
AN 903: Accelerating Timing Closure
in Intel® Quartus® Prime Pro Edition

Updated for Intel® Quartus® Prime Design Suite: 19.3

Subscribe
Send Feedback

AN-903 | 2020.03.23
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=fcv1571168848135
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an903.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/fcv1571168848135.html

Contents

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition.................... 3
1.1. Step 1: Analyze and Optimize Design RTL... 4

1.1.1. Correct Design Assistant Violations.. 4
1.1.2. Reduce Logic Levels... 7
1.1.3. Reduce High Fan-Out Nets.. 9

1.2. Step 2: Apply Compiler Optimization Techniques.. 13
1.2.1. Apply Compiler Optimization Modes and Strategies.......................................13
1.2.2. Reduce Congestion for High Utilization.. 16

1.3. Step 3: Preserve Satisfactory Results... 20
1.3.1. Lock Down Clocks, RAMs, and DSPs..20
1.3.2. Preserve Design Partition Results... 21

1.4. AN 903 Document Revision History.. 24

Contents

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. AN 903: Accelerating Timing Closure in Intel® Quartus®

Prime Pro Edition
The density and complexity of modern FPGA designs, that combine embedded
systems, IP, and high-speed interfaces, present increasing challenges for timing
closure. Late architectural changes and verification challenges can lead to time
consuming design iterations.

This document summarizes three steps to accelerate timing closure using a verified
and repeatable methodology in the Intel® Quartus® Prime Pro Edition software. This
methodology includes initial RTL analysis and optimization, as well as automated
techniques to minimize compilation time and reduce design complexity and iterations
required for timing closure.

Figure 1. Timing Closure Acceleration Steps

1. Analyze &
Optimize RTL

2. Apply Compiler
Optimization

3. Preserve
Results

Table 1. Timing Closure Acceleration Steps

Timing Closure Step Timing Closure Activity Detailed Info

Step 1: Analyze and Optimize RTL • Correct Design Assistant Violations on
page 4

• Reduce Logic Levels on page 7
• Reduce High Fan-Out Nets on page

9

• Intel Quartus Prime Pro
Edition User Guide: Design
Optimization

• Intel Quartus Prime Pro
Edition User Guide: Design
Recommendations

Step 2: Apply Compiler Optimization • Apply Compiler Optimization Modes
and Strategies on page 13

• Reduce Congestion for High Utilization
on page 16

• Intel Quartus Prime Pro
Edition User Guide: Design
Compilation

• Intel Quartus Prime Pro
Edition User Guide: Design
Optimization

Step 3: Preserve Satisfactory Results • Lock Down Clocks, RAMs, and DSPs on
page 20

• Preserve Design Partition Results on
page 21

• Intel Quartus Prime Pro
Edition User Guide: Block-
Based Design

• AN-899: Reducing Compile
Time with Fast Preservation

AN-903 | 2020.03.23

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1. Step 1: Analyze and Optimize Design RTL

Optimizing your design’s source code is typically the first and most effective technique
for improving the quality of your results. The Intel Quartus Prime Design Assistant
helps you to quickly correct basic design rule violations, and recommends RTL changes
that simplify design optimization and timing closure.

Timing Closure Problems

• Excessive logic levels influences Fitter processing order, duration, and quality of
results.

• High fan-out nets cause resource congestion and add additional pull on data
paths, needlessly increasing the path criticality, and complicating timing closure.

Timing Closure Solutions

• Correct Design Assistant Violations on page 4—to quickly identify and correct
basic design rule violations relevant to your design.

• Reduce Logic Levels on page 7—to ensure that all elements of the design can
receive the same Fitter optimizations and to reduce compile times.

• Reduce High Fan-Out Nets on page 9—to reduce resource congestion and
simplify timing closure.

Related Information

• "Design Rule Checking with Design Assistant," Intel Quartus Prime Pro Edition
User Guide: Design Recommendations

• "Optimize Source Code," Intel Quartus Prime Pro Edition User Guide: Design
Optimization

• "Duplicate Registers for Fan-Out Control," Intel Quartus Prime Pro Edition User
Guide: Design Optimization

1.1.1. Correct Design Assistant Violations

Performing initial design analysis to eliminate known timing closure issues significantly
increase productivity. After running an initial compilation with default settings, you can
review the Design Assistant reports for initial analysis. When enabled, Design
Assistant automatically reports any violations against a standard set of Intel FPGA-
recommended design guidelines.

You can run Design Assistant in Compilation Flow mode, allowing you to view the
violations relevant for the compilation stages you run. Alternatively, Design Assistant
is available in analysis mode in the Timing Analyzer and Chip Planner.

• Compilation Flow Mode—runs automatically during one or more stages of
compilation. In this mode, Design Assistant utilizes in-flow (transient) data during
compilation.

• Analysis Mode—run Design Assistant from Timing Analyzer and Chip Planner to
analyze design violations at a specific compilation stage, before moving forward in
the compilation flow. In analysis mode, Design Assistant uses static compilation
snapshot data.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

4

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959528162
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959528162
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471221699
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471221699
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471226130
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471226130
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Assistant designates each rule violation with one of the following severity
levels. You can specify which rules you want the Design Assistant to check in your
design, and customize the severity levels, thus eliminating rule checks that are not
important for your design.

Table 2. Design Assistant Rule Severity Levels

Categories Description Severity Level Color

Critical Address issue for hand-off. Red

High Potentially causes functional failure. May indicate missing or
incorrect design data.

Orange

Medium Potentially impacts quality of results for fMAX or resource
utilization.

Brown

Low Rule reflects best practices for RTL coding guidelines. Blue

Setting Up Design Assistant

You can fully customize the Design Assistant for your individual design characteristics
and reporting requirements. Click Assignments ➤ Settings ➤ Design Assistant
Rule Settings to specify options that control which rules and parameters apply to the
various stages of design compilation for design rule checking.

Figure 2. Design Assistant Rule Settings

Filter Rules by Compiler Stage Filter Rules by Rule PropertiesRun Design Assistant Automatically

Edit Rule ParametersEnable/Disable Rule Check Specify Rule Severity for Reporting

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running Design Assistant

When enabled, the Design Assistant runs automatically during compilation and reports
enabled design rule violations in the Compilation Report. Alternatively, you can run
Design Assistant in Analysis Mode on a specific compilation snapshot to focus analysis
on only that stage.

To enable automated Design Assistant checking during compilation:

• Turn on Enable Design Assistant execution during compilation in the Design
Assistant Rule Settings.

To run Design Assistant in analysis mode to validate a specific snapshot against any
design rules that apply to the snapshot:

• Click Report DRC in the Timing Analyzer or Chip Planner Tasks panel.

Viewing and Correcting Design Assistant Results

The Design Assistant reports enabled design rule violations in the various stages of
the Compilation Report.

Figure 3. Design Assistant Results in Synthesis, Plan, Place, and Finalize Reports

To view the results for each rule, click the rule in the Rules list. A description of the
rule and design recommendations for correction appear.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Design Assistant Rule Violation Recommendation

Design Assistant Recommendation

Modify your RTL to correct the design rule violations.

1.1.2. Reduce Logic Levels

Excessive logic levels can impact the Fitter's quality of results because the design
critical path influences Fitter processing order and duration.

The Fitter places and routes the design based on timing slack. The Fitter places longer
paths with the least slack first. The Fitter generally prioritizes higher logic-level paths
over lower-logic level paths. Typically, after the Fitter stage is complete, the critical
paths remaining are not the highest logic level paths. The Fitter gives preferred
placement, routing, and retiming to higher level logic. Reducing the logic level helps to
ensure that all elements of the design receive the same Fitter priority.

Run Reports ➤ Custom Reports ➤ Report Timing in the Timing Analyzer to
generate reports showing the levels of logic in the path. If the path fails timing and
the number of logic levels is high, consider adding pipelining in that part of the design
to improve performance.

Figure 5. Logic Depth in Path Report

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reporting Logic Level Depth

After the Compiler's Plan stage, you can run report_logic_depth in the Timing
Analyzer Tcl console to view the number of logic levels within a clock domain.
report_logic_depth shows the distribution of logic depth among the critical paths,
allowing you to identify areas where you can reduce logic levels in your RTL.

report_logic_depth -panel_name <name> -from [get_clocks <name>] \
 -to [get_clocks <name>]

Figure 6. report_logic_depth Output

To obtain data for optimizing RTL, run report_logic_depth after the Compiler's
Plan stage, before running remaining Fitter stages. Otherwise, the post-Fitter reports
also include results from physical optimization (retiming and resynthesis).

Reporting Neighbor Paths

After running the Fitter (Finalize) stage, you can run report_neighbor_paths to
help determine the root cause of the critical path (for example, high logic level,
retiming limitation, sub-optimal placement, I/O column crossing, hold-fix, or others):

report_neighbor_paths -to_clock <name> -npaths <number> -panel_name <name>

report_neighbor_paths reports the most timing-critical paths in the design,
including associated slack, additional path summary information, and path bounding
boxes.

Figure 8. report_neighbor_paths Output

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

report_neighbor_paths shows the most timing-critical Path Before and Path
After each critical Path. Retiming or logic balancing of the path can simplify timing
closure if there is negative slack on the Path, but positive slack on the Path Before
or Path After.

To enable retiming, make sure the following options are turned on:

• For Registers—enable Assignments ➤ Settings ➤ Compiler Settings ➤
Register Optimization ➤ Allow Register Retiming

• For RAM Endpoints—enable Assignments ➤ Settings ➤ Compiler Settings ➤
Fitter Settings (Advanced) ➤ Allow RAM Retiming

• For DSP Endpoints—enable Assignments ➤ Settings ➤ Compiler Settings ➤
Fitter Settings (Advanced) ➤ Allow DSP Retiming

If further logic balancing is required, you must manually modify your RTL to move
logic from the critical Path to the Path Before or Path After.

Note: If a register's output is connected to its input, one or both of the neighbor paths may
be identical to the current path. When looking for neighbor paths with the worst slack,
all operating conditions are considered, not just the operating conditions of the main
path itself.

Visualizing Logic Levels in Technology Map Viewer

The Technology Map Viewer also provides schematic, technology-mapped,
representations of the design netlist, and can help you see which areas in a design can
benefit from reducing the number of logic levels. You can also investigate the physical
layout of a path in detail in the Chip Planner.

To locate a timing path in one of the viewers, right-click a path in the timing report,
point to Locate Path, and select Locate in Technology Map Viewer.

1.1.3. Reduce High Fan-Out Nets

High fan-out nets can cause resource congestion, thereby complicating timing closure.
In general, the Compiler automatically manages high fan-out nets related to clocks.
The Compiler automatically promotes recognized high fan-out nets to the global clock
network. The Compiler makes a higher optimization effort during the Place and Route
stages, which results in beneficial register duplication.

In the following corner cases, you can additionally reduce congestion by making the
following manual changes to your design RTL:

Table 3. High Fan-Out Net Corner Cases

Design Characteristic Manual RTL Optimization

High fan-out nets that reach many
hierarchies or physically far
destinations

Specify the duplicate_hierarchy_depth assignment on the last register in a
pipeline to manually duplicate high fan-out networks across hierarchies. Specify
the duplicate_register assignment to duplicate registers during placement.

Designs with control signals to DSP
or M20K memory blocks from
combinational logic

Drive the control signal to the DSP or M20K memory from a register.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Duplication Across Hierarchies

You can specify the duplicate_hierarchy_depth assignment on the last register
in a pipeline to guide the creation of register duplication and fan-outs. The following
figures illustrate the impact of the following duplicate_hierarchy_depth
assignment:

set_instance_assignment -name duplicate_hierarchy_depth -to \
 <register_name> <level_number>

Where:

• register_name—the last register in a chain that fans out to multiple hierarchies.

• level_number—the number of registers in the chain to duplicate.

Figure 9. Before Register Duplication
Set the duplicate_hierarchy_depth assignment to implement register duplication across hierarchies, and
create a tree of registers following the last register in the chain. You specify the register name and the number
of duplicates represented by M in the following example. Red arrows show the potential locations of duplicate
registers.

set_instance_assignment –name DUPLICATE_HIERARCHY_DEPTH –to regZ M

inst_a inst_b

inst_c

inst_d
inst_e

regA regX regY regZ

M Duplicable Registers

*regZ = Last Register in Register Chain
*M = Number of Registers Preceding regZ

Figure 10. Register Duplication = 1
Specifying the following single level of register duplication (M=1) duplicates one register (regZ) down one level
of the design hierarchy:

set_instance_assignment –name DUPLICATE_HIERARCHY_DEPTH –to regZ 1

regZ
Duplicated
Register
M = 1

inst_a inst_b

inst_c

inst_d
inst_e

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Register Duplication = 3
Specifying three levels of register duplication (M=3) duplicates three registers (regZ, regY, regX) down
three, two, and one level of the hierarchy, respectively:

set_instance_assignment –name DUPLICATE_HIERARCHY_DEPTH –to regZ 3

regZ|regY|regX
Duplicated
Registers
M = 3

inst_a inst_b

inst_c

inst_d
inst_e

By duplicating and pushing the registers down into the hierarchies, the design retains
the same number of cycles to all the destinations, while greatly accelerating
performance on these paths.

Register Duplication During Placement

Figure 12 on page 11 shows a register with high fan-out to a widely spread area of
the chip. By duplicating this register 50 times, you can reduce the distance between
the register and the destinations that ultimately result in faster clock performance.
Assigning duplicate_register allows the Compiler to leverage physical proximity
to guide the placement of new registers feeding a subset of fan-outs.

Figure 12. Register Duplication During Placement

Note: To broadcast a signal across the chip, use a multistage pipeline. Apply the
duplicate_register assignment to each of the registers in the pipeline. This
technique creates a tree structure that broadcasts the signal across the chip.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Viewing Duplication Results

Following design synthesis, view duplication results in the Hierarchical Tree
Duplication Summary report in the Synthesis folder of the Compilation Report. The
report provides the following:

• Information on the registers that have the duplicate_hierarchy_depth
assignment.

• Reason for the chain length that you can use as a starting point for further
improvements with the assignment.

• Information about the individual registers in the chain that you can use to better
understand the structure of the implemented duplicates.

The Fitter report also includes a section on registers that have the
duplicate_register setting.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Step 2: Apply Compiler Optimization Techniques

Designs that utilize a very high percentage of FPGA device resources can cause
resource congestion, resulting in lower fMAX and more complex timing closure.

The Compiler's Optimization Mode settings allow you specify the focus of Compiler
efforts during synthesis. For example, you optimize synthesis for Area, or Routability
when addressing resource congestion. You can experiment with combinations of these
same Optimization Mode settings in the Intel Quartus Prime Design Space Explorer
II. These settings and other manual techniques can help you to reduce congestion in
highly utilized designs.

Timing Closure Problem

• Designs with very high device resource utilization complicate timing closure.

Timing Closure Solutions

• Apply Compiler Optimization Modes and Strategies on page 13—specify the
primary optimization mode goal for design synthesis.

• Experiment with Area and Routability Options on page 16—apply additional
collections of settings to reduce congestion and meet area and routability goals.

• Consider Fractal Synthesis for Arithmetic-Intensive Designs on page 16—For
high-throughput, arithmetic-intensive designs, fractal synthesis reduces device
resource usage through multiplier regularization, retiming, and continuous
arithmetic packing.

Related Information

• "Timing Closure and Optimization" Chapter, Intel Quartus Prime Pro Edition User
Guide: Design Optimization

• Intel Quartus Prime Pro Edition User Guide: Design Compilation

1.2.1. Apply Compiler Optimization Modes and Strategies

Use the following information to apply Compiler optimization modes and Design Space
Explorer II (DSE II) compilation strategies.

Experiment with Compiler Optimization Mode Settings

Follow these steps to experiment with Compiler optimization mode settings:

1. Create or open an Intel Quartus Prime project.

2. To specify the Compiler's high-level optimization strategy, click Assignments ➤
Settings ➤ Compiler Settings. Experiment with any of the following mode
settings, as Table 4 on page 14 describes.

3. To compile the design with these settings, click Start Compilation on the
Compilation Dashboard.

4. View the compilation results in the Compilation Report.

5. Click Tools ➤ Timing Analyzer to view the results of optimization settings on
performance.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

13

https://www.intel.com/content/www/us/en/programmable/documentation/lyx1569936504360.html#vnn1569936584568
https://www.intel.com/content/www/us/en/programmable/documentation/lyx1569936504360.html#vnn1569936584568
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#xdj1491668852667
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Compiler Optimization Mode Settings

Table 4. Optimization Modes (Compiler Settings Page)

Optimization Mode Description

Balanced (normal flow) The Compiler optimizes synthesis for balanced implementation that respects timing
constraints.

High Performance Effort The Compiler increases the timing optimization effort during placement and routing,
and enables timing-related Physical Synthesis optimizations (per register optimization
settings). Each additional optimization can increase compilation time.

High Performance with
Maximum Placement Effort

Enables the same Compiler optimizations as High Performance Effort, with
additional placement optimization effort.

Superior Performance Enables the same Compiler optimizations as High Performance Effort, and adds
more optimizations during Analysis & Synthesis to maximize design performance with
a potential increase to logic area. If design utilization is already very high, this option
may lead to difficulty in fitting, which can also negatively affect overall optimization
quality.

Superior Performance with
Maximum Placement Effort

Enables the same Compiler optimizations as Superior Performance, with additional
placement optimization effort.

Aggressive Area The Compiler makes aggressive effort to reduce the device area required to implement
the design at the potential expense of design performance.

High Placement Routability
Effort

The Compiler makes high effort to route the design at the potential expense of design
area, performance, and compilation time. The Compiler spends additional time
reducing routing utilization, which can improve routability and also saves dynamic
power.

High Packing Routability
Effort

The Compiler makes high effort to route the design at the potential expense of design
area, performance, and compilation time. The Compiler spends additional time packing
registers, which can improve routability and also saves dynamic power.

Optimize Netlist for
Routability

The Compiler implements netlist modifications to increase routability at the possible
expense of performance.

continued...

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimization Mode Description

High Power Effort The Compiler makes high effort to optimize synthesis for low power. High Power
Effort increases synthesis run time.

Aggressive Power Makes aggressive effort to optimize synthesis for low power. The Compiler further
reduces the routing usage of signals with the highest specified or estimated toggle
rates, saving additional dynamic power but potentially affecting performance.

Aggressive Compile Time Reduces the compile time required to implement the design with reduced effort and
fewer performance optimizations. This option also disables some detailed reporting
functions.
Note: Turning on Aggressive Compile Time enables Intel Quartus Prime Settings

File (.qsf) settings which cannot be overridden by other .qsf settings.

Design Space Explorer II Compilation Strategies

DSE II allows you to find optimal project settings for resource, performance, or power
optimization goals. DSE II allows you to iteratively compile a design using different
preset combinations of settings and constraints to achieve a specific goal. DSE II then
reports the best settings combination to meet your goals. DSE II can also take
advantage of parallelization abilities to compile seeds on multiple computers. DSE II
Compilation Strategy settings echo the Optimization Mode settings in Table 4 on
page 14

Figure 14. Design Space Explorer II

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Follow these steps to specify Compilation Strategy for DSE II:

1. To launch DSE II (and close the Intel Quartus Prime software), click Tools ➤
Launch Design Space Explorer II. DSE II opens after the Intel Quartus Prime
software closes.

2. On the DSE II toolbar, click the Exploration icon.

3. Expand Exploration Points.

4. Select Design exploration. Enable any of the Compilation strategies to run
design explorations targeting those strategies.

1.2.2. Reduce Congestion for High Utilization

Designs that utilize over 80% of device resources typically present the most difficulty
in timing closure.

You can apply the following manual and automated techniques to further reduce
congestion and simplify timing closure.

• Experiment with Area and Routability Options on page 16

• Consider Fractal Synthesis for Arithmetic-Intensive Designs on page 16

1.2.2.1. Experiment with Area and Routability Options

When device utilization causes routing congestion, you can experiment with the Area
and Routability optimization settings to reduce resource utilization and congestion
for your design. Click Assignments ➤ Settings ➤ Compiler Settings ➤
Optimization Mode to access these settings:

Figure 15. Area and Routability Options

1.2.2.2. Consider Fractal Synthesis for Arithmetic-Intensive Designs

For high-throughput, arithmetic-intensive designs, you can enable automatic fractal
synthesis optimizations to improve use of device resources. Fractal synthesis
optimizations include multiplier regularization and retiming, as well as continuous
arithmetic packing. The optimizations target designs with large numbers of low-
precision arithmetic operations (such as additions and multiplications). You can enable
fractal synthesis globally or for only specific multipliers. Under ideal conditions, fractal
synthesis optimization can achieve 20-45% area reduction.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Multiplier Regularization and Retiming

Multiplier regularization and retiming performs inference of highly optimized soft
multiplier implementations. The Compiler may apply backward retiming to two or
more pipeline stages if required. When you enable fractal synthesis, the Compiler
applies multiplier regularization and retiming to signed and unsigned multipliers.

Figure 16. Multiplier Retiming

D Q D Q

a

b

q

D Q D Q

a

b

q

Before Multiplier Retiming

After Multiplier Retiming

Note: • Multiplier regularization uses only logic resources, and does not use DSP blocks.

• Multiplier regularization and retiming is applied to both signed and unsigned
multipliers in modules where the FRACTAL_SYNTHESIS QSF assignment is set.

Continuous Arithmetic Packing

Continuous arithmetic packing re-synthesizes arithmetic gates into logic blocks
optimally sized to fit into Intel FPGA LABs. This optimization allows up to 100%
utilization of LAB resources for the arithmetic blocks.

When you enable fractal synthesis, the Compiler applies this optimization to all carry
chains and two-input logic gates. This optimization can pack adder trees, multipliers,
and any other arithmetic-related logic.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Continuous Arithmetic Packing

Before Arithmetic Repacking After Arithmetic Repacking

Note that continuous arithmetic packing works independently of multiplier
regularization. So, if you are using a multiplier that is not regularized (such as writing
your own multiplier) then continuous arithmetic packing can still operate.

Note: Fractal synthesis optimization is most suitable for designs with deep-learning
accelerators or other high-throughput, arithmetic-intensive functions that exceed all
DSP resources. Enabling fractal synthesis project-wide can cause unnecessary bloat on
modules that are not suitable for fractal optimizations.

1.2.2.2.1. Enabling or Disabling Fractal Synthesis

For Intel Stratix® 10 and Intel Agilex™ devices, fractal synthesis optimization runs
automatically for small multipliers (any A*B statement in Verilog HDL or VHDL where
bit-width of the operands is 7 or less). You can also disable automatic fractal synthesis
for small multipliers for these devices using either of the following methods:

• In RTL, set the DSP multstyle, as "Multstyle Verilog HDL Synthesis Attribute"
describes. For example:

(* multstyle = "dsp" *) module foo(...);
module foo(..) /* synthesis multstyle = "dsp" */;

• In the .qsf file, add as an assignment as follows:

set_instance_assignment -name DSP_BLOCK_BALANCING_IMPLEMENTATION \
 DSP_BLOCKS -to r

In addition, for Intel Stratix 10, Intel Agilex, Intel Arria® 10, and Intel Cyclone® 10 GX
devices, you can enable fractal synthesis globally or for specific multipliers with the
Fractal Synthesis GUI option or the corresponding FRACTAL_SYNTHESIS .qsf
assignment:

• In RTL, use altera_attribute as follows:

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)

• In the .qsf file, add as an assignment as follows:

set_global_assignment -name FRACTAL_SYNTHESIS ON -entity <module name>

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the user interface, follow these steps:

1. Click Assignments ➤ Assignment Editor.

2. Select Fractal Synthesis for Assignment Name, On for the Value, the
arithmetic-intensive entity name for Entity, and an instance name in the To
column. You can enter a wildcard (*) for To to assign all instances of the entity.

Figure 18. Fractal Synthesis Assignment in Assignment Editor

Related Information

Multstyle Verilog HDL Synthesis Attribute
In Intel Quartus Prime Help.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

19

http://quartushelp.altera.com/current/index.htm#hdl/vlog/vlog_file_dir_multstyle.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3. Step 3: Preserve Satisfactory Results

You can simplify timing closure by back-annotating satisfactory compilation results to
lock down placement of large blocks related to clocks, RAMs, and DSPs.

Similarly, the design block reuse technique enables you to preserve satisfactory
compilation results for specific FPGA periphery or core logic design blocks (logic that
comprises a hierarchical design instance), and then reuse those blocks in subsequent
compilations. In design block reuse, you assign the hierarchical instance as a design
partition, and then preserve and export the partition following successful compilation.

Preserving and reusing satisfactory results allows you to focus the Compiler's effort
and time on only portions of the design that have not closed timing.

Timing Closure Problem

• Unless locked down, the Compiler may implement design blocks, clocks, RAMs,
and DSPs differently from compilation to compilation depending on various factors.

Timing Closure Solutions

• Lock Down Clocks, RAMs, and DSPs on page 20—back-annotate satisfactory
compilation results to lock down placement of large blocks related to clocks, RAMs,
and DSPs.

• Preserve Design Partition Results on page 21—preserve the partitions for blocks
that meet timing, and focus optimization on the other design blocks.

Related Information

• Back-Annotate Assignments Dialog Box Help

• AN-899: Reducing Compile Time with Fast Preservation

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design

1.3.1. Lock Down Clocks, RAMs, and DSPs

You can simplify timing closure by back-annotating satisfactory compilation results to
lock down placement of large blocks related to Clocks, RAMs, and DSPs. Locking down
large block placement can produce higher fMAX with less noise.

Locking down large blocks like RAMs and DSPs can be effective because these blocks
have heavier connectivity than regular LABs, complicating movement during
placement. When a seed produces good results from suitable RAM and DSP
placement, you can capture that placement with back-annotation. Subsequent
compiles can then benefit from the high quality RAM and DSP placement from the
good seed. This technique does not significantly benefit designs with very few RAMs or
DSPs.

Click Assignments ➤ Back-Annotate Assignments to copy the device resource
assignments from the last compilation to the .qsf for use in the next compilation.
Select the back-annotation type in the Back-annotation type list.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

20

http://quartushelp.altera.com/current/index.htm#assign/mwh1465502019837.htm
https://www.intel.com/content/www/us/en/programmable/documentation/lyx1569936504360.html#vnn1569936584568
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#xdj1491668852667
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Back-Annotate Assignments Dialog Box

Alternatively, you can run back-annotation with the following quartus_cdb
executable.

quartus_cdb <design_name> --back_annotate [--dsp] [--ram] [--clock]

Note: The executable supports the additional [--dsp], [--ram], and [--clock] variables
that the Back-Annotate Assignments dialog box does not yet support.

1.3.2. Preserve Design Partition Results

After partitioning the design, you can preserve the partitions for blocks that meet
timing, and focus optimization on the other design blocks. In addition, the Fast
Preserve option simplifies the logic of a preserved partition to only interface logic
during compilation, thereby reducing the compilation time for the partition.

Note: Fast Preserve only supports root partition reuse and partial reconfiguration designs.

For designs with sub-modules that are challenging for timing closure, you can perform
stand-alone optimization and compilation of the module's partition, and then export
the timing-closed module to preserve the implementation in subsequent compilations.

Figure 20. Preserving Design Partition Results

Standalone
Compilation

Top-Level
Compilation

Empty

Sub
Module

Sub
Module

Full Design

Export Partition

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Block-based design requires design partitioning. Design partitioning allows you to
preserve individual logic blocks in your design, but can also introduce potential
performance loss due to partition crossing and floorplan effects. You need to balance
these factors when using block-based design techniques.

The following high level steps describe the partition preservation flow for root partition
reuse designs:

1. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

2. In the Project Navigator, right-click the timing closed design instance, point to
Design Partition, and select a partition Type, as Design Partition Settings on
page 23 describes.

Figure 21. Create Design Partitions

3. Define Logic Lock floorplanning constraints for the partition. In the Design
Partitions Window, right-click the partition and then click Logic Lock Region ➤
Create New Logic Lock Region. Ensure that the region is large enough to
enclose all logic in the partition.

4. To export the partition results following compilation, in the Design Partitions
Window, specify the partition .qdb as the Post Final Export File.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Post Final Export File

5. To compile the design and export the partition, click Compile Design on the
Compilation Dashboard.

6. Open the top-level project in the Intel Quartus Prime software.

7. Click Assignments ➤ Settings ➤ Compiler Settings ➤ Incremental Compile.
Turn on the Fast Preserve option.

Figure 23. Fast Preserve Option

8. Click OK.

9. In the Design Partitions Window, specify the exported .qdb as the Partition
Database File for the partition in question. This .qdb is now the source for this
partition in the project. When you enable the Fast Preserve option, the Compiler
reduces the logic of the imported partition to only interface logic, thereby reducing
the compilation time the partition requires.

1.3.2.1. Design Partition Settings

Table 5. Design Partition Settings

Option Description

Partition Name Specifies the partition name. Each partition name must be unique and consist of only
alphanumeric characters. The Intel Quartus Prime software automatically creates a top-level
(|) "root_partition" for each project revision.

Hierarchy Path Specifies the hierarchy path of the entity instance that you assign to the partition. You specify
this value in the Create New Partition dialog box. The root partition hierarchy path is |.

Type Double-click to specify one of the following partition types that control how the Compiler
processes and implements the partition:

continued...

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

Send Feedback AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

• Default—Identifies a standard partition. The Compiler processes the partition using the
associated design source files.

• Reconfigurable—Identifies a reconfigurable partition in a partial reconfiguration flow.
Specify the Reconfigurable type to preserve synthesis results, while allowing refit of the
partition in the PR flow.

• Reserved Core—Identifies a partition in a block-based design flow that is reserved for
core development by a Consumer reusing the device periphery.

Preservation Level Specifies one of the following preservation levels for the partition:
• Not Set—specifies no preservation level. The partition compiles from source files.
• synthesized—the partition compiles using the synthesized snapshot.
• final—the partition compiles using the final snapshot.
With Preservation Level of synthesized or final, changes to the source code do not appear
in the synthesis.

Empty Specifies an empty partition that the Compiler skips. This setting is incompatible with the
Reserved Core and Partition Database File settings for the same partition. The
Preservation Level must be Not Set. An empty partition cannot have any child partitions.

Partition Database File Specifies a Partition Database File (.qdb) that the Compiler uses during compilation of the
partition. You export the .qdb for the stage of compilation that you want to reuse
(synthesized or final). Assign the .qdb to a partition to reuse those results in another context.

Entity Re-binding • PR Flow—specifies the entity that replaces the default persona in each implementation
revision.

• Root Partition Reuse Flow —specifies the entity that replaces the reserved core logic in the
consumer project.

Color Specifies the color-coding of the partition in the Chip Planner and Design Partition Planner
displays.

Post Synthesis Export
File

Automatically exports post-synthesis compilation results for the partition to the .qdb that you
specify, each time Analysis & Synthesis runs. You can automatically export any design
partition that does not have a preserved parent partition, including the root_partition.

Post Final Export File Automatically exports post-final compilation results for the partition to the .qdb that you
specify, each time the final stage of the Fitter runs. You can automatically export any design
partition that does not have a preserved parent partition, including the root_partition.

1.4. AN 903 Document Revision History

This document has the following revision history:

Document Version Intel Quartus
Prime Version

Changes

2020.03.23 19.3.0 Corrected syntax error in code sample in "Lock Down Clocks, RAMs, and
DSPs" topic.

2019.12.03 19.3.0 • First public release.

1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

AN-903 | 2020.03.23

AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20903:%20Accelerating%20Timing%20Closure%20in%20Intel%20Quartus%20Prime%20Pro%20Edition%20(AN-903%202020.03.23)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	AN 903: Accelerating Timing Closure: in Intel Quartus Prime Pro Edition
	Contents
	1. AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition
	1.1. Step 1: Analyze and Optimize Design RTL
	1.1.1. Correct Design Assistant Violations
	1.1.2. Reduce Logic Levels
	1.1.3. Reduce High Fan-Out Nets

	1.2. Step 2: Apply Compiler Optimization Techniques
	1.2.1. Apply Compiler Optimization Modes and Strategies
	1.2.2. Reduce Congestion for High Utilization
	1.2.2.1. Experiment with Area and Routability Options
	1.2.2.2. Consider Fractal Synthesis for Arithmetic-Intensive Designs
	1.2.2.2.1. Enabling or Disabling Fractal Synthesis

	1.3. Step 3: Preserve Satisfactory Results
	1.3.1. Lock Down Clocks, RAMs, and DSPs
	1.3.2. Preserve Design Partition Results
	1.3.2.1. Design Partition Settings

	1.4. AN 903 Document Revision History

