Intel NetportExpress Serveur d'impression - FTP - Manuels - INTEL
INTEL sur FNAC.COM
- Revenir à l'accueil
Accéder au pdf :
http://download.intel.com/support/netport/pro/guide.pdf
Voir également :
Brochure_journées_ré..> 18-Dec-2011 08:50 1.8M
INTEL-All-Wi-Fi-is-N..> 01-Apr-2015 14:58 2.5M
INTEL-Aspera-FASP-Sp..> 23-Mar-2015 18:57 641K
INTEL-CLC-Genomics-W..> 23-Mar-2015 18:57 644K
INTEL-Education.htm 23-Mar-2015 18:56 646K
INTEL-Fiche-produit-..> 01-Apr-2015 15:03 1.9M
INTEL-Find-the-Best-..> 23-Mar-2015 18:57 560K
INTEL-Finding-an-app..> 01-Apr-2015 15:03 2.0M
INTEL-Glossaire.htm 24-Mar-2015 05:59 923K
INTEL-Intel-Code-of-..> 23-Mar-2015 18:57 629K
INTEL-Intel-Edison-G..> 01-Apr-2015 14:57 2.5M
INTEL-Intel-Educatio..> 01-Apr-2015 15:02 2.0M
INTEL-Intel-Xeon-Pro..> 23-Mar-2015 18:57 640K
INTEL-LSI-incorpore-..> 01-Apr-2015 15:01 2.0M
INTEL-Linux-Tutorial..> 01-Apr-2015 14:56 2.5M
INTEL-Look-Inside-In..> 01-Apr-2015 14:57 2.5M
INTEL-Manuel-d-Insta..> 01-Apr-2015 14:56 2.6M
INTEL-Manuel-d-Insta..> 01-Apr-2015 14:56 2.5M
INTEL-Manuel-d-Insta..> 01-Apr-2015 14:59 2.3M
INTEL-Manuel-d-Insta..> 01-Apr-2015 15:00 2.3M
INTEL-Manuel-d-insta..> 01-Apr-2015 15:00 2.3M
INTEL-Manuel-d-insta..> 01-Apr-2015 15:00 2.3M
INTEL-Manuel-d-insta..> 01-Apr-2015 14:59 2.3M
INTEL-Pentium-Proces..> 01-Apr-2015 15:04 1.9M
INTEL-Processeur-Int..> 23-Mar-2015 18:57 628K
INTEL-Processeurs-ov..> 23-Mar-2015 18:56 670K
INTEL-Processeurs-ov..> 23-Mar-2015 18:56 679K
INTEL-Release_Notes_..> 01-Apr-2015 15:02 2.0M
INTEL-Ressources-tec..> 23-Mar-2015 18:57 628K
INTEL-Salesforce-Dis..> 23-Mar-2015 18:56 641K
INTEL-Telemedicine-S..> 23-Mar-2015 18:57 560K
INTEL-Texas-Advanced..> 23-Mar-2015 18:57 641K
INTEL-University-of-..> 23-Mar-2015 18:57 641K
INTEL-Videos-Tech-10..> 23-Mar-2015 18:56 712K
INTEL-Videos-Tech-10..> 23-Mar-2015 18:55 722K
INTEL-Xeon-Processor..> 23-Mar-2015 18:56 641K
INTEL-download.intel..> 23-Mar-2015 18:56 679K
INTEL-download.intel..> 23-Mar-2015 18:56 712K
INTEL-download.intel..> 01-Apr-2015 15:04 1.9M
INTEL-intelbxrts2011..> 01-Apr-2015 14:58 2.5M
INTEL-intelthermalso..> 01-Apr-2015 15:00 2.3M
INTEL-motherboards-s..> 01-Apr-2015 15:01 2.2M
INTEL-rts2011ac_ther..> 01-Apr-2015 14:56 2.6M
INTEL-x25e_high_perf..> 01-Apr-2015 15:03 1.9M
INTEL-x25e_high_perf..> 01-Apr-2015 15:03 2.0M
INTELdocumentation.htm 26-Jan-2012 18:19 7.3M
getting_started_ampl..> 18-Dec-2011 08:49 2.1M
getting_started_c.pdf 18-Dec-2011 08:50 85K
mklman.pdf 18-Dec-2011 08:55 18M
Recherche par catégories :
Imprimantes Téléphones
GSM Informatique
Ordinateurs Galaxy
Photo TV
Electroménager
Vidéos :
Samsung Mobile :
SAMSUNG MEMORY - MEMOIRE :
http://download.intel.com/support/viiv/sb/inteviiv_sharingmedia1.pdf
Guide de configuration
Intel NetportExpress
Serveur d’impression
TM
Copyright © 1997 Intel Corporation. Tous droits réservés.
Première édition, août 1997 679940-001
Intel Corporation
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97124-6497
Intel Corporation n’assume aucune responsabilité quant aux erreurs ou
omissions que pourraient contenir ce guide ni ne s’engage à mettre à jour
son contenu.
*Les autres noms de produit et appellations commerciales sont des marques
commerciales de sociétés tierces et sont utilisés exclusivement à titre
explicatif, au bénéfice de leur détenteur et sans intention d’enfreindre la loi.
A propose de NetportExpressTM PRO et PRO/100
serveurs d’impression
Les serveurs d’impression Intel NetportExpressTM PRO et PRO/100
assurent une performance élevée ainsi qu’une gestion centralisée des
imprimantes installées sur des réseaux à protocoles multiples. Les
serveurs d’impression NetportExpress vous permettent de repérer les
imprimantes où qu’elles se trouvent sur un réseau local (LAN).
Les serveurs d’impression NetportExpress prennent en charge la
plupart des marques et modèles d’imprimantes sur réseaux utilisant les
protocoles IPX/SPX*, NetBEUI, TCP/IP et AppleTalk* Phase II.
PARALLEL 1 PARALLEL 2 SERIAL
POWER BNC RJ-45 TEST
NetportExpress PRO
Activity
Transmit
Receive
PC-3782
Serveur d'impression
NetportExpress
Parallèle
Parallèle
Sèrie
Macintosh* Windows* UNIX* NetWare* OS/2*
Table des matières
Installation du matériel ........................................... 2
Serveurs d’impression PRO/100 PRO externes et internes
Installation du logiciel ............................................ 6
Installation du CD-ROM et configuration
Configuration de NDS de Novell NetWare* .................... 8
Mode serveur d’impression, mode imprimante distante
Configuration de Bindery de Novell NetWare ................. 10
Mode serveur d’impression, mode imprimante distante
Impression réseau dans l’environnement Microsoft .......... 12
Adresse IP sous Windows* 95, Windows NT* et Windows pour Workgroups
Configuration de LAN Manager*/LAN Server.................. 16
Impression à l’aide de netuse
Configuration d’AppleTalk* ...................................... 18
Connectivité des imprimantes
Configuration d’UNIX* ............................................ 19
Adresse IP, proprint, impression avec lpr/lpd, mises à jour du microprogramme à l’aide de tftp
Configuration d’AIX* .............................................. 27
Impression avec lpr/lpd
Gestion du serveur NetportExpressTM ........................... 30
Modification des configurations, mises à jour du microprogramme, paramètres avancés
Dépannage ......................................................... 33
Solutions matériel, logiciel, impression
Limites de la garantie/Notices ................................... 40
Informations sur les produits
Support clientèle .................................................. 42
Numéros des services d’assistance, accès au Web
Index ............................................................... 44
2
PARALLEL 1
PARALLEL 2 SERIAL
PARALLEL PORT
POWER RJ45
Activity
Transmit
Receive
DIAG
NetportExpress PRO/100 TM
SW1 10/100
PC-3773
Poursuivez l’installation du logiciel (voir la page 6). . .
3 Branchez
les câbles
d’alimentation aux
imprimantes ainsi
qu’aux ports du
serveur
d’impression.
4 Appuyez sur le bouton
« diag » pour envoyer une
page d’essai du serveur
d’impression NetportExpress
à l’imprimante. La page
d’essai comprend l’ID de
périphérique et diverses
autres données de
configuration.
2 Branchez le
câble d’alimentation
dans le serveur
d’impression.
1 Branchez le câble réseau au
connecteur RJ-45. Utilisez un câble
Catégorie 5 pour la connexion à un
réseau 100 Mbits/s. Utilisez un câble
Catégorie 3 ou 5 pour la connexion à un Voyant réseau 10 Mbits/s.
d’activité
ID de périphérique et
adresse réseau
(voir au bas)
Serveurs d’impression NetportExpress PRO/100 à port
unique et à 3 ports (Ethernet seulement)
Installation du matériel
Conseils d’installation du serveur d’impression PRO/100
• Le serveur d’impression NetportExpress est prêt lorsque son voyant d’activité est vert
et ne clignote pas. Les deux autres voyants peuvent clignoter, indiquant ainsi une
communication avec le réseau. Si le voyant d’activité est rouge et clignote, consultez la
section Dépannage de ce manuel.
• Le serveur d’impression PRO/100 détecte automatiquement la vitesse du réseau
Ethernet : 10 ou 100 Mbits/s.
• Le serveur d’impression détecte également le type de trames Novell NetWare : 802.2,
802.3, Ethernet II ou SNAP.
AVERTISSEMENT Lorsque vous branchez le câble d’alimentation, utilisez le bloc
d’alimentation fourni avec le PRO/100. Toute autre source d’alimentation pourrait entraîner
un mauvais fonctionnement du serveur PRO/100.
3
PARALLEL 1
PARALLEL 2 SERIAL
POWER BNC RJ-45
Activity
Transmit
Receive
DIAG
NetportExpress PRO TM
DB-9 POWER RJ-45 DIAG
1 2
PC-3774
Conseils d’installation du serveur d’impression PRO externe
• Le serveur d’impression NetportExpress est prêt lorsque son voyant d’activité est vert
et ne clignote pas. Les deux autres voyants peuvent clignoter, indiquant ainsi une
communication avec le réseau. Si le voyant d’activité est rouge et clignote, consultez la
section Dépannage de ce manuel.
• Le serveur PRO détecte le type de trames Novell NetWare : 802.2, 802.3, Ethernet II ou
SNAP.
• La version pour réseau en anneau à jeton détecte automatiquement le débit de données
lorsque les deux interrupteurs sont en position UP (réglage par défaut). (Voir la
page 34 pour la liste des réglages.)
AVERTISSEMENT Lorsque vous branchez le câble d’alimentation, utilisez le bloc
d’alimentation fourni avec le serveur PRO. Toute autre source d’alimentation pourrait
entraîner un mauvais fonctionnement du serveur PRO.
Poursuivez l’installation du logiciel (voir la page 6). . .
3 Branchez les
câbles d’alimentation
aux imprimantes
ainsi qu’aux ports du
serveur
d’impression.
Connecteurs
Ethernet
Interrupteurs
2 Branchez le câble
d’alimentation dans le
serveur d’impression.
1 Branchez le câble réseau (Catégorie 3 ou 5). Le
PRO Ethernet utilise un connecteur BNC ou RJ-45.
Le PRO pour réseau en anneau à jeton utilise un
connecteur RJ-45 ou DB-9.
Voyant
d’activité
ID de périphérique et
adresse réseau
(voir au bas)
Serveurs d’impression NetportExpress PRO externes
(Ethernet et réseau en anneau à jeton)
4 Appuyez sur le
bouton « diag »
pour envoyer une
page d’essai du
serveur
d’impression
NetportExpress à
l’imprimante. La
page d’essai
comprend l’ID de
périphérique et
diverses autres
données de
configuration.
Connecteurs
pour réseau
en anneau à
jeton
4
10Base-T
BNC 10Base-T
PC-3775
Exemples d’insertion, dans les imprimantes, de cartes de serveurs
d’impression NetportExpress PRO. Votre imprimante peut être différente de
celle illustrée. Assurez-vous que le connecteur d’imprimante de la carte est
complètement inséré dans la fente de connecteur de l’imprimante.
Bouton
Diagnostics
Connecteurs
réseau RJ-45
et BNC
Connecteurs réseau
RJ-45 et DB-9
Bouton
Diagnostics
ID de
périphérique
Connecteur
d’imprimante
Carte de Interrupteurs
réseau
en anneau
à jeton
ID de périphérique
Connecteur
d’imprimante
Carte Ethernet
Serveur d’impression NetportExpress PRO interne
(Ethernet et réseau en anneau à jeton)
Installation du matériel
PC-3124 PC-3126
5
• La carte de serveur d’impression PRO interne doit être connectée dans les fentes MIO
de l’imprimante.
• Pour obtenir la liste complète des imprimantes prises en charge, consultez la section
sur le support clientèle automatisé Intel au dos de ce manuel.
• Les imprimantes HP LaserJet* 4Si et 5Si comportent deux fentes MIO. Installez la carte
de serveur d’impression NetportExpress PRO dans la fente inférieure. Pour obtenir les
directives voulues, installez le logiciel Netport Manager sur n’importe quelle station de
travail Windows en réseau et consultez l’aide en ligne ou consultez les documents de
support Intel en ligne.
• La carte pour réseau en anneau à jeton détecte automatiquement les débits de données
lorsque les deux interrupteurs sont en position UP (réglage par défaut). (Voir la page
34 pour la liste des réglages.)
Conseils d’installation d’un serveur d’impression interne
Poursuivez l’installation du logiciel (voir la page 6). . .
Installation de la carte de serveur d’impression PRO
interne dans votre imprimante
1 Mettez l’imprimante hors tension et débranchez le câble d’alimentation.
2 Au besoin, retirez le capot de la fente MIO (entrée/sortie modulaire).
3 Notez l’ID de périphérique du serveur d’impression NetportExpress de
façon à pouvoir l’utiliser plus tard.
4 Repérez le connecteur à l’arrière de la fente MIO.
5 Insérez la carte de serveur d’impression en veillant à aligner le connecteur
de la carte avec le connecteur à l’arrière de la fente MIO. Lorsqu’elle est
bien en place, la carte devrait reposer à plat contre le cadre de l’imprimante.
6 Fixez la carte de serveur d’impression en resserrant les vis. Vissez
alternativement chacune des vis de façon à ce que la carte reste stable dans
la fente.
7 Branchez le câble réseau qui convient.
8 Branchez le câble d’alimentation à l’imprimante et mettez celle-ci sous
tension.
9 Appuyez sur le bouton Diagnostics de la carte de serveur d’impression
NetportExpress pour faire imprimer une page d’essai. La page d’essai
comprend l’ID de périphérique et diverses autres données de configuration.
6
Installation du logiciel
Installation des logiciels UNIX et AIX
Consultez la section sur la configuration NOS pour le système UNIX ou AIX.
Installation du logiciel pour réseaux Novell et Microsoft
L’installation du logiciel Netport Manager sur une station de travail Windows
vous permet de gérer tous vos serveurs d’impression NetportExpress. Vous
pouvez utiliser Netport Manager avec les systèmes Windows 3.1x, Windows
pour Workgroups 3.11, Windows 95 et Windows NT 3.51 ou 4.0.
Installation de Netport Manager
1 Insérez le CD-ROM dans l’unité du système Windows choisi.
• Systèmes Windows 95 ou Windows NT 4.0. Le programme de
configuration devrait être affiché automatiquement. Si ce n’est pas le
cas, choisissez Démarrer et Exécuter et sélectionnez le contenu du
lecteur de CD-ROM.
• Windows 3.1x ou Windows NT 3.51. A partir du Gestionnaire de
programmes, cliquez sur le menu Fichier et ensuite sur Exécuter.
Sélectionnez le contenu du lecteur de CD-ROM.
2 Exécutez setup.exe à partir du répertoire racine.
3 Installez Netport Manager et consultez ensuite la section NOS voulue pour
configurer le serveur d’impression NetportExpress en fonction de votre
système.
Remarque : Si seul le protocole IP est utilisé sur le système où Netport
Manager est installé, le serveur d’impression NetportExpress
doit utiliser une adresse IP pour communi-quer avec Netport
Manager. Imprimez une page d’essai pour savoir si une adresse
IP a été définie pour le serveur d’impression. Le cas échéant,
définissez cette adresse selon la marche à suivre décrite à la
page 15.
Configuration du serveur d’impression pour vos NOS. Consultez . . .
Configuration de NDS de Novell NetWare ...................................... page 8
Configuration de Bindery de Novell NetWare ................................ page 10
Impression réseau dans l’environnement Microsoft ....................... page 12
Configuration de LAN Manager/LAN Server ................................ page 16
Configuration d’AppleTalk .............................................................. page 18
Configuration d’UNIX .................................................................... page 19
Configuration d’AIX ....................................................................... page 27
Remarque : Vous pouvez configurer chaque port du serveur d’impression
NetportExpress pour utilisation de protocoles multiples.
7
Fenêtre principale de Netport Manager
Cliquez sur le
bouton
Properties
pour régler les
paramètres
matériels et les
paramètres de
nom pour
Netport.
Cliquez sur le
bouton
Configure pour
configurer le
serveur
d’impression
NetportExpress.
Création de disquettes d’installation
Vous pouvez créer des disquettes d’installation pour les programmes suivants :
• Netport Manager
• Port Monitor (pour l’impression Microsoft Network)
Les disquettes d’installation ainsi créées vous permettent d’installer ces
programmes sur tout système équipé d’une unité de disquette 3 1/2. Pour créer
les disquettes, insérer le CD-ROM dans le lecteur. A l’écran qui apparaît,
cliquez sur Make Setup Disks.
Web Netport Manager
S’il n’y a aucune station de travail Windows sur votre réseau pour exécuter
Netport Manager, vous pouvez installer votre serveur d’impression
NetportExpress à l’aide de l’explorateur Web. Le serveur d’impression
comprend un serveur http permettant d’afficher et de modifier les paramètres du
serveur d’impression à partir de l’explorateur Web. Dans un tel cas, une adresse
IP doit avoir été affectée au serveur d’impression.
• Pour savoir si une telle adresse existe pour le serveur, imprimez une page
d’essai à l’aide du bouton « diag » du serveur d’impression.
• Consultez la rubrique « Définition d’une adresse IP », aux pages 15 et 20
pour savoir comment attribuer une telle adresse au serveur.
• Consultez la rubrique « Utilisation de Web Netport Manager » à la page 31
pour savoir comment accéder à ce logiciel.
8
Avec ce mode, le serveur d’impression NetportExpress remplace le
programme de serveur d’impression NetWare. Le serveur d’impression
NetportExpress interroge la file d’attente du serveur de fichiers NetWare pour
savoir si des tâches d’impression s’y trouvent et envoie ensuite chaque tâche
directement à l’imprimante. Cette méthode accélère l’impression. Le mode
serveur d’impression est recommandé car il assure la meilleure performance
en termes d’impression. Pour pouvoir utiliser ce mode, vous devez disposer
d’une licence d’utilisation NetWare pour chaque imprimante (y compris les
serveurs d’impression multiports).
Configuration du serveur d’impression en mode serveur
d’impression NDS
Remarque : Netport Manager crée les files d’attente ou les serveurs d’impression
dont vous avez besoin pour l’installation de NetWare. Il n’est
donc pas nécessaire de créer ces objets dans NWADMIN ou
PCONSOLE.
1 Ouvrez une session en tant qu’Admin à la station de travail où Netport
Manager a été installé.
2 Lancez Netport Manager.
3 Sélectionnez le serveur d’impression dont l’ID de périphérique correspond
au numéro du serveur d’impression NetportExpress que vous avez installé.
4 Cliquez sur le bouton Configure.
5 Sélectionnez Novell NDS Print Server.
6 Sélectionnez un contexte pour le serveur d’impression. Le contexte est en
quelque sorte le contenant dans lequel l’objet serveur d’impression est créé.
7 Pour chaque imprimante connectée au serveur d’impression, cliquez sur un
onglet Port et attribuez-lui une file d’attente existante ou encore ajoutez une
nouvelle file.
• Pour affecter une file d’attente existante, double-cliquez sur la file pour
l’ajouter à la liste des files d’attente affectées (Assigned Queues).
• Pour ajouter une nouvelle file, cliquez sur New Queues et créez-en une
nouvelle.
8 Cliquez sur OK et quittez Netport Manager.
Configuration d’une station de travail aux fins d’impression
A chaque station de travail qui utilisera l’imprimante, utilisez la commande
capture ou l’utilitaire d’impression de la station de travail pour rediriger
l’impression à la file d’attente NetWare que vous avez définie. Pour des
instructions complémentaires, consultez la rubrique sur l’aide NetportExpress
pour l’impression sous NetWare.
Configuration en mode serveur
d’impression NDS de Novell NetWare
Conseil pour le mode serveur d’impression NDS
Pour les paramètres avancés comme LIP (paquets Internet), consultez la rubrique
« Gestion du serveur d’impression NetportExpress » à la page 30.
9
Dans ce mode, PSERVER.NLM interroge la file d’attente du serveur de
fichiers NetWare pour savoir si des tâches d’impression s’y trouvent et
envoie ensuite la tâche d’impression au serveur d’impression, qui achemine
les données à l’imprimante. Aucune licence d’utilisateur NetWare n’est
nécessaire pour les serveurs d’impression NetportExpress. Ce mode n’est
toutefois pas recommandé car il est beaucoup plus lent que le mode serveur
d’impression.
Configuration du serveur d’impression en mode imprimante
distante NDS pour Novell NetWare
1 Ouvrez une session en tant qu’Admin à la station de travail où Netport
Manager a été installé.
2 S’il n’existe pas de serveur d’impression, créez-en un à l’aide de
NWADMIN ou de PCONSOLE.
3 Lancez Netport Manager.
4 Sélectionnez le serveur d’impression dont l’ID de périphérique correspond
au numéro du serveur d’impression NetportExpress que vous avez installé.
5 Cliquez sur le bouton Configure.
6 Sélectionnez Novell NDS Remote Printer.
7 Sélectionnez un contexte pour le serveur d’impression. Le contexte est le
contenant dans lequel l’objet serveur d’impression est créé.
8 Sélectionnez le serveur d’impression NDS de Novell que vous avez créé
dans NWADMIN ou PCONSOLE.
9 Pour chaque imprimante connectée au serveur d’impression, cliquez sur un
onglet Port et attribuez-lui une file d’attente existante ou encore ajoutez une
nouvelle file.
• Pour affecter une file d’attente existante, double-cliquez sur la file pour
l’ajouter à la liste des files d’attente affectées (Assigned Queues).
• Pour ajouter une nouvelle file, cliquez sur New Queues et créez-en une
nouvelle.
10 Cliquez sur OK et fermez Netport Manager.
11 Déchargez, puis rechargez PSERVER.NLM pour activer les modifications.
Configuration d’une station de travail aux fins d’impression
A chaque station de travail qui utilisera l’imprimante, utilisez la commande
capture ou l’utilitaire d’impression de la station de travail pour rediriger
l’impression à la file d’attente NetWare que vous avez définie. Pour des
instructions complémentaires, consultez la rubrique sur l’aide NetportExpress
pour l’impression sous NetWare.
Configuration du mode imprimante distante
NDS de Novell NetWare
10
Avec ce mode, le serveur d’impression NetportExpress remplace le
programme de serveur d’impression NetWare. Le serveur d’impression
NetportExpress interroge la file d’attente du serveur de fichiers NetWare pour
savoir si des tâches d’impression s’y trouvent et envoie ensuite chaque tâche
directement à l’imprimante. Cette méthode accélère l’impression. Le mode
serveur d’impression est recommandé car il assure la meilleure performance
en termes d’impression. Pour pouvoir utiliser ce mode, vous devez disposer
d’une licence d’utilisation NetWare pour chaque imprimante (y compris les
serveurs d’impression multiports).
Configuration du serveur d’impression en mode serveur
d’impression bindery
Remarque : Netport Manager crée les files d’attente ou les serveurs
d’impression dont vous avez besoin pour l’installation de
NetWare. Il n’est donc pas nécessaire de créer ces objets dans
NWADMIN ou PCONSOLE.
1 Connectez-vous en tant que Supervisor à partir de la station de travail où
Netport Manager a été installé.
2 Lancez Netport Manager.
3 Sélectionnez le serveur d’impression dont l’ID de périphérique correspond
au numéro du serveur d’impression NetportExpress que vous avez installé.
4 Cliquez sur le bouton Configure.
5 Sélectionnez Novell Bindery Print Server.
6 Sélectionnez le serveur de fichiers où le serveur d’impression va être créé.
7 Pour chaque imprimante connectée au serveur d’impression, cliquez sur un
onglet Port et attribuez-lui une file d’attente existante ou encore ajoutez une
nouvelle file.
• Pour affecter une file d’attente existante, double-cliquez sur la file pour
l’ajouter à la liste des files d’attente affectées (Assigned Queues).
• Pour ajouter une nouvelle file, cliquez sur New Queues et créez-en une
nouvelle.
8 Cliquez sur OK et quittez Netport Manager.
Configuration d’une station de travail aux fins d’impression
A chaque station de travail qui utilisera l’imprimante, utilisez la commande
capture ou l’utilitaire d’impression de la station de travail pour rediriger
l’impression à la file d’attente NetWare que vous avez définie. Pour des
instructions complémentaires, consultez la rubrique sur l’aide NetportExpress
pour l’impression sous NetWare.
Conseil pour le mode serveur d’impression bindery
Pour les paramètres avancés comme LIP (paquets Internet), consultez la rubrique
« Gestion du serveur d’impression NetportExpress » à la page 30.
Configuration du mode serveur
d’impression Bindery de Novell NetWare
11
Dans ce mode, PSERVER.NLM interroge la file d’attente du serveur de
fichiers NetWare pour savoir si des tâches d’impression s’y trouvent et
envoie ensuite la tâche d’impression au serveur d’impression
NetportExpress, qui achemine les données à l’imprimante. Aucune licence
d’utilisateur NetWare n’est nécessaire pour les serveurs d’impression
NetportExpress. Ce mode n’est toutefois pas recommandé car il est
beaucoup plus lent que le mode serveur d’impression.
Configuration du serveur d’impression en mode imprimante
distante bindery
1 Connectez-vous en tant que Supervisor à partir de la station de travail où
Netport Manager a été installé.
2 S’il n’existe pas de serveur d’impression, créez-en un à l’aide de
NWADMIN ou de PCONSOLE.
3 Lancez Netport Manager.
4 Sélectionnez le serveur d’impression dont l’ID de périphérique correspond
au numéro du serveur d’impression NetportExpress que vous avez installé.
5 Cliquez sur le bouton Configure.
6 Sélectionnez Novell Bindery Remote Printer.
7 Choisissez le serveur de fichiers où le serveur d’impression bindery de
Novell se trouve. (Il s’agit du serveur de fichiers où PSERVER est
exécuté.)
8 Dans la liste des serveurs d’impression bindery de Novell, sélectionnez le
module PSERVER que vous désirez utiliser.
9 Pour chaque imprimante connectée au serveur d’impression, cliquez sur un
onglet Port et attribuez-lui une file d’attente existante ou encore ajoutez une
nouvelle file.
• Pour affecter une file d’attente existante, double-cliquez sur la file pour
l’ajouter à la liste des files d’attente affectées (Assigned Queues).
• Pour ajouter une nouvelle file, cliquez sur New Queues et créez-en une
nouvelle.
10 Cliquez sur OK et fermez Netport Manager.
11 Déchargez, puis rechargez PSERVER.NLM sur le serveur de fichiers
indiqué à l’étape 6, pour activer les modifications.
Configuration d’une station de travail aux fins d’impression
A chaque station de travail qui utilisera l’imprimante, utilisez la commande
capture ou l’utilitaire d’impression de la station de travail pour rediriger
l’impression à la file d’attente NetWare que vous avez définie. Pour des
instructions complémentaires, consultez la rubrique sur l’aide NetportExpress
pour l’impression sous NetWare.
Configuration du mode imprimante distante
bindery de Novell NetWare
12
Le serveur d’impression NetportExpress permet l’impression de documents
sur des stations de travail reliées en réseau fonctionnant sous Windows* 95,
Windows NT*, ou Windows pour Workgroups*. A l’aide de NetportExpress
Port Monitor sur une station de travail Windows 95 ou Windows NT, vous
pouvez également partager des imprimantes avec d’autres systèmes, y
compris Windows pour Workgroups et LAN Manager ou LAN Server.
Options d’impression
• Partage d’imprimantes :
Installez le NetportExpress
Port Monitor dans un système
Windows puis partagez le port
avec les autres stations de
travail Windows. La station de
travail sur laquelle Port Monitor
est installé spoule les travaux
d’impression et les achemine
au serveur d’impression
NetportExpress.
• Impression directe :
Installez le NetportExpress
Port Monitor sur chaque
station de travail Windows puis
imprimez directement sur le
serveur d’impression
NetportExpress.
Configuration du serveur d’impression pour
l’impression en réseau de Microsoft
1 Démarrez Netport Manager.
2 Sélectionnez un serveur d’impression NetportExpress dans la fenêtre de
Netport Manager.
3 Cliquez sur le bouton Configure.
4 Cliquez sur Microsoft Network Printing.
5 Tapez le nom et le domaine du serveur d’impression.
6 Pour chaque imprimante connectée au serveur d’impression, cliquez sur
l’onglet Port et indiquez le nom du port de l’imprimante connectée à ce port.
Configuration des stations de travail pour l’impression
Pour imprimer à partir de Windows 95 et de Windows NT, installez le Intel
NetportExpress Port Monitor. Le Port Monitor s’installe sur le système en tant
que port local que vous pouvez partager avec d’autres systèmes.
Impression réseau dans l’environnement
Microsoft
PC-3791
PARALLEL 1 PARALLEL 2 SERIAL
POWER BNC RJ-45 TEST
NetportExpress PRO
Activity
Transmit
Receive
PARALLEL 1 PARALLEL 2 SERIAL
POWER BNC RJ-45 TEST
NetportExpress PRO
Activity
Transmit
Receive
13
Configuration d’un système pour impression directe ou
partagée
Station de travail Windows 95
1 Insérez le CD du serveur d’impression NetportExpress dans le lecteur de
CD-ROM.
2 Si le programme Setup ne démarre pas automatiquement, tapez setup.exe à
partir du lecteur de CD-ROM.
3 Dans Setup, cliquez sur le bouton NetportExpress Port Monitor. Lorsque
l’installation est terminée, vous êtes prêt à configurer l’impression de la
station de travail.
4 Dans l’icône My Computer, cliquez deux fois sur le dossier Printers.
5 Cliquez deux fois sur Add Printer et suivez les instructions en vue de
configurer une imprimante locale temporaire sur LPT1. N’imprimez pas
de page d’essai.
6 Une fois que l’assistant Add Printer a terminé, cliquez sur la nouvelle
imprimante avec le bouton droit de la souris puis cliquez sur Properties.
7 Cliquez sur Details, puis sur Add Port.
8 Cliquez sur Other, sélectionnez Intel NetportExpress Network Port et
cliquez sur OK.
9 Cliquez sur Browse pour sélectionner Domaine, serveur d’impression
Netport et port où votre imprimante est connectée au serveur d’impression
NetportExpress.
10 Pour partager l’imprimante : dans Properties, cliquez sur l’onglet
Sharing. Sélectionnez Shared As et indiquez le nom de l’imprimante
partagée.
Pour configurer un système Windows NT 4.0
1 Insérez le CD du serveur d’impression NetportExpress dans le lecteur de
CD-ROM.
2 Si le programme Setup ne démarre pas automatiquement, tapez setup.exe à
partir du lecteur de CD-ROM.
3 Dans Setup, cliquez sur le bouton NetportExpress Port Monitor. Lorsque
l’installation est terminée, vous êtes prêt à configurer l’impression de votre
système.
4 Dans l’icône My Computer, cliquez deux fois sur le dossier Printers.
5 Cliquez deux fois sur Add Printer puis sélectionnez My Computer.
6 Suivez les instructions pour configurer une imprimante locale temporaire
sur LPT1. N’imprimez pas de page d’essai.
7 Une fois que l’assistant Add Printer a terminé, cliquez sur la nouvelle
imprimante avec le bouton droit de la souris puis cliquez sur Properties.
8 Cliquez sur Ports, puis sur Add Port.
9 Sélectionnez Intel NetportExpress Network Port puis cliquez sur New Port.
14
10 Cliquez sur Browse afin de sélectionner le domaine, le serveur
d’impression Netport ainsi que le port sur lequel votre imprimante est
connectée au serveur d’impression NetportExpress.
11 Pour partager l’imprimante : dans Properties, cliquez sur l’onglet
Sharing. Sélectionnez Shared et indiquez le nom de l’imprimante partagée.
Pour configurer un système Windows NT 3.51
1 Insérez le CD du serveur d’impression NetportExpress dans le lecteur de
CD-ROM.
2 Tapez la commande setup.exe à partir du CD.
3 Dans Setup, cliquez sur le bouton NetportExpress Port Monitor. Lorsque
l’installation est terminée, vous êtes prêt à configurer l’impression de votre
système.
4 Démarrez Print Manager.
5 Dans le menu Printer, cliquez sur Create Printer.
6 Dans la fenêtre Create Printer, tapez le nom d’une imprimante.
7 Sélectionnez le gestionnaire de l’imprimante.
8 Dans le champ Print to list, sélectionnez Other.
9 Sélectionnez Intel NetportExpress Network Port puis cliquez sur OK.
10 Cliquer sur Browse pour sélectionner le domaine, le serveur d’impression
et le port sur lequel votre imprimante est connectée au serveur
d’impression.
11 Pour partager l’imprimante : dans Print Manager, sélectionnez
l’imprimante. Dans le menu Printer, sélectionnez Properties. Cliquez sur
Share This Printer on the Network puis indiquez le nom de l’imprimante
partagée.
Configuration des systèmes pour partager une
imprimante
Station de travail Windows 95 ou Windows NT 4.0 pour imprimer
sur une imprimante partagée
1 Dans l’icône My Computer, ouvrez le dossier Printers.
2 Ouvrez Add Printer afin de démarrer l’assistant Add Printer.
3 Sélectionnez Network Printer puis indiquez le nom de l’imprimante
partagée qui est installée sur le poste où réside le NetportExpress Port
Monitor.
Station de travail Windows NT 3.51 pour imprimer sur une
imprimante partagée
1 Démarrez Print Manager puis cliquez sur le menu Printer.
2 Sélectionnez Connect to Printer.
3 Sélectionnez la nouvelle imprimante dans la liste Shared Printers puis
indiquez le nom de l’imprimante partagée que vous avez installée sur le
poste où réside le NetportExpress Port Monitor.
15
Impression avec Windows pour Workgroups
Remarque : NetportExpress Port Monitor ne peut être exécuté sous Windows
pour Workgroups. Toutefois, vous pouvez partager une
imprimante avec le système Windows 95 ou Windows NT sur
lequel est exécuté NetportExpress Port Monitor (voir
pages 12-13).
Configuration d’une station de travail Windows pour Workgroups
pour imprimer sur une imprimante partagée
1 Dans Print Manager, cliquez sur le menu Printer puis cliquez sur Connect
to Printer.
2 Dans la fenêtre Connect to Printer, sélectionnez le nom de l’imprimante
partagée qui est installée sur le système Windows 95 ou Windows NT où
réside le NetportExpress Port Monitor.
Configuration d’une station de travail Windows pour Workgroups
pour imprimer directement sur une imprimante
1 Démarrez Print Manager sur le système Windows pour Workgroups.
2 Ouvrez Printers.
3 Dans le menu Printers, sélectionnez Connect to Printer.
4 Sélectionnez la nouvelle imprimante dans la liste Show Shared Printers. Le
serveur d’impression NetportExpress sera affiché dans le domaine que
vous avez indiqué dans Netport Manager.
Impression sous Windows NT à l’aide de LPR
Vous pouvez imprimer sous Windows NT à l’aide de lpr. Cette méthode est
décrite dans l’aide de NetportExpress. Une adresse IP doit avoir été affectée au
serveur d’impression NetportExpress pour pouvoir imprimer à l’aide de lpr.
Configuration d’une adresse IP à l’aide de ARP
(Address Resolution Protocol)
1 Assurez-vous d’être dans le même segment de réseau que le serveur
d’impression NetportExpress.
2 A partir d’une station de travail Windows NT ou Windows 95, allez à
l’invite.
3 Tapez : arp -s ip_address network_address
où
ip_address représente l’adresse IP que vous désirez affecter au serveur
d’impression NetportExpress.
network_address représente l’adresse réseau de 12 caractères qui est
imprimée au bas du serveur d’impression NetportExpress. Pour Windows
NT, cette adresse doit être entrée sous la forme : xx-xx-xx-xx-xx-xx.
Exemple : 00-A0-C9-12-34-56
4 Définissez l’adresse IP dans le serveur d’impression en tapant
pingip_address
où ip_address représente l’adresse que vous avez utilisée à l’étape 3.
16
Pour imprimer dans LAN Manager de Microsoft et LAN Server d’IBM, la
station de travail transmet un travail d’impression à un procédé d’impression
et le travail d’impression est mis dans une file d’attente d’impression puis
acheminé au serveur d’impression NetportExpress. Le serveur d’impression
achemine ensuite le travail d’impression vers l’imprimante sur l’un des ports
auxquels il est connecté.
Si vous disposez d’une station de travail Windows 95 ou Windows NT sur le
réseau, vous pouvez également imprimer à l’aide de l’impression en réseau
de Microsoft (voir pages 12-15).
Configuration du serveur d’impression NetportExpress
Remarque : Netport Manager ne peut être exécuté que sur des stations de
travail fonctionnant sous Windows. Si vous ne disposez que des
stations de travail fonctionnant sous OS/2* sur votre réseau,
vous pouvez utiliser Web Netport Manager pour configurer votre
serveur d’impression NetportExpress (voir « Utilisation de Web
Netport Manager » à la page 31).
1 Démarrez Netport Manager.
2 Sélectionnez le serveur d’impression dont l’ID correspond à celle du
serveur d’impression NetportExpress que vous avez installé.
3 Cliquez sur le bouton Configure.
4 Sélectionnez Microsoft Network Printing (pour LAN Manager) ou
sélectionnez LAN Server.
5 Sélectionnez le domaine où vous désirez que réside le serveur d’impression
NetportExpress.
6 Tapez le nom d’un port pour l’imprimante partagée ainsi qu’une brève
description.
Configuration de l’impression d’une station de travail OS/2 sur LAN
Manager de Microsoft
1 A l’invite d’OS/2 sur le serveur LAN Manager, redirigez l’impression vers
le serveur d’impression NetportExpress en tapant ce qui suit sur une ligne :
NET USE LPT2: \\NETPORT\PORT
où :
LPT2 est l’ID.
NETPORT est le nom que vous avez donné au serveur d’impression.
PORT est le nom du port que vous avez utilisé pour l’imprimante partagée.
2 Cliquez sur Print Manager sur le même serveur, sélectionnez Configure/
Queue dans le menu, puis cliquez sur Add.
3 Tapez un nom, une description, une file d’attente ainsi que toute autre
option que vous souhaitez modifier puis cliquez sur Add.
4 Cliquez sur OK.
5 Retournez à l’invite d’OS/2 puis tapez : NET ADMIN
Configuration pour LAN Manager/LAN
Server
17
6 Dans le menu principal, sélectionnez View/Share the Resource, puis
cliquez sur Add.
7 Dans la zone de liste, sélectionnez Printer puis cliquez sur Add.
8 Définissez le nom de la file d’attente en utilisant le nom de la file d’attente
que vous avez défini dans les étapes précédentes.
9 Tapez le nom de l’imprimante partagée ainsi que les autres paramètres
requis puis cliquez sur OK.
10 Cliquez sur Finish. Définissez l’entrée requise à l’écran suivant puis
cliquez sur OK/Finish.
11 Dans le menu principal, cliquez sur View/Exit puis retournez à l’invite.
12 A l’invite, confirmez les paramètres sélectionnés en tapant
NET SHARE.
Remarque : Pour interrompre le réacheminement, utilisez une
commande telle que
NET USE LPT2: /DELETE
Configuration de l’impression à partir d’une station de travail OS/2
sur LAN Server d’IBM
1 A l’invite d’OS/2 sur le serveur LAN Server, réacheminez l’impression
sur le serveur d’impression NetportExpress en tapant la commande
suivante sur une seule ligne : NET USE LPT2: \\NETPORT\PORT
où :
LPT2 est l’ID.
NETPORT est le nom que vous avez donné au serveur d’impression.
PORT est le nom du port que vous avez utilisé pour l’imprimante partagée.
2 Sur le bureau OS/2, ouvrez Templates.
3 Glissez et déposez le modèle de l’imprimante dans un dossier sur le bureau.
4 Dans la fenêtre Create a Printer, tapez le nom que vous souhaitez utiliser
pour l’imprimante.
5 Sélectionnez LPT1.
6 Dans la liste des gestionnaires, sélectionnez Corresponding Printer
Drivers.
7 Cliquez sur Create.
8 Cliquez sur OK.
9 Indiquez si vous voulez que le système installe une configuration
d’imprimante équivalente pour WIN-OS2, et partager l’imprimante que
vous avez créée.
Remarque : Pour interrompre le réacheminement, utilisez une
commande telle que
NET USE LPT2: /DELETE
Partage de l’imprimante que vous avez créée
Cliquez sur le coin gauche supérieur de l’icône de l’imprimante. Dans le menu
déroulant qui est affiché, sélectionnez Share Printer afin de partager
l’imprimante sur le réseau.
18
Configuration du serveur d’impression NetportExpress pour
AppleTalk
1 A la station de travail Windows où vous avez installé Netport Manager,
démarrez ce programme.
2 Sélectionnez le serveur d’impression dont l’ID correspond au numéro du
serveur d’impression NetportExpress que vous avez installé.
3 Cliquez sur le bouton Configure.
4 Sélectionnez AppleTalk.
5 Sélectionnez un nom de zone pour le serveur d’impression NetportExpress
dans le champ Zone de AppleTalk.
6 Cliquez sur l’onglet d’un port.
7 Dans le champ Chooser Name, tapez le nom qui doit apparaître pour ce
port dans la fenêtre Chooser sur les stations de travail Macintosh.
8 Identifiez le type d’imprimante sur laquelle le serveur d’impression est
connecté. Ce nom doit correspondre au nom du pilote d’imprimante
indiqué dans Chooser. Le type LaserWriter* utilisé par défaut fonctionne
pour tout type d’imprimante PostScript*.
9 Sélectionnez le groupe de polices qui réside dans l’imprimante. La sélection
par défaut est 35.
Remarque : Si votre imprimante prend en charge la communication
bidirectionnelle, le groupe par défaut sera « automatically set by the
printer ».
10 Cliquez sur OK pour terminer la configuration.
Configuration de l’impression d’une station de travail
1 A un poste Apple, ouvrez Chooser.
2 Sélectionnez le gestionnaire d’imprimante pour l’imprimante qui est
connectée au serveur d’impression NetportExpress. Si vous utilisez une
imprimante PostScript, vous pouvez sélectionner l’icône de l’imprimante
LaserWriter ou PostScript pour votre imprimante.
3 Si une liste AppleTalk Zone est affichée dans la fenêtre du Chooser,
sélectionnez la zone que vous avez indiquée lors de la configuration du
serveur d’impression.
4 Sélectionnez le nom du Chooser du serveur d’impression NetportExpress
que vous souhaitez que la station de travail Macintosh utilise.
5 Fermez la fenêtre duChooser.
Le serveur d’impression NetportExpress peut prendre en charge les
impressions acheminées par les stations de travail Macintosh* reliées à un
réseau Ethernet ou à un réseau en anneau à jeton.
Pour imprimer à l’aide de LocalTalk*, connectez le serveur d’impression à un
routeur sur un segment du réseau Ethernet.
Configuration pour AppleTalk
19
Le serveur d’impression NetportExpress prend en charge de nombreuses
configurations des systèmes UNIX en offrant différentes méthodes
d’impression. La méthode d’impression recommandée utilise proprint, qui
vous permet de visualiser l’état de l’impression dans un fichier journal. Vous
pouvez également utiliser lpr/lpd et ftp. (L’impression à l’aide de FTP est
décrite dans l’aide du Web NetportExpress.)
L’installation du logiciel proinstall pour UNIX vous permet d’obtenir les
fichiers requis pour utiliser proprint. Le logiciel contient également les
fichiers de mise à jour de UNIX.
Système Instructions de démarrage (tapez la commande sur une ligne)
HP-UX mount -t cdfs -o ro /dev/dsk/c1d1s0 /cdrom/npcdrom
SCO mount -f ISO9660 -o ro,lower /dev/cd0 /cdrom/npcdrom
Solaris 2.x mount -F hsfs -r /dev/dsk/c0t6d0s2 /cdrom/npcdrom
SunOS 4.1.3 mount -t hsfs -o ro /dev/sr0 /cdrom/npcdrom
UnixWare mount -F cdfs -r /dev/cdrom/c0b0t2l0 /cdrom/npcdrom
Installation du logiciel (utilisateurs de AIX, passez à la page 27)
Nota : Installez le logiciel si vous utilisez proprint ou si vous souhaitez
consulter les fichiers de mise à jour.
1 Connectez-vous à une station de travail UNIX en tant que root.
2 Tapez ls-l /cdrom/npcdrom afin de déterminer si le répertoire
d’installation existe déjà.
Dans le cas contraire, créez-le en tapant
mkdir -p /cdrom/npcdrom
3 Insérez le CD-ROM dans le lecteur d’une station de travail UNIX. Si votre
système ne prend pas en charge le démarrage automatique, procédez
comme suit :
Configuration pour des réseaux UNIX
4 Extrayez le logiciel proinstall du CD-ROM sur votre station de travail
UNIX hôte. Pour ce faire, tapez sur une ligne :
tar xvf /cdrom/npcdrom/unix/prounix.tar/usr/intl/
proinstall
5 Extrayez proprint ainsi que les fichiers du système d’exploitation. Pour ce
faire, tapez sur une ligne :
tar xvf /cdrom/npcdrom/unix/prounix.tar/usr/intl/
sous-répertoire
où sous-répertoire est l’un des suivants :
solx86 (Solaris 2.x x86) solaris (solaris 2.x SPARC) sco
sun (SunOS 4.1.x) unixware hpux
20
Configuration d’une adresse IP sous UNIX
Une adresse IP doit avoir été affectée au serveur d’impression
NetportExpress pour imprimer sous UNIX. Le serveur d’impression tente par
défaut d’obtenir une adresse IP... à l’aide de RARP, BOOTP, et DHCP. Le
serveur d’impression et la station de travail ou le serveur qui exécute les
commandes doivent être connectés au même sous-réseau et ne doivent pas
en être séparés par des routeurs.
Réglage manuel d’une adresse IP pour UNIX à l’aide d’ARP
1 Connectez-vous à une station de travail UNIX en tant que root.
2 Utilisez un éditeur de texte d’UNIX tel que vi pour ajouter l’adresse IP de
Netport ainsi que le nom d’hôte dans le fichier /etc/hosts.
3 Enregistrez le serveur d’impression sur votre station de travail en tapant
arp -s netportexpress network_address temp
où
netportexpress est l’adresse IP ou le nom d’hôte du serveur
d’impression NetportExpress dans le ficher /etc/hosts.
network_address est l’adresse du réseau NetportExpress sur la page
d’essai d’impression ou au bas du serveur d’impression. Sous UNIX, cette
adresse doit être entrée en segments de deux chiffres séparés par des deux
points. Exemple : 00:AA:00:1E:5D:B8
Remarque : Pour obtenir une adresse IP que vous pouvez utiliser
pour le serveur d’impression NetportExpress, adressez-vous à votre
administrateur de réseau.
4 Définissez l’adresse IP de NetworkExpress en tapant
ping netportexpress
où Netportexpress est l’adresse IP ou le nom d’hôte du serveur
d’impression NetportExpress dans le fichier /etc/hosts.
Utilisation de telnet afin de définir les paramètres tels que le
masque du sous-réseau et la passerelle par défaut
1 Sur la station de travail UNIX, utilisez telnet pour accéder au serveur
d’impression. Tapez : telnet ip_address
où adresse_ip_netportcorrespond à l’adresse IP du serveur
d’impression NetportExpress.
2 Connectez-vous en tant que root.
3 Tapez le mot de passe du serveur d’impression NetportExpress, ou
appuyez sur Entrée si aucun mot de passe n’est requis.
4 Dans le menu principal, sélectionnez TCP/IP Configuration.
5 Sélectionnez l’option que vous souhaitez modifier puis appuyez sur Entrée.
6 Définissez les paramètres que vous souhaitez configurer puis appuyez sur
Entrée.
7 Quittez telnet.
21
Le serveur d’impression NetportExpress offre deux méthodes d’impression :
en utilisant proprint ou lpr/lpd. Le logiciel proprint, qui est fourni avec le
serveur d’impression NetportExpress, vous permet de visualiser l’état de
l’impression grâce à un fichier journal. Comme l’indique le tableau qui suit,
la plupart des systèmes peuvent utiliser proprint. Les instructions
s’appliquent à la configuration de l’impression avec proprint et lpd/lpr.
Système d’exploitation Impression avec proprint Impression avec lpr/lpd
HP-UX X X
SCO X X
Solaris X X
SunOS X X
UnixWare X X
Autres systèmes BSD X
La plupart des versions
4 du système V X
Configuration de l’impression de la station de travail avec proprint
(HP-UX, SCO, Solaris, SunOS, Unixware)
1 Assurez-vous que vous avez déjà installé le logiciel et que vous êtes
connecté à une station de travail UNIX en tant que root.
2 A l’invite de la station de travail UNIX, tapez
cd /usr/intl
3 Tapez ./proinstall
4 Sélectionnez la plate-forme UNIX que vous désirez.
5 Dans le menu principal de proinstall, sélectionnez l’option 2.
6 Suivez les directives affichées à l’écran pour entrer l’adresse IP du serveur
d’impression NetportExpress.
7 Sélectionnez le mode d’impression. Le mode PostScript est utilisé pour la
plupart des impressions PostScript et PCL (Printer Command Language).
Ne choisissez le mode texte que si vous imprimez des fichiers de texte
UNIX.
8 Suivez les directives affichées à l’écran pour entrer le nom de l’imprimante.
9 Suivez les directives affichées à l’écran pour terminer l’installation.
10 Faites un essai d’impression de façon à vérifier votre configuration de
l’hôte UNIX.
Configuration de l’impression à partir d’une
station de travail UNIX
22
Configuration de l’impression d’une station de travail à l’aide de lpr/
lpd dans les environnements Solaris, Unixware et versions 4 du
système V
1 Connectez-vous à votre station de travail UNIX en tant que root.
2 Dans le fichier /etc/hosts, ajoutez un nom d’hôte unique et une adresse IP
pour chaque serveur d’impression NetportExpress à configurer.
3 Configurez la file d’attente d’impression et l’imprimante distante. Vous
pouvez utiliser l’utilitaire System Administration pour ajouter une
imprimante distante de type BSD, ou vous pouvez l’ajouter à partir d’une
ligne de commande en tapant l’une des séquences suivantes.
a Tapez : lpsystem -t bsd host
où host correspond au nom du serveur d’impression de l’étape 2 cidessus.
b Tapez le nom de l’imprimante.
• Pour imprimer des fichiers PostScript ou PCL, tapez sur une
ligne :
lpadmin -p printer -s host!port -I
postscript,simple
• Pour imprimer des fichiers texte UNIX standard, tapez sur une
ligne :
lpadmin -p printer -s host!port-I simple
où :
printer correspond au nom de la file d’attente de l’imprimante.
host correspond au nom du serveur d’impression de l’étape 2
ci-dessus.
port définit une imprimante distante rattachée au serveur
d’impression NetportExpress comme suit
LPT1_PASSTHRU ou LPT1_TEXT (port parallèle 1 ou la carte
interne)
LPT2_PASSTHRU ou LPT1_TEXT (pour port parallèle 2)
COM1_PASSTHRU ou COM1_TEXT (pour le port série)
Remarque : Utilisez PASSTHRU pour les impressions en mode
PCL et PostScript ou pour les fichiers d’application, et utilisez
TEXT si vous imprimez des fichiers texte UNIX standard.
c Tapez :
accept printer
enable printer
où :
printer correspond au nom de la file d’attente de l’imprimante.
23
4 Mettez à l’essai la configuration de l’impression. Tapez à l’invite :
ping host
lp -d printer file
où :
host correspond au nom du serveur d’impression de l’étape 2 ci-dessus.
printer correspond au nom de la file d’attente de l’imprimante.
file correspond au nom du fichier à imprimer.
Configuration de l’impression à l’aide de lpr/lpd sous HP-UX
1 Connectez-vous à votre station de travail HP-UX en tant que root.
2 Dans le fichier /etc/hosts, ajoutez un nom d’hôte unique et une adresse IP
pour chaque serveur d’impression NetportExpress à configurer.
3 Configurez la file d’attente d’impression et l’imprimante distante.
4 Tapez : lpshut
5 Tapez sur une ligne :
lpadmin -pprinter -v/dev/null -ormhost orpport
-ob3
où
printer correspond au nom de la file d’attente du poste local.
host correspond au serveur d’impression NetportExpress.
port définit une imprimante distante rattachée au serveur d’impression
NetportExpress comme suit
LPT1_PASSTHRU ou LPT1_TEXT (pour port parallèle 1 ou la carte
interne)
LPT2_PASSTHRU ou LPT2_TEXT (pour port parallèle 2)
COM1_PASSTHRU ou COM1_TEXT (pour le port série)
Remarque : Utilisez PASSTHRU pour les impressions en mode PCL
et PostScript ou pour les fichiers d’application, et utilisez TEXT si
vous imprimez des fichiers texte UNIX standard.
6 Tapez :
accept printer
enable printer
lpsched
où
printer correspond au nom de la file d’attente du poste local.
24
Configuration de l’impression à l’aide de lpr/lpd sous SunOS et
autres systèmes d’exploitation inspirés de BSD
1 Connectez-vous à votre station de travail UNIX en tant que root.
2 Ajoutez l’adresse IP du serveur d’impression NetportExpress et le nom
d’hôte dans le fichier /etc/hosts sur l’hôte BSD.
3 Ajoutez les entrées suivantes pour l’imprimante en bas du fichier /etc/
printcap.
printer_name|alternate_name|comment:\
:lp=:\
:rm=host:\
:rp=port:\
:mx#0:\
:lf=/usr/spool/lpd/errorlog:\
:sd=/usr/spool/lpd/printer_name:
IMPORTANT : La dernière entrée doit être suivie de deux points (:) et
non pas d’une barre oblique inverse (\).
où :
printer_name|alternate_name correspond au nom de
l’imprimante et au nom de l’imprimante de remplacement. Exemple :
lj3ps|LaserJet_IIIsi
comment correspond à un commentaire facultatif. Exemple :
printer_on_port_1
:lp correspond à un champ obligatoire.
host définit un nom d’hôte. Utilisez soit l’adresse IP du serveur
d’impression NetportExpress ou le nom du serveur d’impression tel qu’il
apparaît dans le fichier /etc/hosts.
port définit une imprimante distante rattachée au serveur d’impression
NetportExpress comme suit :
LPT1_PASSTHRU ou LPT1_TEXT (pour port parallèle 1 ou la carte
interne)
LPT2_PASSTHRU ou LPT2_TEXT (pour port parallèle 2)
COM1_PASSTHRU ou COM1_TEXT (pour le port série)
Remarque : Utilisez PASSTHRU en mode PCL et PostScript ou
pour imprimer des fichiers d’application, et utilisez TEXT pour
imprimer des fichiers texte UNIX standard.
mx#0 fournit un espace mémoire-tampon illimité.
/usr/spool/lpd/errorlogdéfinit l’emplacement du fichier
journal d’erreurs.
/usr/spool/lpd/printer_name définit un répertoire pour les
fichiers spoulés.
25
4 Accédez à l’invite shell puis créez un répertoire spoulé pour l’imprimante,
si celui-ci n’existe pas. Pour ce faire, tapez les commandes suivantes :
mkdir spool_directory
chown daemon spool_directory
chgrp daemon spool_directory
chmod 775 spool_directory
où :
spool_directory est indiqué dans le fichier /etc/printcap par
l’option sd=.
(Exemple : /usr/spool/lpd/lj3ps)
5 Activez la file d’attente de l’imprimante en tapant les commandes
suivantes :
lpc enable printer
où :
printer correspond à l’imprimante locale indiquée dans le fichier /etc/
printcap (par exemple : lj3ps )
6 Activez l’impression en tapant les commandes suivantes :
lpc start printer
où :
PRINTER correspond à l’imprimante locale indiquée dans le fichier /etc/
printcap (lj3ps dans le modèle printcap)
7 Testez la configuration en tapant :
ping host
lpr -P printer file
où :
host correspond au nom du serveur d’impression NetportExpress tel
qu’il apparaît dans le fichier /etc/hosts.
printer correspond au nom de la file d’attente de l’imprimante.
file correspond au nom du fichier à imprimer.
26
Mise à niveau du logiciel microprogrammé à l’aide
de TFTP
Les mises à niveau peuvent être installées avec TFTP (Trivial File Transfer
Protocol). Vous devez avoir accès à un hôte UNIX sur lequel est exécuté le
démon TFTP contenant les fichiers de mise à jour.
Mise à niveau du logiciel microprogrammé à l’aide de TFTP
Suivez les étapes 1 à 4 pour initialiser le démon TFTP. S’il est déjà en cours
d’exécution, passez à l’étape 5.
1 Modifiez le fichier /etc/inetd.conf. A partir de votre station de travail, tapez
une entrée pour votre démon TFTP. Exemple : (pour les utilisateurs de
systèmes Solaris) tapez sur une seule ligne :
tftp dgram upd wait root /usr/sbin/in.tftpd
in.tftpd -s/usr/local/tftpboot
où /usr/local/tftpboot correspond au répertoire de connexion ftp.
2 Sauvegardez le fichier inetd.conf.
3 Utilisez la commande grep pour rechercher l’ID du processus démon inetd.
Vous en aurez besoin pour réinitialiser le démon inet. Tapez
ps -ef | grep -v grep | grep inetd
exemple de sortie :
root 104 1 80 Dec 13 ? 0:01 /usr/sbin/
inetd -s
où 104 représente l’ID du processus démon inetd.
4 Réinitialisez le démon inet. Tapez
kill -HUP process_ID
où process_ID représente l’ID du processus démon inetd obtenu à
l’étape 3 ci-dessus (104 dans l’exemple).
5 Copiez nppro.upd (fichier de mise à jour du réseau) dans le répertoire de
connexion de votre démon TFTP.
6 Tapez telnet adresse IP de NetportExpress pour vous
connecter au serveur d’impression.
7 Dans le menu principal telnet, sélectionnez Utilities, puis Network Update.
8 Entrez l’adresse IP du serveur TFTP, ainsi que le chemin et le nom du
fichier de mise à jour du réseau.
9 Choisissez yes pour poursuivre la procédure de mise à jour du réseau.
Network Update ferme la connexion telnet.
10 Lorsque la procédure de mise à jour du réseau est terminée, vous pouvez
alors taper
telnet netportexpress_ip_address
pour communiquer avec le serveur d’impression NetportExpress.
27
Le serveur d’impression NetportExpress d’Intel peut imprimer dans
l’environnement AIX à l’aide de lpr/lpd. Pour configurer l’impression dans
l’environnement AIX, utilisez SMIT (System Management Interface Tool).
Pour les deux versions (4.1 et 3.2.5), suivre les étapes qui suivent :
• Installation du logiciel
• Définition de l’adresse IP
Consultez la section portant sur l’impression dans la documentation de votre
système AIX pour connaître l’ensemble de la procédure de configuration.
Installation du logiciel
1 Connectez-vous à une station de travail AIX en tant que root.
2 Démarrez le CD-Rom dans /cdrom/npcdrom en tapant
Mount -v cdrfs -o ro /dev/cd0 /cdrom/npcdrom
où
/dev/cd0 correspond au fichier du périphérique du lecteur de CD-ROM.
Il s’agit d’un fichier système. Consultez la documentation du système pour
connaître le nom exact du fichier.
3 Extrayez proflash et les autres fichiers du système d’exploitation en tapant
sur une ligne :
tar xvf /cdrom/npcdrom/unix/prounix.tar /usr/intl/
aix
4 Faites un test d’impression en appuyant sur le bouton « diag » sur le
serveur d’impression NetportExpress.
Définition de l’adresse IP
1 Connectez-vous à votre station de travail AIX en tant que root.
2 Ajoutez une entrée à la table d’hôte en tapant
smit mkhostent
3 Allez à l’invite puis tapez sur une ligne :
arp -s ether ip_address netport_address temp
où
ip_address correspond à l’adresse IP du serveur d’impression
NetportExpress.
netport_address correspond à l’adresse réseau du serveur
d’impression indiqué, au bas du serveur d’impression.
• Pour obtenir une adresse IP que vous pourrez utiliser pour le serveur
d’impression NetportExpress, adressez-vous à votre administrateur
de réseau.
• Pour connaître l’adresse de réseau du serveur d’impression, regardez
au bas du serveur d’impression ou sur la page d’essai de
l’impression.
Configuration en environnement AIX
28
4 Entrez l’adresse IP du serveur d’impression NetportExpress dans le champ
Internet Address et le nom d’hôte de ce serveur dans le champ Host Name
(Host Name représente n’importe quel nom d’hôte correct, choisi sous
UNIX).
5 Appuyez sur la touche F12 pour quitter smit.
6 Connectez-vous au serveur d’impression NetportExpress en tapant :
telnet NetportExpress_ip_address
7 Connectez-vous en tant que root.
8 Dans le menu principal telnet, choisissez l’option TCP/IP Configuration,
tel que le masque de sous-réseau et l’adresse d’une passerelle, que vous
souhaitez configurer et appuyez sur Entrée.
9 Définissez les paramètres pour chaque option que vous souhaitez
configurer et appuyez sur Entrée.
10 Quittez l’écran telnet.
11 Testez la configuration de votre réseau et la connexion en tapant
ping nom_d’hôte_NetportExpress
Impression dans l’environnement AIX 4.1
1 Connectez-vous en tant que root puis tapez
smit mkrque
2 Dans le champ Attachment Type, sélectionnez remote.
3 Tapez le champ de l’option que vous voulez configurer pour l’impression à
distance.
• Name of queue to add. Tapez le nom de la file d’impression locale.
• HOSTNAME of remote server. Tapez le HOSTNAME du serveur
d’impression NetportExpress que vous avez ajouté à la table d’hôte.
• Name of QUEUE on remote server. Les noms de file d’attente
corrects sont les suivants :
LPT1_PASSTHRU ou LPT1_TEXT (pour port parallèle 1 ou la carte
interne)
LPT2_PASSTHRU ou LPT2_TEXT (pour port parallèle 2)
COM1_PASSTHRU ou COM1_TEXT (pour le port série)
Remarque : Utilisez PASSTHRU pour les fichiers PCL, PostScript
ou les fichiers d’application et utilisez TEXT pour les fichiers texte AIX
standard.
• Type of print spooler on remote server. Cliquez sur list, puis sur
BSD, protocole d’impression du serveur d’impression NetportExpress.
4 Cliquez sur OK, puis cliquez sur Done pour sauvegarder votre
configuration.
5 Cliquez sur Cancel pour quitter smit.
6 Testez l’impression AIX avec le serveur d’impression NetportExpress. A
partir de la station de travail, tapez
29
lpr -P file_d’impression_locale/etc/hosts
oùfile_d’attente_d’impression_locale représente le nom
défini dans le champ Name of queue to add.
Impression dans l’environnement AIX 3.2.5
1 Lorsque vous êtes connecté en tant que root, tapez
smit mkrque
2 Tapez un champ pour chaque option que vous souhaitez configurer afin de
créer une file d’attente d’impression pour l’imprimante distante.
• Name of queue to add. Tapez le nom de la file que vous souhaitez
ajouter.
• Activate the queue? Cliquez sur list, puis cliquez sur yes pour activer
ou sur no pour désactiver la file d’attente.
• Destination Host for remote jobs. Tapez le nom de l’hôte que vous
avez ajouté à la table d’hôte.
• Pathname of the Short Form Filter for queue status output.
Cliquez sur list pour sélectionner le chemin d’accès du filtre de format
court que vous souhaitez ajouter.
• Pathname of the Long Form Filter for queue status output.
Cliquez sur list pour sélectionner le chemin d’accès du filtre de format
long que vous souhaitez ajouter.
• Name of queue on remote printer. Les noms de file d’attente corrects
sont les suivants :
LPT1_PASSTHRU ou LPT1_TEXT, LPT2_PASSTHRU ou
LPT2_TEXT, COM1_PASSTHRU ou COM1_TEXT
Remarque : Utilisez PASSTHRU pour les fichiers PCL, PostScript
ou les fichiers d’application et utilisez TEXT pour les fichiers texte
UNIX standard.
• Name of device to add. Tapez le nom de l’imprimante que vous
souhaitez ajouter.
• Backend Program pathname. Tapez
/usr/lpd/rembak
3 Cliquez sur Do, puis appuyez sur la touche F12 pour quitter smit.
4 Testez l’impression AIX avec le serveur d’impression NetportExpress. A
partir de la station de travail AIX, tapez
lpr -P file_d’impression_locale /etc/hosts
où
file_d’impression_locale représente le nom défini dans le
champ Name of queue to add.
30
Le serveur d’impression NetportExpress prend en charge plusieurs outils de
gestion de réseau et d’imprimante. L’application Windows Netport Manager
assure la configuration des serveurs d’impression de même que la
production de rapports d’état et la gestion de tous les systèmes d’exploitation
réseau gérés.
Vous pouvez également accéder à telnet ainsi qu’à une interface Web, Web
Netport Manager, contenant des outils supplémentaires de gestion du
serveur d’impression NetportExpress. Une adresse IP doit être définie pour
le serveur d’impression NetportExpress pour pouvoir accéder à ces services.
Affichage de l’état
Sélectionnez un serveur d’impression NetportExpress et cliquez sur le bouton
Status.
Modification de la vitesse du port parallèle
Sélectionnez un serveur d’impression NetportExpress. Cliquez sur le bouton
Properties et ensuite sur un onglet de port parallèle.
Modification de la configuration
Cliquez à droite d’un serveur d’impression NetportExpress et choisissez
Configure print services du menu automatique.
Restauration des paramètres d’origine par défaut d’un serveur
d’impression NetportExpress
Cliquez à droite du serveur d’impression NetportExpress et choisissez Factory
Defaults dans le menu automatique.
Mise à jour d’un serveur d’impression à l’aide de la technologie
Flash
Sélectionnez les serveurs d’impression NetportExpress que vous désirez mettre
à jour. (Maintenez la touche de majuscules enfoncée pour en sélectionner
plusieurs. Les serveurs sélectionnés doivent être dans le même segment réseau.)
Cliquez sur le bouton Update.
Modification des paramètres de communication (LIP pour NetWare,
par exemple)
Sélectionnez un serveur d’impression NetportExpress et choisissez
communications dans le menu Options.
Utilisation de Netport Manager
Gestion du serveur d’impression
NetportExpress
31
Accès à Web Netport Manager
1 Ouvrez votre explorateur Web.
2 Tapez l’adresse IP du serveur d’impression NetportExpress dans la boîte
Location et appuyez sur Entrée. La page d’accueil de Web Netport
Manager est alors affichée.
Remarque : Pour savoir si le serveur d’impression NetportExpress utilise une
adresse IP, imprimez une page d’essai en appuyant sur le bouton « diag » du
serveur. Consultez la rubrique « Définition d’une adresse IP », pages 15 à 20,
pour savoir comment définir ce type d’adresses.
Utilisation de Web Netport Manager
Vous pouvez également gérer vos serveurs d’impression en utilisant votre
explorateur Web pour vous connecter au serveur Web relié au serveur
d’impression NetportExpress.
Pour exécuter Web Netport Manager, vous devez disposer de Netscape* ou de
Microsoft Internet Explorer*, versions 3.0 ou plus récentes.
Modification du mot de passe
Sélectionnez un serveur d’impression NetportExpress et cliquez sur le bouton
Properties. Cliquez sur l’onglet de mot de passe.
Définition de l’adresse IP
Sélectionnez un serveur d’impression et cliquez sur le bouton Configure.
Sélectionnez TCP/IP. Si l’adresse IP n’est pas affichée, vous pouvez définir
une adresse. Pour toute demande d’adresse IP, adressez-vous à votre
administrateur de réseau.
32
Affichage du menu principal de telnet
1 A partir d’une station de travail utilisant TCP/IP, tapez
telnet netport_ip_address
où adresse_ip_netport correspond à l’adresse IP du serveur
d’impression NetportExpress.
2 Connectez-vous en tant que root en utilisant le mot de passe que vous
avez défini pour le serveur d’impression NetportExpress.
3 Choisissez la tâche que vous désirez exécuter à partir du menu principal.
Support supplémentaire à la gestion
Le serveur d’impression NetportExpress prend en charge les outils de gestion
de réseau suivants :
• Intel Device View for Web® 1.0 (www.intel.com/network)
• Intel LANDesk® Management Suite
• DMI* (Desktop Management Interface)
• SNMP (Simple Network Management Protocol)
Consultez l’aide NetportExpress (NetportExpress Help) pour en savoir plus
sur ces outils.
Utilisation de telnet
33
La meilleure façon de résoudre un problème d’impression est d’aborder celuici
de façon systématique et de savoir où obtenir de l’aide. Cette section
énumère les principales causes des difficultés d’impression les plus courantes.
Les ressources suivantes s’inscrivent en complément des pages qui suivent :
• Module d’assistance Netport Manager Help (Netport Manager Help)
• Module de dépannage (icône Troubleshooting de la fenêtre Netport
Manager)
• Module d’aide Web (sur CD-ROM)
• Section « Support clientèle automatisé Intel » et support clientèle en ligne
Intel (voir la page 43).
Aucun voyant d’activité sur le serveur d’impression NetportExpress
r Le serveur n’est pas alimenté. Veillez à ce qu’il soit relié à une source
d’alimentation.
r Les câbles ne sont pas correctement branchés dans les prises. Vérifiez les
connexions.
r Vous tentez d’utiliser PRO/100 sur un réseau 100 Mbits/s alors que le
concentrateur ne prend pas en charge ce type de réseau. Vérifiez si le
concentrateur utilisé convient.
r Le câble réseau n’est pas connecté. Vérifiez la connexion.
Le voyant d’activité est rouge et clignote sur le serveur d’impression
Nombre de
clignotements Origine
1- 4, 8 Panne de l’unité. Contactez votre fournisseur ou le
support clientèle Intel.
5 Panne du port série. Déconnectez tous les périphériques
du serveur d’impression. Déconnectez et reconnectez le
câble d’alimentation du serveur d’impression.
6 Panne du port parallèle. Déconnectez tous les
périphériques du serveur d’impression. Déconnectez et
reconnectez le câble d’alimentation du serveur
d’impression.
7 Panne de l’interface réseau. Remplacez le câble réseau
ou connectez le serveur d’impression à un emplacement
réseau différent.
Problèmes relatifs au matériel du serveur
d’impression
Dépannage du serveur d’impression
NetportExpress
34
Que signifie le voyant vert 10/100 ?
r Ce voyant, situé au bout du périphérique PRO/100, devrait être éteint (OFF) sur
les systèmes 10 Mbits/s et allumé (ON) sur les systèmes 100 Mbits/s.
Comment faut-il régler les interrupteurs ?
r Serveurs d’impression PRO,version pour réseaux en anneau à jeton seulement
Vitesse du réseau Interrupteur 1 Interrupteur 2
Détection automatique
de la vitesse Vers le haut (Up) Vers le haut (Up)
Réglage à 4 Mbits/s Vers le bas (Down) Vers le bas (Down)
Réglage à 16 Mbits/s Vers le bas (Down) Vers le haut (Up)
r Serveurs d’impression Ethernet PRO et PRO/100
Ne s’applique pas. Les interrupteurs sont réservés pour usage ultérieur.
Problèmes d’impression
Impression impossible (commencez ici dans la plupart des cas)
r La vitesse du port parallèle peut ne pas convenir. La vitesse de ce port doit être
identique à celle de l’imprimante (voir le tableau ci-dessous).
Vitesse du
port parallèle Type d’imprimante utilisant cette vitesse
Basse HP LaserJet 3* ou modèles antérieurs, imprimantes à
matrice de points et imprimantes à jet d’encre
Moyenne Valeur par défaut. HP LaserJet 4* ou l’équivalent et la
plupart des autres imprimantes
Elevée HP LaserJet 5si* (24 ppm) ou imprimantes plus rapides
Logiciel A n’utiliser que si aucune autre vitesse ne convient.
Réglage de la vitesse du port :
• Sous Netport Manager, cliquez sur le bouton Properties.
• Utilisez telnet pour accéder au menu principal telnet et choisissez Port
Configuration.
• A l’aide de l’explorateur Web, entrez l’adresse IP de votre serveur
d’impression NetportExpress et choisissez ensuite Properties.
r L’imprimante est éteinte ou n’est pas en ligne. Assurez-vous que l’imprimante
fonctionne bien. Imprimez une page d’autovérification pour vous en assurer.
r Le serveur d’impression NetportExpress n’est peut-être pas convenablement
configuré. Vérifiez l’état (Status) sous Netport Manager.
35
r Le serveur n’est pas en ligne ou ne fonctionne pas. Vérifiez si les voyants du
serveur d’impression NetportExpress sont bien allumés. Appuyez sur le bouton
diag du périphérique pour imprimer une page d’essai afin de vérifier la
configuration.
r Le câble d’imprimante est trop long ou endommagé. Assurez-vous que ce câble
ne dépasse pas 1,80 m de long. Si vous pensez que le problème se situe au
niveau du câble, remplacez celui-ci avec un câble en bon état.
Impression impossible sous AppleTalk
r Le réseau est peut-être mal configuré. Assurez-vous que le Panneau de
configuration est paramétré sur le réseau approprié (LocalTalk*, EtherTalk* ou
TokenTalk*, selon le cas).
Si EtherTalk est utilisé sur le réseau, assurez-vous qu’il s’agit d’EtherTalk
Phase 2. Pour imprimer à l’aide de Phase 1, connectez le Macintosh au réseau à
l’aide d’un routeur (Apple Internet Router* ou Liaison Internet Router*, par
exemple) assurant le routage entre Phase 1 et Phase 2.
r Vérifiez si le serveur d’impression NetportExpress est configuré pour
l’impression AppleTalk. Vérifiez la configuration du serveur d’impression.
r L’imprimante choisie ne correspond peut-être pas au type d’imprimante (Printer
Type) spécifié sous Netport Manager. Vérifiez si le nom est exactement le
même, y compris la casse (majuscules et minuscules) et les espaces.
Impression impossible sous LAN Manager ou LAN Server
r Des files d’attente peuvent avoir été créées sur un système n’utilisant ni LAN
Manager, ni LAN Server. Vérifiez l’emplacement de chaque file d’attente.
r Les files d’attente peuvent avoir été affectées au mauvais port. Assurez-vous
que les files d’attente sont affectées au port LPT1, LPT2 ou LPT3 du système
utilisant LAN Manager ou LAN Server.
r Il est possible que les files d’attente soient mal configurées. Assurez-vous
qu’un seul port LPT logique soit associé à un port LPT physique donné. Les
files d’attente ne doivent pas toutes être affectées au port logique LPT1.
Impression impossible sous UNIX
r La commande tar, utilisée pour extraire les fichiers proinstall, a peut-être été
utilisée de façon incorrecte. Consultez le manuel.
r Les paramètres d’impression ne conviennent peut-être pas. La plupart des
applications utilisent la commande PASSTHRU pour l’impression. Cette
commande est utilisée par les langages d’impression PCL et PostScript.
N’utilisez la commande TEXT que si vous imprimez un fichier texte UNIX.
36
r Le réseau n’est peut-être pas connecté au serveur d’impression. Utilisez la
commande ping à partir d’une station de travail UNIX pour voir s’il existe une
connectivité IP avec la tâche TCP/IP du serveur d’impression Netport.
r Si vous utilisez proprint sur un hôte SCO, Solaris, UnixWare ou HP-UX,
assurez-vous que le chemin d’accès complet vers proprint soit défini.
Assurez-vous que le fichier lp_scrpt1 spécifie le chemin d’accès exact et
complet vers l’utilitaire proprint. Veillez également à ce que le numéro de tâche
soit spécifié. L’avant-dernière ligne du fichier lp_scrpt1 doit se lire comme suit :
(commandes de l’interpréteur ...) | usr/intl/hupx/
proprint ‘basename $0’ job=1 exit $ ?
r Si vous utilisez proprint, il est possible que le programme ne fonctionne pas.
Assurez-vous en en imprimant une tâche à partir de la ligne de commande, sans
utiliser le spouleur.
r Si vous utilisez lpd sans proprint et l’impression binaire ou des fichiers
PostScript, assurez-vous que le nom de file d’attente est le bon. Ce nom doit
être LPT1_PASSTHRU pour les fichiers ASCII.
Les files d’attente s’allongent, mais rien ne s’imprime
r Un autre serveur dessert peut-être la file d’attente. Sélectionnez une autre file
d’attente ou remplacez la file d’attente utilisée par l’autre serveur d’impression.
r L’imprimante peut être hors ligne ou être réglée pour un type de port invalide
(parallèle ou série). Vérifiez l’imprimante et les ports.
r Le réseau n’est peut-être pas connecté. Vérifiez la connexion. Pouvez-vous
imprimer une page d’essai? Si c’est le cas, vérifiez la connexion réseau entre la
station de travail et le serveur d’impression. Vérifiez également la connexion au
concentrateur ou au commutateur.
r Si la tâche semble s’imprimer, mais que rien ne sort de l’imprimante, c’est peut-
être qu’elle a été acheminée à une autre imprimante.
r Il est possible que les paramètres du pilote soient erronés. Vous tentez peut-être
d’envoyer une tâche PostScript à une imprimante de type autre que PostScript
ou encore d’envoyer une tâche non PostScript à une imprimante PostScript.
La tâche ne s’imprime pas correctement
r Le pilote d’imprimante n’est peut-être pas le bon. Assurez-vous que le pilote
qui convient soit utilisé.
r Il est parfois nécessaire de régler l’imprimante en mode autodétection de
travaux d’impression PostScript.
r Une imprimante PostScript tente peut-être d’imprimer une tâche autre que
PostScript. Vérifiez la tâche d’impression et l’imprimante.
r Si vous copiez un fichier graphique (binaire) vers LPT1, vous utilisez peut-être
un paramètre erroné. Le paramètre doit être /b :
copy /b lpt1
où
est le nom du fichier que vous désirez imprimer.
37
r Novell NetWare seulement. Le paramètre de page de titre peut être erroné.
Insérez le paramètre NT (No Tabs ou pas de tabulation) dans la commande
CAPTURE.
Les caractères ne s’impriment pas correctement
r AppleTalk seulement. Si l’imprimante n’imprime pas les polices correctement,
vérifiez si le groupe de polices spécifié dans Netport Manager est le groupe
approprié pour l’imprimante.
Remarque : Ceci ne s’applique que dans le cas des imprimantes n’ayant
aucune fonction d’impression bidirectionnelle.
L’imprimante série ne fonctionne pas correctement
r Les paramètres du port série ne correspondent peut-être pas à votre imprimante.
Sous Netport Manager, ouvrez le menu Device Properties et vérifier la vitesse
en bauds sous le port série, ainsi que le réglage de la parité, les bits d’arrêt, et
ainsi de suite. Assurez-vous que ces réglages correspondent à votre imprimante.
(Vous pouvez également effectuer cette vérification en entrant votre adresse IP
dans l’explorateur Web pour accéder aux pages Web du serveur d’impression.)
r Il est possible que le serveur d’impression NetportExpress ne soit plus sous
tension ou qu’il soit débranché. Vérifiez, sur l’imprimante, si le voyant de saut
de page ou d’activité est allumé. Réinitialisez l’imprimante pour vider les
données non imprimables. Vous devrez peut-être réinitialiser le serveur
d’impression NetportExpress.
r Le câble est peut-être défectueux. Branchez le câble série à une station de travail
et essayez d’imprimer. Si aucun fichier ne s’imprime à partir de cette station de
travail, remplacez le câble.
L’imprimante insère un espace entre les lignes
r Le cas échéant, désactivez la fonction de retour automatique à la ligne. Si vous
utilisez Netport Manager, sélectionnez le NetportExpress posant problème et
cliquez sur Properties. Dans la fenêtre de paramétrage du port, désactivez la
fonction de retour automatique à la ligne. Vous pouvez également utiliser
l’explorateur Web ou telnet. Consultez la rubrique Gestion du serveur
d’impression NetportExpress à la page 30.
Il est impossible d’imprimer alors que l’impression fonctionnait
auparavant
r Si vous avez changé le nom Netport (Netport Name) ou le nom de partage
(Share Name) de votre serveur d’impression NetportExpress après avoir
configuré celui-ci, le nouveau nom n’apparaît peut-être plus dans la liste des
serveurs d’impression et l’imprimante ne peut donc reconnaître votre serveur.
Supprimez les configurations de port et réaffectez les serveurs d’impression et
les files d’attente, selon le cas.
38
Problèmes liés à Netport Manager
Netport Manager ne peut pas être lancé
r Vérifiez la station de travail. Essayez d’exécuter Netport Manager à partir d’une
autre station.
r La configuration n’est peut-être pas terminée. Si vous venez de configurer ou
de réinitialiser le serveur d’impression NetportExpress, attendez quelques
secondes avant de cliquer sur l’icône de serveur d’impression dans la liste.
Le serveur d’impression NetportExpress est absent ou son nom dans la
liste est inexact
r Il faut peut-être réinitialiser le serveur d’impression NetportExpress.
Débranchez le câble d’alimentation et rebranchez-le. Attendez environ 30
secondes et cliquez sur l’icône de serveur d’impression apparaissant dans la
liste des serveurs d’impression. Si le serveur n’est toujours pas affiché, cliquez
sur le menu View et ensuite sur Refresh.
r Si le voyant d’activité clignote à une fréquence précise, c’est qu’il y a peut-être
un problème au niveau du périphérique. Vérifiez la liste au début de la section
Dépannage. Si vous pensez que le périphérique est défectueux, branchez le
serveur d’impression à un autre branchement réseau pour voir s’il fonctionne à
cet autre endroit.
r Si vous avez changé le nom de partage (Share Name) ou le nom Netport
(Netport Name) de votre serveur d’impression NetportExpress après avoir
configuré celui-ci, il n’apparaît peut-être plus dans Netport Manager.
Reconfigurez le serveur d’impression en spécifiant le(s) nouveau(x) nom(s).
Un message est imprimé au lieu de la tâche
r Si un message s’imprime au lieu de la tâche demandée, c’est que les
communications bidirectionnelles activées pour l’imprimante ne sont pas prises
en charge par cette dernière. Sous Netport Manager, allez à Properties,
sélectionnez le port et désélectionnez l’option de communications
bidirectionnelles.
Le défilement de la liste des serveurs d’impression est lent
r Il est possible que le réseau compte un grand nombre de serveurs d’impression.
Vous pouvez améliorer la performance de Netport Manager en regroupant les
serveurs d’impression.
39
Autres difficultés
Impossible de partager les files d’impression dans LAN Manager
r LAN Manager seulement. Si vous essayez d’utiliser la commande NET
SHARE pour partager une file d’attente qui n’est pas encore affectée à
l’imprimante appropriée, le message DOS suivant apparaît :
The destination list provided does not match the
destination list of the printer queue.
Utilisez NET ADMIN pour contrôler et corriger les affectations imprimantes/
files.
1 A l’invite OS/2 plein écran, tapez :
NET ADMIN
2 Cliquez sur le menu View et ensuite sur Shared Resources.
3 Dans la fenêtre Shared Resources, sélectionnez .
4 Choisissez l’option Printer et cliquez sur OK.
5 Dans la fenêtre Share a Printer Queue with the Network, sélectionnez la
file voulue. Cliquez sur OK.
6 Affichez les informations des ressources partagées (Shared Resource
Information) pour connaître les affectations files/imprimantes. Cliquez sur
Done.
7 Attribuez aux utilisateurs et aux groupes des droits d’accès à la file
d’impression. Sélectionnez l’utilisateur ou le groupe dépourvu de droits
d’accès, puis sélectionnez Yes pour « accès autorisé ». Choisissez Permit
pour ajouter cet utilisateur ou ce groupe à la liste des droits d’accès affectés
(Assigned Permissions). Cliquez sur OK.
8 Quittez NET ADMIN.
Oubli du mot de passe
r Effectuez une mise à jour sérielle pour supprimer le mot de passe existant.
Si le modèle de serveur d’impression NetportExpress ne comporte pas de port
série, contactez le service de support clientèle Intel.
40
Limites de la garantie
Intel garantit au propriétaire initial que le produit fourni dans cet emballage est exempt de vice de
fabrication pièces et main-d’oeuvre pendant une période de trois (3) ans à compter de : (i) la date
d’acquisition sous réserve d’enregistrement en renvoyant la carte d’enregistrement accompagnée
d’une copie du justificatif d’achat; de (ii) la date de fabrication; ou de (iii) la date d’enregistrement
effectué par voie électronique à condition que cet enregistrement intervienne dans un délai de 30
jours suivant l’achat. La garantie sera nulle si le produit est endommagé lors de l’installation. Intel
vous recommande de confier l’installation de ce produit à votre revendeur.
LA GARANTIE CI-DESSUS EXCLUT TOUTE AUTRE GARANTIE, DE QUELQUE NATURE ET A
QUELQUE TITRE QUE CE SOIT, EXPLICITE, IMPLICITE OU REGLEMENTAIRE, ET NOTAMMENT
DES GARANTIES DE COMMERCIALISATION OU D’UTILISATION A UNE FIN DETERMINEE AINSI
QUE DES GARANTIES CONTRE LA VIOLATION DES DROITS DE PROPRIETE INTELLECTUELLE
DE QUELQUE PARTIE QUE CE SOIT OU TOUTE AUTRE GARANTIE EN RAPPORT AVEC UNE
PROPOSITION, UNE SPECIFICATION OU UN ECHANTILLON.
Cette garantie ne couvre pas le remplacement de produits endommagés à la suite d’abus,
accident, mauvaise utilisation, négligence, modification, réparation, sinistre, installation incorrecte
ou test inapproprié. Dans tous les autres cas de défectuosité, les obligations d’Intel se limiteront,
à la discrétion d’Intel, au remplacement ou à la réparation du produit sans autres frais que ceux
indiqués ci-dessous, à condition que le produit soit livré accompagné d’un numéro d’autorisation
de retour de matériel (RMA) (voir ci-dessous) soit au revendeur soit directement à Intel. En cas
d’expédition du produit, vous devez assumer le risque de dommage ou de perte encouru lors du
transport. Vous devez utiliser l’emballage d’origine (ou équivalent) et prendre à votre charge les
frais de transport. Intel peut réparer le produit ou le remplacer par un produit neuf ou
reconditionné, et le produit retourné devient la propriété d’Intel. Intel garantit que le produit
réparé ou remplacé est exempt de vice de fabrication pièces et main-d’oeuvre pendant : (i) une
période de quatre-vingt-dix jours (90) suivant la date de réexpédition; ou (ii) la période de la
garantie d’origine de trois (3) ans restant à courir, au cas où cette période serait plus longue.
Cette garantie vous confère des droits juridiques spécifiques. Il se peut que vous disposiez
d’autres droits, lesquels peuvent varier selon les juridictions. Tous les composants ou toutes les
pièces contenues dans ce produit sont couverts par la garantie limitée d’Intel s’appliquant à ce
produit. Le produit peut contenir des pièces entièrement testées et recyclées, garanties comme si
elles étaient neuves.
Retour d’un produit défectueux (RMA)
Avant de retourner un produit défectueux, contactez un groupe de support clientèle Intel pour
obtenir un numéro d’autorisation de retour de matériel (RMA) :
Amérique du Nord seulement : (916) 377-7000
Ailleurs dans le monde : Retournez le produit au revendeur.
Après s’être assuré que le produit est bien défectueux, le groupe de support clientèle demande au
service d’autorisation des retours de matériel d’émettre un numéro RMA que vous devez inscrire
à l’extérieur de l’emballage. Intel n’accepte pas les produits dont l’emballage ne porte aucun
numéro RMA.
Responsabilité limitée et recours
EN AUCUNE CAS, INTEL NE POURRA ETRE TENUE RESPONSABLE DES DOMMAGES INDIRECTS
OU SPECULATIFS (ET NOTAMMENT DES DOMMAGES INDIRECTS, DES DOMMAGES-INTERETS
ACCESSOIRES ET DES DOMMAGES SPECIAUX RESULTANT DE L’UTILISATION OU DE
L’IMPOSSIBILITE D’UTILISER LE PRODUIT, QUE CE SOIT EN RAPPORT AVEC LE CONTRAT, UNE
NEGLIGENCE, UN TORT OU TOUTE AUTRE GARANTIE OU PAR SUITE DE VIOLATION DES DROITS
DE PROPRIETE INTELLECTUELLE DE QUELQUE PARTIE QUE CE SOIT, MEME SI INTEL A ETE
41
PREVENUE DE L’EVENTUALITE DE TELS DOMMAGES, ET NOTAMMENT PERTE
D’EXPLOITATION, INTERRUPTIONS D’ACTIVITE ET PERTES FINANCIERES EN TOUT ETAT DE
CAUSE, LA RESPONSABILITE D’INTEL EN VERTU DU PRESENT CONTRAT NE POURRA EN
AUCUN CAS EXCEDER LE MONTANT EFFECTIVEMENT PAYE POUR L’ACQUISITION DU PRODUIT.
CES LIMITES DE REPONSABILITES POTENTIELLES ONT ETE UN CRITERE CLE DANS LA
DETERMINATION DU PRIX DU PRODUIT. A CE TITRE, INTEL N’ASSUME AUCUNE
RESPONSABILITE ET N’AUTORISE PERSONNE A LE FAIRE EN SON NOM.
Dans certains pays, la loi ne permet pas la limitation ou l’exclusion de la garantie pour les
dommages-intérêts ou les dommages indirects. Par conséquent, les limitations ou exclusions
susmentionnées ne s’appliquent pas nécessairement à vous.
5/28/97(kc)
Notice FCC relative aux interférences radioélectriques
Ce matériel a été testé et déclaré conforme aux limites imposées à un appareil numérique
de classe A, conformément à l’alinéa 15 de la notice FCC relative aux interférences
radioélectriques. Ces limites sont conçues pour assurer une protection raisonnable
contre les interférences dangereuses dans une installation commerciale.
Ce matériel produit, utilise et peut émettre une énergie à haute fréquence et, s’il n’est pas
installé et utilisé conformément aux instructions, il peut provoquer des interférences
nuisibles pour les radiocommunications. Il n’est toutefois pas garanti que ces
interférences ne se produiront pas sur une installation particulière. S’il s’avère que cet
équipement produit des interférences nuisibles sur une réception radio ou télévisuelle, ce
qui peut être déterminé en mettant hors tension, puis de nouveau sous tension le
matériel, il est conseillé d’essayer de corriger les interférences en prenant l’une ou
plusieurs des mesures suivantes :
• Modifiez l’orientation de l’antenne de réception radio ou TV.
• Dans la mesure du possible, augmentez la distance qui sépare le matériel concerné de
l’antenne de réception.
• Raccordez le matériel à une prise appartenant à un circuit différent de celui du
récepteur.
Si le problème persiste, contactez votre revendeur ou un technicien radio/TV
expérimenté.
REMARQUE Ce matériel est conforme à l’alinéa 15 de la notice FCC relative aux
interférences électromagnétiques. Son exploitation est soumise aux deux
conditions suivantes : (1) Ce matériel ne doit pas provoquer d’interférences,
et (2) ce matériel doit en outre supporter n’importe quelle interférence
reçue, y compris les interférences susceptibles de perturber son
fonctionnement.
AVERTISSEMENT Toute modification n’ayant pas été expressément approuvée par
Intel peut se traduire par l’annulation du droit d’exploitation de ce
matériel dont jouit l’utilisateur.
Normes CE
Le présent serveur d’impression NetportExpress est conforme à la directive de l’UE, 89/
336/EEC, et fait appel aux normes EMC EN55022 (Class A) et EN50082-1. Ce matériel
répond également aux normes de sécurité EN60950.
Ce matériel a été testé et déclaré conforme aux normes CISPR 22 Class A.
42
Canada
Cet appareil numérique respecte les limites bruits radioélectriques applicables aux appareils
numériques de Classe A prescrites dans la norme sur le matériel brouilleur : « Appareils
Numériques », NMB-003 édictée par le Ministre Canadien des Communications.
This digital apparatus does not exceed the Class A limits for radio noise emissions from digital
apparatus set out in the interference-causing equipment standard entitled: “Digital Apparatus,”
ICES-003 of the Canadian Department of Communications.
VCCI Class 1 (Japan)
Intel Corporation, Mailstop JF3-406, 5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497 USA
43
Techniciens du support clientèle Intel
Autres services fournis gratuitement : Vous pouvez consulter nos spécialistes en support
technique sans aucun frais.
Services accessibles dans le monde entier : Intel possède des centres de support technique
dans le monde entier. Le personnel de la plupart de ces centres se compose de techniciens
parlant les langues locales. Pour obtenir la liste des centres de support Intel, les numéros de
téléphone et les heures d’ouverture, téléchargez le document numéro 9089 à partir d’un des
services automatisés.
Si vous n’avez pas accès aux services automatisés, contactez votre revendeur ou distributeur
local.
Ou appelez le +1-916-377-7000 de 07:00 à 17:00, du lundi au vendredi, heure du Pacifique -
Etats-Unis.
03/31/97
Support clientèle automatisé Intel
Vous pouvez accéder aux services du support automatisé d’Intel 24 heures sur 24, tous les jours et
gratuitement. Ces services offrent les toutes dernières informations disponibles sur les produits Intel. Vous
pouvez obtenir des instructions d’installation, des informations de dépannage et de nombreuses notes sur
la compatibilité, ainsi que des informations plus générales sur les produits.
Fichiers World Wide Web & Intel Bulletin Board
d’aide Intel Internet FTP Service (BBS)
Obtenez des Accédez à la page d’accueil Consultez le BBS
informations Intel sur le Web ou modem (8-N-1,
détaillées par téléchargez des informations jusqu’à d’Intel.
l’affichage en ligne à l’aide d’un site anonyme Connexion par
des fichiers FTP. 14,4 Kbps).
README.
Dépannage ✓ ✓
Mises à jour logicielles ✓ ✓
Notes d’installation ✓ ✓
Information sur les produits ✓
Mode d’accès : WWW Etats-Unis et Canada
Généralités : 1-503-264-7999
www.intel.com/network/print Europe
News : news://cs.intel.com +44-1793-432955
Support clientèle : Reste du monde
http://support.intel.com +1-503-264-7999
FTP
Hôte : download.intel.com
/enduser_reseller
Répertoire : /support
44
utilisation de ARP 15
Définition d’une adresse IP
sous UNIX 20
Dépannage 33
DHCP (Dynamic Host Configuration Protocol) 20
DMI (Desktop Management Interface) 32
Domaine 13, 14
E
Etat
affichabe avec Netport Manager 30
F
Fenêtre principale de Netport Manager 7
Fichiers de journalisation
pour proprint 21
Files d’attente
attribution en mode serveur d’impression NDS
de Novell
ll 8
G
Garantie, limites 40
Gestion de réseau
outils supplémentaires 32
H
HP-UX 19
utilisation de proprint 21
HTML
accès à Web Netport Manager 31
I
ID de périphérique 2, 3, 4
Impression
avec LAN Manager ou LAN Server 16
d’une page d’essai 2, 3
impression impossible 34
partage sous LAN Manager ou LAN
Server 17
problème de câblage 35
problèmes courants 34
utilisation de la commande CAPTURE avec
Novell 8
utilisation de proprint 21
Impression dans l’environent Macintosh 18
Impression de LAN Manager/LAN Server 16
impression directe sous Windows 95 13
Impression directe sous Windows NT 3.51 14
Impression directe sous Windows NT 4.0 13
Impression FTP 19
Impression LPR
pour Windows NT 15
impression lpr/lpd 21, 22, 23, 24
impression lpr/lpd dans l'environnement
UNIX 19, 21, 22, 23, 24
impression partagée sous Windows 95 14
Impression partagée sous Windows NT 3.51 14
Impression réseau dans l’environment
Microsoft 12
Imprimantes LaserJet
Index
A
Adresse IP
paramètres Netport Manager 31
paramètres UNIX 20
paramètres Windows NT 15
Adresse MAC. Voir Adresse réseau
Adresse réseau 3, 20, 27
Aide
support clientèle 42
AIX 27
impression dans l’environement AIX 28
impression dans l’environement AIX 3.2.5 29
Alimentation
celle à utiliser 2, 3
AppleTalk
dépannage pour problèmes
d’impression 35, 37
AppleTalk Phase 1 35
Autodétection des débits de données 3
B
BOOTP (protocole Boot) 20
C
Câblage
câble d’alimentation 2
Câbles
Catégorie 3 ou 5 2, 3
parallèles 3
problèmes d'impression 35
Câbles Catégorie 3 ou 5 3
Cartes de serveurs d’impression internes
insertion dans les imprimantes 4
installation du matériel 4
CD-ROM
Logiciel de serveur d’impression
NetportExpress 6
Chooser 18
Configuration
modification à l’aide de Netport Manager 30
pour protocoles multiples 6
Connecteur DB-9 3, 4
Connecteur RJ-45 2, 3
pour carte de serveur d’impression PRO
interne 4
Connecteurs
cartes de serveurs d’impression internes 4
DB-9 3
RJ-45 3
RJ-45 et BNC, pour cartes Ethernet PRO
internes 4
Contexte
pour mode serveur d’impression NDS de
Novell 8
D
Débits de données
réseaux en anneau à jeton 3
Définition d’une adresse
avec Netport Manager 31
45
configuration du mode imprimante distante
NDS 9
configuration pour services bindery 10
licences d’utilisateur 8
mode imprimante distante pour services
bindery 11
NW Admin et PCONSOLE 8, 10
Types de trames 2, 3
O
OS/2
impression avec LAN Manager 16
impression avec LAN Server 17
Outils de gestion d’imprimante 30
Outils de gestion Web 32
P
Page d’essai
(impression) 2, 3
Paramètres avancés de configuracion 30
Paramètres de configuration, advancés 30
Paramètres d’origine
restauraation 30
Passerelle par défaut 20
PASSTHRU 24
PCONSOLE
superflu pour configuration de Netport
Manager 8
PERSERVER.NLM
en mode imprimante distante NDS de
Novell 9
Phase 1, AppleTalk 35
Phase 1 impression avec LocalTalk 18
Phase 2, EtherTalk 35
Problèmes d’impression 34
Problèmes d’impression (imprimante série) 37
problèmes d’impression AppleTalk 37
Produit, retour 40
proprint 19
fichiers de journalisation 21
systèmes pris en charge 21
Protocoles multiples
configuration 6
Protocoles multiples, configuration 6
R
RARP (Reverse Address Resolution Protocol)
20
Réseau en anneau à jeton
débits de données 3
position par défaut 5
Restauration des paramètres d’origine 30
Retour d’un produit défectueux 40
RJ-45 4
S
SCO 19
utilisation de proprint 21
Serveur d’impression
retour 40
Serveur d’impression NetportExpress
installation du logiciel 6
installation des cartes de serveurs
d’impression i 5
Imprimantes LaserWriter 18
Installation du logiciel
AIX 6
UNIX 6
Installation du matériel
instructions pour carte interne 5
Intel Device View pour Web 32
Interrupteurs 5
paramètres 34
paramètres appropriés 34
Interrupteurs, réseau en anneau à jeton
position par défaut 2, 3, 5
L
LANDesk Management Suite 32
Licences d’utilisateur (Novell) 8
LIP (paquet Internet) 8, 10
LocalTalk 18
lpr/lpd
systèmes pris en charge 21
M
Mémoire Flash
mise à jour à l’aide de TFTP 26
Mémorie
mise à niveau de la mémoire Flash à l’aide de
TFTP 26
Microprogramme
mise à niveau à l’aide de TFTP 2, 26
MIO (entrée/sortie modulaire)
fentes de l’imprimante pour cartes de serveurs
d’impression internes
ression internes 5
Mises à jour de la mémoire Flash 30
Mode imprimante distante 11
configuration pour services bindery 11
NDS de Novell 9
Mode serveur d’impression
NDS de Novell 8
Services bindery de Novell NetWare 10
Moniteur de port 12
Mot de passe
modification 31
oubli 39
N
NDS
configuration pour mode serveur
d’impression 8
NDS de Novell NetWare
configuration pour mode serveur
d’impression 8
Netport Manager
utilisation de to manage printing 30
NetportExpress Port Monitor 12
Normes CE 41
Notice FCC relative aux interférences
radioélectri 41
Novell NetWare
46
Serveur d’impression PRO, externe
installation du matériel 3
Serveurs d’impression
Serveur d’impression PRO externe -
Installation du matériel
atériel 3
Services bindery
configuration du mode serveur
d’impression 11
mode serveur d’impression 10
SMIT (System Management Interface Tool) 27
SNMP (Simple Network Management Protocol
32
Solaris 19
impression avec lpr/lpd 22
utilisation de proprint 21
Subnet mask 20
SunOS 19
impression avec lpr/lpd 24
utilisation de proprint 21
Support, clientèle 42
System V, Release 4
impression avec lpr/lpd 22
Systèmes fondés sur BSD
impression avec lpr/lpd 24
T
Telnet 32
réglage des paramètres de configuration 20
TEXT 24
TFTP
mise à niveau de la mémoire flash 26
Types de trames
Novell NetWare 2, 3
U
UnixWare 19
impression avec lpr/lpd 22
utilisation de proprint 21
V
Vitesse du port 30
paramétrage 34
Vitesse du port parallèle
modification à l’aide de Netport Manager 30
Vitesse du réseau
10/100 Mbits/s 2
Voyant d’activité 2, 33
Voyant vert 34
Voyants
vert 34
voyant d’activité 2
voyant rouge d’activité 33
W
Web Netport Manager 31
définition 7
Windows 95
installation du logiciel 6
Windows for Workgroups direct printing 15
Windows for Workgroups printing 15
Windows NT
installation du logiciel 6
Windows pour Workgroups
imprimer directement 15
installation du logiciel 6
Z
Zones 18
48
Installation du matériel
Installation du logiciel
Configuration de NDS de Novell NetWare
Configuration bindery pour Novell NetWare
Impression réseau dans l’environnement Microsoft
Configuration de LAN Manager/LAN Server
Configuration d’AppleTalk
Configuration d’UNIX
Configuration d’AIX
Gestion du serveur d’impression NetportExpressMC
Dépannage
Limites de la garantie/Notice (conformité aux normes)
Support clientèle
Index
*679940-001* 679940-001
Now you can be connected without being tied down – with
Intel® PRO/Wireless 2011 LAN Adapters and Access
Points. Fast and compatible with existing Ethernet
technology, wireless LANs extend the reach and the
usefulness of your wired network resources. From
conference rooms, training centers and cafeterias,
you are free to work, teach or study wherever you’re
most productive. There’s no easier way to provide
reliable, real-time LAN access away from the desk.
Extend your network … or create
a new one
No network? No problem – the Intel® PRO/Wireless 2011 LAN
Solution can serve as the basis for an entirely new network infrastructure, in which
devices are instantly deployed or reconfigured without the costs and concerns of pulling
wires throughout a building. Intel® PRO/Wireless 2011 LAN PC Cards also let you
create ad hoc networks on-the-fly, sharing information in secure peer-to-peer sessions,
allowing communication with only the people you authorize.
Intel is the worldwide leader in Fast Ethernet networking connections1
, and also
co-inventor of the Ethernet, Fast Ethernet and Gigabit Ethernet standards, so it shouldn’t
be surprising that Intel is now providing the best Wireless Ethernet solutions. Intel has
designed these new wireless LAN products to IEEE 802.11b High Rate specifications,
protecting your investment in infrastructure and assuring you of cross-vendor
interoperability.
Fast 11Mbps connectivity based on ■ Interoperates with other 802.11b Wi-Fi*-approved products
IEEE 802.11b High Rate standard ■ Backwards compatible with 802.11 Direct Sequence products
(aka Wireless Ethernet) at 1 and 2Mbps
■ Dynamic rate scaling tunes performance to minimize interference
■ Automatic load balancing and preemptive roaming optimize
each client’s connection to the LAN
■ Seamless bridging between separate Ethernet networks allows
connectivity without cables
Reliable and trusted net access – ■ 128-bit Wired Equivalent Privacy (WEP) protects information
even when you’re not at your desk in transit by adding powerful encryption without a noticeable
impact to performance
■ Bi-directional authentication restricts LAN access to recognized
clients and Access Points via advanced security settings Brand name reliability ■ The quality, reliability and support that you would expect
from the world leader in Fast Ethernet networking connections1
Simple to set up and manage ■ Plug ‘n’ Play adapter installation
■ Browser-based configuration and management with full support
for SNMP v3
■ Integrates into existing Ethernet networks
•
Supporting Features Benefits
•
Intel®
PRO/Wireless 2011
LAN Solution
Networks as mobile as the people who use them
■ Extend LAN
connectivity without
costly wiring
■ Deploy instant
networks at
any location
KEY FEATURES
•
■ Enables mobile roaming
and building-wide
coverage
■ Bridges wired and
wireless networks
■ Eases installation
and management
KEY FEATURES
•
•
Support for data and VoIP
applications, wireless handsets –
Enables converged H.323 voice
and data networks that are
truly mobile.
Network-to-network bridging –
Bridges between wired and wireless
networks and can also connect two
wired networks wirelessly.
Secure access control with
bi-directional authentication –
Use MAC addresses and
pre-defined network IDs to
restrict which adapters and
Access Points can connect
to the network.
Embedded web server –
Configure, monitor and manage Access Points from
anywhere in the world via standard web browser.
Multi-purpose design –
Mounts easily on walls
and ceilings, rests
discreetly on shelves
and filing cabinets.
•
Private, trusted connections
128-bit Wired Equivalent Privacy (WEP) ■ Encrypts transmissions to help ensure privacy while
maintaining speed and quality
Bi-directional authentication ■ Restricts LAN access to recognized clients and
Access Points via advanced security settings
Standards-based design
Compliant with IEEE 802.11b High Rate specification ■ Ensures interoperability with all other 802.11b High Rate
compliant products
Reliable performance
Seamless bridging to, from and between ■ Innovative, cost-effective solution extends the reach of
Ethernet networks wired networks to conference rooms, classrooms, training
centers, etc.
Wireless repeating ■ Extends network coverage to areas that don’t have
network access
Simple to set up and manage
Advanced manageability ■ Allows firmware updates via FTP or a direct serial connection
without taking the Access Point offline ■ Upgrade entire wireless network at one time from one
remote location
Embedded web server with full support for ■ Enables configuration and management with a browser from
SNMP v3 anywhere in the world, so changes take just a few mouse
clicks, not a personal visit
Receives power through the Ethernet cable2 ■ Simplifies set-up and eliminates costly process of running
electricity to each Access Point
Comprehensive site survey tool ■ Makes it easy to optimize Access Point placement for best
(included in every box) coverage and performance
Features Benefits
BNC-mounted 1dB gain diversity antennas –
Provide reliable coverage for most indoor
environments. Built-in BNC connectors also
support a wide variety of optional
specialty antennas.
Intel®
PRO/Wireless 2011 LAN Access Point
The fastest & easiest way to enable network connectivity wherever you need it
Whether you need to extend the reach of a wired network or quickly deploy an all wireless LAN,
Intel® PRO/Wireless 2011 LAN Access Points provide a reliable, easy-to-install network
infrastructure. Intel’s standards-based solution is ideal for historic buildings, leased office spaces,
temporary projects … any location where wired connectivity is not practical or cost-effective.
Uninterrupted connectivity
Advanced roaming scheme ■ Operates continuously and automatically in the background,
so that connection with a new Access Point is established
before the old connection is lost
Mobile IP ■ Seamless roaming across sub-nets without rebooting
Location profiles ■ Enables travel between offices or between home and work
without reconfiguring laptops to log onto a network
International roaming ■ Automatically selects the correct spectrum range when used
in multiple countries
Easy to use and manage
Task Tray indicators ■ Automatic updates keep users informed of signal strength
and quality
PRO/Wireless client utilities ■ Optimize power and performance levels, graph interference
patterns, view transmission statistics
DHCP support ■ Lets clients obtain a leased IP address from a DHCP server,
eliminating the complexity of assigning fixed IP addresses in
a large enterprise
Robust management system ■ Configure and monitor from anywhere in the world via
web browser
Automatic performance optimizations
Load balancing ■ Automatically switches among Access Points to optimize signal
strength and quality, and minimize spectrum sharing
Dynamic rate scaling ■ Always seeks to connect at 11Mbps, then switches (if network
traffic demands) to 5.5, 2 or 1Mbps for increased signal range;
automatically returns to higher speed when conditions allow
Advanced power management ■ Extends laptop battery life to maximize time away from the desk
Ad hoc mode ■ Allows direct peer-to-peer communication without using an
Access Point – perfect for small networks or temporary
project teams
Features Benefits
■ Advanced hardware
design provides
secure, high-speed
connectivity while
roaming
■ Ad hoc mode enables
simple peer-to-peer
networks
■ Intelligent on-board
power management
extends laptop
battery life
KEY FEATURES
DHCP –
Supports the same dynamic
IP address servers as wired networks.
Location profiles –
Allows hassle-free traveling
among networks.
Mobile IP –
Enables roaming
across sub-nets
without rebooting.
Integrated diversity antennas –
Two integrated antennas overcome
multi-path problems for the best
possible connection.
Automatic load balancing
and preemptive roaming –
Continuously monitors signal strength,
signal quality and Access Point
traffic and makes adjustments to
optimize performance.
•
•
•
Intel®
PRO/Wireless 2011
LAN PC Card
Fast, reliable network connectivity – even when you’re not at your desk
Unleash the productivity of your workforce with Intel® PRO/Wireless 2011 LAN PC Cards.
With untethered instant-networking capabilities, users of laptops and other mobile devices can
work where they’re most productive.
Take your network with you
Immediate access to critical information while you’re still in a conference room … real-time
updates to your supply-chain system from the factory floor … ad hoc, peer-to-peer networking
sessions wherever you happen to be … classroom computers and peripherals that communicate
with each other and the Internet instantly and easily – the possibilities of wireless connectivity
come to life with Intel PRO/Wireless 2011 LAN PC Cards.
0600/SG/JN/PP/OC/10K Please Recycle NP1690
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. For the most current product information, please visit http://www.intel.com/network
* Third-party trademarks are the property of their respective owners.
Copyright © 2000, Intel Corporation. All rights reserved.
SPECIFICATIONS Intel® PRO/Wireless LAN PC Card
NOTEBOOK SLOT TYPE Type II 16-bit PC card
SOFTWARE DRIVERS Windows* 2000, 98, 95, NT*, Pocket PC and DOS; Linux*; Palm OS*
DEVICE DRIVERS NDIS2, NDIS3, NDIS4, NDIS5 and ODI
SOFTWARE UTILITIES Location profiles “My WLAN places”; Real-time signal
strength/quality “NIC Utilities”; Diagnostic and Configuration
“NIC Info”; Firmware upgrade “NIC Update”; Site Survey Tool
NETWORK ARCHITECTURE Supports peer-to-peer networking and communication to
TYPES wired networks via Access Points
RANGE AT 1MBPS (TYPICAL) 1500ft (460m) open environment; 300ft (90m) office environment
RANGE AT 11MBPS (TYPICAL) 400ft (120m) open environment; 100ft (30m) office environment
ANTENNA Integrated internal diversity antenna
LED INDICATORS Link status and link activity
RECEIVE SENSITIVITY -87dBm @ 1Mbps; -85dBm @ 2Mbps; -84dBm @ 5.5Mbps
-81dBm @ 11Mbps
MAX OUTPUT POWER Typical 18dBm; Minimum 14dBm
POWER CONSUMPTION Transmit: 300mA typical (500mA max.); Receive: 170mA typical
(300mA max.); Sleep: 10mA typical (25mA max.)
SAFETY COMPLIANCE USA/Canada: UL1950/CSA 22.2; Europe: CE Marked
DIMENSIONS Length: 111mm/4.37in; Width: 54mm/2.23in; Thickness:
5mm/.20in; Weight: 1.6oz/45.36g
SPECIFICATIONS Intel® PRO/Wireless LAN Access Point
STANDARDS CONFORMANCE IEEE 802.11b High Rate, IEEE 802.3 (10BASE-T), 802.1H,
802.1d Spanning Tree, SNMP v2
LOCAL CONFIGURATION Direct console port (serial EIA-232 DB-9 male)
REMOTE CONFIGURATION HTTP, Telnet, SNMP, PPP, tFTP, and Intel feature to perform bulk
configuration to many APs
AUTOMATIC CONFIGURATION BOOTP and DHCP
MAXIMUM CLIENTS 256
MANAGEMENT FEATURES Client Access Control via MAC address; Embedded HTTP Server
SNMP traps; Multilevel passwords
DIAGNOSTIC CAPABILITIES Event logging, data packet tracing, SNMP alarm generation,
operating statistics; Protocol and bandwidth filters; Site Survey
utility with signal strength logging
ROAMING SUPPORT IEEE 802.11b High Rate compliant with Intel enhanced roaming
features; Mobile IP
PERFORMANCE Proxy ARP; Short preamble support; QoS Voice and
ENHANCEMENTS Data Prioritization
SECURITY 64- or 128-bit Encryption; Access Control List;
MD5 Member Authentication (Mobile IP)
RANGE AT 1MBPS (TYPICAL) 1500ft (460m) open environment; 300ft (90m) office environment
RANGE AT 11MBPS (TYPICAL) 400ft (120m) open environment; 100ft (30m) office environment
ANTENNA Two 2.2dBi dipole antennas with diversity support; also supports
specialty antennas
LED INDICATORS Status, network activity, and RF activity
RECEIVE SENSITIVITY -87dBm @ 1Mbps; -85dBm @ 2Mbps; -84dBm @ 5.5Mbps;
-81dBm @ 11Mbps
MAX OUTPUT POWER Typical 18dBm; Minimum 14dBm
POWER SUPPLY Input: 85 to 270V AC; Ouput: 12V DC
POWER ENHANCEMENTS Power over Ethernet option2 (eliminates need for AC power at
AP location)
SAFETY COMPLIANCE USA/Canada: UL1950/CSA 22.2; Europe: CE Marked
DIMENSIONS Length: 15.24cm/6in; Width: 21.59mm/8.5in;
Height: 4.45cm/1.75in; Weight (w/ power supply): 1lbs./0.454kg
HARDWARE SHIPPING Access Point, two dipole antennas, one power supply, one
CONFIGURATION country-specific power supply cord (three in “EU” SKU),
mounting brackets, clips and screws
CUSTOMER SUPPORT
Intel Customer Support Services offers a broad selection of programs. For more
information, contact us on the World Wide Web at support.intel.com/sites/support.
Service and availability may vary by country.
ON-LINE DOCUMENTS
To learn more about Intel ® PRO/Wireless 2011 LAN Solutions, or to connect with an
Intel® Premier Provider in your area, visit us at www.intel.com/network
ORDER CODES
Wireless PC Card, 2.4GHz, 11Mbps
North America WPC2011NA
Europe R&TTE countries, Australia WPC2011EU
France WPC2011FR
Japan WPC2011JP
Wireless Enterprise Access Point, 2.4GHz, 11Mbps
North America WEAP2011NA
Europe R&TTE countries, Australia WEAP2011EU
France WEAP2011FR
Japan WEAP2011JP
FOR PRODUCT INFORMATION
World Wide Web www.intel.com/network
U.S. and Canada 800-538-3373
UK +0870-6072439
France +01-41-918529
Germany +069-9509-6099
Italy +02-696-33276
Spain +91-377-8166
Finland +9-693-79297
Denmark +38-487077
Norway +23-1620-50
Sweden +08-445-1251
Holland +020-487-4562
Japan +81-298-47-0800
Hong Kong, Taiwan, Korea, Singapore and ASEAN +65-213-1000
Australia +61-2-9937-5800
SPECIFICATIONS Intel® PRO/Wireless LAN Product Suite
DYNAMIC RATE SHIFTING 1, 2, 5.5, 11Mbps
(Auto-selects highest usable rate)
NETWORK STANDARD(S) IEEE 802.11b High Rate, 802.3, 802.1H, 802.1d Spanning Tree
FREQUENCY 2.4GHz ISM band
WIRELESS MEDIUM Direct Sequence Spread Spectrum (DSSS)
MEDIA ACCESS CONTROL Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
OPERATING SYSTEMS SUPPORTED Windows* 2000, 98, 95, NT*, and Pocket PC; Linux*; Palm OS*
ENCRYPTION No encryption option; 64-bit WEP encryption option; 128-bit WEP encryption option
MODULATION DBPSK @ 1Mbps; DQPSK @ 2Mbps; CCK @ 5.5 and 11Mbps
OPERATING CHANNELS 11 channels (U.S. and Canada); 13 channels (ETSI compliant countries); 14 channels (Japan)
ROAMING IEEE 802.11b High Rate compliant with Intel enhanced roaming features; Mobile IP with MD5 encryption for member authentication
CERTIFICATION U.S./Canada: FCC Part 15 Class B US Unintentional Emissions; FCC Part 15.247, 15.205, 15.209 US Spread Spectrum; DOC RSS-210 Canadian Spread Spectrum;
Europe: ETS 300 328, ETS 300 826, CE Marked; Japan: RCR STD-33; Contact us for other information outside the U.S.
ENVIRONMENTAL OPERATING RANGES Operating Temperature: -20° to 70°C; Storage Temperature: -30° to 80°C; Operating Altitude: up to 2.4km; Humidity: 95% maximum non-condensing
Shock: 40G, 11mS, half sine; Vibration: 2G peak, sine; 0.02G peak random
WARRANTY Three year: Access Points; Lifetime limited: Client Adapters
1 Dell’Oro Group, 1999
2 Requires optional accessory
Document Number: 317804-010
Intel® Core™2 Duo Processor,
Intel® Pentium® Dual Core
Processor, and Intel® Celeron®
Dual-Core Processor
Thermal and Mechanical Design Guidelines
Supporting the:
- Intel® Core™2 Duo Processor E6000 Δ and E4000 Δ Series
- Intel® Pentium® Dual Core Processor E2000 Δ Series
- Intel® Celeron® Dual-Core Processor E1000Δ Series
December 2008
2 Thermal and Mechanical Design Guidelines
THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED “AS IS” WITH NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION, OR SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO
LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT. Intel
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights
that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide
any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual
property rights.
Intel may make changes to specifications and product descriptions at any time, without notice. Intel accepts no duty to
update specifications or product descriptions with information. Designers must not rely on the absence or characteristics of any
features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising
from product infringement or product warranty. Intel provides this information for customer’s convenience only. Use at your own
risk. Intel accepts no liability for results if customer chooses at its discretion to implement these methods within its business
operations. Intel makes no representations or warranties regarding the accuracy or completeness of the information provided.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting http://www.intel.com .
The Intel® Core™2 Duo processor, Intel® Pentium® Dual Core processor and Intel® Pentium® 4 processor may contain design
defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized
errata are available on request.
∆
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. Over time processor numbers will increment based on changes in clock, speed,
cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any
particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See
www.intel.com/products/processor_number for details.
Intel, Pentium, Core, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2007–2008 Intel Corporation
Thermal and Mechanical Design Guidelines 3
Contents
1 Introduction ...................................................................................................11
1.1 Document Goals and Scope ...................................................................11
1.1.1 Importance of Thermal Management ..........................................11
1.1.2 Document Goals......................................................................11
1.1.3 Document Scope .....................................................................12
1.2 References ..........................................................................................13
1.3 Definition of Terms ...............................................................................13
2 Processor Thermal/Mechanical Information .........................................................15
2.1 Mechanical Requirements ......................................................................15
2.1.1 Processor Package ...................................................................15
2.1.2 Heatsink Attach ......................................................................17
2.2 Thermal Requirements ..........................................................................18
2.2.1 Processor Case Temperature .....................................................18
2.2.2 Thermal Profile .......................................................................19
2.2.3 TCONTROL..................................................................................20
2.3 Heatsink Design Considerations ..............................................................21
2.3.1 Heatsink Size..........................................................................22
2.3.2 Heatsink Mass.........................................................................22
2.3.3 Package IHS Flatness...............................................................23
2.3.4 Thermal Interface Material........................................................23
2.4 System Thermal Solution Considerations .................................................24
2.4.1 Chassis Thermal Design Capabilities...........................................24
2.4.2 Improving Chassis Thermal Performance ....................................24
2.4.3 Summary ...............................................................................25
2.5 System Integration Considerations..........................................................25
3 Thermal Metrology ..........................................................................................27
3.1 Characterizing Cooling Performance Requirements ....................................27
3.1.1 Example ................................................................................28
3.2 Processor Thermal Solution Performance Assessment ................................29
3.3 Local Ambient Temperature Measurement Guidelines.................................29
3.4 Processor Case Temperature Measurement Guidelines ...............................32
4 Thermal Management Logic and Thermal Monitor Feature .....................................33
4.1 Processor Power Dissipation ...................................................................33
4.2 Thermal Monitor Implementation ............................................................33
4.2.1 PROCHOT# Signal ...................................................................34
4.2.2 Thermal Control Circuit ............................................................34
4.2.3 Thermal Monitor 2 ...................................................................35
4.2.4 Operation and Configuration .....................................................36
4.2.5 On-Demand Mode ...................................................................37
4.2.6 System Considerations.............................................................37
4.2.7 Operating System and Application Software Considerations ...........38
4.2.8 THERMTRIP# Signal.................................................................38
4.2.9 Cooling System Failure Warning ................................................38
4 Thermal and Mechanical Design Guidelines
4.2.10 Digital Thermal Sensor.............................................................38
4.2.11 Platform Environmental Control Interface (PECI)..........................39
5 Balanced Technology Extended (BTX) Thermal/Mechanical Design Information ........41
5.1 Overview of the Balanced Technology Extended (BTX) Reference Design ......41
5.1.1 Target Heatsink Performance ....................................................41
5.1.2 Acoustics ...............................................................................42
5.1.3 Effective Fan Curve .................................................................44
5.1.4 Voltage Regulator Thermal Management .....................................45
5.1.5 Altitude..................................................................................46
5.1.6 Reference Heatsink Thermal Validation .......................................46
5.2 Environmental Reliability Testing ............................................................46
5.2.1 Structural Reliability Testing .....................................................46
5.2.2 Power Cycling .........................................................................49
5.2.3 Recommended BIOS/CPU/Memory Test Procedures ......................49
5.3 Material and Recycling Requirements ......................................................49
5.4 Safety Requirements ............................................................................50
5.5 Geometric Envelope for Intel Reference BTX Thermal Module Assembly ........50
5.6 Preload and TMA Stiffness .....................................................................51
5.6.1 Structural Design Strategy........................................................51
5.6.2 TMA Preload versus Stiffness ....................................................51
6 ATX Thermal/Mechanical Design Information.......................................................55
6.1 ATX Reference Design Requirements .......................................................55
6.2 Validation Results for Reference Design ...................................................58
6.2.1 Heatsink Performance ..............................................................58
6.2.2 Acoustics ...............................................................................59
6.2.3 Altitude..................................................................................60
6.2.4 Heatsink Thermal Validation .....................................................60
6.3 Environmental Reliability Testing ............................................................61
6.3.1 Structural Reliability Testing .....................................................61
6.3.2 Power Cycling .........................................................................63
6.3.3 Recommended BIOS/CPU/Memory Test Procedures ......................63
6.4 Material and Recycling Requirements ......................................................63
6.5 Safety Requirements ............................................................................64
6.6 Geometric Envelope for Intel Reference ATX Thermal Mechanical Design ......64
6.7 Reference Attach Mechanism..................................................................65
6.7.1 Structural Design Strategy........................................................65
6.7.2 Mechanical Interface to the Reference Attach Mechanism ..............66
7 Intel® Quiet System Technology (Intel® QST) .....................................................69
7.1 Intel® QST Algorithm ............................................................................69
7.1.1 Output Weighting Matrix ..........................................................70
7.1.2 Proportional-Integral-Derivative (PID) ........................................70
7.2 Board and System Implementation of Intel® QST ......................................72
7.3 Intel® QST Configuration and Tuning.......................................................74
7.4 Fan Hub Thermistor and Intel® QST ........................................................74
Appendix A LGA775 Socket Heatsink Loading ......................................................................75
A.1 LGA775 Socket Heatsink Considerations ..................................................75
A.2 Metric for Heatsink Preload for ATX/uATX Designs Non-Compliant
with Intel® Reference Design .................................................................75
Thermal and Mechanical Design Guidelines 5
A.2.1 Heatsink Preload Requirement Limitations...................................75
A.2.2 Motherboard Deflection Metric Definition.....................................76
A.2.3 Board Deflection Limits ............................................................77
A.2.4 Board Deflection Metric Implementation Example.........................78
A.2.5 Additional Considerations .........................................................79
A.3 Heatsink Selection Guidelines.................................................................80
Appendix B Heatsink Clip Load Metrology ............................................................................81
B.1 Overview ............................................................................................81
B.2 Test Preparation...................................................................................81
B.2.1 Heatsink Preparation................................................................81
B.2.2 Typical Test Equipment ............................................................84
B.3 Test Procedure Examples.......................................................................84
B.3.1 Time-Zero, Room Temperature Preload Measurement ...................85
B.3.2 Preload Degradation under Bake Conditions ................................85
Appendix C Thermal Interface Management.........................................................................87
C.1 Bond Line Management .........................................................................87
C.2 Interface Material Area..........................................................................87
C.3 Interface Material Performance...............................................................87
Appendix D Case Temperature Reference Metrology..............................................................89
D.1 Objective and Scope .............................................................................89
D.2 Supporting Test Equipment....................................................................89
D.3 Thermal Calibration and Controls ............................................................91
D.4 IHS Groove .........................................................................................91
D.5 Thermocouple Attach Procedure .............................................................95
D.5.1 Thermocouple Conditioning and Preparation ................................95
D.5.2 Thermocouple Attachment to the IHS .........................................96
D.5.3 Solder Process ...................................................................... 101
D.5.4 Cleaning and Completion of Thermocouple Installation................ 105
D.6 Thermocouple Wire Management .......................................................... 108
Appendix E Legacy Fan Speed Control .............................................................................. 109
E.1 Thermal Solution Design ..................................................................... 109
E.1.1 Determine Thermistor Set Points ............................................. 109
E.1.2 Minimum Fan Speed Set Point ................................................. 110
E.2 Board and System Implementation ....................................................... 111
E.2.1 Choosing Fan Speed Control Settings ....................................... 111
E.3 Combining Thermistor and On-Die Thermal Sensor Control....................... 115
E.4 Interaction of Thermal Profile and TCONTROL ............................................. 115
Appendix F Balanced Technology Extended (BTX) System Thermal Considerations.................. 121
Appendix G Fan Performance for Reference Design ............................................................. 125
Appendix H Mechanical Drawings ..................................................................................... 128
Appendix I Intel Enabled Reference Solution Information.................................................... 146
6 Thermal and Mechanical Design Guidelines
Figures
Figure 2-1. Package IHS Load Areas ..................................................................15
Figure 2-2. Processor Case Temperature Measurement Location ............................19
Figure 2-3. Example Thermal Profile ..................................................................20
Figure 3-1. Processor Thermal Characterization Parameter Relationships.................28
Figure 3-2. Locations for Measuring Local Ambient Temperature, Active ATX
Heatsink .......................................................................................31
Figure 3-3. Locations for Measuring Local Ambient Temperature, Passive Heatsink ...31
Figure 4-1. Thermal Monitor Control ..................................................................35
Figure 4-2. Thermal Monitor 2 Frequency and Voltage Ordering .............................36
Figure 4-3. TCONTROL for Digital Thermal Sensor................................................39
Figure 5-1. Effective TMA Fan Curves with Reference Extrusion..............................45
Figure 5-2. Random Vibration PSD ....................................................................47
Figure 5-3. Shock Acceleration Curve.................................................................48
Figure 5-4. Intel Type II TMA 65W Reference Design............................................50
Figure 5-5. Upward Board Deflection During Shock ..............................................51
Figure 5-6. Minimum Required Processor Preload to Thermal Module Assembly
Stiffness .......................................................................................52
Figure 5-7. Thermal Module Attach Pointes and Duct-to-SRM Interface Features ......53
Figure 6-1. D60188-001Reference Design – Exploded View ...................................56
Figure 6-2. E18764-001 Reference Design – Exploded View ..................................57
Figure 6-3. Bottom View of Copper Core Applied by TC-1996 Grease ......................57
Figure 6-4. Random Vibration PSD ....................................................................61
Figure 6-5. Shock Acceleration Curve.................................................................62
Figure 6-6. Upward Board Deflection During Shock ..............................................65
Figure 6-7. Reference Clip/Heatsink Assembly.....................................................66
Figure 6-8. Critical Parameters for Interfacing to Reference Clip.............................67
Figure 6-9. Critical Core Dimension ...................................................................67
Figure 7-1. Intel® QST Overview .......................................................................70
Figure 7-2. PID Controller Fundamentals ............................................................71
Figure 7-3. Intel® QST Platform Requirements ....................................................72
Figure 7-4. Example Acoustic Fan Speed Control Implementation...........................73
Figure 7-5. Digital Thermal Sensor and Thermistor ..............................................74
Figure 7-6. Board Deflection Definition ...............................................................77
Figure 7-7. Example: Defining Heatsink Preload Meeting Board Deflection Limit .......79
Figure 7-8. Load Cell Installation in Machined Heatsink Base Pocket – Bottom View ..82
Figure 7-9. Load Cell Installation in Machined Heatsink Base Pocket – Side View ......83
Figure 7-10. Preload Test Configuration..............................................................83
Figure 7-11. Omega Thermocouple ....................................................................90
Figure 7-12. 775-LAND LGA Package Reference Groove Drawing at 6 o’clock Exit .....92
Figure 7-13. 775-LAND LGA Package Reference Groove Drawing at 3 o’clock Exit
(Old Drawing) ..............................................................................93
Figure 7-14. IHS Groove at 6 o’clock Exit on the 775-LAND LGA Package ................94
Figure 7-15. IHS Groove at 6 o’clock Exit Orientation Relative to the LGA775
Socket ........................................................................................94
Figure 7-16. Inspection of Insulation on Thermocouple .........................................95
Figure 7-17. Bending the Tip of the Thermocouple ...............................................96
Figure 7-18. Securing Thermocouple Wires with Kapton* Tape Prior to Attach .........96
Figure 7-19. Thermocouple Bead Placement........................................................97
Figure 7-20. Position Bead on the Groove Step....................................................98
Thermal and Mechanical Design Guidelines 7
Figure 7-21. Detailed Thermocouple Bead Placement ...........................................98
Figure 7-22. Third Tape Installation ...................................................................98
Figure 7-23. Measuring Resistance Between Thermocouple and IHS .......................99
Figure 7-24. Applying Flux to the Thermocouple Bead ........................................ 100
Figure 7-25. Cutting Solder ............................................................................ 100
Figure 7-26. Positioning Solder on IHS ............................................................. 101
Figure 7-27. Solder Station Setup ................................................................... 102
Figure 7-28. View Through Lens at Solder Station.............................................. 103
Figure 7-29. Moving Solder back onto Thermocouple Bead .................................. 103
Figure 7-30. Removing Excess Solder .............................................................. 104
Figure 7-31. Thermocouple placed into groove .................................................. 105
Figure 7-32. Removing Excess Solder .............................................................. 105
Figure 7-33. Filling Groove with Adhesive ......................................................... 106
Figure 7-34. Application of Accelerant .............................................................. 106
Figure 7-35. Removing Excess Adhesive from IHS ............................................. 107
Figure 7-36. Finished Thermocouple Installation ................................................ 107
Figure 7-37. Thermocouple Wire Management................................................... 108
Figure 7-38. Thermistor Set Points .................................................................. 110
Figure 7-39. Example Fan Speed Control Implementation ................................... 111
Figure 7-40. Fan Speed Control....................................................................... 112
Figure 7-41. Temperature Range = 5 °C........................................................... 113
Figure 7-42. Temperature Range = 10 °C ......................................................... 114
Figure 7-43. On-Die Thermal Sensor and Thermistor .......................................... 115
Figure 7-44. FSC Definition Example................................................................ 117
Figure 7-45. System Airflow Illustration with System Monitor Point Area Identified . 122
Figure 7-46. Thermal sensor Location Illustration .............................................. 123
Figure 7-47. ATX/µATX Motherboard Keep-out Footprint Definition and Height
Restrictions for Enabling Components - Sheet 1 .............................. 129
Figure 7-48. ATX/µATX Motherboard Keep-out Footprint Definition and Height
Restrictions for Enabling Components - Sheet 2 .............................. 130
Figure 7-49. ATX/µATX Motherboard Keep-out Footprint Definition and Height
Restrictions for Enabling Components - Sheet 3 .............................. 131
Figure 7-50. BTX Thermal Module Keep Out Volumetric – Sheet 1 ........................ 132
Figure 7-51. BTX Thermal Module Keep Out Volumetric – Sheet 2 ........................ 133
Figure 7-52. BTX Thermal Module Keep Out Volumetric – Sheet 3 ........................ 134
Figure 7-53. BTX Thermal Module Keep Out Volumetric – Sheet 4 ........................ 135
Figure 7-54. BTX Thermal Module Keep Out Volumetric – Sheet 5 ........................ 136
Figure 7-55. ATX Reference Clip – Sheet 1........................................................ 137
Figure 7-56. ATX Reference Clip - Sheet 2 ........................................................ 138
Figure 7-57. Reference Fastener - Sheet 1........................................................ 139
Figure 7-58. Reference Fastener - Sheet 2........................................................ 140
Figure 7-59. Reference Fastener - Sheet 3........................................................ 141
Figure 7-60. Reference Fastener - Sheet 4........................................................ 142
Figure 7-61. Intel® D60188-001 Reference Solution Assembly ............................. 143
Figure 7-62. Intel® D60188-001 Reference Solution Heatsink .............................. 144
Figure 7-63. Intel® E18764-001 Reference Solution Assembly ............................. 145
8 Thermal and Mechanical Design Guidelines
Tables
Table 2-1. Heatsink Inlet Temperature of Intel Reference Thermal Solutions............24
Table 2-2. Heatsink Inlet Temperature of Intel Boxed Processor Thermal Solutions ...24
Table 5-1. Balanced Technology Extended (BTX) Type II Reference TMA
Performance ...................................................................................42
Table 5-2. Acoustic Targets ..............................................................................43
Table 5-3. VR Airflow Requirements...................................................................46
Table 5-4. Processor Preload Limits ...................................................................52
Table 6-1. D60188-001 Reference Heatsink Performance ......................................58
Table 6-2. E18764-001 Reference Heatsink Performance ......................................58
Table 6-3. Acoustic Results for ATX Reference Heatsink (D60188-001) ...................59
Table 6-4. Acoustic Results for ATX Reference Heatsink (E18764-001)....................59
Table 7-1. Board Deflection Configuration Definitions ...........................................76
Table 7-2. Typical Test Equipment .....................................................................84
Table 7-3. FSC Definitions .............................................................................. 116
Table 7-4. ATX FSC Settings ........................................................................... 118
Table 7-5. Balanced Technology Extended (BTX) Fan Speed Control Settings ......... 119
Table 7-6. Fan Electrical Performance Requirements .......................................... 125
Table 7-7. Intel® Representative Contact for Licensing Information of BTX
Reference Design .......................................................................... 146
Table 7-8. D60188-001 Reference Thermal Solution Providers ............................. 146
Table 7-9. E18764-001 Reference Thermal Solution Providers ............................. 147
Table 7-10. Balanced Technology Extended (BTX) Reference Thermal Solution
Providers .................................................................................... 148
Thermal and Mechanical Design Guidelines 9
Revision History
Revision
Number
Description Revision Date
-001 • Initial release. July 2007
-002 • Added Intel® Core™2 Duo Desktop processor E4400 at Tc-max of
73.3 °C.
August 2007
-003 • Added Intel® Pentium® Dual Core processor E2180 specifications August 2007
-004 • Added Intel® Pentium® Dual Core processor E2160 and E2140 at Tcmax
of 73.3 °C
September
2007
-005 • Added Intel® Core™2 Duo Desktop processor E4600 October 2007
-006 • Added Intel® Pentium® Dual Core processor E2200 specifications December 2007
-007 • Added Intel® Celeron® Dual-Core processor E1000Δ
series
• Updated reference design Intel P/N, supplier P/N and heatsink drawing
• Updated Intel® Boxed Processor Thermal Solutions inlet ambient
temperature assumption
January 2008
-008 • Added Intel® Pentium® Dual Core processor E2220 specifications
• Added Intel® Core™2 Duo Desktop processor E4700 specifications
March 2008
-009 • Added Intel® Celeron® Dual-Core processor E1400 April 2008
-010 • Added Intel® Celeron® Dual-Core processor E1500 December 2008
§
10 Thermal and Mechanical Design Guidelines
Introduction
Thermal and Mechanical Design Guidelines 11
1 Introduction
1.1 Document Goals and Scope
1.1.1 Importance of Thermal Management
The objective of thermal management is to ensure that the temperatures of all
components in a system are maintained within their functional temperature range.
Within this temperature range, a component is expected to meet its specified
performance. Operation outside the functional temperature range can degrade system
performance, cause logic errors or cause component and/or system damage.
Temperatures exceeding the maximum operating limit of a component may result in
irreversible changes in the operating characteristics of this component.
In a system environment, the processor temperature is a function of both system and
component thermal characteristics. The system level thermal constraints consist of the
local ambient air temperature and airflow over the processor as well as the physical
constraints at and above the processor. The processor temperature depends in
particular on the component power dissipation, the processor package thermal
characteristics, and the processor thermal solution.
All of these parameters are affected by the continued push of technology to increase
processor performance levels and packaging density (more transistors). As operating
frequencies increase and packaging size decreases, the power density increases while
the thermal solution space and airflow typically become more constrained or remains
the same within the system. The result is an increased importance on system design
to ensure that thermal design requirements are met for each component, including
the processor, in the system.
1.1.2 Document Goals
Depending on the type of system and the chassis characteristics, new system and
component designs may be required to provide adequate cooling for the processor.
The goal of this document is to provide an understanding of these thermal
characteristics and discuss guidelines for meeting the thermal requirements imposed
on single processor systems using the Intel® Core™2 Duo processor E6000 and E4000
series, Intel® Pentium® Dual Core processor E2000 series, and Intel® Celeron® DualCore
processor E1000Δ
series.
The concepts given in this document are applicable to any system form factor. Specific
examples used will be the Intel enabled reference solution for ATX/uATX systems. See
the applicable BTX form factor reference documents to design a thermal solution for
that form factor.
Introduction
12 Thermal and Mechanical Design Guidelines
1.1.3 Document Scope
This design guide supports the following processors:
• Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C applies to
Intel® Core™2 Duo processors E6700, E6600, E6420 and E6320
• Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 72.0 °C applies to
Intel® Core™2 Duo processors E6850, E6750, E6550 and E6540
• Intel® Core™2 Duo processor with 2 MB cache of Tc-max of 72.0 °C applies to
Intel® Core™2 Duo processor E4700
• Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C applies to
Intel® Core™2 Duo processor E6000 series of processors E6400 and E6300 and
Intel® Core™2 Duo processor E4000 series of the processors E4400 and E4300
• Intel® Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C applies to
the Intel® Pentium® Dual Core processors E2160 and E2140
• Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C applies to
Intel® Core™2 Duo processors E6400, E4600, E4500, E4400, and E4300
• Intel® Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C applies to
the Intel® Pentium® Dual Core processors E2220, E2200, E2180, E2160, and
E2140
• Intel® Celeron® dual-core processor E1000 Series of Tc-max of 73.3 °C applies to
the Intel® Celeron ® dual-core processor E1200, E1400, and E1500
In this document when a reference is made to “the processor” it is intended that this
includes all the processors supported by this document. If needed for clarity, the
specific processor will be listed.
In this document, when a reference is made to the “the reference design” it is
intended that this includes all ATX reference designs (D60188-001 and E18764-001)
supported by this document. If needed for clarify, the specific reference design will be
listed.
In this document, when a reference is made to “the Datasheet”, the reader should
refer to the Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo Desktop
Processor E6000 and E4000 Sequences Datasheet, Intel® Pentium® Dual-Core
Desktop Processor E2000 Series Datasheet, or Intel® Celeron ® Dual-Core Processor
E1000 Series Datasheet. If needed for clarity, the specific processor datasheet will be
referenced.
Chapter 2 of this document discusses package thermal mechanical requirements to
design a thermal solution for the processor in the context of personal computer
applications. Chapter 3 discusses the thermal solution considerations and metrology
recommendations to validate a processor thermal solution. Chapter 4 addresses the
benefits of the processor’s integrated thermal management logic for thermal design.
Chapter 5 gives information on the Intel reference thermal solution for the processor
in BTX platform. Chapter 6 gives information on the Intel reference thermal solution
for the processor in ATX platform. Chapter 7 discusses the implementation of acoustic
fan speed control.
The physical dimensions and thermal specifications of the processor that are used in
this document are for illustration only. Refer to the datasheet for the product
dimensions, thermal power dissipation and maximum case temperature. In case of
conflict, the data in the datasheet supersedes any data in this document.
Introduction
Thermal and Mechanical Design Guidelines 13
1.2 References
Material and concepts available in the following documents may be beneficial when
reading this document.
Document Location
Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo
Desktop Processor E6000 and E4000 Series Datasheet
http://intel.com
/design/processor/datashts/3132
78.htm
Intel® Pentium® Dual-Core Desktop Processor E2000 Series
Datasheet
www.intel.com//design/processor
/datashts/316981.htm
Intel® Celeron ® Dual-Core Processor E1000 Series Datasheet http://www.intel.com/design/proc
essor/datashts/318924.htm
LGA775 Socket Mechanical Design Guide http://intel.com/design/
Pentium4/guides/ 302666.htm
uATX SFF Design Guidance http://www.formfactors.org/
Fan Specification for 4-wire PWM Controlled Fans http://www.formfactors.org/
ATX Thermal Design Suggestions http://www.formfactors.org/
microATX Thermal Design Suggestions http://www.formfactors.org/
Balanced Technology Extended (BTX) System Design Guide http://www.formfactors.org/
Thermally Advantaged Chassis version 1.1 http://www.intel.com/go/chassis/
1.3 Definition of Terms
Term Description
TA
The measured ambient temperature locally surrounding the processor. The ambient
temperature should be measured just upstream of a passive heatsink or at the fan inlet
for an active heatsink.
TC
The case temperature of the processor, measured at the geometric center of the topside
of the IHS.
TE
The ambient air temperature external to a system chassis. This temperature is usually
measured at the chassis air inlets.
TS
Heatsink temperature measured on the underside of the heatsink base, at a location
corresponding to TC.
TC-MAX
The maximum case temperature as specified in a component specification.
ΨCA
Case-to-ambient thermal characterization parameter (psi). A measure of thermal
solution performance using total package power. Defined as (TC – TA) / Total Package
Power.
Note: Heat source must be specified for Ψ measurements.
Introduction
14 Thermal and Mechanical Design Guidelines
Term Description
ΨCS
Case-to-sink thermal characterization parameter. A measure of thermal interface
material performance using total package power. Defined as
(TC – TS) / Total Package Power.
Note: Heat source must be specified for Ψ measurements.
ΨSA
Sink-to-ambient thermal characterization parameter. A measure of heatsink thermal
performance using total package power. Defined as
(TS – TA) / Total Package Power.
Note: Heat source must be specified for Ψ measurements.
TIM
Thermal Interface Material: The thermally conductive compound between the heatsink
and the processor case. This material fills the air gaps and voids, and enhances the
transfer of the heat from the processor case to the heatsink.
PMAX The maximum power dissipated by a semiconductor component.
TDP Thermal Design Power: a power dissipation target based on worst-case applications.
Thermal solutions should be designed to dissipate the thermal design power.
IHS Integrated Heat Spreader: a thermally conductive lid integrated into a processor
package to improve heat transfer to a thermal solution through heat spreading.
LGA775
Socket
The surface mount socket designed to accept the processors in the 775–Land LGA
package.
ACPI Advanced Configuration and Power Interface.
Bypass
Bypass is the area between a passive heatsink and any object that can act to form a
duct. For this example, it can be expressed as a dimension away from the outside
dimension of the fins to the nearest surface.
Thermal
Monitor
A feature on the processor that attempts to keep the processor die temperature within
factory specifications.
TCC
Thermal Control Circuit: Thermal Monitor uses the TCC to reduce die temperature by
lowering effective processor frequency when the die temperature has exceeded its
operating limits.
TDIODE Temperature reported from the on-die thermal diode.
FSC
Fan Speed Control: Thermal solution that includes a variable fan speed which is driven
by a PWM signal and uses the on-die thermal diode as a reference to change the duty
cycle of the PWM signal.
TCONTROL TCONTROL is the specification limit for use with the on-die thermal diode.
PWM
Pulse width modulation is a method of controlling a variable speed fan. The enabled 4
wire fans use the PWM duty cycle % from the fan speed controller to modulate the fan
speed.
Health
Monitor
Component
Any standalone or integrated component that is capable of reading the processor
temperature and providing the PWM signal to the 4 pin fan header.
BTX Balanced Technology Extended.
TMA Thermal Module Assembly. The heatsink, fan and duct assembly for the BTX thermal
solution
§
Processor Thermal/Mechanical Information
Thermal and Mechanical Design Guidelines 15
2 Processor Thermal/Mechanical
Information
2.1 Mechanical Requirements
2.1.1 Processor Package
The processors covered in the document are packaged in a 775-Land LGA package
that interfaces with the motherboard via a LGA775 socket. Refer to the datasheet for
detailed mechanical specifications.
The processor connects to the motherboard through a land grid array (LGA) surface
mount socket. The socket contains 775 contacts arrayed about a cavity in the center
of the socket with solder balls for surface mounting to the motherboard. The socket is
named LGA775 socket. A description of the socket is in the LGA775 Socket Mechanical
Design Guide.
The package includes an integrated heat spreader (IHS) that is shown in Figure 2-1
for illustration only. Refer to the processor datasheet for further information. In case
of conflict, the package dimensions in the processor datasheet supersedes dimensions
provided in this document.
Figure 2-1. Package IHS Load Areas
Top Surface of IHS
to install a heatsink
IHS Step
to interface w ith LGA775
Socket Load Plate
Substrate Top Surface of IHS
to install a heatsink
IHS Step
to interface w ith LGA775
Socket Load Plate
Substrate
Processor Thermal/Mechanical Information
16 Thermal and Mechanical Design Guidelines
The primary function of the IHS is to transfer the non-uniform heat distribution from
the die to the top of the IHS, out of which the heat flux is more uniform and spread
over a larger surface area (not the entire IHS area). This allows more efficient heat
transfer out of the package to an attached cooling device. The top surface of the IHS
is designed to be the interface for contacting a heatsink.
The IHS also features a step that interfaces with the LGA775 socket load plate, as
described in LGA775 Socket Mechanical Design Guide. The load from the load plate is
distributed across two sides of the package onto a step on each side of the IHS. It is
then distributed by the package across all of the contacts. When correctly actuated,
the top surface of the IHS is above the load plate allowing proper installation of a
heatsink on the top surface of the IHS. After actuation of the socket load plate, the
seating plane of the package is flush with the seating plane of the socket. Package
movement during socket actuation is along the Z direction (perpendicular to
substrate) only. Refer to the LGA775 Socket Mechanical Design Guide for further
information about the LGA775 socket.
The processor package has mechanical load limits that are specified in the processor
datasheet. The specified maximum static and dynamic load limits should not be
exceeded during their respective stress conditions. These include heatsink installation,
removal, mechanical stress testing, and standard shipping conditions.
• When a compressive static load is necessary to ensure thermal performance of the
thermal interface material between the heatsink base and the IHS, it should not
exceed the corresponding specification given in the processor datasheet.
• When a compressive static load is necessary to ensure mechanical performance, it
should remain in the minimum/maximum range specified in the processor
datasheet
• The heatsink mass can also generate additional dynamic compressive load to the
package during a mechanical shock event. Amplification factors due to the impact
force during shock must be taken into account in dynamic load calculations. The
total combination of dynamic and static compressive load should not exceed the
processor datasheet compressive dynamic load specification during a vertical
shock. For example, with a 0.550 kg [1.2 lb] heatsink, an acceleration of 50G
during an 11 ms trapezoidal shock with an amplification factor of 2 results in
approximately a 539 N [117 lbf] dynamic load on the processor package. If a
178 N [40 lbf] static load is also applied on the heatsink for thermal performance
of the thermal interface material the processor package could see up to a 717 N
[156 lbf]. The calculation for the thermal solution of interest should be compared
to the processor datasheet specification.
No portion of the substrate should be used as a load- bearing surface.
Finally, the processor datasheet provides package handling guidelines in terms of
maximum recommended shear, tensile and torque loads for the processor IHS relative
to a fixed substrate. These recommendations should be followed in particular for
heatsink removal operations.
Processor Thermal/Mechanical Information
Thermal and Mechanical Design Guidelines 17
2.1.2 Heatsink Attach
2.1.2.1 General Guidelines
There are no features on the LGA775 socket to directly attach a heatsink: a
mechanism must be designed to attach the heatsink directly to the motherboard. In
addition to holding the heatsink in place on top of the IHS, this mechanism plays a
significant role in the robustness of the system in which it is implemented, in
particular:
• Ensuring thermal performance of the thermal interface material (TIM) applied
between the IHS and the heatsink. TIMs based on phase change materials are
very sensitive to applied pressure: the higher the pressure, the better the initial
performance. TIMs such as thermal greases are not as sensitive to applied
pressure. Designs should consider a possible decrease in applied pressure over
time due to potential structural relaxation in retention components.
• Ensuring system electrical, thermal, and structural integrity under shock and
vibration events. The mechanical requirements of the heatsink attach mechanism
depend on the mass of the heatsink and the level of shock and vibration that the
system must support. The overall structural design of the motherboard and the
system have to be considered when designing the heatsink attach mechanism.
Their design should provide a means for protecting LGA775 socket solder joints.
One of the strategies for mechanical protection of the socket is to use a preload
and high stiffness clip. This strategy is implemented by the reference design and
described in Section 6.7.
Note: Package pull-out during mechanical shock and vibration is constrained by the LGA775
socket load plate (refer to the LGA775 Socket Mechanical Design Guide for further
information).
2.1.2.2 Heatsink Clip Load Requirement
The attach mechanism for the heatsink developed to support the processor should
create a static preload on the package between 18 lbf and 70 lbf throughout the life
of the product for designs compliant with the reference design assumptions:
• 72 mm x 72 mm mounting hole span for ATX (refer to Figure 7-47).
• TMA preload vs. stiffness for BTX within the limits shown on Figure 5-6.
• And no board stiffening device (backing plate, chassis attach, etc.).
The minimum load is required to protect against fatigue failure of socket solder joint in
temperature cycling.
It is important to take into account potential load degradation from creep over time
when designing the clip and fastener to the required minimum load. This means that,
depending on clip stiffness, the initial preload at beginning of life of the product may
be significantly higher than the minimum preload that must be met throughout the life
of the product. For additional guidelines on mechanical design, in particular on designs
departing from the reference design assumptions refer to Appendix A.
For clip load metrology guidelines, refer to Appendix B.
Processor Thermal/Mechanical Information
18 Thermal and Mechanical Design Guidelines
2.1.2.3 Additional Guidelines
In addition to the general guidelines given above, the heatsink attach mechanism for
the processor should be designed to the following guidelines:
• Holds the heatsink in place under mechanical shock and vibration events and
applies force to the heatsink base to maintain desired pressure on the thermal
interface material. Note that the load applied by the heatsink attach mechanism
must comply with the package specifications described in the processor datasheet.
One of the key design parameters is the height of the top surface of the processor
IHS above the motherboard. The IHS height from the top of board is expected to
vary from 7.517 mm to 8.167 mm. This data is provided for information only, and
should be derived from:
⎯ The height of the socket seating plane above the motherboard after reflow,
given in the LGA775 Socket Mechanical Design Guide with its tolerances.
⎯ The height of the package, from the package seating plane to the top of the
IHS, and accounting for its nominal variation and tolerances that are given in
the corresponding processor datasheet.
• Engages easily, and if possible, without the use of special tools. In general, the
heatsink is assumed to be installed after the motherboard has been installed into
the chassis.
• Minimizes contact with the motherboard surface during installation and actuation
to avoid scratching the motherboard.
2.2 Thermal Requirements
Refer to the datasheet for the processor thermal specifications. The majority of
processor power is dissipated through the IHS. There are no additional components,
e.g., BSRAMs, which generate heat on this package. The amount of power that can be
dissipated as heat through the processor package substrate and into the socket is
usually minimal.
The thermal limits for the processor are the Thermal Profile and TCONTROL. The Thermal
Profile defines the maximum case temperature as a function of power being
dissipated. TCONTROL is a specification used in conjunction with the temperature
reported by the digital thermal sensor and a fan speed control method. Designing to
these specifications allows optimization of thermal designs for processor performance
and acoustic noise reduction.
2.2.1 Processor Case Temperature
For the processor, the case temperature is defined as the temperature measured at
the geometric center of the package on the surface of the IHS. For illustration,
Figure 2-2 shows the measurement location for a 37.5 mm x 37.5 mm
[1.474 in x 1.474 in] 775-Land LGA processor package with a 28.7 mm x 28.7 mm
[1.13 in x 1.13 in] IHS top surface. Techniques for measuring the case temperature
are detailed in Section 3.4.
Note: In case of conflict, the package dimensions in the processor datasheet supersedes
dimensions provided in this document.
Processor Thermal/Mechanical Information
Thermal and Mechanical Design Guidelines 19
Figure 2-2. Processor Case Temperature Measurement Location
37.5 mm
Measure TC at this point
(geometric center of the package)
37.5 mm
37.5 mm
Measure TC at this point
(geometric center of the package)
37.5 mm
2.2.2 Thermal Profile
The Thermal Profile defines the maximum case temperature as a function of processor
power dissipation. The TDP and Maximum Case Temperature are defined as the
maximum values of the thermal profile. By design the thermal solutions must meet
the thermal profile for all system operating conditions and processor power levels.
Refer to the processor datasheet for further information.
While the thermal profile provides flexibility for ATX /BTX thermal design based on its
intended target thermal environment, thermal solutions that are intended to function
in a multitude of systems and environments need to be designed for the worst-case
thermal environment. The majority of ATX /BTX platforms are targeted to function in
an environment that will have up to a 35 °C ambient temperature external to the
system.
Note: For ATX platforms, an active air-cooled design, assumed be used in ATX Chassis, with
a fan installed at the top of the heatsink equivalent to the reference design (see
Chapter 6) should be designed to manage the processor TDP at an inlet temperature
of 35 °C + 5 °C = 40 °C.
For BTX platforms, a front-to-back cooling design equivalent to Intel BTX TMA Type II
reference design (see the Chapter 5) should be designed to manage the processor TDP
at an inlet temperature of 35 °C + 0.5 °C = 35.5 °C.
The slope of the thermal profile was established assuming a generational
improvement in thermal solution performance of the reference design. For an example
of Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C in ATX
platform, its improvement is about 16% over the Intel reference design (D60188-
001). This performance is expressed as the slope on the thermal profile and can be
thought of as the thermal resistance of the heatsink attached to the processor, ΨCA
(Refer to
Processor Thermal/Mechanical Information
20 Thermal and Mechanical Design Guidelines
Section 3.1). The intercept on the thermal profile assumes a maximum ambient
operating condition that is consistent with the available chassis solutions.
To determine compliance to the thermal profile, a measurement of the actual
processor power dissipation is required. The measured power is plotted on the
Thermal Profile to determine the maximum case temperature. Using the example in
Figure 2-3 for the Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C
dissipating 50 W, the maximum case temperature is 56.2 °C. See the datasheet for
the thermal profile.
Figure 2-3. Example Thermal Profile
2.2.3 TCONTROL
TCONTROL defines the maximum operating temperature for the digital thermal sensor
when the thermal solution fan speed is being controlled by the digital thermal sensor.
The TCONTROL parameter defines a very specific processor operating region where fan
speed can be reduced. This allows the system integrator a method to reduce the
acoustic noise of the processor cooling solution, while maintaining compliance to the
processor thermal specification.
Note: The TCONTROL value for the processor is relative to the Thermal Control Circuit (TCC)
activation set point which will be seen as 0 via the digital thermal sensor. As a result
the TCONTROL value will always be a negative number. See Chapter 4 for the
discussion the thermal management logic and features and Chapter 7 on Intel® Quiet
System Technology (Intel® QST).
The value of TCONTROL is driven by a number of factors. One of the most significant of
these is the processor idle power. As a result a processor with a high (closer to 0 )
Processor Thermal/Mechanical Information
Thermal and Mechanical Design Guidelines 21
TCONTROL will dissipate more power than a part with lower value (farther from 0, e.g.,
more negative number) of TCONTROL when running the same application.
This is achieved in part by using the ΨCA vs. RPM and RPM vs. Acoustics (dBA)
performance curves from the Intel enabled thermal solution. A thermal solution
designed to meet the thermal profile would be expected to provide similar acoustic
performance of different parts with potentially different TCONTROL values.
The value for TCONTROL is calculated by the system BIOS based on values read from a
factory configured processor register. The result can be used to program a fan speed
control component. See the appropriate processor datasheet for further details on
reading the register and calculating TCONTROL.
See Chapter 7, Intel® Quiet System Technology (Intel® QST), for details on
implementing a design using TCONTROL and the Thermal Profile.
2.3 Heatsink Design Considerations
To remove the heat from the processor, three basic parameters should be considered:
• The area of the surface on which the heat transfer takes place. Without any
enhancements, this is the surface of the processor package IHS. One method used
to improve thermal performance is by attaching a heatsink to the IHS. A heatsink
can increase the effective heat transfer surface area by conducting heat out of the
IHS and into the surrounding air through fins attached to the heatsink base.
• The conduction path from the heat source to the heatsink fins. Providing a
direct conduction path from the heat source to the heatsink fins and selecting
materials with higher thermal conductivity typically improves heatsink
performance. The length, thickness, and conductivity of the conduction path from
the heat source to the fins directly impact the thermal performance of the
heatsink. In particular, the quality of the contact between the package IHS and
the heatsink base has a higher impact on the overall thermal solution performance
as processor cooling requirements become stricter. Thermal interface material
(TIM) is used to fill in the gap between the IHS and the bottom surface of the
heatsink, and thereby improve the overall performance of the stack-up (IHS-TIMHeatsink).
With extremely poor heatsink interface flatness or roughness, TIM may
not adequately fill the gap. The TIM thermal performance depends on its thermal
conductivity as well as the pressure applied to it. Refer to Section 2.3.4 and
Appendix C for further information on TIM and on bond line management between
the IHS and the heatsink base.
• The heat transfer conditions on the surface on which heat transfer takes
place. Convective heat transfer occurs between the airflow and the surface
exposed to the flow. It is characterized by the local ambient temperature of the
air, TA, and the local air velocity over the surface. The higher the air velocity over
the surface, and the cooler the air, the more efficient is the resulting cooling. The
nature of the airflow can also enhance heat transfer via convection. Turbulent flow
can provide improvement over laminar flow. In the case of a heatsink, the surface
exposed to the flow includes in particular the fin faces and the heatsink base.
Active heatsinks typically incorporate a fan that helps manage the airflow through
the heatsink.
Processor Thermal/Mechanical Information
22 Thermal and Mechanical Design Guidelines
Passive heatsink solutions require in-depth knowledge of the airflow in the chassis.
Typically, passive heatsinks see lower air speed. These heatsinks are therefore
typically larger (and heavier) than active heatsinks due to the increase in fin surface
required to meet a required performance. As the heatsink fin density (the number of
fins in a given cross-section) increases, the resistance to the airflow increases: it is
more likely that the air travels around the heatsink instead of through it, unless air
bypass is carefully managed. Using air-ducting techniques to manage bypass area can
be an effective method for controlling airflow through the heatsink.
2.3.1 Heatsink Size
The size of the heatsink is dictated by height restrictions for installation in a system
and by the real estate available on the motherboard and other considerations for
component height and placement in the area potentially impacted by the processor
heatsink. The height of the heatsink must comply with the requirements and
recommendations published for the motherboard form factor of interest. Designing a
heatsink to the recommendations may preclude using it in system adhering strictly to
the form factor requirements, while still in compliance with the form factor
documentation.
For the ATX/microATX form factor, it is recommended to use:
• The ATX motherboard keep-out footprint definition and height restrictions for
enabling components, defined for the platforms designed with the LGA775 socket
in Appendix H of this design guide.
• The motherboard primary side height constraints defined in the ATX Specification
V2.1 and the microATX Motherboard Interface Specification V1.1 found at
http://www.formfactors.org/.
The resulting space available above the motherboard is generally not entirely available
for the heatsink. The target height of the heatsink must take into account airflow
considerations (for fan performance for example) as well as other design
considerations (air duct, etc.).
For BTX form factor, it is recommended to use:
• The BTX motherboard keep-out footprint definitions and height restrictions for
enabling components for platforms designed with the LGA77 socket in Appendix H
of this design guide.
• An overview of other BTX system considerations for thermal solutions can be
obtained in the latest version of the Balanced Technology Extended (BTX) System
Design Guide found at http://www.formfactors.org/.
2.3.2 Heatsink Mass
With the need to push air cooling to better performance, heatsink solutions tend to
grow larger (increase in fin surface) resulting in increased mass. The insertion of
highly thermally conductive materials like copper to increase heatsink thermal
conduction performance results in even heavier solutions. As mentioned in
Section 2.1, the heatsink mass must take into consideration the package and socket
load limits, the heatsink attach mechanical capabilities, and the mechanical shock and
vibration profile targets. Beyond a certain heatsink mass, the cost of developing and
implementing a heatsink attach mechanism that can ensure the system integrity
under the mechanical shock and vibration profile targets may become prohibitive.
Processor Thermal/Mechanical Information
Thermal and Mechanical Design Guidelines 23
The recommended maximum heatsink mass for the ATX thermal solution is 550g. This
mass includes the fan and the heatsink only. The attach mechanism (clip, fasteners,
etc.) are not included.
The mass limit for BTX heatsinks that use Intel reference design structural ingredients
is 900 grams. The BTX structural reference component strategy and design is
reviewed in depth in the latest version of the Balanced Technology Extended (BTX)
System Design Guide.
Note: The 550g mass limit for ATX solutions is based on the capabilities of the reference
design components that retain the heatsink to the board and apply the necessary
preload. Any reuse of the clip and fastener in derivative designs should not exceed
550g. ATX Designs that have a mass of greater than 550g should analyze the preload
as discussed in Appendix A and retention limits of the fastener.
Note: The chipset components on the board are affected by processor heatsink mass.
Exceeding these limits may require the evaluation of the chipset for shock and
vibration.
2.3.3 Package IHS Flatness
The package IHS flatness for the product is specified in the datasheet and can be used
as a baseline to predict heatsink performance during the design phase.
Intel recommends testing and validating heatsink performance in full mechanical
enabling configuration to capture any impact of IHS flatness change due to combined
socket and heatsink loading. While socket loading alone may increase the IHS
warpage, the heatsink preload redistributes the load on the package and improves the
resulting IHS flatness in the enabled state.
2.3.4 Thermal Interface Material
Thermal interface material application between the processor IHS and the heatsink
base is generally required to improve thermal conduction from the IHS to the
heatsink. Many thermal interface materials can be pre-applied to the heatsink base
prior to shipment from the heatsink supplier and allow direct heatsink attach, without
the need for a separate thermal interface material dispense or attach process in the
final assembly factory.
All thermal interface materials should be sized and positioned on the heatsink base in
a way that ensures the entire processor IHS area is covered. It is important to
compensate for heatsink-to-processor attach positional alignment when selecting the
proper thermal interface material size.
When pre-applied material is used, it is recommended to have a protective application
tape over it. This tape must be removed prior to heatsink installation.
Processor Thermal/Mechanical Information
24 Thermal and Mechanical Design Guidelines
2.4 System Thermal Solution Considerations
2.4.1 Chassis Thermal Design Capabilities
The Intel reference thermal solutions and Intel Boxed Processor thermal solutions
assume that the chassis delivers a maximum TA at the inlet of the processor fan
heatsink. The following tables show the TA requirements for the reference solutions
and Intel Boxed Processor thermal solutions.
Table 2-1. Heatsink Inlet Temperature of Intel Reference Thermal Solutions
ATX D60188-
001
ATX E18764-001 BTX Type II
Heatsink Inlet
Temperature
40 °C 40 °C 35.5 °C
NOTE:
1. Intel reference designs (D60188-001 and E18764-001) are assumed be used in the
chassis where expected the temperature rise is 5 °C.
Table 2-2. Heatsink Inlet Temperature of Intel Boxed Processor Thermal Solutions
Boxed Processor for Intel® Core™2 Duo Processor
E6000 and E4000 Series, Intel® Pentium® Dual Core
Processor E2000 Series, and Intel® Celeron® DualCore
Processor E1000 Series
Heatsink Inlet
Temperature
40 °C
NOTE:
1. Boxed Processor thermal solutions for ATX assume the use of the thermally advantaged
chassis (refer to Thermally Advantaged Chassis version 1.1 for Thermally Advantaged
Chassis thermal and mechanical requirements).
2.4.2 Improving Chassis Thermal Performance
The heat generated by components within the chassis must be removed to provide an
adequate operating environment for both the processor and other system
components. Moving air through the chassis brings in air from the external ambient
environment and transports the heat generated by the processor and other system
components out of the system. The number, size and relative position of fans and
vents determine the chassis thermal performance, and the resulting ambient
temperature around the processor. The size and type (passive or active) of the
thermal solution and the amount of system airflow can be traded off against each
other to meet specific system design constraints. Additional constraints are board
layout, spacing, component placement, acoustic requirements and structural
considerations that limit the thermal solution size. For more information, refer to the
Performance ATX Desktop System Thermal Design Suggestions or Performance
microATX Desktop System Thermal Design Suggestions or Balanced Technology
Extended (BTX) System Design Guide documents available on the
http://www.formfactors.org/ web site.
Processor Thermal/Mechanical Information
Thermal and Mechanical Design Guidelines 25
In addition to passive heatsinks, fan heatsinks and system fans are other solutions
that exist for cooling integrated circuit devices. For example, ducted blowers, heat
pipes and liquid cooling are all capable of dissipating additional heat. Due to their
varying attributes, each of these solutions may be appropriate for a particular system
implementation.
To develop a reliable, cost-effective thermal solution, thermal characterization and
simulation should be carried out at the entire system level, accounting for the thermal
requirements of each component. In addition, acoustic noise constraints may limit the
size, number, placement, and types of fans that can be used in a particular design.
To ease the burden on thermal solutions, the Thermal Monitor feature and associated
logic have been integrated into the silicon of the processor. By taking advantage of
the Thermal Monitor feature, system designers may reduce thermal solution cost by
designing to TDP instead of maximum power. Thermal Monitor attempts to protect the
processor during sustained workload above TDP. Implementation options and
recommendations are described in Chapter 4.
2.4.3 Summary
In summary, considerations in heatsink design include:
• The local ambient temperature TA at the heatsink, which is a function of chassis
design.
• The thermal design power (TDP) of the processor, and the corresponding
maximum TC as calculated from the thermal profile. These parameters are usually
combined in a single lump cooling performance parameter, ΨCA (case to air
thermal characterization parameter). More information on the definition and the
use of ΨCA is given Sections 3.1.
• Heatsink interface to IHS surface characteristics, including flatness and roughness.
• The performance of the thermal interface material used between the heatsink and
the IHS.
• The required heatsink clip static load, between 18 lbf to 70 lbf throughout the life
of the product (Refer to Section 2.1.2.2 for further information).
• Surface area of the heatsink.
• Heatsink material and technology.
• Volume of airflow over the heatsink surface area.
• Development of airflow entering and within the heatsink area.
• Physical volumetric constraints placed by the system
2.5 System Integration Considerations
Manufacturing with Intel® Components using 775–Land LGA Package and LGA775
Socket documentation provides Best Known Methods for all aspects LGA775 socket
based platforms and systems manufacturing. Of particular interest for package and
heatsink installation and removal is the System Assembly module. A video covering
system integration is also available. Contact your Intel field sales representative for
further information.
Processor Thermal/Mechanical Information
26 Thermal and Mechanical Design Guidelines
§
Thermal Metrology
Thermal and Mechanical Design Guidelines 27
3 Thermal Metrology
This chapter discusses guidelines for testing thermal solutions, including measuring
processor temperatures. In all cases, the thermal engineer must measure power
dissipation and temperature to validate a thermal solution. To define the performance
of a thermal solution the “thermal characterization parameter”, Ψ (“psi”) will be used.
3.1 Characterizing Cooling Performance
Requirements
The idea of a “thermal characterization parameter”, Ψ (“psi”), is a convenient way to
characterize the performance needed for the thermal solution and to compare thermal
solutions in identical situations (same heat source and local ambient conditions). The
thermal characterization parameter is calculated using total package power.
Note: Heat transfer is a three-dimensional phenomenon that can rarely be accurately and
easily modeled by a single resistance parameter like Ψ.
The case-to-local ambient thermal characterization parameter value (ΨCA) is used as a
measure of the thermal performance of the overall thermal solution that is attached to
the processor package. It is defined by the following equation, and measured in units
of °C/W:
ΨCA = (TC – TA) / PD (Equation 1)
Where:
ΨCA = Case-to-local ambient thermal characterization parameter (°C/W)
TC = Processor case temperature (°C)
TA = Local ambient temperature in chassis at processor (°C)
PD = Processor total power dissipation (W) (assumes all power dissipates
through the IHS)
The case-to-local ambient thermal characterization parameter of the processor, ΨCA, is
comprised of ΨCS, the thermal interface material thermal characterization parameter,
and of ΨSA, the sink-to-local ambient thermal characterization parameter:
ΨCA = ΨCS + ΨSA (Equation 2)
Where:
ΨCS = Thermal characterization parameter of the thermal interface material
(°C/W)
ΨSA = Thermal characterization parameter from heatsink-to-local ambient
(°C/W)
Thermal Metrology
28 Thermal and Mechanical Design Guidelines
ΨCS is strongly dependent on the thermal conductivity and thickness of the TIM
between the heatsink and IHS.
ΨSA is a measure of the thermal characterization parameter from the bottom of the
heatsink to the local ambient air. ΨSA is dependent on the heatsink material, thermal
conductivity, and geometry. It is also strongly dependent on the air velocity through
the fins of the heatsink.
Figure 3-1 illustrates the combination of the different thermal characterization
parameters.
Figure 3-1. Processor Thermal Characterization Parameter Relationships
TIM
TS
TA
ΨCA
LGA775 Socket
Processor
IHS
System Board
TC
Heatsink
TIM
TS
TA
ΨCA
LGA775 Socket
Processor
IHS
System Board
TC
Heatsink
3.1.1 Example
The cooling performance, ΨCA, is then defined using the principle of thermal
characterization parameter described above:
• The case temperature TC-MAX and thermal design power TDP given in the processor
datasheet.
• Define a target local ambient temperature at the processor, TA.
Since the processor thermal profile applies to all processor frequencies, it is important
to identify the worst case (lowest ΨCA) for a targeted chassis characterized by TA to
establish a design strategy.
The following provides an illustration of how one might determine the appropriate
performance targets. The example power and temperature numbers used here are not
related to any specific Intel processor thermal specifications, and are for illustrative
purposes only.
Thermal Metrology
Thermal and Mechanical Design Guidelines 29
Assume the TDP, as listed in the datasheet, is 100 W and the maximum case
temperature from the thermal profile for 100 W is 67 °C. Assume as well that the
system airflow has been designed such that the local ambient temperature is 38 °C.
Then the following could be calculated using equation 1 (shown on previous page):
ΨCA = (TC,- TA) / TDP = (67 – 38) / 100 = 0.29 °C/W
To determine the required heatsink performance, a heatsink solution provider would
need to determine ΨCS performance for the selected TIM and mechanical load
configuration. If the heatsink solution were designed to work with a TIM material
performing at ΨCS ≤ 0.10 °C/W, solving for equation 2 from above, the performance of
the heatsink would be:
ΨSA = ΨCA − ΨCS = 0.29 − 0.10 = 0.19 °C/W
3.2 Processor Thermal Solution Performance
Assessment
Thermal performance of a heatsink should be assessed using a thermal test vehicle
(TTV) provided by Intel. The TTV is a stable heat source that the user can make
accurate power measurement, whereas processors can introduce additional factors
that can impact test results. In particular, the power level from actual processors
varies significantly, even when running the maximum power application provided by
Intel, due to variances in the manufacturing process. The TTV provides consistent
power and power density for thermal solution characterization and results can be
easily translated to real processor performance. Accurate measurement of the power
dissipated by an actual processor is beyond the scope of this document.
Once the thermal solution is designed and validated with the TTV, it is strongly
recommended to verify functionality of the thermal solution on real processors and on
fully integrated systems. The Intel maximum power application enables steady power
dissipation on a processor to assist in this testing. This maximum power application is
provided by Intel.
3.3 Local Ambient Temperature Measurement
Guidelines
The local ambient temperature TA is the temperature of the ambient air surrounding
the processor. For a passive heatsink, TA is defined as the heatsink approach air
temperature; for an actively cooled heatsink, it is the temperature of inlet air to the
active cooling fan.
It is worthwhile to determine the local ambient temperature in the chassis around the
processor to understand the effect it may have on the case temperature.
TA is best measured by averaging temperature measurements at multiple locations in
the heatsink inlet airflow. This method helps reduce error and eliminate minor spatial
variations in temperature. The following guidelines are meant to enable accurate
determination of the localized air temperature around the processor during system
thermal testing.
Thermal Metrology
30 Thermal and Mechanical Design Guidelines
For active heatsinks, it is important to avoid taking measurement in the dead flow
zone that usually develops above the fan hub and hub spokes. Measurements should
be taken at four different locations uniformly placed at the center of the annulus
formed by the fan hub and the fan housing to evaluate the uniformity of the air
temperature at the fan inlet. The thermocouples should be placed approximately
3 mm to 8 mm [0.1 to 0.3 in] above the fan hub vertically and halfway between the
fan hub and the fan housing horizontally as shown in the ATX heatsink in Figure 3-2
(avoiding the hub spokes). Using an open bench to characterize an active heatsink can
be useful, and usually ensures more uniform temperatures at the fan inlet. However,
additional tests that include a solid barrier above the test motherboard surface can
help evaluate the potential impact of the chassis. This barrier is typically clear
Plexiglas*, extending at least 100 mm [4 in] in all directions beyond the edge of the
thermal solution. Typical distance from the motherboard to the barrier is
81 mm [3.2 in]. For even more realistic airflow, the motherboard should be populated
with significant elements like memory cards, graphic card, and chipset heatsink. If a
barrier is used, the thermocouple can be taped directly to the barrier with a clear tape
at the horizontal location as previously described, half way between the fan hub and
the fan housing. If a variable speed fan is used, it may be useful to add a
thermocouple taped to the barrier above the location of the temperature sensor used
by the fan to check its speed setting against air temperature. When measuring TA in a
chassis with a live motherboard, add-in cards, and other system components, it is
likely that the TA measurements will reveal a highly non-uniform temperature
distribution across the inlet fan section.
For passive heatsinks, thermocouples should be placed approximately 13 mm to
25 mm [0.5 to 1.0 in] away from processor and heatsink as shown in Figure 3-3. The
thermocouples should be placed approximately 51 mm [2.0 in] above the baseboard.
This placement guideline is meant to minimize the effect of localized hot spots from
baseboard components.
Note: Testing an active heatsink with a variable speed fan can be done in a thermal chamber
to capture the worst-case thermal environment scenarios. Otherwise, when doing a
bench top test at room temperature, the fan regulation prevents the heatsink from
operating at its maximum capability. To characterize the heatsink capability in the
worst-case environment in these conditions, it is then necessary to disable the fan
regulation and power the fan directly, based on guidance from the fan supplier.
Thermal Metrology
Thermal and Mechanical Design Guidelines 31
Figure 3-2. Locations for Measuring Local Ambient Temperature, Active ATX Heatsink
Note: Drawing Not to Scale
Figure 3-3. Locations for Measuring Local Ambient Temperature, Passive Heatsink
Note: Drawing Not to Scale
Thermal Metrology
32 Thermal and Mechanical Design Guidelines
3.4 Processor Case Temperature Measurement
Guidelines
To ensure functionality and reliability, the processor is specified for proper operation
when TC is maintained at or below the thermal profile as listed in the datasheet. The
measurement location for TC is the geometric center of the IHS. Figure 2-2 shows the
location for TC measurement.
Special care is required when measuring TC to ensure an accurate temperature
measurement. Thermocouples are often used to measure TC. Before any temperature
measurements are made, the thermocouples must be calibrated, and the complete
measurement system must be routinely checked against known standards. When
measuring the temperature of a surface that is at a different temperature from the
surrounding local ambient air, errors could be introduced in the measurements. The
measurement errors could be caused by poor thermal contact between the junction of
the thermocouple and the surface of the integrated heat spreader, heat loss by
radiation, convection, by conduction through thermocouple leads, or by contact
between the thermocouple cement and the heatsink base.
Appendix D defines a reference procedure for attaching a thermocouple to the IHS of
a 775-Land LGA processor package for TC measurement. This procedure takes into
account the specific features of the 775-Land LGA package and of the LGA775 socket
for which it is intended.
§
Thermal Management Logic and Thermal Monitor Feature
Thermal and Mechanical Design Guidelines 33
4 Thermal Management Logic and
Thermal Monitor Feature
4.1 Processor Power Dissipation
An increase in processor operating frequency not only increases system performance,
but also increases the processor power dissipation. The relationship between
frequency and power is generalized in the following equation:
P = CV2
F (where P = power, C = capacitance, V = voltage, F = frequency). From this
equation, it is evident that power increases linearly with frequency and with the
square of voltage. In the absence of power saving technologies, ever increasing
frequencies will result in processors with power dissipations in the hundreds of watts.
Fortunately, there are numerous ways to reduce the power consumption of a
processor, and Intel is aggressively pursuing low power design techniques. For
example, decreasing the operating voltage, reducing unnecessary transistor activity,
and using more power efficient circuits can significantly reduce processor power
consumption.
An on-die thermal management feature called Thermal Monitor is available on the
processor. It provides a thermal management approach to support the continued
increases in processor frequency and performance. By using a highly accurate on-die
temperature sensing circuit and a fast acting Thermal Control Circuit (TCC), the
processor can rapidly initiate thermal management control. The Thermal Monitor can
reduce cooling solution cost, by allowing thermal designs to target TDP.
The processor also supports an additional power reduction capability known as
Thermal Monitor 2 described in Section 4.2.3.
4.2 Thermal Monitor Implementation
The Thermal Monitor consists of the following components:
• A highly accurate on-die temperature sensing circuit
• A bi-directional signal (PROCHOT#) that indicates if the processor has exceeded
its maximum temperature or can be asserted externally to activate the Thermal
Control Circuit (TCC) (see Section 4.2.1 for more details on user activation of TCC
via PROCHOT# signal)
• A Thermal Control Circuit that will attempt to reduce processor temperature by
rapidly reducing power consumption when the on-die temperature sensor indicates
that it has exceeded the maximum operating point.
• Registers to determine the processor thermal status.
Thermal Management Logic and Thermal Monitor Feature
34 Thermal and Mechanical Design Guidelines
4.2.1 PROCHOT# Signal
The primary function of the PROCHOT# signal is to provide an external indication the
processor has reached the TCC activation temperature. While PROCHOT# is asserted,
the TCC will be active. Assertion of the PROCHOT# signal is independent of any
register settings within the processor. It is asserted any time the processor die
temperature reaches the trip point.
PROCHOT# can be configured via BIOS as an output or bi-directional signal. As an
output, PROCHOT# will go active when the processor temperature of either core
reaches the TCC activation temperature. As an input, assertion of PROCHOT# will
activate the TCC for both cores. The TCC will remain active until the system deasserts
PROCHOT#.
The temperature at which the PROCHOT# signal goes active is individually calibrated
during manufacturing. Once configured, the processor temperature at which the
PROCHOT# signal is asserted is not re-configurable.
One application of the Bi-directional PROCHOT# is for the thermal protection of
voltage regulators (VR). System designers can implement a circuit to monitor the VR
temperature and activate the TCC when the temperature limit of the VR is reached. By
asserting PROCHOT# (pulled-low) which activates the TCC, the VR can cool down as a
result of reduced processor power consumption. Bi-directional PROCHOT# can allow
VR thermal designs to target maximum sustained current instead of maximum
current. Systems should still provide proper cooling for the VR, and rely on bidirectional
PROCHOT# signal only as a backup in case of system cooling failure.
Note: A thermal solution designed to meet the thermal profile specifications should rarely
experience activation of the TCC as indicated by the PROCHOT# signal going active.
4.2.2 Thermal Control Circuit
The Thermal Control Circuit portion of the Thermal Monitor must be enabled for the
processor to operate within specifications. The Thermal Monitor’s TCC, when active,
will attempt to lower the processor temperature by reducing the processor power
consumption. There are two methods by which TCC can reduce processor power
dissipation. These methods are referred to as Thermal Monitor 1 (TM1) and Thermal
Monitor 2 (TM2).
4.2.2.1 Thermal Monitor
In the original implementation of thermal monitor this is done by changing the duty
cycle of the internal processor clocks, resulting in a lower effective frequency. When
active, the TCC turns the processor clocks off and then back on with a predetermined
duty cycle. The duty cycle is processor specific, and is fixed for a particular processor.
The maximum time period the clocks are disabled is ~3 μs. This time period is
frequency dependent and higher frequency processors will disable the internal clocks
for a shorter time period. Figure 4-1 illustrates the relationship between the internal
processor clocks and PROCHOT#.
Performance counter registers, status bits in model specific registers (MSRs), and the
PROCHOT# output pin are available to monitor the Thermal Monitor behavior.
Thermal Management Logic and Thermal Monitor Feature
Thermal and Mechanical Design Guidelines 35
Figure 4-1. Thermal Monitor Control
PROCHOT#
Resultant
internal clock
Normal clock
Internal clock
Duty cycle
control
4.2.3 Thermal Monitor 2
The second method of power reduction is TM2. TM2 provides an efficient means of
reducing the power consumption within the processor and limiting the processor
temperature.
When TM2 is enabled, and a high temperature situation is detected, the enhanced TCC
will be activated. The enhanced TCC causes the processor to adjust its operating
frequency (by dropping the bus-to-core multiplier to its minimum available value) and
input voltage identification (VID) value. This combination of reduced frequency and
VID results in a reduction in processor power consumption.
A processor enabled for TM2 includes two operating points, each consisting of a
specific operating frequency and voltage. The first operating point represents the
normal operating condition for the processor.
The second operating point consists of both a lower operating frequency and voltage.
When the TCC is activated, the processor automatically transitions to the new
frequency. This transition occurs very rapidly (on the order of 5 microseconds). During
the frequency transition, the processor is unable to service any bus requests, all bus
traffic is blocked. Edge-triggered interrupts will be latched and kept pending until the
processor resumes operation at the new frequency.
Once the new operating frequency is engaged, the processor will transition to the new
core operating voltage by issuing a new VID code to the voltage regulator. The
voltage regulator must support VID transitions in order to support TM2. During the
voltage change, it will be necessary to transition through multiple VID codes to reach
the target operating voltage. Each step will be one VID table entry (i.e. 12.5 mV
steps). The processor continues to execute instructions during the voltage transition.
Operation at the lower voltage reduces the power consumption of the processor,
providing a temperature reduction.
Thermal Management Logic and Thermal Monitor Feature
36 Thermal and Mechanical Design Guidelines
Once the processor has sufficiently cooled, and a minimum activation time has
expired, the operating frequency and voltage transition back to the normal system
operating point. Transition of the VID code will occur first, in order to insure proper
operation once the processor reaches its normal operating frequency. Refer to
Figure 4-2 for an illustration of this ordering.
Figure 4-2. Thermal Monitor 2 Frequency and Voltage Ordering
VID
Frequency
Temperature TTM2
f
MAX
f
TM2
VID
VIDTM2
PROCHOT#
Time
Refer to the datasheet for further information on TM2.
4.2.4 Operation and Configuration
Thermal Monitor must be enabled to ensure proper processor operation.
The Thermal Control Circuit feature can be configured and monitored in a number of
ways. OEMs are required to enable the Thermal Control Circuit while using various
registers and outputs to monitor the processor thermal status. The Thermal Control
Circuit is enabled by the BIOS setting a bit in an MSR (model specific register).
Enabling the Thermal Control Circuit allows the processor to attempt to maintain a
safe operating temperature without the need for special software drivers or interrupt
handling routines. When the Thermal Control Circuit has been enabled, processor
power consumption will be reduced after the thermal sensor detects a high
temperature, i.e. PROCHOT# assertion. The Thermal Control Circuit and PROCHOT#
transitions to inactive once the temperature has been reduced below the thermal trip
point, although a small time-based hysteresis has been included to prevent multiple
PROCHOT# transitions around the trip point. External hardware can monitor
PROCHOT# and generate an interrupt whenever there is a transition from active-toinactive
or inactive-to-active. PROCHOT# can also be configured to generate an
internal interrupt which would initiate an OEM supplied interrupt service routine.
Thermal Management Logic and Thermal Monitor Feature
Thermal and Mechanical Design Guidelines 37
Regardless of the configuration selected, PROCHOT# will always indicate the thermal
status of the processor.
The power reduction mechanism of thermal monitor can also be activated manually
using an “on-demand” mode. Refer to Section 4.2.5 for details on this feature.
4.2.5 On-Demand Mode
For testing purposes, the thermal control circuit may also be activated by setting bits
in the ACPI MSRs. The MSRs may be set based on a particular system event (e.g., an
interrupt generated after a system event), or may be set at any time through the
operating system or custom driver control thus forcing the thermal control circuit on.
This is referred to as “on-demand” mode. Activating the thermal control circuit may be
useful for thermal solution investigations or for performance implication studies. When
using the MSRs to activate the on-demand clock modulation feature, the duty cycle is
configurable in steps of 12.5%, from 12.5% to 87.5%.
For any duty cycle, the maximum time period the clocks are disabled is ~3 μs. This
time period is frequency dependent, and decreases as frequency increases. To achieve
different duty cycles, the length of time that the clocks are disabled remains constant,
and the time period that the clocks are enabled is adjusted to achieve the desired
ratio. For example, if the clock disable period is 3 µs, and a duty cycle of ¼ (25%) is
selected, the clock on time would be reduced to approximately 1 μs [on time (1 μs) ÷
total cycle time (3 + 1) μs = ¼ duty cycle]. Similarly, for a duty cycle of 7/8 (87.5%),
the clock on time would be extended to 21 μs [21 ÷ (21 + 3) = 7/8 duty cycle].
In a high temperature situation, if the thermal control circuit and ACPI MSRs
(automatic and on-demand modes) are used simultaneously, the fixed duty cycle
determined by automatic mode would take precedence.
Note: On-demand mode can not activate the power reduction mechanism of Thermal
Monitor 2
4.2.6 System Considerations
Intel requires the Thermal Monitor and Thermal Control Circuit to be enabled for all
processors. The thermal control circuit is intended to protect against short term
thermal excursions that exceed the capability of a well designed processor thermal
solution. Thermal Monitor should not be relied upon to compensate for a thermal
solution that does not meet the thermal profile up to the thermal design power (TDP).
Each application program has its own unique power profile, although the profile has
some variability due to loop decisions, I/O activity and interrupts. In general, compute
intensive applications with a high cache hit rate dissipate more processor power than
applications that are I/O intensive or have low cache hit rates.
The processor TDP is based on measurements of processor power consumption while
running various high power applications. This data is used to determine those
applications that are interesting from a power perspective. These applications are then
evaluated in a controlled thermal environment to determine their sensitivity to
activation of the thermal control circuit. This data is used to derive the TDP targets
published in the processor datasheet.
Thermal Management Logic and Thermal Monitor Feature
38 Thermal and Mechanical Design Guidelines
A system designed to meet the thermal profile specification published in the processor
datasheet greatly reduces the probability of real applications causing the thermal
control circuit to activate under normal operating conditions. Systems that do not
meet these specifications could be subject to more frequent activation of the thermal
control circuit depending upon ambient air temperature and application power profile.
Moreover, if a system is significantly under designed, there is a risk that the Thermal
Monitor feature will not be capable of reducing the processor power and temperature
and the processor could shutdown and signal THERMTRIP#.
For information regarding THERMTRIP#, refer to the processor datasheet and to
Section 4.2.8 of this Thermal Design Guidelines.
4.2.7 Operating System and Application Software
Considerations
The Thermal Monitor feature and its thermal control circuit work seamlessly with ACPI
compliant operating systems. The Thermal Monitor feature is transparent to
application software since the processor bus snooping, ACPI timer, and interrupts are
active at all times.
4.2.8 THERMTRIP# Signal
In the event of a catastrophic cooling failure, the processor will automatically shut
down when the silicon temperature has exceeded the TCC activation temperature by
approximately 20 to 25 °C. At this point the system bus signal THERMTRIP# goes
active and power must be removed from the processor. THERMTRIP# activation is
independent of processor activity and does not generate any bus cycles. Refer to the
processor datasheet for more information about THERMTRIP#.
The temperature where the THERMTRIP# signal goes active is individually calibrated
during manufacturing and once configuration can not be changed.
4.2.9 Cooling System Failure Warning
It may be useful to use the PROCHOT# signal as an indication of cooling system
failure. Messages could be sent to the system administrator to warn of the cooling
failure, while the thermal control circuit would allow the system to continue
functioning or allow a normal system shutdown. If no thermal management action is
taken, the silicon temperature may exceed the operating limits, causing THERMTRIP#
to activate and shut down the processor. Regardless of the system design
requirements or thermal solution ability, the Thermal Monitor feature must still be
enabled to ensure proper processor operation.
4.2.10 Digital Thermal Sensor
Multiple digital thermal sensors can be implemented within the package without
adding a pair of signal pins per sensor as required with the thermal diode. The digital
thermal sensor is easier to place in thermally sensitive locations of the processor than
the thermal diode. This is achieved due to a smaller foot print and decreased
sensitivity to noise. Since the DTS is factory set on a per-part basis there is no need
for the health monitor components to be updated at each processor family
Thermal Management Logic and Thermal Monitor Feature
Thermal and Mechanical Design Guidelines 39
The processor introduces the Digital Thermal Sensor (DTS) as the on-die sensor to use
for fan speed control (FSC). The DTS will eventually replace the on-die thermal diode
used in pervious products. The processor will have both the DTS and thermal diode
enabled. The DTS is monitoring the same sensor that activates the TCC (see
Section 4.2.2). Readings from the DTS are relative to the activation of the TCC. The
DTS value where TCC activation occurs is 0 (zero).
A TCONTROL value will be provided for use with DTS. The usage model for TCONTROL with
the DTS is the same as with the on-die thermal diode:
• If the Digital thermal sensor is less than TCONTROL, the fan speed can be reduced.
• If the Digital thermal sensor is greater than or equal to TCONTROL, then TC must be
maintained at or below the Thermal Profile for the measured power dissipation.
The calculation of TCONTROL is slightly different from previous product. There is no base
value to sum with the TOFFSET located in the same MSR as used in previous processors.
The BIOS only needs to read the TOFFSET MSR and provide this value to the fan speed
control device.
Figure 4-3. TCONTROL for Digital Thermal Sensor
Digital Thermometer Temperature
30
20
10
70
60
50
40
30
20
0
70
60
50
40
Tcontrol= 66
Tcontrol= -10
Fan Speed
Temperature
Time
Power
Thermal Diode Temperature
30
20
10
70
60
50
40
30
20
10
70
60
50
40
30
20
0
70
60
50
40
30
20
0
70
60
50
40
Tcontrol= 66
Tcontrol
Fan Speed
Temperature
Time
Power
Digital Thermometer Temperature
30
20
10
70
60
50
40
30
20
0
70
60
50
40
Tcontrol= 66
Tcontrol= -10
Fan Speed
Temperature
Time
Power
Thermal Diode Temperature
30
20
10
70
60
50
40
30
20
10
70
60
50
40
30
20
0
70
60
50
40
30
20
0
70
60
50
40
Tcontrol= 66
Tcontrol
Fan Speed
Temperature
Time
Power
Note: The processor has both the DTS and thermal diode. The TCONTROL in the MSR is relevant
only to the DTS.
4.2.11 Platform Environmental Control Interface (PECI)
The PECI interface is a proprietary single wire bus between the processor and the
chipset or other health monitoring device. At this time the digital thermal sensor is the
only data being transmitted. For an overview of the PECI interface see PECI Feature
Set Overview. For additional information on the PECI, see the datasheet.
The PECI bus is available on pin G5 of the LGA 775 socket. Intel chipsets beginning
with the ICH8 have included PECI host controller. The PECI interface and the
Manageability Engine are key elements to the Intel® Quiet System Technology (Intel®
Thermal Management Logic and Thermal Monitor Feature
40 Thermal and Mechanical Design Guidelines
QST), see Chapter 7 and the Intel® Quiet System Technology Configuration and
Tuning Manual.
Intel has worked with many vendors that provide fan speed control devices to provide
PECI host controllers. Please consult the local representative for your preferred vendor
for their product plans and availability.
§
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 41
5 Balanced Technology Extended
(BTX) Thermal/Mechanical
Design Information
5.1 Overview of the Balanced Technology Extended
(BTX) Reference Design
The reference thermal module assembly is a Type II BTX compliant design and is
compliant with the reference BTX motherboard keep-out and height recommendations
defined Section 6.6.
The solution comes as an integrated assembly. An isometric view of the assembly is
provided Figure 5-4.
5.1.1 Target Heatsink Performance
Table 5-1 provides the target heatsink performance for the processor with the BTX
boundary conditions. The results will be evaluated using the test procedure described
in Section 5.2.
The table also includes a TA assumption of 35.5 °C for the Intel reference thermal
solution at the processor fan heatsink inlet discussed Section 3.3. The analysis
assumes a uniform external ambient temperature to the chassis of 35 °C across the
fan inlet, resulting in a temperature rise, TR, of 0.5 °C. Meeting TA and ΨCA targets can
maximize processor performance (refer to Sections 2.2, 2.4. and Chapter 4).
Minimizing TR, can lead to improved acoustics.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
42 Thermal and Mechanical Design Guidelines
Table 5-1. Balanced Technology Extended (BTX) Type II Reference TMA Performance
Processor Thermal
Requirements,
Ψca
(Mean + 3σ)
TA Assumption
Notes
Intel® Core™2 Duo processor with
4 MB cache at Tc-max of 60.1 °C
0.38 °C/W 35.5 °C 1,2
Intel® Core™2 Duo processor with
4 MB / 2 MB cache at Tc-max of
72.0 °C
0.56 °C/W 35.5 °C 1,2,3
Intel® Core™2 Duo processor with
2 MB cache at Tc-max of 61.4 °C
0.40 °C/W 35.5 °C 1,2
Intel® Core™2 Duo processor with
2 MB cache at Tc-max of 73.3 °C
0.58 °C/W 35.5 °C 1,2,3
Intel® Pentium® Dual Core
processor E2000 series at Tc-max
of 61.4 °C
0.40 °C/W 35.5 °C 1
Intel® Pentium® Dual Core
processor E2000 series at Tc-max
of 73.3 °C
0.58 °C/W 35.5 °C 1,3
Intel® Celeron® Dual-Core Processor
E1000 series at Tc-max of 73.3° C
0.58 °C/W 35.5 °C 1,3
NOTES:
1. Performance targets (Ψ ca) as measured with a live processor at TDP.
2. The difference in Ψ ca between the Intel® Core™2 Duo 4 MB and 2 MB is due to a slight
difference in the die size.
3. BTX Type II reference TMA is the higher thermal solution performance of the Intel®
Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of 72.0 °C, Intel® Core™2 Duo
processor with 2 MB cache at Tc-max of 73.3 °C, Intel® Pentium® Dual Core processor
E2000 series at Tc-max of 73.3 °C, and Intel® Celeron® Dual-Core Processor E1000
Series at Tc-max of 73.3° C. Customers can generate an improvement in cost saving
for these processors to likely use the designs with the cheater TIM, the cheater fan and
the lower fin density extrusion.
5.1.2 Acoustics
To optimize acoustic emission by the fan heatsink assembly, the Type II reference
design implements a variable speed fan. A variable speed fan allows higher thermal
performance at higher fan inlet temperatures (TA) and the appropriate thermal
performance with improved acoustics at lower fan inlet temperatures. Using the
example in Table 5-2 for the Intel® Core™2 Duo processor with 4 MB cache at Tc-max
of 60.1 °C the required fan speed necessary to meet thermal specifications can be
controlled by the fan inlet temperature and should comply with the following
requirements.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 43
Table 5-2. Acoustic Targets
Fan
Speed
RPM
Thermistor
Set Point
Acoustic Thermal
Requirements,
Ψca
Notes
~ 5300 High
TA ≥ 35 °C
≤ 6.4 BA 0.38 °C/W Case 1:
Thermal Design Power
Maximum fan speed
100% PWM duty cycle
~ 2500 Low
TA = 23 °C
No Target
Defined
0.56 °C/W Case 2
Thermal Design Power
System (PSU, HDD, TMA)
Fan speed limited by the
fan hub thermistor
~ 1400 Low
TA = 23 °C
≤ 3.4 BA ~0.87 °C/W Case 3
50% Thermal Design
Power
TMA Only
~ 1400 Low
TA = 23 °C
≤ 4.0 BA ~0.87 °C/W Case 3
50% Thermal Design
Power
System (PSU, HDD, TMA)
NOTES:
1. Acoustic performance is defined in terms of measured sound power (LwA) as defined in
ISO 9296 standard, and measured according to ISO 7779.
2. Acoustic testing will be for the TMA only when installed in a BTX S2 chassis for Case 1
and 3
3. Acoustics testing for Case 2 will be system level in the same a BTX S2 reference chassis
and commercially available power supply. Acoustic data for Case 2 will be provided in
the validation report but this condition is not a target for the design. The acoustic model
is predicting that the power supply fan will be the acoustic limiter.
4. The fan speeds (RPM) are estimates for one of the two reference fans and will be
adjusted to meet thermal performance targets then acoustic target during validation.
The designer should identify the fan speed required to meet the effective fan curve
shown in Section 5.1.3
While the fan hub thermistor helps optimize acoustics at high processor workloads by
adapting the maximum fan speed to support the processor thermal profile, additional
acoustic improvements can be achieved at lower processor workload by using the
TCONTROL specifications described in Section 2.2.3. Intel’s recommendation is to use the
fan with 4 Wire PWM Controlled to implement fan speed control capability based the
digital thermal sensor. Refer to Chapter 7 for further details.
Note: Appendix G gives detailed fan performance for the Intel reference thermal solutions
with 4 Wire PWM Controlled fan.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
44 Thermal and Mechanical Design Guidelines
5.1.3 Effective Fan Curve
The TMA must fulfill the processor cooling requirements shown in Table 5-1 when it is
installed in a functional BTX system. When installed in a system, the TMA must
operate against the backpressure created by the chassis impedance (due to vents,
bezel, peripherals, etc…) and will operate at lower net airflow than if it were tested
outside of the system on a bench top or open air environment. Therefore an allowance
must be made to accommodate or predict the reduction in Thermal Module
performance due to the reduction in heatsink airflow from chassis impedance. For this
reason, it is required that the Thermal Module satisfy the prescribed ΨCA requirements
when operating against an impedance that is characteristic for BTX platforms.
Because of the coupling between TMA thermal performance and system impedance,
the designer should understand the TMA effective fan curve. This effective fan curve
represents the performance of the fan component AND the impedance of the stator,
heatsink, duct, and flow partitioning devices. The BTX system integrator will be able to
evaluate a TMA based on the effective fan curve of the assembly and the airflow
impedance of their target system.
Note: It is likely that at some operating points the fans speed will be driven by the system
airflow requirements and not the processor thermal limits.
Figure 5-1 shows the effective fan curve for the reference design TMA. These curves
are based on analysis. The boundary conditions used are the S2 6.9L reference
chassis, the reference TMA with the flow portioning device, extrusion and an AVC Type
II fan geometry.
When selecting a fan for use in the TMA care should be taken that similar effective fan
curves can be achieved. Final verification requires the overlay of the Type II MASI
curve to ensure thermal compliance.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 45
Figure 5-1. Effective TMA Fan Curves with Reference Extrusion
0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
Airflow (cfm)
dP (in. H2O)
Reference TMA @ 5300 RPM
Reference TMA @ 2500 RPM
Reference TMA @ 1200 RPM
5.1.4 Voltage Regulator Thermal Management
The BTX TMA is integral to the cooling of the processor voltage regulator (VR). The
reference design TMA will include a flow partitioning device to ensure an appropriate
airflow balance between the TMA and the VR. In validation the need for this
component will be evaluated.
The BTX thermal management strategy relies on the Thermal Module to provide
effective cooling for the voltage regulator (VR) chipset and system memory
components on the motherboard. The Thermal Module is required to have features
that allow for airflow to bypass the heatsink and flow over the VR region on both the
primary and secondary sides of the board. The following requirements apply to VR
cooling.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
46 Thermal and Mechanical Design Guidelines
Table 5-3. VR Airflow Requirements
Item Target
Minimum VR bypass airflow for
775_VR_CONFIG_06 processors
2.4 CFM
NOTES:
1. This is the recommended airflow rate that should be delivered to the VR when the VR
power is at a maximum in order to support the 775_VR_CONFIG_06 processors at TDP
power dissipation and the chassis external environment temperature is at 35 ºC. Less
airflow is necessary when the VR power is not at a maximum or if the external ambient
temperature is less than 35 ºC.
2. This recommended airflow rate is based on the requirements for the Intel® 965 Express
Chipset Family.
5.1.5 Altitude
The reference TMA will be evaluated at sea level. However, many companies design
products that must function reliably at high altitude, typically 1,500 m [5,000 ft] or
more. Air-cooled temperature calculations and measurements at sea level must be
adjusted to take into account altitude effects like variation in air density and overall
heat capacity. This often leads to some degradation in thermal solution performance
compared to what is obtained at sea level, with lower fan performance and higher
surface temperatures. The system designer needs to account for altitude effects in the
overall system thermal design to make sure that the TC requirement for the processor
is met at the targeted altitude.
5.1.6 Reference Heatsink Thermal Validation
The Intel reference heatsink will be validated within the specific boundary conditions
based on the methodology described Section 5.2.
Testing is done in a BTX chassis at ambient lab temperature. The test results, for a
number of samples, will be reported in terms of a worst-case mean + 3σ value for
thermal characterization parameter using real processors (based on the thermal test
vehicle correction factors).
5.2 Environmental Reliability Testing
5.2.1 Structural Reliability Testing
Structural reliability tests consist of unpackaged, system -level vibration and shock
tests of a given thermal solution in the assembled state. The thermal solution should
meet the specified thermal performance targets after these tests are conducted;
however, the test conditions outlined here may differ from your own system
requirements.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 47
5.2.1.1 Random Vibration Test Procedure
Recommended performance requirement for a system:
• Duration: 10 min/axis, 3 axes
• Frequency Range: 5 Hz to 500 Hz
5 Hz @ .001 g2/Hz to 20 Hz @ 0.01 g2/Hz (slope up)
20 Hz to 500 Hz @ 0.01 g2/Hz (flat)
• Power Spectral Density (PSD) Profile: 2.2 G RMS
Figure 5-2. Random Vibration PSD
Vibration System Level
0.0001
0.001
0.01
0.1
1 10 100 1000
Hz
g2/Hz
+ 3 dB Control Limit
- 3 dB Control Limit
5.2.1.2 Shock Test Procedure
Recommended performance requirement for a system:
•Quantity: 2 drops for + and - directions in each of 3 perpendicular axes (i.e., total
12 drops).
•Profile: 25 G trapezoidal waveform
225 in/sec minimum velocity change. (systems > 20 lbm)
250 in/sec minimum velocity change. (systems < 20 lbm)
•Setup: Mount sample system on tester.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
48 Thermal and Mechanical Design Guidelines
Figure 5-3. Shock Acceleration Curve
5.2.1.2.1 Recommended Test Sequence
Each test sequence should start with components (i.e., motherboard, heatsink
assembly, etc.) that have never been previously submitted to any reliability testing.
The test sequence should always start with a visual inspection after assembly, and
BIOS/CPU/Memory test (refer to Section 6.3.3).
Prior to the mechanical shock & vibration test, the units under test should be
preconditioned for 72 hours at 45 ºC. The purpose is to account for load relaxation
during burn-in stage.
The stress test should be followed by a visual inspection and then BIOS/CPU/Memory
test.
5.2.1.2.2 Post-Test Pass Criteria
The post-test pass criteria are:
1. No significant physical damage to the heatsink attach mechanism (including such
items as clip and motherboard fasteners).
2. Heatsink must remain attached to the motherboard.
3. Heatsink remains seated and its bottom remains mated flatly against IHS surface.
No visible gap between the heatsink base and processor IHS. No visible tilt of the
heatsink with respect to its attach mechanism.
4. No signs of physical damage on motherboard surface due to impact of heatsink or
heatsink attach mechanism.
5. No visible physical damage to the processor package.
6. Successful BIOS/Processor/memory test of post-test samples.
7. Thermal compliance testing to demonstrate that the case temperature
specification can be met.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 49
5.2.2 Power Cycling
Thermal performance degradation due to TIM degradation is evaluated using power
cycling testing. The test is defined by 7500 cycles for the case temperature from room
temperature (~23 ºC) to the maximum case temperature defined by the thermal
profile at TDP.
5.2.3 Recommended BIOS/CPU/Memory Test Procedures
This test is to ensure proper operation of the product before and after environmental
stresses, with the thermal mechanical enabling components assembled. The test shall
be conducted on a fully operational motherboard that has not been exposed to any
battery of tests prior to the test being considered.
Testing setup should include the following components, properly assembled and/or
connected:
• Appropriate system motherboard
• Processor
• All enabling components, including socket and thermal solution parts
• Power supply
• Disk drive
• Video card
• DIMM
• Keyboard
• Monitor
The pass criterion is that the system under test shall successfully complete the
checking of BIOS, basic processor functions and memory, without any errors.
5.3 Material and Recycling Requirements
Material shall be resistant to fungal growth. Examples of non-resistant materials
include cellulose materials, animal and vegetable based adhesives, grease, oils, and
many hydrocarbons. Synthetic materials such as PVC formulations, certain
polyurethane compositions (e.g., polyester and some polyethers), plastics which
contain organic fillers of laminating materials, paints, and varnishes also are
susceptible to fungal growth. If materials are not fungal growth resistant, then MILSTD-810E,
Method 508.4 must be performed to determine material performance.
Material used shall not have deformation or degradation in a temperature life test.
Any plastic component exceeding 25 grams must be recyclable per the European Blue
Angel recycling standards.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
50 Thermal and Mechanical Design Guidelines
5.4 Safety Requirements
Heatsink and attachment assemblies shall be consistent with the manufacture of units
that meet the safety standards:
• UL Recognition-approved for flammability at the system level. All mechanical and
thermal enabling components must be a minimum UL94V-2 approved.
• CSA Certification. All mechanical and thermal enabling components must have
CSA certification.
• All components (in particular the heatsink fins) must meet the test requirements
of UL1439 for sharp edges.
• If the International Accessibility Probe specified in IEC 950 can access the moving
parts of the fan, consider adding safety feature so that there is no risk of personal
injury.
5.5 Geometric Envelope for Intel Reference BTX
Thermal Module Assembly
Figure 7-50 through Figure 7-54 in Appendix H gives the motherboard keep-out
information for the BTX thermal mechanical solutions. Additional information on BTX
design considerations can be found in Balanced Technology Extended (BTX) System
Design Guide available at http://www.formfactors.org.
The maximum height of the TMA above the motherboard is 60.60 mm [2.386 inches],
for compliance with the motherboard primary side height constraints defined in the
BTX Interface Specification for Zone A, found at http://www.formfactors.org.
Figure 5-4. Intel Type II TMA 65 W Reference Design
Development vendor information for the Intel Type II TMA Reference Solution is
provided in Appendix I.
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 51
5.6 Preload and TMA Stiffness
5.6.1 Structural Design Strategy
Structural design strategy for the Intel Type II TMA is to minimize upward board
deflection during shock to help protect the LGA775 socket.
BTX thermal solutions utilize the SRM and TMA that together resists local board
curvature under the socket and minimize, board deflection (Figure 5-5). In addition, a
moderate preload provides initial downward deflection.
Figure 5-5. Upward Board Deflection During Shock
5.6.2 TMA Preload versus Stiffness
The Thermal Module assembly is required to provide a static preload to ensure
protection against fatigue failure of socket solder joint. The allowable preload range
for BTX platforms is provided in Table 5-4, but the specific target value is a function of
the Thermal Module effective stiffness.
The solution space for the Thermal Module effective stiffness and applied preload
combinations is shown by the shaded region of Figure 5-6. This solution space shows
that the Thermal Module assembly must have an effective stiffness that is sufficiently
large such that the minimum preload determined from the relationship requirement in
Figure 5-6 does not exceed the maximum allowed preload shown in Table 5-4.
Furthermore, if the Thermal Module effective stiffness is so large that the minimum
preload determined from Figure 5-6 is below the minimum required value given in
Less curvature in
region between SRM
and TMA
Shock Load
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
52 Thermal and Mechanical Design Guidelines
Table 5-4, then the Thermal Module should be re-designed to have a preload that lies
within the range given in Table 5-4, allowing for preload tolerances.
Table 5-4. Processor Preload Limits
Parameter Minimum Required Maximum
Allowed
Notes
Processor Preload 98 N [22 lbf] 222 N [50 lbf] 1
NOTES:
1. These values represent upper and lower bounds for the processor preload. The nominal
preload design point for the Thermal Module is based on a combination of requirements
of the TIM, ease of assembly and the Thermal Module effective stiffness.
Figure 5-6. Minimum Required Processor Preload to Thermal Module Assembly Stiffness
NOTES:
1. The shaded region shown is the acceptable domain for Thermal Module assembly
effective stiffness and processor preload combinations. The Thermal Module design
should have a design preload and stiffness that lies within this region. The design
tolerance for the preload and TMA stiffness should also reside within this boundary.
Note that the lower and upper horizontal boundaries represent the preload limits
provided in Table 5-4. The equation for the left hand boundary is described in note 2.
2. The equation for this section of the preload-Thermal Module stiffness boundary is given
by the following relationship: Min Preload = 1.38E-3*k^2 – 1.18486k + 320.24753 for
k < 300 N/mm where k is the Thermal Module assembly effective stiffness. Please note
that this equation is only valid in the stiffness domain of 93N/mm < k < 282N/mm. This
equation would not apply, for example, for TMA stiffness less than 93N/mm,
3. The target stiffness for the 65W Type II TMA reference design is 484 N/mm
(2764 lb / in).
Note: These preload and stiffness recommendations are specific to the TMA mounting
scheme that meets the BTX Interface Specification and Support Retention Mechanism
(SRM) Design Guide. For TMA mounting schemes that use only the motherboard
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 53
mounting hole position for TMA attach, the required preload is approximately 10-15N
greater than the values stipulated in Figure 5-6; however, Intel has not conducted any
validation testing with this TMA mounting scheme.
Figure 5-7. Thermal Module Attach Pointes and Duct-to-SRM Interface Features
SRM
Front attach point
use 6x32 screw
See detail A
Detail A
See detail B
Detail B
Rear attach point
use 6x32 screw
Chassis PEM nut
Duct front interface
feature see note 2
SRM
Front attach point
use 6x32 screw
See detail A
Detail A
See detail B
Detail B
Rear attach point
use 6x32 screw
Chassis PEM nut
Duct front interface
feature see note 2
NOTES:
1. For clarity the motherboard is not shown in this figure. In an actual assembly, the
captive 6x32 screws in the thermal module pass through the rear holes in the
motherboard designated in the socket keep-in Figure 7-50 through Figure 7-54 in
Appendix H and screw into the SRM and chassis PEM features.
2. This front duct ramp feature has both outer and inner lead-in that allows the feature to
slide easily into the SRM slot and around the chassis PEM nut. Note that the front PEM
nut is part of the chassis not the SRM.
§
Balanced Technology Extended (BTX) Thermal/Mechanical Design Information
54 Thermal and Mechanical Design Guidelines
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 55
6 ATX Thermal/Mechanical
Design Information
6.1 ATX Reference Design Requirements
This chapter will document the requirements for an active air-cooled design, with a
fan installed at the top of the heatsink. The thermal technology required for the
processor.
The processors of Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C,
Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C and Intel®
Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C require a thermal
solution equivalent to the D60188-001 reference design, see Figure 6-1 for an
exploded view of this reference design.
Note: The part number D60188-001 provided in this document is for reference only. The
revision number -001 may be subject to change without notice.
The D60188-001 reference design takes advantage of an acoustic improvement to
reduce the fan speed to show the acoustic advantage (its acoustic results show in the
Table 6-3).
The D60188-001 reference design takes advantage of the cost saving for the light
fan/heatsink mass (450g) and the new TIM material (Dow Corning TC-1996 grease). A
bottom view of the copper core applied by this grease is provided Figure 6-3.
ATX Thermal/Mechanical Design Information
56 Thermal and Mechanical Design Guidelines
Figure 6-1. D60188-001Reference Design – Exploded View
The processors of Intel® Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of
72.0 °C, Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C, Intel®
Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C, and Intel® Celeron®
Dual-Core processor E1000 series at Tc-max of 73.3 °C require a thermal solution
equivalent to the E18764-001 reference design; see Figure 6-2 for an exploded view
of this reference design.
Note: The part number E18764-001 provided in this document is for reference only. The
revision number -001 may be subject to change without notice.
The E18764-001 reference design takes advantage of an acoustic improvement to
reduce the fan speed to show the acoustic advantage (its acoustic results show in the
Table 6-4).
The E18764-001 reference design takes advantage of the cost savings for the several
features of the design including the reduced heatsink height, inserted aluminum core,
and the new TIM material (Dow Corning TC-1996 grease, see Figure 6-3). The overall
46mm height thermal solution supports the unique and smaller desktop PCs including
small and ultra small form factors, down to the 5L size, see uATX SFF Guidance for
additional details on uATX SFF design.
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 57
Figure 6-2. E18764-001 Reference Design – Exploded View
Figure 6-3. Bottom View of Copper Core Applied by TC-1996 Grease
The ATX motherboard keep-out and the height recommendations defined Section 6.6
remain the same for a thermal solution for the processor in the 775-Land LGA
package.
Note: If this fan design is used in your product and you will deliver it to end use customers,
you have the responsibility to determine an adequate level of protection (e.g.,
protection barriers, a cage, or an interlock) against contact with the energized fan by
the user during user servicing.
Note: Development vendor information for the reference design is provided in Appendix I.
ATX Thermal/Mechanical Design Information
58 Thermal and Mechanical Design Guidelines
6.2 Validation Results for Reference Design
6.2.1 Heatsink Performance
Table 6-1 provides the D60188-001 heatsink performance for the processors of Intel®
Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C, Intel® Core™2 Duo
processor with 2 MB cache at Tc-max of 61.4 °C, and Intel® Pentium® Dual Core
processor E2000 series at Tc-max of 61.4 °C. Table 6-2 provides the E18764-001
heatsink performance for the processors of Intel® Core™2 Duo processor with 4 MB /
2 MB cache at Tc-max of 72.0 °C and Intel® Core™2 Duo processor with 2 MB cache at
Tc-max of 73.3 °C, Intel® Pentium® dual-core processor E2000 series at Tc-max of
73.3 °C, and Intel® Celeron® dual-core processor E1000 series at Tc-max of 73.3 °C.
The results are based on the test procedure described in Section 6.2.4.
The tables also include a TA assumption of 40°C for the Intel reference thermal
solution at the processor fan heatsink inlet discussed Section 2.4.1.
Table 6-1. D60188-001 Reference Heatsink Performance
Processor Target Thermal
Performance, Ψca
(Mean + 3σ)
TA Assumption
Notes
Intel® Core™2 Duo processor with 4 MB
cache at Tc-max of 60.1 °C
0.31 °C/W 40 °C 1, 2
Intel® Core™2 Duo processor with 2 MB
cache at Tc-max of 61.4 °C
0.33 °C/W 40 °C 1, 2
Intel® Pentium® Dual Core processor
E2000 series at Tc-max of 61.4 °C
0.33 °C/W 40 °C 1
NOTES:
1. Performance targets (Ψ ca) as measured with a live processor at TDP.
2. The difference in Ψ ca between the Intel® Core™2 Duo 4 MB and 2 MB is due to a slight
difference in the die size.
Table 6-2. E18764-001 Reference Heatsink Performance
Processor Target Thermal
Performance,
Ψca
(Mean + 3σ)
TA Assumption
Notes
Intel® Core™2 Duo processor with 4 MB /
2 MB cache at Tc-max of 72.0 °C
0.49 °C/W 40 °C 1, 2
Intel® Core™2 Duo processor with 2 MB
cache at Tc-max of 73.3 °C
0.51 °C/W 40 °C 1, 2
Intel® Pentium® Dual Core processor
E2000 series at Tc-max of 73.3 °C
0.51 °C/W 40 °C 1
Intel® Celeron® Dual-Core processor
E1000 series at Tc-max of 73.3 °C
0.51 °C/W 40 °C 1
NOTES:
1. Performance targets (Ψ ca) as measured with a live processor at TDP.
2. The difference in Ψ ca between the Intel® Core™2 Duo 4 MB and 2 MB is due to a slight
difference in the die size.
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 59
6.2.2 Acoustics
To optimize acoustic emission by the fan heatsink assembly, the reference design
implements a variable speed fan. A variable speed fan allows higher thermal
performance at higher fan inlet temperatures (TA) and lower thermal performance with
improved acoustics at lower fan inlet temperatures. The required fan speed necessary
to meet thermal specifications can be controlled by the fan inlet temperature and
should comply with requirements listed in the following table.
Table 6-3. Acoustic Results for ATX Reference Heatsink (D60188-001)
Fan
Speed
RPM
Thermistor
Set Point
Acoustic Thermal Requirements, Ψca Notes
2900 High
TA = 40 °C
4.5 BA 0.31 °C/W (Core™2 Duo 4MB at Tc-max of 60.1 °C)
0.33 °C/W (Core™2 Duo 2MB at Tc-max of 61.4 °C)
0.33 °C/W (E2000 series at Tc-max of 61.4 °C )
1800 Low
TA = 30 °C
3.5 BA 0.46 °C/W (Core™2 Duo 4MB at Tc-max of 60.1 °C)
0.48 °C/W (Core™2 Duo 2MB at Tc-max of 61.4 °C)
0.48 °C/W (E2000 series at Tc-max of 61.4 °C)
Thermal
Design
Power, Fan
speed
limited by
the fan hub
thermistor
1000 Low
TA = 28 °C
Minimum
fan speed
Table 6-4. Acoustic Results for ATX Reference Heatsink (E18764-001)
Fan
Speed
RPM
Thermistor
Set Point
Acoustic Thermal Requirements, Ψca Notes
3900 High
TA = 40 °C
5.0 BA • 0.49 °C/W (Intel Core™2 Duo processor, 4 MB /
2 MB at Tc-max of 72.0 °C)
• 0.51 °C/W (Intel Core™2 Duo processor, 2 MB at
Tc-max of 73.3 °C)
• 0.51 °C/W (E2000 series at Tc-max of 73.3 °C )
• 0.51 °C/W (E1000 Series of Tc-max of 73.3 °C )
2000 Low
TA = 30 °C
3.5 BA • 0.65 °C/W (Intel Core™2 Duo processor, 4 MB /
2 MB at Tc-max of 72.0 °C)
• 0.67 °C/W (Intel Core™2 Duo processor, 2 MB at
Tc-max of 73.3 °C)
• 0.67 °C/W (E2000 series at Tc-max of 73.3 °C)
• 0.67 °C/W (E1000 Series of Tc-max of 73.3 °C)
Thermal
Design
Power, Fan
speed
limited by
the fan hub
thermistor
NOTES:
1. Acoustic performance is defined in terms of measured sound power (LwA) as defined in
ISO 9296 standard, and measured according to ISO 7779.
While the fan hub thermistor helps optimize acoustics at high processor workloads by
adapting the maximum fan speed to support the processor thermal profile, additional
acoustic improvements can be achieved at lower processor workload by using the
ATX Thermal/Mechanical Design Information
60 Thermal and Mechanical Design Guidelines
TCONTROL specifications described in Section 2.2.3. Intel recommendation is to use the
fan with 4 Wire PWM Controlled to implement fan speed control capability based
digital thermal sensor temperature. Refer to Chapter 7 for further details.
Note: Appendix G gives detailed fan performance for the Intel reference thermal solutions
with 4 Wire PWM Controlled fan.
6.2.3 Altitude
Many companies design products that must function reliably at high altitude, typically
1,500 m [5,000 ft] or more. Air-cooled temperature calculations and measurements at
the test site elevation must be adjusted to take into account altitude effects like
variation in air density and overall heat capacity. This often leads to some degradation
in thermal solution performance compared to what is obtained at sea level, with lower
fan performance and higher surface temperatures. The system designer needs to
account for altitude effects in the overall system thermal design to make sure that the
TC requirement for the processor is met at the targeted altitude.
6.2.4 Heatsink Thermal Validation
Intel recommends evaluation of the heatsink within the specific boundary conditions
based on the methodology described Section 6.3.
Testing is done on bench top test boards at ambient lab temperature. In particular, for
the reference heatsink, the Plexiglas* barrier is installed 81.28 mm [3.2 in] above the
motherboard (refer to Sections 3.3 and 6.6).
The test results, for a number of samples, are reported in terms of a worst-case mean
+ 3σ value for thermal characterization parameter using real processors (based on the
thermal test vehicle correction factors).
Note: The above 81.28 mm obstruction height that is used for testing complies with the
recommended obstruction height of 88.9 mm for the ATX form factor. However, it
would conflict with systems in strict compliance with the ATX specification which
allows an obstruction as low as 76.2 mm above the motherboard surface in Area A.
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 61
6.3 Environmental Reliability Testing
6.3.1 Structural Reliability Testing
Structural reliability tests consist of unpackaged, board-level vibration and shock tests
of a given thermal solution in the assembled state. The thermal solution should meet
the specified thermal performance targets after these tests are conducted; however,
the test conditions outlined here may differ from your own system requirements.
6.3.1.1 Random Vibration Test Procedure
Duration: 10 min/axis, 3 axes
Frequency Range: 5 Hz to 500 Hz
Power Spectral Density (PSD) Profile: 3.13 G RMS
Figure 6-4. Random Vibration PSD
0.001
0.01
0.1
1 10 100 1000
Frequency (Hz)
PSD (g^2/Hz)
3.13GRMS (10 minutes per axis)
5 Hz 500 Hz
(5, 0.01)
(20, 0.02) (500, 0.02)
6.3.1.2 Shock Test Procedure
Recommended performance requirement for a motherboard:
• Quantity: 3 drops for + and - directions in each of 3 perpendicular axes (i.e.,
total 18 drops).
• Profile: 50 G trapezoidal waveform, 170 in/sec minimum velocity change.
• Setup: Mount sample board on test fixture.
ATX Thermal/Mechanical Design Information
62 Thermal and Mechanical Design Guidelines
Figure 6-5. Shock Acceleration Curve
0
10
20
30
40
50
60
0 2 4 6 8 10 12
Time (milliseconds)
A
c
c
e
l
e
r
a
t
i
o
n
(g)
6.3.1.2.1 Recommended Test Sequence
Each test sequence should start with components (i.e., motherboard, heatsink
assembly, etc.) that have never been previously submitted to any reliability testing.
The test sequence should always start with a visual inspection after assembly, and
BIOS/CPU/Memory test (refer to Section 6.3.3).
Prior to the mechanical shock & vibration test, the units under test should be
preconditioned for 72 hours at 45 ºC. The purpose is to account for load relaxation
during burn-in stage.
The stress test should be followed by a visual inspection and then BIOS/CPU/Memory
test.
6.3.1.2.2 Post-Test Pass Criteria
The post-test pass criteria are:
1. No significant physical damage to the heatsink attach mechanism (including such
items as clip and motherboard fasteners).
2. Heatsink must remain attached to the motherboard.
3. Heatsink remains seated and its bottom remains mated flatly against IHS surface.
No visible gap between the heatsink base and processor IHS. No visible tilt of the
heatsink with respect to its attach mechanism.
4. No signs of physical damage on motherboard surface due to impact of heatsink or
heatsink attach mechanism.
5. No visible physical damage to the processor package.
6. Successful BIOS/Processor/memory test of post-test samples.
7. Thermal compliance testing to demonstrate that the case temperature
specification can be met.
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 63
6.3.2 Power Cycling
Thermal performance degradation due to TIM degradation is evaluated using power
cycling testing. The test is defined by 7500 cycles for the case temperature from room
temperature (~23 ºC) to the maximum case temperature defined by the thermal
profile at TDP.
6.3.3 Recommended BIOS/CPU/Memory Test Procedures
This test is to ensure proper operation of the product before and after environmental
stresses, with the thermal mechanical enabling components assembled. The test shall
be conducted on a fully operational motherboard that has not been exposed to any
battery of tests prior to the test being considered.
Testing setup should include the following components, properly assembled and/or
connected:
• Appropriate system motherboard
• Processor
• All enabling components, including socket and thermal solution parts
• Power supply
• Disk drive
• Video card
• DIMM
• Keyboard
• Monitor
The pass criterion is that the system under test shall successfully complete the
checking of BIOS, basic processor functions and memory, without any errors.
6.4 Material and Recycling Requirements
Material shall be resistant to fungal growth. Examples of non-resistant materials
include cellulose materials, animal and vegetable based adhesives, grease, oils, and
many hydrocarbons. Synthetic materials such as PVC formulations, certain
polyurethane compositions (e.g., polyester and some polyethers), plastics which
contain organic fillers of laminating materials, paints, and varnishes also are
susceptible to fungal growth. If materials are not fungal growth resistant, then MILSTD-810E,
Method 508.4 must be performed to determine material performance.
Material used shall not have deformation or degradation in a temperature life test.
Any plastic component exceeding 25 grams must be recyclable per the European Blue
Angel recycling standards.
ATX Thermal/Mechanical Design Information
64 Thermal and Mechanical Design Guidelines
6.5 Safety Requirements
Heatsink and attachment assemblies shall be consistent with the manufacture of units
that meet the safety standards:
• UL Recognition-approved for flammability at the system level. All mechanical and
thermal enabling components must be a minimum UL94V-2 approved.
• CSA Certification. All mechanical and thermal enabling components must have
CSA certification.
• All components (in particular the heatsink fins) must meet the test requirements
of UL1439 for sharp edges.
• If the International Accessibility Probe specified in IEC 950 can access the moving
parts of the fan, consider adding safety feature so that there is no risk of personal
injury.
6.6 Geometric Envelope for Intel Reference ATX
Thermal Mechanical Design
Figure 7-47, Figure 7-48 and Figure 7-49 in Appendix H gives detailed reference
ATX/μATX motherboard keep-out information for the reference thermal/mechanical
enabling design. These drawings include height restrictions in the enabling component
region.
The maximum height of the reference solution above the motherboard is 71.12 mm
[2.8 inches], and is compliant with the motherboard primary side height constraints
defined in the ATX Specification revision 2.1 and the microATX Motherboard Interface
Specification revision 1.1 found at http://www.formfactors.org. The reference solution
requires a chassis obstruction height of at least 81.28 mm [3.2 inches], measured
from the top of the motherboard (refer to Sections 3.3 and 6.2.4). This allows for
appropriate fan inlet airflow to ensure fan performance, and therefore overall cooling
solution performance. This is compliant with the recommendations found in both ATX
Specification V2.1 and microATX Motherboard Interface Specification V1.1 documents.
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 65
6.7 Reference Attach Mechanism
6.7.1 Structural Design Strategy
Structural design strategy for the reference design is to minimize upward board
deflection during shock to help protect the LGA775 socket.
The reference design uses a high clip stiffness that resists local board curvature under
the heatsink, and minimizes, in particular, upward board deflection (Figure 6-6). In
addition, a moderate preload provides initial downward deflection.
Figure 6-6. Upward Board Deflection During Shock
The target metal clip nominal stiffness is 540 N/mm [3100 lb/in]. The combined target
for reference clip and fasteners nominal stiffness is 380 N/mm [2180 lb/in]. The
nominal preload provided by the reference design is 191.3 N ± 44.5 N [43 lb ± 10 lb].
Note: Intel reserves the right to make changes and modifications to the design as necessary
to the reference design, in particular the clip and fastener.
Less curvature in
region under stiff clip
Shock Load
ATX Thermal/Mechanical Design Information
66 Thermal and Mechanical Design Guidelines
6.7.2 Mechanical Interface to the Reference Attach Mechanism
The attach mechanism component from the reference design can be used by other 3rd
party cooling solutions. The attach mechanism consists of:
• A metal attach clip that interfaces with the heatsink core, see Appendix H,
Figure 7-55 and Figure 7-56 for the component drawings.
• Four plastic fasteners, see Appendix H, Figure 7-57, Figure 7-58, Figure 7-59 and
Figure 7-60 for the component drawings.
The clip is assembled to heatsink during copper core insertion, and is meant to be
trapped between the core shoulder and the extrusion as shown in Figure 6-7.
Figure 6-7. Reference Clip/Heatsink Assembly
Core shoulder
traps clip in place
Clip
The mechanical interface with the reference attach mechanism is defined in Figure 6-8
and Figure 6-9. Complying with the mechanical interface parameters is critical to
generating a heatsink preload compliant with the minimum preload requirement given
in Section 2.1.2.2.
Additional requirements for the reference attach mechanism (clip and fasteners)
include:
• Heatsink/fan mass ≤ 550 g (i.e., total assembly mass, including clip and fasteners
< 595 g
• Whole assembly center of gravity ≤ 25.4 mm, measured from the top of the IHS
⎯ Whole assembly = Heatsink + Fan + Attach clip + Fasteners
ATX Thermal/Mechanical Design Information
Thermal and Mechanical Design Guidelines 67
Figure 6-8. Critical Parameters for Interfacing to Reference Clip
Core
Fin Array
Fan
Clip
See Detail A
Detail A
Fin Array
Clip Core
1.6 mm
Figure 6-9. Critical Core Dimension
R 0.40 mm max
R 0.40 mm max
Φ36.14 +/- 0.10 mm
Gap required to avoid
core surface blemish
during clip assembly.
Recommend 0.3 mm min.
1.00 mm min
2.596 +/- 0.10 mm
Φ38.68 +/- 0.30 mm
1.00 +/- 0.10 mm
Core
NOTE: Dimension from the bottom of the clip to the bottom of the
heatsink core (or base) should be met to enable the required
load from the heatsink clip (i.e., 43 lbf nominal +/- 10 lbf)
§
ATX Thermal/Mechanical Design Information
68 Thermal and Mechanical Design Guidelines
Intel® Quiet System Technology (Intel® QST)
Thermal and Mechanical Design Guidelines 69
7 Intel® Quiet System
Technology (Intel® QST)
In the Intel® 965 Express Family Chipset a new control algorithm for fan speed control
is being introduced. It is composed of an Intel® Management Engine (ME) in the
Graphics Memory Controller Hub (GMCH) which executes the Intel® Quiet System
Technology (Intel® QST) algorithm and the ICH8 containing the sensor bus and fan
control circuits.
The ME provides integrated fan speed control in lieu of the mechanisms available in a
SIO or a stand-alone ASIC. The Intel QST is time based as compared to the linear or
state control used by the current generation of FSC devices.
A short discussion of Intel QST will follow along with thermal solution design
recommendations. For a complete discussion of programming the Intel QST in the ME
please consult the Intel® Quiet System Technology (Intel® QST) Configuration and
Tuning Manual.
Note: Fan speed control algorithms and Intel QST in particular rely on a thermal solution
being compliant to the processor thermal profile. It is unlikely that any fan speed
control algorithm can compensate for a non-compliant thermal solution. See Chapter 5
and Chapter 6 for thermal solution requirements that should be met before evaluating
or configuring a system with Intel QST.
7.1 Intel® QST Algorithm
The objective of Intel QST is to minimize the system acoustics by more closely
controlling the thermal sensors to the corresponding processor or chipset device
TCONTROL value. This is achieved by the use of a Proportional-Integral-Derivative (PID)
control algorithm and a Fan Output Weighting Matrix. The PID algorithm takes into
account the difference between the current temperature and the target (TCONTROL), the
rate of change and direction of change to minimize the required fan speed change.
The Fan Output Weighting Matrix uses the effects of each fan on a thermal sensor to
minimize the required fan speed changes
Figure 7-1 shows in a very simple manner how Intel QST works. See the Intel Quiet
System Technology (Intel® QST) Configuration and Tuning Manual for a detail
discussion of the inputs and response.
Intel® Quiet System Technology (Intel® QST)
70 Thermal and Mechanical Design Guidelines
Figure 7-1. Intel® QST Overview
Fan to sensor
Relationship
(Output Weighting Matrix)
Temperature sensing
and response
Calculations
(PID)
Fan Commands
(PID)
Fans
Temperature
Sensors
Intel® QST
System Response
PECI / SST PWM
7.1.1 Output Weighting Matrix
Intel QST provides an Output Weighting Matrix that provides a means for a single
thermal sensor to affect the speed of multiple fans. An example of how the matrix
could be used is if a sensor located next to the memory is sensitive to changes in both
the processor heatsink fan and a 2nd fan in the system. By placing a factor in this
matrix additional the Intel QST could command the processor thermal solution fan and
this 2nd fan to both accelerate a small amount. At the system level these two small
changes can result in a smaller change in acoustics than having a single fan respond
to this sensor.
7.1.2 Proportional-Integral-Derivative (PID)
The use of Proportional-Integral-Derivative (PID) control algorithms allow the
magnitude of fan response to be determined based upon the difference between
current temperature readings and specific temperature targets. A major advantage of
a PID Algorithm is the ability to control the fans to achieve sensor temperatures much
closer to the TCONTROL.
Figure 7-2 is an illustration of the PID fan control algorithm. As illustrated in the
figure, when the actual temperature is below the target temperature, the fan will slow
down. The current FSC devices have a fixed temperature vs. PWM output relationship
and miss this opportunity to achieve additional acoustic benefits. As the actual
temperature starts ramping up and approaches the target temperature, the algorithm
will instruct the fan to speed up gradually, but will not abruptly increase the fan speed
to respond to the condition. It can allow an overshoot over the target temperature for
a short period of time while ramping up the fan to bring the actual temperature to the
Intel® Quiet System Technology (Intel® QST)
Thermal and Mechanical Design Guidelines 71
target temperature. As a result of its operation, the PID control algorithm can enable
an acoustic-friendly platform.
Figure 7-2. PID Controller Fundamentals
Proportional
Error
Derivative (Slope)
Integral (time averaged) RPM Temperature
Time
+ dPWM
- dPWM
Actual
Temperature
Fan
Speed
Limit
Temperature
For a PID algorithm to work limit temperatures are assigned for each temperature
sensor. For Intel QST, the TCONTROL for the processor and chipset are to be used as the
limit temperature. The ME will measure the error, slope and rate of change using the
following equations:
• Proportional Error (P) = TLIMIT – TACTUAL
• Integral (I) = Time averaged error
• Derivative (D) = ΔTemp / ΔTime
Three gain values are used to control response of algorithm.
• Kp = proportional gain
• Ki = Integral gain
• Kd = derivative gain
The Intel® Quiet System Technology (Intel® QST) Configuration and Tuning Manual
provides initial values for the each of the gain constants. In addition it provides a
methodology to tune these gain values based on system response.
Finally the fan speed change will be calculated using the following formula:
ΔPWM = -P*(Kp) – I*(Ki) + D*(Kd)
Intel® Quiet System Technology (Intel® QST)
72 Thermal and Mechanical Design Guidelines
7.2 Board and System Implementation of Intel® QST
To implement the board must be configured as shown in Figure 7-3 and listed below:
• ME system (S0-S1) with Controller Link connected and powered
• DRAM with Channel A DIMM 0 installed and 2MB reserved for Intel® QST FW
execution
• SPI Flash with sufficient space for the Intel® QST Firmware
• SST-based thermal sensors to provide board thermal data for Intel® QST
algorithms
• Intel® QST firmware
Figure 7-3. Intel® QST Platform Requirements
Note: Simple Serial Transport (SST) is a single wire bus that is included in the ICH8 to
provide additional thermal and voltage sensing capability to the Intel® Management
Engine (ME)
Intel® Quiet System Technology (Intel® QST)
Thermal and Mechanical Design Guidelines 73
Figure 7-4 shows the major connections for a typical implementation that can support
processors with Digital thermal sensor or a thermal diode. In this configuration a SST
Thermal Sensor has been added to read the on-die thermal diode that is in all of the
processors in the 775-land LGA packages shipped before the Intel® Core™2 Duo
processor. With the proper configuration information the ME can be accommodate
inputs from PECI or SST for the processor socket. Additional SST sensors can be
added to monitor system thermal (see Appendix F for BTX recommendations for
placement).
Figure 7-4. Example Acoustic Fan Speed Control Implementation
Intel has engaged with a number of major manufacturers of thermal / voltage sensors
to provide devices for the SST bus. Contact your Intel Field Sales representative for
the current list of manufacturers and visit their web sites or local sales representatives
for a part suitable for your design.
Intel® Quiet System Technology (Intel® QST)
74 Thermal and Mechanical Design Guidelines
7.3 Intel® QST Configuration and Tuning
Initial configuration of the Intel QST is the responsibility of the board manufacturer.
The SPI flash should be programmed with the hardware configuration of the
motherboard and initial settings for fan control, fan monitoring, voltage and thermal
monitoring. This initial data is generated using the Intel provided Configuration Tool.
At the system integrator the Configuration Tool can be used again but this time to
tune the Intel QST subsystem to reflect the shipping system configuration. In the
tuning process the Intel QST can be modified to have the proper relationships between
the installed fans and sensors in the shipping system. A Weighting Matrix Utility and
Intel QST Log program are planned to assist in optimizing the fan management and
achieve acoustic goal.
See your Intel field sales representative for availability of these tools.
7.4 Fan Hub Thermistor and Intel® QST
There is no closed loop control between Intel QST and the thermistor, but they can
work in tandem to provide the maximum fan speed reduction. The BTX reference
design includes a thermistor on the fan hub. This Variable Speed Fan curve will
determine the maximum fan speed as a function of the inlet ambient temperature and
by design provides a ΨCA sufficient to meet the thermal profile of the processor. Intel
QST, by measuring the processor Digital thermal sensor will command the fan to
reduce speed below the VSF curve in response to processor workload. Conversely if
the processor workload increases the FSC will command the fan via the PWM duty
cycle to accelerate the fan up to the limit imposed by the VSF curve. Care needs to be
taken in BTX designs to ensure the fan speed at the minimum operating speed
provides sufficient air flow to support the other system components.
Figure 7-5. Digital Thermal Sensor and Thermistor Fan Speed (RPM)
Inlet Temperature (°C)
Full
Speed
30 38
Min.
Operating
Variable Speed Fan (VSF) Curve
Fan Speed
Operating Range
with FSC
34
Min %Fan Speed
(% PWM Duty Cycle)
100 %
Fan Speed
(RPM)
Inlet Temperature (°C)
Full
Speed
30 38
Min.
Operating
Variable Speed Fan (VSF) Curve
Fan Speed
Operating Range
with FSC
34
Min %Fan Speed
(% PWM Duty Cycle)
100 %
§
LGA775 Socket Heatsink Loading
Thermal and Mechanical Design Guidelines 75
Appendix A LGA775 Socket Heatsink
Loading
A.1 LGA775 Socket Heatsink Considerations
Heatsink clip load is traditionally used for:
• Mechanical performance in mechanical shock and vibration
⎯ Refer to Section 6.7.1 for the information on the structural design strategy for
the reference design
• Thermal interface performance
⎯ Required preload depends on TIM
⎯ Preload can be low for thermal grease
In addition to mechanical performance in shock and vibration and TIM performance,
LGA775 socket requires a minimum heatsink preload to protect against fatigue failure
of socket solder joints.
Solder ball tensile stress is originally created when, after inserting a processor into the
socket, the LGA775 socket load plate is actuated. In addition, solder joint shear stress
is caused by coefficient of thermal expansion (CTE) mismatch induced shear loading.
The solder joint compressive axial force (Faxial) induced by the heatsink preload helps
to reduce the combined joint tensile and shear stress.
Overall, the heatsink required preload is the minimum preload needed to meet all of
the above requirements: Mechanical shock and vibration and TIM performance AND
LGA775 socket protection against fatigue failure.
A.2 Metric for Heatsink Preload for ATX/uATX
Designs Non-Compliant with Intel®
Reference Design
A.2.1 Heatsink Preload Requirement Limitations
Heatsink preload by itself is not an appropriate metric for solder joint force across
various mechanical designs and does not take into account for example (not an
exhaustive list):
• Heatsink mounting hole span
• Heatsink clip/fastener assembly stiffness and creep
• Board stiffness and creep
• Board stiffness is modified by fixtures like backing plate, chassis attach, etc.
LGA775 Socket Heatsink Loading
76 Thermal and Mechanical Design Guidelines
Simulation shows that the solder joint force (Faxial) is proportional to the board
deflection measured along the socket diagonal. The matching of Faxial required to
protect the LGA775 socket solder joint in temperature cycling is equivalent to
matching a target MB deflection.
Therefore, the heatsink preload for LGA775 socket solder joint protection against
fatigue failure can be more generally defined as the load required to create a target
board downward deflection throughout the life of the product.
This board deflection metric provides guidance for mechanical designs that differ from
the reference design for ATX//µATX form factor.
A.2.2 Motherboard Deflection Metric Definition
Motherboard deflection is measured along either diagonal (refer to Figure 7-6):
d = dmax – (d1 + d2)/2
d’ = dmax – (d’1 + d’2)/2
Configurations in which the deflection is measured are defined in the Table 7-1.
To measure board deflection, follow industry standard procedures (such as IPC) for
board deflection measurement. Height gauges and possibly dial gauges may also be
used.
Table 7-1. Board Deflection Configuration Definitions
Configuration
Parameter
Processor + Socket
load plate
Heatsink Parameter Name
d_ref yes no BOL deflection, no preload
d_BOL yes yes BOL deflection with preload
d_EOL yes yes EOL deflection
NOTES:
BOL: Beginning of Life
EOL: End of Life
LGA775 Socket Heatsink Loading
Thermal and Mechanical Design Guidelines 77
Figure 7-6. Board Deflection Definition
d1
d2
d’1
d’2
A.2.3 Board Deflection Limits
Deflection limits for the ATX/µATX form factor are:
d_BOL - d_ref≥ 0.09 mm and d_EOL - d_ref ≥ 0.15 mm
And
d’_BOL – d’_ref≥ 0.09 mm and d_EOL’ – d_ref’ ≥ 0.15 mm
NOTES:
1. The heatsink preload must remain within the static load limits defined in the processor
datasheet at all times.
2. Board deflection should not exceed motherboard manufacturer specifications.
LGA775 Socket Heatsink Loading
78 Thermal and Mechanical Design Guidelines
A.2.4 Board Deflection Metric Implementation Example
This section is for illustration only, and relies on the following assumptions:
• 72 mm x 72 mm hole pattern of the reference design
• Board stiffness = 900 lb/in at BOL, with degradation that simulates board creep
over time
⎯ Though these values are representative, they may change with selected
material and board manufacturing process. Check with your motherboard
vendor.
• Clip stiffness assumed constant – No creep.
Using Figure 7-7, the heatsink preload at beginning of life is defined to comply with
d_EOL – d_ref = 0.15 mm depending on clip stiffness assumption.
Note that the BOL and EOL preload and board deflection differ. This is a result of the
creep phenomenon. The example accounts for the creep expected to occur in the
motherboard. It assumes no creep to occur in the clip. However, there is a small
amount of creep accounted for in the plastic fasteners. This situation is somewhat
similar to the reference design.
The impact of the creep to the board deflection is a function of the clip stiffness:
• The relatively compliant clips store strain energy in the clip under the BOL preload
condition and tend to generate increasing amounts of board deflection as the
motherboard creeps under exposure to time and temperature.
• In contrast, the stiffer clips stores very little strain energy, and therefore do not
generate substantial additional board deflection through life.
NOTES:
1. Board and clip creep modify board deflection over time and depends on board
stiffness, clip stiffness, and selected materials.
2. Designers must define the BOL board deflection that will lead to the correct
end of life board deflection
LGA775 Socket Heatsink Loading
Thermal and Mechanical Design Guidelines 79
Figure 7-7. Example: Defining Heatsink Preload Meeting Board Deflection Limit
A.2.5 Additional Considerations
Intel recommends to design to {d_BOL - d_ref = 0.15mm} at BOL when EOL
conditions are not known or difficult to assess.
The following information is given for illustration only. It is based on the reference
keep-out, assuming there is no fixture that changes board stiffness:
d_ref is expected to be 0.18 mm on average, and be as high as 0.22 mm
As a result, the board should be able to deflect 0.37 mm minimum at BOL
Additional deflection as high as 0.09 mm may be necessary to account for additional
creep effects impacting the board/clip/fastener assembly. As a result, designs could
see as much as 0.50 mm total downward board deflection under the socket.
In addition to board deflection, other elements need to be considered to define the
space needed for the downward board total displacement under load, like the potential
interference of through-hole mount component pin tails of the board with a
mechanical fixture on the back of the board.
NOTES:
1. The heatsink preload must remain below the maximum load limit of the
package at all times (Refer to processor datasheet)
2. Board deflection should not exceed motherboard manufacturer specifications.
LGA775 Socket Heatsink Loading
80 Thermal and Mechanical Design Guidelines
A.2.5.1 Motherboard Stiffening Considerations
To protect LGA775 socket solder joint, designers need to drive their mechanical design
to:
• Allow downward board deflection to put the socket balls in a desirable force state
to protect against fatigue failure of socket solder joint (refer to Sections A.2.1,
A.2.2, and A.2.3.
• Prevent board upward bending during mechanical shock event
• Define load paths that keep the dynamic load applied to the package within
specifications published in the processor datasheet
Limiting board deflection may be appropriate in some situations like:
• Board bending during shock
• Board creep with high heatsink preload
However, the load required to meet the board deflection recommendation (refer to
Section A.2.3) with a very stiff board may lead to heatsink preloads exceeding
package maximum load specification. For example, such a situation may occur when
using a backing plate that is flush with the board in the socket area, and prevents the
board to bend underneath the socket.
A.3 Heatsink Selection Guidelines
Evaluate carefully heatsinks coming with motherboard stiffening devices (like backing
plates), and conduct board deflection assessments based on the board deflection
metric.
Solutions derived from the reference design comply with the reference heatsink
preload, for example:
• The Boxed Processor
• The reference design (D60188-001 and E18764-001)
Intel will collaborate with vendors participating in its third party test house program to
evaluate third party solutions. Vendor information now is available in Intel® Core™2
Duo Processor Support Components webpage www.intel.com/go/thermal_Core2Duo .
§
Heatsink Clip Load Metrology
Thermal and Mechanical Design Guidelines 81
Appendix B Heatsink Clip Load
Metrology
B.1 Overview
This section describes a procedure for measuring the load applied by the
heatsink/clip/fastener assembly on a processor package.
This procedure is recommended to verify the preload is within the design target range
for a design, and in different situations. For example:
• Heatsink preload for the LGA775 socket
• Quantify preload degradation under bake conditions.
Note: This document reflects the current metrology used by Intel. Intel is continuously
exploring new ways to improve metrology. Updates will be provided later as this
document is revised as appropriate.
B.2 Test Preparation
B.2.1 Heatsink Preparation
Three load cells are assembled into the base of the heatsink under test, in the area
interfacing with the processor Integrated Heat Spreader (IHS), using load cells
equivalent to those listed in Section B.2.2.
To install the load cells, machine a pocket in the heatsink base, as shown in
Figure 7-8 and Figure 7-9. The load cells should be distributed evenly, as close as
possible to the pocket walls. Apply wax around the circumference of each load cell and
the surface of the pocket around each cell to maintain the load cells in place during
the heatsink installation on the processor and motherboard (Refer to Figure 7-9).
The depth of the pocket depends on the height of the load cell used for the test. It is
necessary that the load cells protrude out of the heatsink base. However, this
protrusion should be kept minimal, as it will create additional load by artificially
raising the heatsink base. The measurement offset depends on the whole assembly
stiffness (i.e. motherboard, clip, fastener, etc.). For example, the reference design clip
and fasteners assembly stiffness is around 380 N/mm [2180 lb/in]. In that case, a
protrusion of 0.038 mm [0.0015”] will create an extra load of 15 N [3.3 lb].
Figure 7-10 shows an example using the reference design.
Note: When optimizing the heatsink pocket depth, the variation of the load cell height
should also be taken into account to make sure that all load cells protrude equally
from the heatsink base. It may be useful to screen the load cells prior to installation to
minimize variation.
Heatsink Clip Load Metrology
82 Thermal and Mechanical Design Guidelines
Remarks: Alternate Heatsink Sample Preparation
As mentioned above, making sure that the load cells have minimum protrusion out of
the heatsink base is paramount to meaningful results. An alternate method to make
sure that the test setup will measure loads representative of the non-modified design
is:
• Machine the pocket in the heat sink base to a depth such that the tips of the load
cells are just flush with the heat sink base
• Then machine back the heatsink base by around 0.25 mm [0.01”], so that the
load cell tips protrude beyond the base.
Proceeding this way, the original stack height of the heatsink assembly should be
preserved. This should not affect the stiffness of the heatsink significantly.
Figure 7-8. Load Cell Installation in Machined Heatsink Base Pocket – Bottom View
Package IHS
Outline (Top
Surface)
Load Cells
Heatsink Base Pocket
Diameter ~ 29 mm
[~1.15”]
Heatsink Clip Load Metrology
Thermal and Mechanical Design Guidelines 83
Figure 7-9. Load Cell Installation in Machined Heatsink Base Pocket – Side View
Figure 7-10. Preload Test Configuration
Load Cells (3x)
Preload Fixture (copper
core with milled out pocket)
Wax to maintain load cell in
position during heatsink
installation
Height of pocket
~ height of
selected load
cell
Load cell protrusion
(Note: to be optimized depending on
assembly stiffness)
Heatsink Clip Load Metrology
84 Thermal and Mechanical Design Guidelines
B.2.2 Typical Test Equipment
For the heatsink clip load measurement, use equivalent test equipment to the one
listed Table 7-2.
Table 7-2. Typical Test Equipment
Item Description Part Number
(Model)
Load cell
Notes: 1, 5
Honeywell*-Sensotec* Model 13 subminiature
load cells, compression only
Select a load range depending on load level
being tested.
www.sensotec.com
AL322BL
Data Logger (or
scanner)
Notes: 2, 3, 4
Vishay* Measurements Group Model 6100
scanner with a 6010A strain card (one card
required per channel).
Model 6100
NOTES:
1. Select load range depending on expected load level. It is usually better, whenever
possible, to operate in the high end of the load cell capability. Check with your load cell
vendor for further information.
2. Since the load cells are calibrated in terms of mV/V, a data logger or scanner is
required to supply 5 volts DC excitation and read the mV response. An
automated model will take the sensitivity calibration of the load cells and convert the
mV output into pounds.
3. With the test equipment listed above, it is possible to automate data recording and
control with a 6101-PCI card (GPIB) added to the scanner, allowing it to be connected
to a PC running LabVIEW* or Vishay's StrainSmart* software.
4. IMPORTANT: In addition to just a zeroing of the force reading at no applied load, it is
important to calibrate the load cells against known loads. Load cells tend to drift.
Contact your load cell vendor for calibration tools and procedure information.
5. When measuring loads under thermal stress (bake for example), load cell thermal
capability must be checked, and the test setup must integrate any hardware used along
with the load cell. For example, the Model 13 load cells are temperature compensated
up to 71 °C, as long as the compensation package (spliced into the load cell's wiring) is
also placed in the temperature chamber. The load cells can handle up to 121 °C
(operating), but their uncertainty increases according to 0.02% rdg/°F.
B.3 Test Procedure Examples
The following sections give two examples of load measurement. However, this is not
meant to be used in mechanical shock and vibration testing.
Any mechanical device used along with the heatsink attach mechanism will need to be
included in the test setup (i.e., back plate, attach to chassis, etc.).
Prior to any test, make sure that the load cell has been calibrated against known
loads, following load cell vendor’s instructions.
Heatsink Clip Load Metrology
Thermal and Mechanical Design Guidelines 85
B.3.1 Time-Zero, Room Temperature Preload
Measurement
1. Pre-assemble mechanical components on the board as needed prior to mounting
the motherboard on an appropriate support fixture that replicate the board attach
to a target chassis
• For example: standard ATX board should sit on ATX compliant stand-offs. If the
attach mechanism includes fixtures on the back side of the board, those must be
included, as the goal of the test is to measure the load provided by the actual
heatsink mechanism.
2. Install relevant test vehicle (TTV, processor) in the socket
3. Assemble the heatsink reworked with the load cells to motherboard as shown for
the reference design example in Figure 7-10, and actuate attach mechanism.
4. Collect continuous load cell data at 1 Hz for the duration of the test. A minimum
time to allow the load cell to settle is generally specified by the load vendors
(often of order of 3 minutes). The time zero reading should be taken at the end of
this settling time.
5. Record the preload measurement (total from all three load cells) at the target time
and average the values over 10 seconds around this target time as well, i.e. in the
interval , for example over [target time – 5 seconds ; target time + 5 seconds].
B.3.2 Preload Degradation under Bake Conditions
This section describes an example of testing for potential clip load degradation under
bake conditions.
1. Preheat thermal chamber to target temperature (45 ºC or 85 ºC for example)
2. Repeat time-zero, room temperature preload measurement
3. Place unit into preheated thermal chamber for specified time
4. Record continuous load cell data as follows:
• Sample rate = 0.1 Hz for first 3 hrs
• Sample rate = 0.01 Hz for the remainder of the bake test
5. Remove assembly from thermal chamber and set into room temperature
conditions
6. Record continuous load cell data for next 30 minutes at sample rate of 1 Hz.
§
Heatsink Clip Load Metrology
86 Thermal and Mechanical Design Guidelines
Thermal Interface Management
Thermal and Mechanical Design Guidelines 87
Appendix C Thermal Interface
Management
To optimize a heatsink design, it is important to understand the impact of factors
related to the interface between the processor and the heatsink base. Specifically, the
bond line thickness, interface material area and interface material thermal
conductivity should be managed to realize the most effective thermal solution.
C.1 Bond Line Management
Any gap between the processor integrated heat spreader (IHS) and the heatsink base
degrades thermal solution performance. The larger the gap between the two surfaces,
the greater the thermal resistance. The thickness of the gap is determined by the
flatness and roughness of both the heatsink base and the integrated heat spreader,
plus the thickness of the thermal interface material (for example thermal grease) used
between these two surfaces and the clamping force applied by the heatsink attach
clip(s).
C.2 Interface Material Area
The size of the contact area between the processor and the heatsink base will impact
the thermal resistance. There is, however, a point of diminishing returns. Unrestrained
incremental increases in thermal interface material area do not translate to a
measurable improvement in thermal performance.
C.3 Interface Material Performance
Two factors impact the performance of the interface material between the processor
and the heatsink base:
• Thermal resistance of the material
• Wetting/filling characteristics of the material
Thermal resistance is a description of the ability of the thermal interface material to
transfer heat from one surface to another. The higher the thermal resistance, the less
efficient the interface material is at transferring heat. The thermal resistance of the
interface material has a significant impact on the thermal performance of the overall
thermal solution. The higher the thermal resistance, the larger the temperature drop
is across the interface and the more efficient the thermal solution (heatsink, fan) must
be to achieve the desired cooling.
The wetting or filling characteristic of the thermal interface material is its ability,
under the load applied by the heatsink retention mechanism, to spread and fill the gap
between the processor and the heatsink. Since air is an extremely poor thermal
conductor, the more completely the interface material fills the gaps, the lower the
temperature drops across the interface. In this case, thermal interface material area
also becomes significant; the larger the desired thermal interface material area, the
higher the force required to spread the thermal interface material.
§
Thermal Interface Management
88 Thermal and Mechanical Design Guidelines
Case Temperature Reference Metrology
Thermal and Mechanical Design Guidelines 89
Appendix DCase Temperature
Reference Metrology
D.1 Objective and Scope
This appendix defines a reference procedure for attaching a thermocouple to the IHS
of a 775-land LGA package for TC measurement. This procedure takes into account the
specific features of the 775-land LGA package and of the LGA775 socket for which it is
intended. The recommended equipment for the reference thermocouple installation,
including tools and part numbers are also provided. In addition a video Thermocouple
Attach Using Solder – Video CD-ROM is available that shows the process in real time.
The following supplier can do machining the groove and attaching a thermocouple to
the IHS followed by the reference procedure. The supplier is listed the following table
as a convenience to Intel’s general customers and the list may be subject to change
without notice.
Supplier Contact Phone Email Address
THERM-X OF
CALIFORNIA
Ernesto B
Valencia
510-441-7566
Ext. 242
ernestov@ther
m-x.com
1837 Whipple
Road, Hayward,
Ca 94544
D.2 Supporting Test Equipment
To apply the reference thermocouple attach procedure, it is recommended to use the
equipment (or equivalent) given in the following table.
Item Description Part Number
Measurement and Output
Microscope Olympus* Light microscope or equivalent SZ-40
DMM Digital Multi Meter for resistance measurement Fluke 79 Series
Thermal Meter Hand held thermocouple meter Multiple Vendors
Solder Station (see note 1 for ordering information)
Heater Block Heater assembly to reflow solder on IHS 30330
Heater WATLOW120V 150W Firerod 0212G G1A38-
L12
Transformer Superior Powerstat transformer 05F857
Case Temperature Reference Metrology
90 Thermal and Mechanical Design Guidelines
Item Description Part Number
Miscellaneous Hardware
Solder Indium Corp. of America
Alloy 57BI / 42SN / 1AG 0.010 Diameter
52124
Flux Indium Corp. of America 5RMA
Loctite* 498
Adhesive
Super glue w/thermal characteristics 49850
Adhesive
Accelerator
Loctite* 7452 for fast glue curing 18490
Kapton* Tape For holding thermocouple in place Not Available
Thermocouple Omega *,36 gauge, “T” Type
(see note 2 for ordering information)
OSK2K1280/5SR
TC-TT-T-36-72
Calibration and Control
Ice Point Cell Omega*, stable 0 ºC temperature source for
calibration and offset
TRCIII
Hot Point Cell Omega *, temperature source to control and
understand meter slope gain
CL950-A-110
NOTES:
1. The Solder Station consisting of the Heater Block, Heater, Press and Transformer are
available from Jemelco Engineering 480-804-9514
2. This part number is a custom part with the specified insulation trimming and packaging
requirements necessary for quality thermocouple attachment, See Figure 7-11. Order
from Omega Anthony Alvarez, Direct phone (203) 359-7671, Direct fax (203) 968-
7142, E-Mail: aalvarez@omega.com
Figure 7-11. Omega Thermocouple
Case Temperature Reference Metrology
Thermal and Mechanical Design Guidelines 91
D.3 Thermal Calibration and Controls
It is recommended that full and routine calibration of temperature measurement
equipment be performed before attempting to perform temperature case
measurement. Intel recommends checking the meter probe set against known
standards. This should be done at 0 ºC (using ice bath or other stable temperature
source) and at an elevated temperature, around 80 ºC (using an appropriate
temperature source).
Wire gauge and length also should be considered as some less expensive
measurement systems are heavily impacted by impedance. There are numerous
resources available throughout the industry to assist with implementation of proper
controls for thermal measurements.
NOTES:
1. It is recommended to follow company standard procedures and wear safety
items like glasses for cutting the IHS and gloves for chemical handling.
2. Please ask your Intel field sales representative if you need assistance to
groove and/or install a thermocouple according to the reference process.
D.4 IHS Groove
Cut a groove in the package IHS; see the drawings given in Figure 7-12 and
Figure 7-13. The groove orientation in Figure 7-12 is toward the IHS notch to allow
the thermocouple wire to be routed under the socket lid. This will protect the
thermocouple from getting damaged or pinched when removing and installing the
heatsink (see Figure 7-37).
Case Temperature Reference Metrology
92 Thermal and Mechanical Design Guidelines
Figure 7-12. 775-LAND LGA Package Reference Groove Drawing at 6 o’clock Exit
Case Temperature Reference Metrology
Thermal and Mechanical Design Guidelines 93
Figure 7-13. 775-LAND LGA Package Reference Groove Drawing at 3 o’clock Exit (Old Drawing)
Case Temperature Reference Metrology
94 Thermal and Mechanical Design Guidelines
The orientation of the groove at 6 o’clock exit relative to the package pin 1 indicator
(gold triangle in one corner of the package) is shown in Figure 7-14 for the 775-Land
LGA package IHS.
Figure 7-14. IHS Groove at 6 o’clock Exit on the 775-LAND LGA Package
When the processor is installed in the LGA775 socket, the groove is parallel to the
socket load lever, and is toward the IHS notch as shown Figure 7-15.
Figure 7-15. IHS Groove at 6 o’clock Exit Orientation Relative to the LGA775 Socket
Select a machine shop that is capable of holding drawing specified tolerances. IHS
groove geometry is critical for repeatable placement of the thermocouple bead,
ensuring precise thermal measurements. The specified dimensions minimize the
impact of the groove on the IHS under the socket load. A larger groove may cause the
IHS to warp under the socket load such that it does not represent the performance of
an ungrooved IHS on production packages.
Inspect parts for compliance to specifications before accepting from machine shop.
Pin1 indicator
IHS Groove
Case Temperature Reference Metrology
Thermal and Mechanical Design Guidelines 95
D.5 Thermocouple Attach Procedure
The procedure to attach a thermocouple with solder takes about 15 minutes to
complete. Before proceeding turn on the solder block heater, as it can take up to
30 minutes to reach the target temperature of 153 – 155 °C.
Note: To avoid damage to the processor ensure the IHS temperature does not exceed
155 °C.
As a complement to the written procedure a video Thermocouple Attach Using Solder
– Video CD-ROM is available.
D.5.1 Thermocouple Conditioning and Preparation
7. Use a calibrated thermocouple as specified in Sections D.2 and D.3.
8. Under a microscope verify the thermocouple insulation meets the quality
requirements. The insulation should be about 1/16 inch (0.062 ± 0.030) from the
end of the bead (Figure 7-16).
Figure 7-16. Inspection of Insulation on Thermocouple
9. Measure the thermocouple resistance by holding both contacts on the connector
on one probe and the tip of thermocouple to the other probe of the DMM
(measurement should be about~3.0 ohms for 36-gauge type T thermocouple).