOut blocks. The extra latency is the same for all such paths and is
displayed on the ChannelOut block.

If the valid input drives directly the valid output, the delay on the valid signal matches
the latency displayed on the ChannelOut block. It doesn't, if the valid output is
generated in any other way, for example by using a Sequence block.

For example, the 4K FFT design example uses a Sequence block to drive the valid
signal explicitly.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 74. Sequence Block in the 4K FFT Design Example

The latency that the ChannelOut block reports is therefore not 4096 + the automatic
pipelining value, but just the pipelining value.

8.6.4. Distributed Delays in DSP Builder Designs

Distributed delays are not cycle-accurate inside a primitive subsystem, because DSP
Builder distributes and optimizes the user-specified delay. To consistently apply extra
latency to a primitive subsystem, use latency constraints.

In this example, the Mult block has a direct feed-through simulation model, and the
following SampleDelay block has a delay of 10. The Mult block has zero delay in
simulation, followed by a delay of 10. In the generated hardware, DSP Builder
distributes part of this 10-stage pipelining throughout the multiplier optimally, such
that the Mult block has a delay (in this case, four pipelining stages) and the
SampleDelay block a delay (in this case, six pipelining stages). The overall result is
the same—10 pipelining stages, but if you try to match signals in the primitive
subsystem against hardware, you may find DSP Builder shifts them by several cycles.

Similarly, if you have insufficient user-inserted delay to meet the required fMAX, DSP
Builder automatically pipelines and balances the delays, and then corrects the cycle-
accuracy of the primitive subsystem as a whole, by delaying the output signals in
simulation by the appropriate number of cycles at the ChannelOut block.

If you specify no pipelining, the simulation design example for the multiplier is direct-
feed-through, and the result appears on the output immediately.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 75. Latency Example without a User-Specified Delay

To reach the desired fMAX, DSP Builder then inserts four pipelining stages in the
multiplier, and balances these with four registers on the channel and valid paths.
To correct the simulation design example to match hardware, the ChannelOut block
delays the outputs by four cycles in simulation and displays Lat: 4 on the block. Thus,
if you compare the output of the multiplier simulation with the hardware it is now four
cycles early in simulation; but if you compare the primitive subsystem outputs with
hardware they match, because the ChannelOut block provides the simulation
correction for the automatically inserted pipelining.

If you want a consistent 10 cycles of delay across the valid, channel and
datapath, you may need latency constraints.

Figure 76. Latency Example with Consistent Delays

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This example has a consistent line of SampleDelay blocks inserted across the design.
However, the algorithm does not use these delays. DSP Builder recognizes that
designs do not require them and optimizes them away, leaving only the delay that
designs require. In this case, each block requires a delay of four, to balance the four
delay stages to pipeline the multiplier sufficiently to reach the target fMAX. The delay of
10 in simulation remains from the non-direct-feed-through SampleDelay blocks. In
such cases, you receive the following warning on the MATLAB command line:

DSP Builder optimizes away some user inserted SampleDelays. The latency on the
valid path across primitive subsystem design name in hardware is 4, which may
differ from the simulation model. If you need to preserve extra SampleDelay
blocks in this case, use the Constraint Latency option on the SynthesisInfo
block.

Note: SampleDelay blocks reset to unknown values ('X'), not to zero. Designs that rely on
SampleDelays output of zero after reset may not behave correctly in hardware. Use
the valid signal to indicate valid data and its propagation through the design.

8.6.5. Latency and fMAX Constraint Conflicts in DSP Builder Designs

Some blocks need to have a minimum latency, either because of logical or silicon
limitations. In these cases, you can create an abstracted design that cannot be
realized in hardware. While these cases can generally be addressed, in some cases like
IIRs, find algorithmic alternatives.

Generally, problems occur in feedback loops. You can solve these issues by lowering
the fMAX target, or by restructuring the feedback loop to reduce the combinatorial logic
or increasing the delay. You can redesign some control structures that have feedback
loops to make them completely feed forward.

You cannot set a latency constraint that conflicts with the constraint that the fMAX
target implies. For example, a latency constraint of < 2 may conflict with the fMAX
implied pipelining constraint. The multiplier may need four pipelining stages to reach
the target fMAX. The simulation fails and issues an error, highlighting the Primitive
subsystem.

DSP Builder gives this error because you must increase the constraint limit by at least
3 (that is, to < 5) to meet the target fMAX.

8.6.6. Control Units Delays

Commonly, you may use an FSM to design control units. An FSM uses DSP Builder
SampleDelay blocks to store its internal state. DSP Builder automatically
redistributes these SampleDelay blocks, which may alter the functional behavior of
the control unit subsystem. Then the generated hardware no longer matches the
simulation. Also, redistribution of SampleDelay blocks throughout the design may
change the behavior of the FSM by altering its initial state. Classically, you exploit the
reset states of the constituent components to determine the initial state; however this
approach may not work. DSP Builder may not preserve any given component because
it automatically pipelines Primitive subsystems. Also it can leave some components
combinatorial based on fMAX target, device family, speed grade, and the locations of
registers immediately upstream or downstream.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

192

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. SampleDelay Block Example

DSP Builder relocates the sample delay, to save registers, to the Boolean signal that
drives the s-input of the 2-to-1 Mux block. You may see a mismatch in the first cycle
and beyond, depending on the contents of the LUT.

When you design a control unit as an FSM, the locations of SampleDelay blocks
specify where DSP Builder expects zero values during the first cycle. In Figure 77 on
page 193, DSP Builder expects the first sample that the a-input receives of the
CmpGE block to be zero. Therefore, the first output value of that compare block is
high. Delay redistribution changes this initialization. You cannot rely on the reset state
of that block, especially if you embed the Primitive subsystem within a larger design.
Other subsystems may drive the feedback loop whose pipeline depth adapts to fMAX.
The first valid sample may only enter this subsystem after some arbitrary number of
cycles that you cannot predetermine. To avoid this problem, always ensure you anchor
the SampleDelay blocks to the valid signal so that the control unit enters a well-
defined state when valid-in first goes high.

Figure 78. SampleDelay Block Example 2

To make a control unit design resistant to automated delay redistribution and to solve
most hardware FSM designs that fail to match simulation, replace every SampleDelay
block with the Anchored Delay block from the Control folder in the Additional
libraries. When the valid-in first goes high, the Anchored Delay block outputs one (or
more) zeros, otherwise it behaves just like an ordinary SampleDelay block.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesizing the example design (fMAX = 250MHz) on Arria V (speedgrade 4), shows
that DSP Builder is still redistributing the delays contained inside of the Anchored
Delay block to minimize register utilization. DSP Builder still inserts a register
initialized to zero before the s-input of the 2-to-1 Mux block. However, the hardware
continues to match Simulink simulation because of the anchoring. If you place highly
pipelined subsystems upstream so that the control unit doesn't enter its first state
until several cycles after device initialization, the FSM still provides correct outputs.
Synchronization is maintained because DSP Builder inserts balancing delays on the
valid-in wire that drives the Anchored Delay and forces the control unit to enter its
initial state the correct number of cycles later.

Control units that use this design methodology are also robust to optimizations that
alter the latency of components. For example, when a LUT block grows sufficiently
large, DSP Builder synthesizes a DualMem block in its place that has a latency of at
least one cycle. Automated delay balancing inserts a sufficient number of one bit wide
delays on the valid signal control path inside every Anchored Delay. Hence, even if
the CmpGE block is registered, its reset state has no influence on the initial state of
the control unit when the valid-in first goes high.

Each Anchored Delay introduces a 2-to-1 Mux block in the control path. When
targeting a high fMAX (or slow device) tight feedback loops may fail to schedule or
meet timing. Using Anchored Delay blocks in place of SampleDelay blocks may also
use more registers and can also contribute to routing congestion.

8.7. Flow Control in DSP Builder Designs

Use DSP Builder valid and channel signals with data to indicate when data is valid
for synchronizing. You should use these signals to process valid data and ignore invalid
data cycles in a streaming style to use the FPGA efficiently. You can build designs that
run as fast as the data allows and are not sensitive to latency or devices fMAX and that
can be responsive to backpressure.

This style uses FIFO buffers for capturing and flow control of valid outputs, loops, and
for loops, for simple and complex nested counter structures. Also add latches to
enable only components with state—thus minimizing enable line fan-out, which can
otherwise be a bottleneck to performance.

Flow Control Using Latches

Generally hardware designers avoid latches. However, these subsystems synthesize to
flip-flops.

Often designs need to stall or enable signals. Routing an enable signal to all the blocks
in the design can lead to high fan-out nets, which become the critical timing path in
the design. To avoid this situation, enable only blocks with state, while marking output
data as invalid when necessary.

DSP Builder provides the following utility functions in the Additional Blocks Control
library, which are masked subsystems.

• Zero-Latency Latch (latch_0L)

• Single-Cycle Latency Latch (latch_1L)

• Reset-Priority Latch (SRlatch_PS)

• Set-Priority Latch (SRlatch)

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some of these blocks use the Simulink Data Type Prop Duplicate block, which takes
the data type of a reference signal ref and back propagates it to another signal prop.
Use this feature to match data types without forcing an explicit type that you can use
in other areas of your design.

Forward Flow Control Using Latches

The demo_forward_pressure example design shows how to use latches to
implement forward flow control.

Flow Control Using FIFO Buffers

You can use FIFO buffers to build flexible, self-timed designs insensitive to latency.
They are an essential component in building parameterizable designs with feedback,
such as those that implement back pressure.

Flow Control and Backpressure Using FIFO Buffers

The demo_back_pressure design example shows how to use latches to implement
back pressure flow control.

You must acknowledge reading of invalid output data. Consider a FIFO buffer with the
following parameters:

• Depth = 8

• Fill threshold = 2

• Fill period = 7

A three cycle latency exists between the first write and valid going high. The q output
has a similar latency in response to writes. The latency in response to read
acknowledgements is only one cycle for all output ports. The valid out goes low in
response to the first read, even though the design writes two items to the FIFO buffer.
The second write is not older than three cycles when the read occurs.

With the fill threshold set to a low value, the t output can go high even though the v
out is still zero. Also, the q output stays at the last value read when valid goes low in
response to a read.

Problems can occur when you use no feedback on the read line, or if you take the
feedback from the t output instead with fill threshold set to a very low value (< 3). A
situation may arise where a read acknowledgement is received shortly following a
write but before the valid output goes high. In this situation, the internal state of the
FIFO buffer does not recover for many cycles. Instead of attempting to reproduce this
behavior, Simulink issues a warning when a read acknowledgement is received while
valid output is zero. This intermediate state between the first write to an empty FIFO
buffer and the valid going high, highlights that the input to output latency across the
FIFO buffer is different in this case. This situation is the only time when the FIFO
buffer behaves with a latency greater than one cycle. With other primitive blocks,
which have consistent constant latency across each input to output path, you never
have to consider these intermediate states.

You can mitigate this issue by taking care when using the FIFO buffer. The model
needs to ensure that the read is never high when valid is low using the simple
feedback. If you derive the read input from the t output, ensure that you use a
sufficiently high threshold.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can set fill threshold to a low number (<3) and arrive at a state where output t is
high and output v is low, because of differences in latency across different pairs of
ports—from w to v is three cycles, from r to t is one cycle, from w to t is one cycle. If
this situation arises, do not send a read acknowledgement signal to the FIFO buffer.
Ensure that when the v output is low, the r input is also low. A warning appears in the
MATLAB command window if you ever violate this rule. If you derive the read
acknowledgement signal with a feedback from the t output, ensure that the fill
threshold is set to a sufficiently high number (3 or above). Similarly for the f output
and the full period.

If you supply vector data to the d input, you see vector data on the q output. DSP
Builder does not support vector signals on the w or r inputs, as the behavior is
unspecified. The v, t, and f outputs are always scalar.

Flow Control using Simple Loop

Designs may require counters, or nested counters to implement indexing of
multidimensional data. The Loop block provides a simple nested counter—equivalent
to a simple software loop.

The enable input and demo_kronecker design example demonstrate flow control
using a loop.

Flow Control Using the ForLoop Block

You can use either Loop or ForLoop blocks for building nested loops.

The Loop block has the following advantages:

• A single Loop block can implement an entire stack of nested loops.

• No wasted cycles when the loop is active but the count is not valid.

• The implementation cost is lower because no overhead for the token-passing
scheme exists.

The ForLoop block has the following advantages:

• Loops may count either up or down.

• You may specify the initial value and the step, not just the limit value.

• The token-passing scheme allows the construction of control structures that are
more sophisticated than just nesting rectangular loops.

When a stack of nested loops is the appropriate control structure (for example, matrix
multiplication) use a single Loop block. When a more complex control structure is
required, use multiple ForLoop blocks.

8.8. Reset Minimization

Reset minimization reduces the amount of reset logic in your design A reduction in
reset logic can give an area decrease and potential fMAX increase. Reset minimization
removes resets on the datapath. You can apply reset minimization globally to floating-
point operators and to your synthesizable subsystems. By default, DSP Builder turns
on reset minimization for HyperFlex™ architectures and off for all other devices.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DSP Builder distinguishes control flow from data flow: control flow is the logic you
connect to the ChannelIn and ChannelOut valid signal path. DSP Builder applies
little or no reset minimization to control logic and aggressive minimzation to data flow.

By default, DSP Builder chooses reset minimization options for you automatically. It
automatically applies reset minimization if your target device includes the HyperFlex
architecture.

You may override the default automatic reset minimization options, for example as
part of design space optimization.

When you globally apply reset minimization, DSP Builder determines a local reset
minimization setting for each of your synthesizable subsystems. DSP Builder applies
this local reset minimization conditionally, if your subsystem contains ChannelIn or
ChannelOut blocks.

Table 25. Reset Minimization Summary
If your synthesizable subsystem uses a mixture of Channel and GP blocks, choose Conditional for Local reset
minimization.

Global Enable Local Setting Synthesizable Subsystem Reset Minimization

Off Any Any No

On Off Any No

On Conditional ChannelIn and ChannelOut Yes

On Conditional GPIn and GPOut No

On On ChannelIn and ChannelOut Yes

On On GPIn and GPOut Yes

DSP Builder does not apply reset minimization to blocks with innate state, user-
constructed cycles, and enable logic in your design, as that can give undefined initial
values.

Reset minimization only detects local cycles within a subsystem. You should avoid
broader feedback cycles.

Reset minimization may affect the behavior of your design during Simulink simulation
and on hardware.

Simulink Simulation

The DSP Builder simulation engine within Simulink is unaware of the reset
minimization optimization and therefore always simulates your design behavior with
reset present.

In general there is no difference in behavior, and this is aided by the testbench inputs
defaulting typically to zero and a longer minimum reset pulse-width allowing such
defaults to propagate through the datapath register stages.

However in some cases mismatches may occur, because data entering a Sample
Delay in your design during reset is non-zero.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If an input does not default to zero or the internal behavior is incompatible with
Sample Delay blocks resetting to zeros (or the minimum reset-pulse width is less
than the design latency), the Simulink simulation might be different than the HDL
simulation.

Implementation on Hardware

Removing a reset on the datapath means that when DSP Builder releases a reset, your
data flow logic may contain values clocked in during reset, which might affect the
initial post-reset behavior of your system.

Reset minimization detects and avoids optimizing cycles in your synthesizable
subsystem. It does not detect cycles constructed outside of a single synthesizable
subsystem. Do not enable it for such designs.

Related Information

• Control on page 221

• Synthesis Information (SynthesisInfo) on page 347

8.9. About Importing HDL

Importing HDL enables you to cosimulate existing HDL as a subsystem within your
DSP Builder designs.

Importing HDL has the following software requirements:

• HDL Verifier toolbox

• An HDL Verifier compatible version of the ModelSim simulator (importing HDL does
not support ModelSim AE)

Additionally, your HDL must conform to DSP Builder design rules and must:

• Have only one clock domain

• Match reset level with DSP Builder

• Use the std_logic data type for clock and reset ports

• Use std_logic_vector for all other ports

• Have no top-level generics

• Contain no bus components

You may need to write a wrapper HDL file that instantiates your HDL, which might
configure generics, convert from other data types to std_logic_vector, or invert the
reset signal.

DSP Builder can import any number of instantiated entities. To import multiple
copies of an entity or multiple distinct entities, instantiate the entities in a top-
level wrapper file.

Simulink does not model all the signal states that ModelSim uses (e.g. ‘U’).
Simulink interprets all non-‘1’ states as a ‘0’.

Importing HDL uses the HDL Verifier toolbox to communicate with an HDL simulation
running in ModelSim. You can have as many components in your ModelSim simulation
as you like; each component communicates with a separate DSP Builder HDL Import
block. Your top-level design must include an HDL Import Config block.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. HDL Import Block Placement

Source

Subsystem

Simulink

ModelSim
DSP Builder Advanced

Subsystem

Sink

HDL Import
Component 0

HDL Import
Component 1

HDL Import
Component n

Control

Component 0

Component 1

Component n

Subsystem

You cannot place HDL Import blocks inside a primitive scheduled subsystem.

DSP Builder creates the appropriate instantiation of the component represented by the
HDL Import block.

DSP Builder sees imported HDL as a scheduled system. DSP Builder does not try to
schedule your imported HDL. You cannot import HDL into a scheduled subsystem.
Imported HDL acts like other DSP Builder IP blocks (e.g. NCO, FFT). You must
manually delay-balance any parallel datapaths and turn on Generate Hardware in
the Control block.

8. About DSP Builder for Intel FPGAs Optimization

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. About Folding
Folding optimizes hardware usage for low throughput systems, which have many clock
cycles between data samples. Low throughput systems often inefficiently use
hardware resources. When you map designs that process data as it arrives every clock
cycle to hardware, many hardware resources may be idle for the clock cycles between
data.

Folding allows you to create your design and generate hardware that reuses resources
to create an efficient implementation.

The folding factor is the number of times you reuse a single hardware resource, such
as a multiplier, and it depends on the ratio of the data and clock rates:

Folding factor = clock rate/data rate

DSP Builder offers ALU folding for folding factors greater than 500. With ALU folding,
DSP Builder arranges one of each resource in a central arithmetic logic unit (ALU) with
a program to schedule the data through the shared operation.

1. ALU Folding on page 200

2. Removing Resource Sharing Folding on page 207

9.1. ALU Folding

ALU folding generates an ALU architecture specific to the DSP Builder design. The
functional units in the generated ALU architecture depend on the blocks and data
types in your design. DSP Builder maps the operations performed by connecting
blocks in Simulink to the functional units on the generated architecture.

ALU folding reduces the resource consumption of a design by as much as it can while
still meeting the latency constraint. The constraint specifies the maximum number of
clock cycles a system with folding takes to process a packet. If ALU folding cannot
meet this latency constraint, or if ALU folding cannot meet a latency constraint
internal to the DSP Builder system due to a feedback loop, you see an error message
stating it is not possible to schedule the design.

1. ALU Folding Limitations on page 201

2. ALU Folding Parameters on page 201

3. ALU Folding Simulation Rate on page 201

4. Using ALU Folding on page 205

5. Using Automated Verification on page 206

6. Ready Signal on page 206

7. Connecting the ALU Folding Ready Signal on page 206

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

8. About the ALU Folding Start of Packet Signal on page 207

9.1.1. ALU Folding Limitations

Avoid using ALU folding with designs that use many data types. ALU folding is ideal for
large designs with a uniform data type, such as single-precision floating-point. The
design uses less logic when creating a single hardware resource for an operation in the
ALU that it can share across the design.

For designs that use more than one data type, a Convert block between two data
types uses more resources if the design requires saturation and rounding. An unbiased
rounding operation uses more resources than a biased rounding mode.

Some DSP Builder blocks store state, for example:

• Sample Delay

• Counter

• DualMem

• FIFO

With ALU folding, any blocks that store state have a separate state for each channel.
DSP Builder only updates the state for a channel when the system processes the
channel. Thus, a sample delay delays a signal until processing the next data sample.
For 200 clock cycles to a data period, DSP Builder delays the signal for the 200 clock
cycles. Also, data associated with one channel cannot affect the state associated with
any other channel. Changing the number of channels does not affect the behavior of
the design.

Note: For designs without ALU folding, state is associated with a block, which you can
update in any clock cycle. Data input with channel 0 can affect state that then affects
a computation with data input with channel 1.

9.1.2. ALU Folding Parameters

Table 26. ALU Folding Parameters

Parameter Description

Sample Rate Data sample rate.

Number of Channels Supports single or multiple channels

Maximum latency Maximum latency for the system.

Register outputs The format of data outputs

Simulation rate Specify clock rate or data rate to control how Simulink models the system

9.1.3. ALU Folding Simulation Rate

In the ALU folding parameters, you can specify Data rate or Clock rate for
Simulation rate. the Simulation rate only controls the simulink simulation; the
hardware is identical.

9. About Folding

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

201

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date rate simulation offers the following features:

• Simulates faster.

• Simulates original unfolded model.

• Each Simulink sample represents a data sample.

• Generates automatic ModelSim testbench (if turned on in the Control block).

Clock rate simulation offers:

• Simulink sample rates identical to the clock rate.

• Simulation matches the hardware interface.

• Modelling of clock level timings and jitter in the data inputs.

Data Rate

Figure 80. Single Channel Data Rate Simulation with no Register Outputs

1 1 1

0 0 0
a1 a2 a3

b1 b2 b3

1 0 1

0 X 0
a2 X a3

b2 X b3

0

X

X

X

v

v

Simulink
Inputs

Hardware
Inputs

Simulink
Sample Time

1

0
a1

b1

1 1 1

0 0 0
qa1 qa2 qa3

qb1 qb2 qb3

1 00

0 00
qa2 00

qb2 00

0

0

0

0

v

v

Simulink
Outputs

Hardware
Outputs

1

0
qa1

qb1

9. About Folding

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

202

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 81. Multichannel Data Rate Simulation with no Register Outputs
The Simulink sample time is a third of the data sample period

Inputs

Outputs

1

0
a1

b1

1 0
v

c

d0

d1

sop

v

c

d0

d1

sop

1

1
a2

b2

1

2
a3

b3

1

0
a1

b1

1 0

1

1
a2

b2

1

0
a1

b1

1 0

1

1
a2

b2

1

2
a3

b3

1

0
a1

b1

1 0

1

1
a2

b2

Simulink
Sample Time

Clock Rate

Figure 82. Single Channel Clock Rate Simulation with no Register Outputs

1 0 1 0 1

0 X 0 X 0
a1 X a2 X a3

b1 X b2 X b3

1 0 1 0...

0 0 0 0...
qa1 0 qa2 0...
qb1 0 qb2 0...

0

0

0

0

v

v

Inputs

Inputs

Simulink
Sample Time

9. About Folding

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

203

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 83. Single Channel Clock Rate Simulation with Register Outputs

1 0 1 0 1

0 X 0 X 0
a1 X a2 X a3

b1 X b2 X b3

1 0 1 0...

0 0
qa1 qa2

qb1 qb2

0

0

0

0

v

v

Inputs

Inputs

Simulink
Sample Time

Figure 84. Multichannel Clock Rate Simulation with no Register Outputs

0

0

X

X

X

Inputs

Outputs

1

0
a1

b1

1

1

1
a2

b2

1

2
a3

b3

0

0

X

X

X

1

0
a1

b2

1

1

1
a2

b2

1

2
a3

b3

0

0

0

0

0

1

0
a1

b1

1

1

1
a2

b2

1

2
a3

b3

0

1

0
a1

b1

1

1

1
a2

b2

0

0

0

0

0

v

c

d0

d1

sop

v

c

d0

d1

sop 0

9. About Folding

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

204

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 85. Multichannel Clock Rate Simulation with Register Outputs

0

0

X

X

X

Inputs

Outputs

1

0
a1

b1

1

1

1
a2

b2

1

2
a3

b3

0

0

X

X

X

1

0
a1

b2

1

1

1
a2

b2

1

2
a3

b3

0

1

0
a1

b1

1

1

1
a2

b2

1

2
a3

b3

0

1

0
a1

b1

1

1

1
b2

b2

0

0

0

0

0

v

c

d0

d1

sop

v

c

d0

d1

sop 0

9.1.4. Using ALU Folding

Note: In the ChannelIn and ChannelOut blocks, before you use ALU folding, ensure you
turn off Folding enabled.

1. Open the top-level design that contains the primitive subsystem you want to add
ALU folding to.

2. Save a backup of your original design.

3. Replace:

• Constant multiplier blocks with multipliers blocks.

• Reciprocal blocks with Divide blocks

• Sin(πx) blocks with sin(x) blocks.

4. Avoid low-level bit manipulation

5. Open the primitive subsystem (which contains the ChannelIn and ChannelOut
blocks) and add an ALU Folding block from the DSP Builder Utilities library.

6. Double click the ALU Folding block to open the Block Parameters window.

7. Enter a value for Sample rate (MHz).

8. Enter a value for Maximum latency (cycles)

9. Turn off Register Outputs to make the output format the same as the input
format. Turn on Register Outputs, so that the outputs hold their values until the
next data sample output occurs.

10. Select the Simulation rate

11. Simulate your design.

DSP Builder generates HDL for the folded implementation of the subsystem and a
testbench. The testbench verifies the sample rate Simulink simulation against a
clock rate ModelSim simulation of the generated HDL.

9. About Folding

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

205

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9.1.5. Using Automated Verification

To use automated verification, on the DSP Builder menu click Verify Design.

The testbench uses captured test vectors from the Simulink simulation and plays
through the clock rate simulation of the generated hardware at the data rate. DSP
Builder checks the order and bit-accuracy of the hardware simulation outputs against
the Simulink simulation.

9.1.6. Ready Signal

The ready signal is an output that goes high to indicate when you can input data into
your design. It provides flow control that allows you to reduce jitter in your design.
The ready signal output is high when the internal architecture is idle.

Figure 86. Ready Signal Timing

clk

VALID_IN

DATA_IN D1 D2

VALID_OUT

DATA_OUT Q1

READY

9.1.7. Connecting the ALU Folding Ready Signal

1. Connect a Ready block from the Primitive library to the ChannelOut block.

Figure 87. Connecting Ready Block

9. About Folding

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

206

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9.1.8. About the ALU Folding Start of Packet Signal

DSP Builder uses a start of packet signal for systems using ALU folding. The start of
packet signal is an extra signal on the ChannelIn and ChannelOut blocks. To use the
the start of packet signal turn on Has Start of Packet Signal on the ChannelIn and
ChannelOut blocks. You must use the start of packet signal for multichannel designs.

With the Start of Packet signal:

• The system is in an idle state after reset and after it finishes processing a data
sample.

• The system indicates the first clock cycle of a packet of data when the start of
packet signal goes high.

• The system processes the data packet if it is in an idle state when it receives the
start of packet signal.

• The system is not idle the clock cycle after the start of packet signal until it
finishes processing a data sample.

You may use the valid signal instead of the start of packet signal, which does not allow
the folded system to process a non-valid data sample.

9.2. Removing Resource Sharing Folding

With DSP Builder v14.0 you could use resource sharing folding, which is now removed
in v14.1 or later. When you open pre v14.1 designs in v14.1 or later, you must remove
resource sharing folding, which you originally selected on the ChannelIn block:

1. Open the design in v14.1 or later.

2. Replace ChannelIn and ChannelOut blocks with new ChannelIn and
ChannelOut blocks.

3. Change any part of your design that uses TDM vectors.

4. Change any aspects of your design that uses a sample delays rather than clock
delays.

Note: If you do not remove resource sharing folding, and you simulate your design
you see a MATLAB system error.

9. About Folding

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

207

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10. Floating-Point Data Types
Most Primitive library blocks support floating-point data types. DSP Builder generates
a parallel datapath optimized for Intel FPGAs from the Simulink model.

Floating-point designs are useful in:

• Scientific applications

• Numerical algorithms

• High-dynamic range data designs

• Statistical modelling

Fixed-point designs often cannot support data with a high dynamic range unless the
design explicitly uses a high precision type. Floating-point designs can represent data
over a high dynamic range with limited precision. A compact representation makes
efficient use of memory and minimizes data widths. The lowest precision type that
DSP Builder supports is float16_m10, otherwise known as half-precision float, which
occupies 16 bits of storage. It can represent a range between –216 to +216 (exclusive)
and non-zero magnitudes as small as 2-14.

Typically, fixed-point designs may include fixed-point types of various bit widths and
precisions. When you create fixed-point designs, keep variations in word growth and
word precision within acceptable limits. When you create floating-point designs, you
must limit rounding error to ensure an accurate result. A floating-point design typically
has only one or two floating-point data types.

DSP Builder provides a comprehensive library of elementary mathematical functions
with complete support for all floating-point types. Each core is parameterized by
precision, clock frequency, and device family.

1. DSP Builder Floating-Point Data Type Features on page 209

2. DSP Builder Supported Floating-Point Data Types on page 209

3. DSP Builder Round-Off Errors on page 210

4. Trading Off Logic Utilization and Accuracy in DSP Builder Designs on page 210

5. Upgrading Pre v14.0 Designs on page 211

6. Floating-Point Sine Wave Generator Tutorial on page 211

7. Newton-Raphson Root Finding Tutorial on page 216

8. Forcing Soft Floating-point Data Types with the Advanced Options on page 217

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

10.1. DSP Builder Floating-Point Data Type Features

• Variable precision. Nine floating-point precisions including half-precision, single-
precision, and double-precision data.

• High throughput. Architecture adapts to fMAX.

• Bit-accurate simulation.

• Efficient DSP block usage in all device families .

• Standards compliant. Fundamental components (add, sub, mult, and div) are
IEEE compliant. Elementary mathematical functions are OpenCL compliant.

• Configurable. Trade off logic utilization against accuracy. Significant DSP block
reduction using faithful rounding.

10.2. DSP Builder Supported Floating-Point Data Types

The supported floating-point types are either IEEE 754 formats (half, single and
double precision) or analogues of the IEEE 754 formats.

Type Name Sign Width s Exponent Width e Exponent Bias b Mantissa Width m Description

float16_m7 1 8 127 7 Bfloat16

float16_m10 5 15 10 Half-precision IEEE 754-2008)

float19_m10 8 127 10

float26_m17 8 127 17

float32_m23 8 127 23 Single-precision IEEE 754

float35_m26 8 127 26

float46_m35 10 511 35

float55_m44 10 511 44

float64_m52 11 1023 52 Double-precision IEEE 754

DSP Builder represents the special values positive zero, negative zero, subnormals,
and non-numbers in the standard IEEE 754 manner, namely:

• zero is m=0 and e=0 with s giving the sign.

• subnormal is m != 0 and e=0 with s giving the sign.

• infinity is m=0 and e=all ones with s giving the sign.

• not a number (NaN) is m != 0 and e=all ones.

Except for the preceding special values, the numerical value of a float type is given in
terms of its bit-wise representation by:

f = (-1)s × 2(e-b) × (1 + (m / (2m_width)))

where:

• e, b, and m are the base-10 equivalents of the respective bit sequences

• the field widths for each of s, e and m and the value of b are given for each format
in the table

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

209

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, for a 32-bit single precision floating point number with a bit-wise
representation of 0x40300000:

s = 0b = 0
e = 10000000b = 128
m = 01100000000000000000000b = 3145728

then:

f = (-1)^0 × 2^(128-127) × (1+(3145728/(2^23)))

 = 1 × 2 × (1+0.375)

 = 2.75

10.3. DSP Builder Round-Off Errors

Every mathematical operation on floating-point data incurs a round-off error.

For the fundamental operations (add, subtract, multiple, divide) this error is
determined by the rounding mode:

• Correct. A typical relative error is half the magnitude of the LSB in the mantissa.

• Faithful. A typical relative error is equal to the magnitude of the LSB in the
mantissa.

The relative error for float16_m10 is approximately 0.1% for faithful rounding, and
0.05% for correct rounding. The rounding mode is a configurable mask parameter.

The elementary mathematical functions conform to the error tolerances specified in
the OpenCL standard. In practice, the relative error exhibited by the DSP Builder
mathematical library lies comfortably within the specified tolerances.

Bit cancellations can occur when subtracting two floating-point numbers that are very
close in value, which can introduce very large relativeerrors. You need to take the
same precautions with floating-point designs as with numerical software to prevent bit
cancellations.

10.4. Trading Off Logic Utilization and Accuracy in DSP Builder
Designs

1. If your design exceeds the relative accuracy but is using too much hardware:

a. Use the next lowest precision

b. Use faithful rounding instead of correct rounding

c. Enable the fused datapath option

Each of these changes reduces logic utilization at the expense of accuracy. A design
may use more than one floating-point precision for different sections of the circuit,
however if there are too many different precisions you will need to have more type
conversion blocks. Each convert block increases logic utilization.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

210

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10.5. Upgrading Pre v14.0 Designs

DSP Builder designs in v14.0 onwards have floating-point data turned on by default,
which provides access to all floating-point data types. Floating-point designs from
before v14.0 have a dedicated EnhancedPrecision block in the primitive subsystem.
These designs work correctly in v14.0, but Intel recommends you find and remove any
EnhancedPrecision blocks from your primitive subsystems.

10.6. Floating-Point Sine Wave Generator Tutorial

1. Creating a Sine Wave Generator in DSP Builder on page 211

2. Using Data Type Variables to Parameterize Designs on page 212

3. Using Data-Type Propagation in DSP Builder Designs on page 212

4. DSP Builder Testbench Verification on page 213

Related Information

DSP Builder Floating Point Design Examples on page 113

10.6.1. Creating a Sine Wave Generator in DSP Builder

1. In Simulink, click DSP Builder ➤ New Model wizard and create a floating-point
primitive (simple) model.

2. Create a primitive subsystem with the following components:

• ChannelIn and ChannelOut

• SynthesisInfo (configure to Scheduled)

• Counter with a large period (e.g. 32,768) and incrementing in steps of 1

• Convert block (set the mask parameter Output data type mode to single)

• Mult block

• Trig block (configure the Mask parameter function to sin(x))

3. Connect the blocks.

4. Simulate the design.

5. Connect the single-precision input of the subsystem to a Simulink built-in source.
For example, repeating sequence stair.

6. Set the repeating sequence stair block parameter Output Data Type to single.
Hence, both inputs to the Mult block are single. This data type propagates
through to the Trig block

7. Simulate this design with hardware generation turned on. DSP Builder generates
HDL files for a single-precision IEEE multiply, a single-precision sine function, and
a fixed-to-float conversion component.

8. Click DSP Builder > Resource Usage > Resource Usage Report and record
the DSP and LUT usage for the design.

9. To change the floating-point precision of the synthesized design, insert a Convert
block on the floating-point input wire.

10. Parameterize the Convert block:

a. Set Output data type mode to Variable precision floating point.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

211

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

b. In the Floating Point Precision drop-down menu select float26_m17.

11. Apply the same parameters to the Convert block in the primitive subsystem.

12. To connect the floating-point output port of the subsystem to a scope, or some
other built-in Simulink sink block:

a. Insert a Convert block on the floating-point output wire.

b. Set the Output data type mode to double.

Note: If you do not connect a Convert block, you cannot simulate your
design. Simulink scopes do not recognize the DSP Builder custom
floating-point type.

13. Simulate the design to generate HDL for the reduced precision multiplier, sine
function, and fixed-to-float convert.

14. Re-examine the resource usage report. The DSP and LUT utilization is significantly
lower than for the single-precision design.

10.6.2. Using Data Type Variables to Parameterize Designs

Commonly, you change the precision of a DSP Builder design by using scripts.
However, writing scripts to update the floating-point precision drop-down menu for all
blocks in the design is tedious.

Use data-type variables to parameterize designs by data type.

1. At the MATLAB console, initialize a variable with the following command:

>> inputType = dspba.vpfloat(26,17)
inputType =
Class: 'FLOAT'
ExpBits: 8
FracBits: 17

This MATLAB structure specifies the floating-point precision similar to how fixdt()
specifies fixed-point precisions.

2. For the top-level Convert block on the input wire, open the parameter dialog box:

a. Set the Output data type mode to Specify via dialog.

b. Delete the Output data type field and type the variable name inputType.

3. Repeat for the Convert block in the primitive subsystem, so that the same data
type propagates to both inputs of the Mult blocks.

4. Change the floating-point precision of the design, by assigning a different type to
the variable inputType. You can also initialize the type variable using the data type
name:

>> inputType = dspba.namedVPFloat('float26_m17')

>> inputType = dspba.namedVPFloat('single')

10.6.3. Using Data-Type Propagation in DSP Builder Designs

To simplify setup scripts for parameterized designs, use data-type propagation.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

212

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Add the DSP Builder custom SameDT block to your design. Do not use the built-in
Simulink same-DT block, which does not propagate data types.

2. Use any of the following blocks to allow you to back propagate DSP Builder's
floating-point data types via their output ports:

• Const

• Lut

• Convert

• ReinterpetCast

3. Set the Output data type mode parameter for these blocks to Inherit via back
propagation. Using this option and the custom SameDT block minimizes
scripting for setting up data types in your design.
The data type propagates via the built-in multiplex to three different wires, and
then back propagates via the respective output ports of the Convert block,
(coefficients) LUT block, and Const block.

10.6.4. DSP Builder Testbench Verification

The Simulink simulation model generates the stimulus files for the automated
testbench. A multiple precision floating-point library processes the variable precision
floating-point signal values. All functions round the output results to the nearest
representable value, even if you configure the fundamental operators to use faithful
rounding. Also, the elementary mathematical functions do not need to round to
nearest to comply with the IEEE754 standard. Hence, the hardware does not always
output the same bit pattern as the Simulink simulation. DSP Builder provides tools to
help analyze floating-point signals when simulating your designs

1. Tuning ATB Thresholds on page 213

2. Writing Application Specific Verification on page 213

3. Using Bit-Accurate Simulation on page 214

4. Adder Trees and Scalar Products on page 214

5. Creating Floating-Point Accumulators for Designs that Use Iteration on page 215

10.6.4.1. Tuning ATB Thresholds

If your design uses floating-point components, the autogenerated testbench uses a
special floating-point comparison when detecting mismatches. Two thresholds
influence the sensitivity of the mismatch detection:

• Floating-point mismatch tolerance, which is the largest relative error that is not
flagged as a mismatch

• Floating-point mismatch zero tolerance, which is the largest magnitude for a signal
value to be considered as equivalent to zero.

1. Click DSP Builder > Verify Design > Advanced.

2. Enter new values in Floating-point testbench settings.

10.6.4.2. Writing Application Specific Verification

Generally, use the threshold method for detecting mismatches in hardware for most
designs. For more sophisticated designs you can write your own application specific
verification function.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

213

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click DSP Builder > Verify Design > Advanced.

2. Turn on Import ModelSim results to MATLAB.

3. Enter a MATLAB variable name in Import device output to variable.

4. Optionally, enter a different variable name in Import valid map to variable
field.

5. Enter the name of the verification m-function in Verification function.

6. Simulate and generate the hardware. DSP Builder modifies the ATB to write to a
file the output signal values that ModelSim simulates:

a. Click DSP Builder > Verify Design

b. Turn on Run simulation and Verify at device level,

c. Click OK

MATLAB stores the simulation results using field names derived from the names of
the output ports in your design.

>> atbPaths = vsimOut.keys; vsimOut(atbPaths{1})
ans =
 vout: [2000x1 embedded.fi]
 vout_stm: [2000x1 embedded.fi]
 cout: [2000x1 embedded.fi]
 cout_stm: [2000x1 embedded.fi]
 x: [2000x1 double]
 x_stm: [2000x1 double]

The fields ending in _stm are from the stimulus files that Simulink normally writes
out during simulation. You can use these as the golden standard against which to
compare the simulated hardware output. The verification function you specified is
started, passing this struct as the first parameter

10.6.4.3. Using Bit-Accurate Simulation

DSP Builder supports bit-accurate simulation of floating-point designs.

1. Open the SynthesisInfo block parameter dialog box.

2. Turn on Bit Accurate Simulation.

When you simulate the design, the Simulink simulation is not based on the
multiprecision floating-point library. It is based on signal values output by the
ChannelOut block, which exactly match what you expect from hardware.

Note: Do not turn on Bit Accurate Simulation when your design includes
Memory-Mapped library blocks, otherwise the simulation is all zeros.

10.6.4.4. Adder Trees and Scalar Products

The matmul_flash_RS and matmul_flash_RD design examples use vector signals
with floating-point components.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

214

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The gemm_flash design example is a generalized matrix multiplication design that
uses the Scalar Product block to calculate an inner product. The adder tree and the
Scalar Product block have similar parameters:

• Fused datapath. Enable this option to reduce logic utilization at the expense of
IEEE compliance

• Rounding modes:

1. Nearest

2. Down (towards negative infinity)

3. Up (towards positive infinity)

4. Towards zero

When you turn on Fused datapath, you can select only the rounding modes Nearest
and Towards zero. Logic utilization is highest when your design uses rounding mode
Nearest.

Figure 88. Floating-Point Rounding

10.6.4.5. Creating Floating-Point Accumulators for Designs that Use Iteration

In DSP Builder, you can create fixed-point accumulators with one or more channels,
but you cannot create floating-point equivalents.

1. If your design requires a single channel accumulator, use the Acc block.

2. Use multiple channels where the number of channels is at least as large as the
latency of the floating-point adder. The lower limit on the number of channels
depends on fMAX, device family, and speed grade:

a. DSP Builder redistributes sample delays in your multiple channel accumulator.
You cannot rely on DSP Builder preserving the reset state of zero. Use a 2:1
Mux block in your accumulator to make the initial state explicit.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

215

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

b. Use the custom SameDT block to avoid any data type propagation problems
in feedback cycles.

10.7. Newton-Raphson Root Finding Tutorial

This DSP Builder tutorial implements a floating-point iterative algorithm. The tutorial
also demonstrates how to exploit pipeline parallelism.

Consider an application that finds the intersections of two equations:

y = ex

y = mx + c

The design finds the roots of the equation, ex - mx - c = 0, using Newton-Raphson
iteration. The Newton-Raphson part of the design derives an improved approximation
to the root from the previous guess.

Note: The following design examples show the various stages of the Newton-Raphson root
finding tutorial:

• demo_newton_iteration.mdl

• demo_newton_convergence.mdl

• demo_newton_valid.mdl

• demo_newton_control.mdl

• demo_newton_final.mdl

1. Implementing the Newton Design on page 216

2. Improving DSP Builder Floating-Point Designs on page 216

10.7.1. Implementing the Newton Design

1. Add and connect the blocks in the Newton design.

2. Reduce logic usage by configuring the Mult, Add, Sub, and Divide blocks to use
faithful rounding.

3. Create the iteration loop by feeding back the output guess to the input guess
through a SampleDelay block. The design detects when a sample finishes
iterating by comparing the residue with zero.

4. Ensure that the length of this delay is sufficiently large so that the scheduling
succeeds.

5. Turn on the SampleDelay block Minimum delay parameter so that DSP Builder
determines this length automatically.

10.7.2. Improving DSP Builder Floating-Point Designs

In floating-point designs when comparing against zero, many of the samples never
terminate and circulate through the feedback loop indefinitely. Because of the round-
off errors accumulating in the NewtonStep subsystem, the residue may never reach
exactly zero for many of the data samples.

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

216

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Use a subsystem to detect convergence and divergence of the iterative feedback
loop

2. Simulate the design. The number of valid samples on the output far exceeds the
number of valid samples on the input.

3. To track which pipeline slots contain a valid sample, add a control signal path that
lies parallel to the datapath feedback.

4. This 1-bit wide control path must be the same latency as the datapath.

a. Ensure that for both SampleDelay blocks you turn on Minimum delay
enabled.

b. Set the Equivalence Group to the string, newton. When a sample converges
to a root, DSP Builder outputs it as a valid solution and marks the pipeline slot
as empty. If a sample diverges, DSP Builder marks the pipeline slot as empty
but keeps valid low.

5. Simulate this version of the design and verify that the number of valid samples
output equals the number of valid samples input.

The design may exceed the pipeline capacity if you provide too many valid
samples on the input. The scheduled size of the sample delays indicates the
maximum number of pipeline slots that are available for iterative computation. If
you input more than this number, you risk overwriting previous valid samples
before their iteration converges.

6. To overcome this limitation, introduce a FIFO buffer for the input samples. When
an empty pipeline slot becomes available at the front of the pipeline, DSP Builder
removes a sample from the queue from the FIFO buffer and inserts it into the free
slot to begin iterating around the NewtonStep feedback loop.

7. Simulate the design and verify that you can safely input more valid samples than
the pipeline depth of the iterative loop.

8. Set the size of the FIFO buffer to adjust the capacity and ensure that it is as large
as your application requires.

9. The rounding errors of the floating-point blocks can interact in such a way that a
sample forever oscillates between two values: never converging and never
diverging. To detect this oscillation add another control path in parallel to the
datapath feedback to count the number of iterations each sample passes through.

Note: The TooMany subsystem compares the iteration count against a threshold
to detect divergence.

Note: The Mandelbrot_S design example implements another iterative algorithm
that shows parallel feedback loops for floating-point data and control paths.

Note: The matmul_CS design example exploits both vector and pipeline
parallelism. This example also shows how to incorporate memories in the
feedback path to store intermediate results.

10.8. Forcing Soft Floating-point Data Types with the Advanced
Options

The Add, Sub, Mult, Sum of Elements and Scalar Product blocks have default
hard floating-point data types (for devices that implement hard floating-point designs
and single precision only).

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

217

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To force soft floating-point data type, you must perform this task on all applicable
blocks in your design.

1. Type struct('forceSoftFP', 1) in the Advanced Options dialog box.

Related Information

• Add on page 298

• Multiply (Mult) on page 328

• Subtract (Sub) on page 339

• Scalar Product

• Sum of Elements (SumOfElements) on page 340

10. Floating-Point Data Types

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

218

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11. Design Configuration Library
The DSP Builder Design Configuration library blocks control your design flow and
run external synthesis and simulation tools. These blocks set the design parameters,
such as device family, target fMAX, and bus interface signal width.

1. Avalon-MM Slave Settings (AvalonMMSlaveSettings) on page 219

2. Control on page 221

3. Device on page 224

4. Edit Params on page 225

5. LocalThreshold on page 225

11.1. Avalon-MM Slave Settings (AvalonMMSlaveSettings)

The AvalonMMSlaveSettings block specifies information about the top-level
memory-mapped bus interface widths.

Note: You can either use this block in your design or view the Avalon-MM slave interface
settings on the DSP Builder ➤ Avalon Interface menu.

Table 27. Parameters for the AvalonMMSlaveSettings Block

Parameter Description

Bus interface name Specifies the prefix for the address, data and control signals in the generated control bus.

Address width Specifies the width in bits of the memory-mapped address bus (1–32, default=10).

Data width Specifies the width in bits of the memory-mapped data bus (16, 32, or 64, default=16). DSP
Builder does not support byte enables for Avalon-MM slave interface. Only connect masters to this
interface that have the same or a smaller data width. For example, to attach a JTAG master, set
the data width to 32 bits or less.
When using SharedMem block ensure the output data width matches the
AvalonMMSlaveSettings bus data width or is exactly twice the bus data width.

Bus is: Specifies whether the memory-mapped address bus is Big Endian or Little Endian.

Separate bus clock Turn on so any processor-visible control registers are clocked by a separate control bus clock to
ease timing closure.

Bus clock frequency
(MHz)

Specifies the frequency of the separate processor interface bus clock (when enabled).

Bus clock
synchronous with
system clock

Turn on so the bus clock is synchronous with the system clock.

:

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Word and Byte Addressing

Use word addressing when accessing memory-mapped blocks in DSP Builder from the
design logic or through DSP Builder processor interface (using the BusStimuli block).
Use byte addressing when you access the same locations through DSP Builder MATLAB
API. To change the word address to byte address, multiply it by the number of bytes
in AvalonMMSlaveSettings block data width. If you use the BusStimuliFileReader
block to drive the BusStimulus block, ensure values for Data Width and Address
Width parameters exactly match the address and data width you set in Avalon
Interfaces ➤ Avalon-MM Slave Settings

Note: Ensure your access permissions are correct, when using the RegBit, RegField, and
SharedMemblocks from the Interface library.

Note: If you read from a nonreadable address, the output data is not valid.

When using the SharedMem block the output data width is twice the bus data width.
In the DSP Builder processor interface, the block appears to have twice the number of
entries compared with the design view. Also DSP Builder interprets each element in an
initialization array to be of output data width. Use the System Console MATLAB API in
DSP Builder to access the memory-mapped locations in DSP Builder designs on the
FPGA. Use byte addressing when using this interface:
dspba_design_base_address_in_qsys +
(block_address_in_dspba_design* dspba_bus_data_width_bytes)

Read and write requests time out in 1 minute if the device shows no response for the
initiated request. For example:

• Read or write requests to an address that is not assigned to any slave in the top-
level system.

• Read requests to a memory-mapped location that does not have read access (i.e.
write only).

DSP Builder responds to read requests to non-readable or unassigned addresses with
invalid data, because unanswered read requests may block the interconnect, so
further valid requests don’t go through. DSP Builder accepts write requests, but
ignores them if the address is non-writable.

If the subsequent requests to valid addresses and locations continue to time out, the
initial request disables the bus interconnect. You must then reset the system or
reprogram the board.

Additionally, close all your master connections in MATLAB before switching off or
reprogramming the board, because MATLAB corrupts the existing connection. If you
cannot start a new debugging session, restart MATLAB.

Clock Crossing

DSP Builder designs use a separate clock for all processor visible control registers if
you select Separate bus clock in Avalon Interfaces ➤ Avalon-MM Slave
Settings. This clock is asynchronous to a main system clock if you turn off Bus clock
synchronous with system clock.

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

220

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DSP Builder inserts simple two-stage synchronizers between the bus and system clock
domains. DSP Builder adds the synchronization to the autogenerated bus slave logic if
you use any of the Interface blocks (e.g. RegField) and to NCO IP if you enable
writable access to configuration registers inside the NCO.

The DSP Builder-generated timing constraints set maximum and minimum delays for
paths between two different clocks to a big enough range, so timing analyzer doesn’t
show an error. Using this method allows you to overwrite constraints for concrete
paths if required. However, specifying a false path constraint takes precedence over
other constraints.

You can use similar constraints for all such paths in DSP Builder blocks for the higher
level projects.

When you add synchronizers to DSP Builder designs, the Quartus Prime timing
analyzer also provides a metastability report.

Related Information

• Register Bit (RegBit) on page 268

• Register Field (RegField) on page 269

• Shared Memory (SharedMem) on page 270

11.2. Control

The Control block specifies information about the hardware generation environment
and the top-level memory-mapped bus interface widths.

Note: DSP Builder applies globally the options in the Control block to your design.

Note: You must include a Control block in the top-level model.

Table 28. Control Block General Parameters

Parameter Description

Generate hardware Turn on to generate output file.

Hardware description
language

Specify VHDL or Verilog HDL.

Hardware destination
directory

Specify the root directory in which to write the output files. This location can be an absolute path
or a relative path (for example, ../rtl). A directory tree is created under this root directory that
reflects the names of your model hierarchy.

Use separate
working directory for
Quartus Prime
project

Turn on to create separate working directory.

Generate a single
Avalon Conduit
interface for the
Platform Designer

In v18.1 and earlier, DSP Builder designs that you import and generate in Platform Designer have a
single Avalon interface for data, valid, and channel signals. In v19.1 or later, if you regenerate an
existing design, turn on this option to preserve the single Avalon interface.

Small memory
minimum fill

This threshold controls whether the design uses registers or small memories (MLABs) to implement
delay lines. DSP Builder uses a small memory only if it fills it with at least the threshold number of
bits. On device families that don't support small memories, DSP Builder ignores this threshold.

continued...

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

221

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Medium memory
minimum fill

This threshold controls when the design uses a medium memory (M9K, M10K or M20K) instead of a
small memory or registers. DSP Builder uses the medium memory only if it fills it with at least the
threshold number of bits.

Large memory
minimum fill

This threshold controls whether the design uses a large memory (M144K) instead of multiple
medium memories. DSP Builder uses the large memory only when it can fill it with at least the
threshold number of bits. Default prevents the design using any M144Ks. On device families that
don't support large memories, DSP Builder ignores this threshold.

Multiplier: logic and
DSP threshold

Specifies the number of logic elements you want to use to save a multiplier. If the estimated cost
of implementing a multiplier in logic is no more than this threshold, DSP Builder implements that
multiplier in logic. Otherwise DSP Builder uses a hard multiplier. Default means the design always
uses hard multipliers.

Table 29. Control Block Clock Parameters

Parameter Description

Clock signal name Specifies the name of the system clock signal that DSP Builder uses in the RTL generation, in the
_hw.tcl file, and that you see in Platform Designer.

Clock frequency
(MHz)

Specifies the system clock rate for the system.

Clock margin (MHz) Specifies the margin requested to achieve a high system frequency in the fitter. The specified
margin does not affect the folding options because the system runs at the rate specified by the
Clock frequency parameter setting. Specify a positive clock margin if you need to pipeline your
design more aggressively (or specify a negative clock margin to save resources) when you do not
want to change the ratio between the clock speed and the bus speed.

Reset signal name Specifies the name of the reset signal that DSP Builder uses in the RTL generation, the _hw.tcl
file, and that you see in Platform Designer.

Reset active Specifies whether the logic generated is reset with an active high or active low reset signal.

Use default minimum
reset pulse width

Turn on to enter a minimum reset value pulse width.

Minimum reset pulse
width

Enter a value for the minimum number of system clock cycles for which you assert the reset signal
in your target hardware.
This setting does not enforce that your design correctly resets in the number of cycles you specify,
in particular when you apply reset minimization. You should simulate your design with this value
(which DSP Builder applies in the simulation testbench) to confirm that your design works.
DSP Builder reset minimization uses a longer minimum reset pulse width to remove resets on the
control path. Applying a reset value at an earlier register propagates to later registers during the
reset period, without them needing an explicit reset.
When you turn Global enable On, DSP Builder enters a large, minimum reset pulse width
according to the reset-minimization. When you turn Global enable Off it selects a small minimum
reset pulse width as in previous versions of DSP Builder.
DSP Builder reports the actual minimum reset pulse width value when it generates your design.

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

222

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 30. Control Block Testbenches Tab Parameters

Parameter Description

Create automatic
testbenches

Turn on to generate additional automatic testbench files. These files capture the input and output
of each block in a .stm file. DSP Builder creates a test harness (_atb.vhd) that simulates the
generated RTL alongside the captured data. DSP Builder generates a script (<model>_atb.do)
that you can use to simulate the design in ModelSim and ensure bit and cycle accuracy between
the Simulink model and the generated RTL.

Action on
ChannelOut
mismatch

Select Error or Warning.

Action on
ChannelOut
mismatch

Select Error or Warning.

Table 31. Optimization Parameters
Sets the reset minimization parameters, which default to Auto. When set to Auto, DSP Builder turns on
Global enable and Floating-point, if the design targets a HyperFlex device.

Parameter Value Description

Global enable Auto, on, or off Turn on to globally enable reset
minimization. DSP Builder also applies
local settings on the SynthesisInfo
blocks. Reset minimization applies to
all subsystems in your design that
include ChannelIn and ChannelOut
blocks. DSP Builder does not apply
reset minimization to subsystems that
include GPIn and GPOut blocks.

Floating-point Auto, on, or off Turn on to apply reset minimization to
all floating-point operators. Use this
feature when your design employs
floating-point operators that are not
control flow.

From v14.1, the following parameters are in DSP Builder ➤ Avalon Interfaces ➤
Avalon-MM slave or in the optional AvalonMMSlavesettings block:

• System address width

• System data width

• System bus is:

Options in the Control block specify whether hardware generates for your design
example and the location of the generated RTL. You can also create automatic RTL
testbenches for each subsystem in your design example and specify the depth of
signals that DSP Builder includes when your design example simulates in the
ModelSim simulator.

You can specify the address and data bus widths that the memory-mapped bus
interface use and specify whether DSP Builder stores the high-order byte of the
address in memory at the lowest address and the low-order byte at the highest
address (big endian), or the high-order byte at the highest address and the low-order
byte at the lowest address (little endian).

Related Information

Reset Minimization on page 196

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

223

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11.2.1. DSP Builder Memory and Multiplier Trade-Off Options

When your design synthesizes to logic, DSP Builder creates delay blocks, whether
explicitly from primitive delays, or in the IP library blocks. DSP Builder tries to balance
the implementation between logic elements (LEs) and block memories (M9K, M20K,
M20K, or M144K). The trade-off depends on the target FPGA family, but as a guideline
the default trade-off is set to minimize the absolute silicon area the design uses. You
can influence this trade-off.

DSP Builder converts multipliers with a single constant input into balanced adder
trees, which occurs automatically where the depth of the tree is not greater than 2. If
the depth is greater than 2, DSP Builder compares the hard multiplier threshold with
the estimated size of the adder tree, which is generally much lower than the size of a
full soft multiplier. If DSP Builder combines two non-constant multipliers followed by
an adder into a single DSP block, DSP Builder does not convert the multiplier into LEs,
even if a large threshold is present.

11.3. Device

The Device block indicates a particular Simulink subsystem as the top-level design of
an FPGA device. It also specifies a particular device and allows you to specify the
target device and speed grade for the device.

Note: All blocks in subsystems below this level of hierarchy, become part of the RTL design.
All blocks above this level of hierarchy become part of the testbench.

You can hierarchically separate parts of the design into synthesizeable systems. You
must use a Device block, which sets the device family, part number, speed grade, and
so on, to indicate the top-level synthesizable system.

You can further hierarchically split the synthesizeable system into Primitive
subsystems for Primitive blocks and IP blocks.

You can optionally include LocalThreshold blocks to override threshold settings
defined higher up the hierarchy.

DSP Builder generates project files and scripts that relate to this level of hierarchy. All
blocks in subsystems below this level become part of the RTL design. All blocks above
this level of hierarchy become part of the testbench.

You can insert multiple Device blocks in non-overlapping subsystems to use multiple
FPGAs in the same design. You can mix device families freely.

Table 32. Parameters for the Device Block

Parameter Description

Device family Select the required target device family.

Device Select the specific device.

Family member Specify the device member as free-form text or enter AUTO for automatic selection. Click
on ... to display the Device Selector.

Speed grade Select the speed grade for the FPGA target device.

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

224

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11.4. Edit Params

The Edit Params block opens the setup_<model name>.m file. If you call your set
up script setup_<model_name>.m you can use the Edit Params block in your
design as a shortcut to open the set-up file.

The Edit Params block is available as a functional block in the Simulink library
browser. To view it open the library, by right clicking on the Design Configuration
Blocks library in the Simulink Library Browser and selec Open Design
Configuration Blocks Library.

Examples of Edit Params blocks are in many of the design examples.

To call your script automatically:

• When your model opens, add a PreloadFcn reference to your script in the
Callbacks tab of your Model Properties in Simulink.

• At the start of a simulation run, add a InitFcn reference to your script in the
Callbacks tab of your Model Properties in Simulink.

11.5. LocalThreshold

The LocalThreshold block allows hierarchical overrides of the global clock margin and
threshold settings set on the Control and Signals blocks.

You can place the LocalThreshold block anywhere in your design to define over-ride
values for the margin and threshold settings for that subsystem and any embedded
subsystems. You can over-ride these values further down in the hierarchy by
implementing more LocalThreshold blocks.

For example, you can specify different clock margins for different regions of your
design.

Table 33. Parameters for the LocalThreshold Block

Parameter Description

Clock margin (MHz) Specifies the margin to influence the tradeoff between performance and resources.. The specified
margin does not affect the folding options because the system runs at the rate specified by the
Clock frequency parameter setting. Specify a positive clock margin if you need to pipeline your
design more aggressively (or specify a negative clock margin to save resources) when you do not
want to change the ratio between the clock speed and the bus speed.

Generation Thresholds

Small memory
minimum fill

This threshold controls whether registers or small memories (MLABs) implement delay lines. DSP
Builder uses a small memory only if it fills it with at least the threshold number of bits. On device
families that don't support small memories, DSP Builder ignores this threshold.

Medium memory
minimum fill

This threshold controls when the design uses a medium memory (M9K, M10K or M20K) in place of
a small memory or registers. DSP Builder uses the medium memory only if it fills it with at least
the threshold number of bits.

continued...

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

225

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Large memory
minimum fill

This threshold controls whether the design uses a large memory (M144K) instead of multiple
medium memories. DSP Builder uses the large memory only when it can fill it with at least the
threshold number of bits. Default prevents the design using any M144Ks. On device families that
don't support large memories, DSP Builder ignores this threshold.

Multiplier: logic and
DSP threshold

Specifies the number of logic elements you want to use to save a multiplier. If the estimated cost
of implementing a multiplier in logic is no more than this threshold, DSP Builder implements that
multiplier in logic. Otherwise DSP Builder uses a hard multiplier. Default means the design always
uses hard multipliers.

Apply Karatsuba
method to complex
multiply blocks

Implements this equation: (a+jb) * (c+jd) = (a-b)*(c+d) - a*d + b*c + j(a*d + b*c). DSP Builder
includes internal preadder steps into DSP blocks but you see bit growth in the multipliers.

This block has no inputs or outputs.

Related Information

DSP Builder Memory and Multiplier Trade-Off Options on page 224

11. Design Configuration Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

226

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. IP Library
Use the DSP Builder advanced blockset IP library blocks to implement full IP
functions. Only use these blocks outside of primitive subsystems.

1. Channel Filter and Waveform Library on page 227

2. Dependent Delay Library on page 255

3. FFT IP Library on page 256

12.1. Channel Filter and Waveform Library

The DSP Builder advanced blockset Channel Filter and Waveform library contains
several decimating and interpolating cascaded integrator comb (CIC), and finite
impulse response (FIR) filters including single-rate, multirate, and fractional rate FIR
filters.

Multirate filters are essential to the up and down conversion tasks that modern radio
systems require. Cost effective solutions to many other DSP applications also use
multirate filters to reduce the multiplier count.

FIR filter memory-mapped interfaces allow you to read and write coefficients directly,
easing system integration.

1. DSP Builder FIR and CIC Filters on page 228

2. DSP Builder FIR Filters on page 231

3. Channel Viewer (ChanView) on page 233

4. Complex Mixer (ComplexMixer) on page 234

5. Decimating CIC on page 236

6. Decimating FIR on page 237

7. Fractional Rate FIR on page 239

8. Interpolating CIC on page 242

9. Interpolating FIR on page 243

10. NCO on page 245

11. Real Mixer (Mixer) on page 250

12. Scale on page 252

13. Single-Rate FIR on page 253

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

12.1.1. DSP Builder FIR and CIC Filters

Finite impulse response (FIR) and cascaded integrator comb (CIC) filters share many
common features and use advanced high-level synthesis techniques to generate filters
with higher clock speeds, lower logic, multiplier, and memory counts. Using these high
clock rates allows you to reduce your costs by choosing smaller FPGAs.

1. Common CIC and FIR Filter Features on page 228

2. Updated Help on page 229

3. Half-Band and L-Band Nyquist FIR Filters on page 230

4. Parameterization of CIC and FIR Filters on page 230

5. Setting and Changing FIR Filter Coefficients at Runtime in DSP Builder on page
231

12.1.1.1. Common CIC and FIR Filter Features

• Filter length from 1 to unlimited taps

• Data input width from 2 to 32 bits

• Data output width from 4 to 64 bits

• Multichannel (up to 256 channels)

• Powerful MATLAB integration

• Simulink fixed-point integration

• Automatic pipelining

• Plug and play connectivity

• Simplified timing closure

• Generates updated help for your parameters

Note: Each channel is an independent data source. In an IF modem design, two channels are
required for the complex pair from each antenna.

Note: This library does not support complex data.

Note: All input data and coefficients must be fixed-point data.

Automatic Pipelining

The required system clock frequency, and the device family and speed grade
determine the maximum logic depth permitted in the output RTL. DSP Builder
pipelines functions such as adders by splitting them into multiple sections with a
registered carry between them. This pipelining decreases the logic depth allowing
higher frequency operation.

High-Speed Operation

The DSP Builder filter generator is responsive to the system clock frequency, therefore
timing closure is much easier to achieve. The generator uses heuristics that ensure
the logic can run at the desired system clock frequency on the FPGA. You can help
timing closure by adding more clock margin, resulting in additional pipelining that
shortens the critical paths.The FPGA structures such as internal multiplier and memory
delays determine the maximum clock frequencies.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

228

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Scalability

In some cases, the aggregate sample rate for all channels may be higher than the
system clock rate. In these cases, the filter has multiple input or output buses to carry
the additional data, so DSP Builder implements this requirement in the Simulink block
by increasing the vector width of the data signals.

Coefficient Generation

You can generate filter coefficients using a MATLAB function that reloads at run time
with the memory-mapped interface registers. For example, the Simulink fixed-point
object fi(fir1(49, 0.3),1,18,19)

Channelization

The generated help page for the block shows the input channel data format and
output data channel format that a FIR or CIC filter uses, after you run a Simulink
simulation.

12.1.1.2. Updated Help

After you run a simulation, DSP Builder updates the help pages with specific
information about each instance of a block. This updated help overrides the default
help link. To find the updated help click on the help link on the block after simulation.

This updated help includes a link back to the help for the general block and the
following information about the generated FIR instance:

• Date and time of generation

• The version number and revision for the FIR

• Number of physical input and output data buses

• Bit width of data output.

• Number of different phases

• Implementation folding. The number of times that the design uses each multiplier
per sample to reduce the implementation size.

• Filter utilization. For some sample rates and some interpolation/decimation
settings, the filter may stall internally one or more cycles. The filter utilization is
the percentage of time that the filter is actively working, assuming that the input
arrives at the specified data rate.

• Tap utilization. When some filters are folded, the design may have extra unused
taps. The extra taps increase the filter length with no hardware resource increase.

• Latency. The depth of pipelining added to the block to meet the target clock
frequency on the chosen target device.

• Parameters table that lists the system clock, clock margin, and all FIR input
parameters.

• Port interface table.

• Input and output data format. An ASCII rendering of the input and output
channelized data ordering.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

229

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The updated help includes the following information about the CIC instance:

• Date and time of generation

• The version number and revision for the CIC

• Number of integrators. Depending on the input data rate and interpolation factor
the number of integrator stages DSP Builder needs to process the data may be
more than 1. In these instances, the integrator sections of the filter duplicate
(vectorize) to satisfy the data rate requirement.

• Calculated output bit width. The width in bits of the (vectorized) data output from
the filter.

• Calculated stage bit widths. Each stage in the filter has precise width in bits
requirements—N comb sections followed by N integrator sections.

• The gain through the CIC filter. CIC filters usually have large gains that you must
scale back.

• Comb section utilization. In the comb section, the data rate is lower, so that you
can perform more resource sharing. This message indicates the efficiency of the
subtractor usage.

• Integrator section utilization. In the integrator section, the data rate is higher, so
that you can perform less resource sharing. This message indicates the efficiency
of the adder usage.

• The latency that this block introduces.

• Parameters table that lists the decimation rate, number of stages, differential
delay, number of channels, clock frequency, and input sample rate parameters.

• Port interface table.

• Input and output data format.

12.1.1.3. Half-Band and L-Band Nyquist FIR Filters

Some filtering functions can use a half-band filter where nearly half of the coefficients
are zero. The half-band support uses these extra zeros to further reduce the number
of multipliers, and thereby reduce the filter cost.

The generalized form of these filters is L-band Nyquist filters, in which every Lth
coefficient is zero counting out from the center tap. DSP Builder also supports these
structures and can often reduce the number of multipliers required in a filter.

12.1.1.4. Parameterization of CIC and FIR Filters

The system specification, including the channel count and sample rates, determines
the main parameters for a filter. The enclosing Simulink mode infers the remaining
parameters such as data widths and system clock rates. Any changes to these
parameters ripple through your design, changing the system performance without you
having to update all the components. You can express any of the parameters as
MATLAB expressions, to rapidly parameterize a whole system.

The hardware generation techniques create efficient filters with combinations of
parameters, such as a symmetric 3-band FIR filter with seven channels and 100 cycles
to process a sample from each channel. Hardware generation is fast and can change
at runtime with every Simulink simulation, so that the edit simulation loop time is
much reduced, improving productivity.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

230

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12.1.1.5. Setting and Changing FIR Filter Coefficients at Runtime in DSP Builder

1. Set the base address of the memory-mapped coefficients with the Base address
parameter.

2. Set the filter coefficients by entering a Simulink fixed-point array into the
Coefficients parameter.

3. Generate a vector of coefficients either by entering an array of numbers, or using
one of the many MATLAB functions to build the required coefficients.

4. Update the parameters through a processor interface during run time using the
BusStimulus block. Alternatively, update the parameters from you model by
exposing hidden processor interface ports (turn on Expose Bus Ports).

12.1.2. DSP Builder FIR Filters

1. FIR Filter Avalon-MM Interfaces on page 231

2. Reconfigurable FIR Filters on page 232

12.1.2.1. FIR Filter Avalon-MM Interfaces

All DSP Builder FIR blocks can provide Avalon-MM interfaces to coefficients, allowing
you to change the coefficient values at run time.

• To allow read, write, or readwrite access to coefficients from system bus
interfaces, select Read, Write, or Readwrite for the FIR block Bus mode. Select
Constant to disable this interface.

• Specify the bus address width and data type on the FIR block and on the Avalon-
MM Slave Settings block. FIR blocks automatically generate the appropriate bus
slave logic and interface for your design.

• To place the bus slave logic on a separate clock domain specify Separate bus
clock in the Avalon MM Slave Settings block.

• DSP Builder hides the slave interface ports by default in the simulation model. Use
the BusStimulus block to access this interface during simulation (similar to
Interface blocks). Use the base address specified on the FIR block for accessing
the coefficients.

• In generated RTL, DSP Builder adds these ports to FIR blocks and routes them to
the Avalon-MM slave interface. Set the width of data and address ports (Avalon
Data and Address Width) in the Avalon-MM Slave Settings block.

Note: If the FIR coefficient is wider than Avalon-MM data width, the design requires several
accesses to write or read a single coefficient.

In your higher level system, access FIR coefficients through the slave interface at the
base address you specified on the FIR block.

Note: The FIR base address is now an offset from the base address assigned to the slave
interface in your Platform Designer system.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

231

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you expose bus interface ports in the Simulink design (turn on Expose Bus
Interface), a valid sub-set of Avalon MM slave interface ports appears on the block
based on the selected bus mode. You can now make direct connections to these ports
in the Simulink model for accessing the coefficients. The FIR coefficient width sets the
data ports (write and read). DSP Builder places bus slave logic on the system clock
domain.

Table 34. FIR Filter Avalon-MM Ports
Your design contains address when Read/Write Mode is not Constant, write when Read/Write Mode is
Write or ReadWrite, read and valid when Read/Write Mode is Read or ReadWrite

Name Direction Description

address Input Address of the request. DSP Builder adds address to your
design when Bus Mode is not set to Constant.
The port width depends on the Bus Address Width in the
Avalon-MM Slave Settings block.
For the first coefficient use the Base Address you specify
for the block and for the last one use: Base Address +
Number Of Coefficients -1

data Input Write data.
The port width depends on the coefficient width of the FIR
block.
Set data and address and assert write port
simultaneously to initiate a write request.

read Input Read enable.
Set the address to a valid address and assert this single-
bit input simultaneously every time you want to initiate a
read request.
After sending a read request, wait for valid to be asserted
indicating that read data is available on readdata.
You don’t need to wait for the completion of the first read
request to initiate a second read request. The slave
supports pipelined reads. DSP Builder provides the
responses in the exact same order you send the read
requests.

write Input Write enable.
Assert this single-bit input every time you need to initiate a
write request.
Do not assert read and write ports at the same time,
otherwise, you see undefined behavior.

readdata Output Read data.
DSP Builder sets the port width the same as the FIR
coefficient width. This output provides data for read
responses.
Only capture this output if you assert valid output.

valid Output Read data valid.
This single-bit output indicates that valid data is available
on readdata.

Related Information

Avalon-MM Slave Settings (AvalonMMSlaveSettings) on page 219

12.1.2.2. Reconfigurable FIR Filters

Trades off the bandwidth of different channels at runtime.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

232

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The input rate determines the bandwidth of the FIR. If you turn off Reconfigurable
carrier (nonreconfigurable FIR), the IP core allocates this bandwidth equally amongst
each channel. The reconfigurable FIR feature allows the IP core to allocate the
bandwidth manually. You set these allocations during parameterization and you can
change which allocation the IP core uses at run-time using the mode signal. You can
use one channel's bandwidth to process a different channel's data. You specify the
allocation by listing the channels you want the IP core to process in the mode
mapping. For example, a mode mapping of 0,1,2,2 gives channel 2 twice the
bandwidth of channel 0 and 1, at the cost of not processing channel 3.

12.1.3. Channel Viewer (ChanView)

The ChanView block deserializes the bus on its inputs to produce a configurable
number of output signals that DSP Builder does not apply TDM protocol.

You can use a ChanView block in a testbench to visualize the contents of the TDM
protocol. It produces synthesizable RTL, so you can use it anywhere in your design.

When a single channel is input, the ChanView block strips out all the non-valid
samples, thus cleaning up the display in the Simulink scope.

The channel outputs are not aligned. For example, if you have input channels c0 and
c1 on a single wire and view both channels, the output is not aligned.

Figure 89. Channel Viewer Output for Two Channels on a Single Wire

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

233

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can add delays after ChanView blocks if you want to realign the output channels.

Table 35. Parameters for the ChanView Block

Parameter Description

Number of input
channels

Specifies the number of unique channels the block can process. The design does
not use this parameter unless the data bus is a vector or the folding factor is
greater than the number of channels. If the data bus is a vector, this value
determines which vector element contains the correct channel.

Output channels A vector that controls the input channels to decode and present as outputs. The
number of outputs equals the length of this vector, and each output corresponds
to one channel in order.

Table 36. Port Interface for the ChanView Block

Signal Direction Description

q Input The data input to the block. This signal may be a vector. This block does not support
floating-point types.

v Input Indicates validity of data input signals. If v is high, the data on the wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates which channel
the data corresponds to.

cn Output Each output is a deserialized version of the channel contained on the TDM bus. The
output value is updated on each clock cycle that has valid data when the channel
matches the required channel.

ov Output Optional. Pulses 1 at last cycle of a frame (when all held channel output signals have
correct value for the frame) provided valid is high throughout the frame data.

After DSP Builder runs a simulation, it updates the help pages with specific
information about each instance of a block. For resource usage, on the DSP Builder
menu, point to Resources, and click Design.

Table 37. Messages for the ChanView Block

Message Example Description

Written on Tue Feb 19 11:25:27
2008

Date and time when you ran this file.

Latency is 2 The latency that this block introduces.

Port interface table Lists the port interfaces to the ChanView block.

12.1.4. Complex Mixer (ComplexMixer)

The ComplexMixer block performs a complex by complex multiply on streams of data
and it splits the inputs and outputs into their real and imaginary components. This
function can shift the frequency of a data stream in a digital up converter, where the
first complex data is the i and q data and the second complex data is the cosine and
sine data provided by an NCO.

The ComplexMixer block multiplies a complex input stream by a synchronized
complex data stream, sample by sample.

You can use this block in a digital up converter for a radio system or a general purpose
DSP application. The data has fixed-point types, and the output is the implied full
precision fixed-point type.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

234

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can easily replicate the ComplexMixer block with a Multiply block that takes
complex inputs within a Primitive subsystem.

The ComplexMixer performs element-by-element multiplication on n channels and m
frequencies.

The system specification, including such factors as the channel count and sample
rates, determines the main parameters for this block. The input sample rate of the
block determines the number of channels present on each input wire and the number
of wires:

Number of Channels per wire = Clock_Rate/Sample_Rate

Number of Wires = ceiling(Chan_Count×Sample_Rate/Clock_Rate)

For example, a sample rate of 60 MSPS and system clock rate of 240 MHz gives four
samples to be TDM on to each input wire.

If a wire has more channels than TDM slots available, the input wire is a vector of
sufficient width to hold all the samples. Similarly, the number of frequencies (the
number of complex numbers) determines the width of the sine and cosine inputs. The
number of results produced by the ComplexMixer is the product of the sample input
vector and the frequency vector. The results are TDM on to the i and q outputs in a
similar manner to the inputs.

Table 38. Parameters for the ComplexMixer Block

Parameter Description

Input Rate Per Channel (MSPS) The data rate per channel measured in millions of samples per second.

Number of Complex Channels The number of complex input channels.

Number of Frequencies The number of complex frequencies in the multiplier.

Table 39. Port Interface for the ComplexMixer Block

Signal Direction Description

i Input The real (in phase) component of the complex data input. If you request more channels than can fit
on a single bus, this signal is a vector. The width in bits inherits from the input wire.

q Input The imaginary (quadrature phase) component of the complex data input. If you request more
channels than can fit on a single bus, this signal is a vector. The width in bits inherits from the input
wire.

v Input Indicates validity of data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates the data channel data.

sin Input The imaginary part of the complex number. For example, the NCO's sine output.

cos Input The real part of the complex number. For example, the NCO’s cosine output.

i Output The in-phase (real) output of the mixer, which is (i × cos – q × sin). If you request more channels
than can fit on a single bus, this signal is a vector. The width in bits is wide enough for the full
precision result.

q Output The quadrature phase (imaginary) output of the mixer, which is (i × sin + q × cos). If you request
more channels than can fit on a single bus, this signal is a vector. The width in bits is wide enough for
the full precision result.

v Output Indicates validity of data output signals.

c Output Indicates the channel of the data output signals.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

235

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The ComplexMixer block performs the multiplication on corresponding components;
the RealMixer block does not. The ComplexMixer block uses modulo indexing if one
vector is shorter than another. Hence, the output vector width is the maximum of the
widths of the input vectors. The RealMixer block performs a full outer product on the
input vectors. The number of components in the output vector is the product of the
width of the input vectors for sin and cos (must be the same) and the width of the
input vector for a.

12.1.5. Decimating CIC

The DecimatingCIC block implements a highly efficient multichannel CIC filter across
a broad range of parameters directly from a Simulink model.The DecimatingCIC
block performs filtering on a stream of multichannel input data and produces a stream
of output data with decreased sampling frequency.

You can use the DecimatingCIC block in a digital down converter for a radio system
or a general purpose DSP application. The coefficients and input data are fixed-point
types, and the output is the implied full-precision fixed-point type. You can reduce the
precision with a separate Scale block, which can perform rounding and saturation to
provide the required output precision.

The DecimatingCIC block supports rate changes from two upwards.

The DecimatingCIC has a lower output sample rate than the input sample rate by a
factor D, where D is the decimation factor. Usually, the DecimatingCIC discards (D–
1) out of D output samples thus lowering the sample rate by a factor D. The physical
implementation avoids performing additions leading to these discarded samples,
reducing the filter cost.

Figure 90. Decimate by 5 Filter Decreasing Sample Rate of a Random Noise Input

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

236

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 40. Parameters for the DecimatingCIC Block

Parameter Description

Input rate per
channel

Specifies the sampling frequency of the input data per channel measured in millions of samples
per second (MSPS).

Number of channels Specifies the number of unique channels to process.

Number of stages Specifies the number of comb and integrator stages.

Decimation factor Specifies the decimation factor 1/(integer). (An integer greater than 1 implies interpolation.)

Differential delay Specifies the differential delay.

Table 41. Port Interface for the DecimatingCIC Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit on a single bus,
this signal is a vector. The width in bits is inherited from the input wire.

v Input Indicates validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates channel of data input signals. If v is high, c indicates which channel the data corresponds
to.

bypass Input When this input asserts, the input data is zero-stuffed and scaled by the gain of the filter, which is
useful during hardware debugging.

q Output The data output from the block. If you request more channels than can fit on a single bus, this
signal is a vector. The width in bits is a function of the input width in bits and the parameterization.

v Output Indicates validity of data output signals.

c Output Indicates channel of data output signals.

Related Information

DSP Builder FIR and CIC Filters on page 228

12.1.6. Decimating FIR

The DecimatingFIR block implements a highly efficient multichannel FIR filter across
a broad range of parameters directly from a Simulink model. A memory-mapped
interface allows you to read and write coefficients directly, easing system integration.
The Decimating FIR block performs filtering on a stream of multichannel input data
and produces a stream of output data with increased sampling frequency.

Use the Decimating FIR block in a digital down converter for a radio system or a
general purpose DSP application. The coefficients and input data are fixed-point types,
and the output is the implied full precision fixed-point type. You can reduce the
precision by using a separate Scale block, which can perform rounding and saturation
to provide the required output precision.

The Decimating FIR block supports rate changes from two upwards, coefficient width
in bits from 2 to 32 bits, half-band and L-band Nyquist filters, real and complex filters,
symmetry and anti(negative)-symmetry.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

237

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 91. Decimating by 5 Filter Decreasing Sample Rate of a Sine Wave Input

At each sample time k, the new output y, is calculated by multiplying coefficients a, by
the recent past values of the input x.

The Decimating FIR has a lower output sample rate than the input sample rate by a
factor, D, the decimation factor. The decimating FIR discards D–1 out of D output
samples, thus lowering the sample rate by a factor D.

The physical implementation avoids performing multiplications with these zero
samples, reducing the filter cost.

Table 42. Parameters for the DecimatingFIR Block

Parameter Description

Input rate per channel Specifies the sampling frequency of the input data per channel measured in millions of samples
per second (MSPS).

Decimation Specifies the decimation rate. Must be an integer.

Number of channels Specifies the number of unique channels to process.

Symmetry You can select Symmetrical or Anti-Symmetrical coefficients. Symmetrical coefficients can
result in hardware resource savings over the asymmetrical version.

Coefficients You can specify the filter coefficients using a Simulink fixed-point object fi(0). The data type of
the fixed-point object determines the width and format of the coefficients. The length of the array
determines the length of the filter.
For example, fi(fir1(49, 0.3),1,18,19)

Base address You can memory map the filter's coefficients into the address space of the system. This field
determines the starting address for the coefficients. It is specified as a MATLAB double type
(decimal integer) but you can use a MATLAB expression to specify a hexadecimal or octal type if
required.

continued...

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

238

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Read/Write mode You can allow Read, Write, or Read/Write access from the system interface. Turn on
Constant. to map coefficients to the system address space.

Filter structure You can select Use All Taps, Half Band, or other specified band (from 3rd Band to 46th
Band).

Expose Avalon-MM
Slave in Simulink

Allows you to reconfigure coefficients without Platform Designer. Also, it allows you to reprogram
multiple FIR filters simultaneously. Turn on to show the Avalon-MM inputs and outputs as normal
ports in Simulink. The Read/Write mode decides the valid subset of Avalon-MM slave ports that
appear on the block. If you select Constant, the block shows no Avalon-MM ports.

Reconfigurable
channels

Turn on for a reconfigurable FIR filter.

Channel mapping Enter parameters as a MATLAB 2D aray for reconfigurable FIR filter. Each row represents a mode;
each entry in a row represents the channel input on that time slot. For example, [0,0,0,0;0,1 2,3]
gives the first element of the second row as 0, which means DSP Builder processes channel 0 on
the first cycle when the FIR is set to mode 1.

For more information about Simulink fixed-point objects and MATLAB functions, refer
to the MATLAB Help.

Table 43. Port Interface for the DecimatingFIR Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit on a single
bus, this signal is a vector. The width in bits is inherited from the input wire.

v Input Indicates validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, then c indicates which channel the
data corresponds to.

m Input Indicates a reconfigurable filter.

b Input Indicates multibank filter. This input appears when you add a second filter definition to the
Coefficients parameter in the parameters dialog box.

q Output The fixed-point filtered data output from the block. If you request more channels than can fit on
a single bus, this signal is a vector. The width in bits is a function of the input width in bits and
the parameterization.

v Output Indicates validity of data output signals.

c Output Indicates the channel of the data output signals. The output data can be non-zero when v is low.

Related Information

• DSP Builder FIR and CIC Filters on page 228

• DSP Builder FIR Filters on page 231

12.1.7. Fractional Rate FIR

The FractionalRateFIR block implements a highly efficient multichannel FIR filter
across a broad range of parameters directly from a Simulink model. A memory-
mapped interface allows you to read and write coefficients directly, easing system
integration. The FractionalRateFIR block performs filtering on a stream of
multichannel input data and produces a stream of output data with increased sampling
frequency.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

239

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the FractionalRateFIR block in a digital down converter for a radio
system or a general purpose DSP application. The coefficients and input data are
fixed-point types, and the output is the implied full precision fixed-point type. You can
reduce the precision by using a separate Scale block, which can perform rounding and
saturation to provide the required output precision.

The FractionalRateFIR block supports:

• Interpolation rate changes and decimation rate changes from two upwards

• Rational fractional rate changes

• Coefficient width in bits from 2 to 32 bits

• Half-band and L-band Nyquist filters

• Symmetry and anti(negative)-symmetry.

In the basic filter operation, at each sample time, k, the new output y, is calculated by
multiplying coefficients a, by the recent past values of the input x.

The FractionalRateFIR has a modified output sample rate that differs from the input
sample rate by a factor, I /D, where I is the interpolation rate and D is the decimation
factor. Usually, the fractional rate interpolates by a factor I by inserting (I–1) zeros
before performing the filter operation. Then the FIR discards D–1 out of D output
samples, thus lowering the sample rate by a factor D.

The physical implementation avoids performing multiplications with these zero
samples, reducing the filter cost.

Figure 92. Sample Rate of a Sine Wave Input Interpolated by 3 and Decimated by 2

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

240

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 44. Parameters for the FractionalRateFIR Block

Parameter Description

Input rate per channel Specifies the sampling frequency of the input data per channel measured in millions of samples
per second (MSPS).

Interpolation Specifies the interpolation rate. Must be an integer.

Decimation Specifies the decimation rate. Must be an integer.

Number of channels Specifies the number of unique channels to process.

Symmetry You can select Symmetrical or Anti-Symmetrical coefficients. Symmetrical coefficients can
result in hardware resource savings over the asymmetrical version.

Coefficients You can specify the filter coefficients using a Simulink fixed-point object fi(0). The data type of
the fixed-point object determines the width and format of the coefficients. The length of the array
determines the length of the filter.
For example, fi(fir1(49, 0.3),1,18,19).

Base address You can memory map the filter's coefficients into the address space of the system. This field
determines the starting address for the coefficients. It is specified as a MATLAB double type
(decimal integer) but you can use a MATLAB expression to specify a hexadecimal or octal type if
required.

Read/Write mode You can allow Read, Write, or Read/Write access from the system interface. Turn on
Constant. to map coefficients to the system address space.

Filter structure You can select Use All Taps, Half Band, or a specified band (from 3rd Band to 46th Band).

Expose Avalon-MM
Slave in Simulink

Allows you to reconfigure coefficients without Platform Designer. Also, it allows you to reprogram
multiple FIR filters simultaneously. Turn on to show the Avalon-MM inputs and outputs as normal
ports in Simulink. The Read/Write mode decides the valid subset of Avalon-MM slave ports that
appear on the block. If you select Constant, the block shows no Avalon-MM ports.

Reconfigurable
channels

Turn on for a reconfigurable FIR filter.

Channel mapping Enter parameters as a MATLAB 2D aray for reconfigurable FIR filter. Each row represents a mode;
each entry in a row represents the channel input on that time slot. For example, [0,0,0,0;0,1 2,3]
gives the first element of the second row as 0, which means DSP Builder processes channel 0 on
the first cycle when the FIR is set to mode 1.

Table 45. Port Interface for the FractionalRateFIR Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit on a single
bus, this signal is a vector. The width in bits is inherited from the input wire.

v Input Indicates validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates which channel the data
corresponds to.

b Input Indicates multibank filter. This input appears when you add a second filter definition to the
Coefficients parameter in the parameters dialog box.

m Input Indicates reconfigurable filter.

q Output The fixed-point filtered data output from the block. If you request more channels than can fit on
a single bus, this signal is a vector. The width in bits is a function of the input width in bits and
the parameterization.

v Output Indicates validity of data output signals. The output data can be non-zero when v is low.

c Output Indicates the channel of the data output signals. The output data can be non-zero when v is low.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

241

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• DSP Builder FIR and CIC Filters on page 228

• DSP Builder FIR Filters on page 231

12.1.8. Interpolating CIC

The InterpolatingCIC block implements a highly efficient multichannel cascaded
integrator-comb filter across a broad range of parameters directly from a Simulink
model. The InterpolatingCIC block performs filtering on a stream of multichannel
input data and produces a stream of output data with increased sampling frequency.

You can use the InterpolatingCIC block in a digital up converter for a radio system
or a general purpose DSP application. The coefficients and input data are fixed-point
types, and the output is the implied full precision fixed-point type. You can reduce the
precision by using a separate Scale block, which can perform rounding and saturation
to provide the required output precision.

The InterpolatingCIC block supports rate changes from two upwards.

The InterpolatingCIC has a higher output sample rate than the input sample rate by
a factor I, where I is the interpolation rate. Usually, the InterpolatingCIC inserts (I–
1) zeros for every input sample, thus raising the sample rate by a factor I.

Figure 93. Interpolate by 5 Filter Increasing Sample Rate of a Sine Wave Input

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

242

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 46. Parameters for the InterpolatingCIC Block

Parameter Description

Input rate per channel Specifies the sampling frequency of the input data per channel measured in millions of samples
per second (MSPS).

Number of channels Specifies the number of unique channels to process.

Number of stages Specifies the number of comb and integrator stages.

Interpolation factor Specifies the interpolation factor. Must be an integer.

Differential delay Specifies the differential delay.

Final decimation You can optionally specify a final decimation by 2 to allow interpolation rates which are multiples
of 0.5. The decimation works by simply throwing away data values. Only use this option to reduce
the number of unique outputs the CIC generates.

Table 47. Port Interface for the InterpolatingCIC Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit on a single bus,
this signal is a vector. The width in bits is inherited from the input wire.

v Input Indicates validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates which channel the data
corresponds to.

bypass Input When this input is asserted, the input data is zero-stuffed and scaled by the gain of the filter. This
option can be useful during hardware debug.

q Output The fixed-point filtered data output from the block. If you request more channels than can fit on a
single bus, this signal is a vector. The width in bits is a function of the input width in bits and the
parameterization.

v Output Indicates validity of data output signals. The output data can be non-zero when v is low.

c Output Indicates the channel of the data output signals. The output data can be non-zero when v is low.

Related Information

DSP Builder FIR and CIC Filters on page 228

12.1.9. Interpolating FIR

The InterpolatingFIR block implements a highly efficient multichannel FIR filter
across a broad range of parameters directly from a Simulink model. A memory-
mapped interface allows you to read and write coefficients directly, easing system
integration. The InterpolatingFIR block performs filtering on a stream of
multichannel input data and produces a stream of output data with increased sampling
frequency.

You can use the InterpolatingFIR block in a digital up converter for a radio system
or a general purpose DSP application. The coefficients and input data are fixed-point
types, and the output is the implied full precision fixed-point type. You can reduce the
precision by using a separate Scale block, which can perform rounding and saturation
to provide the required output precision.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

243

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The InterpolatingFIR block supports:

• Rate changes from two upwards

• Coefficient width in bits from 2 to 32 bits

• Data output width in bits from 4 to 64 bits

• Half-band and L-band Nyquist filters

• Symmetry and anti(negative)-symmetry

• Real filters

In the basic equation, at each sample time k, the new output y, is calculated by
multiplying coefficients a, by the recent past values of the input x.

The InterpolatingFIR has a higher output sample rate than the input sample rate by
a factor, I, the interpolation factor. Usually, the interpolating FIR inserts I–1 zeroes for
every input sample, thus raising the sample rate by a factor I.

The physical implementation avoids performing multiplications with these zero
samples, reducing the filter cost.

Figure 94. Interpolate by 2 Filter Increasing Sample Rate of a Sine Wave Input

Table 48. Parameters for the InterpolatingFIR Block

Parameter Description

Input rate per channel Specifies the sampling frequency of the input data per channel measured in millions of samples
per second (MSPS).

Interpolation Specifies the interpolation rate. Must be an integer.

Number of channels Specifies the number of unique channels to process.

continued...

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

244

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Symmetry You can select Symmetrical or Anti-Symmetrical coefficients. Symmetrical coefficients can
result in hardware resource savings over the asymmetrical version.

Coefficients You can specify the filter coefficients using a Simulink fixed-point object fi(0). The data type of
the fixed-point object determines the width and format of the coefficients. The length of the array
determines the length of the filter.
For example, fi(fir1(49, 0.3),1,18,19).

Base address You can memory map the filter's coefficients into the address space of the system. This field
determines the starting address for the coefficients. It is specified as a MATLAB double type
(decimal integer) but you can use a MATLAB expression to specify a hexadecimal or octal type if
required.

Read/Write mode You can allow Read, Write, or Read/Write access from the system interface. Turn on
Constant. to map coefficients to the system address space.

Filter structure You can select Use All Taps, Half Band, or a specified band (from 3rd Band to 46th Band).

Expose Avalon-MM
Slave in Simulink

Allows you to reconfigure coefficients without Platform Designer. Also, it allows you to reprogram
multiple FIR filters simultaneously. Turn on to show the Avalon-MM inputs and outputs as normal
ports in Simulink. The Read/Write mode decides the valid subset of Avalon-MM slave ports that
appear on the block. If you select Constant, the block shows no Avalon-MM ports.

Reconfigurable
channels

Turn on for a reconfigurable FIR filter.

Channel mapping Enter parameters as a MATLAB 2D aray for reconfigurable FIR filter. Each row represents a mode;
each entry in a row represents the channel input on that time slot. For example, [0,0,0,0;0,1 2,3]
gives the first element of the second row as 0, which means DSP Builder processes channel 0 on
the first cycle when the FIR is set to mode 1.

Table 49. Port Interface for the InterpolatingFIR Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit on a single
bus, this signal is a vector. The width in bits is inherited from the input wire.

v Input Indicates validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates which channel the data
corresponds to.

m Input Indicates reconfigurable filter.

b Input Indicates multibank filter. This input appears when you add a second filter definition to the
Coefficients parameter in the parameters dialog box.

q Output The fixed-point filtered data output from the block. If you request more channels than can fit on
a single bus, this signal is a vector. The width in bits is a function of the input width in bits and
the parameterization.

v Output Indicates validity of data output signals. The output data can be non-zero when v is low

c Output Indicates the channel of the data output signals. The output data can be non-zero when v is low

Related Information

• DSP Builder FIR and CIC Filters on page 228

• DSP Builder FIR Filters on page 231

12.1.10. NCO

The DSP Builder NCO block uses an octant-based algorithm with trigonometric
interpolation. A numerically controlled oscillator (NCO) or digitally controlled oscillator
(DCO) is an electronic system for synthesizing a range of frequencies from a fixed

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

245

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

time base. Use NCOs when you require a continuous phase sinusoidal signal with
variable frequency, such as when receiving the signal from an NCO-based transmitter
in a communications system.

The NCO accumulates a phase angle in an accumulator. DSP Builder uses this angle as
a lookup into sine and cosine tables to find a coarse sine and cosine approximation.
DSP Builder implements the tables with a ROM. A Taylor series expansion of the small
angle error refines this coarse approximation to produce accurate sine and cosine
values. The NCO block uses folding to produce multiple sine and cosine values if the
sample rate is an integer fraction of the system clock rate.

You can use this block in a digital up- or down-converter for a radio system or a
general purpose DSP application. The coefficients and input data are fixed-point types,
and the output is the implied full precision fixed-point type.

An NCO sometimes needs to synchronize its phase to an exact cycle. It uses the
phase and sync inputs for this purpose. The sync input is a write enable for the
channel (address) specified by the chan input when the new phase value (data) is
available on the phase input. You may need some external logic (which you can
implement as a primitive subsystem) to drive these signals. For example, you can
prepare a sequence of new phase values in a shared memory and then write all the
values to the NCO on a synchronization pulse. This option is particularly useful if you
want an initial phase offset in the upper sinusoid.

The system specification, including such factors as the channel count, sample rates,
and noise floor, determines the main parameters for this block. You can express all the
parameters as MATLAB expressions, making it easy to parameterize a complete
system.

The hardware generation techniques create very efficient NCOs, which are fast enough
to update with every Simulink simulation. The edit-simulation loop time is much
reduced, improving productivity.

Table 50. Specification Parameters for the NCO Block

Parameter Description

Output Rate Per
Channel (MSPS)

The sine and cosine output rate per channel measured in millions of samples per second.

Output Data Type The output width in bits of the NCO. The bit width controls the internal precision of the NCO. The
spurious-free dynamic range (SFDR) of the waves produced is approximately 6.02 × bit width.
The 6.02 factor comes from the definition of decibels with each added bit of precision increasing
the SFDR by a factor of 20×log10(2).

Output Scaling Value This value interprets the output data in the Simulink environment. The power of 2 scaling
provided lets you specify the range of the output value.

Accumulator Bit Width Specifies the width of the memory-mapped accumulator bit width, which governs the NCO
frequency accuracy that you can control. The width is limited to the range 15–30 for use with a
32-bit memory map (shared by other applications such as a Nios II processor). The top two bits
in the 32-bit width are reserved to control the inversion of the sine and cosine outputs. Select
Constant for the Read/Write Mode to increase the width to 40 bits.
Frequency resolution = clock frequency/2accumulator bit width

Phase Increment and
Inversion

A vector that represents the step in phase between each sample. This vector controls the
frequencies generated during simulation. The length of the vector determines how many
channels (frequencies) of data are generated from the NCO. The unit of the vector is one (sine or
cosine) cycle.

continued...

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

246

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Phase Increment and
Inversion Memory Map

Specifies where in the memory-mapped space the NCO registers are mapped.

Read/Write Mode Specifies whether the NCO phase increment and inversion registers are mapped as Read, Write,
Read/Write, or Constant.

Expose Avalon-MM
Slave in Simulink

Allows you to reconfigure increments without . Also, it also allows you to reprogram multiple
NCOs simultaneously. When you turn on this parameter, the following three additional input ports
and two output ports appear in Simulink.
• data, address, write

• readdata, valid

NCO Block Phase Increment and Inversion on page 247

NCO Block Phase Increment Memory Registers on page 248

NCO Block Frequency Hopping on page 249

Related Information

• Super-sample NCO

• NCO on page 173

12.1.10.1. NCO Block Phase Increment and Inversion

The Phase Increment and Inversion parameter allows you to specify the phase
increment values that control the frequencies of the sinusoidal wave signals generated
during simulation. You can also specify whether to invert the generated sinusoidal
signals. This parameter is closely related to the Output Rate per Channel and the
Accumulator Bit Width parameters.

To achieve a desired frequency (in MHz) from the NCO block, you must specify a
phase increment value defined by:

Phase Increment Value = Frequency * 2Accumulator Bit Width / Output Data Rate

This value must fall within the range specified by the Accumulator Bit Width
parameter. For example, for an accumulator bit width of 24 bits, you can specify a
phase increment value less than 224.

You can specify the phase increment values in a vector format that generates
multichannel sinusoidal signals. The length of the vector determines how many
channels (frequencies) of data are generated from the NCO block. For example, a
length of 4 implies that four channels of data are generated.

When the design uses the NCO for super-rate applications (NCO frequency is higher
than output data rate), for example direct RF DUC, use multiple channels (in evenly
distributed phases). The phase increment value is:

Phase increment value =
mod((frequency)/(output data rate), 1)×2accumulator bit width

The modulus function limits the phase value to less than 1 and prevents interfering
with the inversion bits.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

247

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the input is in matrix format (with multiple rows of vectors), the design
configures the NCO block as a multi-bank NCO for frequency hopping for multicarrier
designs. The number of rows in the matrix represents the number of banks of
frequencies (of sine and cosine waves) that generate for a given channel. An
additional bank input and b output port automatically add to the NCO block.

Note: No upper limit to the number of rows exists in the matrix and you can specify any
number of frequency banks. However, you should carefully monitor the resource usage
to ensure that the specified design fits into the target device.

You can also use the Phase Increment and Inversion parameter to indicate
whether the generated sinusoidal signals are inverted. For an accumulator width in
bits of 24 bits, you can add two bits (the 25th and 26th bits) to the phase increment
value for a given frequency. These bits indicate if the sine (26th bit) and cosine (25th
bit) are inverted.

12.1.10.2. NCO Block Phase Increment Memory Registers

Use the Phase Increment and Inversion Memory Map parameter to specify the
base address of the memory-mapped space where the NCO registers are mapped. The
System Data Width specified in the DSP Builder ➤ Avalon Interfaces ➤ Avalon
MM Slave menu and the Accumulator Bit Width specified in the NCO block
determines the number of registers required for each phase increment value. You can
specify the System Data Width to be either 8, 16, or 32 bits. If the Accumulator
Bit Width is larger than the System Data Width, two registers are required to store
each phase increment value.

The NCO block only supports one or two registers for each phase increment value. If
one register is required for each phase increment value, the phase increment value for
the first frequency is written into the base address, the second value into the next
address (base address + 1) and so on. If you require two registers, the design uses
the base address and the next address (base address + 1) for the first value with each
address storing part of the value. The next pair of addresses store the next value and
so on.

For example, for a System Data Width of 16, Accumulator Bit Width of 24 and
Phase Increment and Inversion Memory Map base address of 1000, addresses
1000 and 1001 store the phase increment value for the first frequency. Address 1001
stores the lower 16 bits (15 .. 0) and address 1000 stores the remaining 8 bits (23 ..
16). If DSP Builder generates four channels of sinusoidal signals, it uses addresses
1002 and 1003 for the second channel, addresses 1004 and 1005 for the third
channel, addresses 1006 and 1007 for the fourth channel.

In summary:

<total addresses required> = <number of registers per value> × <number of
channels>

When DSP Builder writes to the phase increment and inversion memory map registers
(in write mode), the new value takes effect immediately.

If the application is a super-rate operation (like direct RF DUC) and multiple channels
in the NCO are configured for a new center frequency, first configure the phase
increment value for each channel. DSP Builder then synchronizes the phase offsets of
all channels at the same time by asserting the sync pulse.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

248

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To minimize the duration of disruption, you may use two banks of phase increment
registers. The new phase increment registers bank switches first. Then, you can apply
the sync pulse to synchronize the new phase offsets.

12.1.10.3. NCO Block Frequency Hopping

Use the NCO block to configure multiple banks of predefined frequencies for frequency
hopping. If you specify a matrix comprising multiple rows of vectors as the Phase
Increment and Inversion values, DSP Builder configures the NCO for multiple banks
and defines the number of banks by the number of rows of vectors specified by inputs
to the Phase Increment and Inversion parameter. A bank input and b output are
automatically added to the NCO block. It also allocates phase increment memory
registers for the multiple banks of frequencies automatically.

You can use the Avalon-MM interface to access (read or write) the phase increment
memory registers in the same way as for a single bank with the register address for
the ith bank frequencies starting from:

<base address> + (i – 1) × <number of registers per value> × <number of
channels>.

You can use the bank input as the index to switch the generated sinusoidal waves to
the specified set (bank) of predefined frequencies.

Note: Ensure you constrain the bank input to the range (0 .. <number of banks> – 1). You
can expect unreliable outputs from the NCO block if the bank input exceeds the
number of banks.

When using an Avalon-MM interface to access (read or write) the phase increment
memory registers, ensure that you only write to the inactive banks (banks which are
not equal to the index specified by the input bank port). The dual-port memory that
the NCO block uses is in DONT_CARE mode when reading and writing to the same
address. The NCO block uses the active bank to read the phase increment value.
Writing to the active bank may cause unreliable values to read out and the active bank
may pass out unexpected sinusoidal signals through the memory interface.

The read data, from the address to which you write the new values to, may also be
unreliable because of the memory type that the NCO block uses. Only use read data
from banks where they do not write at the same time.

The Results tab shows the implications of your parameter settings.

Table 51. Results Tab Parameters for the NCO Block

Parameter Description

Expected SFDR The SFDR in decibels relative to the carrier (dBc): (Output Data Type Width) × 20 × log10(2).

Accumulator precision Accumulator precision in Hz: 106 × (output rate) / 2(accumulator width in bits+1).

Frequency Frequency in MHz: (output rate) × (phase increment and inversion) / 2(accumulator width in bits).

outputs per cycle The number of outputs per cycle is the width of the vector of output signals: physical channels
out = ceil(length(phase increment and inversion)) / ((system clock frequency) / (output rate)))

log2 of look-up table The number of address bits in the internal look-up tables.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

249

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 52. Port Interface for the NCO Block

Signal Direction Description

chan Input Indicates the channel. If v is high, chan indicates which channel the data corresponds to.

v Input Indicates validity. If v is high, new data generates.

phase Input Specifies the phase offset. The size of this port should match the wire count of the NCO. The
number of sines/cosines per cycle is limited to 1–16 outputs. Use multiple NCO blocks if more
outputs are required.

sync Input Specifies the phase synchronization. The size of this port should match the wire count of the
NCO output. When asserted, the phase offsets of all channels synchronize to the phase inputs.
This signal has no effect to the phase increment and inversion registers. When you use this
signal, you may need to initialize the offsets upon system power-up or reset. The number of
sines/cosines per cycle is limited to 1–16 outputs. Use multiple NCO blocks if more outputs are
required.

bank Input This input is available when you specify a matrix of predefined vectors for the phase increment
values. You can use this input to switch to the bank of predefined frequencies.

data Input The data port has unsigned integers with a width equal to the width of the accumulator plus two
for the inversion bits.

address Input Only available when you turn on Expose Avalon-MM Slave in Simulink. The address port is
the same width as the system address width that you configure in the DSP Builder ➤ Avalon
Interfaces ➤ Avalon MM Slave menu. Also the base address is the same.

write Input Deassert the write port to make a read occur.

sin Output The sine data output from the block. If you request more channels than can fit on a single bus,
this signal is a vector. The width in bits is a function of the input width in bits and the
parameterization.

cos Output The cosine data output from the block. If you request more channels than can fit on a single
bus, this signal is vector. The width in bits is a function of the input width in bits and the
parameterization. The number of sines/cosines per cycle is limited to 1–16 outputs. Use multiple
NCO blocks if more outputs are required.

v Output Indicates validity of the data output signals.

c Output Indicates channel of the data output signals.

b Output Indicates the bank that the output signals use. This output is available when you specify a
matrix of predefined vectors for the phase increment values.

readdata Output The data port has unsigned integers with a width equal to the width of the accumulator plus two
for the inversion bits.

valid Output Indicates a valid output.

12.1.11. Real Mixer (Mixer)

The DSP Builder Mixer block performs a real by complex multiply on streams of data.
This function creates quadrature data from an antenna input, where the real data is
the antenna data and the complex data is the cosine and sine data provided by an
NCO.

The Mixer block multiplies a real input stream by a synchronized complex data
stream, sample by sample.

You can use the Mixer block in a digital down converter for a radio system or a
general purpose DSP application. The data has fixed-point types, and the output is the
implied full precision fixed-point type.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

250

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can easily replicate the Mixer block with a Multiply block that takes one real and
one complex input within a primitive subsystem.

The Mixer performs element-by-element multiplication on n channels and m
frequencies.

The system specification, including such factors as the channel count and sample
rates, determines the main parameters for this block. The input sample rate of the
block determines the number of channels present on each input wire and the number
of wires:

Number of Channels per wire = Clock_Rate/Sample_Rate

Number of Wires = ceiling(Chan_Count×Sample_Rate/Clock_Rate)

For example, a sample rate of 60 MSPS and system clock rate of 240 MHz gives four
samples to be TDM on to each input wire:

If there are more channels than TDM slots available on a wire, the input wire is a
vector of sufficient width to hold all the samples. Similarly, the number of frequencies
(the number of complex numbers) determines the width of the sine and cosine inputs.
The number of results that the Mixer produces is the product of the sample input
vector and the frequency vector. The results are TDM on to the i and q outputs in a
similar way to the inputs.

Table 53. Parameters for the Mixer Block

Parameter Description

Input Rate Per Channel (MSPS) The data rate per channel measured in millions of samples per second.

Number of Channels The number of real input channels.

Number of Frequencies The number of real frequencies in the multiplier.

Table 54. Port Interface for the Mixer Block

Signal Direction Description

a Input The real data input to the block. If you request more channels than can fit on a single bus, this signal
is a vector. The width in bits is inherited from the input wire.

v Input Indicates the validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates the data channel.

sin Input The imaginary part of the complex number. For example, the NCO's sine output.

cos Input The real part of the complex number. For example, the NCO’s cosine output.

i Output The in-phase (real) output of the mixer, which is (a × cos). If you request more channels than can fit
on a single bus, this signal is a vector. The width in bits is wide enough for the full precision result.

q Output The quadrature phase (imaginary) output of the mixer, which is (a × sin). If you request more
channels than can fit on a single bus, this signal is a vector. The width in bits is wide enough for the
full precision result.

v Output Indicates the validity of the data output signals.

c Output Indicates the channel of the data output signals.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

251

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12.1.12. Scale

The Scale block selects part of a wide input word, performs various types of rounding,
saturation and fixed-point scaling, and produces an output of specified precision.

By default, DSP Builder preserves the binary point so that the fixed-point
interpretation of the result has the same value, subject to rounding, as the fixed-point
interpretation of the input.

You can dynamically perform additional scaling, by specifying a variable number of bits
to shift, allowing you to introduce any power of two gain.

Note: Always use Scale blocks to change data types in preference to Convert blocks,
because they vectorize and automatically balance the delays with the corresponding
valid and channel signals.

The Scale block provides scaling in addition to rounding and saturation to help you
manage bit growth. The basic functional modules of a Scale block are shifts followed
by rounding and saturation. The multiplication factor (default is 1) is a constant scale
to apply to the input.

The number of bits to shift left allows you to select the most meaningful bits of a wide
word, and discard unused MSBs. You can specify the number of shifts as a scalar or a
vector. The block relies on shift input port to decide which value to use if you specified
the number of shifts as a vector. The shift input signal selects which gain to use cycle-
by-cycle.

In a multichannel design, changing the shift value cycle-by-cycle allows you to use a
different scaling factor for different channels.

A positive number of Number of bits to shift left indicates that the MSBs are
discarded, and the Scale block introduces a gain to the input. A negative number
means that zeros (or 1 in the signed data case) are padded to the MSBs of the input
data signal, and the output signal is attenuated.

Table 55. Parameters for the Scale Block

Parameter Description

Output data type The type of the result. For example: sfix(16), uint(8).

Output scaling value The scaling of the result if the result type is fixed-point. For example: 2^-15.

Rounding method Specifies one of the following three rounding methods for discarding the least significant bits
(LSBs):
• Truncate: truncates the least significant bits. Has the lowest hardware usage, but

introduces the worst bias.
• Biased: rounds up if the discarded bits are 0.5 or above.
• Unbiased: rounds up if the discarded bits are greater than 0.5, and rounds to even if the

discarded bits equal 0.5.

Multiplication factor Modify the interpreted value by scaling it by this factor. This factor does not affect the
hardware generated for the Scale block, but merely affects the interpretation of the result. For
example: 1, 2, 3, 4, 8, 0.5.

Saturation method Specifies one of the following three saturation methods for discarding the most significant bits
(MSBs):

continued...

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

252

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• None: no saturation is performed.
• Asymmetric: the range of the number produced occupies the whole of the two's

complement range (for example –1.0 to 0.999). One more negative number is available,
which introduces a slight bias.

• Symmetric: the range of the result is clipped to between symmetrical boundaries (for
example -0.999 and 0.999), whichensure that no bias enters the dataflow.

Number of bits to shift
left

A scalar or a vector that determines the gain of the result. A positive number indicates that the
scale block introduces a gain to the input. A negative number means that the output signal is
attenuated. A vector of gains allows the shift input signal to select which gain to use on a cycle
per cycle basis. The value of the shift input performs zero-based indexing of the vector.

Table 56. Port Interface for the Scale Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit onto a single bus,
this signal is a vector. The width in bits is inherited from the input wire.

a_v Input Indicates the validity of the data input signals. If a_v is high, the data on the a wire is valid.

a_chan Input Indicates the channel of the data input signals. If a_v is high, a_chan indicates to which channel
the data corresponds.

shift Input Indicates which element of the zero-based shift vector to use.

q Output The scaled fixed-point data output from the block. If you request more channels than can fit onto a
single bus, this signal is a vector. The width in bits is calculated as a function of the input width in
bits and the parameterization.

q_v Output Indicates the validity of the data output signals.

q_chan Output Indicates the channel of the data output signals.

q_exp Output Indicates whether the output sample has saturated or overflowed.

After you run a simulation, DSP Builder updates the help pages with specific
information about each instance of a block.

Table 57. Messages for the Scale Block

Message Example Description

Written on Tue Feb 19 11:25:27 2008 Date and time when this file ran.

Number of physical buses: 4 Depending on the input data rate, the number of data wires needed to carry the
input data may be more than 1.

Calculated bit width of output stage:
16

The width in bits of the (vectorized) data output.

Latency is 2 The latency introduced by this block.

Parameters table Lists the current rounding and saturation modes.

Port interface table Lists the port interfaces to the Scale block.

12.1.13. Single-Rate FIR

The SingleRateFIR block implements a highly efficient multichannel finite impulse
response filter across a broad range of parameters directly from a Simulink model. A
memory-mapped interface allows you to read and write coefficients directly, easing

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

253

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

system integration. The SingleRateFIR block performs filtering on a stream of
multichannel input data and produces a stream of output data with increased sampling
frequency.

You can use the SingleRateFIR block in a digital up converter for a radio system or a
general purpose DSP application. The coefficients and input data are fixed-point types,
and the output is the implied full precision fixed-point type. You can reduce the
precision by using a separate Scale block, which can perform rounding and saturation
to provide the required output precision.

The SingleRateFIR block supports sample rates from 1 to 500, coefficient width in
bits from 2 to 32 bits, half-band and L-band Nyquist filters, real and complex filters,
and symmetry and anti(negative)-symmetry.

Table 58. Parameters for the Single-Rate FIR Block

Parameter Description

Input rate per channel Specifies the sampling frequency of the input data per channel measured in millions of samples
per second (MSPS).

Number of channels Specifies the number of unique channels to process.

Symmetry You can select Symmetrical or Anti-Symmetrical coefficients. Symmetrical coefficients can
result in hardware resource savings over the asymmetrical version.

Coefficients You can specify the filter coefficients using a Simulink fixed-point object fi(0). The data type of
the fixed-point object determines the width and format of the coefficients. The length of the array
determines the length of the filter. For example, fi(fir1(49, 0.3),1,18,19)

Base address You can memory map the filter's coefficients into the address space of the system. This field
determines the starting address for the coefficients. It is specified as a MATLAB double type
(decimal integer) but you can use a MATLAB expression to specify a hexadecimal or octal type if
required.

Read/Write mode You can allow Read, Write, or Read/Write access from the system interface. Turn on
Constant, to map coefficients to the system address space.

Expose Avalon-MM
Slave in Simulink

Allows you to reconfigure coefficients without Platform Designer. Also, it allows you to reprogram
multiple FIR filters simultaneously. Turn on to show the Avalon-MM inputs and outputs as normal
ports in Simulink. The Read/Write mode decides the valid subset of Avalon-MM slave ports that
appear on the block. If you select Constant, the block shows no Avalon-MM ports.

Reconfigurable
channels

Turn on for a reconfigurable FIR filter.

Channel mapping Enter parameters as a MATLAB 2D array for a reconfigurable FIR filter. Each row represents a
mode; each entry in a row represents the channel input on that time slot. For example,
[0,0,0,0;0,1 2,3] gives the first element of the second row as 0, which means DSP Builder
processes channel 0 on the first cycle when the FIR is set to mode 1.

Table 59. Port Interface for the Single-Rate FIR Block

Signal Direction Description

a Input The fixed-point data input to the block. If you request more channels than can fit on a single
bus, this signal is a vector. The width in bits is inherited from the input wire.

v Input Indicates validity of the data input signals. If v is high, the data on the a wire is valid.

c Input Indicates the channel of the data input signals. If v is high, c indicates the channel to which the
data corresponds.

m Input Indicates a reconfigurable filter.

b Input Indicates multibank filter. This input appears when you add a second filter definition to the
Coefficients parameter in the parameters dialog box.

continued...

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

254

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Description

q Output The fixed-point filtered data output from the block. If you request more channels than can fit on
a single bus, this signal is a vector. The width in bits is a function of the input width in bits and
the parameterization.

v Output Indicates the validity of data output signals. The output data can be non-zero when v is low.

c Output Indicates the channel of the data output signals. The output data can be non-zero when v is low.

Related Information

• DSP Builder FIR and CIC Filters on page 228

• DSP Builder FIR Filters on page 231

12.2. Dependent Delay Library

Blocks from the DSP Builder advanced blockset Dependent Delay library implement
delays outside of scheduled models, where the delay depends on the latency of
another model.

The ChannelDependentDelay block provides a sample delay on the connected
signals. DSP Builder processes the signals similarly to a model that includes
ChannelIn and ChannelOut blocks. DSP Builder identifies a specific valid and
channel signal, then an arbitrary number of data lines.

The GPDependentDelay block provides a sample delay on the connected signals.
DSP Builder processes the signals in a similar way to a model employing GPIn and
GPOut blocks i.e. it considers them all as arbitrary data lines.

The value of the sample delay may depend on the latency of referenced model, refer
to the SynthesisInfo block.

Table 60. Parameters for the ChannelDependentDelay and GPDependentDelay Block

Parameter Description

Number of Data
Signals

Specify the number of input and output (d and q) connections for the block.
DSP Builder passes each input to the corresponding output and delays it by the latency constraint.

Latency
Constraint

This option allows you to select the type of constraint and to specify its value. The value can be a
workspace variable or an expression but must evaluate to a positive integer.
You can select the following types of constraint:
• >: Greater than
• >=: Greater than or equal to
• =: Equal to
• <=: Less than or equal to
• <: Less than
Select either + or - and type in a reference model in the text field. Specify the reference as a
Simulink path string e.g. ‘design/topLevel/model’. DSP Builder then ensures the latency
depends on that model, otherwise the default is that DSP Builder depends on no model.

Local Reset-
Minimization

Turn on to allow DSP Builder to apply reset minimization to the delays. You must also turn on Global
Reset Minimization.
The values are:
• Off. Default, no reset minimization.
• On. DSP Builder applies no reset to all delay stages.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

255

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 61. Port Interface for the ChannelDependentDelay Block

Parameter Direction Description

dv Input The input valid signal to delay.

qv Output The output for the valid signal.

dc Input The input channel number to delay.

qc Output The output for the channel.

d Input The input data to delay.

q Output The output for the corresponding to the input data.

Table 62. Port Interface for the GP Dependent Delay Block

Parameter Direction Description

d Input The input to delay.

q Output The output for the corresponding input.

12.3. FFT IP Library

Use the DSP Builder advanced blockset FFT IP library blocks to implement full FFT IP
functions. These blocks are complete primitive subsystems.

1. Bit Reverse Core C (BitReverseCoreC and VariableBitReverse) on page 256

2. FFT (FFT, FFT_Light, VFFT, VFFT_Light) on page 257

12.3.1. Bit Reverse Core C (BitReverseCoreC and VariableBitReverse)

The BitReverseCoreC block performs buffering and bit reversal of incoming FFT
frames.

A single synthesis time parameter specifies the length N of the fast Fourier transform.

The bit reversal that this block applies is appropriate only for transform sizes that are
an integer power of two. The block is single-buffered to support full streaming
operation with minimal overhead.

The VariableBitReverse block performs buffering and bit-reversal of variable-sized
FFT frames for designs with a VFFT or VFFT_Float block. A single synthesis-time
parameter N specifies the length 2N of the largest frame that the block handles. The
VariableBitReverse block has an additional input: size, which specifies the length
2size of the current frame.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

256

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To reconfigure the VariableBitReverse block between frames, observe the following
rules:

• Ensure the size input is always in the range 0 <= size <= N.

• Keep the size input constant while the VariableBitReverse block is processing a
frame.

• When you reconfigure the VariableBitReverse, you must completely flush the
VariableBitReverse block before changing the value of the size input. You must
wait at least 2oldSize (where oldSize is the previous value of the size input) cycles
before providing valid input to the VFFT.

Table 63. Parameters for the BitReverseCoreC Block

Parameter Description

FFT Size Specifies the size of the FFT.

Table 64. Parameters for the VariableBitReverse Block

Parameter Description

N Logarithm of the maximum frame size.

Table 65. Port Interface for the BitReverseCoreC Block

Signal Direction Type Description

v Input Boolean Valid input signal.

c Input Unsigned 8-bit integer Channel input signal.

size Input Unsigned integer Logarithm of the current input frame size.
VariableBitReverse only.

x Input Any complex fixed-point (BitReverseCoreC);
any (VariableBitReverse)

Complex data input signal.

qv Output Boolean Valid output signal.

qsize Output Unsigned integer Logarithm of the current output frame size.
VariableBitReverse only.

qc Output Unsigned 8-bit integer Channel output signal.

q Output Any Complex data output signal.

12.3.2. FFT (FFT, FFT_Light, VFFT, VFFT_Light)

The FFT and VFFT blocks support processing multiple interleaved FFTs. The number of
interleaved FFTs must be a power of 2. Each FFT is independent except that all the
input for all of the FFTs must arrive as a single contiguous block of data. For example,
with 8 FFTs each of size 1K each input block must contain 8K points.

The following blocks are in the Primitives FFT Design Elements library:

• FFT_Light

• VFFT_Light

For floating-point FFTs, select either correct or faithful rounding. Correct rounding
corresponds to the normal IEEE semantics; faithful rounding delivers less accurate
results but requires less logic to implement.

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

257

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The FFT block provides a full radix-22 streaming FFT or IFFT. Use the FFT block for
fixed-point or floating-point data. The block is a scheduled subsystem.

The FFT_Light block is a light-weight variant. However, it is not a scheduled
subsystem, and it doesn’t implement the c (channel) signal. The blocks provide an
output signal, g, which pulses high at the start of each output block.

The FFT blocks all support block-based flow control. You must supply all the input data
required for a single FFT iteration (one block) on consecutive clocks cycles, but an
arbitrary large (or small) gap can exist between consecutive blocks. The
BitReverseCoreC and Transpose blocks produce data in blocks that respect this
protocol.

You may provide the input data to any of these block in either natural or bit-reversed
order; the output result is in bit-reversed or natural order, respectively.

The VFFT block provides a variable-size streaming FFT or IFFT. For these blocks, you
statically specify the largest and smallest FFT that the block handles. You can
dynamically configure the number of points processed in each FFT iteration using the
size signal.

Use the VFFT block for fixed-point or floating-point data. The VFFT block is a
scheduled subsystem and implements v (valid) and c (channel) signals.

The VFFT_light block is a light-weight variant of the VFFT block. It is not a scheduled
subsystem, and it doesn’t implement the c (channel) signal. Instead, it provides an
output g signal, which pulses high at the start of each output block.

The VFFT blocks all support block-based flow control. You must supply all the input
data required for a single VFFT iteration (one block) on consecutive clocks cycles. If
you use two successive FFT iterations that use the same FFT size, the inter-block gap
can be as small (or as large) as you like.

However, if you want to reconfigure the VFFT block between FFT iterations, you must
use the following rules:

• The size input should always be in the range minSize <= size <= maxSize.

• The size input must be kept constant while the VFFT block processes an FFT
iteration.

• When you reconfigure the VFFT, you must completely flush VFFT pipeline before
changing the value of the size input. You must wait at least 2oldSize (where oldSize
is the previous value of the size input) cycles before providing valid input to the
VFFT.

Note: The VariableBitReverse block also requires an inter-block gap of 2oldSize cycles when
you reconfigure its size. If you use both the VariableBitReverse block and the VFFT
block, you need to provide an interblock gap of 2*(2oldSize) cycles to allow both blocks
to reconfigure successfully.

Not all parameters are available with all blocks.

12. IP Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

258

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 66. Parameters for the FFT and VFFT Blocks

Parameter Description

iFFT true to implement an IFFT, otherwise false.

Number of interleaved
subchannels

Enter how many FFTs that DSP Builder interleaves in each block.

Bit-reversed input true if you expect bit-reversed input, otherwise false.

N The logarithm of the FFT size. FFT and FFT_Light only

maxSize The logarithm of the maximum FFT size. VFFT and VFFT_Light only.

minSize The logarithm of the minimum FFT size. VFFT and VFFT_Light only.

Input type Input signal type.

Input scaling exponent The fixed-point scaling factor of the input.

Twiddle/pruning
specification

Refer to About Pruning and Twiddle for FFT Blocks.

Use faithful rounding true if the block uses faithful (rather than correct) rounding for floating-point operations.
Fixed-point FFTs ignore this parameter.

Not all signals are available with all blocks

Table 67. Port Interface for the FFT Blocks

Signal Direction Type Description

v Input Boolean. Valid input signal.

c Input Unsigned 8-bit integer. Channel input signal FFT and VFFT, only.

size Input Unsigned integer. Logarithm of the current FFT size. VFFT and VFFT_Light only.

d Input Any complex fixed-point. Complex data input signal. VFFT and VFFT_Light only.

x Input Any complex fixed-point type
(FFT and FFT_light).
Any floating-point type
(FFT_Float or FP_FFT_Light).

Complex data input signal.

qv Output Boolean. Valid output signal.

qc Output Unsigned 8-bit integer. Channel output signal. FFT and VFFT, only.

q Output Same as x. Complex data output signal.

g Output Boolean Start of output block. VFFT_Light only.

Related Information

About Pruning and Twiddle for FFT Blocks on page 277

12. IP Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

259

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13. Interfaces Library
Use the DSP Builder advanced blockset Interfaces library blocks to set and use
Avalon interfaces. DSP Builder treats design-level ports that do not route via Avalon
interface blocks as individual conduits.

1. Memory-Mapped Library on page 260

2. Streaming Library on page 271

13.1. Memory-Mapped Library

Tthe DSP Builder advanced blockset Memory Mapped library blocks provide
memories and registers that you can access both in your DSP datapath and with an
external interface. You can use these blocks to configure coefficients or run-time
parameters and read calculated values.

This library also provides blocks that you can use to simulate the bus interface in the
Simulink environment.

Note: Do not turn on Bit Accurate Simulation when your design includes Memory-
Mapped library blocks, otherwise the simulation is all zeros.

1. Bus Slave (BusSlave) on page 260

2. Bus Stimulus (BusStimulus) on page 261

3. Bus Stimulus File Reader (Bus StimulusFileReader) on page 262

4. External Memory, Memory Read, Memory Write on page 264

5. Register Bit (RegBit) on page 268

6. Register Field (RegField) on page 269

7. Register Out (RegOut) on page 269

8. Shared Memory (SharedMem) on page 270

13.1.1. Bus Slave (BusSlave)

The DSP Builder BusSlave block provides direct access to the signals on the processor
interface bus. The block generates any accesses to the memory region encapsulated
by the base address (Memory Name parameter) and size (Number of Words
parameter) on the a, d and w outputs.

Note: When you use the BusSlave block in a design, DSP Builder disables all Avalon-MM
interface pipelined reads for the whole design.

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

You must provide logic to generate any appropriate response connected to the rd and
rv inputs, which then returns over the processor interface. You must also add your
own decoding logic to work with this block

Note: All signals connected to the BusSlave block are within the bus clock domain. You
must implement appropriate clock-crossing logic (such as a DualMem block).

Table 68. Parameters for the BusSlave Block

Parameter Description

Memory Name Specifies the memory region. Can be an expression but must evaluate to an integer
address.

Read/Write
Mode

Specifies the mode of the memory as viewed from the processor:
• Read: processor can only read over specified address range.
• Write: processor can only write over specified address range.
• Read/Write: processor can read or write over specified address range.
• Constant: processor cannot access specified address range. This option continues

to reserve space in the memory map.

Number of
Words to
Address

Specifies the address range that this block accesses.

Description Text describing what is at the specified address.

Evaluated
Address
Expression

Displays the evaluated value of the Memory Name expression when you click Apply.

Sample Time Specifies the Simulink sample time.

Table 69. Port Interface for the BusSlave Block

Signal Direction Type Description

rd Input 16-bit or 32-bit unsigned integer Read data.

rv Input Boolean Read data valid.

a Output Derived fixed-point type Bus address.

d Output 16-bit or 32-bit unsigned integer Write data.

w Output Boolean Write enable.

13.1.2. Bus Stimulus (BusStimulus)

The DSP Builder Bus StimulusFileReader block with the BusStimulus block
simulates accesses over the processor interface in the Simulink environment.

The BusStimulus block performs hidden accesses to the registers and SharedMem
blocks in the memory hierarchy of your model. It is an interface that allows another
block to read and write to any address. The address and data ports act as though
an external processor reads and writes to your system.

The BusStimulus block transmits data from its input ports (address, writedata
and write) over the processor interface, and thus modifies the internal state of the
memory-mapped registers and memories as appropriate. Any response from the
simulated processor interface is output on the readdata and readvalid output
ports.

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

261

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, to use the BusStimulus block connect constants to the address and
data inputs. A pulse on the write port then writes the data to any register mapped to
the specified address. Put a counter on the address input to provide all the data in
every memory location on the readdata port. DSP Builder asserts the
readdatavalid output when a valid read data is on the readdata port.

Table 70. Parameters for the BusStimulus Block

Parameter Description

Sample Time Specifies the Simulink sample time.

Show read enable Turn on to show read enable port. If you use the BusStimulus with the BusStimulusFileReader blocks
in a design, ensure this parameter is turned on or turned off in both blocks.

Table 71. Port Interface for the BusStimulus Block

Signal Direction Type Description

address Input Unsigned integer Address to access.

writedata Input 16-, 32-, or 64-bit unsigned integer Write data.

write Input Boolean Write enable.

read Input Boolean Read enable.

readdata Output 16-, 32-, or 64-bit unsigned integer Read data.

readdatavalid Output Boolean Read data valid.

13.1.3. Bus Stimulus File Reader (Bus StimulusFileReader)

The DSP Builder BusStimulus block with the BusStimulusFileReader block
simulates accesses over the processor interface in the Simulink environment.

The BusStimulusFileReader block reads a stimulus file (.stm) and generates signals
that match the BusStimulus block.

A bus stimulus file describes a sequence of transactions to occur over the processor
interface, together with expected read back values. This block reads such files and
produces outputs for each entry in the file.

Bus stimulus files automatically write to any blocks that have processor mapped
registers when you simulate a design. Any design with useful register files generates a
bus stimulus file that you can use to bring your design out of reset (all registers 0).
You can also write your own bus stimulus files with the following format:

MemSpace Address WriteData WE ExpReadData Mask

or

MemSpace Address WriteData WE RE ExpReadData Mask

where:

MemSpace specifies the memory space (the format supports multiple memory
spaces).

Address is the word address.

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

262

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

WriteData is the data to write if any.

WE performs a write when 1.

ExpReadData is the expected read data. The value that is read from a location is
checked against this value to allow self checking tests.

Mask specifies when the expected read data is checked, only the bits in this mask are
checked, to allows you to read, write, or check specified bits in a register.

RE performs a read when 1. If RE is not present, assume RE is 1 when WE is 0.

The mask also masks the written data and performs a read-update-write cycle if you
write to certain bits (i.e. not overwrite all of them).

During simulation, any mismatch between the expected read data (as the bus
stimulus file describes) and the incoming read data (as the BusStimulus block
provides) highlights and DSP Builder issues a warning.

Table 72. Parameters for the BusStimulusFileReader Block

Parameter Description

Enabled Turn on to enable reading of the bus stimulus file data. You must turn on Has read enable in the
BusStimulusFileReader block if you turn on Show read enable in the BusStimulus block.

Stimulus File
Name

Specifies the file from which to read bus stimulus data.

Log File Name Specifies the file to store a log of all attempted bus stimulus accesses.

Space Width Specifies the width of the memory space as described in the bus stimulus file—must be the same as
the width specified in the DSP Builder > Avalon Interfaces > Avalon MM Slave menu.

Addr Width Specifies the width of the address space as described in the bus stimulus file—must be the same as
the width specified in the DSP Builder > Avalon Interfaces > Avalon MM Slave menu.

Data Width Specifies the width of the data as described in the bus stimulus file—must be the same as the width
specified in the DSP Builder > Avalon Interfaces > Avalon MM Slave menu.

Sample Time Specifies the Simulink sample time.

Has read enable Turn on to show read enable port. If you use the BusStimulusFileReader with the BusStimulus block
in a design, ensure this parameter is turned on or turned off in both blocks.

Table 73. Port Interface for the BusStimulusFileReader Block

Signal Direction Type Description

address Output Unsigned integer Address from file.

checkstrobe Output Boolean Indicates when the readexpected and mask signals
should be checked against readdata.

endofstimulus Output Boolean Generated signal to indicate when the end of the bus
stimulus file is reached.

read Output Boolean Read signal from file.

readdatavalid Input Boolean Read data valid.

readdata Input 16-bit or 32-bit unsigned
integer

Read data.

readexpected Output 16-bit or 32-bit unsigned
integer

Expected read data from file.

continued...

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

263

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Type Description

space Output Unsigned integer Memory space from file.

write Output Boolean Write signal from file.

writedata Output 16-bit or 32-bit unsigned
integer

Data from file.

mask Output 16-bit or 32-bit unsigned
integer

Mask value from file.

13.1.4. External Memory, Memory Read, Memory Write

The DSP Builder External Memory block specifies characteristics of external memory
and related Avalon-MM interfaces. DSP Builder uses this information to set bit widths
on related interface ports in simulation, generated HDL and to build an external
memory simulation model. The Memory Read and Memory Write blocks provide
(read or write) access to associated external memory models in simulation. In HDL,
each of these blocks is driving dedicated Avalon-MM Master interface. Associate read
and write ports with External Memory blocks using identifiers. Connect these
interfaces to a DDR3 SDRAM controller in your system-level design in Platform
Designer.

Always add the External Memory block to the top-level of your DSP Builder design
(similar to Control or Signals blocks).

Your design can have several instances of these blocks, but you must give them
separate identifiers. DSP Builder creates a separate simulation model for each of these
blocks.

Table 74. External Memory Block Parameters

Parameter Values Description

Identifier Numeric value A unique identifier for External Memory block that you
should set on Memory Read or Memory Write block to
associate these blocks with the External Memory block.

Avalon-MM Interface Data
Width

A valid Avalon-MM interface
data width value.
Should be power of 2.

The width of the data signal in the generated Avalon-MM
Master interfaces for associated Memory Read and
Memory Write blocks.
Set the data ports on these blocks to the same width.

Memory Data Width Should be less than or equal
to Avalon-MM Interface
Data Width.
The ratio between these two
widths should be a power of
2.

The data width of the actual external memory.
Only use to calculate the size of the memory which affects
the width of address bus.
Set this parameter to a quarter of the Avalon MM
Interface Data Width parameter to define DDR memory
operating at half rate.

Number of Rows Numeric value.
Should be power of 2.

The number of rows, columns, and banks of the actual
physical memory that you connect to the DSP Builder
design.
Carefully chose access patterns based on these values to
get the best performance of external memory.

Number of Columns

Number of Banks

Memory Size Read-Only parameter This parameter displays the size of the external memory
based on the specified number of rows, columns, banks and
memory data width.
DSP Builder uses the following equation:
memory_size = rows * columns * banks *
memory_data_width

continued...

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

264

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Values Description

The width of the address bus on Avalon-MM master
interfaces generated for associated Memory Read and
Memory Write blocks, and the width of address input on
these blocks, is:
address_width = log2(memory_size)

Table 75. Parameters that Only Affect Simulation

Parameter Values Description

Signal Busy for Specified
Amount of Simulation Time
(%)

off
12.5, 25, 50, 75, 87.5

Any value other than off forces external memory simulation
model into a busy state (the model refuses read or write
requests) at random points during simulation.
The actual value limits the overall busy time compared to
design simulation time.
The busy state of the memory model will be indicated with
low value on ready ports for associated Memory Read or
Memory Write blocks.
If this feature is enabled, you may need to increase overall
simulation time in order to get all requests to external
memory through. Longer simulation time will be required
for higher limits.

Show Diagnostic ports Boolean switch Turn on this option to add diagnostic ports, to External
Memory blocks, which display the state of the simulation
model.

Dump Memory Region into
File

Boolean switch Turn on so the External Memory block dumps its content
for the specified region into a file.
Each Avalon MM Interface Data Width value occupies a
line in the file and is printed as a sequence of 8-bit decimal
values.
For External Memory blocks with Avalon MM Interface
Data Width set to 16, the lines in the dump file have the
following format
a[7:0] a1[15:8]

Dump File Name Valid file name The name of the dump file with extension (DSP Builder does
not add an extension)
The dump file is created in the current directory.

Dump Region Start Address Valid word address The start address of the region in external memory that
should be dumped.

Dump Region Size Non negative number The number of words that should be dumped starting with
the specified address.

Memory Initialization Start
Address

A valid word address —

Memory Initialization Data A 1-D or 2-D matrix DSP Builder writes this data to the memory from the Start
Address. DSP Builder does not convert the data type. You
must use the data type you want. The type must be:
• single
• double
• INT8
• UINT8
• INT16
• UINT16
• INT32
• UINT32
• INT64
• UINT64

continued...

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

265

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Values Description

Where the Avalon-MM interface data width is wider than the
data type, DSP Builder packs the initialization data into the
words first, before moving on to the next address. You can
use a 2-D matrix, where each column represents an address
in the memory and each row represents a bit-slice in the
word.

Table 76. External Memory Block Diagnostic Ports
You can enable these ports through dedicated parameters.

Name Direction Type Description

reading Output Boolean High when external memory model is
performing reading operation; otherwise low.

writing Output Boolean High when external memory model is
performing writing operation; otherwise low.

busy Output Boolean High when external memory model is in busy
state; otherwise low.

Memory Read Block

This block is an access point for reading from the associated External Memory block.
It provides a simple interface with ready and valid based handshaking for reading. In
generated HDL, use this block as an adapter between the provided interface and the
Avalon-MM master interface. You can place these blocks at any level of hierarchy
under the DSP Builder device level block. The design can contain several of these
blocks, with each of the blocks accessing the associated External Memory block.

Table 77. Memory Read Parameters

Parameter Values Description

Identifier One of identifiers set for External
Memory blocks in the design

Set to match an identifier on one of the External Memory blocks
in the design.

Maximum Burst
Size

off
2, 4, 8, 16, 32, 64, 128, 256,
512, 1024

If the value is set to off, DSP Builder does not allow burst
requests.
For other values, DSP Builder adds a new port to specify an actual
size (less than or equal specified Maximum Burst Size) for each
burst request.

Table 78. Memory Read Ports

Name Direction Type Description

read Input Boolean Set this port to high to indicate a new read
request.

address Input Unsigned Integer Sets the address for the request.
The width of this port is: log2(memory_size),
memory_size is the size of associated External
Memory.

burstcount Input Unsigned Integer Optional. DSP Builder adds if Maximum Burst
Count is not off.

Sets the actual number of bursts for the read
request.
If you initiate a burst request, update this port
and the read and address ports once at the
beginning of request.

continued...

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

266

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Type Description

The width of this port is:
log2(max_burst_count) + 1

valid Output Boolean Indicates that the valid response is available on
the data port.

ready Output Boolean Indicates that the block (associated memory) is
ready to accept new request.
Do not update input ports if this value is low.

data Output Unsigned Integer Contains the read data.
The width of this port is based on the Avalon
MM Interface Data Width parameter of the
associated External Memory.

Memory Write Block

This block is an access point for writing to the associated external memory model. It
provides a simple interface with ready and valid based handshaking for writing. In
generated HDL, this block is an adapter between the provided interface and the actual
Avalon-MM master interface. Place these blocks at any level of hierarchy under DSP
Builder device level block. The design can contain several of these blocks, with each of
the blocks accessing the associated External Memory block.

Table 79. Memory Write Parameters

Parameter Values Description

Identifier One of identifiers set for
External Memory blocks in
the design

Set to match an identifier on one of the External Memory
blocks in the design.

Byte Enables Boolean width Activate this parameter to use byte enables for the write
request.
If enabled, DSP Builder adds a separate port to provide byte
enable values.

Maximum Burst Size off
2, 4, 8, 16, 32, 64, 128,
256, 512, 1024

If the value is set to off, DSP Builder does not allow burst
requests.
For any other values, DSP Builder adds a new port to
specify an actual size (less than or equal specified
Maximum Burst Size) for each burst request.
If you initiate a burst write, External Memory blocks
ignore subsequent addresses until the burst is completed.
When a burst write is in progress, DSP Builder queues the
read and write requests from associated Memory Read and
Memory Write blocks until the write burst is completed.

Table 80. Memory Write Ports

Name Direction Type Description

write Input Boolean Set this port to high to indicate new write
request to associated External Memory
blocks.

address Input Unsigned integer Sets the address for write request.

The width of this port is the Avalon MM
Interface Data Width parameter value on the
associated External Memory block.

data Input Unsigned integer Sets the write data.

continued...

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

267

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Type Description

The width of this port is: log2(memory_size),
memory_size is the size of associated External
Memory.

byteenable Input Unsigned integer Optional. DSP Builder adds byteenable when
the Byte Enables parameter is on.
Sets the byte enables for write data.
The width of this port is:
data_port_width / 8

burstcount Input Unsigned integer Optional. DSP Builder adds burstcount when
the Maximum Burst Count parameter is not
off.
Sets the actual burst count for burst write
requests.
When you initiate a burst request, ensure you
update the address port and this port once at
the beginning of request. Update the write
port every time you update the data port to
supply the next portion of burst data. For
example, if you provide a new portion of data
every cycle, keep the write port high
throughout the burst.
The width of this port is set as:
log2(mac_burst_count)+1

ready Output Boolean Indicates whether the block is ready to accept
a new write request or a continuation of
ongoing burst request.
Do not update input ports if this output is low.

13.1.5. Register Bit (RegBit)

The DSP Builder RegBit block provides a register bit that you can read in your model
and read or write with the processor interface.

Table 81. Parameters for the RegBit Block

Parameter Description

Register Offset Specifies the address of the register. Must evaluate to an integer address.

Read/Write Mode Specifies the mode of the memory as viewed from the processor:
• Read: processor can only read over specified address range.
• Write: processor can only write over specified address range.
• Read/Write: processor can read or write over specified address range.
• Constant: processor cannot access specified address range. This option continues to reserve

space in the memory map.

Bit Specifies the bit location of the memory-mapped register in a processor word (allows different
registers to share same address).

Initial Value Specifies the initial state of the register.

Description Text describing the register. The description is propagated to the generated memory map.

Sample Time Specifies the Simulink sample time.

Table 82. Port Interface for the RegBit Block

Signal Direction Type Description

q Output Boolean Data.

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

268

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Avalon-MM Slave Settings (AvalonMMSlaveSettings) on page 219

13.1.6. Register Field (RegField)

The DSP Builder RegField block provides a register field that you can read in your
model and read or write with the processor interface.

Table 83. Parameters for the RegField Block

Parameter Description

Register Offset Specifies the address of the register. Must evaluate to an integer address.

Read/Write Mode Specifies the mode of the memory as viewed from the processor:
• Write: processor can only write over specified address range.
• Read/Write: processor can read or write over specified address range.
• Constant: processor cannot access specified address range. This option continues to reserve

space in the memory map.

Most Significant
Bit

Specifies the MSB of the memory-mapped register in a processor word (allows different registers to
share same address). When multiple RegBit, RegOut, and RegField blocks specify the same
address, they refer to the same Avalon-MM register. To avoid conflicts, ensure that the ranges that
you specify do not overlap.

Least Significant
Bit

Specifies the LSB of the memory-mapped register in a processor word (allows different registers to
share same address). When multiple RegBit, RegOut, and RegField blocks specify the same
address, they refer to the same Avalon-MM register. To avoid conflicts, ensure that the ranges that
you specify do not overlap.

Register Output
Type

Specifies the width and sign of the data type that the register stores. The size should equal (MSB –
 LSB + 1).

Register Output
Scale

Specifies the scaling of data type that the register stores. For example. 2–15 for 15 of the above bits
as fractional bits.

Initial Value Specifies the initial state of the register.

Description Text describing the register. The description is propagated to the generated memory map.

Sample Time Specifies the Simulink sample time.

Table 84. Port Interface for the RegField Block

Signal Direction Type Description

q Output As specified in Register Output Type. Data.

Related Information

Avalon-MM Slave Settings (AvalonMMSlaveSettings) on page 219

13.1.7. Register Out (RegOut)

The RegOut block provides a register field that you can write to your model and read
from the processor interface.

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

269

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 85. Parameters for the RegOut Block

Parameter Description

Register Offset Specifies the address of the register. Must evaluate to an integer address.

Most Significant
Bit

Specifies the MSB of the memory-mapped register in a processor word (allows different registers to
share same address). When multiple RegBit, RegOut, and RegField blocks specify the same
address, they refer to the same Avalon-MM register. To avoid conflicts, ensure that the ranges that
you specify do not overlap.

Least Significant
Bit

Specifies the LSB of the memory-mapped register in a processor word (allows different registers to
share same address). When multiple RegBit, RegOut, and RegField blocks specify the same
address, they refer to the same Avalon-MM register. To avoid conflicts, ensure that the ranges that
you specify do not overlap.

Description Text describing the register. The description is propagated to the generated memory map.

Sample Time Specifies the Simulink sample time.

Table 86. Port Interface for the RegOut Block

Signal Direction Type Description

d Input Any fixed-point type Write data.

w Input Boolean Write enable.

13.1.8. Shared Memory (SharedMem)

The DSP Builder SharedMem block provides a memory block that you can read from
or write to your model and read to or write from the processor interface.

The length of the Initial Data parameter, 1-D array, determines the size of the
memory. You can optionally initialize the generated HDL with this data.

Table 87. Parameters for the SharedMem Block

Parameter Description

Memory-Mapped
Address

Specifies the address of the memory block. Must evaluate to an integer address.

Enable bit slicing Turn on to allow multiple SharedMem blocks to occupy the same address range and each to take a
slice of the data bus. When you turn on this parameter, enter the most and least significant bits of the
bus that this SharedMem block connects to in the MSB and LSB parameters. When using this
feature, some restrictions apply to the SharedMem block:
• The bit-slice width must be equal to or less than the bus width (i.e. the SharedMem cannot be

asymmetric)
• The bit-slice of one SharedMem block cannot overlap the bit-slice of another
• The bit-slice must match the size of the data type specified in the Memory Output Type

parameter. If SharedMem blocks share address ranges, their address ranges must overlap exactly
• Only other SharedMem blocks can share an address with a SharedMem block
• The SharedMem block must have an auto-generated address map (i.e. the Memory Mapped

Address parameter must be a scalar value)

Read/Write Mode Specifies the mode of the memory as viewed from the processor:
• Read: processor can only read over specified address range.
• Write: processor can only write over specified address range.
• Read/Write: processor can read or write over specified address range.
• Constant: processor cannot access specified address range. This option continues to reserve

space in the memory map.

Initial Data Specifies the initialization data. The size of the 1-D array determines the memory size.

continued...

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

270

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Initialize
Hardware Memory
Blocks with Initial
Data Contents

Turn on when you want to initialize the generated HDL with the specified initial data.

Description Text describing the memory block. The description is propagated to the generated memory map.

Memory Output
Type

Specifies the data type that the memory block stores.

Memory Output
Scale

Specifies the scale factor to apply to the data stored in the memory block.

Sample Time Specifies the Simulink sample time.

Table 88. Port Interface for the SharedMem Block

Signal Direction Type Description

a Input Unsigned integer Address.

wd Input Any fixed-point type Write data.

we Input Boolean Write enable.

rd Output Any fixed-point type Read data.

Intel Stratix 10 Support for SharedMem Block

Intel Stratix 10 devices do not support all modes of memory operation and some
modes are performance limited. For more information, refer to the Intel Stratix 10
Embedded Memory User Guide.

In Intel Stratix 10 designs, Intel recommends you use a SharedMem block for one-
way communication between internal and external Avalon-MM interfaces. Do not select
Read/Write for Read/Write Mode; only use Read or Write for Read/Write Mode
not both read and write. On the internal side, either do not connect the rd interface or
drive we to constant zero. Do not both dynamically drive we and use the rd output.
Only use the SharedMem block in your design for one-way communication.

DSP Builder may duplicate your memory to provide support for up to one write with
two reads on Intel Stratix 10 devices. Reads on the bus and system side are from
separate copies of the memory and any writes are applied to both copies. DSP Builder
offers SharedMem support in true dual port memory configurations depending on the
constraints of the Intel Stratix 10 M20K block. SharedMem blocks have no support
for dual clocks (bus clock must run at system rate) and no support for mixed widths
(SharedMem data width must match bus width).

Related Information

• Avalon-MM Slave Settings (AvalonMMSlaveSettings) on page 219

• Intel Stratix 10 Embedded Memory User Guide

13.2. Streaming Library

The Streaming library contains the extensible Avalon-ST interface blocks, which are
masked subsystems.

1. Avalon-ST Input (AStInput) on page 272

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

271

https://www.intel.com/content/www/us/en/programmable/documentation/vgo1439451000304.html#vgo1439451874156
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Avalon-ST Input FIFO Buffer (AStInputFIFO) on page 272

3. Avalon-ST Output (AStOutput) on page 272

Related Information

• Modifying Avalon-ST Blocks on page 66

• Restrictions for DSP Builder Designs with Avalon Streaming Interface Blocks on
page 66

13.2.1. Avalon-ST Input (AStInput)

Place this block at the front end of a system to generate the appropriate hw.tcl code
for an Avalon Streaming interface with same name as the name of this block.

Table 89. AStInput Block External Interface Signals

Name Direction Description

sink_channel input Channel number.

sink_data input The data (which may be, or include control data).

sink_eop input Indicates end of packet.

sink_ready output Indicates to upstream components that the DSPBA component can accept
sink_data on this rising clock edge.

sink_sop input Indicates start of packet.

sink_valid input Indicates that sink_data, sink_channel, sink_sop, and sink_eop are valid.

Table 90. AStInput Block Internal Interface Signals

Name Direction Description

input_channel output Channel number.

input_data output The data (which may be, or include control data).

input_eop output Indicates end of packet.

input_ready input indicates from the output of the DSP Builder component that it can accept
sink_data on this rising clock edge.

input_sop output Indicates start of packet.

input_valid output indicates that input_data, input_channel, input_sop and input_eop are
valid.

13.2.2. Avalon-ST Input FIFO Buffer (AStInputFIFO)

The AStInputFIFO block is the same as the AStInput block but includes FIFO
buffers to capture data to implement backpressure. Specify FIFO characteristics (e.g.
depth) from the parameters window of this block.

13.2.3. Avalon-ST Output (AStOutput)

Place this block at the back end of a system to generate the appropriate hw.tcl code
for an Avalon Streaming interface with same name as the name of this block.

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

272

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 91. AStOutput Block External Interface Signals

Name Direction Description

source_channel Output Channel number.

source_data Output The data to be output (which may be, or include control data).

source_eop Output Indicates end of packet,

source_ready Input Indicates from downstream components that they can accept source_data on
this rising clock edge.

source_sop Output Indicates start of packet.

source_valid Output Indicates that source_data, source_channel, source_sop, and source_eop
are valid.

Table 92. AStOutput Block Internal Interface Signals

Name Direction Description

output_channel input Channel number.

output_data input The output data (which may be, or include control data).

output_eop input Indicates end of packet.

output_ready output Indicates from the output of the DSP Builder component that it can accept
sink_data on this rising clock edge.

output_sop input Indicates start of packet.

output_valid input Indicates that output_data, output_channel, output_sop, and output_eop
are valid.

The downstream system component may not accept data and so may back pressure
this block by forcing Avalon ST signal source_ready = 0. However, thedesign may
still have valid outputs in the pipeline. You must store these outputs in memory. DSP
Builder writes the output data for the design into a data FIFO buffer, with the Avalon-
ST signals channel. It writes sop and eop into the respective channel, FIFO buffers.

Connect the backpressure signal (source_ready) from downstream components to
port ready in this subsystem. Then DSP Builder reads the FIFO buffers when the
downstream block can accept data (read_fifo = 1) and data in FIFO to output
(fifo_empty_n = 1) exists.

If the downstream component is continually backpressuring this design, these FIFO
buffers start to fill up. If you continue to feed data into the component, eventually the
FIFO buffers overflow, which you must not allow to happen. Therefore, when the FIFO
buffers reach a certain fill level, they assert signal nearly_full = 1. Use this signal
to apply backpressure to upstream component (forcing Avalon ST signal sink_ready
= 0). So that upstream components stop sending in more data and so that the FIFO
buffer should not overflow, set the fill level at which nearly_full = 1 to a value that
depends on the latency of this design. For example, if the design contains a single
Primitive subsystem and the ChannelOut block indicates a latency of L, assert the
nearly_full flag at the latest point when L free entries are in the FIFO buffer.
Setting this threshold is a manual process and the full threshold must be greater than
or equal to
(depth of FIFO buffer – L).

13. Interfaces Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

273

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14. Primitives Library
Use the DSP Builder advanced blockset Primitives library blocks to create fast and
efficient designs. DSP Builder captures these designs in the behavioral domain rather
than the implementation domain by combining primitive functions. The Primitives
library contains primitive operators such as add, multiply, and delay. It also includes
functions to manipulate signal types that support building hardware functions that use
MATLAB fixed-point types. You do not need to understand the details of the underlying
FPGA architecture, as DSP Builder automatically maps the Primitives blocks into
efficient FPGA constructs.

1. Vector and Complex Type Support on page 274

2. FFT Design Elements Library on page 276

3. Primitive Basic Blocks Library on page 294

4. Primitive Configuration Library on page 344

5. Primitive Design Elements Library on page 348

14.1. Vector and Complex Type Support

The DSP Builder Primitive libraries provide automatic support for arrays and complex
types.

These modes of operation engage with type propagation, and provide a convenient
automatic method for generating repeated design elements to operate on all the data
elements within vector and complex signals.

Blocks automatically determine whether the data they process is in scalar or vector
format and operate accordingly.

Using complex data (where it is supported) automatically causes DSP Builder to
generate blocks internally, which processes both real and imaginary data elements.

The hardware elements that these processes generate fully incorporate into the
optimization schemes available within DSP Builder advanced blockset.

No restrictions on the combination of vector and complex modes exist.

1. Vector Type Support on page 274

2. Complex Support on page 275

14.1.1. Vector Type Support

1. Element by Element Mode on page 275

2. Mathematical Vector Mode on page 275

3. Interactions with Simulink on page 275

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

14.1.1.1. Element by Element Mode

The blocks in the primitive library exhibit an element by element mode of operation
when you use them with vector types.

This mode provides a convenient way to generate a uniform array to handle each
element of data in a vector signal, without having to manually instantiate multiple
blocks.

Internally, DSP Builder generates identical block instantiations, one for each element
in the vector signal. The vector width propagates through the Simulink system.

Change this mode of operation in one of the following two ways:

• Drive the block with a vector signal.

• Initialize the block with a vector of values. This option is only available for blocks
that you can initialize with a user-specified value.

The following restrictions exist on the vectors:

• Vector signals must be of uniform type.

• Signals associated with a block must either be vectors of identical width, or scalar.

When you use a scalar value with vectors, DSP Builder uses a copy of the single scalar
value with each data element in the vector signal.

This behavior is analogous to the scalar expansion that occurs with Simulink blocks.

14.1.1.2. Mathematical Vector Mode

The blocks in the primitive vector library perform mathematical operations with vector
data.

The outputs of these blocks are potentially a function of any or all of the inputs. Vector
width does not necessarily propagate.

The SumOfElements block exhibits this behavior.

14.1.1.3. Interactions with Simulink

You can use Simulink Mux and Demux to manipulate signals within DSP Builder
advanced blockset designs.

14.1.2. Complex Support

Some DSP Builder Primitive library blocks can automatically process complex data,
which provides a convenient way to simultaneously generate data and control
pathways for the real and imaginary components of such data.

For each complex value, two identical block instantiations generate internally, for the
real and imaginary components.

The complex nature of the data propagates. Strictly real signals expand to provide a
value for the imaginary component with complex data. The exact behavior depends on
the nature of the port associated with the real signal. The real value is duplicated for

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

275

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

control or address signals. The real and imaginary parts of complex data are subject
to identical control signals. A zero imaginary value generates real data signals in a
complex data context. Real data values, x, expand, when required, to x + 0i.

Not all Primitive library blocks support complex data. Data signals are the only signal
type permitted to be complex. DSP Builder issues an error message if an attempt is
made to drive control or address signals with complex values.

1. Interactions with Simulink on page 276

14.1.2.1. Interactions with Simulink

:You can use the complex Simulink function complex(x,y) to generate initialization
values. Use this function to ensure DSP Builder always treats data as complex

The following elements of the Simulink environment are available for use with the
primitive blocks

• Simulink Complex to Real-Imag and Real-Imag to Complex blocks may
manipulate complex signals within DSP Builder advanced blockset designs.

• Simulink Scope blocks can display signals, but they do not directly support
complex data. Attempting to view complex data generates a type propagation
error.

Use a Complex to Real-Imag block to convert the complex signal.

.

Simulink automatically converts complex values of form (x + 0i) to real values, which
can cause type propagation errors. The complex() function can resolve this problem.

Use complex (x,0) to ensure such data is treated as complex.

14.2. FFT Design Elements Library

Use the DSP Builder advanced blockset FFT Design Elements library blocks to
support FFT designs. The library also includes several blocks that support for a
radix-22 algorithm.

The radix-22 architecture is a serial version of the radix-4 architecture. It computes a
radix-4 butterfly over four (not necessarily consecutive) inputs and produces four (not
necessarily consecutive) outputs.

For more information about the radix-22 algorithm, refer to A New Approach to
Pipeline FFT Processor – Shousheng He & Mats Torkleson, Department of Applied
Electronics, Lund University, Sweden.

1. About Pruning and Twiddle for FFT Blocks on page 277

2. Bit Vector Combine (BitVectorCombine) on page 279

3. Butterfly Unit (BFU) on page 279

4. Butterfly I C (BFIC) (Deprecated) on page 280

5. Butterfly II C (BFIIC) (Deprecated) on page 280

6. Choose Bits (ChooseBits) on page 281

7. Crossover Switch (XSwitch) on page 282

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

276

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Dual Twiddle Memory (DualTwiddleMemoryC) on page 282

9. Edge Detect (EdgeDetect) on page 283

10. Floating-Point Twiddle Generator (TwiddleGenF) (Deprecated) on page 283

11. Fully-Parallel FFTs (FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and FFT64P) on page
283

12. Fully-Parallel FFTs with Flexible Ordering (FFT2X, FFT4X, FFT8X, FFT16X, FFT32X,
and FFT64X) on page 284

13. General Multitwiddle and General Twiddle (GeneralMultiTwiddle,
GeneralMultVTwiddle, GeneralTwiddle, GeneralVTwiddle) on page 285

14. Hybrid FFT (Hybrid_FFT, HybridVFFT) on page 286

15. Multiwire Transpose (MultiwireTranspose) on page 287

16. Parallel Pipelined FFT (PFFT_Pipe) on page 288

17. Pulse Divider (PulseDivider) on page 289

18. Pulse Multiplier (PulseMultiplier) on page 289

19. Single-Wire Transpose (Transpose) on page 290

20. Split Scalar (SplitScalar) on page 290

21. Streaming FFTs (FFT2, FFT4, VFFT2, and VFFT4) on page 291

22. Stretch Pulse (StretchPulse) on page 291

23. Twiddle Angle (TwiddleAngle) on page 291

24. Twiddle Generator (TwiddleGenC) Deprecated on page 292

25. Twiddle and Variable Twiddle (Twiddle and VTwiddle) on page 293

26. Twiddle ROM (TwiddleRom, TwiddleMultRom and TwiddleRomF (deprecated)) on
page 294

14.2.1. About Pruning and Twiddle for FFT Blocks

DSP Builder allows you to specify: the type of the data values before each twiddle
multiplication; the type of the twiddle constants; the type of the data values after
each twiddle multiplication.

For example:

dspba.fft.full_wordgrowth(true,false,2,fixdt(1,16,15),fixdt(1,18,17))

Figure 95. Pruning and Twiddle for FFT Blocks

Input
Conversion

Twiddle
ROM

Output
Conversion

Input
Type

Twiddle
Type

Data In

Address

Data Out

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

277

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

An FFT with 2N points has N radix-2 stages and (conceptually) N–1 twiddle multipliers.
In practice, DSP Builder optimizes away many of the twiddle multipliers. However,
they still need entries in the twiddle specification.

The twiddle and pruning specification for this FFT consists of a (N–1)x3 array (N–1
rows with 3 entries in each row) of strings which specify these types. DSP Builder uses
strings because Simulink does not pass raw types into the Simulink GUI.

DSP Builder provides three utility functions to generate twiddle and pruning
specifications, each of which implements a different pruning strategy:

• dspba.fft.full_wordgrowth(complexFFT,radix2,N,input_type,twidd
le_type)

• dspba.fft.mild_pruning(complexFFT,radix2,N,input_type,twiddle_
type)

• dspba.fft.prune_to_width(maxWidth,complexFFT,radix2,N,input_ty
pe,twiddle_type)

In addition, DSP Builder provides a fourth function for floating-point FFTs (where no
pruning is required)

• dspba.fft.all_float(N, float_type)

This function generates a pruning specification where the input, twiddle and output
types are all float_type.

The legacy FFT interfaces use dspba.fft.full_wordgrowth() pruning strategy. It
grows the datapath by one bit for each radix–2 FFT stage.

The dspba.fft.mild_pruning() grows the datapath by one bit for each two
radix-2 FFT stages.

The dspba.fft.prune_to_width(maxWidth) grows the datapath by one bit for
each radix–2 FFT stage up to the specified maximum width. At that point, it applies
drastic pruning to ensure that the data input to the twiddle multiplier is never more
than maxWidth bits wide.

Intel provides these built-in strategies only for your convenience. If you need a
different pruning strategy, you can define and use your own pruning function (or just
construct the pruning or twiddle array manually).

Each of these utility functions generate an array in the appropriate format (N–1 rows,
each containing three entries).

In each case:

• complexFFT is a Boolean number (usually true) that indicates whether the FFT's
input is complex.

• radix2 is a Boolean number (usually false) that indicates whether the FFT can
have two consecutive twiddle stages.

• N is an integer indicating the number of radix-2 stages in the FFT. For example, 10
for a 1,024-point FFT.

• input_type is the type of the input signal.

• twiddle_type is the type of the twiddle constants.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

278

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.2. Bit Vector Combine (BitVectorCombine)

The BitVectorCombine block concatenates a vector of bits to form a scalar. The
scalar is an unsigned integer of the appropriate width. The first element of the vector
becomes the least significant bit of the scalar (little-endian ordering).

Use the BitVectorCombine block to recombine scalars that the SplitScalar block
splits.

Table 93. Parameters for the BitVectorCombine Block

Parameter Description

Width Width of the input vector (and the output scalar).

Table 94. Port Interface for the BitVectorCombine Block

Signal Direction Type Description

d Input Boolean vector. Data input.

q Output Unsigned integer. Data output.

14.2.3. Butterfly Unit (BFU)

The BFU, BFU_long BFU_short, and BFU_simple blocks each implement a butterfly
unit for use in floating-point streaming FFTs.

The BFU_long block corresponds to a classical radix-22 butterfly I block plus its
associated feedback path.

The BFU_short block has exactly the same functionality, but it uses only one floating-
point adders. It uses twice as many memory resources as the BFU_long block, but
also uses considerably less logic resources.

The BFU block automatically reconfigures to use either BFU_long or BFU_short to
minimize the total (memory plus logic) resource usage.

Each BFU block performs a two-point FFT pass over a block of data of size 2N (where N
is a compile-time parameter).

During the first 2(N–1) cycles, the control signal, s, is 0. During this time, the BFU
block stores the first half of the input block.

During the second 2(N–1) cycles, s is 1. During this time, the BFU block reads the
second half of the input block and produces the first result of each of 2(N–1) two-point
FFTs on the output.

During the third 2(N–1) cycles, s is 0 again. During this time, the BFU unit produces the
second result of each of the 2(N–1) two-point FFTs, while simultaneously storing the
first half of the next input block.

Table 95. Parameters for the BFU Block

Parameter Description

N Specifies the input block size to be 2N.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

279

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 96. Port Interface for the BFU Block

Signal Direction Type Description

d Input Any floating-point type. Input samples.

q Output Same as d. Output results.

s Input Boolean. Control pin. Drive with external logic. Ensure it is 0 for 2(N-1)

cycles and 1 for the next 2(N-1) cycles.

14.2.4. Butterfly I C (BFIC) (Deprecated)

The BFIC block implements the butterfly I functionality associated with the radix-22

fully streaming FFT architecture.

You should parameterize this block with the incoming data type to ensure that DSP
Builder maintains the necessary data precision. At the output, DSP Builder applies an
additional bit of growth.

The s port connects to the control logic. This control logic is the extraction of the
appropriate bit of a modulo N counter. The value of s determines the signal routing of
each sample and the mathematical combination with other samples.

Table 97. Parameters for the BFIC Block

Parameter Description

Input bits Specifies the number of input bits.

Input scaling exponent Specifies the fixed-point scaling factor of the input.

Table 98. Port Interface for the BFIC Block

Signal Direction Type Description

s Input Boolean or unsigned integer uint(1) Control pin.

x1 Input Complex fixed-point data-type determined by
parameterization

Complex data input from
ComplexSampleDelay.

x2 Input Complex fixed-point data-type determined by
parameterization

Complex data input from previous stage.

z1 Output Complex fixed-point data-type determined by
parameterization

Complex data output to next stage.

z2 Output Complex fixed-point data-type determined by
parameterization

Complex data output to ComplexSampleDelay.

14.2.5. Butterfly II C (BFIIC) (Deprecated)

The BFIIC block implements the butterfly II functionality associated with the radix-22

fully streaming FFT or iFFT architecture.

You should parameterize this block with the incoming data type to ensure that DSP
Builder maintains the necessary data precision. At the output, DSP Builder applies an
additional bit of growth.

The s port connects to the control logic. This control logic is the extraction of the
appropriate bit of a modulo N counter. The value of s determines the signal routing of
each sample and the mathematical combination with other samples. The t port also

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

280

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connects to the control logic, but the extracted bit is different from the s port. The
value of t determines whether an additional multiplication by –j occurs inside the
butterfly unit.

Table 99. Parameters for the BFIIC Block

Parameter Description

IFFT Specifies that the design uses the BFIIC block in an IFFT.

Input bits Specifies the number of input bits.

Input scaling exponent Specifies the exponent part of the input scaling factor (2-exponent).

Allow output bitwidth growth Specifies that the output is one bit wider than the input.

Table 100. Port Interface for the BFIIC Block

Signal Direction Type Description

s Input Boolean Control pin.

t Input Boolean Control pin.

x1 Input Complex fixed-point data-type determined by
parameterization

Complex input from ComplexSampleDelay.

x2 Input Complex fixed-point data-type determined by
parameterization

Complex input from previous stage.

z1 Output Derived complex fixed-point type Complex output to next stage.

z2 Output Derived complex fixed-point type Complex output to ComplexSampleDelay.

14.2.6. Choose Bits (ChooseBits)

The ChooseBits block selects individual bits from its input (scalar) signal and
concatenates them to form its (scalar) output signal.

You specify the bits that occur in the output signal by providing a vector of non-
negative integers. Each integer specifies an input bit appears in the output. The block
numbers the input bits from 0 (least significant bit) and lists the output bits starting
from the least significant bit (little-endian ordering).

The block has no restriction on how many times each input bit may appear in the
output. You can omit, reorder, or duplicate bits.

For example, the vector [0,1,4,4,6,5] keeps bits 0 and 1 unchanged, omits bit 3,
duplicates bit 4 and swaps the positions of bits 5 and 6.

Table 101. Parameters for the ChooseBits Block

Parameter Description

Selected bits A vector of non-negative integers.

Table 102. Port Interface for the ChooseBits Block

Signal Direction Type Description

d Input Any scalar. Data input.

q Output Unsigned integer. Data output.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

281

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.7. Crossover Switch (XSwitch)

The XSwitch block a simple crossover switch.

Table 103. Port Interface for the XSwitch Block

Signal Direction Type Description

swap Input Boolean. Control input. When swap is 0, d0 is routed to q0 and d1 is
routed to q1; when swap is 1, d0 is routed to q1 and d1 is
routed to q0.

d0 Input Any. Data input.

d1 Input Same as d0. Data input.

q0 Output Same as d0. Data output.

q1 Output Same as d0. Data output.

14.2.8. Dual Twiddle Memory (DualTwiddleMemoryC)

The DualTwiddleMemory block calculates the complex twiddle factors associated
with the evaluation of exp(-2pi.k1/N) and exp(-2pi.k2/N).

This block uses an efficient dual-port architecture to minimize the size of the internal
lookup table while supporting the generation of two complex twiddle factors per clock
cycle. The block provides k1 and k2 at the input and they must be less than or equal
to a synthesis time parameter N. Enter the width in bits and fixed-point scaling of the
twiddle factors.

A cosine/sine wave has a range of [-1:1], so you must provide at least two integer
bits, and as many fractional bits as are appropriate. A good starting point is a twiddle
width in bits of 16 bits (enter 16 as the Precision), and a scaling of 2^-14 (enter 14
as the Scaling exponent). The resulting fixed-point type is sfix16_en14 (2.14 in
fixed-point format).

Table 104. Parameters for the DualTwiddleMemoryC Block

Parameter Description

Number of points (N) Specifies the number of points on the unit circle.

Precision Specifies the precision in bits of the twiddle factors.

Twiddle scaling
exponent

Specifies the fixed-point scaling factor of the complex twiddle factor.

Table 105. Port Interface for the DualTwiddleMemoryC Block

Signal Direction Type Description

k1 Input Unsigned integer in range 0 to (N – 1) Desired twiddle factor index.

k2 Input Unsigned integer in range 0 to (N – 1) Desired twiddle factor index.

q1 Output Type determined by parameterization Twiddle factor 1 (complex).

q2 Output Type determined by parameterization Twiddle factor 2(complex).

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

282

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.9. Edge Detect (EdgeDetect)

The EdgeDetect block implements a simple circuit that detects edges on its input. It
outputs 0 if the current input is the same as the previous input and 1 if the inputs are
different.

The EdgeDetect block has no parameters.

Table 106. Port Interface for the EdgeDetect Block

Signal Direction Type Description

d Input Boolean or ufix(1). Data input.

q Output Same as input Data output.

Related Information

About Pruning and Twiddle for FFT Blocks on page 277

14.2.10. Floating-Point Twiddle Generator (TwiddleGenF) (Deprecated)

The TwiddleGenF block is the floating-point version of the fixed-point TwiddleGenC
block. The TwiddleGenF block generates the appropriate complex coefficients that
multiply the streaming data in a radix-22 streaming FFT or IFFT architecture.

Table 107. Parameters for the TwiddleGenC Block

Parameter Description

FFT type Specifies whether to generate twiddle factors for an FFT or an IFFT.

Twiddle type Specifies the floating-point type used for the twiddle factors.

Table 108. Port Interface for the TwiddleGenF Block

Signal Direction Type Description

counter Input Unsigned integer Counter signal.

w Output Complex floating-point type Complex data output.

14.2.11. Fully-Parallel FFTs (FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and
FFT64P)

The FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and FFT64P blocks implement fully-
parallel FFTs for 2, 4, 8, 16, 32, and 64 points respectively.

The blocks expect bit-reversed input and produce natural-order output.

Not all parameters are available with all blocks.

Table 109. Parameters for the FFT2P Blocks

Parameter Description

Twiddle/pruning
specification(

Use faithful rounding True if the block uses faithful (rather than correct) rounding for floating-point operations.
Fixed-point FFTs ignore this parameter.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

283

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 110. Port Interface for the FFT2P Blocks

Signal Direction Type Description

d Input Any complex. Complex data input signal.

q Output Determined by pruning
specification.

Complex data output signal.

Related Information

About Pruning and Twiddle for FFT Blocks on page 277

14.2.12. Fully-Parallel FFTs with Flexible Ordering (FFT2X, FFT4X, FFT8X,
FFT16X, FFT32X, and FFT64X)

The FFT2X, FFT4X, FFT8X, FFT16X, FFT32X, and FFT64X blocks implement fully-
parallel FFTs (or iFFTs) for 2, 4, 8, 16, 32, and 64 points respectively.

Unlike the corresponding P blocks (FFT2P, FFT4P, etc), they implement both FFTs
and iFFTs and offer flexible ordering of the input and output wires.

Each block can also be internally parallelized to process several FFTs at once. For
example, if there are 16 wires, each FFT8P block can calculate two 8-point FFTs (by
specifying the number of spatial bits to be 4). With 32 wires, the same block can
calculate four 8-point FFTs (by specifying the number of spatial bits to be 5).

Not all parameters are available with all blocks.

Table 111. Parameters for the FFT2X Blocks

Parameter Description

iFFT true to implement an IFFT, otherwise false.

Number of spatial bits M for 2M wires.

Bit-reversed input true if you expect bit-reversed input, otherwise false.

Bit-reversed output true if you want bit-reversed output, otherwise false.

Twiddle/pruning
specification(

Use faithful rounding true if the block uses faithful (rather than correct) rounding for floating-point operations.
Fixed-point FFTs ignore this parameter.

Table 112. Port Interface for the FFT2X Blocks

Signal Direction Type Description

v Input Boolean. Valid input signal.

d Input Any complex. Complex data input signal.

qv Output Boolean. Valid output signal.

q Output Determined by pruning
specification.

Complex data output signal.

Related Information

About Pruning and Twiddle for FFT Blocks on page 277

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

284

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.13. General Multitwiddle and General Twiddle (GeneralMultiTwiddle,
GeneralMultVTwiddle, GeneralTwiddle, GeneralVTwiddle)

Use the GeneralTwiddle and GeneralMultTwiddle blocks to construct
supersampled FFTs. The blocks have the same external interface but use different
internal implementations.

The GeneralTwiddle block generates its twiddle factors using the TwiddleRom
block; the GeneralMultTwiddle block uses the TwiddleMultRom block. The
GeneralMultTwiddle uses approximately twice as many DSP blocks as the
GeneralTwiddle block, but (for large FFTs) uses far fewer memory blocks.

Each data sample in the input stream has a unique address. The address consists of
the timeslot in which it arrived tbits concatenated with the number of wires on which it
arrived sbits. The sbits is forms the least significant part of the address; the tbits
forms the most significant part.

Each data sample is multiplied by a twiddle factor. For an FFT, the twiddle factor is:

twiddle = exp(-2*pi*i*angle/K)

For an IFFT, the twiddle factor is:

twiddle = exp(2*pi*i*angle/K)

where K items exist in each block of data.

For each data sample, the twiddle angle is calculated as:

angle = X*Y

where X and Y depend on the position of that data sample in the input stream.

Obtain the value of X (or Y) by extracting user-specified bits from the address of the
data sample, and concatenating them.

The GeneralVTwiddle block (and the memory-optimized GeneralMultVTwiddle
offer variable size and include an additional size input. They both use a General
Twiddle Counter rather than a Counter block.

Table 113. Parameters for the GeneralTwiddle and GeneralMultTwiddle Block

Parameter Description

iFFT Generate twiddle factors for an FFT or an IFFT.

sbits The number of spatial address bits i.e. log2(N) where there are N wires.

xbits The vector of bit positions for X.

ybits The vector of bit positions for Y.

Input type The type of the input before the twiddle.

Twiddle type The type of the twiddle factor.

Output type The type of the output after the twiddle.

Use faithful rounding Use faithful rather than correct rounding. Only for floating-point twiddle types.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

285

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 114. Parameters for the GeneralVTwiddle and GeneralMultVTwiddle Block

Parameter Description

iFFT Generate twiddle factors for an FFT or an IFFT.

Number of spatial bits The number of spatial address bits i.e. log2(N) where there are N wires.

maxsize Maximum FFT size is 2^maxsize.

Size of the parallel section The number of radix-2 stages assigned to the parallel section in the surrounding
HybridVFFT (the GeneralVTwiddle links between the serial and parallel sections of the
HybridVFFT)

Input type The type of the input before the twiddle.

Twiddle type The type of the twiddle factor.

Output type The type of the output after the twiddle.

Use faithful rounding Use faithful rather than correct rounding. Only for floating-point twiddle types.

Table 115. Port Interface for the GeneralTwiddle Block

Signal Direction Type Description

v Input Boolean. Input valid signal.

d Input Compatible with user-specified
input type.

Vector of N data inputs.

drop Input Unsigned integer The number of stages to drop. GeneralMultiVTwiddle only.

qv Output Boolean. Output valid signal.

q Output User-specified output type. Vector of N data outputs.

qdrop Output Unisgned integer GeneralMultiVTwiddle only.

14.2.14. Hybrid FFT (Hybrid_FFT, HybridVFFT)

The Hybrid_FFT block implements a hybrid serial or parallel implementation of a
supersampled FFT (or IFFT) that processes 2M points per cycle (with 0 < M).

The hybrid implementation consists of an optional serial section (built using single-
wire streaming FFTs) associated twiddle block, and a parallel section (implemented
using the PFFT_Pipe block).

You control the length of the serial section by a user-supplied parameter. For an FFT
with 2N points that processes 2M points per cycle, this parameter must be no greater
than N–M.

In general, the serial section is more space-efficient; the parallel section is more
multiplier-efficient. So changing the value of this parameter provides a trade-off
between DSP usage and memory usage.

The HybridVFFT serial section absorbs all the variability and the size of the parallel
section is fixed. The variable-size hybrid FFT includes multiple variable-size streaming
FFTs, a variable-size GeneralTwiddle and a parallel FFT.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

286

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 116. Parameters for the Hybrid_FFT and HybridVFFT Blocks

Parameter Description

iFFT true to implement an IFFT, otherwise false.

maxsize The maximum FFT size is 2^maxsize.HybridVFFT only.

minsize The minimum FFT size is 2^minsize and is limited by the value of sbits M. It cannot be
smaller than 2^sbits (2^M). HybridVFFT only.

N Log2 of the number of points in the FFT.

Bit-reversed input true if you expect bit-reversed input, otherwise false.

M Log2 of the number of input wires.

Number of serial stages Length of the serial section (in radix-2 stages).

Twiddle/pruning
specification(

-

Optimize twiddle memory
usage

true to use GeneralMultTwidle (rather than GeneralTwiddle) for top-level twiddle.

Use faithful rounding true if the block uses faithful (rather than correct) rounding for floating-point operations.
Fixed-point FFTs ignore this parameter.

Table 117. Port Interface for the Hybrid_FFT and HybridVFFT Blocks

Signal Direction Type Description

v Input Boolean. Valid input signal.

d Input As specified. Complex data input signal.

qv Output Boolean. Valid output signal.

q Output Determined by pruning
specification.

Complex data output signal.

size Input Unsigned integer FFT serial section size, which must be at least equal to the
difference between maxsize and minsize.

Type style Elements used

Bold b

Italic i

Underlined u

Related Information

About Pruning and Twiddle for FFT Blocks on page 277

14.2.15. Multiwire Transpose (MultiwireTranspose)

The DSP Builder MultiwireTranspose block performs a specialized reordering of a
block of data and presents it on multiple wires.The size of the block and the number of
wires must both be a power of 2.

Each element in the block has a logical address, which DSP Builder forms by
concatenating its spatial address (wire number) with its temporal address (slot
number). The spatial address is the least-significant part of the logical address; the
temporal address is the most significant part.The block specifies the reordering as an

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

287

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

arbitrary permutation of the address bits.The block numbers the address bits from 0
(least significant). The block specifies the permutation by listing the address bits in
order, starting with the least significant.

For example: specifying:

[7 6 5 4 3 2 1 0] bit-reverses a block of 256 elements

[6 7 4 5 2 3 0 1] digit reverses a block (radix 4)

[0 1 2 3 4 5 6 7] leaves the order of the data unchanged

[6 7 0 1 2 3 4 5] rotates the address bits

[2 3 4 5 6 7 0 1] is be the inverse rotation.

Table 118. Parameters for the MultiwireTranspose Block

Parameter Description

Address permutation A vector of integers that describes how to rearrange the block of data.

N The number of spatial address bits. The block has 2N data wires.

Table 119. Port Interface for the MultiwireTranspose Block

Signal Direction Type Description

v Input Boolean. Input valid signal.

d Input Any type. Data input.

qv Output Boolean. Output valid signal.

q Output Same as d Data output.

14.2.16. Parallel Pipelined FFT (PFFT_Pipe)

The PFFT_Pipe block implements a supersampled FFT (or IFFT) that processes 2M

points per cycle (with 0 < M).

The PFFT_Pipe block uses a pipeline of (small) fully-parallel FFTs, twiddle, and
transpose blocks. This FFT uses only a small number of DSP blocks but has a relative
high latency (and associated memory usage).

Not all parameters are available with all blocks.

Table 120. Parameters for the PFFT_Pipe Blocks

Parameter Description

iFFT true to implement an IFFT otherwise false.

N Log2 of the number of points in the FFT.

Bit-reversed input true if you expect bit-reversed input, otherwise false. .

Number of spatial bits M for 2M wires.

Twiddle/pruning
specification(

-.

Use faithful rounding true if the block uses faithful (rather than correct) rounding for floating-point operations.
Fixed-point FFTs ignore this parameter.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

288

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 121. Port Interface for the PFFT_Pipe Blocks

Signal Direction Type Description

v Input Boolean. Valid input signal.

d Input Any. Complex data input signal.

qv Output Boolean. Valid output signal.

q Output Determined by pruning
specification.

Complex data output signal.

Related Information

About Pruning and Twiddle for FFT Blocks on page 277

14.2.17. Pulse Divider (PulseDivider)

The PulseDivider block generates a single-cycle one on its output for each 2^N ones
on its input.

Table 122. Parameters for the PulseDivider Block

Parameter Description

N Specifies the input block size 2^N.

Table 123. Port Interface for the PulseDivider Block

Signal Direction Type Description

v Input Boolean or uint(1). Data valid.

g Output uint(1). Block containing 2^N elements received.

14.2.18. Pulse Multiplier (PulseMultiplier)

The PulseMultiplier block stretches a single-cycle pulse on its input into a 2^N-cycle
pulse on its output. The block ignores any input pulse that arrives within 2^N cycles of
the previous one.If the PulseMultiplier block receives a second 1 on its input while it
is producing an existing stream, its behavior is undefined.

The PulseMultiplier is a special version of the StretchPulse block.

Table 124. Parameters for the PulseMultiplier Block

Parameter Description

N Specifies the output length pulse size 2^N.

Table 125. Port Interface for the PulseDivider Block

Signal Direction Type Description

g Input Boolean or uint(1). Start of 2^N data block.

v Output uint(1). Data valid.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

289

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.19. Single-Wire Transpose (Transpose)

The DSP Builder Transpose block performs a specialized reordering of a block of
data.The size of the block must be a power of 2.

You specify the reordering as an arbitrary permutation of the address bits. The block
numbers the address bits from 0 (least significant). The block specifies the
permutation by listing the address bits in order, starting with the least significant.

For example, specifying:

[5 4 3 2 1 0] bit-reverses a block of 64 elements

[4 5 2 3 0 1] digit-reverse it (radix 4)

[0 1 2 3 4 5] leaves the order of the data unchanged

[4 5 0 1 2 3] interleaves four blocks of 16 elements each

[2 3 4 5 0 1] deinterleaves four blocks of 16 elements

Table 126. Parameters for the Transpose Block

Parameter Description

Address permutation A vector of integers that describes how to rearrange the block of data.

Table 127. Port Interface for the Transpose Block

Signal Direction Type Description

v Input Boolean. Input valid signal.

d Input Any type. Data input.

qv Output Boolean. Output valid signal.

q Output Same as d Data output.

g Output Boolean, Start of output block.

14.2.20. Split Scalar (SplitScalar)

The SplitScalar block splits its input (typically an unsigned integer) into a vector of
Booleans. The least significant bit of the scalar becomes the first entry in the vector
(little-endian ordering).

FFT implementations often contain various bit-twiddling operations as part of their
control structure. Use the SplitScalar block to make these bit-twiddling operations
easier to implement.

Table 128. Parameters for the SplitScalar Block

Parameter Description

Width Width of the scalar (in bits), which is also the width of the output vector.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

290

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 129. Port Interface for the SplitScalar Block

Signal Direction Type Description

d Input Any scalar. Data input.

q Output Boolean vector. Data output.

14.2.21. Streaming FFTs (FFT2, FFT4, VFFT2, and VFFT4)

The FFT2, FFT4, VFFT2, and VFFT4 blocks are low-level blocks that implement
streaming FFTs.

Table 130. Parameters for the FFT2, FFT4, VFFT2, and VFFT4 Block

Parameter Description

iFFT true for an iFFT, otherwise false. FFTT4 and VFFT4 only.

Bit reversed input true for bit-reversed inputs. FFT4 and VFFT4 only.

Stages before this The number of stages to the left of this FFT.

Stages after this The number of stages to the right of this FFT.

Input type The type of the input signal. For example: fixdt(1,16,15).

Use faithful rounding true to use faithful rather than correct rounding. Fixed-point FFTs ignore this parameter.

Table 131. Port Interface for the FFT2, FFT4, VFFT2, and VFFT4 Blocks

Signal Direction Type Description

v Input Boolean Valid input signal.

d Input Any complex type Complex data input signal.

drop Input uint(k) for some k Total number of FFT stages to bypass.

qv Output Boolean Valid output signal.

q Output Any complex type Complex data output signal.

qdrop Output uint(k) for some k Total number of FFT stages to bypass.

14.2.22. Stretch Pulse (StretchPulse)

The DSP Builder StretchPulse block implements a general purpose, loadable pulse
stretching circuit. A single-bit single-cycle go input loads a counter with a count. The
single-bit output q remains high for count consecutive cycles then stays low until
receiving another go signal.

14.2.23. Twiddle Angle (TwiddleAngle)

The Twiddleangle block generates FFT twiddle factors when you use it between a
counter and the TwiddleRom (or TwiddleRomF) blocks.

The TwiddleAngle block takes the output of the counter and splits it into three parts:

• The channel field (LSBs of the counter)

• The index field

• The pivot field (MSBs of the counter)

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

291

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

It provides bitreverse(pivot) * index at the output. The calculation is optimized to use
no multipliers and only a small amount of logic.

The TwiddleAngle block has an additional input: v, which keeps the internal state of
the TwiddleAngle block synchronized with the counter. This input should be identical
to the enable input to the counter.

Table 132. Parameters for the TwiddleAngle Block

Parameter Description

K Width of the channel field.

Pivot width Width of the pivot field.

Index width Width of the index field.

Table 133. Port Interface for the TwiddleAngle Block

Signal Direction Type Description

v Input Boolean Input to upcounter.

c Input Unsigned integer Output of upcounter.

angle Output Unsigned integer Input to TwiddleRom.

14.2.24. Twiddle Generator (TwiddleGenC) Deprecated

The TwiddleGenC block generates the appropriate complex coefficients that
multiplies the streaming data in a radix-22 streaming FFT or iFFT architecture.

Feed at the input by a modulo N counter (where N is an integer power of two) and the
appropriate complex sequence generates at the output.

To parameterize this block, set the Counter bit width parameter with log2(N) and
enter the width in bits and fixed-point scaling of the twiddle factors. A cosine or sine
wave has a range of [-1:1], therefore you must provide at least two integer bits, and
as many fractional bits as are appropriate. Starting with a twiddle bit width of 16 bits
(enter 16 as the twiddle bit width), and a scaling of 2–14 (enter 14 as the Twiddle
scaling exponent). The resulting fixed-point type is sfix16_en14 (2.14 fixed-point
format).

Table 134. Parameters for the TwiddleGenC Block

Parameter Description

FFT type Specifies whether to generate twiddle factors for an FFT or an IFFT.

Counter bit width Specifies the counter width in bits.

Twiddle bit width Specifies the twiddle width in bits.

Twiddle scaling exponent value Specifies the fixed-point scaling factor of the complex twiddle factor.

Table 135. Port Interface for the TwiddleGenC Block

Signal Direction Type Description

counter Input Any fixed-point type Counter signal.

w Output Derived complex fixed-point type Complex data output.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

292

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.25. Twiddle and Variable Twiddle (Twiddle and VTwiddle)

The Twiddle and VTwiddle blocks are low-level blocks that implement streaming FFTs.

Each twiddle block joins two FFTs (the left constituent FFT and the right constituent
FFT) to form a larger FFT. For variable-size FFTs, use the VTwiddle block. Each of the
constituent FFTs is either a primitive FFT (e.g. an FFT4 block) or is multiple FFT and
twiddle blocks.

The Twiddle block FFT may be part of an even larger FFT. In fact, the pipeline is
formed by linearizing a binary tree of FFTs (leaf nodes) and twiddle blocks (internal
nodes).

Each Twiddle block requires you to specify three types:

• The data signal prior to the twiddle multiplications

• The twiddle factors

• The data signal after the twiddle multiplication.

Table 136. Parameters for the Twiddle and VTwiddle Block

Parameter Description

iFFT Generate twiddle factors for an FFT or an IFFT.

Stages before this The number of stages to the left(*) of this composite FFT.

Left width The number of stages in the left(*) constituent FFT.

Right width The number of stages in the right(*) constituent FFT.

Stages after this The number of stages to the right(*) of this composite FFT.

Input type The type to which DSP Builder should convert the input. Refers to the type of the input
after you apply an explicit type conversion. It doesn't have to exactly match the actual
input type to the Twiddle block.

Twiddle type The type of the twiddle factor.

Output type The type of the output after the twiddle.

Use faithful rounding Use faithful rather than correct rounding. Fixed-point FFTs ignore this parameter.

Note: For bit-reversed FFTs, reverse left and right, so left refers to the number of stages to
the right of the current block.

Table 137. Port Interface for the Twiddle and VTwiddle Blocks

Signal Direction Type Description

v Input Boolean Valid input signal.

d Input Any complex type Complex data input signal.

drop Input uint(k) for some k Total number of FFT stages to bypass

qv Output Boolean Valid output signal.

q Output Any complex type Complex data output signal.

qdrop Output uint(k) for some k Total number of FFT stages to bypass

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

293

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.2.26. Twiddle ROM (TwiddleRom, TwiddleMultRom and TwiddleRomF
(deprecated))

The DSP Builder twiddle ROM blocks generate FFT twiddle factors, converting the input
angle into a cos-sin pair. These block are memory optimized for use with wide
counters.

Note: TwiddleRomF is deprecated; TwiddleRom has a new parameters (therefore appears
in the obsolete and the common directory).

The TwiddleRom and TwiddleMutlRom block construct FFTs. They map an angle
(specified as an unsigned integer) to a complex number (the twiddle factor). For an
FFT, the mapping is:

twiddle = exp(-2*pi*i*angle/N)

For an IFFT, the mapping is:

twiddle = exp(2*pi*i*angle/N)

where N = 2anglewidth and anglewidth is the width of the angle input signal.

The TwiddleRom and TwiddleMultRom blocks have the same external interface but
different internal implementations. TwiddleRom uses a single large memory;
TwiddleMultRom uses two smaller memories and constructs the twiddle factors
using complex multiplication.

TwiddleMultRom consumes more DSP blocks but generally uses fewer memory
blocks than TwiddleRom. TwiddleMultRom also produces slightly less accurate
results than TwiddleRom.

Table 138. Parameters for the TwiddleRom and TwiddleMultRom Blocks

Parameter Description

iFFT True to generate twiddle factors for an IFFT.

Angle bit width The width of the angle input signal in bits.

Twiddle type The type of the twiddle output. For example: fixdt(1,18,17).

Table 139. Port Interface for the TwiddleROM and TwiddleMultRom Blocks

Signal Direction Type Description

angle Input Unsigned Input angle.

twiddle Output User specified Output twiddle factor.

14.3. Primitive Basic Blocks Library

Use the DSP Builder advanced blockset Primitive Basic Blocks library blocks to
implement low-level basic functions.

1. Absolute Value (Abs) on page 296

2. Accumulator (Acc) on page 297

3. Add on page 298

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

294

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Add SLoad (AddSLoad) on page 299

5. AddSub on page 300

6. AddSubFused on page 301

7. AND Gate (And) on page 301

8. Bit Combine (BitCombine) on page 301

9. Bit Extract (BitExtract) on page 302

10. Bit Reverse (BitReverse) on page 303

11. Compare (CmpCtrl) on page 303

12. Complex Conjugate (ComplexConjugate) on page 304

13. Compare Equality (CmpEQ) on page 305

14. Compare Greater Than (CmpGE) on page 305

15. Compare Less Than (CmpLT) on page 305

16. Compare Not Equal (CmpNE) on page 306

17. Constant (Const) on page 306

18. Constant Multiply (Const Mult) on page 307

19. Convert on page 308

20. CORDIC on page 309

21. Counter on page 311

22. Count Leading Zeros, Ones, or Sign Bits (CLZ) on page 312

23. Dual Memory (DualMem) on page 313

24. Demultiplexer (Demux) on page 315

25. Divide on page 315

26. Fanout on page 316

27. FIFO on page 317

28. Floating-point Classifier (FloatClass) on page 318

29. Floating-point Multiply Accumulate (MultAcc) on page 318

30. ForLoop on page 319

31. Load Exponent (LdExp) on page 320

32. Left Shift (LShift) on page 321

33. Loadable Counter (LoadableCounter) on page 321

34. Look-Up Table (Lut) on page 322

35. Loop on page 324

36. Math on page 325

37. Minimum and Maximum (MinMax) on page 326

38. MinMaxCtrl on page 327

39. Multiply (Mult) on page 328

40. Multiplexer (Mux) on page 328

41. NAND Gate (Nand) on page 329

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

295

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

42. Negate on page 330

43. NOR Gate (Nor) on page 330

44. NOT Gate (Not) on page 331

45. OR Gate (Or) on page 332

46. Polynomial on page 332

47. Ready on page 333

48. Reinterpret Cast (ReinterpretCast) on page 333

49. Round on page 334

50. Sample Delay (SampleDelay) on page 334

51. Scalar Product on page 335

52. Select on page 336

53. Sequence on page 337

54. Shift on page 338

55. Sqrt on page 339

56. Subtract (Sub) on page 339

57. Sum of Elements (SumOfElements) on page 340

58. Trig on page 341

59. XNOR Gate (Xnor) on page 343

60. XOR Gate (Xor) on page 343

14.3.1. Absolute Value (Abs)

The Abs block outputs the absolute value of the input:

q = abs(a)

Table 140. Parameters for the Abs Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via internal rule with word growth: the number of fractional bits is the maximum of

the number of fractional bits in the input data types. The number of integer bits is the maximum of
the number of integer bits in the input data types plus one. This additional word growth allows for
subtracting the most negative number from 0, which exceeds the maximum positive number that
the number of bits of the input can store.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

296

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 141. Port Interface for the Abs Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or floating-
point type

Operand Yes No

q Output Derived fixed- or
floating-point type

Result Yes No

14.3.2. Accumulator (Acc)

The Acc block implements an application-specific floating-point accumulator.

r= acc(x, n)

The acc block allows accumulating data sets of variable lengths. The block indicates a
new data set by setting n high with the first element of the accumulation.

Figure 96. New Data Set

clk

x

n

X0 X1 X2 y0 y1 y2

This example accumulates x0 + x1 + x2 and y0 + y1 + y2.

The acc block has single and double-precision floating-point data inputs and outputs.

.

Table 142. Parameters for the Add Block

Parameter Description

LSBA This parameter defines the weight of the accumulator’s LSB, and therefore the accuracy of the
accumulation. This value and the maximum number of terms to be accumulated sets the accuracy of
the accumulator. The maximum number of terms the design can accumulate can invalidate the
log_2(N) lower bits of the accumulator. For instance, if an accuracy of 2^(-30) is enough, and you add
1k of numbers, LSBA = –30 – log2(1k) , which is approximately –40.

MSBA The weight of the MSB of the accumulation result. Adding a few guard bits to the value has little
impact on the implementation size. You can set this parameter in one of the following ways:
• For a stock simulation, to limit the value of any stock to $100k before the simulation is invalid, use

a value of ceil(log_2(100K))~ceil(16.6)=17
• For a simulation where the implemented circuit adds numbers <=1, for one year, at 400MHz, use

ceil(log_2(365*86400*400*10^6))~54

maxMSBX The maximum weight of the inputs. When adding probabilities <=1 set this weight to 0. When adding
data from sensors, set bounds on the input ranges. Alternatively, set MaxMSBX = MSBA. However,
the size of the architecture may increase.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

297

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 143. Port Interface for the Acc Block

Signal Direction Type Description Vector Data
Support

Complex
Data

Support

x Input Single or double Operand Yes No

n Input Boolean Control Yes No

r Output Single or double Output Yes No

xO Output Boolean This flag goes high when the input
value has a weight larger than
selected value for MaxMSBX. The
result of the accumulation is then
invalid.

Yes No

xU Output Boolean If this flag goes high, an input
value is completely shifted out of
the accumulator. This flag warns
that the value of LSBA is possibly
too large.

Yes No

aO Output Boolean This flag goes high when the
accumulated value has a weight
larger than MSBA. The result of
the accumulation is then invalid.

Yes No

14.3.3. Add

The Add block outputs the sum of the inputs:

q = a + b

For two or more inputs, the Add block outputs the sum of the inputs:

q = a + b + ...

For a single vector input, the Add block outputs the sum of elements:

q = Σ an

For a single scalar input, the Add block outputs the input value:

q = a

.

Table 144. Parameters for the Add Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

298

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Inherit via internal rule: the number of integer and fractional bits is the maximum of the
number of bits in the input data types.

• Inherit via internal rule with word growth: the number of fractional bits is the maximum of
the number of fractional bits in the input data types. The number of integer bits is the maximum of
the number of integer bits in the input data types plus one. This additional word growth allows for
subtracting the most negative number from 0, which exceeds the maximum positive number that
you can store in the number of bits of the input.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Number of Inputs Specifies the number of inputs.

Fused datapath This option affects the floating-point architectures. Turn on this option to save hardware by omitting
normalization stages between adder stages. The output deviates from that expected of IEEE
compliance.

Floating point
rounding

Specifies what rounding to apply to the result:
• Correct. IEEE compliant unbiased round to nearest output value.
• Faithful. Saves hardware by sometimes rounding to the second nearest value. Error is about

double that of correct rounding.

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 145. Port Interface for the Add Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or floating-
point type

Operand 1 Yes Yes

b Input Any fixed- or floating-
point type

Operand 2 Yes Yes

q Output Derived fixed- or
floating-point type

Result Yes (scalar output in
one input case).

Yes

Related Information

Forcing Soft Floating-point Data Types with the Advanced Options on page 217

14.3.4. Add SLoad (AddSLoad)

The AddSLoad block performs the following function:

q = s ? v : (a + b)

If the s input is low, output the sum of the first 2 inputs, a + b, else if s is high, then
output the value v.

.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

299

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 146. Parameters for the AddSLoad Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via internal rule with word growth: the number of fractional bits is the maximum of

the number of fractional bits in the input data types. The number of integer bits is the maximum of
the number of integer bits in the input data types plus one. This additional word growth allows for
subtracting the most negative number from 0, which exceeds the maximum positive number that
you can store in the number of bits of the input.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 147. Port Interface for the AddSLoad Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand 1 Yes Yes

b Input Any fixed- or floating-
point type

Operand 2 Yes Yes

s Output Any fixed- or floating-
point type

Synchronous load Yes No

v Output Any fixed- or floating-
point type

Value to load if s is true Yes Yes

q Output Derived fixed- or
floating-point type

Result Yes Yes

14.3.5. AddSub

The AddSub block produces either the sum (a + b) or the difference (a – b)
depending on the input you select (1 for add; 0 for subtract).

Note: For single-precision inputs and designs targeting any device with a floating-point DSP
block, the block uses a mixture of resources including the DSP blocks in floating-point
mode.

Table 148. Port Interface for the AddSub Block

Signal Direction Type Description Vector Complex

a Input Single or
double

Operand 1 Yes Yes

b Input Single or
double

Operand 2 Yes Yes

add Input Boolean Select input Yes Yes

q Output Single or
double

Result Yes Yes

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

300

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.6. AddSubFused

The AddSubFused block produces both the sum and the difference of the IEEE
floating-point signals that arrive on the input ports.

Table 149. Port Interface for the AddSubFused Block

Signal Direction Type Description Vector Complex

Input Single or double Operand 1 Yes Yes

b Input Single or double Operand 2 Yes Yes

+ Output Single or double Result 1 Yes Yes

– Output Single or double Result 2 Yes Yes

14.3.7. AND Gate (And)

The And block outputs the logical AND of the input values.

If the number of inputs is set to 1, then the logical and of all the individual bits of the
input word is output.

.

Table 150. Parameters for the And Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 151. Port Interface for the And Block

Signal Direction Type Description Vector Data Support Complex Data
Support

unnamed Input Any fixed-point type Operands 1 to n Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.8. Bit Combine (BitCombine)

The BitCombine block outputs the bit concatenation of the input values:

((h << bitwidth(i)) | i)

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

301

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can change the number of inputs on the BitCombine block according to your
requirements. When Boolean vectors are input on multiple ports, DSP Builder
combines corresponding components from each vector and outputs a vector of signals.
The widths of all input vectors must match. However, the widths of the signals arriving
on different inputs do not have to be equal. The one input BitCombine block is a
special case that concatenates all the components of the input vector, so that one wide
scalar signal is output. Use with logical operators to apply a 1-bit reducing operator to
Boolean vectors.

Table 152. Parameters for the BitCombine Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 153. Port Interface for the BitCombine Block

Signal Direction Type Description Vector Data Support Complex Data Support

i Input Any fixed-point type Operand Yes No

h Input Any fixed-point type Operand Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.9. Bit Extract (BitExtract)

The BitExtract block outputs the bits extracted from the input, and recast as the
specified data type:

q = (a >> LSB)

If bit position is a negative number, the bit position is an offset from the MSB instead
of LSB.

If the BitExtract block initialization parameter is a vector of LSB positions, the output
is a vector of matching width, even if the input is a scalar signal. Use this feature to
split a wide data line into a vector of Boolean signals. The components are in the same
order as you specify in the initialization parameter. If the input to the BitCombine
block is a vector, the width of any vector initialization parameter must match, and
then a different bit can be selected from each component in the vector. The output
data type does not always have to be Boolean signals. For example, setting to uint8
provides a simple way to split one wide signal into a vector of unsigned 8-bit data
lines.

.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

302

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 154. Parameters for the BitExtract Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Least Significant
Bit Position from
Input Word

Specifies the bit position from the input word as the LSB in the output word.

.

Table 155. Port Interface for the BitExtract Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed-point type Operand Yes No

q Output Derived fixed-point type Result Yes No

14.3.10. Bit Reverse (BitReverse)

The BitReverse primitive block reverses the bits at the input. The MSB is output as
the LSB.

.

Table 156. Port Interface for the BitReverse Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed-point type Operand Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.11. Compare (CmpCtrl)

The CmpCtrl block produces the Boolean result of comparing two IEEE floating-point
input signals. A select line controls the comparison. The select line is at least three-
bits wide to select from five different comparison operators.

Table 157. Comparison Operators

s Comparison Operator

0 Less than.

1 Less than or equal to.

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

303

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

s Comparison Operator

2 Equal.

3 Greater than or equal to.

4 Greater than.

5 Not equal.

Table 158. Port Interface for the CmpCtrl Block

Signal Direction Type Description Vector Complex

Input Single or double Operand 1 Yes No

b Input Single or double Operand 2 Yes No

s Input Fixed-point
(unsigned)

Select input Yes No

q Output Boolean Result Yes No

14.3.12. Complex Conjugate (ComplexConjugate)

The ComplexConjugate block outputs the complex conjugate of its input value.

If a = x + yi,

then q = x - yi

If the input value is real, an unchanged real value is output

q = a

Table 159. Parameters for the ComplexConjugate Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via internal rule with word growth: the number of fractional bits is the maximum of

the number of fractional bits in the input data types. The number of integer bits is the maximum of
the number of integer bits in the input data types plus one. This additional word growth allows for
subtracting the most negative number from 0, which exceeds the maximum positive number that
you can store in the number of bits of the input.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Number of Inputs Specifies the number of inputs.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

304

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 160. Port Interface for the ComplexConjugate Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or floating-
point type

Operand Yes Yes

q Output Derived fixed- or
floating-point type

Result Yes Yes

14.3.13. Compare Equality (CmpEQ)

The CmpEQ block outputs true if and only if the two inputs have the same value:

a == b

Table 161. Port Interface for the CmpEQ Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand 1 Yes Yes

b Input Any fixed- or floating-
point type

Operand 2 Yes Yes

q Output Boolean Result Yes Yes

14.3.14. Compare Greater Than (CmpGE)

The CmpGE block outputs true if and only if the first input is greater than or equal to
the second input:

a >= b

Table 162. Port Interface for the CmpGE Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand 1 Yes No

b Input Any fixed- or floating-
point type

Operand 2 Yes No

q Output Boolean Result Yes No

14.3.15. Compare Less Than (CmpLT)

The CmpLT block outputs true if and only if the first input is less than the second
input:

a < b

.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

305

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 163. Port Interface for the CmpLT Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand 1 Yes No

b Input Any fixed- or floating-
point type

Operand 2 Yes No

q Output Boolean Result Yes No

14.3.16. Compare Not Equal (CmpNE)

The CmpNE block outputs true if the two inputs do not have the same value:

a ~= b

.

Table 164. Port Interface for the CmpNE Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand 1 Yes Yes

b Input Any fixed- or floating-
point type

Operand 2 Yes Yes

q Output Boolean Result Yes Yes

14.3.17. Constant (Const)

The Const block outputs a specified constant value.

.

Table 165. Parameters for the Const Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via back projection: a downstream block that this block drives determines the output

data type. If the driven block does not propagate a data type to the driver, you must use a
Simulink SameDT block to copy the required data type to the output wire.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.
• Single: single-precision floating-point data.
• Double: double-precision floating-point data.
• Variable precision floating point: variable precision floating-point output type

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

306

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Value Specifies the constant value. This parameter may also be a fi object when specifying data of arbitrarily
high precision.

Floating point
precision

Specifies the floating-point precision. For example, float32_m23.

Warn when value
is saturated

Turn off if the constant if you design the constant to be saturated.
The Constant block generates a warning in the Simulink Diagnostic Viewer if the bit-width is not
sufficient to represent the value. For example:
Warning: Constant block 'constant_saturation_UUT/Const1' has saturated due to
insufficient bit-width. SUGGESTION: Increase the bit-width or disable this
warning in the block parameters.

Every Primitive library block accepts double-precision floating-point values when
specifying mask parameters. This format limits precision to no more than 53 bits,
which is more than sufficient for most of the blocks. For higher precision, the Const,
DualMem, or LUT blocks optionally accept values using Simulink's Fixed Point data
type. For example:

constValue = fi(0.142, 1, 16, 15)

vectorValue = fi(sin([0:10]'), 1, 18, 15)

To configure a Const, DualMem, or LUT with data of precision higher than IEEE
double precision, create a MATLAB fi object of the required precision that contains the
high precision data. Avoid truncation when creating this object. Use the fi object to
specify the Value of the Const, the Initial Contents of the DualMem block, or the
Output value map of the LUT block.

Table 166. Port Interface for the Const Block

Signal Direction Type Description Vector Data Support Complex Data Support

q Output Any fixed- or floating-
point type

Constant value. Yes Yes

14.3.18. Constant Multiply (Const Mult)

The Const Mult block scales the input by a user configurable coefficient and outputs
the result.

The Value parameter is a floating-point scaling factor that is multiplied by the input
signal. If this parameter is a vector, the output is a vector. If both the input and the
Value parameter are vectors, they must have the same length. If the Value
parameter is complex, the block performs a complex multiply and the output is
complex.

Table 167. Port Interface for the Const Block

Signal Direction Type Description Vector Data Support Complex Data Support

x Input Any floating-point type Operand 1 Yes Yes

q Output Any fixed- or floating-
point type

Result Yes Yes

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

307

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.19. Convert

The Convert block performs a type conversion of the input, and outputs the new data
type.

You can optionally perform truncation, biased, or unbiased rounding if the output data
type is smaller than the input. The LSB must be a value in the width in bits of the
input type.

Table 168. Parameters for the Convert Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via back projection: a downstream block that this block drives determines the output

data type. If the driven block does not propagate a data type to the driver, you must use a
Simulink SameDT block to copy the required data type to the output wire.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.

• Boolean: the output type is Boolean.
• Single: single-precision floating-point data.
• Double: double-precision floating-point data.
• Variable precision floating point: variable precision floating-point output type

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Rounding method Determines the rounding mode:
• Truncate: Discard any bits that fall below the new least significant bit.
• Biased: Add 0.5 LSB and then truncate. This rounds towards infinity.
• Unbiased: If the discarded bits equal 0.5 LSB of the new value then round towards the even

integer, otherwise perform add 0.5 LSB and then truncate. This prevents the rounding operation
introducing a DC bias where 0.5 always rounds towards positive infinity.

Saturation The Convert block allows saturation, which has an optional clip detect output that outputs 1 if any
clipping has occurred. Saturation choices are none, symmetric, or asymmetric.

Floating point
precision

Specifies the floating-point precision. For example, float32_m23.

For example, for an Add or Mult block, you can select the output word-length and
fractional part using dialog.

Specifying the output type is a casting operation, which does not preserve the
numerical value, only the underlying bits. This method never adds hardware to a block
— just changes the interpretation of the output bits.

For example, for a multiplier with both input data-types, sfix16_En15 has output
type sfix32_En30. If you select output format sfix32_En28, the output numerical
value multiplies by four. For example, 1*1 input gives an output value of 4.

If the you select output format sfix32_En31, the output numerical value is divided by
two. For example 1*1 input gives an output value of 0.5.

If you want to change data-type format in a way that preserves the numerical value,
use a convert block, which adds the corresponding hardware. Adding a convert block
directly after a primitive block lets you specify the data-type to preserve the
numerical value.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

308

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, a Mult block followed by a Convert block, with input values 1*1 always
give output value 1.

Table 169. Port Interface for the Convert Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Data Yes Yes

q Output Specified fixed-point
type

Data Yes Yes

14.3.20. CORDIC

The CORDIC block performs a coordinate rotation using the coordinate rotation digital
computer algorithm.

The CORDIC algorithm is a is a simple and efficient algorithm to calculate hyperbolic
and trigonometric functions. It calculates the trigonometric functions of sine, cosine,
magnitude and phase (arctangent) to any desired precision. A CORDIC algorithm is
useful when you do not want to use a hardware multiplier, because the only operations
it requires are addition, subtraction, bit shift and lookup.

The CORDIC algorithm is generally faster than other approaches when you do not
want to use a hardware multiplier, or you want to minimize the number of gates
required. Alternatively, when a hardware multiplier is available, table-lookup and
power series methods are generally faster than CORDIC.

CORDIC is based on rotating the phase of a complex number, by multiplying it by a
succession of constant values. The multiplications can all be powers of 2, which you
can perform with just shifts and adds in binary arithmetic. Therefore you need no
actual multiplier function.

During each multiplication, a gain occurs equal to:

where i represents the ith iterative step.

The total gain of the successive multiplications has a value of:

where n is the number of iterations.

You can calculate this total gain in advance and stored in a table. Additionally:

The CORDIC block implements the these iterative steps using a set of shift-add
algorithms to perform a coordinate rotation.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

309

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The CORDIC block takes four inputs, where the x and y inputs represent the (x, y)
coordinates of the input vector, the p input represents the angle input, and the v
represents the mode of the CORDIC block. It supports the following modes:

• The first mode rotates the input vector by a specified angle.

• The second mode rotates the input vector to the x-axis while recording the angle
required to make that rotation.

The x and y inputs must have the same width in bits. The input width in bits of the x
and y inputs determines the number of stages (iterations) inside the CORDIC block,
unless you explicitly specify an output width in bits smaller than the input width in bits
in the block parameters.

The CORDIC gain is completely ignored to save time and resource. The width in bits of
the x and y inputs automatically grows by two bits inside the CORDIC block to
account for the gaining factor of the CORDIC algorithm. Hence the x and y outputs
are two bits wider than the input and you must handle the extra two bits in your
design, if you have not specified the output width in bits explicitly through the block
parameters. You can compensate for the CORDIC gain outside the CORDIC block.

The p input is the angular value and has a range between –π and +π, which requires
at least three integer bits to fully represent the range. The v input determines the
mode. You can trade accuracy for size (and efficiency) by specifying a smaller output
data width to reduce the number of stages inside the CORDIC block.

Table 170. Parameters for the CORDIC Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields

that are available when this option is selected. This option reinterprets the output bit pattern
from the LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 171. Port Interface for the CORDIC Block

Signal Direction Type Description Vector Data Support Complex Data
Support

x Input Any fixed-point type x coordinate of the input
vector.

Yes Yes

y Input Any fixed-point type y coordinate of the input
vector.

Yes Yes

p Input Any fixed-point type Required angle of rotation in
the range between –π and
+π.

Yes Yes

v Input Any fixed-point type Selects the mode of
operation (0 = rotate by
angle, 1 = rotate to x-axis).

Yes Yes

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

310

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Type Description Vector Data Support Complex Data
Support

x Output Any fixed-point type x coordinate of the output
vector.

Yes Yes

y Output Any fixed-point type y coordinate of the output
vector.

Yes Yes

p Output Any fixed-point type Angle through which the.
coordinates rotate

Yes Yes

14.3.21. Counter

The Counter block maintains a counter and outputs the counter value each cycle.

The input is a counter enable and allows you to implement irregular counters. The
counter initializes to the value that you provide, and counts with the modulo, with the
step size you provide:

count = _pre_initialization_value;

while (1) { if (en) count = (count + _step_size) % _modulo}

Note: If you create a counter with a preinitialization value of 0 and with a step of 1, it
outputs the value 1 (not 0) on its first enabled cycle. If you want the counter to output
0 on its first valid output, initialize with:

[<(modulo – step size)> <modulo> <step size>]

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

311

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Modulo and step size cannot be coprime—the step size must exactly divide into the
modulo value.

Table 172. Parameters for the Counter Block

Parameter Description

Output data
type mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the

maximum of the number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using

additional fields that are available when this option is selected. This option
reinterprets the output bit pattern from the LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data
type

Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Counter setup A vector that specifies the counter in the format:
[<pre_initialization_value> <modulo> <step size>]
For example, [0 32 1]

Table 173. Port Interface for the Counter Block

Signa
l

Directio
n

Type Description Vector Data
Support

Complex Data
Support

en Input Boolean Count enable Yes No

q Output Specified fixed-
point type

Result Yes No

14.3.22. Count Leading Zeros, Ones, or Sign Bits (CLZ)

The CLZ block counts the leading zeros, ones, or sign bits of the input, and outputs
that count.

Table 174. Parameters for the CLZ Block

Parameter Description

Mode Determines how the block sets its output data type:
• Count Leading Zeroes: returns the count of the leading zeros in the input
• Count Leading Ones: returns the count of the leading ones in the input
• Count Leading Digits: returns the count of the leading sign digits in the input

Table 175. Port Interface for the CLZ Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed-point type Operand Yes No

q Output Derived fixed-point
type

Number of consecutive
zero bits in input word
starting from the MSB

Yes No

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

312

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.23. Dual Memory (DualMem)

The DSP Builder DualMem block models a dual interface memory structure. You can
read or write the first data interface (inputs d, a, and w). The second data interface
(specified on the second address input) is read only. The memory size is inferred from
the size of the initialization array.

The behavior of read during write cycles of the memories depends on the interface to
which you read:

• Reading from q1 while writing to interface 1 outputs the new data on q1 (write
first behavior).

• Reading from q2 while writing to interface 1 outputs the old data on q2 (read first
behavior).

Turning on DONT_CARE may give a higher fMAX for your design, especially if you
implement the memory as a MLAB. When this option is on, the output is not double-
registered (and therefore, in the case of MLAB implementation, uses fewer external
registers), and you gain an extra half-cycle on the output. The word don’t care
overlaid on the block symbol indicates the current setting is DON’T CARE. The default
is off, which outputs old data for read-during-write.

.

Table 176. Parameters for the DualMem Block

Parameter Description

Output data type mode Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional

fields that are available when this option is selected. This option reinterprets the output bit
pattern from the LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling value Specifies the output scaling value. For example, 2^-15.

Initial contents Specifies the initialization data. The size of the 1-D array determines the memory size. This
parameter may also be a fi object when specifying data of arbitrarily high precision.

Use DONT_CARE when
reading from and writing
to the same address

Turn this option on to produce faster hardware (a higher fMAX) but with uncertain read data in
hardware if you are simultaneously reading from and writing to the same address. Ensure that
you do not read from or write to the same address at the same time to guarantee valid read
data.
Intel Stratix 10 devices restrict permissible configurations of the DualMem block. You might
need to turn on this option for a valid configuration, if DSP Builder gives a warning.To avoid this
restriction, implement a simple dual-port RAM, with port 1 as write-only (e.g. connect q1 read
on port 1 to a Simulink terminator block), and port 2 as read-only (with separate addressing).
When you turn on this option and you have a write on one port, a read on another port, and
both have the same address, the read data is undefined. Simulink simulations represent these
undefined values as zeros; the ModelSim simulation shows Xs. This difference in representation
may cause simulation mismatches if you allow such undefined values to be generated. To
prevent simulation mismatches, either avoid generating accesses that cause undefined values
or detect the conditions of address equality and a write access at the input and not propagate
that output.

Allow write on both
ports

Previous to v15.0 you can read and write on the first port but only read on the second port.
From v15.0 you can read and write on both ports when you turn on this option.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

313

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify the contents of the DualMem block in one of the following ways:

• Use a single row or column vector to specify table contents. The length of the 1D
row or column vector determines the number of addressable entries in the table.
If DSP Builder reads vector data from the table, all components of a given vector
share the same value.

• When a look-up table contains vector data, you can provide a matrix to specify the
table contents. The number of rows in the matrix determines the number of
addressable entries in the table. Each row specifies the vector contents of the
corresponding table entry. The number of columns must match the vector length,
otherwise DSP Builder issues an error.

Every Primitive library block accepts double-precision floating-point values when
specifying mask parameters. This format limits precision to no more than 53 bits,
which is more than sufficient for most of the blocks. For higher precision, the Const,
DualMem, or LUT blocks optionally accept values using Simulink's Fixed Point data
type. For example:

constValue = fi(0.142, 1, 16, 15)

vectorValue = fi(sin([0:10]'), 1, 18, 15)

To configure a Const, DualMem, or LUT with data of precision higher than IEEE
double precision, create a MATLAB fi object of the required precision that contains the
high precision data. Avoid truncation when creating this object. Use the fi object to
specify the Value of the Const, the Initial Contents of the DualMem block, or the
Output value map of the LUT block.

Table 177. Port Interface for the DualMem Block

Signal Direction Type Description Vector Data Support Complex Data
Support

d Input Any fixed-point type Data to write for interface
1

Yes Yes

a Input Unsigned integer Address to read/write
from for interface 1

Yes No

w Input Boolean Write is enabled for
interface 1 when 1, read
is enabled for interface 1
when 0

Yes No

a Input Unsigned integer Address to read from for
interface 2

Yes No

q1 Output Fixed-point type Data out from interface 1.
 (1)

Yes Yes

q2 Output Fixed-point type Data out from interface 2.
 (1)

Yes Yes

Note:
1. If the address for interface 1 exceeds the memory size, q1 is not defined. If the address for interface 2 exceeds the

memory size, q2 is not defined. To write to the same location as DSP Builder reads from with q2, you must provide the
same address on both interfaces.

Related Information

RAM Megafunction User Guide.
For more information about this option

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

314

http://www.altera.com/literature/ug/ug_ram.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.24. Demultiplexer (Demux)

The Demux block deserializes the DSP Builder protocol bus on its inputs to produce a
configurable number of output signals without TDM.

The Demux block is a primitive version of the ChannelViewer block

Table 178. Parameters for the Demux Block

Parameter Description

Number of output channels A vector of the channel number you want to see for example [0 1 3].

Number of input channels The number of input channels. The block takes valid, channel, and (vector) data inputs. The
channel is the normal channel count, which varies across 0 to
NumberOfChannelsPerWire.

14.3.25. Divide

The Divide block outputs the first input, a, divided by the second input, b.

q = a/b

Table 179. Parameters for the Divide Block

Parameter Description

Output data type mode Determines how the block sets its output data type:
• Inherit via internal rule: if the input data types are floating-point, the output data type

is the same floating-point data type. Mixing different precisions is not allowed.
If the input data types are fixed-point, the output data type is fixed point with bitwidth
equal the to the sum of the bitwidths of the input data types. The fraction width is equal to
the sum of the fraction width of the a-input data type, and the integer bitwidth of the b-
input data type.

• Specify via dialog: you can set the output type of the block explicitly using additional
fields that are available when this option is selected. This option type casts the output to
the chosen fixed-point type. Attempting to type cast floating-point input is disallowed. You
can only use this option to trim bits off the least significant end of the output data type
that is otherwise inherited.

Output data type Specifies the output data type. For example, fixdt(1,16,15)

Rounding mode Specifies what rounding to apply to the result:
• Correct. IEEE compliant unbiased round to nearest output value.
• Faithful. Saves hardware by sometimes rounding to the second nearest value. Error is

about double that of correct rounding.

Output scaling value Specifies the output scaling value. For example, 2^-15.

Float point rounding This option only has an effect for floating-point inputs.:
• Correct: the result is correctly rounded IEEE
• Faithful: the result is may be rounded up or may be rounded down

Table 17–46 shows the data-type inheritance for fixed-point inputs.

Table 180. Data-Type Inheritance for Fixed-Point Inputs

Port Fixed-Point Data Type Integer Bits Fraction Bits

a sfix16_en10 6 10

b sfix12_en7 5 7

q (Inherit via internal rule) sfix28_en15 6 + 7 = 13 10 + 5 = 15

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

315

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you specify Specify via dialog for the Output data type mode, the block restricts
the allowed data types to: sfix28_en15, sfix27_en14, sfix26_en13, etc.

Table 181. Port Interface for the Divide Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or floating-point
type.

Numerator Yes No

b Input Any fixed- or floating-point
type.

Denominator Yes No

q Output Any fixed- or floating-point
type.

Result Yes No

14.3.26. Fanout

The Fanout block behaves like a wire, connecting its single input to one or more
outputs. The Fanout and VectorFanout are similar blocks.

The number of outputs is one of the parameters of the Fanout block. Use a Fanout
block instead of a simple wire to provide a hint to DSP Builder that the wire is
expected to be long. DSP Builder might ignore the hint (which amounts to
implementing the Fanout block using a simple wire), or might insert one or more
additional registers on the wire to improve the physical routing of the design. The
number of registers it inserts depends on the target device, target fMAX and other
properties of your design. Inserting a Fanout block does not change the behavior of
your design. If DSP Builder chooses to insert extra registers, it automatically adjusts
the latency of any parallel paths to preserve the original wire-like behaviour. By
default, DSP Builder implements all Fanout blocks as simple wires on non-HyperFlex
devices. FFTs and FIRs (which both contain embedded Fanout blocks) retain the same
QoR characteristics as in DSP Builder v15.0 and earlier (which has no Fanout blocks).
To enable DSP Builder to choose different implementations for the Fanout blocks in
your design, specify DSPBA_Features.EnableFanoutBlocks = true; at the
MATLAB command line. This command increases the number of registers your design
uses, but potentially increases its fMAX. You can specify that DSP Builder doesn't need
to initialize any registers that it chooses to insert. Then DSP Builder inserts hyper-
registers (instead of ordinary, ALM registers) on devices that support the HyperFlex
architecture. You should use this option for datapaths where the initial value is
unimportant, but you should avoid using it for control paths.

Table 182. Parameters for the Fanout Block

Parameter Type Description

Number of outputs Integer > 1 Number of output ports

Uninitialized Check box Specifies whether DSP Builder can use hyper registers.
When you apply automatic reset minimization, turn off Uninitialized,
which allows reset minimization to choose the correct behavior
automatically.
Turning on Uninitialized forces no reset.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

316

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 183. Port Interface for the Fanout Block

Signal Direction Type Description

d Input Any Input

q0, q1, q2, etc Output Same as d. Copy of d.

14.3.27. FIFO

The FIFO block models a FIFO memory. DSP Builder writes data through the d input
when the write-enable input w is high. After some implementation-specific number of
cycles, DSP Builder presents data at output q and the valid output v goes high. DSP
Builder holds this data at output q until the read acknowledge input r is set high.

The FIFO block wraps the Intel single clock FIFO (SCFIFO) megafunction operating in
show-ahead mode. That is, the read input, r, is a read acknowledgement which
means the DSP Builder has read the output data, q, from the FIFO buffer, so you can
delete it and show the next data output on q. The data you present on q is only valid
if the output valid signal, v, is high

Table 184. Parameters for the FIFO Block

Parameter Description

FIFO Setup A vector of three non-zero integers in the format: [<depth> <fill_threshold> <full_period>]
• depth specifies the maximum number of data values that the FIFO can store.
• fill_threshold specifies a low-threshold for empty-detection. If the number of data items in the

memory is greater than the low-threshold, the t output is 1 (otherwise it is 0).
• full_period specifies a high-threshold for full-detection If the number of data items is greater than the

high-threshold, output f is 1 (otherwise it is 0).

If the inputs w or r is a vector, the FIFO setup parameter must be a three column
matrix with the number of rows equal to the number of components in the vector.
Each row in the matrix independently configures the depth, fill_threshold, and
full_period of the FIFO buffer for the corresponding vector component.

Table 185. Port Interface for the FIFO Block

Signal Direction Type Description Vector Data Support Complex Data
Support

w Input Boolean Write enable. Yes No

d Input Fixed-point Data. Yes Yes

r Input Boolean Read acknowledge. Yes No

v Output Boolean Valid. Yes No

q Output Fixed-point Data. Yes Yes

t Output Boolean Fill threshold. Yes No

f Output Boolean Fullness. Yes No

You can to set fill_threshold to a low number (<3) and arrive at a state such that
output t is high and output v is low, because of differences in latency across different
pairs of ports—from w to v is 3 cycles, from r to t is 1 cycle, from w to t is 1 cycle. If
this situation arises, do not send a read acknowledgement to the FIFO buffer. Ensure

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

317

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

that when the v output is low, the r input is also low, otherwise a warning appears in
the MATLAB command window. If the read acknowledgement is derived from a
feedback from the t output, ensure that the fill_threshold is set to a sufficiently
high number (3 or above). Likewise for the f output and the full_period.

You may supply vector data to the d input, and vector data on the q output is the
result. DSP Builder does not support vector signals on the w or r inputs, and the
behavior is unspecified. The v, t, and f outputs are always scalar.

14.3.28. Floating-point Classifier (FloatClass)

The FloatClass block indicates whether a floating-point input is equal to zero, is
signed (negative), is infinity, or is equal to not a number.

Table 186. Port Interface for the FloatClass Block

Signal Direction Vector Data
Support

Complex Data
Support

Description

x Input Yes — —

inf Output Yes — Infinity output.

nan Output Yes — Not a number output.

sig Output Yes — Signed negativeoutput.

zer Output Yes — Zero output.

14.3.29. Floating-point Multiply Accumulate (MultAcc)

The MultAcc block instantiates a DSP block in multiply-accumulate mode. This block
only works on any device with a floating-point DSP block and supports a hardware
single-precision multiply accumulate structure. The block latency is 4 cycles.

Table 187. Parameters for the MultAcc Block

Parameter Description

Output data type mode Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields

that are available when this option is selected. This option reinterprets the output bit pattern
from the LSB up according to the specified type.

• Boolean: the output type is Boolean.

Function Accumulate (fpAcc) or multiply accumulate (fpMultAcc). When you select fpMultAcc, the block
flushes denormalized numbers to zero on inputs and output; when you select fpAcc, the block
flushes subnormal numbers to zero on inputs and output.

The fpMultAcc function implements the following equation:

qn = (acc & q(n-1)) + x * y

• When acc is high (1) the result is equal to the sum between the previous
accumulated result and the product x*y.

• When acc is low (0) the output value is the product value x*y

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

318

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The fpAcc function implements the following equation:

qn = (acc & q(n-1)) + x

• When acc is high the result consists of the sum between the previous accumulated
result and the input x.

• When acc is low the x input is forwarded to the output q.

• Subnormal numbers are flushed to zero on inputs and output

Table 188. Port Interface for the MultAcc Block

Signal Direction Vector Data
Support

Complex Data
Support

Description

x Input — — —

y Input — — Multiply accumulate only. Tied to 1 for the
accumulate parameter.

acc Input — — —

q Output — — —

14.3.30. ForLoop

The ForLoop block extends the basic loop, providing a more flexible structure that
implements all common loop structures—for example, triangular loops, parallel loops,
and sequential loops.

Each ForLoop block manages a single counter with a token-passing scheme that
allows you to link these counters in a variety ways.

Each ForLoop block has a static loop test parameter, which may be <=, <, > or >=.
Loops that count up should use <= or <, depending on whether you consider the limit
value, supplied by the limit signal, is within the range of the loop. Loops that count
down should use >= or >.

The latency of the ForLoop block is non-zero. At loop end detection there are some
cycles that may be invalid overhead required to build nested loop structures. The
second activation of an inner loop does not necessarily begin immediately after the
end of the first activation.

Table 189. Port Interface for the ForLoop Block

Signal Direction Type Description Vector Data
Support

Complex
Data Support

bs Output Boolean Token-passing inputs and outputs. The four signals ls
(loop start), bs (body start), bd (body done) and ld
(loop done) pass a control token between different
ForLoop blocks, to create a variety of different control
structures.
When the ls port receives a token, the ForLoop block
initializes. The loop counter is set to its initial value
(that the i signal specifies). When the bd port receives
a token, the step value (s) increments the loop
counter. In either case, the new value of the counter is
compared with the limit value (l) with the statically-
configured loop test.

Yes No

bd Input Boolean Yes No

ld Output Boolean Yes No

ls Input Boolean Yes No

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

319

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Type Description Vector Data
Support

Complex
Data Support

If the loop test passes, the ForLoop block outputs the
control token on the bs port to initiate the loop body
and the valid signal, v, becomes active. If the loop test
fails, the ForLoop block outputs the control token on
ld port to indicate that the loop is complete and v
becomes inactive.
The ForLoop block becomes active when it receives a
token on its ls port, and remains active until it finally
outputs a token on its ld port. Changing any of the
loop parameterization inputs (i, s, or l) while the loop
is active, is not supported and produces unpredictable
results.

c Output Derived
unsigned
fixed-point
type

The signal c is the count output from the loop. Its
value is reliable only when the valid signal, v, is active

Yes No

e Input Boolean Use the enable input, e, to suspend and resume
operation of the ForLoop block. When you disable the
loop, the valid signal, v, goes low but DSP Builder
makes no changes to the internal state of the block.
When you re-enable the block, it resumes counting
from the state at which you suspended it.

Yes No

i Input Any
unsigned
fixed-point
type

Loop parameterization inputs. The signals i, s, and l
set the initial value, step and limit value (respectively)
of the loop. Use with the loop test parameter, to control
the operation of the loop. The loop parameter signals
must be held constant while the loop is active, but you
may them when the loop is inactive. Different
activations of a ForLoop block can have different start
or end points, which is useful for creating nested
triangular loops, for example.

Yes No

s Input Any
unsigned
fixed-point
type

Yes No

l Input Any
unsigned
fixed-point
type

Yes No

el Output Boolean Auxiliary loop outputs: the signals fl and ll are active
on the first loop iteration and last loop iteration,
respectively. The signal el is active when the ForLoop
block is processing an empty loop.

Yes No

fl Output Boolean Yes No

ll Output Boolean Yes No

14.3.31. Load Exponent (LdExp)

Table 190. Functions for the LdExp Block

Function Description

ikogb(a) Outputs the integer logarithm of input, a, to the base 2. q=floor(log2|a|).

ldexp(a,b) outputs the first input, a, scaled by 2 raised to the power of the second input, b.
q = a.2b .

The Function mask parameter selects either ldexp or ilogb. The number of input
ports on the block change according to the number of operands.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

320

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 191. Port Interface for the LdExp Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Single or double Operand 1 Yes No

b Input Integer Operand 2 Yes No

q Output floating-point
for ldexp;
Integer for ilogb

Result Yes No

14.3.32. Left Shift (LShift)

The LShift block outputs the left shifted version of the input value.

The shift is specified by the input b:

q = (a << b)

The width of the data type a determines the maximum size of the shift. Shifts of more
than the input word width result in an output of 0.

Table 192. Parameters for the LShift Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 193. Port Interface for the LShift Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed-point type Operand 1 Yes No

b Input Any fixed-point type Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.33. Loadable Counter (LoadableCounter)

The LoadableCounter block maintains a counter that you can reload with new
parameters as needed in-circuit. The value of the counter increments by the step
value every cycle for which the enable input is high. If the counter exceeds or equals
the modulo value, or underflows in the case of a negative step value, it wraps around
to zero or the value minus the modulo value as applicable. The current counter value
is always available from the block's only output.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

321

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Internal registers hold the value, modulo, and step size of the counter. The values of
these registers on reset are parameters that you can set on the block. Additionally,
you can reload these registers with new values in-circuit by raising the ld signal high.
While ld is high, DSP Builder writes the values of the i, s, and m input signals into the
value, step, and modulo registers, respectively. The value of i passes through to the
counter output. When ld falls low again, the counter resumes its normal operation
starting from these new values.

If the initial or step values exceed the modulo value, the behavior is undefined. Using
signed step values increases logic usage in hardware.

Table 194. Parameters

Parameter Description

Counter setup A vector that specifies the counter settings on reset in the
following format:
[<initial value> <modulo> <step size>]

Table 195. Signals

Signal Direction Type Description Vector Data Support Complex Data
Support

en Input Boolean Enable the counter. Yes No

ld Input Boolean Load the counter. Yes No

i Input Any unsigned integer New initial value to
load.

Yes No

s Input Any integer New step value to load. Yes No

m Input Any non-zero unsigned
integer

New modulo value to
load.

Yes No

q Output Unsigned integer Counter value. Yes No

14.3.34. Look-Up Table (Lut)

The DSP Builder Lut block outputs the contents of a look-up table, indexed by the
input.

q = LUT[a]

The size of the table determines the size of the initialization arrays.

Table 196. Parameters for the Lut Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via back projection: a downstream block that this block drives determines the output

data type. If the driven block does not propagate a data type to the driver, you must use a
Simulink SameDT block to copy the required data type to the output wire.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

322

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Single: single-precision floating-point data.
• Double: double-precision floating-point data.
• Variable precision floating point: variable precision floating-point output type

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Output value map Specifies the location of the output values. For example, round([0;254]/17). This parameter may
also be a fi object when specifying data of arbitrarily high precision.

Floating point
precision

Specifies the floating-point precision. For example, float32_m23.

You can specify the contents of the Lut block in one of the following ways:

• Specify table contents with a single row or column vector. The length of the 1D
row or column vector determines the number of addressable entries in the table.
If DSP Builder reads vector data from the table, all components of a given vector
share the same value.

• When a look-up table contains vector data, you can provide a matrix to specify the
table contents. The number of rows in the matrix determines the number of
addressable entries in the table. Each row specifies the vector contents of the
corresponding table entry. The number of columns must match the vector length,
otherwise DSP Builder issues an error.

Note: The default initialization of the LUT is a row vector round([0:255]/17). This vector
is inconsistent with the default for the DualMem block, which is a column vector
[zeros(16, 1)]. The latter form is consistent with the new matrix initialization form in
which the number of rows determines the addressable size.

Every Primitive library block accepts double-precision floating-point values when
specifying mask parameters. This format limits precision to no more than 53 bits,
which is more than sufficient for most of the blocks. For higher precision, the Const,
DualMem, or LUT blocks optionally accept values using Simulink's Fixed Point data
type. For example:

constValue = fi(0.142, 1, 16, 15)

vectorValue = fi(sin([0:10]'), 1, 18, 15)

To configure a Const, DualMem, or LUT with data of precision higher than IEEE
double precision, create a MATLAB fi object of the required precision that contains the
high precision data. Avoid truncation when creating this object. Use the fi object to
specify the Value of the Const, the Initial Contents of the DualMem block, or the
Output value map of the LUT block.

Table 197. Port Interface for the Lut Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand Yes No

q Output Derived fixed- or
floating-point type

Result Yes Yes (with output value
map)

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

323

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.35. Loop

The Loop block maintains a set of counters that implement the equivalent of a nested
for loop in software. The counted values range from 0 to limit values provided with an
input signal.

When the go signal is asserted on the g input, limit-values are read into the block with
the c input. The dimension of the vector determines the number of counters (nested
loops). When DSP Builder enables the block with the e input, it presents the counter
values as a vector value at the q output each cycle. The valid output is set to 1 to
indicate that a valid output is present.

There are vectors of flags indicating when first values (output f) and last values
(output l) occur.

A particular element in these vector outputs is set to 1 when the corresponding loop
counter is set at 0 or at count-1 respectively.

Use the Loop block to drive datapaths that operate on regular data either from an
input port or data stored in a memory. The enable input, and corresponding valid
output, facilitate forward flow control.

For a two dimensional loop the equivalent C++ code to describe the general loop is:

for (int i = 0; i < c[0]; i++)

for (int j = 0; j < c[1]; j++) {

q[0] = i;

q[1] = j;

f[0] = (i==0);

f[1] = (j==0);

l[0] = (i==(c[0]-1));

l[1] = (j==(c[1]-1));

}

Table 198. Port Interface for the Loop Block

Signal Direction Type Description Vector Data Support Complex Data Support

g Input Boolean Go. Yes No

c Input Unsigned integer Counter limit values. Yes No

e Input Boolean Enable. Yes No

v Output Boolean Valid. Yes No

q Output Unsigned integer Counter output values. Yes No

f Output Boolean First value flags. Yes No

l Output Boolean Last value flags. Yes No

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

324

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.36. Math

The Math block applies a mathematical operation to its floating-point inputs and
outputs the floating-point result. A mask parameter popup menu selects the required
elementary mathematical function that DSP Builder applies.

Table 199. Functions for the Math Block

Function Description

exp(x) (1) e raised to the exponent x.

exp2(x) 2 raised to the exponent x.

exp10(x) 10 raised to the exponent x.

expm1(x) exp(x) – 1.

inverse(x) The reciprocal of x. For Floating-point rounding, select either correct or faithful.

hypot(x,y) Hypotenuse of right-angled triangle with other two sides length x and y.

hypot3d The Euclidean norm of a vector in a three-dimensional space.

log(x) (1) Natural logarithm.

log2(x) Logarithm of x to the base 2.

log10(x) Logarithm of x to the base 10.

log1p(x) log(x+1).

pow(x,y) x raised to the power of y.

powr(x,y) x raised to the power of y, where I is non-negative.

mod(x,y) (x – n × y) where n = y/x rounded toward zero.

Note:
1. For single-precision input and designs targeting any device with a floating-point DSP block, the block uses a mixture of

resources including the DSP blocks in floating-point mode. This implementation uses fewer ALMs at the expense of
more DSP blocks.

Table 17–66 shows the functions for the Math block.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

325

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Function mask parameter selects one of five elementary functions. The number
of input ports on the block change as required by the semantics of the function that
you select:

• One-input function: exp(x), exp2(x), exp10(x), expm1(x), log(x), log2(x),
log10(x),log1p(x), inverse(x)

• Two-input functions: hypot(x,y), mod(x,y), pow(x,y), powr(x,y)

• Three input function: hypot3d(x,y,z)

Table 200. Port Interface for the Math Block

Signal Direction Type Description Vector Data
Support

Complex Data
Support

x Input Single or double Operand 1 Yes No

y Input Single or double Operand 2
(hypot, mod, pow,
and powr only)

Yes No

z Input Single or double Hypot3 only. Yes No

q Output Single or double Result Yes No

14.3.37. Minimum and Maximum (MinMax)

The MinMax block allows you to select a bounding function to apply to the inputs.

Table 201. Functions for the MinMax Block

Function Data types Description

max Fixed- or floating-
point

Outputs a if a > b, otherwise outputs b.

min Fixed or floating-
point

Outputs a if a < b, otherwise outputs b.

maxmag Floating-point Outputs a if |a| > |b|, b if |b| > |a|, otherwise max(a,b).

minmag Floating-point Outputs a if |a| < |b|, b if |b| < |a|, otherwise min(a,b).

dim Floating-point Outputs (a – b) if a > b, otherwise outputs 0.

sat Floating-point Saturate input a to interval [c,b].

The Function mask parameter selects one of six bounding functions. The number of
input ports on the block change as required by the semantics of the function that you
select:

• Two-input functions: max, min, maxmag, minmag, dim

• Three-input functions: sat

The Output data type mode mask parameter applies only if the input is fixed-point
format.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

326

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 202. Port Interface for the MinMax Block

Signal Direction Type Description Vector Data
Support

Complex Data
Support

Input Fixed-point, single
or double

Operand 1 Yes No

b Input Fixed-point, single
or double

Operand 2 Yes No

c Input Single or double Operand 3
(saturate only)

Yes No

q Output Single or double Result Yes No

14.3.38. MinMaxCtrl

The MinMaxCtrl block applies a minimum or maximum operator to the inputs
depending on the Boolean signal it receives on the control port.

Table 203. Functions of the MinMaxCtrl Block

s Function Description

0 Minimum Output a if a < b, otherwise output b.

1 Maximum Output a if a > b, otherwise output b.

The Output data type mode mask parameter applies only if the inputs a and b are
fixed-point format.

Table 204. Parameters for the MinMaxCtrl Block

Parameter Description

Output data type mode Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of

the number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional

fields that are available.This option reinterprets the output bit pattern from the LSB up
according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling value Specifies the output scaling value. For example, 2^-15.

Table 205. Port Interface for the MinMaxCtrl Block

Signal Direction Type Description Vector Data
Support

Complex Data
Support

Input Fixed-point, single
or double

Operand 1 Yes No

b Input Fixed-point, single
or double

Operand 2 Yes No

s Input Boolean Select input Yes No

q Output Fixed-point, single
or double

Result Yes No

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

327

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.39. Multiply (Mult)

The Mult block outputs the product of the inputs:

q = a × b

Note: For single-precision inputs and designs targeting any device with a floating-point DSP
block, the block uses a mixture of resources including the DSP blocks in floating-point
mode.

.

Table 206. Parameters for the Mult Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.
• Variable precision floating point: variable precision floating-point output type

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Floating point
rounding

Specifies what rounding to apply to the result:
• Correct. IEEE compliant unbiased round to nearest output value.
• Faithful. Saves hardware by sometimes rounding to the second nearest value. Error is about

double that of correct rounding.

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Floating point
precision

Specifies the floating-point precision. For example, float32_m23.

.

Table 207. Port Interface for the Mult Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand 1 Yes Yes

b Input Any fixed- or floating-
point type

Operand 2 Yes Yes

q Output Derived fixed- or
floating-point type

Result Yes Yes

Related Information

Forcing Soft Floating-point Data Types with the Advanced Options on page 217

14.3.40. Multiplexer (Mux)

The Mux block allows a variable number of inputs and outputs the selected input, or
zero if the select value is invalid (outside the number of data signals).

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

328

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can make a multiple input multiplexer by combining more than one mux2 blocks
in a tree or by using a Select block.

.

Table 208. Parameters for the Mux Block

Parameter Description

Number of data
signals

The input type for s is an unsigned integer of width log2(number of data signals). Boolean is also
allowed in the case of two data inputs.

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 209. Port Interface for the Mux Block

Signal Direction Type Description Vector Data Support Complex Data Support

s Input Any fixed- or floating-
point type

Select input Yes No

0 Input Any fixed- or floating-
point type

Input 0 Yes Yes

1 Input Any fixed- or floating-
point type

Input 1 Yes Yes

q Output Derived fixed- or
floating-point type

Result Yes Yes

14.3.41. NAND Gate (Nand)

The Nand block outputs the logical NAND of the input values:

q = ~(a & b)

If the number of inputs is set to 1, then output the logical NAND of all the individual
bits of the input word.

.

Table 210. Parameters for the Nand Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

329

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Inherit via internal rule: the number of integer and fractional bits is the maximum of the
number of bits in the input data types.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 211. Port Interface for the Nand Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand 1 Yes No

b Input Any fixed-point type Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.42. Negate

The Negate block outputs the negation of the input value.

The Output datatype mode determines how the block infers its output data type:

• Inherit via internal rule. The output data type is the same as the input data
type.

• Inherit via internal rule with word growth. The output data type is the same
as the input data type. If the input data type is fixed-point, word growth is applied
to the output data type.

Table 212. Port Interface for the Not Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed- or floating-
point type

Operand Yes Yes

q Output Any fixed- or floating-
point type

Result Yes No

14.3.43. NOR Gate (Nor)

The Nor block outputs the logical NOR of the input values:

q = ~(a | b)

Set the number of inputs to 1, to output the logical NOR of all the individual bits of
the input word.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

330

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 213. Parameters for the Nor Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 214. Port Interface for the Nor Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand 1 Yes No

b Input Any fixed-point type Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.44. NOT Gate (Not)

The Not block outputs the logical NOT of the input value:

q = ~a

.

Table 215. Parameters for the Not Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

331

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 216. Port Interface for the Not Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.45. OR Gate (Or)

The Or block outputs the logical OR of the input values:

q = a | b

Set the number of inputs to 1, to output the logical OR of all the individual bits of the
input word.

.

Table 217. Parameters for the Or Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 218. Port Interface for the Or Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand 1 Yes No

b Input Any fixed-point type Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.46. Polynomial

The Polynomial block takes input x, and provides the result of evaluating a
polynomial of degree, n:

f(x) = a0 + a1x + a2x2 + … + anxn

.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

332

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 219. Parameters for the Polynomial Block

Parameter Description

Coefficient banks A vector of (n +1) components. Specify the coefficients in the order a0, a1, a2, …, an.
If input x is driven by a vector signal, then a matrix with (n+1) columns, and one row per vector
component can be specified. Each output component will be the result of evaluating an independently
defined polynomial of degree, n.
If there is more than one coefficient bank, the number of rows in the matrix should be v*u, for v
vector components, and u banks. The coefficients for a given bank are ordered contiguously in the
matrix.

Number of
coefficient banks

• Set to the default value of 1, for only one input, x.
• Set to greater than 1, for a second input, b, to specify which bank of coefficients DSP Builder uses

to evaluate the polynomial.

.

Table 220. Port Interface for the Polynomial Block

Signal Direction Type Description Vector Data Support Complex Data Support

x Input Floating-point Data Yes No

b Input Integer Bank selector No No

q Output Floating-point Data Yes No

14.3.47. Ready

Use the Ready block in designs with ALU folding. The Ready block adds a ready
signal to your design.

14.3.48. Reinterpret Cast (ReinterpretCast)

The ReinterpretCast block outputs the same bit pattern that it reads on its input
port, but casts it to a data type that you specify with the block parameters. This data
type should use the same number of bits as the bit width of the input signal.

Table 221. Parameters for the ReinterpretCast Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via back projection: a downstream block that this block drives determines the output

data type. If the driven block does not propagate a data type to the driver, you must use a
Simulink SameDT block to copy the required data type to the output wire.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

333

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Single: single-precision floating-point data.
• Double: double-precision floating-point data.
• Variable precision floating point: variable precision floating-point output type

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Floating point
precision

Specifies the floating-point precision. For example, float32_m23.

Table 222. Port Interface for the ReinterpretCast Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or floating-
point type

Operand Yes Yes

q Output User specified Result Yes Yes

14.3.49. Round

The Round block applies a rounding operation to the floating-point input. A mask
parameter popup menu selects the required rounding function that you apply.

Table 223. Functions for the Round Block

Function Description

ceil(x) Lowest integer not less than input x.

floor(x) Highest integer not exceeding input x.

rint(x) Round to nearest integer; halfway cases rounded to even number.

round(x) Round to nearest integer; halfway cases rounded away from zero.

The Function mask parameter selects one of four rounding functions.

Table 224. Port Interface for the Round Block

Signal Direction Type Description Vector Data
Support

Complex Data
Support

x Input Single or double Operand Yes Yes

q Output Single or double Result Yes Yes

14.3.50. Sample Delay (SampleDelay)

The SampleDelay block outputs a delayed version of the input.

Note: SampleDelay blocks might not reset to zero. Do not use designs that rely on
SampleDelays output of zero after reset. Use the valid signal to indicate valid data
and its propagation through the design.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

334

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 225. Parameters for the SampleDelay Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.
• Single: single floating-point data.
• Double: double floating-point data.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Number of delays Specifies the number of samples to delay.

Minimum delay Checks if the delay can grow as needed, so that the specified length becomes the lower bound.

Equivalence group Sample delays that share the same equivalence group string grow by the same increment.

Table 226. Port Interface for the SampleDelay Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or floating-
point type

Data input Yes Yes

q Output Derived fixed- or
floating-point type

Data output Yes Yes

14.3.51. Scalar Product

The Scalar Product block accepts two vector inputs of the same dimension and
produces the inner product on the output. If one or more inputs are complex, the
output is complex. If one of the inputs is a scalar signal, the same factor scales all
vector components of the other input port.

Note: For single-precision inputs and designs targeting devices with floating-point DSP
blocks, the block uses a mixture of resources including the device DSP blocks in
floating-point mode.

Table 227. Parameters for the Scalar Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

335

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Inherit via internal rule: the number of integer and fractional bits is the maximum of the
number of bits in the input data types.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Inherit via internal rule with word growth: the number of fractional bits is the maximum of
the number of fractional bits in the input data types. The number of integer bits is the maximum of
the number of integer bits in the input data types plus one. This additional word growth allows for
subtracting the most negative number from 0, which exceeds the maximum positive number that
you can store in the number of bits of the input.

• Boolean: the output type is Boolean.
• Variable precision floating point: variable precision floating-point output type.

Output data type Specifies the output data type. For example, fixdt(1, 16, 15). Only available for Specify via dialog

Output scaling
value

Specifies the output scaling value. For example, 2^-15. Only available for Specify via dialog

Floating-point
precision

Specifies a predefined floating-point type. Only available for Variable precision floating point:

Fused datapath This option affects the floating-point architectures. Turn on this option to save hardware by omitting
normalization stages between adder stages. The output deviates from that expected of IEEE
compliance.

Floating Point
Rounding

Specifies what rounding to apply to the result:
• Correct. IEEE compliant unbiased round to nearest output value.
• Faithful. Saves hardware by sometimes rounding to the second nearest value. Error is about

double that of correct rounding.

Table 228. Port Interface for the Scalar Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed- or
floating-point
type

Operand 1 Yes Yes

b Input Any fixed- or
floating-point
type

Operand 2 Yes Yes

q Output Derived fixed-
or floating-point
type

Result No Yes

14.3.52. Select

The Select block outputs one of the data signals (a, b, ...) if its paired select input (0,
1, ...) has a non-zero value.

q = 0 ? a : (1 ? b : d)

If all select inputs are 0, the Select block outputs the default value d. At most one
select input should be high at a time.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

336

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 229. Parameters for the Select Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Number of cases Specifies the number of non-default data inputs.

Table 230. Port Interface for the Select Block

Signal Direction Type Description Vector Data Support Complex Data
Support

d Input Any fixed- or
floating-point
type

Default input Yes Yes

0, 1, 2, ... Input Boolean One-hot select inputs Yes No

a, b, c, ... Input Any fixed- or
floating-point
type

Data input Yes Yes

q Output Derived fixed-
or floating-point
type

Result Yes Yes

14.3.53. Sequence

The Sequence block outputs a Boolean pulse of configurable duration and phase.

The input acts as an enable for this sequence. Usually, this block initializes with an
array of Boolean pulses of length period. The first step_value entries are zero, and the
remaining values are one.

A counter steps along this array, one entry at a time, and indexes the array. The
output value is the contents of the array. The counter is initialized to initial_value. The
counter wraps at step period, back to zero, to index the beginning of the array.

Table 231. Parameters for the Sequence Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

337

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Inherit via internal rule: the number of integer and fractional bits is the maximum of the
number of bits in the input data types.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Sequence setup A vector that specifies the counter in the format: [<initial_value> <step_value> <period>]
For example, [0 50 100]

Table 232. Port Interface for the Sequence Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Boolean Sequence enable Yes No

q Output Boolean Result Yes No

14.3.54. Shift

The Shift block outputs the logical right shifted version of the input value if unsigned,
or outputs the arithmetic right shifted version of the input value if signed. The shift is
specified by the input b:

q = (a >> b)

The width of the data type b determines the maximum size of the shift.

Shifts of more than the input word width result in an output of 0 for non-negative
numbers and (0 – 2-F) for negative numbers (where F is the fraction length).

Table 233. Parameters for the Shift Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 234. Port Interface for the Shift Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand 1 Yes No

b Input Unsigned integer Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

338

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.55. Sqrt

The Sqrt block applies a numerical root operation to its input and produces the result.
The mask parameter pop-up menu selects the required root function that you apply.

Table 235. Functions for the Sqrt Block

Function Description

cbrt(x) Cube root.

recipsqrt(x) Reciprocal square root.

sqrt(x) Square root.

Table 236. Parameters for Sqrt Block

Parameter Values Description

Function cbrt(x), recipsqrt(x), or sqrt(x) Selects the numerical root function.

Floating-point rounding Correct or Faithful Only for sqrt(x) function.

Advanced Options Blank or struct('method',256) The sqrt(x) function with integer input
and output has two semantics: floor
semantics, floor(sqrt(x)), for a logic
reduction on wider data types or the
default round-to-nearest semantics. To
select floor semantics, type
struct('method',256).

Table 237. Port Interface for the Sqrt Block

Signal Direction Type Description Vector Data
Support

Complex Data
Support

x Input For, recipsqrt(x),
or sqrt(x), any
fixed- or floating-
point 32-bit
integer. For
cbrt(x) floating-
point input only.

Operand Yes No

q Output Output type
depends on input
type.

Result Yes No

14.3.56. Subtract (Sub)

The Sub block outputs the difference between the inputs:

q = a – b.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

339

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For single-precision inputs and designs targeting any device with a floating-point DSP
block, the block uses a mixture of resources including the DSP blocks in floating-point
mode.

Table 238. Parameters for the Sub Block

Parameter Description

Output data
type mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the

maximum of the number of bits in the input data types.
• Inherit via internal rule with word growth: the number of fractional bits is the

maximum of the number of fractional bits in the input data types. The number of
integer bits is the maximum of the number of integer bits in the input data types
plus one. This additional word growth allows for subtracting the most negative
number from 0, which exceeds the maximum positive number that you can store in
the number of bits of the input.

• Specify via dialog: you can set the output type of the block explicitly using
additional fields that are available when this option is selected. This option
reinterprets the output bit pattern from the LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data
type

Specifies the output data type. For example, sfix(16), uint(8).

Rounding
mode

Specifies what rounding to apply to the result:
• Correct. IEEE compliant unbiased round to nearest output value.
• Faithful. Saves hardware by sometimes rounding to the second nearest value. Error

is about double that of correct rounding.

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 239. Port Interface for the Sub Block

Signa
l

Directio
n

Type Description Vector Data
Support

Complex Data
Support

a Input Any fixed- or
floating-point type

Operand 1 Yes Yes

b Input Any fixed- or
floating-point type

Operand 2 Yes Yes

q Output Derived fixed- or
floating-point type

Result Yes Yes

Related Information

Forcing Soft Floating-point Data Types with the Advanced Options on page 217

14.3.57. Sum of Elements (SumOfElements)

The SumOfElements block outputs the sum of the elements within its single data
input.

q = Σ an

If the input is a scalar, the SumOfElements block outputs an unchanged value.

q = a

.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

340

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 240. Parameters for the SumOfElements Block

Parameter Description

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Inherit via internal rule with word growth: the number of fractional bits is the maximum of

the number of fractional bits in the input data types. The number of integer bits is the maximum of
the number of integer bits in the input data types plus one. This additional word growth allows for
subtracting the most negative number from 0, which exceeds the maximum positive number that
you can store in the number of bits of the input.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Number of Inputs Specifies the number of inputs.

.

Table 241. Port Interface for the SumOfElements Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a Input Any fixed-point type Operand Yes Yes

q Output Derived fixed-point
type

Result No (scalar output
only).

Yes

Related Information

Forcing Soft Floating-point Data Types with the Advanced Options on page 217

14.3.58. Trig

The Trig block applies a trigonometric operation to its floating-point inputs and
produces the floating-point result.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

341

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Your design may use up to 50% less resources if you use the pi functions.

Table 242. Functions for the Trig Block

Function Description

acos(a) Arc cosine (inverse cosine) output in radians.

asin(a) Arc sine (inverse sine) output in radians.

atan(a) Arc tangent (inverse tangent) output in radians.

acos(x)/pi Arc cosine (inverse cosine) output as fraction of half circle.

asin(x)/pi Arc sine (inverse sine) output as fraction of half circle.

atan(x)/pi Arc tangent (inverse tangent) output as fraction of half circle.

atan2(y,x) Four quadrant inverse tangent, output angle in interval [-π,+π] radians.

cos(a) Cosine of input in radians.

cos(pi*x) Cosine of input angle specified as fraction of half circle.

cot(a) Cotangent of input in radians.

cot(pi*x) Cotangent of input angle specified as fraction of half circle.

sin(a) Sine of input in radians.

sin(pi*x) Sine of input angle specified as fraction of half circle.

sincos(a) Outputs both sine and cosine of input a in radians.

tan(a) Tangent of input in radians.

tan(pi*x) Tangent of input angle specified as fraction of half circle.

The Function parameter selects one of the 16 trigonometric functions. The number of
input ports and output ports on the block change as required by the semantics of the
function that you select:

• One-input and one-output: sin, cos, tan, cot, asin, acos, atan

• Two-inputs and one-output: atan2

• One-input and two-outputs: sincos

If you reduce the input range for the sin(x) and cos(x) functions to the interval
[-2pi,2pi], and you target devices with floating-point DSP blocks, in Advanced
Options set struct('rangeReduction',0). The design then uses the floating-point
mode of the DSP blocks to build more efficient architectures.

Table 243. Port Interface for the Trig Block

Signal Direction Type Description Vector Data
Support

Complex Data
Support

x Input Single or double Operand 1
(Operand 2 of atan2)

Yes No

y Input Single or double Operand 1 of atan2 Yes No

q Output Single or double Result 1 Yes No

r Output Single or double Result 2
(Cosine output of sincos)

Yes No

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

342

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.3.59. XNOR Gate (Xnor)

The Xnor block outputs the logical XNOR of the input values:

q = ~(a XOR b)

Set the number of inputs to 1, to output the logical XNOR of all the individual bits of
the input word.

Table 244. Parameters for the Xnor Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:
• Inherit via internal rule: the number of integer and fractional bits is the maximum of the

number of bits in the input data types.
• Specify via dialog: you can set the output type of the block explicitly using additional fields that

are available when this option is selected. This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

.

Table 245. Port Interface for the Xnor Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand 1 Yes No

b Input Any fixed-point type Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14.3.60. XOR Gate (Xor)

The Xor block outputs the logical XOR of the input values:

q = (a XOR b)

Set the number of inputs to 1, to output the logical XOR of all the individual bits of
the input word.

.

Table 246. Parameters for the Xor Block

Parameter Description

Number of inputs Specifies the number of inputs.

Output data type
mode

Determines how the block sets its output data type:

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

343

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

• Inherit via internal rule: the number of integer and fractional bits is the maximum of the
number of bits in the input data types.

• Specify via dialog: you can set the output type of the block explicitly using additional fields that
are available when this option is selected.This option reinterprets the output bit pattern from the
LSB up according to the specified type.

• Boolean: the output type is Boolean.

Output data type Specifies the output data type. For example, sfix(16), uint(8).

Output scaling
value

Specifies the output scaling value. For example, 2^-15.

Table 247. Port Interface for the Xor Block

Signal Direction Type Description Vector Data Support Complex Data Support

a Input Any fixed-point type Operand 1 Yes No

b Input Any fixed-point type Operand 2 Yes No

q Output Derived fixed-point
type

Result Yes No

14.4. Primitive Configuration Library

Use the DSP Builder advanced blockset Primitive Configuration library blocks to
implement blocks that change how DSP Builder synthesizes primitive subsystems,
including boundary delimiters.

1. Channel In (ChannelIn) on page 344

2. Channel Out (ChannelOut) on page 345

3. General Purpose Input (GPIn) on page 346

4. General Purpose Output (GPOut) on page 346

5. Synthesis Information (SynthesisInfo) on page 347

14.4.1. Channel In (ChannelIn)

The ChannelIn block delineates the input boundary of a DSP Builder synthesizable
Primitive subsystem.

The ChannelIn block passes its input through to the outputs unchanged, with types
preserved. This block indicates to DSP Builder that these signals arrive synchronized
from their source, so that the synthesis tool can interpret them.

Table 248. Parameters for the ChannelIn Block

Parameter Description

Number of data signals Specifies the number of data signals on this block.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

344

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 249. Port Interface for the ChannelIn Block

Signal Direction Type Description Vector Data Support Complex Data
Support

v Input Boolean Valid input signal No No

c Input uint(8) Channel input signal No No

d0, 1, 2, ... Input Any fixed-or
floating-point
type

A number of input
data signals

Yes Yes

v Output Boolean Valid signal No No

c Output uint(8) Channel signal No No

q0, 1, 2, ... Output Any fixed- or
floating-point
type

A number of data
signals

Yes Yes

14.4.2. Channel Out (ChannelOut)

The ChannelOut block delineates the output boundary of a DSP Builder synthesizable
Primitive subsystem.

The ChannelOut block passes its input through to the outputs unchanged, with types
preserved. This block indicates to DSP Builder that these signals must synchronize,
which the synthesis tool can ensure.

When you run a simulation in Simulink, DSP Builder adds additional latency from the
balanced pipelining stages to meet the specified timing constraints for your model.
The block accounts for this additional latency. This latency does not include any delay
explicitly added to your model, by for example a SampleDelay block, just added
pipelining for timing closure.

Note: You can also access the value of the latency parameter by typing a command of the
following form on the MATLAB command line:

get_param(gcb,’latency’)

Table 250. Parameters for the ChannelOut Block

Parameter Description

Number of data
signals

Specifies the number of data signals on this block.

.

Table 251. Port Interface for the ChannelOut Block

Signal Direction Type Description Vector Data Support Complex Data
Support

v Input Boolean Valid output signal No No

c Input 8-bit unsigned
integer

Channel output signal No No

d0, d1, d2, ... Input Any fixed-or
floating-point
type

A number of output
data signals

Yes Yes

continued...

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

345

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Type Description Vector Data Support Complex Data
Support

v Output Boolean Valid signal No No

c Output 8-bit unsigned
integer

Channel signal No No

q0, q1, q2, ... Output Any fixed-or
floating-point
type

A number of data
signals

Yes Yes

14.4.3. General Purpose Input (GPIn)

The GPIn block models a general purpose input to a synthesizable subsystem. It is
similar to the ChannelIn block but has no valid or channel inputs.

If the signal width is greater than one, you can assume the multiple inputs are
synchronized.

Table 252. Parameters for the GPIn Block

Parameter Description

Number of data signals Specifies the number of input and output signals.

.

Table 253. Port Interface for the GPIn Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a, b, ... Input Any fixed-point
type

Operands 1 to n Yes Yes

a, b, ... Output Same type as
input

Data is passed
through unchanged.

Yes Yes

14.4.4. General Purpose Output (GPOut)

The GPOut block models a general purpose output to a synthesizable subsystem. It is
similar to the ChannelOut_help block but has no valid or channel inputs.

If the width is greater than one, the multiple outputs generate and are synchronized.

Table 254. Parameters for the GPOut Block

Parameter Description

Number of data signals Specifies the number of input and output signals.

Table 255. Port Interface for the GPOut Block

Signal Direction Type Description Vector Data Support Complex Data
Support

a, b, ... Input Any fixed- or
floating-point type

Operands 1 to n Yes Yes

a, b, ... Output Same type as
input

Data is passed
through unchanged.

Yes Yes

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

346

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.4.5. Synthesis Information (SynthesisInfo)

Use the SynthesisInfo block to set the synthesis mode and label a primitive
subsystem as the top-level synthesizable subsystem. DSP Builder flattens and
synthesizes the subsystem, and all those subsystems below as a unit. Primitive
subsystems must have a SynthesisInfo block. DSP Builder creates pipelines and
redistribute memories optimally to achieve the desired clock frequency. The
SynthesisInfo block controls the synthesis flow for the current model.

Note: If no SynthesisInfo block is present, DSP Builder gives error messages if insufficient
delay is present.

The inputs and outputs to this subsystem become the primary inputs and outputs of
the RTL entity that DSP Builder creates. After you run a Simulink simulation, the
online Help page for the SynthesisInfo block updates to show the latency, and port
interface for the current Primitive subsystem.

Note: The SynthesisInfo block can be at the same level as the Device block (if the
synthesizable subsystem is the same as the generated hardware subsystem).
However, it is often convenient to create a separate subsystem level that contains the
Device block. Refer to the design examples for some examples of design hierarchy.

Table 256. Parameters for the SynthesisInfo Block

Parameter Description

Constrain
Latency

This option allows you to select the type of constraint and to specify its value. The
value can be a workspace variable or an expression but must evaluate to a positive
integer.
You can select the following types of constraint:
• >: Greater than
• >=: Greater than or equal to
• =: Equal to
• <=: Less than or equal to
• <: Less than
Select either + or - and type in a reference model in the text field. Specify the
reference as a Simulink path string e.g. ‘design/topLevel/model’. DSP Builder
then ensures the latency depends on that model, otherwise the default is that DSP
Builder depends on no model.

Bit accurate
simulation

Turn on in floating-point designs to give bit accurate rather than mathematical
simulations. Fixed point designs always use bit accurate.

Local reset
minimization

Select the reset minimization for the associated synthesizable subsystem. Valid only if
Control block Global Enable is On.
The default is Conditional – On for ChannelIn/Out only.
Select Off to disable reset minimization on this synthesizable subsystem.
Select On – Always (for ChannelIn/Out or GPIn/Out to apply reset minimization
to a synthesizable subsystem that uses GPIn/Out blocks. In a GPIn/Out subsystem
with reset minimization, the whole subsystem is data flow and has no valid signal to be
control flow.

The SynthesisInfo block has no inputs or outputs.

1. Scheduled Synthesis on page 348

2. Updated Help on page 348

Related Information

Reset Minimization on page 196

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

347

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14.4.5.1. Scheduled Synthesis

The Scheduled style of operation uses a pipelining and delay distribution algorithm
that creates fast hardware implementations from an easily described untimed block
diagram. This style takes full advantage of the automatic pipelining capability.

The algorithm performs the following operations:

1. Reads in and flattens your design example for any subsystem that contains a
SynthesisInfo block.

2. Builds an internal graph to represent the logic.

3. Based on the absolute clock frequency requested, adds enough pipeline stages to
meet that clock frequency. For example, you may pipeline long adders into several
shorter adders. This additional pipelining helps reach high clock frequencies.

14.4.5.2. Updated Help

After you run a simulation, DSP Builder updates the help pages with specific
information about each instance of a block. This updated help overrides the default
help link. To find the updated help, click on the help link on the block after simulation.
This updated help includes a link back to the help for the general block and the
following information about the generated instance:

• Date and time of generation

• The latency introduced by this block.

• Port interface table.

14.5. Primitive Design Elements Library

Use the DSP Builder advanced blockset Primitive Design Elements library blocks to
implement configurable blocks and common design patterns built from primitive
blocks.

1. Anchored Delay on page 349

2. Complex to Real-Imag on page 349

3. Enabled Delay Line on page 349

4. Enabled Feedback Delay on page 349

5. Expand Scalar (ExpandScalar) on page 349

6. Nested Loops (NestedLoop1, NestedLoop2, NestedLoop3) on page 349

7. Pause on page 351

8. Reset-Priority Latch (SRlatch_PS) on page 352

9. Same Data Type (SameDT) on page 352

10. Set-Priority Latch (SRlatch) on page 352

11. Single-Cycle Latency Latch (latch_1L) on page 352

12. Tapped Line Delay (TappedLineDelay) on page 353

13. Variable Super-Sample Delay (VariableDelay) on page 353

14. Vector Fanout (VectorFanout) on page 353

15. Vector Multiplexer (VectorMux) on page 354

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

348

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

16. Zero-Latency Latch (latch_0L) on page 354

14.5.1. Anchored Delay

DSP Builder SampleDelay blocks are often not suitable in FSMs, which are common
in control unit designs. To ensure that DSP Builder's simulation of FSMs matches the
synthesized hardware, use the Anchored Delay block not the SampleDelay block.

The Anchored Delay block has a data input and a valid input port. Connect the valid
input port to the valid in of the enclosing Primitive subsystem to allow DSP Builder to
correctly schedule the starting state of your control unit design.

14.5.2. Complex to Real-Imag

The DSP Builder Complex to Real-Imag block handles custom data types that the
enhanced precision floating-point types support.

14.5.3. Enabled Delay Line

The DSP Builder Enabled Delay Line block takes a single data signal a and an enable
signal e and implements an enabled delay line, with q as the delayed data output.
Internally, the block is is either a Latch_0L or Latch_1L (depending on the Zero or
one initial delay parameter) followed by a series of Latch_1Ls. The final output
connects to the output port q. When you use the block in a feedback loop, DSP Builder
cannot redistribute the enabled sample delays around the feedback path. In these
instances, use the Enabled Feedback Delay block."

14.5.4. Enabled Feedback Delay

The DSP Builder Enabled Feedback Delay block takes a single data signal a and an
enable signal e and implements an enabled delay, with q as the delayed data output.
The block is a non-enabled SampleDelay block followed by a FIFO buffer. When you
use the block in a feedback loop, DSP Builder can distribute the non-enabled sample
delay around the feedback path, while retaining the right enabled feedback behavior.

14.5.5. Expand Scalar (ExpandScalar)

The DSP Builder ExpandScalar block takes a single connection and replicates it N
times to form a width N vector of duplicate signals. The block passes on the width
parameter to a Simulink multiplexer under the mask, and uses some standard
Simulink commands to add the connections lines.

14.5.6. Nested Loops (NestedLoop1, NestedLoop2, NestedLoop3)

The DSP Builder NestedLoop1, NestedLoop2, and NestedLoop3 blocks maintain a
set of counters that implement the equivalent of a nested for loop in software. They
provide more flexibility than the Loop block and greater readability and lower latency
than ForLoop blocks.

DSP Builder implements the NestedLoop blocks as masked subsystems and use
existing DSP Builder Primitive library blocks. They do not have fixed
implementations. DSP Builder generates a new implementation at runtime whenever
you change any of the loop specifications.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

349

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For each loop in a NestedLoop block, you can specify start, increment, and end
expressions. Each of these expressions may have one of the following three forms:

• A constant expression that evaluates (in the MATLAB base environment) to an
integer. For example, if the MATLAB variable N has the value 256, (log2(N)+1) is a
legal expression (and evaluates to 9).

• An instance of the loop variable controlling an enclosing loop. For example, you
can use "i" (the outer loop variable) as the start expression of the "j" or "k" loops.

• A port name, optionally accompanied by a width specification in angle brackets.
For example "p" or "q<4>". If no width is specified, it defaults to 8. This option
generates a new input port (with the user-defined name and width) on the
NestedLoop block.

For a NestedLoop2 block, with user-supplied start, increment, and end expressions
of S1, I1 and E1 (for the outer loop) and S2, I2 and E2 (for the inner loop), the
equivalent C++ code is:

 int i = S1;
 do {
 int j = S2;
 do {
 j += I2;
 } while (j != E2);
 i += I1;
 } while (i != E1);

Each NestedLoop block has two fixed input ports (go and en) and a variable number
of additional user-defined input ports. DSP Builder regards each user-defined port as a
signed input.

Each block also has two fixed output ports (qv and ql) and one (NestedLoop1), two
(NestedLoop2) or three (NestedLoop3) output ports for the counter values.

When the input en signal is low (inactive), the output qv (valid) signal is also set low.
The state of the NestedLoop block does not change, even if it receives a go signal.

Normal operation occurs when the en signal is high. The NestedLoop block can be in
the waiting or counting state.

The NestedLoop block resets into the waiting state and remains there until it receives
a go signal. While in the waiting state, the qv signal is low and the value of the other
outputs are undefined.

When the block receives a go signal, the NestedLoop block transitions into the
counting state. The counters start running and the qv ouput signal is set high. When
all the counters eventually reach their final values, the ql (last cycle) output becomes
high. On the following cycle, the NestedLoop block returns to the waiting state until
it receives another go signal.

If the block receives a go signal while the NestedLoop block is already in the
counting state, it remains in the counting state but all its counters are reset to their
start values.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

350

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Observe the following points:

• All counters in the NestedLoop block are signed. To effectively use unsigned
counters, zero-extend any unsigned inputs (and correspondingly increase their
width specifications) by one bit.

• The end test is an equality test. Each loop continues until the current value of the
counter is equal to the end value. However, if the loop counter overflows, the
subsequent behavior of the NestedLoop block is undefined.

• The end values are inclusive. So setting the start value to 0, the increment to 1
and the end value to 10 actually produces 11 iterations of the loop.

• The previous two factors means that every loop iterates at least once.
NestedLoop blocks (unlike ForLoop blocks) do not support empty loops.

• When you use user-defined ports to supply loop control values, the values on
these ports must be held constant while the NestedLoop block is in its counting
state. Otherwise the block produces undefined behavior.

Table 257. NestedLoop Block Port interface

Signal Direction Type Description Vector Data
Support

Complex Data
Support

go Input Boolean Go. No No

en Input Boolean Enable. No No

? Input Signed integer Loop control values. No No

qv Output Boolean Valid. No No

ql Output Boolean Last iteration flag. No No

i Output Signed integer Outer loop count. No No

j Output Signed integer Middle loop count.
(NestedLoop2 only).

No No

k Output Signed integer Inner loop count
(NestedLoop3 only).

No No

14.5.7. Pause

The Pause block implements a breakpoint with trigger count to break and single step
through Simulink simulations.

Input is a Boolean signal enabling a counter, which counts up to the parameterized
count value, then pauses the simulation. Press play to resume simulation from that
point. If you do not increase the trigger count, the block causes another pause. This
single stepping mode pauses the simulation at the next cycle.The block is red when
enabled.

Use the Pause block for debugging designs. For example; run to breakpoint, then turn
on Show port values when hovering at this point. This option permanently causes
slow simulation, so only turn on when stepping through. Using display blocks allows
you to see variables displayed at the paused time (similar to watch variables in a
software debugger). You can change the trigger count, for example by adding 100, to
simulate the next 100 cycles. The block color changes to red when you turn on the
Pause block. Use the valid signal as the input, so that it counts valid steps only.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

351

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, use a different control signal, such as a writeenable, as an input to
get the system to break then. You can easily add other logic blocks to generate a
break signal that you can use just for debugging.

14.5.8. Reset-Priority Latch (SRlatch_PS)

DSP Builder offers two single-cycle latency latch subsystems for common operations
for the valid signal, latching with set and reset. The SRlatch block gives priority to the
reset input signal; the SRlatch_PS block gives priority to the set input signal. In both
blocks, if set and reset inputs are both zero the current output state is maintained.

Table 258. Truth Table for SRlatch_PS

S R Q

0 0 Q

1 0 1

0 1 0

1 1 0

14.5.9. Same Data Type (SameDT)

The DSP Builder SameDT block duplicates the data type of the signal on port a onto
the data type of signal on port b.This block is equivalent to the Simulink Data Type
Duplicate block, but it also handles custom data types, such as the DSP Builder
enhanced precision and wide integer data types.

14.5.10. Set-Priority Latch (SRlatch)

DSP Builder offers two single-cycle latency latch subsystems for common operations
for the valid signal, latching with set and reset. The SRlatch block gives priority to the
reset input signal. The SRlatch_PS block gives priority to the set input signal. In both
blocks if set and reset inputs are both zero the current output state is maintained.

Table 259. Truth Table for SRlatch

S R q

0 0 q

1 0 1

0 1 0

1 1 1

14.5.11. Single-Cycle Latency Latch (latch_1L)

The DSP Builder latch_1 block enable signal affects the output on the following clock
cycle.

These latches work for any data type, and for vector and complex numbers.

Right-click on the block and select Look Under Mask, for the structure.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

352

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The e signal is a ufix(1) enable signal. When e is high, the latch_1 block delays
data from input d by one cycle and feeds through to output q. When e is low, the
latch_1 block holds the last output.

A switch in e means the latch_1 block holds the output one cycle later.

14.5.12. Tapped Line Delay (TappedLineDelay)

The DSP Builder TappedDelayLine block takes a single scalar signal a and an enable
signal e and produces an enabled tapped delay line of signals as a vector, q, and a
corresponding valid signal, qv. The block is either a Latch_0L or Latch_1L (depending
on the Zero or One Initial Delay parameter) followed by a series of Latch_1Ls. The
block forms a vector from all the latch outputs.By default, the vector has the least
delayed signal at the top (unless you turn on Reverse order parameter). This block
uses latches from the Control library. DSP Builder does not support vector signal input
for this block.

14.5.13. Variable Super-Sample Delay (VariableDelay)

The DSP Builder VariableDelay blocks provides a sample delay for super-sample data
where multiple data samples arrive per clock cycle. For multiple data per clock cycle, a
delay of one sample shifts the signals across the wires, and uses a register delay for
just the one signal that wraps round to the beginning on the next cycle.

For example:

[1 2 3 4]' [5 6 7 8]' [9 10 11 12]'...

when delayed by one sample becomes

\n[X 1 2 3]' [4 5 6 7]' [8 9 10 11]' [12 ...

when delayed by two samples becomes

[X X 1 2]' [3 4 5 6]' [7 8 9 10]' [11 12 ...

where [1 2 3 4]' means 1,2,3 and 4 arrive in parallel on 4 separate wires. The Phases
parameter specifies the number of parallel data samples The delay input must be a
unsigned integer less than the number of parallel data samples.

14.5.14. Vector Fanout (VectorFanout)

The VectorFanout block behaves like a wire, connecting its single input to one vector
output that contains several copies of the single input. The Fanout and
VectorFanout are similar blocks.For a description of the VectorFanout block, refer
to the Fanout block.

Table 260. Parameters for the VectorFanout Block

Parameter Type Description

Vector width Integer > 0 Vector width of output port.

Allow use of uninitialized
registers

Check box Turn on to allow DSP Builder to use hyper registers. DSP Builder does
not initialize the inserted routing registers on reset

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

353

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 261. Port Interface for the VectorFanout Block

Signal Direction Type Description

d Input Any scalar Input

q Output Vector of d's input type (Vector width) copies of d.

14.5.15. Vector Multiplexer (VectorMux)

The DSP Builder VectorMux block dynamically selects a single scalar signal from an
input vector of signals. If n is a vector of width N, sel takes the range [0:N–1] and the
block produces the (sel)th signal from the vector.

This block is an autogenerating masked subsystem that Primitive library blocks build.
Internally, it is a demultiplexer and multiplexer, but parameterizable such that you do
not have to manually draw and reconnect the connections between the demultiplexer
and multiplexer if the vector width parameter changes.

14.5.16. Zero-Latency Latch (latch_0L)

The DSP Builder latch_0 block enable signal has an immediate effect on the output.
While the enable is high, the data passes straight through. When the enable goes low,
the latch_0 block outputs and holds the data input from the previous cycle.

The e signal is a ufix(1) enable signal. When e is high, the latch_0 block feeds
data from input d through to output q. When e is low, the latch_0 block holds the last
output.

A switch in e is effective immediately.

14. Primitives Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

354

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15. Utilities Library
The DSP Builder advanced blockset Utilities library contains miscellaneous blocks that
support building and refining designs.

1. Analyze and Test Library on page 355

15.1. Analyze and Test Library

1. Capture Values on page 355

2. HDL Import on page 355

3. HDL Import Config on page 357

4. Pause on page 351

15.1.1. Capture Values

The Capture Values block can capture a variable number of signal inputs and
supports vector and complex types.

You can add the block anywhere in the Simulink design. The block only supports
the .vcd file format. DSP Builder writes this file in the RTL directory and it derives its
name from the name given to the block. The specific arrangement of .vcd is based on
what ModelSim writes out - i.e. only Boolean wires are used. You can import it into
ModelSim using the vcd2wlf tool. The waveforms should match with those generated
by the HDL simulation, although you might see an offset because of the Simulink
model latency correction.

15.1.2. HDL Import

You can import VHDL, Verilog HDL, and System Verilog into DSP Builder designs when
you add a HDL Import block to your design. You can only configure HDL Import
blocks after you configure the HDL Import Config block.

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 97. HDL Import Block Parameters

Table 262. HDL Import Parameters

Parameter Description

Instance Select from any instance in your imported HDL. Each HDL
Import block must represent a unique instance.

Port DSP Builder automatically populates this column.

I/O Type DSP Builder determines the IO type based on the name of
the port. You can change any entry to Input, Output,
Clock, or Reset. HDL Import only allows one clock and
one reset.

Data Type Informs Simulink and DSP Builder how they should interpret
the ModelSim data. Set the Data Type of inputs to
Inherit; the Data Type of outputs defaults to Signed. For
Boolean or std_logic data type, select Unsigned with 0
fractional bits.

15. Utilities Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

356

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15.1.3. HDL Import Config

The HDL Import Config block contains the top-level information to implement the
HDL import feature. To use the HDL import feature, you must have one HDL Import
Config block be at the top level of your design.

Figure 98. HDL Import Config

The HDL import feature needs the time relationship between ModelSim and Simulink.
ModelSim uses the Control block-defined clock rate.

15. Utilities Library

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

357

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 263. HDL Import Parameters

Parameter Description

Working Directory DSP Builder creates this working directory for the ModelSim
library and other intermediate files.

Top-level instance Enter the name of the top-level instance. If that instance is
not the HDL you want to import but a wrapper for multiple
instances, turn on Top-level is a wrapper.

Compile Click to compile imported RTL. Reclick if the imported RTL
changes. For the cosimulation, DSP Builder creates a
ModelSim library.and performs ModelSim compilation
followed by a series of Quartus synthesis compilations, one
for each imported instance. The output from the
compilations, including any errors, is printed to the MATLAB
Command Window
The status light is yellow when the compile status is
unknown, red when an error has occurred, and green on
success. DSP Builder prints the compilation output to the
MATLAB Command Window.

Simulink sample time Specify the sample time of the DSP Builder part of your
Simulink model.

Reset cycles Allows you to hold your imported HDL in reset for an
arbitrary number of cycles before the cosimulation begins.

Port The TCP/IP port number that the cosimulation uses for
communication.

15.1.4. Pause

The Pause block implements a breakpoint with trigger count to break and single step
through Simulink simulations.

Input is a Boolean signal enabling a counter, which counts up to the parameterized
count value, then pauses the simulation. Press play to resume simulation from that
point. If you do not increase the trigger count, the block causes another pause. This
single stepping mode pauses the simulation at the next cycle.The block is red when
enabled.

Use the Pause block for debugging designs. For example; run to breakpoint, then turn
on Show port values when hovering at this point. This option permanently causes
slow simulation, so only turn on when stepping through. Using display blocks allows
you to see variables displayed at the paused time (similar to watch variables in a
software debugger). You can change the trigger count, for example by adding 100, to
simulate the next 100 cycles. The block color changes to red when you turn on the
Pause block. Use the valid signal as the input, so that it counts valid steps only.
Alternatively, use a different control signal, such as a writeenable, as an input to
get the system to break then. You can easily add other logic blocks to generate a
break signal that you can use just for debugging.

15. Utilities Library

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

358

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

16. Document Revision History for DSP Builder for Intel
FPGAs (Advanced Blockset) Handbook

Version Software
Version

Changes

2020.01.06 Removed "You can also use this option to implement efficient phase-shift keying
(PSK) modulators in which the input to the phase modulator varies according to a
data stream." from NCO Block

2019.10.31 19.3 Corrected Fanout and VectorFanout descriptions

2019.10.10 19.3 • Removed all references to standard blockset.
• Removed DSP Builder Standard and Advanced Blockset Interoperability
• Added QRD solver reference design

2019.06.10 19.1 Added new parameters to External Memory block.

2019.03.01 19.1 • Updated supported floating-point data types.
• Removed "except for Forloop blocks" from Verifying your DSP Builder Design

with C++ Software Models
• Added new parameters to:

— Sqrt block
— Control block

• Removed Using Latency Constraints in DSP Builder Designs

2018.09.17 18.1 • Updated SharedMem block desccription.
• Updated:

— HDL Import feature description.
• Removed:

— Running the Simple Complex Multiplication Design Example
— About the Complex Multilication Design Example
— Cosimuation Block Parameters
— Configuring the HDL Import Block Parameters
— Setting up a Modelsim Cosimulation
— Adding Ports
— Adding a HDL Import Block
— Running a Cosimulation
— Verifying with HDL Import in the ModelSim
— Adding HDL Import Design to Intel Quartus Prime

2018.06.27 18.0 Updated Arria 10 to any device with a floating-point block in floating-point designs

2018.06.08 18.0 Added HDL import.

2018.05.09 18.0 • Added new parameter to Constant block.
• Added extra description to Fanout block Uninitialized parameter.
• Added extra info to DualMem block parameters.
• Added reset minimization feature
• Added new parameter to SharedMem block.

continued...

HB_DSPB_ADV | 2020.01.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Version Software
Version

Changes

2017.11.06 17.1 • Improved description on NCO block Accumulator Bit Width parameter.
• Corrected parameters on Scalar Product block.
• Added Forcing Soft Floating-point Data Types with the Advanced Options topic
• Added super-sample NCO design example.
• Added support for Intel Cyclone 10 and Intel Stratix 10 devices.
• Removed instances of Signals block.
• Changed input type on GPIn block; changed output type on GPOut block.
• Deleted WYSIWYG option on SynthesisInfo block.

2017.05.02 17.0 • Rebranded as Intel
• Deprecated Signals block
• Corrected Interpolating FIR Filter design clock to say 240 MHz
• Added description on how to get output b on decimating, fractional rate,

interpolating, and single-rate FIR filters
• Added Gaussian and Random Number Generator design examples
• Added variable-size supersampled FFT design example
• Added HybridVFFT block
• Added GeneralVTwiddle and GeneralMultVTwiddle blocks
• Corrected device support and removed Stratix 10 devices.

2016.11.01 16.1 • Added device support
• Added 4-channel 2-antenna DUC and DDC for LTE reference design
• Added BFU_simple block

2016.05.01 16.0 • Revised getting started
• Revised design rules
• Revised setting up Simulink
• Revised Primitive library description
• Revised DSP Builder design structure
• Added a library list
• Removed Run Quartus and Run ModelSim blocks
• Moved primitive subsystem designs to avoid from Troubleshooting chapter to

Design Rules and Recommendations
• Moved Troubleshooting to Design Rules, Recommendations, and

Troubleshooting.
• Revised EditParams block description
• Moved hardware verification from Techniques for Advanced Users to Design

Flow chapter
• Changed threshold names and descriptions on Localthreshold and Control

blocks

continued...

16. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset) Handbook

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

360

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Software
Version

Changes

2016.05.01 cont 16.0 cont • Reorganised libraries:
— Deleted ModelVectorPrim library. Moved SumofElements block to

Primitives ➤ Primitives Basic Blocks
— Renamed Channel library to Channel Filter and Waveform library
— Renamed Filter chatper to IP chapter
— Created FFT IP library and added BitReversecoreC, FFT, FFT_Float,

VariablebitReverse, VFFT, and VFFT_Float blocks to it.
— Deleted Waveform Synthesis library and moved blocks into Channel

Filter and Waveform library.
— Renamed Base library to Design Configuration
— Moved ChanView block from Base to Channel Filter and Waveform

library
— Moved Scale block from Base to Channel Filter and Waveform library
— Renamed FFT to FFT Design Elements library and moved to Primitives

library
— Created Primitives Basic Blocks library and move all blocks from

Primitive library to it.
— Created Primitive Configuration library and moved ChannelIn,

ChannelOut, GPIn, GPOut, and SynthesisInfo blocks into it.
— Renamed ModelIP to IP library
— Renamed ModelBus to Memory Mapped library
— Renamed ModelBus chapter to Interfaces
— Created Streaming library and moved the AStInput, AStOutput, and

AStInputFIFO blocks into it
— Renamed Additional to Primitive Design Elements library
— Renamed Additional chapter to Utilities
— Created Analyze and Test library and moved Capture Values and Pause

blocks to it.
— Deleted External Memories libray and moved External Memory block to

Interfaces ➤ Memory Mapped.
— Moved DDC Design Example to Design Examples and Reference Design

chapter.

2015.11.01 15.1 • Changed Quartus II to Quartus Prime software
• Changed Run Quartus II block to Run Quartus Prime block
• Removed Turn on coverage in testbenches and Signal view depth options

from Control block
• Improved FIR Filter Avalon-MM port descriptions
• Changed some Avalon-MM Slave Settings block descriptions
• Added design rules for Modelbus blocks.
• Added reconfigurable FIR filter information.
• Removed Enhanced Presicion Support block
• Removed ScalarProduct graphs
• Added new blocks:

— Capture Values
— Fanout
— Pause
— Vectorfanout

• Added IIR: full-rate fixed-point and IIR: full-rate floating-point demos
• Added transmit and receive modem reference design
• Changed set_param to dspba.set_param

2015.05.01 15.0 • Added external memories library
• Added External Memory block
• Added new Allow write on both ports parameter to DualMem block
• Removed read/write note from SharedMem block
• Changed parameters on AvalonMMSlaveSettings block

continued...

16. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset) Handbook

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

361

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Software
Version

Changes

• Added note to latency contraints topic: latency constraints only apply between
ChannelIn and ChannelOut blocks.

• Added support for Verilog HDL implementation
• Removed architecture versus implementation information
• Removed SynthesisInfo block WYSIWYG option
• Removed the following design examples:

— 1K floating-point FFT
— Radix-2 streaming FFT
— Radix-4 streaming FFT

December
2014

14.1 • Added step about disabling virtual pins in the Quartus Prime software when
using HIL with advanced blockset designs

• Added information on _mmap.h file, which contains register information on your
design

• Corrected Has read enable and Show read enable descriptions in BusStimulus
and BusStimulusFileReader blocks

• Added BusStimulus and BusStimulusFileReader blocks to memory-mapped
registers design example.

• Added AvalonMMSlaveSettings block and DSP Builder > Avalon Interfaces >
Avalon-MM slave menu option

• Removed bus parameters from Control and Signal blocks
• Removed the following design examples:

— Color Space Converter (Resource Sharing Folding)
— Interpolating FIR Filter with Updating Coefficients
— Primitive FIR Filter (Resource Sharing Folding)
— Single-Stage IIR Filter (Resource Sharing Folding)
— Three-stage IIR Filter (Resource Sharing Folding)
— Added system-in-the-loop support

• Added new blocks:
— Floating-point classifier
— Floating-point multiply accumulate
— Added hypotenuse function to math block

• Added design examples:
— Color space converter
— Complex FIR design example
— CORDIC from Primitive Blocks
— Crest factor reduction
— Folding FIR
— Variable Integer Rate Decimation Filter
— Vector sort - sequential and iterative

• Added reference designs:
— Crest factor reduction
— Direct RF with Synthesizable Testbench
— Dynamic Decimation Filter
— Reconfigurable Decimation Filter
— Variable Integer Rate Decimation Filter

• Changed directory structure
• Added correct floating-point rounding for reciprocal and square root blocks.
• Corrected signal descriptions for LoadableCounter block
• Removed resource sharing folder
• Added new ALU folder information:

— Start of packet signal
— Clock-rate mode

June 2014 14.0 • Added new blocks:
• — Enabled Delay Line

— Enabled Feedback Delay
— FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and FFT64PFFT2X, FFT4X, FFT8X,

FFT16X, FFT32X, and FFT64XFFT2, FFT4, VFFT2, and VFFT4
— General Multitwiddle and General Twiddle (GeneralMultiTwiddle,

GeneralTwiddle
—)Hybrid FFT (Hybrid_FFT)
— Parallel Pipelined FFT (PFFT_Pipe)
— Ready

• Updated port descriptions for
— Convert
— Const
— LUT
— Reinterpretcast

16. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset) Handbook

HB_DSPB_ADV | 2020.01.06

DSP Builder for Intel FPGAs (Advanced Blockset): Handbook Send Feedback

362

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Software
Version

Changes

• New parameter interfaces for:
— FFT
— FFT_Light
— VFFT
— VFFT_Light

• Added new design examples:
— Avalon-ST Interface (Input and Output FIFO Buffer) with Backpressure
— Avalon-ST Interface (Output FIFO Buffer) with Backpressure
— Fixed-point maths functions
— Fractional square root using CORDIC
— Normalizer
— Square root using CORDIC
— Switchable FFT/iFFT
— Variable-Size Fixed-Point FFT
— Variable-Size Fixed-Point FFT without BitReverseCoreC Block
— Variable-Size Fixed-Point iFFTVariable-Size Fixed-Point iFFT without

BitReverseCoreC Block
— Variable-Size Floating-Point FFTVariable-Size Floating-Point FFT without

BitReverseCoreC Block
— Variable-Size Floating-Point iFFTVariable-Size Floating-Point iFFT without

BitReverseCoreC Block
• Added new ready signal for ALU folding.

16. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset) Handbook

HB_DSPB_ADV | 2020.01.06

Send Feedback DSP Builder for Intel FPGAs (Advanced Blockset): Handbook

363

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20DSP%20Builder%20for%20Intel%20FPGAs%20(Advanced%20Blockset)%20Handbook%20(HB_DSPB_ADV%202020.01.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	DSP Builder for Intel FPGAs (Advanced Blockset): Handbook
	Contents
	1. About DSP Builder for FPGAs
	1.1. DSP Builder for Intel® FPGAs Features
	1.2. DSP Builder for Intel® FPGAs Design Structure
	1.3. DSP Builder for Intel® FPGAs Libraries
	1.4. DSP Builder for Intel® FPGAs Device Support

	2. DSP Builder for Intel FPGAs Advanced Blockset Getting Started
	2.1. Starting DSP Builder in MATLAB*
	2.2. Browsing DSP Builder Libraries and Adding Blocks to a New Model
	2.3. Browsing and Opening DSP Builder Design Examples
	2.4. Creating a New DSP Builder Design with the DSP Builder New Model Wizard
	2.4.1. DSP Builder Menu Options
	2.4.2. DSP Builder New Model Wizard Setup Script Parameters

	2.5. Simulating, Verifying, Generating, and Compiling Your DSP Builder Design

	3. DSP Builder Design Flow
	3.1. Implementing your Design in DSP Builder Advanced Blockset
	3.1.1. Dividing your DSP Builder Design into Subsystems
	3.1.2. Connecting DSP Builder Subsystems
	3.1.2.1. DSP Builder Block Interface Signals
	3.1.2.1.1. Multichannel Systems with IP Library Blocks
	3.1.2.1.2. Valid, Channel, and Data Examples

	3.1.2.2. Periods
	3.1.2.3. Sample Rate
	3.1.2.4. Building Multichannel Systems
	3.1.2.4.1. Multichannel Systems with IP Library Blocks

	3.1.2.5. Channelization for Two Channels with a Folding Factor of 3
	3.1.2.6. Channelization for Four Channels with a Folding Factor of 3
	3.1.2.7. Synchronization and Scheduling of Data with the Channel Signal
	3.1.2.8. Simulink vs Hardware Design Representations

	3.1.3. Creating a New Design by Copying a DSP Builder Design Example
	3.1.3.1. Creating a New Design From the DSP Builder FIR Design Example and Changing the Namespaces

	3.1.4. Vectorized Inputs

	3.2. Verifying your DSP Builder Advanced Blockset Design in Simulink and MATLAB
	3.2.1. Verifying your DSP Builder Advanced Blockset Design with a Testbench
	3.2.1.1. Visualization Features

	3.2.2. Running DSP Builder Advanced Blockset Automatic Testbenches
	3.2.2.1. The dspba.runModelsimATB Command Syntax
	3.2.2.2. Running All Automatic Testbenches
	3.2.2.3. The command run_all_atbs Command Syntax
	3.2.2.4. Testbench Error Messages

	3.2.3. Using DSP Builder Advanced Blockset References
	3.2.4. Setting Up Stimulus in DSP Builder Advanced Blockset
	3.2.5. Analyzing your DSP Builder Advanced Blockset Design

	3.3. Exploring DSP Builder Advanced Blockset Design Tradeoffs
	3.3.1. Bit Growth
	3.3.2. Managing Bit Growth in DSP Builder Advanced Blockset Designs
	3.3.3. Using Rounding and Saturation in DSP Builder Advanced Blockset Designs
	3.3.4. Scaling with Primitive Blocks
	3.3.5. Changing Data Type with Convert Blocks and Specifying Output Types
	3.3.5.1. The Convert Block and Real-world Values
	3.3.5.2. Output Data Types on Primitive Blocks

	3.4. Verifying your DSP Builder Design with C++ Software Models
	3.4.1. Example CMakelist File

	3.5. Verifying your DSP Builder Advanced Blockset Design in the ModelSim Simulator
	3.5.1. Automatic Testbench
	3.5.1.1. DSP Builder Advanced Blockset Automatic Testbench Files

	3.5.2. DSP Builder Advanced Blockset ModelSim Simulations

	3.6. Verifying Your DSP Builder Design in Hardware
	3.6.1. Hardware Verification
	3.6.1.1. Hardware Verification Design Example

	3.6.2. Hardware Verification with System-in-the-Loop
	3.6.2.1. Preparing for DSP Builder System-In-The-Loop
	3.6.2.2. System-In-The-Loop Supported Blocks
	3.6.2.3. Building Custom JTAG-Based Board Support Packages
	3.6.2.3.1. Setting up Board Support Package for 28 nm Device Families
	3.6.2.3.2. Setting up Board Support Packages for Other Device Families
	3.6.2.3.3. Publishing the Package in the System-In-The-Loop Wizard
	3.6.2.3.4. System-in-the-Loop Third-Party Board Support Packages
	3.6.2.3.5. Template Values in the System-in-the-Loop boardinfos.xml File

	3.6.2.4. Running System-In-the-Loop
	3.6.2.5. System-In-The-Loop Parameters

	3.7. Integrating Your DSP Builder Advanced Blockset Design into Hardware
	3.7.1. DSP Builder Generated Files
	3.7.2. DSP Builder Designs and the Quartus Prime Project
	3.7.2.1. Adding a DSP Builder Advanced Blockset Design to an Existing Quartus Prime Project

	3.7.3. Interfaces with a Processor Bus
	3.7.3.1. Assigning Base Addresses in DSP Builder Designs
	3.7.3.2. Adding a DSP Builder Design to a Platform Designer System
	3.7.3.2.1. Modifying Avalon-ST Blocks
	3.7.3.2.2. Restrictions for DSP Builder Designs with Avalon Streaming Interface Blocks

	3.7.3.3. Updating Registers with the Nios II Processor

	4. Primitive Library Blocks Tutorial
	4.1. Creating a Fibonacci Design from the DSP Builder Primitive Library
	4.2. Setting the Parameters on the Testbench Source Blocks
	4.3. Simulating the Fibonacci Design in Simulink
	4.4. Modifying the DSP Builder Fibonacci Design to Generate Vector Signals
	4.5. Simulating the RTL of the Fibonacci Design

	5. IP Tutorial
	5.1. Creating an IP Design
	5.2. Simulating the IP Design in Simulink
	5.3. Viewing Timing Closure and Viewing Resource Utilization for the DSP Builder IP Design
	5.4. Reparameterizing the DSP Builder FIR Filter to Double the Number of Channels
	5.5. Doubling the Target Clock Rate for a DSP Builder IP Design

	6. DSP Builder for Intel FPGAs (Advanced Blockset) Design Examples and Reference Designs
	6.1. DSP Builder Design Configuration Block Design Examples
	6.1.1. Scale
	6.1.2. Local Threshold

	6.2. DSP Builder FFT Design Examples
	6.2.1. FFT
	6.2.2. FFT without BitReverseCoreC Block
	6.2.3. IFFT
	6.2.4. IFFT without BitReverseCoreC Block
	6.2.5. Floating-Point FFT
	6.2.6. Floating-Point FFT without BitReverseCoreC Block
	6.2.7. Floating-Point iFFT
	6.2.8. Floating-Point iFFT without BitReverseCoreC Block
	6.2.9. Multichannel FFT
	6.2.10. Multiwire Transpose
	6.2.11. Parallel FFT
	6.2.12. Parallel Floating-Point FFT
	6.2.13. Single-Wire Transpose
	6.2.14. Switchable FFT/iFFT
	6.2.15. Variable-Size Fixed-Point FFT
	6.2.16. Variable-Size Fixed-Point FFT without BitReverseCoreC Block
	6.2.17. Variable-Size Fixed-Point iFFT
	6.2.18. Variable-Size Fixed-Point iFFT without BitReverseCoreC Block
	6.2.19. Variable-Size Floating-Point FFT
	6.2.20. Variable-Size Floating-Point FFT without BitReverseCoreC Block
	6.2.21. Variable-Size Floating-Point iFFT
	6.2.22. Variable-Size Floating-Point iFFT without BitReverseCoreC Block
	6.2.23. Variable-Size Low-Resource FFT
	6.2.24. Variable-Size Low-Resource Real-Time FFT
	6.2.25. Variable-Size Supersampled FFT

	6.3. DSP Builder DDC Design Example
	6.3.1. DDC Design Example Subsystem
	6.3.2. Building the DDC Design Example
	6.3.2.1. DDC Design Example Generated Files

	6.4. DSP Builder Filter Design Examples
	6.4.1. Complex FIR Filter
	6.4.2. Decimating CIC Filter
	6.4.3. Decimating FIR Filter
	6.4.4. Filter Chain with Forward Flow Control
	6.4.5. FIR Filter with Exposed Bus
	6.4.6. Fractional FIR Filter Chain
	6.4.7. Fractional-Rate FIR Filter
	6.4.8. Half-Band FIR Filter
	6.4.9. IIR: Full-rate Fixed-point
	6.4.10. IIR: Full-rate Floating-point
	6.4.11. Interpolating CIC Filter
	6.4.12. Interpolating FIR Filter
	6.4.13. Interpolating FIR Filter with Multiple Coefficient Banks
	6.4.14. Interpolating FIR Filter with Updating Coefficient Banks
	6.4.15. Root-Raised Cosine FIR Filter
	6.4.16. Single-Rate FIR Filter
	6.4.17. Super-Sample Decimating FIR Filter
	6.4.18. Super-Sample Fractional FIR Filter
	6.4.19. Super-Sample Interpolating FIR Filter
	6.4.20. Variable-Rate CIC Filter

	6.5. DSP Builder Folding Design Examples
	6.5.1. Position, Speed, and Current Control for AC Motors
	6.5.2. Position, Speed, and Current Control for AC Motors (with ALU Folding)
	6.5.3. About FOC
	6.5.4. Folded FIR Filter

	6.6. DSP Builder Floating Point Design Examples
	6.6.1. Black-Scholes Floating Point
	6.6.2. Double-Precision Real Floating-Point Matrix Multiply
	6.6.3. Fine Doppler Estimator
	6.6.4. Floating-Point Mandlebrot Set
	6.6.5. General Real Matrix Multiply One Cycle Per Output
	6.6.6. Newton Root Finding Tutorial Step 1—Iteration
	6.6.7. Newton Root Finding Tutorial Step 2—Convergence
	6.6.8. Newton Root Finding Tutorial Step 3—Valid
	6.6.9. Newton Root Finding Tutorial Step 4—Control
	6.6.10. Newton Root Finding Tutorial Step 5—Final
	6.6.11. Normalizer
	6.6.12. Single-Precision Complex Floating-Point Matrix Multiply
	6.6.13. Single-Precision Real Floating-Point Matrix Multiply
	6.6.14. Simple Nonadaptive 2D Beamformer

	6.7. DSP Builder Flow Control Design Examples
	6.7.1. Avalon-ST Interface (Input and Output FIFO Buffer) with Backpressure
	6.7.2. Avalon-ST Interface (Output FIFO Buffer) with Backpressure
	6.7.3. Kronecker Tensor Product
	6.7.4. Parallel Loops
	6.7.5. Primitive FIR with Back Pressure
	6.7.6. Primitive FIR with Forward Pressure
	6.7.7. Primitive Systolic FIR with Forward Flow Control
	6.7.8. Rectangular Nested Loop
	6.7.9. Sequential Loops
	6.7.10. Triangular Nested Loop

	6.8. DSP Builder HDL Import Design Example
	6.8.1. Performing a Cosimulation

	6.9. DSP Builder Host Interface Design Examples
	6.9.1. Memory-Mapped Registers

	6.10. DSP Builder Platform Design Examples
	6.10.1. 16-Channel DDC
	6.10.2. 16-Channel DUC
	6.10.3. 2-Antenna DUC for WiMAX
	6.10.4. 2-Channel DUC
	6.10.5. Super-Sample Rate Digital Upconverter

	6.11. DSP Builder Primitive Block Design Examples
	6.11.1. 8×8 Inverse Discrete Cosine Transform
	6.11.2. Automatic Gain Control
	6.11.3. Bit Combine for Boolean Vectors
	6.11.4. Bit Extract for Boolean Vectors
	6.11.5. Color Space Converter
	6.11.6. CORDIC from Primitive Blocks
	6.11.7. Digital Predistortion Forward Path
	6.11.8. Fibonacci Series
	6.11.9. Folded Vector Sort
	6.11.10. Fractional Square Root Using CORDIC
	6.11.11. Fixed-point Maths Functions
	6.11.12. Gaussian Random Number Generator
	6.11.13. Hello World
	6.11.14. Hybrid Direct Form and Transpose Form FIR Filter
	6.11.15. Loadable Counter
	6.11.16. Matrix Initialization of LUT
	6.11.17. Matrix Initialization of Vector Memories
	6.11.18. Multichannel IIR Filter
	6.11.19. Quadrature Amplitude Modulation
	6.11.20. Reinterpret Cast for Bit Packing and Unpacking
	6.11.21. Run-time Configurable Decimating and Interpolating Half-Rate FIR Filter
	6.11.22. Square Root Using CORDIC
	6.11.23. Test CORDIC Functions with the CORDIC Block
	6.11.24. Uniform Random Number Generator
	6.11.25. Vector Sort—Sequential
	6.11.26. Vector Sort—Iterative
	6.11.27. Vector Initialization of Sample Delay
	6.11.28. Wide Single-Channel Accumulators

	6.12. DSP Builder Reference Designs
	6.12.1. 1-Antenna WiMAX DDC
	6.12.2. 2-Antenna WiMAX DDC
	6.12.3. 1-Antenna WiMAX DUC
	6.12.4. 2-Antenna WiMAX DUC
	6.12.5. 4-Carrier, 2-Antenna W-CDMA DDC
	6.12.6. 1-Carrier, 2-Antenna W-CDMA DDC
	6.12.7. 4-Carrier, 2-Antenna W-CDMA DUC
	6.12.8. 4-Carrier, 4-Antenna DUC and DDC for LTE
	6.12.9. 1-Carrier, 2-Antenna W-CDMA DDC
	6.12.10. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with Total Rate Change 32
	6.12.11. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 368.64 MHz with Total Rate Change 48
	6.12.12. 4-Carrier, 2-Antenna High-Speed W-CDMA DUC at 307.2 MHz with Total Rate Change 40
	6.12.13. Cholesky-based Matrix Inversion
	6.12.14. Cholesky Solver Single Channel
	6.12.15. Cholesky Solver Multiple Channels
	6.12.16. Crest Factor Reduction
	6.12.17. Direct RF with Synthesizable Testbench
	6.12.18. Dynamic Decimating FIR Filter
	6.12.19. Multichannel QR Decompostion
	6.12.20. QR Decompostion
	6.12.21. QRD Solver
	6.12.22. Reconfigurable Decimation Filter
	6.12.23. Single-Channel 10-MHz LTE Transmitter
	6.12.24. STAP Radar Forward and Backward Substitution
	6.12.25. STAP Radar Steering Generation
	6.12.26. STAP Radar QR Decomposition 192x204
	6.12.27. Time Delay Beamformer
	6.12.28. Transmit and Receive Modem
	6.12.29. Variable Integer Rate Decimation Filter

	6.13. DSP Builder Waveform Synthesis Design Examples
	6.13.1. Complex Mixer
	6.13.2. Four Channel, Two Banks NCO
	6.13.3. Four Channel, Four Banks NCO
	6.13.4. Four Channel, Eight Banks, Two Wires NCO
	6.13.5. Four Channel, 16 Banks NCO
	6.13.6. IP
	6.13.7. NCO
	6.13.8. NCO with Exposed Bus
	6.13.9. Real Mixer
	6.13.10. Super-sample NCO

	7. DSP Builder Design Rules, Design Recommendations, and Troubleshooting
	7.1. DSP Builder Design Rules and Recommendations
	7.2. Troubleshooting DSP Builder Designs
	7.2.1. About Loops
	7.2.2. DSP Builder Timed Feedback Loops
	7.2.3. DSP Builder Loops, Clock Cycles, and Data Cycles

	8. About DSP Builder for Intel FPGAs Optimization
	8.1. Associating DSP Builder with MATLAB
	8.2. Setting Up Simulink for DSP Builder Designs
	8.2.1. Setting Up Simulink Solver
	8.2.2. Setting Up Simulink Signal Display Option

	8.3. The DSP Builder Windows Shortcut
	8.4. Setting DSP Builder Design Parameters with MATLAB Scripts
	8.4.1. Running Setup Scripts Automatically
	8.4.2. Defining Unique DSP Builder Design Parameters
	8.4.3. Example DSP Builder Custom Scripts

	8.5. Managing your Designs
	8.5.1. Managing Basic Parameters
	8.5.2. Creating User Libraries and Converting a Primitive Subsystem into a Custom Block
	8.5.3. Revision Control

	8.6. How to Manage Latency
	8.6.1. Reading the Added Latency Value for a IP Block
	8.6.2. Zero Latency Example
	8.6.3. Implicit Delays in DSP Builder Designs
	8.6.4. Distributed Delays in DSP Builder Designs
	8.6.5. Latency and fMAX Constraint Conflicts in DSP Builder Designs
	8.6.6. Control Units Delays

	8.7. Flow Control in DSP Builder Designs
	8.8. Reset Minimization
	8.9. About Importing HDL

	9. About Folding
	9.1. ALU Folding
	9.1.1. ALU Folding Limitations
	9.1.2. ALU Folding Parameters
	9.1.3. ALU Folding Simulation Rate
	9.1.4. Using ALU Folding
	9.1.5. Using Automated Verification
	9.1.6. Ready Signal
	9.1.7. Connecting the ALU Folding Ready Signal
	9.1.8. About the ALU Folding Start of Packet Signal

	9.2. Removing Resource Sharing Folding

	10. Floating-Point Data Types
	10.1. DSP Builder Floating-Point Data Type Features
	10.2. DSP Builder Supported Floating-Point Data Types
	10.3. DSP Builder Round-Off Errors
	10.4. Trading Off Logic Utilization and Accuracy in DSP Builder Designs
	10.5. Upgrading Pre v14.0 Designs
	10.6. Floating-Point Sine Wave Generator Tutorial
	10.6.1. Creating a Sine Wave Generator in DSP Builder
	10.6.2. Using Data Type Variables to Parameterize Designs
	10.6.3. Using Data-Type Propagation in DSP Builder Designs
	10.6.4. DSP Builder Testbench Verification
	10.6.4.1. Tuning ATB Thresholds
	10.6.4.2. Writing Application Specific Verification
	10.6.4.3. Using Bit-Accurate Simulation
	10.6.4.4. Adder Trees and Scalar Products
	10.6.4.5. Creating Floating-Point Accumulators for Designs that Use Iteration

	10.7. Newton-Raphson Root Finding Tutorial
	10.7.1. Implementing the Newton Design
	10.7.2. Improving DSP Builder Floating-Point Designs

	10.8. Forcing Soft Floating-point Data Types with the Advanced Options

	11. Design Configuration Library
	11.1. Avalon-MM Slave Settings (AvalonMMSlaveSettings)
	11.2. Control
	11.2.1. DSP Builder Memory and Multiplier Trade-Off Options

	11.3. Device
	11.4. Edit Params
	11.5. LocalThreshold

	12. IP Library
	12.1. Channel Filter and Waveform Library
	12.1.1. DSP Builder FIR and CIC Filters
	12.1.1.1. Common CIC and FIR Filter Features
	12.1.1.2. Updated Help
	12.1.1.3. Half-Band and L-Band Nyquist FIR Filters
	12.1.1.4. Parameterization of CIC and FIR Filters
	12.1.1.5. Setting and Changing FIR Filter Coefficients at Runtime in DSP Builder

	12.1.2. DSP Builder FIR Filters
	12.1.2.1. FIR Filter Avalon-MM Interfaces
	12.1.2.2. Reconfigurable FIR Filters

	12.1.3. Channel Viewer (ChanView)
	12.1.4. Complex Mixer (ComplexMixer)
	12.1.5. Decimating CIC
	12.1.6. Decimating FIR
	12.1.7. Fractional Rate FIR
	12.1.8. Interpolating CIC
	12.1.9. Interpolating FIR
	12.1.10. NCO
	12.1.10.1. NCO Block Phase Increment and Inversion
	12.1.10.2. NCO Block Phase Increment Memory Registers
	12.1.10.3. NCO Block Frequency Hopping

	12.1.11. Real Mixer (Mixer)
	12.1.12. Scale
	12.1.13. Single-Rate FIR

	12.2. Dependent Delay Library
	12.3. FFT IP Library
	12.3.1. Bit Reverse Core C (BitReverseCoreC and VariableBitReverse)
	12.3.2. FFT (FFT, FFT_Light, VFFT, VFFT_Light)

	13. Interfaces Library
	13.1. Memory-Mapped Library
	13.1.1. Bus Slave (BusSlave)
	13.1.2. Bus Stimulus (BusStimulus)
	13.1.3. Bus Stimulus File Reader (Bus StimulusFileReader)
	13.1.4. External Memory, Memory Read, Memory Write
	13.1.5. Register Bit (RegBit)
	13.1.6. Register Field (RegField)
	13.1.7. Register Out (RegOut)
	13.1.8. Shared Memory (SharedMem)

	13.2. Streaming Library
	13.2.1. Avalon-ST Input (AStInput)
	13.2.2. Avalon-ST Input FIFO Buffer (AStInputFIFO)
	13.2.3. Avalon-ST Output (AStOutput)

	14. Primitives Library
	14.1. Vector and Complex Type Support
	14.1.1. Vector Type Support
	14.1.1.1. Element by Element Mode
	14.1.1.2. Mathematical Vector Mode
	14.1.1.3. Interactions with Simulink

	14.1.2. Complex Support
	14.1.2.1. Interactions with Simulink

	14.2. FFT Design Elements Library
	14.2.1. About Pruning and Twiddle for FFT Blocks
	14.2.2. Bit Vector Combine (BitVectorCombine)
	14.2.3. Butterfly Unit (BFU)
	14.2.4. Butterfly I C (BFIC) (Deprecated)
	14.2.5. Butterfly II C (BFIIC) (Deprecated)
	14.2.6. Choose Bits (ChooseBits)
	14.2.7. Crossover Switch (XSwitch)
	14.2.8. Dual Twiddle Memory (DualTwiddleMemoryC)
	14.2.9. Edge Detect (EdgeDetect)
	14.2.10. Floating-Point Twiddle Generator (TwiddleGenF) (Deprecated)
	14.2.11. Fully-Parallel FFTs (FFT2P, FFT4P, FFT8P, FFT16P, FFT32P, and FFT64P)
	14.2.12. Fully-Parallel FFTs with Flexible Ordering (FFT2X, FFT4X, FFT8X, FFT16X, FFT32X, and FFT64X)
	14.2.13. General Multitwiddle and General Twiddle (GeneralMultiTwiddle, GeneralMultVTwiddle, GeneralTwiddle, GeneralVTwiddle)
	14.2.14. Hybrid FFT (Hybrid_FFT, HybridVFFT)
	14.2.15. Multiwire Transpose (MultiwireTranspose)
	14.2.16. Parallel Pipelined FFT (PFFT_Pipe)
	14.2.17. Pulse Divider (PulseDivider)
	14.2.18. Pulse Multiplier (PulseMultiplier)
	14.2.19. Single-Wire Transpose (Transpose)
	14.2.20. Split Scalar (SplitScalar)
	14.2.21. Streaming FFTs (FFT2, FFT4, VFFT2, and VFFT4)
	14.2.22. Stretch Pulse (StretchPulse)
	14.2.23. Twiddle Angle (TwiddleAngle)
	14.2.24. Twiddle Generator (TwiddleGenC) Deprecated
	14.2.25. Twiddle and Variable Twiddle (Twiddle and VTwiddle)
	14.2.26. Twiddle ROM (TwiddleRom, TwiddleMultRom and TwiddleRomF (deprecated))

	14.3. Primitive Basic Blocks Library
	14.3.1. Absolute Value (Abs)
	14.3.2. Accumulator (Acc)
	14.3.3. Add
	14.3.4. Add SLoad (AddSLoad)
	14.3.5. AddSub
	14.3.6. AddSubFused
	14.3.7. AND Gate (And)
	14.3.8. Bit Combine (BitCombine)
	14.3.9. Bit Extract (BitExtract)
	14.3.10. Bit Reverse (BitReverse)
	14.3.11. Compare (CmpCtrl)
	14.3.12. Complex Conjugate (ComplexConjugate)
	14.3.13. Compare Equality (CmpEQ)
	14.3.14. Compare Greater Than (CmpGE)
	14.3.15. Compare Less Than (CmpLT)
	14.3.16. Compare Not Equal (CmpNE)
	14.3.17. Constant (Const)
	14.3.18. Constant Multiply (Const Mult)
	14.3.19. Convert
	14.3.20. CORDIC
	14.3.21. Counter
	14.3.22. Count Leading Zeros, Ones, or Sign Bits (CLZ)
	14.3.23. Dual Memory (DualMem)
	14.3.24. Demultiplexer (Demux)
	14.3.25. Divide
	14.3.26. Fanout
	14.3.27. FIFO
	14.3.28. Floating-point Classifier (FloatClass)
	14.3.29. Floating-point Multiply Accumulate (MultAcc)
	14.3.30. ForLoop
	14.3.31. Load Exponent (LdExp)
	14.3.32. Left Shift (LShift)
	14.3.33. Loadable Counter (LoadableCounter)
	14.3.34. Look-Up Table (Lut)
	14.3.35. Loop
	14.3.36. Math
	14.3.37. Minimum and Maximum (MinMax)
	14.3.38. MinMaxCtrl
	14.3.39. Multiply (Mult)
	14.3.40. Multiplexer (Mux)
	14.3.41. NAND Gate (Nand)
	14.3.42. Negate
	14.3.43. NOR Gate (Nor)
	14.3.44. NOT Gate (Not)
	14.3.45. OR Gate (Or)
	14.3.46. Polynomial
	14.3.47. Ready
	14.3.48. Reinterpret Cast (ReinterpretCast)
	14.3.49. Round
	14.3.50. Sample Delay (SampleDelay)
	14.3.51. Scalar Product
	14.3.52. Select
	14.3.53. Sequence
	14.3.54. Shift
	14.3.55. Sqrt
	14.3.56. Subtract (Sub)
	14.3.57. Sum of Elements (SumOfElements)
	14.3.58. Trig
	14.3.59. XNOR Gate (Xnor)
	14.3.60. XOR Gate (Xor)

	14.4. Primitive Configuration Library
	14.4.1. Channel In (ChannelIn)
	14.4.2. Channel Out (ChannelOut)
	14.4.3. General Purpose Input (GPIn)
	14.4.4. General Purpose Output (GPOut)
	14.4.5. Synthesis Information (SynthesisInfo)
	14.4.5.1. Scheduled Synthesis
	14.4.5.2. Updated Help

	14.5. Primitive Design Elements Library
	14.5.1. Anchored Delay
	14.5.2. Complex to Real-Imag
	14.5.3. Enabled Delay Line
	14.5.4. Enabled Feedback Delay
	14.5.5. Expand Scalar (ExpandScalar)
	14.5.6. Nested Loops (NestedLoop1, NestedLoop2, NestedLoop3)
	14.5.7. Pause
	14.5.8. Reset-Priority Latch (SRlatch_PS)
	14.5.9. Same Data Type (SameDT)
	14.5.10. Set-Priority Latch (SRlatch)
	14.5.11. Single-Cycle Latency Latch (latch_1L)
	14.5.12. Tapped Line Delay (TappedLineDelay)
	14.5.13. Variable Super-Sample Delay (VariableDelay)
	14.5.14. Vector Fanout (VectorFanout)
	14.5.15. Vector Multiplexer (VectorMux)
	14.5.16. Zero-Latency Latch (latch_0L)

	15. Utilities Library
	15.1. Analyze and Test Library
	15.1.1. Capture Values
	15.1.2. HDL Import
	15.1.3. HDL Import Config
	15.1.4. Pause

	16. Document Revision History for DSP Builder for Intel FPGAs (Advanced Blockset) Handbook

