

Intel(R) VTune(TM) Amplifier XE 2011
Getting Started Tutorials for Windows*
OS

Document Number: 323906-005US

World Wide Web: http://developer.intel.com

Legal Information

Contents
Legal Information..5
Introducing the Intel® VTune™ Amplifier XE...7
Prerequisites..9
Navigation Quick Start...11
Key Terms and Concepts..13

Chapter 1: Tutorial: Finding Hotspots
Learning Objectives..17
Workflow Steps to Identify and Analyze Hotspots...17
Visual Studio* IDE: Choose Project and Build Application..............................18
Standalone GUI: Build Application and Create New Project............................24
Run Hotspots Analysis..29
Interpret Result Data..30
Analyze Code..33
Tune Algorithms..34
Compare with Previous Result..37
Summary..39

Chapter 2: Tutorial: Analyzing Locks and Waits
Learning Objectives..41
Workflow Steps to Identify Locks and Waits...41
Visual Studio* IDE: Choose Project and Build Application..............................42
Standalone GUI: Build Application and Create New Project............................48
Run Locks and Waits Analysis..53
Interpret Result Data..54
Analyze Code..57
Remove Lock...58
Compare with Previous Result..60
Summary..63

Chapter 3: Tutorial: Identifying Hardware Issues
Learning Objectives..65
Workflow Steps to Identify Hardware Issues..65
Visual Studio* IDE: Choose Project and Build Application..............................66
Standalone GUI: Build Application and Create New Project............................70
Run General Exploration Analysis...74
Interpret Results..75
Analyze Code..78
Resolve Issue..79
Resolve Next Issue...82
Summary..85

Chapter 4: More Resources
Getting Help..87
Product Website and Support...88

Contents

3

Chapter 5: Intel® VTune™ Amplifier XE Tutorials Troubleshooting
Troubleshooting...89

Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

4

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://
www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within
each processor family, not across different processor families. Go to: http://www.intel.com/products/
processor_number/

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with
other products.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, i960,
Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep,
Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel
XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX,
Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, The Creators Project,
The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU
and XPOSYS are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, Visual Studio, Visual C++, and the Windows logo are trademarks, or registered
trademarks of Microsoft Corporation in the United States and/or other countries.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright (C) 2010-2011, Intel Corporation. All rights reserved.

5

 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

6

Introducing the Intel® VTune™
Amplifier XE

The Intel® VTune™ Amplifier XE, an Intel® Parallel Studio XE tool, provides information on code performance
for users developing serial and multithreaded applications on Windows* and Linux* operating systems. On
Windows systems, the VTune Amplifier XE integrates into Microsoft Visual Studio* software and is also
available as a standalone GUI client. On Linux systems, VTune Amplifier XE works only as a standalone GUI
client. On both Windows and Linux systems, you can benefit from using the command-line interface for
collecting data remotely or for performing regression testing.

VTune Amplifier XE helps you analyze the algorithm choices and identify where and how your application can
benefit from available hardware resources. Use the VTune Amplifier XE to locate or determine the following:

• The most time-consuming (hot) functions in your application and/or on the whole system
• Sections of code that do not effectively utilize available processor time
• The best sections of code to optimize for sequential performance and for threaded performance
• Synchronization objects that affect the application performance
• Whether, where, and why your application spends time on input/output operations
• The performance impact of different synchronization methods, different numbers of threads, or different

algorithms
• Thread activity and transitions
• Hardware-related bottlenecks in your code

Intel VTune Amplifier XE Tutorials
These tutorials tell you how to use the VTune Amplifier XE to analyze the performance of a sample
application by identifying software- and hardware-related issues in the code.

• Finding Hotspots
• Analyzing Locks and Waits
• Identifying Hardware Issues

Check http://software.intel.com/en-us/articles/intel-software-product-tutorials/ for the printable version
(PDF) of product tutorials.

See Also
Getting Help

7

 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

8

Prerequisites

 You need the following tools, skills, and knowledge to effectively use these tutorials.

NOTE The instructions and screen shots in these tutorials refer to the Visual Studio* 2005 integrated
development environment (IDE). They may slightly differ for other versions of Visual Studio IDE or for
the standalone version of the Intel® VTune™ Amplifier XE. See online help for details.

Required Tools
You need the following tools to use these tutorials:

• Intel® VTune™ Amplifier XE
• Sample code included with the VTune Amplifier XE. VTune Amplifier XE provides the following sample

applications:

• tachyon application used for the Finding Hotspots and Analyzing Locks and Waits tutorials
• matrix application used for the Identifying Hardware Issues tutorial

• VTune Amplifier XE Help
• Microsoft Visual Studio* 2005 or later

To acquire the VTune Amplifier XE:
If you do not already have access to the VTune Amplifier XE, you can download an evaluation copy from
http://software.intel.com/en-us/articles/intel-software-evaluation-center/.

To install the VTune Amplifier XE, follow the instructions in the Release Notes.

To install and set up VTune Amplifier XE sample code:

1. Copy the tachyon_vtune_amp_xe.zip and matrix_vtune_amp_xe.zip files from the samples
\<locale>\C++ folder in the IntelVTune Amplifier XE installation directory to a writable directory or share
on your system.

The default installation directory is C:\Program Files\Intel\VTune Amplifier XE 2011 (on certain
systems, instead of Program Files, the folder name is Program Files (x86)).

2. Extract the sample(s) from the .zip file.

NOTE

• Samples are non-deterministic. Your screens may vary from the screen shots shown throughout
these tutorials.

• Samples are designed only to illustrate VTune Amplifier XE features and do not represent best
practices for tuning the code. Results may vary depending on the nature of the analysis.

To run the VTune Amplifier XE:

• For Microsoft Visual Studio*: VTune Amplifier XE integrates into Visual Studio when installation completes.
To configure and run an analysis, open your solution and go to Tools > Intel VTune Amplifier XE 2011

> New Analysis... from the Visual Studio menu or click the New Analysis button from the VTune
Amplifier XE toolbar. See the Navigation Quick Start for more details.

• For the standalone interface: From the Start menu, select All Programs > Intel Parallel Studio XE
2011 > Intel VTune Amplifier XE 2011.

9

To access VTune Amplifier XE Help:

See the Getting Help topic.

Required Skills and Knowledge
These tutorials are designed for developers with the following skills and knowledge:

• Basic understanding of the Microsoft Visual Studio* 2005 development environment (IDE), including how
to:

• Open a project/solution.
• Display the Solution Explorer and Output windows.
• Compile and link a project.
• Ensure a project compiled successfully.
• Access the Document Explorer window.

 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

10

Navigation Quick Start

 Intel® VTune™ Amplifier XE /Microsoft Visual Studio* 2005 Integration

NOTE This topic describes integration into Microsoft Visual Studio* 2005. Integration to other version
of Visual Studio IDE or the standalone VTune Amplifier XE interface may slightly differ.

The VTune Amplifier XE integrates into the Visual Studio* development environment (IDE) and can be
accessed from the menus, toolbar, and Solution Explorer in the following manner:

Use the VTune Amplifier XE toolbar to configure and control result collection.

VTune Amplifier XE results *.amplxe show up in the Solution Explorer under the My
Amplifier XE Results folder. To configure and control result collection, right-click the project
in the Solution Explorer and select the Intel VTune Amplifier XE 2011 menu from the pop-
up menu. To manage previously collected results, right-click the result (for example,
r002hs.amplxe) and select the required command from the pop-up menu.

11

Use the drop-down menu to select a viewpoint, a preset configuration of windows/panes for an
analysis result. For each analysis type, you can switch among several preset configurations to
focus on particular performance metrics.

Click the buttons on navigation toolbars to change window views and toggle window panes on
and off.

In the Timeline pane, analyze the thread activity and transitions presented for the user-mode
sampling and tracing analysis results (for example, Hotspots, Concurrency, Locks and Waits) or
analyze the distribution of the application performance per metric over time for the event-
based sampling analysis results (for example, Memory Access, Bandwidth Breakdown).

Use the Call Stack pane to view call paths for a function selected in the grid.

Use the filter toolbar to filter out the result data according to the selected categories.

In Microsoft Visual Studio* 2005/2008, use the Dynamic Help window to access help topics
related to the current VTune Amplifier XE window/pane.

 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

12

Key Terms and Concepts

Key Terms
baseline: A performance metric used as a basis for comparison of the application versions before and after
optimization. Baseline should be measurable and reproducible.

CPU time: The amount of time a thread spends executing on a logical processor. For multiple threads, the
CPU time of the threads is summed. The application CPU time is the sum of the CPU time of all the threads
that run the application.

Elapsed time:The total time your target ran, calculated as follows: Wall clock time at end of application
– Wall clock time at start of application.

hotspot: A section of code that took a long time to execute. Some hotspots may indicate bottlenecks and
can be removed, while other hotspots inevitably take a long time to execute due to their nature.

target: A target is an executable file you analyze using the Intel® VTune™ Amplifier XE.

viewpoint: A preset result tab configuration that filters out the data collected during a performance analysis
and enables you to focus on specific performance problems. When you select a viewpoint, you select a set of
performance metrics the VTune Amplifier XE shows in the windows/panes of the result tab. To select the

required viewpoint, click the button and use the drop-down menu at the top of the result tab.

Wait time: The amount of time that a given thread waited for some event to occur, such as:
synchronization waits and I/O waits.

Key Concept: CPU Usage

For the user-mode sampling and tracing analysis types, the Intel® VTune™ Amplifier XE identifies a processor
utilization scale, calculates the target CPU usage, and defines default utilization ranges depending on the
number of processor cores. You can change the utilization ranges by dragging the slider in the CPU Usage
histogram in the Summary window.

Utilizatio
n Type

Default
color

Description

Idle All CPUs are waiting - no threads are running.

Poor Poor usage. By default, poor usage is when the number of simultaneously
running CPUs is less than or equal to 50% of the target CPU usage.

OK Acceptable (OK) usage. By default, OK usage is when the number of
simultaneously running CPUs is between 51-85% of the target CPU usage.

Ideal Ideal usage. By default, Ideal usage is when the number of simultaneously
running CPUs is between 86-100% of the target CPU usage.

Key Concept: Data of Interest

The VTune Amplifier XE maintains a special column called Data of Interest. This column is highlighted with
yellow background and a yellow star in the column header .

The data in the Data of Interest column is used by various windows as follows:

13

• The Call Stack pane calculates the contribution, shown in the contribution bar, using the Data of Interest
column values.

• The Filter bar uses the data of interest values to calculate the percentage indicated in the filtered option.
• The Source/Assembly window uses this column for hotspot navigation.

If a viewpoint has more than one column with numeric data or bars, you can change the default Data of
Interest column by right-clicking the required column and selecting the Set Column as Data of Interest
command from the pop-up menu.

Key Concept: Event-based Metrics
When analyzing data collected during a hardware event-based sampling analysis, the VTune Amplifier XE
uses the performance metrics. Each metric is an event ratio with its own threshold values. As soon as the
performance of a program unit per metric exceeds the threshold, the VTune Amplifier XE marks this value as
a performance issue (in pink) and provides recommendations how to fix it.

Each column in the Bottom-up pane provides data per metric. To read the metric description and see the
formula used for the metric calculation, mouse over the metric column header. To read the description of the
hardware issue and see the threshold formula used for this issue, mouse over the link cell in the grid.

For the full list of metrics used by the VTune Amplifier XE, see the Hardware Event-based Metrics topic in the
online help.

Key Concept: Event-based Sampling Analysis

VTune Amplifier XE introduces a set of advanced hardware analysis types based on the event-based sampling
data collection and targeted for the Intel® Core™ 2 processor family, processors based on the Intel®
microarchitecture code name Nehalem and Intel® microarchitecture code name Sandy Bridge. Depending on
the analysis type, the VTune Amplifier XE monitors a set of hardware events and, as a result, provides
collected data per, so-called, hardware event-based metrics defined by Intel architects (for example,
Clockticks per Instructions Retired, Contested Accesses, and so on).

Typically, you are recommended to start with the General Exploration analysis type that collects the
maximum number of events and provides the widest picture of the hardware issues that affected the
performance of your application.

For more information on the event-based sampling analysis, see the Hardware Event-based Sampling
Collection topic in the online help.

Key Concept: Event Skid
Event skid is the recording of an event not exactly on the code line that caused the event. Event skids may
even result in a caller function event being recorded in the callee function.

Event skid is caused by a number of factors:

• The delay in propagating the event out of the processor's microcode through the interrupt controller
(APIC) and back into the processor.

• The current instruction retirement cycle must be completed.
• When the interrupt is received, the processor must serialize its instruction stream which causes a flushing

of the execution pipeline.

The Intel(R) processors support accurate event location for some events. These events are called precise
events.See the online help for more details.

Key Concept: Finalization

Finalization is the process of the Intel® VTune™ Amplifier XE converting the collected data to a database,
resolving symbol information, and pre-computing data to make further analysis more efficient and
responsive. The VTune Amplifier XE finalizes data automatically when data collection completes.

You may want to re-finalize a result to:

 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

14

• update symbol information after changes in the search directories settings
• resolve the number of [Unknown]-s in the results

Key Concept: Hotspots Analysis

The Hotspots analysis helps understand the application flow and identify sections of code that took a long
time to execute (hotspots). A large number of samples collected at a specific process, thread, or module can
imply high processor utilization and potential performance bottlenecks. Some hotspots can be removed,
while other hotspots are fundamental to the application functionality and cannot be removed.

The Intel®VTune™ Amplifier XE creates a list of functions in your application ordered by the amount of time
spent in a function. It also detects the call stacks for each of these functions so you can see how the hot
functions are called.

The VTune Amplifier XE uses a low overhead (about 5%) user-mode sampling and tracing collection that gets
you the information you need without slowing down the application execution significantly.

Key Concept: Locks and Waits Analysis

While the Concurrency analysis helps identify where your application is not parallel, the Locks and Waits
analysis helps identify the cause of the ineffective processor utilization. One of the most common problems is
threads waiting too long on synchronization objects (locks). Performance suffers when waits occur while
cores are under-utilized.

During the Locks and Waits analysis you can estimate the impact each synchronization object introduces to
the application and understand how long the application was required to wait on each synchronization object,
or in blocking APIs, such as sleep and blocking I/O.

Key Concept: Thread Concurrency

The number of active threads corresponds to the concurrency level of an application. By comparing the
concurrency level with the number of processors, Intel® VTune™ Amplifier XE classifies how an application
utilizes the processors in the system. It defines default utilization ranges depending on the number of
processor cores and displays the thread concurrency in the Summary and Bottom-up window. You can
change the utilization ranges by dragging the slider in the Summary window.

Thread concurrency may be higher than CPU Usage if threads are in the runnable state and not consuming
CPU time. VTune Amplifier XE defines the Target Concurrency level for your application that is, by default,
equal to the number of physical cores.

Utilizatio
n Type

Default
color

Description

Idle All threads in the application are waiting - no threads are running. There can be
only one bar in the Thread Concurrency histogram indicating Idle utilization.

Poor Poor utilization. By default, poor utilization is when the number of threads is up
to 50% of the target concurrency.

OK Acceptable (OK) utilization. By default, OK utilization is when the number of
threads is between 51-85% of the target concurrency.

Ideal Ideal utilization. By default, ideal utilization is when the number of threads is
between 86-115% of the target concurrency.

Over Over-utilization. By default, over-utilization is when the number of threads is
more than 115% of the target concurrency.

Key Terms and Concepts

15

 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

16

Tutorial: Finding Hotspots 1

Learning Objectives

 This tutorial shows how to use the Hotspots analysis of the Intel® VTune™ Amplifier XE to understand
where the sample application is spending time, identify hotspots - the most time-consuming program units,
and detect how they were called. Some hotspots may indicate bottlenecks that can be removed, while other
hotspots are inevitable and take a long time to execute due to their nature. Typically, the hotspot functions
identified during the Hotspots analysis use the most time-consuming algorithms and are good candidates for
parallelization.

The Hotspots analysis is useful to analyze the performance of both serial and parallel applications.

Estimated completion time: 15 minutes.

Sample application: tachyon.

After you complete this tutorial, you should be able to:

• Choose an analysis target.
• Choose the Hotspots analysis type.
• Run the Hotspots analysis to locate most time-consuming functions in an application.
• Analyze the function call flow and threads.
• Analyze the source code to locate the most time-critical code lines.
• Compare results before and after optimization.

Start Here
Workflow Steps to Identify and Analyze Hotspots

Workflow Steps to Identify and Analyze Hotspots

 You can use the Intel® VTune™ Amplifier XE to identify and analyze hotspot functions in your serial or
parallel application by performing a series of steps in a workflow. This tutorial guides you through these
workflow steps while using a sample ray-tracer application named tachyon.

17

1. Do one of the following:

• Visual Studio* IDE: Choose a project, verify settings, and build application
• Standalone GUI: Build an application to analyze for hotspots and create a new VTune Amplifier XE

project
2. Choose and run the Hotspots analysis.
3. Interpret the result data.
4. View and analyze code of the performance-critical function.
5. Modify the code to tune the algorithms or rebuild the code with Intel® Compiler.
6. Re-build the target, re-run the Hotspots analysis, and compare the result data before and after

optimization.

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Visual Studio* IDE: Choose Project and Build Application

 Before you start analyzing your application target for hotspots, do the following:

1. Choose a project with the analysis target in the Visual Studio IDE.
2. Configure the Microsoft Visual Studio* environment to download the debug information for system

libraries so that VTune Amplifier XE can properly identify system functions and classify and attribute
functions.

3. Configure Visual Studio project properties to generate the debug information for your application so that
VTune Amplifier XE can open the source code.

4. Build the target in the release mode with full optimizations, which is recommended for performance
analysis.

5. Run the application without debugging to create a performance baseline.

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

18

For this tutorial, your target is a ray-tracer application, tachyon. To learn how to install and set up the
sample code, see Prerequisites.

• The steps below are provided for Microsoft Visual Studio 2005. They may slightly differ for other
versions of Visual Studio.

• Steps provided by this tutorial are generic and applicable to any application. You may choose to
follow the proposed workflow using your own application.

Choose a Project

1. From the Visual Studio menu, select File > Open > Project/Solution....

The Open Project dialog box opens.
2. In the Open Project dialog box, browse to the location you used to extract the

tachyon_vtune_amp_xe.zip file and select the tachyon_vtune_amp_xe.sln file.

The solution is added to Visual Studio IDE and shows up in the Solution Explorer.
3. In the Solution Explorer, right-click the find_hotspots project and select Project > Set as StartUp

Project.

find_hotspots appears in bold in the Solution Explorer.

When you choose a project in Visual Studio IDE, the VTune Amplifier XE automatically creates the
config.amplxeproj project file and sets the find_hotspots application as an analysis target in the project
properties.

Enable Downloading the Debug Information for System Libraries

1. Go to Tools > Options....

The Options dialog box opens.
2. From the left pane, select Debugging > Symbols.
3.

In the Symbol file (.pdb) locations field, click the button and specify the following address: http://
msdl.microsoft.com/download/symbols.

4. Make sure the added address is checked.
5. In the Cache symbols from symbol servers to this directory field, specify a directory where the

downloaded symbol files will be stored.
6. For Microsoft Visual Studio* 2005, check the Load symbols using the updated settings when this

dialog is closed box.

Tutorial: Finding Hotspots 1

19

7. Click OK.

Enable Generating Debug Information for Your Binary Files

1. Select the find_hotspots project and go to Project > Properties.
2. From the find_hotspots Property Pages dialog box, select Configuration Properties > General and

make sure the selected Configuration (top of the dialog) is Active(Release).
3. From the find_hotspots Property Pages dialog box, select C/C++ > General pane and specify the

Debug Information Format as Program Database (/Zi).

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

20

4. From the find_hotspots Property Pages dialog box, select Linker > Debugging and set the Generate
Debug Info option to Yes (/DEBUG).

Tutorial: Finding Hotspots 1

21

Choose a Build Mode and Build a Target

1. Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.

2. From the Visual Studio menu, select Build > Build find_hotspots.

The tachyon_find_hotspots.exe application is built.

NOTE The build configuration for tachyon may initially be set to Debug, which is typically used for
development. When analyzing performance issues with the VTune Amplifier XE, you are recommended
to use the Release build with normal optimizations. In this way, the VTune Amplifier XE is able to
analyze the realistic performance of your application.

Create a Performance Baseline

1. From the Visual Studio menu, select Debug > Start Without Debugging.

The tachyon_find_hotspots.exe application starts running.

NOTE Before you start the application, minimize the amount of other software running on your
computer to get more accurate results.

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

22

2. Note the execution time displayed in the window caption. For the tachyon_find_hotspots.exe
executable in the figure above, the execution time is 63.609 seconds. The total execution time is the
baseline against which you will compare subsequent runs of the application.

NOTE Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.

Recap
You chose the target for the Hotspots analysis, set up your environment to enable generating symbol
information for system libraries and your binary files, built the target in the Release mode, and created the
performance baseline. Your application is ready for analysis.

Key Terms and Concepts

• Term: target
• Concept: Hotspots Analysis

Next Step
Run Hotspots Analysis

Tutorial: Finding Hotspots 1

23

Standalone GUI: Build Application and Create New Project

 Before you start analyzing your application target for hotspots, do the following:

1. Build application.

If you build the code in Visual Studio*, make sure to:

• Configure the Microsoft Visual Studio* environment to download the debug information for system
libraries so that VTune Amplifier XE can properly identify system functions and classify and attribute
functions.

• Configure Visual Studio project properties to generate the debug information for your application so
that VTune Amplifier XE can open the source code.

• Build the target in the release mode with full optimizations, which is recommended for performance
analysis.

2. Run the application without debugging to create a performance baseline.
3. Create a VTune Amplifier XE project.

NOTE The steps below are provided for Microsoft Visual Studio 2005. They may differ slightly for other
versions of Visual Studio.

Enable Downloading the Debug Information for System Libraries

1. Go to Tools > Options....

The Options dialog box opens.
2. From the left pane, select Debugging > Symbols.
3.

In the Symbol file (.pdb) locations field, click the button and specify the following address: http://
msdl.microsoft.com/download/symbols.

4. Make sure the added address is checked.
5. In the Cache symbols from symbol servers to this directory field, specify a directory where the

downloaded symbol files will be stored.
6. For Microsoft Visual Studio* 2005, check the Load symbols using the updated settings when this

dialog is closed box.

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

24

7. Click OK.

Enable Generating Debug Information for Your Binary Files

1. Select the find_hotspots project and go to Project > Properties.
2. From the find_hotspots Property Pages dialog box, select Configuration Properties > General and

make sure the selected Configuration (top of the dialog) is Active(Release).
3. From the find_hotspots Property Pages dialog box, select C/C++ > General pane and specify the

Debug Information Format as Program Database (/Zi).

Tutorial: Finding Hotspots 1

25

4. From the find_hotspots Property Pages dialog box, select Linker > Debugging and set the Generate
Debug Info option to Yes (/DEBUG).

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

26

Choose a Build Mode and Build a Target

1. Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.

2. From the Visual Studio menu, select Build > Build find_hotspots.

The tachyon_find_hotspots.exe application is built.

NOTE The build configuration for tachyon may initially be set to Debug, which is typically used for
development. When analyzing performance issues with the VTune Amplifier XE, you are recommended
to use the Release build with normal optimizations. In this way, the VTune Amplifier XE is able to
analyze the realistic performance of your application.

Create a Performance Baseline

1. From the Visual Studio menu, select Debug > Start Without Debugging.

The tachyon_find_hotspots.exe application starts running.

NOTE Before you start the application, minimize the amount of other software running on your
computer to get more accurate results.

Tutorial: Finding Hotspots 1

27

2. Note the execution time displayed in the window caption. For the tachyon_find_hotspots.exe
executable in the figure above, the execution time is 63.609 seconds. The total execution time is the
baseline against which you will compare subsequent runs of the application.

NOTE Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.

Create a Project
1. From the Start menu select Intel Parallel Studio XE 2011 > Intel VTune Amplifier XE 2011 to

launch the VTune Amplifier XE standalone GUI.
2. Create a new project via File > New > Project....

The Create a Project dialog box opens.
3. Specify the project name tachyon that will be used as the project directory name.

The VTune Amplifier XE creates the tachyon project directory under the %USERPROFILE%\My Documents
\My Amplifier XE Projects directory and opens the Project Properties: Target dialog box.

4. In the Application to Launch pane of the Target tab, specify and configure your target as follows:

• For the Application field, browse to: <sample_code_dir>\find_hotspots.exe, for example: C:
\samples\tachyon_vtune_amp_xe\vc8\find_hotspots_Win32_Release\find_hotspots.exe.

5. Click OK to apply the settings and exit the Project Properties dialog box.

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

28

Recap
You set up your environment to enable generating symbol information for system libraries and your binary
files, built the target in the Release mode, created the performance baseline, and created the VTune
Amplifier XE project for your analysis target. Your application is ready for analysis.

Key Terms and Concepts

• Term: target, baseline

Next Step
Run Hotspots Analysis

Run Hotspots Analysis

 In this tutorial, you run the Hotspots analysis to identify the hotspots that took much time to execute.

To run an analysis:

1.
From the VTune Amplifier XE toolbar, click the New Analysis button.

The VTune Amplifier XE result tab opens with the Analysis Type window active.

2. On the left pane of the Analysis Type window, locate the analysis tree and select Algorithm Analysis >
Hotspots.

The right pane is updated with the default options for the Hotspots analysis.
3. Click the Start button on the right command bar.

VTune Amplifier XE launches the tachyon_find_hotspots application that renders balls.dat as an input
file, calculates the execution time, and exits. VTune Amplifier XE finalizes the collected results and opens the
Hotspots viewpoint.

NOTE To make sure the performance of the application is repeatable, go through the entire tuning
process on the same system with a minimal amount of other software executing.

Recap
You launched the Hotspots data collection that analyzes function calls and CPU time spent in each program
unit of your application.

Tutorial: Finding Hotspots 1

29

NOTE This tutorial explains how to run an analysis from the VTune Amplifier XE graphical user
interface (GUI). You can also use the VTune Amplifier XE command-line interface (amplxe-cl
command) to run an analysis. For more details, check the Command-line Interface Support section of
the VTune Amplifier XE Help.

Key Terms and Concepts

• Term: hotspot, Elapsed time, viewpoint
• Concept: Hotspot Analysis, Finalization

Next Step
Interpret Result Data

Interpret Result Data

 When the sample application exits, the Intel® VTune™ Amplifier XE finalizes the results and opens the
Hotspots viewpoint that consists of the Summary, Bottom-up, and Top-down Tree windows. To interpret the
data on the sample code performance, do the following:

• Understand the basic performance metrics provided by the Hotspots analysis.
• Analyze the most time-consuming functions.
• Analyze CPU usage per function.

NOTE The screenshots and execution time data provided in this tutorial are created on a system with
four CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Understand the Basic Hotspots Metrics

Start analysis with the Summary window. To interpret the data, hover over the question mark icons to
read the pop-up help and better understand what each performance metric means.

Note that CPU Time for the sample application is equal to 64.907 seconds. It is the sum of CPU time for all
application threads. Total Thread Count is 3, so the sample application is multi-threaded.

The Top Hotspots section provides data on the most time-consuming functions (hotspot functions) sorted
by CPU time spent on their execution.

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

30

For the sample application, the initialize_2D_buffer function, which took 27.671 seconds to execute,
shows up at the top of the list as the hottest function.

The [Others] entry at the bottom shows the sum of CPU time for all functions not listed in the table.

Analyze the Most Time-consuming Functions
Click the Bottom-up tab to explore the Bottom-up pane. By default, the data in the grid is sorted by
Function. You may change the grouping level using the Grouping drop-down menu at the top of the grid.

Analyze the CPU Time column values. This column is marked with a yellow star as the Data of Interest
column. It means that the VTune Amplifier XE uses this type of data for some calculations (for example,
filtering, stack contribution, and others). Functions that took most CPU time to execute are listed on top.

The initialize_2D_buffer function took 27.671 seconds to execute. Click the plus sign at the
initialize_2D_buffer function to expand the stacks calling this function. You see that it was called only
by the setup_2D_buffer function.

Select the initialize_2D_buffer function in the grid and explore the data provided in the Call Stack pane
on the right.

The Call Stack pane displays full stack data for each hotspot function, enables you to navigate between
function call stacks and understand the impact of each stack to the function CPU time. The stack functions in
the Call Stack pane are represented in the following format:

<module>!<function> - <file>:<line number>, where the line number corresponds to the line calling the
next function in the stack.

For the sample application, the hottest function initialize_2D_buffer is called at line 86 of the
setup_2D_buffer function in the global.cpp file.

Analyze CPU Usage per Function

VTune Amplifier XE enables you to analyze the
collected data from different perspectives by using
multiple viewpoints.

For the Hotspots analysis result, you may switch
to the Hotspots by CPU Usage viewpoint to
understand how your hotspot function performs in

Tutorial: Finding Hotspots 1

31

terms of the CPU usage. Explore this viewpoint to
determine how your application utilized available
cores and identify the most serial code.

If you go back to the Summary window, you can see
the CPU Usage Histogram that represents the
Elapsed time and usage level for the available logical
processors. Ideally, the highest bar of your chart
should match the Target level.

The tachyon_find_hotspots application ran
mostly on one logical CPU. If you hover over the
highest bar, you see that it spent 62.491 seconds
using one core only, which is classified by the VTune
Amplifier XE as a Poor utilization for a dual-core
system. To understand what prevented the
application from using all available logical CPUs
effectively, explore the Bottom-up pane.

To get the detailed CPU usage information per function, use the button in the Bottom-up window to
expand the CPU Time column.

Note that initialize_2D_buffer is the function with the longest poor CPU utilization (red bars). This
means that the processor cores were underutilized most of the time spent on executing this function.

If you change the grouping level (highlighted in the figure above) in the Bottom-up pane from Function/
Call Stack to Thread/Function/Call Stack, you see that the initialize_2D_buffer function belongs to
the thread_video thread. This thread is also identified as a hotspot and shows up at the top in the Bottom-
up pane. To get detailed information on the hotspot thread performance, explore the Timeline pane.

Timeline area. When you hover over the graph element, the timeline tooltip displays the time
passed since the application has been launched.

Threads area that shows the distribution of CPU time utilization per thread. Hover over a bar to
see the CPU time utilization in percent for this thread at each moment of time. Green zones show
the time threads are active.

CPU Usage area that shows the distribution of CPU time utilization for the whole application. Hover
over a bar to see the application-level CPU time utilization in percent at each moment of time.

VTune Amplifier XE calculates the overall CPU Usage metric as the sum of CPU time per each
thread of the Threads area. Maximum CPU Usage value is equal to [number of processor
cores] x 100%.

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

32

The Timeline analysis also identifies the thread_video thread as the most active. The tooltip shows that
CPU time values rarely exceed 100% whereas the maximum CPU time value for dual-core systems is 200%.
This means that the processor cores were half-utilized for most of the time spent on executing the
tachyon_find_hotspots application.

Recap
You identified a function that took the most CPU time and could be a good candidate for algorithm tuning.

Key Terms and Concepts

• Term: Elapsed time, CPU time, viewpoint
• Concept: Hotspots Analysis, CPU Usage, Data of Interest

Next Step
Analyze Code

Analyze Code

 You identified initialize_2D_buffer as the hottest function. In the Bottom-up pane, double-click
this function to open the Source window and analyze the source code:

• Understand basic options provided in the Source window.
• Identify the hottest code lines.

Understand Basic Source Window Options

The table below explains some of the features available in the Source window when viewing the Hotspots
analysis data.

Source pane displaying the source code of the application if the function symbol information is
available. The code line that took the most CPU time to execute is highlighted. The source code in
the Source pane is not editable.

Tutorial: Finding Hotspots 1

33

If the function symbol information is not available, the Assembly pane opens displaying assembler
instructions for the selected hotspot function. To enable the Source pane, make sure to build the
target properly.

Assembly pane displaying the assembler instructions for the selected hotspot function. Assembler
instructions are grouped by basic blocks. The assembler instructions for the selected hotspot
function are highlighted. To get help on an assembler instruction, right-click the instruction and
select Instruction Reference.

NOTE To get the help on a particular instruction, make sure to have the Adobe* Acrobat
Reader* 9 (or later) installed. If an earlier version of the Adobe Acrobat Reader is installed,
the Instruction Reference opens but you need to locate the help on each instruction
manually.

Processor time attributed to a particular code line. If the hotspot is a system function, its time, by
default, is attributed to the user function that called this system function.

Source window toolbar. Use the hotspot navigation buttons to switch between most performance-
critical code lines. Hotspot navigation is based on the metric column selected as a Data of Interest.
For the Hotspots analysis, this is CPU Time. Use the Source/Assembly buttons to toggle the
Source/Assembly panes (if both of them are available) on/off.

Heat map markers to quickly identify performance-critical code lines (hotspots). The bright blue
markers indicate hot lines for the function you selected for analysis. Light blue markers indicate
hot lines for other functions. Scroll to a marker to locate the hot code line it identifies.

Identify the Hottest Code Lines
When you identify a hotspot in the serial code, you can make some changes in the code to tune the
algorithms and speed up that hotspot. Another option is to parallelize the sample code by adding threads to
the application so that it performs well on multi-core processors. This tutorial focuses on algorithm tuning.

By default, when you double-click the hotspot in the Bottom-up pane, VTune Amplifier XE opens the source
file related to this function highlighting the code line that took the most CPU time. For the
initialize_2D_buffer function, the hottest code line is 84. This code is used to initialize a memory array

using non-sequential memory locations. Click the Source Editor button on the Source window toolbar to
open the default code editor and work on optimizing the code.

Recap
You identified the code section that took the most CPU time to execute.

Key Terms and Concepts

• Term: hotspot, CPU time
• Concept: Hotspots Analysis, Data of Interest

Next Step
Tune Algorithms

Tune Algorithms

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

34

 In the Source window, you identified that in the initialize_2D_buffer hotspot function the code
line 84 took the most CPU time. Focus on this line and do the following:

1. Open the code editor.
2. Resolve the performance problem using any of these options:

• Optimize the algorithm used in this code section.
• Recompile the code with the Intel® Compiler.

Open the Code Editor

In the Source window, click the Source Editor button to open the find_hotspots.cpp file in the default
code editor at the hotspot line:

Hotspot line 84 is used to initialize a memory array using non-sequential memory locations. For
demonstration purposes, the code lines are commented as a slower method of filling the array.

Resolve the Problem
To resolve this issue, use one of the following methods:

Option 1: Optimize your algorithm

1. Edit line 79 to comment out code lines 82-88 marked as a "First (slower) method".
2. Edit line 95 to uncomment code lines 98-104 marked as a "Faster method".

In this step, you interchange the for loops to initialize the code in sequential memory locations.

Tutorial: Finding Hotspots 1

35

3. From the Visual Studio menu, select Build > Rebuild find_hotspots.

The project is rebuilt.
4. From Visual Studio Debug menu, select Start Without Debugging to run the application.

Visual Studio runs the tachyon_find_hotspots.exe. Note that execution time has reduced from 63.609
seconds to 57.282 seconds.

Option 2: Recompile the code with Intel® Compiler

This option assumes that you have Intel® Composer XE installed. Composer XE is part of Intel® Parallel Studio
XE. By default, the Intel® Compiler, one of the Composer components, uses powerful optimization switches,
which typically provides some gain in performance. For more details on the Intel compiler, see the Intel
Composer documentation.

As an alternative, you may consider running the default Microsoft Visual Studio compiler applying more
aggressive optimization switches.

To recompile the code with the Intel compiler:

1. From Visual Studio Project menu, select Intel Composer XE> Use Intel C++....
2. In the Confirmation window, click OK to confirm your choice.

The project in Solution Explorer appears with the ComposerXE icon:

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

36

3. From the Visual Studio menu, select Build > Rebuild find_hotspots.

The project is rebuilt with the Intel compiler.
4. From the Visual Studio menu, select Debug > Start Without Debugging.

Visual Studio runs the tachyon_find_hotspots.exe. Note that the execution time reduced.

Recap
You interchanged the loops in the hotspot function, rebuilt the application, and got performance gain of 6
seconds. You also considered an alternative optimization technique using the Intel C++ compiler.

Key Terms and Concepts

• Term: hotspot

Next Step
Compare with Previous Result

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Compare with Previous Result

 You optimized your code to apply a loop interchange mechanism that gave you 6 seconds of
improvement in the application execution time. To understand whether you got rid of the hotspot and what
kind of optimization you got per function, re-run the Hotspots analysis on the optimized code and compare
results:

• Compare results before and after optimization.
• Identify the performance gain.

Compare Results Before and After Optimization

1. Run the Hotspots analysis on the modified code.
2.

Click the Compare Results button on the Intel® VTune™ Amplifier XE toolbar.

The Compare Results window opens.
3. Specify the Hotspots analysis results you want to compare and click the Compare Results button:

Tutorial: Finding Hotspots 1

37

The Hotspots Bottom-up window opens, showing the CPU time usage across the two results and the
differences side by side.

Difference in CPU time between the two results in the following format: <Difference CPU Time>
= <Result 1 CPU Time> – <Result 2 CPU Time>.

CPU time for the initial version of the tachyon_find_hotspots.exe application.

CPU time for the optimized version of the tachyon_find_hotspots.exe.

Identify the Performance Gain
Explore the Bottom-up pane to compare CPU time data for the first hotspot: CPU Time:r000hs - CPU
Time:r001hs = CPU Time: Difference. 27.671s - 21.321s = 6.350s, which means that you got the
optimization of ~6 seconds for the initialize_2D_buffer function.

If you switch to the Summary window, you see that the Elapsed time also shows 3.6 seconds of optimization
for the whole application execution:

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

38

Recap
You ran the Hotspots analysis on the optimized code and compared the results before and after optimization
using the Compare mode of the VTune Amplifier XE. Compare analysis results regularly to look for
regressions and to track how incremental changes to the code affect its performance. You may also want to
use the VTune Amplifier XE command-line interface and run the amplxe-cl command to test your code for
regressions. For more details, see the Command-line Interface Support section in the VTune Amplifier XE
online help.

Key Terms and Concepts

• Term: hotspot, CPU time
• Concept: Hotspots Analysis

Next Step
Read Summary

Summary

 You have completed the Finding Hotspots tutorial. Here are some important things to remember when
using the Intel® VTune™ Amplifier XE to analyze your code for hotspots:

Step 1. Choose and Build Your Target

• Configure the Microsoft* symbol server and your project properties to get the most accurate results for
system and user binaries and to analyze the performance of your application at the code line level.

• Create a performance baseline to compare the application versions before and after optimization. Make
sure to use the same workload for each application run.

• Use the Project Properties: Target tab to choose and configure your analysis target. For Visual Studio*
projects, the analysis target settings are inherited automatically.

Step 2. Run Analysis

• Use the Analysis Type configuration window to choose, configure, and run the analysis. For example,
you may limit the data collection to a predefined amount of data or enable the VTune Amplifier XE to
collect more accurate CPU time data. You can also run the analysis from command line using the amplxe-
cl command.

Step 3. Interpret Results and Resolve the Issue

• Start analyzing the performance of your application from the Summary window to explore the
performance metrics for the whole application. Then, move to the Bottom-up window to analyze the
performance per function. Focus on the hotspots - functions that took the most CPU time. By default, they
are located at the top of the table.

• Double-click the hotspot function in the Bottom-up pane or Call Stack pane to open its source code at the
code line that took the most CPU time.

• Consider using Intel® Compiler, part of the Intel® Composer XE, to optimize your tuning algorithms.
Explore the compiler documentation for more details.

Step 4. Compare Results Before and After Optimization

• Perform regular regression testing by comparing analysis results before and after optimization. From GUI,

click the Compare Results button on the VTune Amplifier XE toolbar. From command line, use the
amplxe-cl command.

Tutorial: Finding Hotspots 1

39

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

 1 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

40

Tutorial: Analyzing Locks and
Waits 2

Learning Objectives

 This tutorial shows how to use the Locks and Waits analysis of the Intel® VTune™ Amplifier XE to
identify one of the most common reasons for an inefficient parallel application - threads waiting too long on
synchronization objects (locks) while processor cores are underutilized. Focus your tuning efforts on objects
with long waits where the system is underutilized.

Estimated completion time: 15 minutes.

Sample application: tachyon.

After you complete this tutorial, you should be able to:

• Choose an analysis target.
• Choose the Locks and Waits analysis type.
• Run the Locks and Waits analysis.
• Identify the synchronization objects with long waits and poor CPU utilization.
• Analyze the source code to locate the most critical code lines.
• Compare results before and after optimization.

Start Here
Workflow Steps to Identify Locks and Waits

Workflow Steps to Identify Locks and Waits

 You can use the Intel® VTune™ Amplifier XE to understand the cause of the ineffective processor
utilization by performing a series of steps in a workflow. This tutorial guides you through these workflow
steps while using a sample ray-tracer application named tachyon.

41

1. Do one of the following:

• Visual Studio* IDE: Choose a project, verify settings, and build application.
• Standalone GUI: Build an application to analyze for locks and waits and create a new VTune Amplifier

XE project.
2. Run the Locks and Waits analysis.
3. Interpret the result data.
4. View and analyze code of the performance-critical function.
5. Modify the code to remove the lock.
6. Re-build the target, re-run the Locks and Waits analysis, and compare the result data before and after

optimization.

Visual Studio* IDE: Choose Project and Build Application

 Before you start analyzing your application for locks, do the following:

1. Choose a project with the analysis target in the Visual Studio IDE.
2. Configure the Microsoft Visual Studio* environment to download the debug information for system

libraries so that VTune Amplifier XE can properly identify system functions and classify and attribute
functions.

3. Configure Visual Studio project properties to generate the debug information for your application so that
VTune Amplifier XE can open the source code.

4. Build the target in the release mode with full optimizations, which is recommended for performance
analysis.

5. Run the application without debugging to create a performance baseline.

For this tutorial, your target is a ray-tracer application, tachyon. To learn how to install and set up the
sample code, see Prerequisites.

• The steps below are provided for Microsoft Visual Studio* 2005. Steps for other versions of Visual
Studio IDE may slightly differ. See online help for details.

• Steps provided by this tutorial are generic and applicable to any application. You may choose to
follow the proposed workflow using your own application.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

42

Choose a Project

1. From the Visual Studio menu, select File > Open > Project/Solution....

The Open Project dialog box opens.
2. In the Open Project dialog box, browse to the location you used to unzip the

tachyon_vtune_amp_xe.zip file and select the tachyon_vtune_amp_xe.sln file.

The solution is added to Visual Studio and shows up in the Solution Explorer.
3. In Solution Explorer, right-click the analyze_locks project and select Project > Set as StartUp

Project.

analyze_locks appears in bold in Solution Explorer.

Enable Downloading the Debug Information for System Libraries

1. Go to Tools > Options....

The Options dialog box opens.
2. From the left pane, select Debugging > Symbols.
3.

In the Symbol file (.pdb) locations field, click the button and specify the following address: http://
msdl.microsoft.com/download/symbols.

4. Make sure the added address is checked.
5. In the Cache symbols from symbol servers to this directory field, specify a directory where the

downloaded symbol files will be stored.
6. For Microsoft* Visual Studio* 2005, check the Load symbols using the updated settings when this

dialog is closed box.

Tutorial: Analyzing Locks and Waits 2

43

7. Click Ok.

Enable Generating Debug Information for Your Binary Files

1. Select the analyze_locks project and go to Project > Properties.
2. From the analyze_locks Property Pages dialog box, select Configuration Properties > General and

make sure the selected Configuration (top of the dialog) is Active(Release).
3. From the analyze_locks Property Pages dialog box, select C/C++ > General pane and specify the

Debug Information Format as Program Database (/Zi).

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

44

4. From the analyze_locks Property Pages dialog box, select Linker > Debugging and set the
Generate Debug Info option to Yes (/DEBUG).

Tutorial: Analyzing Locks and Waits 2

45

Choose a Build Mode and Build a Target

1. Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.

2. From the Visual Studio menu, select Build > Build analyze_locks.

The tachyon_analyze_locks application is built.

NOTE The build configuration for tachyon may initially be set to Debug, which is typically used for
development. When analyzing performance issues with the VTune Amplifier XE, you are recommended
to use the Release build with normal optimizations. In this way, the VTune Amplifier XE is able to
analyze the realistic performance of your application.

Create a Performance Baseline

1. From the Visual Studio menu, select Debug > Start Without Debugging.

The tachyon_analyze_locks application runs in multiple sections (depending on the number of CPUs in
your system).

NOTE Before you start the application, minimize the amount of other software running on your
computer to get more accurate results.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

46

2. Note the execution time displayed in the window caption. For the tachyon_analyze_locks executable in
the figure above, the execution time is 33.578 seconds. The total execution time is the baseline against
which you will compare subsequent runs of the application.

NOTE Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.

Recap
You selected the analyze_locks project as the target for the Locks and Waits analysis.

Key Terms and Concepts

• Term: target

Next Step
Run Locks and Waits Analysis

Tutorial: Analyzing Locks and Waits 2

47

Standalone GUI: Build Application and Create New Project

 Before you start analyzing your application for locks and waits, do the following:

1. Build application.

If you build the code in Visual Studio*, make sure to:

• Configure the Microsoft Visual Studio* environment to download the debug information for system
libraries so that VTune Amplifier XE can properly identify system functions and classify and attribute
functions.

• Configure Visual Studio project properties to generate the debug information for your application so
that VTune Amplifier XE can open the source code.

• Build the target in the release mode with full optimizations, which is recommended for performance
analysis.

2. Run the application without debugging to create a performance baseline.
3. Create a VTune Amplifier XE project.

NOTE The steps below are provided for Microsoft Visual Studio* 2005. Steps for other versions of
Visual Studio IDE may differ slightly.

Enable Downloading the Debug Information for System Libraries

1. Go to Tools > Options....

The Options dialog box opens.
2. From the left pane, select Debugging > Symbols.
3.

In the Symbol file (.pdb) locations field, click the button and specify the following address: http://
msdl.microsoft.com/download/symbols.

4. Make sure the added address is checked.
5. In the Cache symbols from symbol servers to this directory field, specify a directory where the

downloaded symbol files will be stored.
6. For Microsoft* Visual Studio* 2005, check the Load symbols using the updated settings when this

dialog is closed box.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

48

7. Click Ok.

Enable Generating Debug Information for Your Binary Files

1. Select the analyze_locks project and go to Project > Properties.
2. From the analyze_locks Property Pages dialog box, select Configuration Properties > General and

make sure the selected Configuration (top of the dialog) is Active(Release).
3. From the analyze_locks Property Pages dialog box, select C/C++ > General pane and specify the

Debug Information Format as Program Database (/Zi).

Tutorial: Analyzing Locks and Waits 2

49

4. From the analyze_locks Property Pages dialog box, select Linker > Debugging and set the
Generate Debug Info option to Yes (/DEBUG).

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

50

Choose a Build Mode and Build a Target

1. Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.

2. From the Visual Studio menu, select Build > Build analyze_locks.

The tachyon_analyze_locks application is built.

NOTE The build configuration for tachyon may initially be set to Debug, which is typically used for
development. When analyzing performance issues with the VTune Amplifier XE, you are recommended
to use the Release build with normal optimizations. In this way, the VTune Amplifier XE is able to
analyze the realistic performance of your application.

Create a Performance Baseline

1. From the Visual Studio menu, select Debug > Start Without Debugging.

The tachyon_analyze_locks application runs in multiple sections (depending on the number of CPUs in
your system).

NOTE Before you start the application, minimize the amount of other software running on your
computer to get more accurate results.

Tutorial: Analyzing Locks and Waits 2

51

2. Note the execution time displayed in the window caption. For the tachyon_analyze_locks executable in
the figure above, the execution time is 33.578 seconds. The total execution time is the baseline against
which you will compare subsequent runs of the application.

NOTE Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.

Create a Project

1. From the Start menu select Intel Parallel Studio XE 2011 > Intel VTune Amplifier XE 2011 to
launch the VTune Amplifier XE standalone GUI.

2. Create a new project via File > New > Project....

The Create a Project dialog box opens.
3. Specify the project name tachyon that will be used as the project directory name.

VTune Amplifier XE creates a project directory under the %USERPROFILE%\My Documents\My Amplifier
XE Projects directory and opens the Project Properties: Target dialog box.

4. In the Application to Launch pane of the Target tab, specify and configure your target as follows:

• For the Application field, browse to: <tachyon_dir>\analyze_locks.exe.
5. Click OK to apply the settings and exit the Project Properties dialog box.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

52

Recap
You set up your environment to enable generating symbol information for system libraries and your binary
files, built the target in the Release mode, created the performance baseline, and created the VTune
Amplifier XE project for your analysis target. Your application is ready for analysis.

Key Terms and Concepts

• Term: target, baseline
• Concept: Locks and Waits Analysis

Next Step
Run Locks and Waits Analysis

Run Locks and Waits Analysis

 Before running an analysis, choose a configuration level to define the Intel® VTune™ Amplifier XE
analysis scope and running time. In this tutorial, you run the Locks and Waits analysis to identify
synchronization objects that caused contention and fix the problem in the source.

To run an analysis:

1.
From the VTune Amplifier XE toolbar, analysis type from the drop-down menuclick the New Analysis
button.

The VTune Amplifier XE result tab opens with the Analysis Type window active.

2. From the analysis tree on the left, select Algorithm Analysis > Locks and Waits.

The right pane is updated with the default options for the Locks and Waits analysis.
3. Click the Start button on the right command bar.

The VTune Amplifier XE launches the tachyon_analyze_locks executable that renders balls.dat as an
input file, calculates the execution time, and exits. The VTune Amplifier XE finalizes the collected data and
opens the results in the Locks and Waits viewpoint.

NOTE To make sure the performance of the application is repeatable, go through the entire tuning
process on the same system with a minimal amount of other software executing.

Tutorial: Analyzing Locks and Waits 2

53

Recap
You ran the Locks and Waits data collection that analyzes how long the application had to wait on each
synchronization object, or on blocking APIs, such as sleep() and blocking I/O, and estimates processor
utilization during the wait.

NOTE This tutorial explains how to run an analysis from the VTune Amplifier XE graphical user
interface (GUI). You can also use the VTune Amplifier XE command-line interface (amplxe-cl
command) to run an analysis. For more details, check the Command-line Interface Support section of
the VTune Amplifier XE Help.

Key Terms and Concepts

• Term: viewpoint
• Concept: Locks and Waits Analysis, Finalization

Next Step
Interpret Result Data

Interpret Result Data

 When the sample application exits, the Intel® VTune™ Amplifier XE finalizes the results and opens the
Locks and Waits viewpoint that consists of the Summary window, Bottom-up pane, Top-down Tree pane, Call
Stack pane, and Timeline pane. To interpret the data on the sample code performance, do the following:

• Analyze the basic performance metrics provided by the Locks and Waits analysis.
• Identify locks.

NOTE The screenshots and execution time data provided in this tutorial are created on a system with
four CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Analyze the Basic Locks and Waits Metrics
Start with exploring the data provided in the Summary window for the whole application performance. To

interpret the data, hover over the question mark icons to read the pop-up help and better understand
what each performance metric means.

The Result Summary section provides data on the overall application performance per the following
metrics:

1) Elapsed Time is the total time for each core when it was either waiting or not utilized by the application;
2)Total Thread Count is the number of threads in the application; 3)Wait Time is the amount of time the
application threads waited for some event to occur, such as synchronization waits and I/O waits; 4) Wait
Count is the overall number of times the system wait API was called for the analyzed application; 5) CPU
Time is the sum of CPU time for all threads; 6) Spin Time is the time a thread is active in a synchronization
construct.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

54

For the tachyon_analyze_locks application, the Wait time is high. To identify the cause, you need to
understand how this Wait time was distributed per synchronization objects.

The Top Waiting Objects section provides the list of five synchronization objects with the highest Wait Time
and Wait Count, sorted by the Wait Time metric.

For the tachyon_analyze_locks application, focus on the first three objects and explore the Bottom-up
pane data for more details.

The Thread Concurrency Histogram represents the Elapsed time and concurrency level for the specified
number of running threads. Ideally, the highest bar of your chart should be within the Ok or Ideal utilization
range.

Note the Target value. By default, this number is equal to the number of physical cores. Consider this
number as your optimization goal.

The Average metric is calculated as CPU time / Elapsed time. Use this number as a baseline for your
performance measurements. The closer this number to the number of cores, the better.

For the sample code, the chart shows that tachyon_analyze_locks is a multithreaded application running
four threads on a machine with four cores. But it is not using available cores effectively. The Average CPU
Usage on the chart is about 0.7 while your target should be making it as closer to 4 as possible (for the
system with four cores).

Hover over the second bar to understand how long the application ran serially. The tooltip shows that the
application ran one thread for almost 15 seconds, which is classified as Poor concurrency.

The CPU Usage Histogram represents the Elapsed time and usage level for the logical CPUs. Ideally, the
highest bar of your chart should be within the Ok or Ideal utilization range.

Tutorial: Analyzing Locks and Waits 2

55

The tachyon_analyze_locks application ran mostly on one logical CPU. If you hover over the second bar,
you see that it spent 16.603 seconds using one core only, which is classified by the VTune Amplifier XE as a
Poor utilization. To understand what prevented the application from using all available logical CPUs
effectively, explore the Bottom-up pane.

Identify Locks
Click the Bottom-up tab to open the Bottom-up pane.

Synchronization objects that control threads in the application. The hash (unique number)
appended to some names of the objects identify the stack creating this synchronization object.

For Intel® Threading Building Blocks (Intel® TBB), VTune Amplifier XE is able to recognize all
types of Intel TBB objects. To display an overhead introduced by Intel TBB library internals, the
VTune Amplifier XE creates a pseudo synchronization object TBB scheduler that includes all
waits from the Intel TBB runtime libraries.

The utilization of the processor time when a given thread waited for some event to occur. By
default, the synchronization objects are sorted by Poor processor utilization type. Bars showing
OK or Ideal utilization (orange and green) are utilizing the processors well. You should focus your
optimization efforts on functions with the longest poor CPU utilization (red bars if the bar

format is selected). Next, search for the longest over-utilized time (blue bars).

This is the Data of Interest column for the Locks and Waits analysis results that is used for
different types of calculations, for example: call stack contribution, percentage value on the filter
toolbar.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

56

Number of times the corresponding system wait API was called. For a lock, it is the number of
times the lock was contended and caused a wait. Usually you are recommended to focus your
tuning efforts on the waits with both high Wait Time and Wait Count values, especially if they
have poor utilization.

Wait time, during which the CPU is busy. This often occurs when a synchronization API causes
the CPU to poll while the software thread is waiting. Some Spin time may be preferable to the
alternative of the increased thread context switches. However, too much Spin time can reflect
lost opportunity for productive work.

For the analyzed sample code, you see that the top three synchronization objects caused the longest Wait
time. The red bars in the Wait Time column indicate that most of the time for these objects processor cores
were underutilized.

From the code knowledge, you may understand that the Manual and Auto Reset Event objects are most likely
related to the join where the main program is waiting for the worker threads to finish. This should not be a
problem. Consider the third item in the Bottom-up pane that is more interesting. It is a Critical Section that
shows much serial time and is causing a wait. Click the plus sign at the object name to expand the node
and see the draw_task wait function that contains this critical section and call stack. Double-click the Critical
Section to see the source code for the wait function.
Recap
You identified a synchronization object with the high Wait Time and Wait Count values and poor CPU
utilization that could be a lock affecting application parallelism. Your next step is to analyze the code of this
function.
Key Terms and Concepts
• Term: Elapsed time, Wait time
• Concept: Locks and Waits Analysis, CPU Usage, Data of Interest
Next Step
Analyze Code

Analyze Code

 You identified the critical section that caused significant Wait time and poor processor utilization.
Double-click this critical section in the Bottom-up pane to view the source. The Intel® VTune™ Amplifier XE
opens source and disassembly code. Focus on the Source pane and analyze the source code:
• Understand basic options provided in the Source window.
• Identify the hottest code lines.
Understand Basic Source View Options

Tutorial: Analyzing Locks and Waits 2

57

The table below explains some of the features available in the Source panefor the Locks and Waits viewpoint.

Source code of the application displayed if the function symbol information is available. When you
go to the source by double-clicking the synchronization object in the Bottom-up pane, the VTune
Amplifier XE opens the wait function containing this object and highlights the code line that took
the most Wait time. The source code in the Source pane is not editable.

If the function symbol information is not available, the Assembly pane opens displaying assembler
instructions for the selected wait function. To view the source code in the Source pane, make sure
to build the target properly.

Processor time and utilization bar attributed to a particular code line. The colored bar represents
the distribution of the Wait time according to the utilization levels (Idle, Poor, Ok, Ideal, and Over)
defined by the VTune Amplifier XE. The longer the bar, the higher the value. Ok utilization level is
not available for systems with a small number of cores.

This is the Data of Interest column for the Locks and Waits analysis.

Number of times the corresponding system wait API was called while this code line was executing.
For a lock, it is the number of times the lock was contended and caused a wait.

Source window toolbar. Use hotspot navigation buttons to switch between most performance-
critical code lines. Hotspot navigation is based on the metric column selected as a Data of Interest.
For the Locks and Waits analysis, this is Wait Time. Use the source file editor button to open and
edit your code in your default editor.

Identify the Hottest Code Lines
The VTune Amplifier XE highlights line 170 entering the critical section rgb_critical_section in the
draw_task function. The draw_task function was waiting for almost 27 seconds while this code line was
executing and most of the time the processor was underutilized. During this time, the critical section was
contended 438 times.

The rgb_critical section is the place where the application is serializing. Each thread has to wait for the
critical section to be available before it can proceed. Only one thread can be in the critical section at a time.

You need to optimize the code to make it more concurrent. Click the Source Editor button on the
Source window toolbar to open the code editor and optimize the code.

Recap
You identified the code section that caused a significant wait and during which the processor was poorly
utilized.

Key Terms and Concepts

• Term: Wait time
• Concept: CPU Usage, Locks and Waits Analysis, Data of Interest

Next Step
Remove Lock

Remove Lock

 In the Source window, you located the critical section that caused a significant wait while the processor
cores were underutilized and generated multiple wait count. Focus on this line and do the following:

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

58

1. Open the code editor.
2. Modify the code to remove the lock.

Open the Code Editor

Click the Source Editor button to open the analyze_locks.cpp file in your default editor at the
hotspot code line:

Remove the Lock
The rgb_critical_section was introduced to protect calculation from multithreaded access. The brief
analysis shows that the code is thread safe and the critical section is not really needed.

To resolve this issue:

NOTE The steps below are provided for Microsoft Visual Studio* 2005. Steps for other versions of
Visual Studio IDE or for the standalone version of the VTune Amplifier XE may slightly differ.

1. Comment out code lines 170 and 178 to disable the critical section.
2. From Solution Explorer, select the analyze_locks project.
3. From Visual Studio menu, select Build > Rebuild analyze_locks.

The project is rebuilt.
4. From Visual Studio menu, select Debug > Start Without Debugging to run the application.

Visual Studio runs the tachyon_analyze_locks.exe. Note that execution time reduced from 33.578
seconds to 20.328 seconds.

Tutorial: Analyzing Locks and Waits 2

59

Recap
You optimized the application execution time by removing the unnecessary critical section that caused a lot
of Wait time.

Key Terms and Concepts

• Term: hotspot
• Concept: Locks and Waits Analysis

Next Step
Compare with Previous Result

Compare with Previous Result

 You made sure that removing the critical section gave you 13 seconds of optimization in the application
execution time. To understand the impact of your changes and how the CPU utilization has changed, re-run
the Locks and Waits analysis on the optimized code and compare results:

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

60

• Compare results before and after optimization.
• Identify the performance gain.

Compare Results Before and After Optimization

1. Run the Locks and Waits analysis on the modified code.
2.

Click the Compare Results button on the Intel® VTune™ Amplifier XE toolbar.

The Compare Results window opens.
3. Specify the Locks and Waits analysis results you want to compare:

The Summary window opens providing the statistics for the difference between collected results.

Click the Bottom-up tab to see the list of synchronization objects used in the code, Wait time utilization
across the two results, and the differences side by side:

Difference in Wait time per utilization level between the two results in the following format:
<Difference Wait Time> = <Result 1 Wait Time> – <Result 2 Wait Time>. By default, the
Difference column is expanded to display comparison data per utilization level. You may collapse
the column to see the total difference data per Wait time.

Wait time and CPU utilization for the initial version of the code.

Wait time and CPU utilization for the optimized version of the code.

Difference in Wait count between the two results in the following format: <Difference Wait Count>
= <Results 1 Wait Count> - <Result 2 Wait Count>.

Tutorial: Analyzing Locks and Waits 2

61

Wait count for the initial version of the code.

Wait count for the optimized version of the code.

Identify the Performance Gain
The Elapsed time data in the Summary window shows the optimization of 4 seconds for the whole application
execution and Wait time decreased by 37.5 seconds.

According to the Thread Concurrency histogram, before optimization (blue bar) the application ran serially
for 9 seconds poorly utilizing available processor cores but after optimization (orange bar) it ran serially only
for 2 seconds. After optimization the application ran 5 threads simultaneously overutilizing the cores for
almost 5 seconds. Further, you may consider this direction as an additional area for improvement.

In the Bottom-up pane, locate the Critical Section you identified as a bottleneck in your code. Since you
removed it during optimization, the optimized result r001lw does not show any performance data for this
synchronization object. If you collapse the Wait Time:Difference column by clicking the button, you see
that with the optimized result you got almost 29 seconds of optimization in Wait time.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

62

Recap
You ran the Locks and Waits analysis on the optimized code and compared the results before and after
optimization using the Compare mode of the VTune Amplifier XE. The comparison shows that, with the
optimized version of the tachyon_analyze_locks application (r001lw result), you managed to remove the
lock preventing application parallelism and significantly reduce the application execution time. Compare
analysis results regularly to look for regressions and to track how incremental changes to the code affect its
performance. You may also want to use the VTune Amplifier XE command-line interface and run the amplxe-
cl command to test your code for regressions. For more details, see the Command-line Interface Support
section in the VTune Amplifier XE online help.

Key Terms and Concepts

• Term: hotspot, Wait time
• Concept: Locks and Waits Analysis, CPU Usage

Next Step
Read Summary

Summary

 You have completed the Analyzing Locks and Waits tutorial. Here are some important things to
remember when using the Intel® VTune™ Amplifier XE to analyze your code for locks and waits:

Step 1. Choose and Build Your Target

• Configure the Microsoft* symbol server and your project properties to get the most accurate results for
system and user binaries and to analyze the performance of your application at the code line level.

• Create a performance baseline to compare the application versions before and after optimization. Make
sure to use the same workload for each application run.

• Use the Project Properties: Target tab to choose and configure your analysis target. For Visual Studio*
projects, the analysis target settings are inherited automatically.

Step 2. Run Analysis

• Use the Analysis Type configuration window to choose, configure, and run the analysis. For example,
you may limit the data collection to a predefined amount of data or enable the VTune Amplifier XE to
collect more accurate CPU time data. You can also run the analysis from command line using the amplxe-
cl command.

Step 3. Interpret Results and Resolve the Issue

• Start analyzing the performance of your application with the Summary pane to explore the performance
metrics for the whole application. Then, move to the Bottom-up window to analyze the synchronization
objects. Focus on the synchronization objects that under- or over-utilized the available logical CPUs and
have the highest Wait time and Wait Count values. By default, the objects with the highest Wait time
values show up at the top of the window.

• Expand the most time-critical synchronization object in the Bottom-up pane and double-click the wait
function it belongs to. This opens the source code for this wait function at the code line with the highest
Wait time value.

Tutorial: Analyzing Locks and Waits 2

63

Step 4. Compare Results Before and After Optimization

• Perform regular regression testing by comparing analysis results before and after optimization. From GUI,

click the Compare Results button on the VTune Amplifier XE toolbar. From command line, use the
amplxe-cl command.

• Expand each data column by clicking the button to identify the performance gain per CPU utilization
level.

 2 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

64

Tutorial: Identifying Hardware
Issues 3

Learning Objectives

 This tutorial shows how to use the General Exploration analysis of the Intel® VTune™ Amplifier XE to
identify the hardware-related issues in the sample application.

Estimated completion time: 15 minutes.

Sample application: matrix.

After you complete this tutorial, you should be able to:

• Choose an analysis target.
• Run the General Exploration analysis for Intel® microarchitecture code name Nehalem.
• Understand the event-based performance metrics.
• Identify the types of the most critical hardware issues for the application as a whole.
• Identify the modules/functions that caused the most critical hardware issues.
• Analyze the source code to locate the most critical code lines.
• Identify the next steps of the performance analysis to get more detailed results.

Start Here
Workflow Steps to Identify Hardware Issues

Workflow Steps to Identify Hardware Issues

 You can use an advanced event-based sampling analysis of the Intel® VTune™ Amplifier XE to identify
the most significant hardware issues that affect the performance of your application. This tutorial guides you
through these workflow steps running the General Exploration analysis type on a sample matrix application.

65

1. Do one of the following:

• Visual Studio* IDE: Choose a project, verify settings, and build application.
• Standalone GUI: Build an application to analyze for hardware issues and create a new VTune Amplifier

XE project.
2. Choose and run the General Exploration analysis.
3. Interpret the result data.
4. View and analyze code of the performance-critical functions.
5. Modify the code to resolve the detected performance issues and rebuild the code.

Visual Studio* IDE: Choose Project and Build Application

 Before you start analyzing hardware issues affecting the performance of your application, do the
following:

1. Choose a project with the analysis target in the Visual Studio IDE.
2. Configure the Microsoft Visual Studio* environment to download the debug information for system

libraries so that the VTune Amplifier XE can properly identify system functions and classify and attribute
functions.

3. Configure Visual Studio project properties to generate the debug information for your application so that
the VTune Amplifier XE can open the source code.

4. Build the target in the release mode with full optimizations, which is recommended for performance
analysis.

For this tutorial, your target is the matrix application that calculates matrix transformations. To learn how to
install and set up the sample code, see Prerequisites.

• The steps below are provided for Microsoft Visual Studio* 2005. Steps for other versions of Visual
Studio IDE or for the standalone version of the Intel® VTune™ Amplifier XE 2011 may slightly differ.

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

66

• Steps provided by this tutorial are generic and applicable to any application. You may choose to
follow the proposed workflow using your own application.

Choose a Project

1. From the Visual Studio menu, select File > Open > Project/Solution....

The Open Project dialog box opens.
2. In the Open Project dialog box, browse to the location where you extracted the

matrix_vtune_amp_xe.zip file and select the matrix.sln file.

The solution is added to Visual Studio and shows up in the Solution Explorer. VTune Amplifier XE
automatically inherits Visual Studio settings and uses the currently opened project as a target project for
performance analysis.

When you choose a project in Visual Studio IDE, the VTune Amplifier XE automatically creates the
config.amplxeproj project file and sets the matrix application as an analysis target in the project
properties.

Enable Downloading the Debug Information for System Libraries

1. Go to Tools > Options....

The Options dialog box opens.
2. From the left pane, select Debugging > Symbols.
3.

In the Symbol file (.pdb) locations field, click the button and specify the following address:
http://msdl.microsoft.com/download/symbols.

4. Make sure the added address is checked.
5. In the Cache symbols from symbol servers to this directory field, specify a directory where the

downloaded symbol files will be stored.
6. For Microsoft Visual Studio* 2005, check the Load symbols using the updated settings when this

dialog is closed box.

Tutorial: Identifying Hardware Issues 3

67

7. Click Ok.

Enable Generating Debug Information for Your Binary Files

1. Select the matrix project and go to Project > Properties.
2. From the matrix Property Pages dialog box, select Configuration Properties > General and make

sure the selected Configuration (top of the dialog) is Active(Release).
3. From the matrix Property Pages dialog box, select C/C++ > General pane and specify the Debug

Information Format as Program Database (/Zi).

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

68

4. From the matrix Property Pages dialog box, select Linker > Debugging and set the Generate Debug
Info option to Yes (/DEBUG).

Tutorial: Identifying Hardware Issues 3

69

Choose a Build Mode and Build a Target

1. Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.

2. From the Visual Studio menu, select Build > Build matrix.

The matrix.exe application is built.

Recap
You selected the matrix project as the target for the hardware event-based sampling analysis, set up your
environment to enable generating symbol information for system libraries and your binary files, and built the
target in the Release mode. Your application is ready for analysis.

Next Step
Run General Exploration Analysis

Standalone GUI: Build Application and Create New Project

 Before you start analyzing hardware issues affecting the performance of your application, do the
following:

1. Build application.

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

70

If you build the code in Visual Studio*, make sure to:

• Configure the Microsoft Visual Studio* environment to download the debug information for system
libraries so that the VTune Amplifier XE can properly identify system functions and classify and
attribute functions.

• Configure Visual Studio project properties to generate the debug information for your application so
that the VTune Amplifier XE can open the source code.

• Build the target in the release mode with full optimizations, which is recommended for performance
analysis.

2. Create a VTune Amplifier XE project.

NOTE The steps below are provided for Microsoft Visual Studio* 2005. Steps for other versions of
Visual Studio IDE or for the standalone version of the Intel® VTune™ Amplifier XE may differ slightly.

Enable Downloading the Debug Information for System Libraries

1. Go to Tools > Options....

The Options dialog box opens.
2. From the left pane, select Debugging > Symbols.
3.

In the Symbol file (.pdb) locations field, click the button and specify the following address:
http://msdl.microsoft.com/download/symbols.

4. Make sure the added address is checked.
5. In the Cache symbols from symbol servers to this directory field, specify a directory where the

downloaded symbol files will be stored.
6. For Microsoft Visual Studio* 2005, check the Load symbols using the updated settings when this

dialog is closed box.

7. Click Ok.

Enable Generating Debug Information for Your Binary Files

1. Select the matrix project and go to Project > Properties.

Tutorial: Identifying Hardware Issues 3

71

2. From the matrix Property Pages dialog box, select Configuration Properties > General and make
sure the selected Configuration (top of the dialog) is Active(Release).

3. From the matrix Property Pages dialog box, select C/C++ > General pane and specify the Debug
Information Format as Program Database (/Zi).

4. From the matrix Property Pages dialog box, select Linker > Debugging and set the Generate Debug
Info option to Yes (/DEBUG).

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

72

Choose a Build Mode and Build a Target

1. Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.

2. From the Visual Studio menu, select Build > Build matrix.

The matrix.exe application is built.

Create a Project

1. From the Start menu select Intel Parallel Studio XE 2011 > Intel VTune Amplifier XE 2011 to
launch the VTune Amplifier XE GUI client.

2. Create a new project via File > New > Project....

The Create a Project dialog box opens.
3. Specify the project name matrix that will be used as the project directory name and click the Create

Project button.

By default, the VTune Amplifier XE creates a project directory under the %USERPROFILE%\My Documents
\My Amplifier XE Projects directory and opens the Project Properties: Target dialog box.

4. In the Target: Application to Launch pane, browse to the matrix.exe application and click OK.

Recap
You set up your environment to enable generating symbol information for system libraries and your binary
files, built the target in the Release mode, and created the VTune Amplifier XE project for your analysis
target. Your application is ready for analysis.

Tutorial: Identifying Hardware Issues 3

73

Key Terms and Concepts

• Term: target
• Concept: Event-based Sampling Analysis

Next Step
Run General Exploration Analysis

Run General Exploration Analysis

 After building the target, you can run it with the Intel® VTune™ Amplifier XE to analyze its
performance. In this tutorial, you run the General Exploration analysis on the Intel® Core™ i7 processor
based on the Intel® microarchitecture code name Nehalem. The General Exploration analysis type helps
identify the widest scope of hardware issues that affect the application performance. This analysis type is
based on the hardware event-based sampling collection.

NOTE The steps below are provided for Microsoft Visual Studio* 2005. Steps for other versions of
Visual Studio IDE or for the standalone version of the VTune Amplifier XE may slightly differ.

To run the analysis:

1.
From the VTune Amplifier XE toolbar, click the New Analysis button.

The New Amplifier XE Result tab opens with the Analysis Type configuration window active.
2. From the analysis tree on the left, select the Advanced Intel(R) Microarchitecture Code Name

Nehalem Analysis > General Exploration analysis type.
3. Click the Start button on the right to run the analysis.

The VTune Amplifier XE launches the matrix application that calculates matrix transformations and exits.
The VTune Amplifier XE finalizes the collected data and opens the results in the Hardware Issues viewpoint.

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

74

NOTE To make sure the performance of the application is repeatable, go through the entire tuning
process on the same system with a minimal amount of other software executing.

Recap
You ran the General Exploration analysis that monitors how your application performs against a set of event-
based hardware metrics. To see the list of processor events used for this analysis type, see the Details
section of the General Exploration configuration pane.

Key Terms and Concepts

• Term: viewpoint
• Concept: Event-based Sampling Analysis, Finalization

Next Step
Interpret Results

Interpret Results

 When the application exits, the Intel® VTune™ Amplifier XE finalizes the results and opens the
Hardware Issues viewpoint that consists of the Summary window, Bottom-up window, and Timeline pane. To
interpret the collected data and understand where you should focus your tuning efforts for the specific
hardware, do the following:

• Understand the event-based metrics
• Identify the hardware issues that affect the performance of your application

NOTE The screenshots and execution time data provided in this tutorial are created on a system with
four CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Understand the Event-based Metrics
Click the Summary tab to explore the data provided in the Summary window for the whole application
performance.

Tutorial: Identifying Hardware Issues 3

75

Elapsed time is the wall time from the beginning to the end of the collection. Treat this metric as
your basic performance baseline against which you will compare subsequent runs of the
application. The goal of your optimization is to reduce the value of this metric.

Event-based performance metrics. Each metric is an event ratio provided by Intel architects.

Mouse over the yellow icon to see the metric description and formula used for the metric
calculation.

Values calculated for each metric based on the event count. VTune Amplifier XE highlights those
values that exceed the threshold set for the corresponding metric. Such a value highlighted in
pink signifies an application-level hardware issue.

The text below a metric with the detected hardware issue describes the issue, potential cause and
recommendations on the next steps, and displays a threshold formula used for calculation. Mouse
over the truncated text to read a full description.

Quick look at the summary results discovers that the matrix application has the following issues:

• CPI (Clockticks per Instructions Retired) Rate
• Retire Stalls
• LLC Miss
• LLC Load Misses Serviced by Remote DRAM
• Execution Stalls
• Data Sharing

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

76

Identify the Hardware Issues
Click the Bottom-up tab to open the Bottom-up window and see how each program unit performs against
the event-based metrics. Each row represents a program unit and percentage of the CPU cycles used by this
unit. Program units that take more than 5% of the CPU time are considered hotspots. This means that by
resolving a hardware issue that, for example, took about 20% of the CPU cycles, you can obtain 20%
optimization for the hotspot.

By default, the VTune Amplifier XE sorts data in the descending order by Clockticks and provides the
hotspots at the top of the list.

You see that the multiply1 function is the most obvious hotspot in the matrix application. It has the
highest event count (Clockticks and Instructions Retired events) and most of the hardware issues were also
detected during execution of this function.

NOTE Mouse over a column header with an event-based metric name to see the metric description.
Mouse over a highlighted cell to read the description of the hardware issue detected for the program
unit.

For the multiply1 function, the VTune Amplifier XE highlights the same issues (except for the Data Sharing
issue) that were detected as the issues affecting the performance of the whole application:

• CPI Rate is high (>1). Potential causes are memory stalls, instruction starvation, branch misprediction,
or long-latency instruction. To define the cause for your code, explore other metrics in the Bottom-up
window.

• The Retire Stalls metric shows that during the execution of the multiply1 function, about 90% (0.902)
of CPU cycles were waiting for data to arrive. This may result from branch misprediction, instruction
starvation, long latency operations, and other issues. Once you have located the stalled instructions in
your code, analyze metrics such as LLC Miss, Execution Stalls, Remote Accesses, Data Sharing, and
Contested Accesses. You can also look for long-latency instructions like divisions and string operations to
understand the cause.

Tutorial: Identifying Hardware Issues 3

77

• LLC misses metric shows that about 60% (0.592) of CPU cycles were spent waiting for LLC load misses
to be serviced. Possible optimizations are to reduce data working set size, improve data access locality,
blocking and consuming data in chunks that fit in the LLC, or better exploit hardware prefetchers.
Consider using software prefetchers but beware that they can increase latency by interfering with normal
loads and can increase pressure on the memory system.

• LLC Load Misses Serviced by Remote DRAM metric shows that 34% (0.340) of cycles were spent
servicing memory requests from remote DRAM. Wherever possible, try to consistently use data on the
same core or at least the same package, as it was allocated on.

• Execution Stalls metric shows that 54% (0.543) of cycles were spent with no micro-operations
executed. Look for long-latency operations at code regions with high execution stalls and try to use
alternative methods or lower latency operations. For example, consider replacing div operations with
right-shifts or try to reduce the latency of memory accesses.

Recap
You analyzed the data provided in the Hardware Issues viewpoint, explored the event-based metrics, and
identified the areas where your sample application had hardware issues. Also, you were able to identify the
exact function with poor performance per metrics and that could be a good candidate for further analysis.

Key Terms and Concepts

• Term: viewpoint, baseline, Elapsed time
• Concept: Event-based Sampling Analysis, Event-based Metrics

Next Step
Analyze Code

Analyze Code

 You identified a hotspot function with a number of hardware issues. Double-click the multiply1
function in the Bottom-up window to open the source code:

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

78

The table below explains some of the features available in the Source pane when viewing the event-based
sampling analysis data.

Source pane displaying the source code of the application, which is available if the function symbol
information is available. The code line that took the highest number of Clockticks samples is
highlighted. The source code in the Source pane is not editable.

Values per hardware event attributed to a particular code line. By default, the data is sorted by the
Clockticks event count. Focus on the events that constitute the metrics identified as performance-
critical in the Bottom-up window. To identify these events, mouse over the metric column header
in the Bottom-up window. Drag-and-drop the columns to organize the view for your convinience.
VTune Amplifier XE remembers yours settings and restores them each time you open the
viewpoint.

Hotspot navigation buttons to switch between code lines that took a long time to execute.

Source file editor button to open and edit your code in the default editor.

Assembly button to toggle in the Assembly pane that displays assembly instructions for the
selected function.

In the Source pane for the multiply1 function, you see that line 39 took the most of the Clockticks event
samples during execution. This code section multiplies matrices in the loop but ineffectively accesses the
memory. Focus on this section and try to reduce the memory issues.

Recap
You analyzed the code for the hotspot function identified in the Bottom-up window and located the hotspot
line that generated a high number of CPU Clockticks.

Key Terms and Concepts

• Concept: Event Skid

Next Step
Resolve Issue

Resolve Issue

 In the Source pane, you identified that in the multiply1 function the code line 39 resulted in the
highest values for the Clockticks event. To solve this issue, do the following:

• Change the multiplication algorithm and, if using the Intel® compiler, enable vectorization.
• Re-run the analysis to verify optimization.

Change Algorithm

NOTE The proposed solution is one of the multiple ways to optimize the memory access and is used
for demonstration purposes only.

1. Open the matrix.c file from the Source Files of the matrix project.

For this sample, the matrix.c file is used to initialize the functions used in the multiply.c file.
2. In line 90, replace the multiply1 function name with the multiply2 function.

This new function uses the loop interchange mechanism that optimizes the memory access in the code.

Tutorial: Identifying Hardware Issues 3

79

The proposed optimization assumes you may use the Intel® C++ Compiler to build the code. Intel
compiler helps vectorize the data, which means that it uses SIMD instructions that can work with several
data elements simultaneously. If only one source file is used, the Intel compiler enables vectorization
automatically. The current sample uses several source files, that is why the multiply2 function uses
#pragma ivdep to instruct the compiler to ignore assumed vector dependencies. This information lets the
compiler enable the Supplemental Streaming SIMD Extensions (SSSE).

3. Save files and rebuild the project using the compiler of your choice.

If you have the Intel® Composer XE installed, you may use it to build the project with the Intel® C++
Compiler XE. To do this, select Intel Composer XE > Use Intel C++... from the Visual Studio Project
menu and then Build > Rebuild matrix.

Verify Optimization

1.
From the VTune Amplifier XE toolbar, click the New Analysis button and select Quick Intel(R)
Microarchitecture Code Name Nehalem - General Exploration Analysis.

VTune Amplifier XE reruns the General Exploration analysis for the updated matrix target and creates a
new result, r001ge, that opens automatically.

2. In the r001ge result, click the Summary tab to see the Elapsed time value for the optimized code:

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

80

You see that the Elapsed time has reduced from 56.740 seconds to 9.122 seconds and the VTune
Amplifier XE now identifies only two types of issues for the application performance: high CPI Rateand
Retire Stalls.

Recap
You solved the memory access issue for the sample application by interchanging the loops and sped up the
execution time. You also considered using the Intel compiler to enable instruction vectorization.

Key Terms and Concepts

• Concept: Event-based Sampling Analysis

Next Step
Resolve Next Issue

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Tutorial: Identifying Hardware Issues 3

81

Resolve Next Issue

 You got a significant performance boost by optimizing the memory access for the multiply1 function.
According to the data provided in the Summary window for your updated result, r001ge, you still have high
CPI rate and Retire Stalls issues. You can try to optimize your code further following the steps below:

• Analyze results after optimization
• Use more advanced algorithms
• Verify optimization

Analyze Results after Optimization
To get more details on the issues that still affect the performance of the matrix application, switch to the
Bottom-up window:

You see that the multiply2 function (in fact, updated multiply1 function) is still a hotspot. Double-click
this function to view the source code and click both the Source and Assembly buttons on the toolbar to
enable the Source and Assembly panes.

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

82

In the Source pane, the VTune Amplifier XE highlights line 53 that took the highest number of Clockticks
samples. This is again the section where matrices are multiplied. The Assembly pane is automatically
synchronized with the Source pane. It highlights the basic blocks corresponding to the code line highlighted
in the Source pane. If you compiled the application with the Intel® Compiler, you can see that highlighted
block 156 includes vectorization instructions added after your previous optimization. All vectorization
instructions have the p (packed) postfix (for example, mulpd). You may use the /Qvec-report3 option of
the Intel compiler to generate the compiler optimization report and see which cycles were not vectorized and
why. For more details, see the Intel compiler documentation.

Use More Advanced Algorithms

1. Open the matrix.c file from the Source Files of the matrix project.
2. In line 90, replace the multiply2 function name with the multiply3 function.

This function enables uploading the matrix data by blocks.

Tutorial: Identifying Hardware Issues 3

83

3. Save the files and rebuild the project.

Verify Optimization

1.
From the VTune Amplifier XE toolbar, click the New Analysis button and select Quick Intel(R)
Microarchitecture Code Name Nehalem - General Exploration Analysis.

VTune Amplifier XE reruns the General Exploration analysis for the updated matrix target and creates a
new result, r002ge, that opens automatically.

2. In the r002ge result, click the Summary tab to see the Elapsed time value for the optimized code:

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

84

You see that the Elapsed time has reduced a little: from 9.122 seconds to 8.896 seconds but the
hardware issues identified in the previous run, CPI Rateand Retire Stalls, stayed practically the same. This
means that there is more room for improvement and you can try other, more effective, mechanisms of
matrix multiplication.

Recap
You tried optimizing the mechanism of matrix multiplication and obtained 0.2 seconds of optimization in the
application execution time.

Key Terms and Concepts

• Concept: Event-based Sampling Analysis, Event-based Metrics

Next Step
Read Summary

Summary

 You have completed the Identifying Hotspot Issues tutorial. Here are some important things to
remember when using the Intel® VTune™ Amplifier XE to analyze your code for hardware issues:

Step 1. Choose and Build Your Target

• Configure the Microsoft* symbol server and your project properties to get the most accurate results for
system and user binaries and to analyze the performance of your application at the code line level.

Tutorial: Identifying Hardware Issues 3

85

• Use the Project Properties: Target tab to choose and configure your analysis target. For Visual Studio*
projects, the analysis target settings are inherited automatically.

Step 2. Run Analysis

• Use the Analysis Type configuration window to choose, configure, and run the analysis. You may choose
between a predefined analysis type like the General Exploration type used in this tutorial, or create a new
custom analysis type and add events of your choice. For more details on the custom collection, see the
Creating a New Analysis Type topic in the product online help.

Step 3. Interpret Results and Resolve the Issue

• Start analyzing the performance of your application from the Summary window to explore the event-
based performance metrics for the whole application. Mouse over the yellow help icons to read the metric
descriptions. Use the Elapsed time value as your performance baseline.

• Move to the Bottom-up window and analyze the performance per function. Focus on the hotspots -
functions that took the highest Clockticks event count. By default, they are located at the top of the table.
Analyze the hardware issues detected for the hotspot functions. Hardware issues are highlighted in pink.
Mouse over a highlighted value to read the issues description and see the threshold formula.

• Double-click the hotspot function in the Bottom-up pane to open its source code at the code line that took
the highest Clockticks event count.

• Consider using Intel® Compiler, part of the Intel® Composer XE, to vectorize instructions. Explore the
compiler documentation for more details.

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

 3 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

86

More Resources 4
Getting Help
Intel® VTune™ Amplifier XE provides a number of Getting Started tutorials. These tutorials use a sample
application to demo you the basic product features and workflows. You can access these documents through

the Help menu or by clicking the VTune Amplifier XE icon .

From the Visual Studio user interface, select Help> Intel VTune Amplifier XE 2011 > Getting Started
Tutorials and explore available tutorials.

: For the standalone user interface, the tutorials are available via Help > Getting Started Tutorials menu.

Browsing Help
In the Visual Studio IDE, you can browse and search for topics in different ways:

• Use Help > Contents to open the Contents window and browse the Table of Contents.
• To view help for the VTune Amplifier XE directly, select Help > Intel VTune Amplifier XE 2011 Help.
• Use Help > Index to open the Index window and access an index to VTune Amplifier XE topics. Either

type in the keyword you are looking for, or scroll through the list of keywords.
• Use Help > Search to open the Search page and search the full text of topics in the help.

To view help in the standalone user interface, select Intel VTune Amplifier XE 2011 Help from the Help
menu.

Locating Intel Topics in the Document Explorer
To filter the documentation so that only the Intel documentation appears, select Help > Contents from the
Visual Studio user interface. In the Filtered by: drop-down list, select Intel.

To determine where the currently displayed topic appears in the table of contents (TOC), click the Sync
with Table of Contents button on the Visual Studio toolbar to highlight the topic in the Contents pane.

Navigating in the Product Usage Workflow

Where applicable, the VTune Amplifier XE help topics provide a Where am I in the workflow? button.
Click the button to view the workflow with a highlight on the stage that this topic discusses.

Activating Intel Search Filters in the Document Explorer
With Microsoft Visual Studio 2005 and 2008, you can include Intel documentation in all search results by
checking the Intel search filter box for the Language, Technology, and Content Type categories. You
must check the Intel search box for all three categories to include Intel documentation in your searches.
Unchecking all three Intel search boxes excludes Intel documentation from search results. The Intel search
filters work in combination with other search options for each category.

Using Context-Sensitive Help
Context-sensitive help enables easy access to help topics on active GUI elements. The following context-
sensitive help features are available on a product-specific basis:

87

• ? Help: In Visual Studio, click the ? button, in the upper-right corner of the dialog box or pane to get help
for the dialog box or pane.

• F1 Help: Press F1 to get help for an active dialog box, property page, pane, or window.
• Dynamic Help: In Visual Studio 2005/2008, select Help > Dynamic Help to open the Dynamic Help

window, which displays links to relevant help topics for the current window.

Product Website and Support

Product Website and Support
The following links provide information and support on Intel software products, including Intel® Parallel
Studio XE:

• http://software.intel.com/en-us/articles/tools/

Intel® Software Development Products Knowledge Base.
• http://www.intel.com/software/products/support/

Technical support information, to register your product, or to contact Intel.

For additional support information, see the Technical Support section of your Release Notes.

System Requirements
For detailed information on system requirements, see the Release Notes.

 4 Intel(R) VTune(TM) Amplifier XE 2011 Getting Started Tutorials for Windows* OS

88

Intel® VTune™ Amplifier XE
Tutorials Troubleshooting 5

Troubleshooting

Problem: Cannot open samples
The sample projects are Visual Studio* 2005 projects. You may have a problem opening the sample if you
have a later version of Visual Studio* software.

Solution: Use the conversion wizard to convert the solution/projects to the newer version.

Problem: Product is not recognized
If you installed a new version of Visual Studio* software, the previously installed Intel® VTune™ Amplifier XE
may not appear in the new installation.

Solution 1: If you have the VTune Amplifier XE installation execution file, run the installation program,
select Modify, and follow the instructions to reintegrate the VTune Amplifier XE with your new version of
Visual Studio* software.

Solution 2:

1. Go to Control Panel > Add or Remove Programs.
2. Select the VTune Amplifier XE and select Modify.
3. Follow the instructions to reintegrate the VTune Amplifier XE with your new version of Visual Studio*

software.

Problem: The Project Properties function is disabled
The Intel VTune Amplifier XE 2011 Project Properties option does not appear on the Project menu,

and the icon is disabled on the VTune Amplifier XE toolbar.

Solution: Make sure the item highlighted in the Solution Explorer is a valid project recognized by Visual
Studio* software or a VTune Amplifier XE result. (The My Amplifier XE Results folder is a virtual project.)

Problem: The Start button is disabled
The Start button on the command toolbar is disabled.

Solution: Make sure you specified an analysis target. If the target is not specified, click the Project
Properties button on the command toolbar and enter the target name in the Application to Launch pane.

For the General Exploration analysis, the Start button may be disabled if you mistakenly chose the incorrect
processor type. The selected analysis type should match your processor type.

89

	Contents
	Legal Information
	Introducing the Intel® VTune™ Amplifier XE
	Prerequisites
	Navigation Quick Start
	Key Terms and Concepts
	Tutorial: Finding Hotspots
	Learning Objectives
	Workflow Steps to Identify and Analyze Hotspots
	Visual Studio* IDE:
Choose Project and Build Application
	Standalone GUI:
Build Application and Create New Project
	Run Hotspots Analysis
	Interpret Result Data
	Analyze Code
	Tune Algorithms
	Compare with Previous Result
	Summary

	Tutorial: Analyzing Locks and Waits
	Learning Objectives
	Workflow Steps to Identify Locks and Waits
	Visual Studio* IDE: Choose Project and Build Application
	Standalone GUI: Build Application and Create New Project
	Run Locks and Waits Analysis
	Interpret Result Data
	Analyze Code
	Remove Lock
	Compare with Previous Result
	Summary

	Tutorial: Identifying Hardware Issues
	Learning Objectives
	Workflow Steps to Identify Hardware Issues
	Visual Studio* IDE: Choose Project and Build Application
	Standalone GUI: Build Application and Create New Project
	Run General Exploration Analysis
	Interpret Results
	Analyze Code
	Resolve Issue
	Resolve Next Issue
	Summary

	More Resources
	Getting Help
	Product Website and Support

	Intel® VTune™ Amplifier XE Tutorials Troubleshooting
	Troubleshooting

