

Économétrie Appliquée: Recueil des cas pratiques sur EViews et Stata

Jonas Kibala Kuma

▶ To cite this version:

Jonas Kibala Kuma. Économétrie Appliquée: Recueil des cas pratiques sur EViews et Stata. Licence. Congo-Kinshasa. 2018. <cel-01771070>

HAL Id: cel-01771070 https://hal.archives-ouvertes.fr/cel-01771070

Submitted on 19 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Kinshasa, Avril 2018 (Ière édition)

Manuel d'Econométrie (Inspiré de Fodiye Bakary Doucoure, 2008)

Économétrie Appliquée : Recueil des cas pratiques sur EViews et Stata

Par

Jonas KIBALA KUMA

(Licencié en Sciences Economiques, DEA-PTC/Unikin en cours)

Centre de Recherches Economiques et Quantitatives (CREQ)

Kinshasa, Avril 2018

Manuel d'Econométrie (Inspiré de Fodiye Bakary Doucoure, 2008)

Économétrie Appliquée : Recueil des cas pratiques sur EViews et Stata

Par

Jonas KIBALA KUMA

(DEA-PTC Economie/Unikin en cours)

Centre de Recherches Economiques et Quantitatives (CREQ)

– 1^{ère} édition –

« Editions Ecodata »

- Note -

Ce manuel d'Econométrie, qui s'inscrit dans le cadre de nos travaux ou recherches sur «l'Econométrie appliquée» que nous nous efforçons de mettre à la disposition des chercheurs africains (congolais surtout) de tout bord, est un recueil des travaux pratiques qui s'inspire largement de l'ouvrage du Professeur FODIYE BAKARY Doucoure (2008) intitulé « Méthodes économétriques : cours et travaux pratiques ». Ce manuel, riche en illustrations et à compter parmi les rares des éditions africaines qui combinent la théorie et la pratique sur logiciels, est à mon avis indispensable lorsque l'on se propose d'apprendre l'Econométrie en théorie et en pratique à l'aide des logiciels « Eviews et Stata ».

Dans ce manuel, nous ne nous limitons pas seulement à résumer les aspects théoriques tant soit peu, mais aussi, sur base de mêmes séries et variables (soit nos propres séries), nous faisons des analyses particulières de nature à s'ajouter ou compléter celles du Prof.

Par ailleurs, signalons qu'en plus de l'ouvrage du Professeur FODIYE BAKARY Doucoure, qui constitue notre pilori, nous avons consulté bien d'autres documents (Veuillez consulter nos références bibliographiques) pour la plupart axés sur la pratique de techniques économétriques et statistiques sur EViews et/ou Stata. Par ce manuel, nous espérons vous familiariser à la pratique de l'économétrie sur ces deux logiciels.

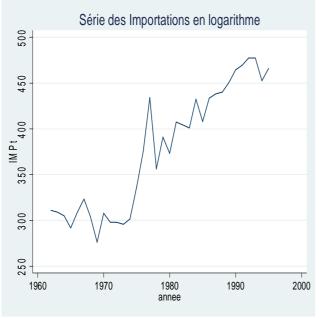
> Merci au Professeur FODIYE BAKARY Doucoure (Université Cheick Anta Diop du Sénégal) pour ses travaux de recherche qui nous inspirent.

> > Kinshasa, Avril 2018

4	Econométrie appliquée : Recueil des cas pratiques sur EViews et Stata (inspiré de Fodiye Bakary D., 2008)
	« Il est à peu près impossible de faire de la recherche en sciences économiques
	sans se trouver devant la nécessité de lire ou de réaliser des travaux
	d'économétrie à un moment ou un autre » (Fodiye B.D., p.3).

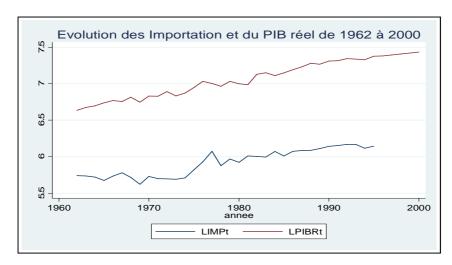
CHAPI MODELE LINEAIRE GENERAL

Cas pratique 1.1: importation fonction du PIB


Modèle :


$$\log(IMP_t) = a_0 + a_1 \log(PIBR_t) + e_t \dots [1.1]$$

Travail demandé (recours à Stata et Eviews) :


- o Représenter graphiquement les variables IMPt et PIBRt, en obtenir les caractéristiques et Tester leur normalité/log-normalité (test de Jarque Bera);
- o Estimer les coefficients/paramètres « a_0 et a_1 » par les MCO et interpréter les économiquement (interpréter aussi le R²);
- o Effectuer les tests usuels (significativité individuelle et globale des paramètres, hétéroscédasticité, autocorrélation des erreurs, bonne spécification et stabilité des coefficients) et faire de corrections éventuelles (corriger l'autocorrélation et stabiliser le modèle);
- o Prévoir les importations pour les années 1996, 1997, 1998, 1999 et 2000.
- a) Représentation graphique des variables IMPt et PIBRt et Teste de leur normalité et log-normalité (test de Jarque Bera)

Les commandes Stata pour les graphiques (line = tsline): gen LIMPt=log(IMPt) gen LPIBRt=log(PIBRt) line IMPt annee, title(Série des Importations en logarithme) line PIBRt annee, title(Série du Produit Intérieur Brut en logarithme) twoway (line LIMPt LPIBRt annee),title(Evolution des Importation et du PIB réel de 1962 à 2000)

Normalité et log-normalité de variables (test de Jarque-Berra/Shapiro wilk) :

____Sur Eviews, le chemin est (test de Jarque-Berra) : Quick/Group Statistics/Descriptive Statistics/Common sample \rightarrow dans series list, taper : pibr lpibr imp limp \rightarrow ok :

	PIBR	LPIBR	IMP	LIMP
Mean	1144.376	7.017415	377.0147	5.916234
Median	1099.200	7.002333	383.2000	5.948355
Maximum	1599.400	7.377384	477.3000	6.168145
Minimum	761.3000	6.635027	276.2000	5.621125
Std. Dev.	260.6200	0.228128	67.88812	0.182731
Skewness	0.274254	0.043221	0.026034	-0.089097
Kurtosis	1.740300	1.709849	1.443741	1.426565
Jarque-Bera	2.674250	2.368611	3.434927	3.552221
Probability	0.262600	0.305959	0.179521	0.169295
Sum	38908.80	238.5921	12818.50	201.1520
Sum Sq. Dev.	2241451.	1.717400	152090.3	1.101893
Observations	34	34	34	34

Ho: Normalité de la variable (prob>5%)

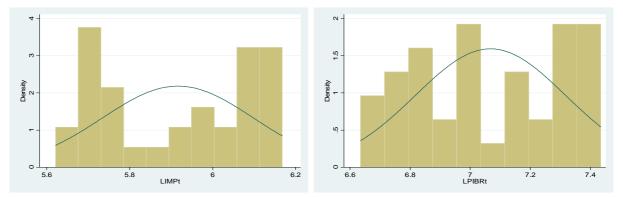
H1: Non normalité de la variable (prob<5%)

<u>Commentaire</u>: toutes les variables sont normalement distribuées (elles suivent les lois normale et *log-normale*). <u>Ex</u>: il y a 26,26% de chance de prendre une mauvaise décision en optant pour la non normalité de la variable « PIB ».

_Sur Stata, taper (test de Shapiro-Wilk, 1995) :

sktest PIBRt LPIBRt IMPt LIMPt

	Skewness/Ku	ırtosis tests f	-	ioint
Variable	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
PIBRt	0.666	0.000	12.98	0.0015
LPIBRt	0.820	0.000	11.74	0.0028
IMPt	0.943	0.000	18.61	0.0001
LIMPt	0.807	0.000	19.84	0.0000


Ho: la variable est gaussienne (Wc > Wt)

H1: la variable est non gaussienne (Wc < Wt)

Les histogrammes respectifs de variables peuvent nous aider aussi : sur Stata, taper :

hist LIMPt, normal bin(10)
hist LPIBRt, normal bin(10)

Caractéristiques/statistiques descriptives de variables

_____Sur Eviews, Cfr le chemin relatif au test de Jarque-Berra ci-dessus;
_____Sur stata, la commande est:sum IMPt LIMPt PIBRt LPIBRt, detail

(\underline{NB} : ci-dessous, nous ne présentons que le résultat relatif à la variable «IMPt», pour raison d'espace et à titre illustratif)

		IMPt			
	Percentiles	Smallest			
1%	276.2	276.2			
5%	291.6	291.6			
10%	297.8	295.7	0bs	34	
25%	307.8	297.8	Sum of Wgt.	34	
50%	383.2		Mean	377.0147	
		Largest	Std. Dev.	67.88812	
75%	438.2	466.2			
90%	466.2	469.2	Variance	4608.797	
95%	477.2	477.2	Skewness	.026034	
99%	477.3	477.3	Kurtosis	1.443741	

b) Estimation des coefficients/paramètres « a_0 et a_1 » par les MCO (sur Stata) et interprétation économique

ommande:	reg LIMPt	LPIBRt				
Source	SS	df	MS		Number of obs	~ -
Model Residual	967660088		7660088 1194786		F(1, 32) Prob > F R-squared Adj R-squared	= 0.0000 = 0.8782
Total	1.10189325	33 .033	3390705		Root MSE	= .06477
LIMPt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LPIBRt _cons	.7506297 .6487534	.0494219	15.19 1.87	0.000 0.071	.6499607	.8512988 1.355552

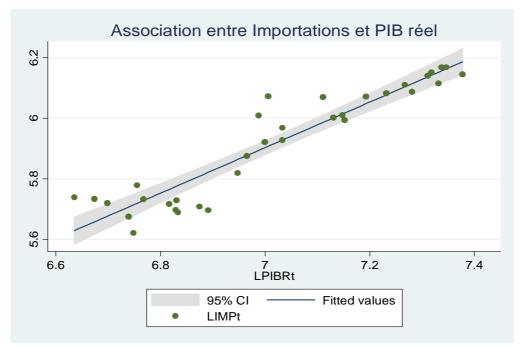
Commentaires:

o <u>Paramètre</u>: une variation du Produit Intérieur Brut Réel/PIBR, dans le sens positif, de 10% entraîne une modification des importations de 7,5% dans le

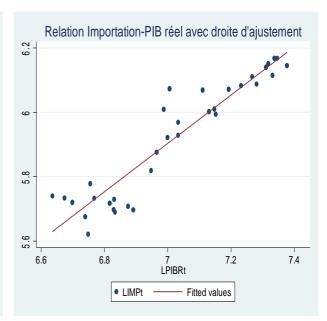
- même sens (a1 = élasticité ou paramètre de sensibilité relative des importations par rapport au mouvement du PIBR);
- o Coefficient de détermination: le modèle --- tel que spécifié (variable explicative/importation, relation linéaire, etc.) ---- explique 87,82% de variations/évolutions des importations ($R^2 = 0.8782$);
- o <u>Coefficient de corrélation (simple)</u>: nos deux variables (LIMPt et LPIBRt) sont fortement et positivement corrélées à 93,71% (cette relation est linéaire), car : prob < 5%.

Les hypothèses du test:

Ho: Pas de corrélation linéaire (prob-F > 5%)


H1: Existence d'une corrélation linéaire (prob-F < 5%)

Commande:pwc	orr	LIMPt	LPIBRt,	sig	g print(1)
		LIMPt	LPIBRt		
LIMPt	+ 	1.0000			
LPIBRt	!	0.9371 0.0000	1.0000		


Corrélation de variables sur le graphique:

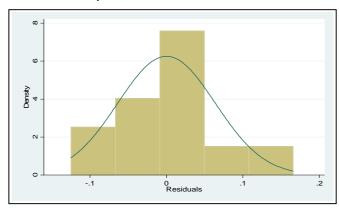
Commandes Stata:

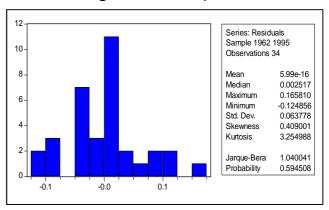
- (lfitci LIMPt LPIBRt) (scatter LIMPt twoway LPIBRt), title (Association entre Importations et PIB réel)
- title(Relation o twoway scatter LIMPt LPIBRt, mlabel(annee) Importation-PIB réel)
- LIMPt LPIBRt lfit LIMPt LPIBRt, title (Relation o scatter Importation-PIB réel avec droite d'ajustement)

- c) Tests usuels et corrections éventuelles
- Arr Significativité individuelle: Les paramètres estimés « a_0 et a_1 » sont statistiquement significatifs aux seuils de 10% et 1% (au regard des probabilités statistiques associées), respectivement;
- **<u> Significativité conjointe</u>**: Pris ensemble, les paramètres estimés « a_0 et a_1 » sont statistiquement significatifs au regard de la statistique calculée de Fisher (prob F-stat < 5%);
- **♣** Normalité des erreurs : Les erreurs sont normalement distribuées (prob>5%).

_Les hypothèses du test :

∫ Ho : Les erreurs sont normalement distribuées (prob-F > 5%)


│ H1 : Les erreurs ne sont pas normalement distribuées (prob-F < 5%)


_Commandes Stata (pour l'histogramme):

f reg LIMPt LPIBRt
f predict e,resid
hist e, normal

_Commande Eviews:

Dans l'output, suivre le chemin : View/Residual Tests/Histogram-Normality Test.

Commande :skt	est e			
	Skewness/Ku	ırtosis tests f		
Variable	Pr(Skewness)	Pr(Kurtosis)		joint Prob>chi2
e	0.271	0.410	2.03	0.3619

Hétéroscédasticité:

(i) <u>Test de white</u>: Les erreurs sont homoscédastiques, car: prob-F > 5% et tous les paramètres estimés sont statistiquement non significatifs.

Les hypothèses du test : _Commandes Stata: ∫ Ho : Homoscédasticité (prob-F > 5%) predict res,resid H1 : Absence d'homoscédasticité (prob-F < 5%)

	Number of obs F(2, 31)		MS	df	SS	Source
= 0.0731	Prob > F		0092771	2 .000	.000185542	Model
= 0.1553 = 0.1008	R-squared		0032565	31 .000	.001009501	Residual
= .00571	Adj R-squared Root MSE		0036213	33 .000	.001195043	Total
Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	res2
.960147	3591285	0.360	0.93	.323429	.3005092	LPIBRt
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0690379	0.345	-0.96	.0230267	0220746	LPIBRt2
.0248887	0090379					

(ii) Test de présence des effets ARCH d'ordre 3 (ARCH(3) ou LM test) : Les erreurs sont homoscédastiques, car: prob-F > 5% et tous les paramètres estimés sont statistiquement non significatifs.

_Les hypothèses du test :

Ho: Homoscédasticité ou absence d'effets ARCH (prob-F > 5%)

H1: Absence d'homoscédasticité ou présence d'effets ARCH (prob-F < 5%)

		L3.res2	L2.res2	res2	eg res2	ommande:
	Number of obs		MS	df	SS	Source
= 0.8438	F(3, 27) Prob > F R-squared		.000010988			Model Residual
	Adj R-squared Root MSE		.000037237	30	.00111711	Total
Interval]	[95% Conf.	P> t	rr. t	Std. E	Coef.	res2
						res2
.3579949	4209248	0.870	09 -0.17	.18981	031465	L1.
.4349842	3448581	0.814	58 0.24	.19003	.045063	L2.
.5419064	2199644	0.394	64 0.87	.18565	.160971	L3.
.0064963	000592	0.099	73 1.71	.00172	.0029522	cons

(iii) Test de Breusch-Pagan: Les erreurs ne sont pas homoscédastiques (elles sont hétéroscédastiques), car : prob-Chi2(1) < 5%.

_Les hypothèses du test :

Ho: Homoscédasticité (prob-F > 5% et $\chi^2_{dl(C)} < \chi^2_{dl(T)}$)

H1: Absence d'homoscédasticité (prob-F < 5% et $\chi^2_{dl(C)} > \chi^2_{dl(T)}$)

```
Commande : estat hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
        Ho: Constant variance
         Variables: fitted values of LIMPt
                           4.99
         chi2(1)
         Prob > chi2 =
                        0.0255
```

Autocorrélation des erreurs :

(i) <u>Test de Durbin-Watson</u>: les erreurs semblent positivement auto-corrélées à l'ordre 1 (présomption), car prob < 5%.

_Les hypothèses du test :

Ho: Absence d'autocorrélation ($prob > 5\% \leftrightarrow \rho = 0$)

H1: Présence d'autocorrélation ($prob < 5\% \leftrightarrow \rho \neq 0$)

NB: n=34 et k=1 (nombre de régresseurs); au seuil de 5%, sur la table de Durbin-Watson: $d_{inf} = 1,39$ et $d_{sup} = 1,51$. En outre, $DW = 1,064 < d_{inf}$.

o <u>Calcul de la statistique de Durbin-Watson</u>:

```
Commande: dwstat ou estat dwatson
Durbin-Watson d-statistic( 2,
```

Test de Durbin-Watson :

Commande:du	rbina, lags(1)		
Durbin's alter	rnative test for autocor	relation	
lags(p)	·	df	Prob > chi2
1	6.592	1	0.0102
	H0: no serial	correlation	

(ii) Test de Breush-Godfrey: les erreurs sont auto-corrélées à l'ordre 2, car prob<5%.

_Les hypothèses du test :

Ho: Absence d'autocorrélation (prob > 5%)

H1: Présence d'autocorrélation (prob < 5%)

Commande:estat	bgodfrey, lags(3)					
Breusch-Godfrey LM test for autocorrelation						
lags(p)	chi2	df	Prob > chi2			
3	6.451	3	0.0916			

1	
	_,

Commande: estat	bgodfrey, lags(2)							
Breusch-Godfrey	Breusch-Godfrey LM test for autocorrelation							
lags(p)	chi2	df	Prob > chi2					
2	6.380	2	0.0412					
H0: no serial correlation								

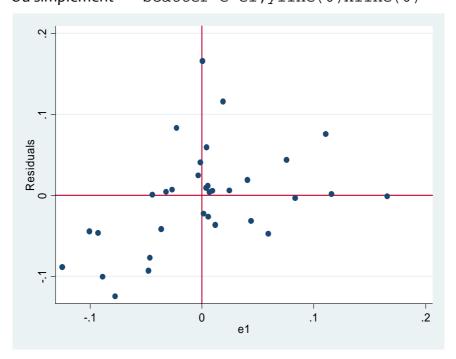
ou encore

Commande:bgodfrey, lags(3) small							
Breusch-Godfre	Breusch-Godfrey LM test for autocorrelation						
lags(p)		df	Prob > F				
3	2.150	(3, 29)	0.1155				
	H0: no serial correlation						

Commande:bgodfrey, lags(2) small							
Breusch-Godfre	Breusch-Godfrey LM test for autocorrelation						
lags(p)		df	Prob > F				
2	3.190	(2, 30)	0.0555				
H0: no serial correlation							

(iii) Test de présence d'effets ARCH(2): Il y a absence d'effets ARCH (à l'ordre 1, 2, ...) dans le modèle estimé/résidus (no ARCH effects), car prob > 5%.

_Les hypothèses du test :


Ho: Les erreurs ne suivent pas un modèle ARCH(1), ARCH(2) \rightarrow (prob > 5%) H1: Les erreurs suivent un modèle ARCH(1), ARCH(2) \rightarrow (prob < 5%)

Commande: ar	Commande:archlm, lags(1)							
LM test for	autor	egressive condit	tional heteroskedastic	ity (ARCH)				
		chi2	df	Prob > chi2				
1		0.009	1	0.9230				
*****	*****	*****	* * * * * * * * * * * * * * * * * * * *	*****				
Commande: ar	chlm	, lags(2)						
Commande: ar	chlm	, lags(2)	*************************** tional heteroskedastic					
Commande:ar LM test for lags(p)	autor	, lags(2) egressive condit	tional heteroskedastic df	ity (ARCH) Prob > chi2				
Commande:ar LM test for lags(p)	rchlm, autor 	, lags(2) egressive condit	tional heteroskedastic	ity (ARCH) Prob > chi2				

(iv) Evolution des résidus dans le temps (par rapport à ses valeurs passées) :

Commande:graph twoway (scatter e e1),yline(0) xline(0) Ou simplement : scatter e e1,yline(0)xline(0)

(v) Correction de l'autocorrélation des erreurs

Approche de Cochrane-Orcutt (1949) :

Commande (Stata):prais LIMPt LPIBRt, corc

```
Iteration 0: rho = 0.0000
Iteration 1: rho = 0.4210
Iteration 2: rho = 0.4143
Iteration 3: rho = 0.4141
Iteration 4: rho = 0.4141
Iteration 5: rho = 0.4141
Cochrane-Orcutt AR(1) regression -- iterated estimates
     Source | SS df MS Number of obs =
                                                F( 1, 31) = 106.93
Prob > F = 0.0000
R-squared = 0.7752
   Model | .337035999 1 .337035999
Residual | .097710835 31 .003151962
                                                  Adj R-squared = 0.7680
      Total | .434746833 32 .013585839
                                                 Root MSE = .05614
                 Coef. Std. Err. t P>|t|
      LIMPt
                                                    [95% Conf. Interval]
    LPIBRt | .7745266 .0749012 10.34 0.000 .6217646 .9272886
      _cons | .4737872 .5279349 0.90 0.376
                                                    -.6029432
                                                                1.550518
     rho | .4140699
Durbin-Watson statistic (original) 1.064825
Durbin-Watson statistic (transformed) 2.181396
```


_**Sur Eviews, faire** : Is limp c lpibr ar(1)

Dependent Variable: LIMP Method: Least Squares Date: 11/30/13 Time: 15:41 Sample (adjusted): 1963 1995

Included observations: 33 after adjustments Convergence achieved after 6 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.473789	0.536888	0.882473	0.3845
LPIBR	0.774526	0.076162	10.16940	0.0000
AR(1)	0.414069	0.156776	2.641142	0.0130
R-squared	0.908666			5.921581
Adjusted R-squared	0.902577			0.182844
S.E. of regression	0.057070			-2.802554
Sum squared resid	0.097711			-2.666508
Log likelihood	49.24214			149.2321
Durbin-Watson stat	2.181395			0.000000
Inverted AR Roots	.41			

🖶 Méthode de Prais-Winstern :

```
Commande: prais LIMPt LPIBRt, ssesearch
Iteration 1: rho = 0.8944, criterion = -.12478055
Iteration 2: rho = 0.4894, criterion = -.1072125
Iteration 3: rho = 0.4894 , criterion = -.1072125
Iteration 4: rho = 0.4894 , criterion =
Iteration 5: rho = 0.4894 , criterion =
                                      -.1072125
                                     -.1072125
Iteration 6: rho = 0.4891 , criterion = -.10721247
Iteration 7: rho = 0.4886 , criterion = -.10721244
Iteration 8: rho = 0.4886 , criterion = -.10721244
Iteration 9: rho = 0.4886 , criterion = -.10721244 Iteration 10: rho = 0.4886 , criterion = -.10721244
Iteration 11: rho = 0.4886 , criterion = -.10721244
Iteration 12: rho = 0.4886 , criterion = -.10721244
Iteration 13: rho = 0.4886 , criterion = -.10721244
Iteration 14: rho = 0.4886 , criterion = -.10721244
Prais-Winsten AR(1) regression -- SSE search estimates
     Source | SS df
                                                Number of obs =
  Adj R-squared = 0.9733
     Total | 4.14005049 33 .125456075
                                                Root MSE = .05788
______
     LIMPt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 LPIBRt | .7044378 .0773969 9.10 0.000 .5467855 .8620901

_cons | .9747038 .5434083 1.79 0.082 -.1321826 2.08159
       rho | .4886445
Durbin-Watson statistic (original) 1.064825
Durbin-Watson statistic (transformed) 2.148891
```


Approche de White :

l'output, Sur dans Estimate/Options→Cocher Eviews, suivre « Heteroskedasticity consistent coefficient covariance »; ensuite, « White »→ok:

> Dependent Variable: LIMP Method: Least Squares Date: 11/30/13 Time: 16:04 Sample (adjusted): 1962 1995 Included observations: 34 after adjustments White Heteroskedasticity-Consistent Standard Errors & Covariance Variable Coefficient Std. Error t-Statistic Prob. C 0.648755 0.312587 2.075437 0.0461 **LPIBR** 0.750630 0.043554 17.23457 0.0000 R-squared 0.878179 Mean dependent var 5.916234 Adjusted R S.D. dependent var 0.874373 0.182731 S.E. of regression 0.064767 Akaike info criterion -2.579013 0.134233 Sum squared resid Schwarz criterion -2.48922745.84322 Log likelihood F-statistic 230,6815 **Durbin-Watson stat** 1.064827 Prob(F-statistic) 0.000000

Sur Stata, taper (correction de l'hétéroscédasticité par la méthode d'Eicker-White ou la méthode des écarts robustes): reg LIMPt LPIBRt, robust

Linear regress	ion				Number of obs F(1, 32) Prob > F R-squared Root MSE	
LIMPt	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
LPIBRt _cons	.7506297 .6487534	.0435538	17.23 2.08	0.000	.6619136 .0120336	.8393459 1.285473

Approche de Newey-West :

Eviews, dans l'output, suivre : Estimate/Options→Cocher « Heteroskedasticity consistent coefficient covariance », ensuite, cocher « Newey-West »→ok:

> Dependent Variable: LIMP Method: Least Squares Date: 11/30/13 Time: 16:16 Sample (adjusted): 1962 1995

Included observations: 34 after adjustments

Newey-West HAC Standard Errors & Covariance (lag truncation=3)

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C LPIBR	0.648755 0.750630	0.442118 0.061301	1.467379 12.24503	0.1520 0.0000
<	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.878179 0.874373 0.064767 0.134233 45.84322 1.064827	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion erion	5.916234 0.182731 -2.579013 -2.489227 230.6815 0.000000

Sur Stata, Commandes:

newey LIMPt LPIBRt, lag(1) newey LIMPt LPIBRt, lag(2)

34	=	E obs	ber of	Nur	rors	standard er	n Newey-West	Regression with
197.54	=	32)	1,	F(maximum lag: 1
0.0000	=		b > F	Pro				
						Newey-West		
<pre>Interval]</pre>	nf.	5% Coi	[95	P> t	t	Std. Err.	Coef.	LIMPt
.859416	5	 41843!	 .64	0.000	14.05	.0534069	.7506297	LPIBRt
1.431299	2	337922	13	0.101	1.69	.3841783	.6487534	cons

gression wit ximum lag: 2	-	standard er	rors	F(per of obs = 1, 32) = 0 > F =	166.58
 LIMPt	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
LPIBRt _cons	.7506297 .6487534	.058158 . 4190124	12.91 1.55	0.000 0.131	.6321657 204747	.8690937 1.502254

↓ Comparaison de résultats obtenus par les 4 approches

	Somme des carrés			
Méthodes/ Approches	moyens des erreurs/RMSE	Coefficient (R²)	Statistique de Fisher	Durbin-Watson
	•			2.4942.06
Cochrane-Orcut	0.05614	77.52%	106.93	2.181396
Prais-Winstern	o . 05788	97.41%	1203.69	2.148891
White	0.134233	87.82%	230.68	1.064827
Newey-West	0.134233	87.82%	230/198.54	1.064822

Commentaire: l'on notera que la méthode de White et celle de Newey-West servent plutôt à corriger un modèle victime d'hétéroscédasticité : Qu'elles ne nous rendent pas service, nous ne leur tenons pas rigueur. L'arbitrage est donc à faire entre les deux autres approches (Cochrane et Prais). Comme on peut le constater, d'une part, l'approche de Prais-Winstern l'emporte sur celle de Cochrane-Orcut si l'on s'en tient à la statistique de Fisher et au coefficient de détermination. Toutefois, les propos sont à nuancer au regard du critère RMSE le plus minimum offert par la méthode de Cochrane-Orcut, ce qui la rend d'autre part efficace par rapport à la méthode de Prais-Winstern. Et Alors? Quant à moi, optons pour la méthode de prais-winstern, elle qui a réussi au moins à maintenir les paramètres statistiquement significatifs (seuils: 1% et 10%).

En outre, précisons ce qui suit : n=33 et k=2 [nombre de régresseurs : y compris AR(1)]; au seuil de 5%, sur la table de Durbin-Watson: $d_{inf} = 1,32$ et $d_{sup} = 1,58$. Or, $DW = 2,148891 \Leftrightarrow 4 - d_{inf} < DW < 4 - d_{sup}$, avec $4 - d_{inf} = 2,68$ $4-d_{sup}=2,42$. D'où, il y a absence d'autocorrélation des erreurs (l'approche de Prais-Winstern nous a aidée à corriger ce biais).

Bonne spécification du modèle (test Reset de Ramsey) :

_Les hypothèses du test :

Ho: Le modèle est bien spécifié \rightarrow (prob > 5%)

H1: Le modèle n'est pas bien spécifié \rightarrow (prob < 5%)

Commande: reg LIMPt LPIBRt ovtest

```
Ramsey RESET test using powers of the fitted values of LIMPt
      Ho: model has no omitted variables
                                 6.57
                 F(3, 29) =
                 Prob > F = 0.0016
```

Autrement, estimer le modèle (1) ci-dessous par les MCO et tester la significativité de paramètres associés aux régresseurs (avec $LIMPF3_t = LIMP_t$ prévu élevé au cube, etc.):

$$LIMP_t = a_0 + a_1LPIBR_t + a_2LIMPF2_t + a_3LIMPF3_t + e_t \dots [1]$$

Commandes Stata :

reg LIMPt LPIBRt predict LIMPF,xb gen LIMPF2=LIMPF^2 gen LIMPF3=LIMPF^3 reg LIMPt LPIBRt LIMPF2 LIMPF3

	Number of obs		MS	df	SS	Source
= 0.0000 = 0.9146	F(3, 30) Prob > F R-squared Adj R-squared		35937119 03136063		1.00781136 .094081898	Model Residual
= .056	Root MSE		33390705	33 .033	1.10189325	Total
Interval]	[95% Conf.	P> t	. t	Std. Err.	Coef.	LIMPt
-340.0632 282.871 -4.317199 2209.771	-1254.524 76.70547 -15.94229 601.4297	0.001 0.001 0.001 0.001	-3.56 3.56 -3.56 3.57	223.8832 50.47454 2.846117 393.7628	-797.2937 179.7882 -10.12975 1405.601	LPIBRt LIMPF2 LIMPF3 _cons

Commentaire: le modèle est mal spécifié, car tous les paramètres du « modèle 1 » estimés sont statistiquement significatifs. A cela s'ajoute que la statistique de Ramsey-Reset affiche une probabilité < 5% (on accepte H1). Autant dire que le PIB réel/PIBR n'est pas la seule variable explicative des importations/IMP, il y a lieu d'intégrer d'autres variables de contrôle.

Stabilité des paramètres :

(i) Test de CHOW:

_Les hypothèses du test :

Ho: Le modèle est stable \rightarrow (prob > 5%)

H1: Le modèle n'est pas stable \rightarrow (prob \leq 5%)

Pour étudier la stabilité de notre modèle, considérons/définissons deux dates/années de rupture (caractéristiques d'événements particuliers), à savoir : les années 1974 et 1978.

Pour la date/point de rupture « 1974 »

Deux sous-périodes sont à définir :

o 1^{ère} sous-période : de 1962 à 1973 o 2^{ème} sous-période : de 1974 à 1995

_Sur Eviews, dans l'output, suivre: View/Stability Tests/Chow Breakpoint Test... \rightarrow **1974** \rightarrow ok:

Chow Breakpoint Test: 1974							
F-statistic	10.29589	Probability	0.000394				
Log likelihood ratio	17.76813	Probability	0.000139				

Conclusion: pour les deux sous-périodes considérées, notre modèle estimé n'est pas stable, car: prob<5% (les deux probabilités).

Pour la date/point de rupture « 1978 »

Définissons également deux sous-périodes :

o 1^{ère} sous-période : de 1962 à 1977 o 2^{ème} sous-période : de 1978 à 1995

Sur Eviews, dans l'output, suivre: View/Stability Tests/Chow Breakpoint Test... \rightarrow **1978** \rightarrow ok:

Chow Breakpoint Test	:: 1978		
F-statistic	1.949199	Probability	0.160004
Log likelihood ratio	4.153795	Probability	0.125318

Conclusion: pour les deux sous-périodes considérées, notre modèle estimé est plutôt stable, car: prob>5% (les deux probabilités).

Inconvénient du test de Chow : les résultats par rapport aux deux dates de rupture ne concordent pas (les tests graphiques/CUSUM de Brown, Durbin et Evans tiennent lieu).

Test de Chow sur Stata

Dans Stata, pour calculer la statistique de Chow, procéder comme suit :

- estimer le modèle général ;
- récupérer la somme des carrés des résidus et le nombre d'observations, respectivement « SCR et n »;
- estimer le modèle 1 pour la 1ère sous-période (1962 1977);
- récupérer la SCR1 (scalar SCR1=e(rss));
- estimer le modèle 2 pour la 2^{ème} sous-période (1978 1995);

- récupérer la SCR2 (scalar SCR2=e(rss));
- calcul de la statistique de Chow: scalar stat=((scr-(scr1+scr2))/(scr1+scr2))*((n-2*2)/2);
- display stat : obtenir la valeur calculée ;
- display F(2, n-2*2, stat): c'est la statistique du test correspondant au « pvalue » (1-probabilité du test) de l'hypothèse nulle (Ho: stabilité et H1: instabilité).

Résultats du test de CHOW:

Le test de CHOW n'est pas programmé dans Stata, mais il peut se calculer comme suit $\left[\frac{SCR - (SCR1 + SCR2)}{SCR1 + SCR2} \times \frac{n - 2k}{k} \to F(k, n - 2k)\right]$; Avec: n (nombre d'observations), k (nombre de paramètres), SCR/SCR1/SCR2 (les sommes des carrés des résidus de deux sous échantillons et de l'échantillon total]:

```
\begin{cases} \mathbf{reg} \ LIMPt \ LPIBRt \\ \mathbf{scalar} \ scr = \mathbf{e(rss)} \\ \mathbf{scalar} \ n = \mathbf{e(N)} \end{cases} Estimation sur l'ensemble de l'échantillon/période et récupération de « SCR et n ».
```

Commande:re	eg LIMPt Li	PIBRt				
Source	SS	df	MS		Number of obs	
· ·	.967660088 .134233167				Prob > F R-squared Adj R-squared	= 0.0000 = 0.8782
Total	1.10189325	33.	033390705		Root MSE	
LIMPt	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
LPIBRt _cons			.9 15.19 .7 1.87		.6499607 0580455	
scalar scr=e(scalar n=e(N)	•					

{reg LIMPt LPIBRt if annee <= 1977 | Estimation sur le 1^{er} sous-échantillon scalar scr1 = e(rss) | (1962-1977) et récupération de SCR1.

Commande:reg	LIMPt LPI	BRt if an	nee<=19	77		
Source	SS	df	MS		Number of obs	
Model Residual	.076458508				F(1, 14) Prob > F R-squared Adj R-squared	= 0.0058 = 0.4301
Total	.177766276	15 .011	851085		Root MSE	
LIMPt	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
LPIBRt _cons		.1934286 1.318822		0.006 0.285	.2138844	
scalar scr1=	e(rss)					

$$\begin{cases} \textbf{reg LIMPt LPIBRt if annee} > 1977 \\ \textbf{scalar } scr2 = \textbf{e(rss)} \end{cases}$$
 Estimation sur le 2^{ème} sous-échantillon (1978-1995) et récupération de SCR2.

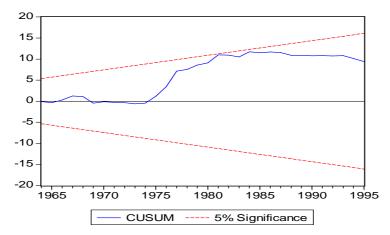
Source	SS	df	MS		Number of obs	
	.109041999				F(1, 16) Prob > F R-squared Adj R-squared	= 0.0000 = 0.8618
Total	.126530167	17 .0074	142951		Root MSE	= .03306
LIMPt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LPIBRt	.5901453	.0590846	9.99	0.000	.4648916	.7153991
_cons	1.81434	.4252052	4.27	0.001	.9129456	2.715735

$$\begin{cases} scalar \ stat = ((scr - (scr1 + scr2))/(scr1 + scr2)) * ((n - 2 * 2)/2) \\ display \ stat \\ display \ F(2, n - 2 * 2, stat) \end{cases}$$

NB:

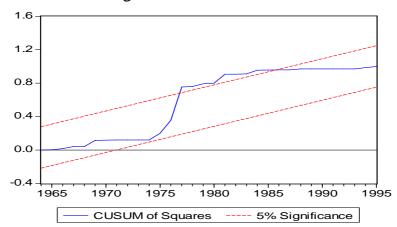
- o 1^{ère} expression (scalar...): calculer la statistique de Fisher F(2,n-2*2));
- o 2^{ème} expression (display stat): afficher la valeur F-calculé: stat = 1.9492119. Le F-théorique/F(0.05;2;12)= 3.89;
- o 3^{ème} expression (display F(2,n-2*2,stat)): calculer la probabilité associée à la statistique calculée de Fisher (NB: par définition, la p-value est le complément à 1 de la probabilité du test. C.à.d. « p-value = 1-prob du test »). prob F (p-value nulle) = 0.83999769, p-value 0.83999769 = 0.16.

L'on constate ainsi que la «p-value» associée au F-stat est > à 5% (Fc < Ft, soit 1.9492119 < 3.89). D'où, on accepte l'hypothèse nulle selon la quelle les paramètres estimés sont stables sur les deux sous-périodes/les deux régressions ne sont pas différentes.


(ii) Test de CUSUM (Brown, Durbin et Evans):

L'hypothèse de stabilité du modèle est validée si la courbe Cusum ne sort pas du corridor (intervalle de confiance). Au cas contraire, l'on parlera de l'instabilité structurelle (test Cusum) ou l'instabilité ponctuelle (test Cusum carré). Pour ces deux tests, seul Eviews a été utilisé.

Résultat du test CUSUM


Sur Eviews, dans l'output, suivre : View/Stability Tests/Recursive Estimates (OLS only)... \rightarrow Cusum Test \rightarrow ok: La courbe ne coupe pas le corridor en pointillé; d'où, le modèle est structurellement stable.

Résultat du test Cusum Carré

Sur Eviews, dans l'output, suivre : View/Stability Tests/Recursive Estimates (OLS only)... \rightarrow Cusum of Squares Test \rightarrow ok : La courbe sort du corridor en pointillé; d'où, le modèle souffre d'une instabilité ponctuelle entre 1977 et 1986, éventuellement expliquée par le 2ème choc pétrolier, sans se passer des politiques d'ajustement structurel au Sénégal.

(iii) Stabilisation du modèle

Le recours aux variables dummy (indicatrices, muettes, etc.) est à compter parmi les techniques de stabilisation d'un modèle. Dans notre cas, nous créons la variable dummy/dichotomique « instab » avec les propriétés suivantes :

$$instab =$$

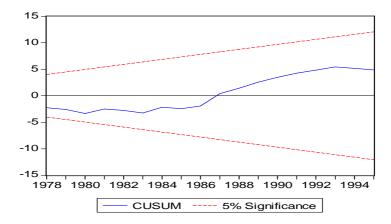
$$\begin{cases} 1, si \ ann\'ee \in [1977,1986] \\ 0, ailleurs \end{cases}$$

Sur Eviews, taper:

Genr instab=0*(annee<1977)+0*(annee>1986)+1*(annee>=1977 and annee<=1986) Ls limp c lpibr instab

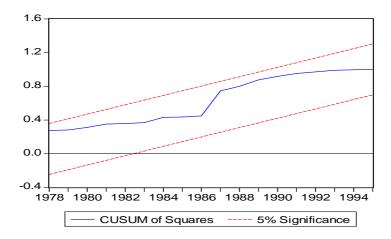
Sur Stata, taper:

```
qen instab=1
replace instab=0 if annee<1977
replace instab=0 if annee>1986
reg LIMPt LPIBRt instab
```



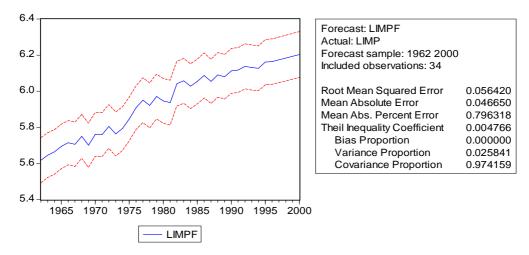
Dependent Variable: LIMP Method: Least Squares Date: 12/01/13 Time: 01:48 Sample (adjusted): 1962 1995 Included observations: 34 after adjustments Coefficient Std. Error t-Statistic Variable Prob. 0.319580 C 0.768366 2 404298 0.0224 **LPIBR** 0.731009 0.045657 16.01081 0.0000 **INSTAB** 0.061461 0.022521 2.729113 0.0104 0.901778 5.916234 R-squared Mean dependent var Adjusted R-squared 0.895441 0.182731 S.D. dependent var 0.059087 -2.735510S.E. of regression Akaike info criterion -2.600832Sum squared resid 0.108230 Schwarz criterion Log likelihood 49.50368 F-statistic 142.3061 **Durbin-Watson stat** 1.174653 Prob(F-statistic) 0.000000

				stab	t ins	PIBR	g LIMPt L	mande:r
= 34	of obs	Number o		MS		df	SS	Source
= 142.31	31)	F(2,						
= 0.0000	F	Prob > F		831719	.496	2	.993663437	Model
= 0.9018	red	R-square		491284	.003	31	.108229817	Residual
= 0.8954	squared	Adj R-sc						
= .05909	SE	Root MSE		390705	.033	33	1.10189325	Total
Interval]	conf.	[95%	P> t	t	Err.	Std.	Coef.	LIMPt
	70004						7210000	
.8241273	/8904	.6378	0.000	16.01	5572	.0456	.7310089	LPIBRt
	78904 55302		0.000	16.01 2.73		.0456	.7310089	LPIBRt instab


Commentaire: le 2^{ème} choc pétrolier et les politiques d'ajustement structurel ont été favorables aux importations du Sénégal en ce qu'ils l'ont augmentés de l'ordre de 0.06 point.

Test CUSUM: Sur Eviews, dans l'output, suivre: View/Stability Tests/Recursive Estimates (OLS only)... \rightarrow Cusum Test \rightarrow ok : La courbe ne coupe pas le corridor en pointillé; d'où, le modèle stabilisé est toujours structurellement stable.

Test Cusum Carré : Sur Eviews, dans l'output, suivre : View/Stability Tests/Recursive Estimates (OLS only)... \rightarrow Cusum of Squares Test \rightarrow ok: La courbe évolue maintenant dans les limites du corridor en pointillé; d'où, le modèle stabilisé est ponctuellement stable.



d) Prévision des importations pour les années 1996, 1997, 1998, 1999 et 2000

Notre modèle étant stable, faisons la prévision pour les cinq années comme suit :

Sur Eviews, dans l'out put du modèle stabilisé (avec « instab »), cliquer sur Forecast | →taper : limpf→ok :

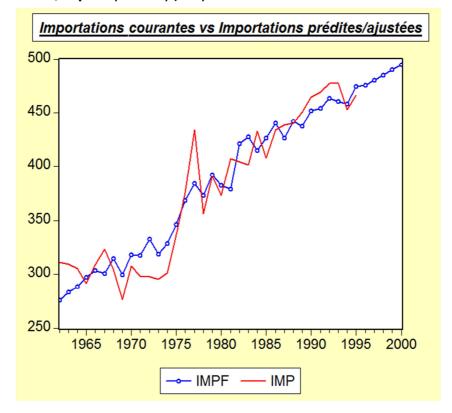
Ensuite, faire: genr impf=exp(limpf)

Avec : « limpf » : la variable « limp » prévue, et « impf » : la variable « imp » prévue (l'exponentiel de la variable logarithmique «limp»). Les valeurs prévues sont consignées dans le tableau ci-dessous :

Années	LIMPF	IMPF
1996	6.16430763811427	475.471830373706
1997	6.1742085839334	480.202833258587
1998	6.18393290889367	484.895260020134
1999	6.19357330369756	489.592446753993
2000	6.20308821596185	494.273108660778

Commentaire: la prévision est bonne au regard - à titre illustratif - de l'indice d'inégalité de Theil qui avoisine zéro (proche de o) et du MAPE = 0.79% (Mean Absolute Percent Error).

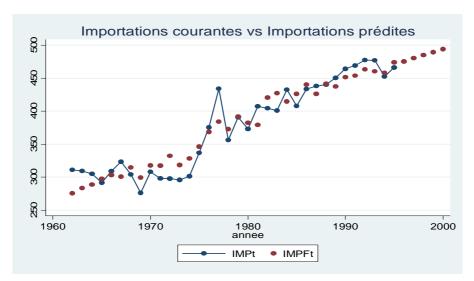
_Sur Stata, les commandes sont :


```
gen instab=1
replace instab=0 if annee<1977
replace instab=0 if annee>1986
reg LIMPt LPIBRt instab
predict LIMPF, xb
gen IMPFt=exp(LIMPF)
list LIMPF IMPFt if annee>1995
```

Les valeurs prévues sous Stata se présentent comme suit:

	+	+
	LIMPF	IMPFt
35.	6.164308	475.4718
36.	6.174209	480.2029
37.	6.183933	484.8952
38.	6.193573	489.5925
39.	6.203088	494.2731
	+	+

Graphiquement, les valeurs courantes et ajustées/prédites des importations (IMP) se présentent comme suit :


o **Sur Eviews, taper**: plot impf imp

Sur Stata:

Commande :scatter IMPt IMPF annee, connect(.1) title(Importations courantes vs Importations prédites)

CHAP II **MODELES A DECALAGES TEMPORELS**

Cas pratique 2.1: Investissement fonction du PIB et du taux d'intérêt

Modèle:

$$\log(INV_t) = b_0 + b_1 \log(INV_{t-1}) + b_2 \log(PIBR_t) + b_3 TI_t + e_t \dots [2.1]$$

_Avec: INVt = investissement courant; INVt-1 = investissement passé (1 an passé); PIBRt = PIB réel courant; et Tit = taux d'intérêt réel courant.

Travail demandé (recours à Stata et Eviews) :

- Estimer les paramètres par les MCO et interpréter le R²;
- o Effectuer les tests usuels [significativité individuelle (Student) et globale des paramètres (Fisher), hétéroscédasticité (White), bonne spécification (test reset de Ramsey) et stabilité des coefficients (test CUSUM)], celui d'autocorrélation des erreurs de Breusch-Godfrey et le test h de Durbin (test d'autocorrélation des erreurs adapté pour les modèles dynamiques);
- o Prévoir l'investissement pour les années 2002, 2003 et 2004.

Résolution :

a) Estimation des paramètres par les MCO et interprétation du R²:

Commandes Stata:

```
tsset temps
gen LINVt=log(INVt)
gen LPIBRt=log(PIBRt)
```

Commandes Eviews:

```
create a 1972 2004
data INVt PIBRt Tit
Is log(INVt) c log(INVt(-1)) log(PIBRt) Tlt
```


Dependent Variable: LOG(INVT) Method: Least Squares Date: 12/07/13 Time: 15:18 Sample (adjusted): 1973 2001 Included observations: 29 after adjustments Coefficient Std. Error t-Statistic -1.265328 0.398106 -3.178371 0.0039 5.124291 LOG(INVT(-1)) 0.083538 0.428072 0.0000 LOG(PIBRT) 0.646582 0.102471 6.309894 0.0000 -0.047420 0.009921 -4.779499 0.0001 0.965956 6.183779 R-squared Mean dependent var Adjusted R-squared 0.961871 S.D. dependent var 0.501060 S.E. of regression 0.097841 Akaike info criterion -1.683511 Sum squared resid 0.239320 Schwarz criterion -1.494918 Log likelihood 28.41091 F-statistic 236,4473 Durbin-Watson stat 2.403637 Prob(F-statistic) 0.000000

_	ber of obs		MS	df	SS	Source
= 236.45 = 0.0000	- /		 62461E1	3 2.26	6.79038454	Model
	guared			25 .009		Residual
= 0.9619	R-squared					+
= .09784	t MSE		1060869	28 .251	7.02970433	Total
Interval]	 [95% Conf.	P> t	t	td. Err.	Coef.	LINVt
						LINVt
.6001219	.2560232	0.000	5.12	0835378	.4280725	L1.
.8576251	.4355386	0.000	6.31	1024711	.6465819	LPIBRt
026986	.0678534	0.000	-4.78	0099215	0474197	TIt
4454139	2.085243	0.004	-3.18	3981059	-1.265328	cons

Interprétation du R²: le modèle autorégressif d'ordre 1 ---- tel que spécifié (variables explicatives/investissement, relation linéaire, etc.) ---- explique 96,59% de variations/évolutions des investissements ($R^2 = 0.9659$). Autant dire que les investissements antérieurs (il y a une année passée), le PIB réel et le taux d'intérêt courants contribuent à expliquer 96,59% de variations intervenues dans les investissements courants.

b) Tests usuels (classiques)

- lacktriangle Significativité individuelle: tous les paramètres estimés « b_0 , b_1 , b_2 et b_3 » sont statistiquement significatifs au seuil de 1% (au regard des probabilités statistiques associées aux t de student calculés);
- **Significativité conjointe:** Pris ensemble, ces paramètres estimés sont statistiquement significatifs au regard de la statistique calculée de Fisher (prob F-stat < 5%);
- **Test d'homoscédasticité de White** : Les erreurs sont homoscédastiques (pour le test sans termes croisés/no cross terms : résultat à gauche), car : prob-F > 5% et tous les paramètres estimés sont statistiquement non significatifs. Par contre, pour les cross terms (à droite), les erreurs sont hétéroscédastiques (résultat adopté : envisager une correction a<u>u sens de White).</u>

_Les hypothèses du test :

Ho: Homoscédasticité (prob-F > 5%)

H1: Absence d'homoscédasticité (prob-F < 5%)

Commandes Stata:

reg LINVt L.LINVt LPIBRt TIt predict e, resid gen e2=e^2 gen LINVtd=LINVt[_n] gen LINVtd2=LINVt^2 gen LPIBRt2=LPIBRt^2 gen TIt2=TIt^2

reg e2 LINVtd LINVtd2 LPIBRt LPIBRt2 TIt TIt2

Source	SS	df	MS		Number of obs	
Model Residual	.001154376 .003425937)192396)155724		F(6, 22) Prob > F R-squared	= 0.3265 = 0.2520
+ Total	.004580313	28 .000	0163583		Adj R-squared Root MSE	= 0.0480 = .01248
e2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LINVtd	0273308	.3197778	-0.09	0.933	6905095	.6358478
LINVtd2	.0012648	.0255829	0.05	0.961	0517909	.0543205
LPIBRt	2999637	.2751096	-1.09	0.287	8705061	.2705787
LPIBRt2	.0195299	.0169924	1.15	0.263	0157101	.05477
TIt	0130348	.0159401	-0.82	0.422	0460926	.020023
TIt2	.000812	.0008492	0.96	0.349	0009492	.0025732
_cons	1.321499	1.128384	1.17	0.254	-1.018626	3.661624

Sur Eviews, dans l'output, suivre: View/Residual Tests/White Heteroskedasticity (no cross terms ou cross terms) \rightarrow ok:

White Heteroskedasticity Test:	
	=

Probability 0.183271 F-statistic 1.640577 Obs*R-squared 8.964491 Probability 0.175585

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 12/07/13 Time: 17:23 Sample: 1973 2001 Included observations: 29

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(INVT(-1)) (LOG(INVT(-1)))^2 LOG(PIBRT) (LOG(PIBRT))^2 TIT TIT^2	1.188103 0.329588 -0.027125 -0.525989 0.032786 -0.017641 0.001037	0.983680 0.258699 0.020812 0.322083 0.019712 0.013511 0.000733	1.207814 1.274024 -1.303364 -1.633086 1.663245 -1.305699 1.413697	0.2399 0.2159 0.2059 0.1167 0.1104 0.2051 0.1714
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.309120 0.120699 0.011993 0.003164 91.13534 2.339800	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	0.008252 0.012790 -5.802438 -5.472401 1.640577 0.183271

27231 Probal 91435 Probal	

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 12/07/13 Time: 17:24 Sample: 1973 2001 Included observations: 29

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(INVT(-1)) (LOG(INVT(-1)))*2 (LOG(INVT(-1)))*(LOG(PIB (LOG(INVT(-1)))*TIT LOG(PIBRT) (LOG(PIBRT))*2 (LOG(PIBRT))*TIT TIT TIT*2	-4.999222	1.684518	-2.967746	0.0079
	0.403888	0.316475	1.276209	0.2173
	-0.037876	0.024616	-1.538686	0.1404
	0.015877	0.059367	0.267445	0.7920
	-0.007280	0.006777	-1.074198	0.2962
	1.185898	0.570859	2.077393	0.0516
	-0.095722	0.054648	-1.751588	0.0960
	0.029087	0.009176	3.169875	0.0050
	-0.221819	0.044740	-4.957918	0.0001
	0.001610	0.000724	2.225424	0.0384
R-squared	0.686702	Mean dependent var		0.008252
Adjusted R-squared	0.538297	S.D. dependent var		0.012790
S.E. of regression	0.008691	Akaike info criterion		-6.386351
Sum squared resid	0.001435	Schwarz criterion		-5.914870
Log likelihood	102.6021	F-statistic		4.627231
Durbin-Watson stat	2.622795	Prob(F-statistic)		0.002410

Tests d'autocorrélation des erreurs :

• Test h de Durbin :

Dans le cas de modèles dynamiques, pour tester l'autocorrélation des erreurs, l'on recourt à la statistique h de Durbin⁽¹⁾ exprimée comme suit :

$$h = \left(1 - \frac{d^*}{2}\right) \sqrt{\frac{T}{1 - T[var(\hat{b}_1)]}} = \hat{\rho} \sqrt{\frac{T}{1 - T[var(\hat{b}_1)]}}$$
$$= \left(1 - \frac{2,4036}{2}\right) \sqrt{\frac{29}{1 - 29[(0,083538)^2]}} \rightarrow h = -1,216$$

Avec:

- T: Taille de l'échantillon/nombre d'observations;
- $var(\hat{b}_1)$: variance du coefficient, associé à INVt-1, estimé;
- d*: statistique de Durbin-Watson calculée ($h \sim loi \ normale$ pour un échantillon grande de taille). NB: sur stata, faire: dwstat

$$\bullet \quad \hat{\rho} = 1 - \frac{d^*}{2}.$$

Les hypothèses du test sont :

Ho: absence d'autocorrélation(h < z ou h < 1.96; prob > 5%) H1: Présence d'autocorrélation $(h \ge z \text{ ou } h \ge 1,96; prob < 5\%)$

L'on notera que sous Ho, « h » est normalement distribuée (« z » est la valeur lue sur la table de la loi normale : $\alpha = 5\%$ et $z = \pm 1.96$).

Conclusion: Suivant la table de la loi normale, |h| < z (d'où, accepter Ho: absence d'autocorrélation de résidus au seuil de 5%).

Test de Breush-Godfrey: les erreurs ne sont pas auto-corrélées à l'ordre 2 (ni à l'ordre 1), car : prob>5%.

_Les hypothèses du test :

Ho: Absence d'autocorrélation (prob > 5%) H1: Présence d'autocorrélation (prob < 5%)

_Sur stata, obtenir :

Commande:bgodfrey, lags(2) small Breusch-Godfrey LM test for autocorrelation lags(p) ______ 1.352 (2, 23) 0.2786 HO: no serial correlation

¹ Le test de Durbin-Watson traditionnel sous-estime le risque d'autocorrélation dans ce type de modèle : il n'est donc pas efficace.

_Sur Eviews, dans l'output, suivre: View/Residual Tests/Serial correlation LM Test... \rightarrow lag to include: 1 \rightarrow ok:

Breusch-Godfrey Serial Correlation LM Test:						
F-statistic	1.182182	Probability		0.324560		
Obs*R-squared	2.703263	Probability		0.258818		
Test Equation: Dependent Variable: Method: Least Square Date: 12/07/13 Time Presample missing va	es : 17:17	siduals set to	zero.			
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	-0.026593	0.434483	-0.061205	0.9517		
LOG(INVT(-1))	0.000870	0.099039	0.008788	0.9931		
LOG(PIBRT)	0.003572	0.120594	0.029622	0.9766		
TIT	-0.000866	0.009978	-0.086745	0.9316		
RESID(-1)	-0.170232	0.236687	-0.719229	0.4792		
RESID(-2)	0.222638	0.226949	0.981004	0.3368		
R-squared	0.093216	Mean dependent var		-1.41E-15		
Adjusted R-squared	-0.103911	S.D. dependent var		0.092451		
S.E. of regression	0.097135	Akaike info criterion		-1.643431		
Sum squared resid	0.217011	Schwarz criterion		-1.360542		
Log likelihood	29.82975	F-statistic		0.472873		
Durbin-Watson stat	1.904235	Prob(F-statistic)		0.792568		

Test de bonne spécification Reset de Ramsey :

Les hypothèses du test :

Ho: Le modèle est bien spécifié \rightarrow (prob > 5%)

H1: Le modèle n'est pas bien spécifié \rightarrow (prob < 5%)

Commandes Stata: reg LINVt L.LINVt LPIBRt Tit ovtest

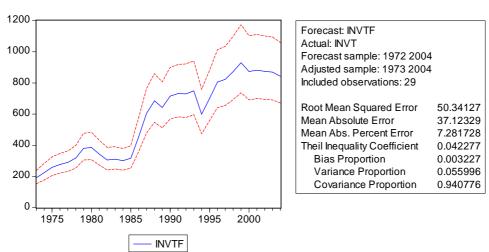
Ramsey RESET test using powers of the fitted values of LINVt Ho: model has no omitted variables F(3, 22) = 2.33Prob > F = 0.1022

Sur Eviews, dans l'output, suivre: View/Stability Test/Ramsey reset Test/Number of fitted term \rightarrow 2 \rightarrow ok:

Ramsey RESET Test	=			
F-statistic	2.158738	Probability		0.138294
Log likelihood ratio	4.988941	Probability		0.082540
Test Equation: Dependent Variable: I Method: Least Square Date: 12/07/13 Time Sample: 1973 2001 Included observations	es : 18:46			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	83.37132	81.16797	1.027145	0.3150
LOG(INVT(-1))	-10.30441	10.63231	-0.969160	0.3425
LOG(PIBRT)	-15.48694	16.15672	-0.958545	0.3478
TIT	1.148140	1.180599	0.972507	0.3409
FITTED^2	3.896888	4.172005	0.934057	0.3600
FITTED^3	-0.201369	0.232232	-0.867103	0.3948
R-squared	0.971337	Mean dependent var		6.183779
Adjusted R-squared	0.965105	S.D. dependent var		0.501060
S.E. of regression	0.093599	Akaike info criterion		-1.717612
Sum squared resid	0.201496	Schwarz criterion		-1.434723
Log likelihood	30.90538	F-statistic		155.8829
Durbin-Watson stat	2.879809	Prob(F-statistic)		0.000000

Commentaire: le modèle est bien spécifié, car tous les paramètres estimés du modèle contraint (Cfr output Eviews) sont statistiquement non significatifs. A cela s'ajoute que la statistique de Ramsey-Reset affiche une probabilité > 5% (on accepte Ho).

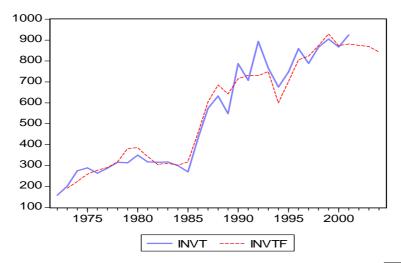
Test de stabilité de paramètres


Sur Eviews, suivre les chemins:

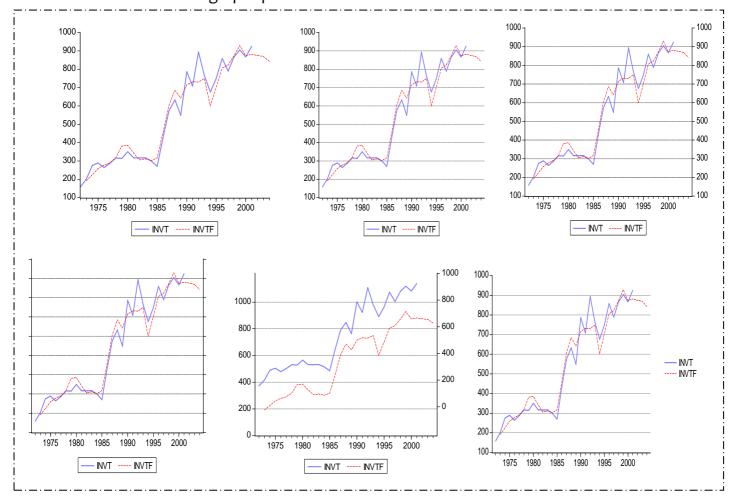
- View/stability Tests/Recursive Estimates/Cusum Test \rightarrow ok : le modèle est structurellement stable (Cfr graphique à gauche);
- View/stability Tests/Recursive Estimates/Cusum of Squares Test \rightarrow ok : le modèle est ponctuellement stable (Cfr graphique à droite).

c) Prévision de l'investissement pour les années 2002, 2003 et 2004

Sur Eviews, dans l'output, cliquer sur Forecast \rightarrow ok:

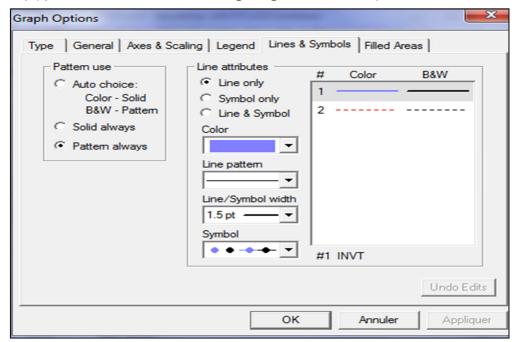


- ❖ Constat : MAPE = 7,28% et indice de Theil = 0.04 (notre modèle prédit avec efficacité les valeurs prises par l'investissement);
- ❖ Pour voir les valeurs prédites et prévues (avec INVtf: variable INVt estimée/ajustée ou prédite), sur Eviews, taper : show INVtf :

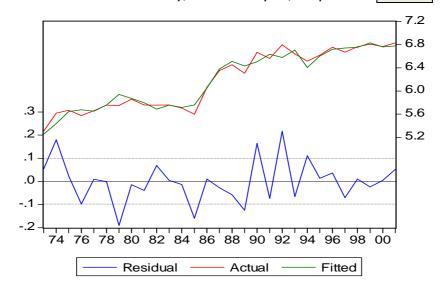


Années	Valeurs prévues
2002	874.991402620589
2003	869.355699857323
2004	842.397997064215

❖ Sur Eviews, pour visualiser le graphique des valeurs réelles et prévues, dans l'output, taper : plot INVt INVtf :



❖ Sur Eviews, dans l'output du graphique, cliquer sur **Options** modifier le graphique ci-dessus comme suit :



Pour ce faire, Cfr les options de la boîte de dialogue «Graph Options» suivante (Type, General, Axes & Scaling, Legend, Line & Symbols, Filled Areas):

❖ Sur Eviews, pour visualiser le graphique des valeurs réelles et prévues (simulation avec les résidus), dans l'output, cliquer sur Resids :

Avec:

- o Log(INVt) = Actual;
- Log(INVt) estimé = Fitted; et
- Residual = [log(INVt) log(INVt) estimé]

Cas pratique 2.2: Dépenses d'Investissement fonction des Profits passés

Modèle :

$$I_t = b_0 + b_1 P_t + b_2 P_{t-1} + b_3 P_{t-2} + \dots + b_h P_{t-h} + e_t \dots \dots [2.2]$$

_Avec : It = dépenses en investissement courant ; Pt = profits courants ; et Pt-h = profits antérieurs (pour h périodes).

- Hypothèse : les profits antérieurs (Pt-h) contribuent à expliquer les dépenses en investissement (It): Cfr théorie économique.
- Travail demandé (recours à Stata et Eviews): déterminer le nombre de décalages optimal (trimestriel) au bout duquel les effets des variations des profits se font ressentir sur les dépenses en investissement et estimer le modèle à retards échelonnés adéquat (par principe de parcimonie).

Résolution :

a) Déclaration de données trimestrielles à Stata:

Taper edit/Saisir les codes numériques du 1^{er} trimestre 1980 au dernier trimestre 1990 (en commençant par 80, avec « 1 » comme raison. NB : $1980-1960 = 20 \times 4 \text{ trimestres par moi} = 80$). Après avoir fermé le data editor, taper : format var3 %tq. Ensuite, taper : tsset var3 : le message suivant s'affiche :

time variable : var3, 1980q1 to 1990q4

Les données se présentent en partie comme suit :

		variutz	
	It	Pt	var3
1	2072	1660	1980q1
2	2077	1926	1980q2
3	2078	2181	1980q3
4	2043	1897	1980q4
5	2062	1695	1981q1
6	2067	1705	1981q2
7	1964	1731	1981q3
8	1981	2151	1981q4
9	1914	2556	1982q1
10	1991	3152	1982q2
11	2129	3763	1982q3
12	2309	3903	1982q4
13	2614	3912	1983q1
14	2896	3571	1983q7

b) Détermination du décalage optimal

Pour ce faire, calculer/obtenir les critères de Akaike et Schwarz, pour un retard de tâtonnement de 10 (44/4 = 11), en estimant les modèles à retards échelonnés d'ordre 1 jusqu'à 10 (retenir le modèle qui minimise ces critères). Les résultats des critères calculés sont (le décalage optimal retenu est h = 6):

Retard/décalage	Akaike	Schwarz
0	14.88	14.96
1	14.42	14.55
2	13.97	14.14
3	13.48	13.69
4	13.18	13.44
5	12.93	13.23
6	12.78	13.13
7	12.83	13.22
8	12.91	13.35
9	12.98	13.47
10	13.05	13.59

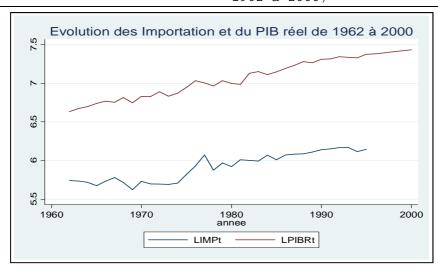
c) Estimation du modèle à retards échelonnés

Commande :	reg It Pt	L.Pt	L2.Pt	L3.Pt	L4.Pt	L5.Pt L6.Pt	
Source	SS	df	ľ	/IS		Number of obs	
Model	+ 6155805.34	 7	879400	763		F(7,30) Prob > F	
	521116.052					R-squared	= 0.9220
Total	+ 6676921.39	37	18045	7.335		Adj R-squared Root MSE	
It	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
Pt	 						
	011389	.0815	322	-0.14	0.890	1779	.1551221
L1.	.061265	.1249	9063	0.49	0.627	1938278	.3163577
L2.	.2275692	.1196	5352	1.90	0.067	0167584	.4718968
L3.	.1679316	.1129	9971	1.49	0.148	0628393	.3987026
L4.	.1187338	.1274	1542	0.93	0.359	1415624	.3790301
L5.	.0001691	.1369	9068	0.00	0.999	2794319	.2797702
L6.	.2371737	.0840	0651	2.82	0.008	.0654899	.4088575
_cons	501.5414	154.8	3486	3.24	0.003	185.2984	817.7845

_Commentaire : Les effets positifs de l'accumulation des profits antérieurs se font ressentir sur les dépenses en investissement après 1 an et demi (soit 6 trimestres: seul le coefficient du 6ème retard est statistiquement significatif, y compris la constante).

CHAP III:

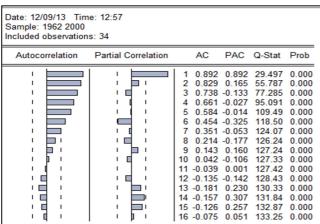
COINTEGRATION, MODELE A CORRECTION D'ERREUR/MCE ET VECTEUR A CORRECTION D'ERREUR/VECM

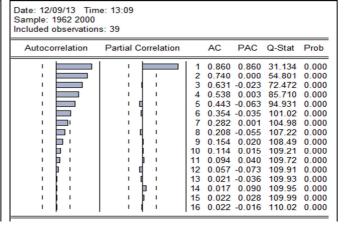

A. ESTIMATION D'UN MCE

Cas pratique 3.1: Test de stationnarité, test de cointégration et estimation d'un MCE : Importation fonction du PIB réel

III.1. Graphique et corrélogrammes

Evolution graphique des variables : sur Stata, la commande est :

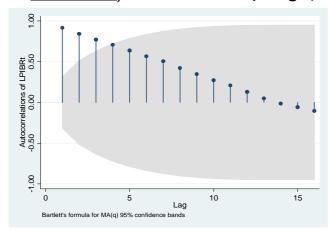

(line LIMPt LPIBRt annee), title (Evolution des Importation et du PIB réel de 1962 à 2000)

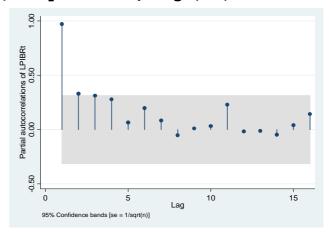


Note: les séries « limpt et lpibr » ont une tendance commune (elles semblent cointégrées).

Corrélogrammes des variables :

Sur Eviews, suivre: Quick/Series Statistics/Correlogram... → taper **limpt** ou **Ipibrt** \rightarrow ok \rightarrow cocher **Level** \rightarrow ok ou taper **ident** limpt :


Commentaire: les séries « limpt et lpibrt » sont non gaussiennes (prob<5%) et semblent non stationnaires (intégrées d'ordre 1, lag ou nombre de retard = 1).


Sur Stata, faire:

Comma	ande:cor	rgram L	IMPt,	lags(1	6)	
					-1 0 1	-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
1	0.8918	0.9387	29.497	0.0000		
2	0.8290	0.3057	55.787	0.0000		
3	0.7379	0.0117	77.286	0.0000		İ
4	0.6606	0.1933	95.091	0.0000		-
5	0.5841	0.0842	109.49	0.0000		
6	0.4941	-0.1728	120.16	0.0000		-
7	0.4163	0.1044	128.02	0.0000		
8	0.2985	-0.1096	132.21	0.0000		
9	0.2457	0.2717	135.17	0.0000	-	
10	0.1468	-0.0713	136.27	0.0000	-	
11	0.0595	-0.1718	136.46	0.0000	İ	- İ
12	-0.0504	-0.0104	136.6	0.0000		į
13	-0.1226	0.2149	137.47	0.0000		j -
14	-0.1818	0.0737	139.5	0.0000	-	İ
15	-0.2424	0.1801	143.28	0.0000	-	j -
16	-0.2550	•	147.7	0.0000		•

Comma	ande:cor	rgram L	PIBRt,	lags(1	16)	
				-:	1 0 1-1	0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation] [P	artial Autocor]
1	0.9147	0.9728	35.203	0.0000	 	
2	0.8411	0.3310	65.776	0.0000		ĺ
3	0.7721	0.3133	92.253	0.0000		
4	0.7072	0.2796	115.1	0.0000		
5	0.6392	0.0666	134.32	0.0000		
6	0.5671	0.1986	149.9	0.0000		j -
7	0.5059	0.0850	162.69	0.0000		ĺ
8	0.4227	-0.0513	171.9	0.0000		
9	0.3483	0.0105	178.37	0.0000		
10	0.2745	0.0325	182.52	0.0000		
11	0.2092	0.2311	185.02	0.0000	j -	j -
12	0.1303	-0.0157	186.03	0.0000	j –	İ
13	0.0495	-0.0115	186.18	0.0000	İ	İ
14	-0.0133	-0.0470	186.19	0.0000	İ	İ
15	-0.0581	0.0411	186.42	0.0000	İ	İ
16	-0.1036	0.1426	187.16	0.0000	1	-

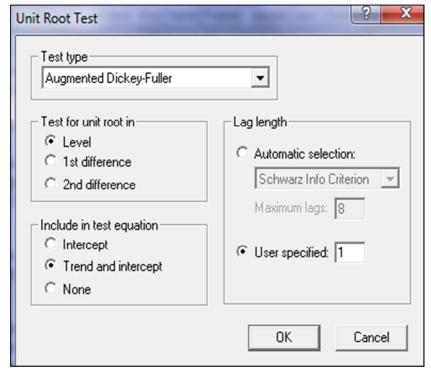
Autrement, faire: ac LIMPt, lags(16) ou pac LIMPt, lags(16)

<u>Avec</u>: ac (fonction d'autocorrélation simple) et pac (fonction d'autocorrélation partielle).

III.2. Tests de stationnarité (ADF et Phillips-Perron)

a) Test d'Augmented Dickey-fuller (ADF)

Les hypothèses du test sont :


Ho: la série est non stationnaire $\rightarrow |ADF| < |Mackinnon|$ ou (prob > 5%)H1: la série est stationnaire $\rightarrow |ADF| > |Mackinnon|$ ou (prob < 5%)

Série : Importation en logarithme (LIMPt)

Commande Stata: dfuller LIMPt, lags(1) trend regress

Augmented	Dickey-Ful	ller tes	st for unit	root	Numbe	er of obs	= 32
		est istic			5% Cri	-	er 10% Critical Value
Z(t)		 2 . 686	-4	.316	: : -	 3.572	-3.223
MacKinnon	approximat	te p-val	ue for Z(t)	= 0.242	1 		
						 [95% Conf	 E. Interval]
D.LIMPt	 		std. Err.			[95% Coni	f. Interval]
D.LIMPt LIN	 + MPt	Coef.	Std. Err.	t	P> t		
D.LIMPt LIN	 + MPt L1. 5 0	Coef.	Std. Err.	-2.69	P> t 0.012	8859794	1192501
D.LIMPt LIN	 + MPt L1. 5 0	Coef.	Std. Err.	t	P> t	8859794	
D.LIMPt LIN	MPt 50	Coef.	Std. Err1871526 .1823063	-2.69	P> t 0.012 0.624	8859794	1192501 .2829644

Commande Eviews: double cliquer sur la série « limpt » pour l'ouvrir, suivre: View/Unit Root test... → Choisir (Test type): ADF, Level, Trend and Intercept (Cfr image ci-dessous) \rightarrow ok (ou faire : **adf** limpt ou encore : **uroot** limpt) :

Null Hypothesis: LIMPT has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-F	uller test statistic	-2.685589	0.2487
Test critical values:	1% level	-4.273277	
	5% level	-3.557759	
	10% level	-3.212361	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LIMPT) Method: Least Squares Date: 12/09/13 Time: 15:17 Sample (adjusted): 1964 1995

Included observations: 32 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LIMPT(-1) D(LIMPT(-1)) C @TREND(1962)	-0.502615 -0.090473 2.824960 0.009241	0.187153 0.182306 1.047789 0.003537	-2.685589 -0.496268 2.696114 2.612369	0.0120 0.6236 0.0117 0.0143
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.291803 0.215925 0.061571 0.106148 45.93248 1.980040	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-stati	dent var criterion terion	0.012842 0.069534 -2.620780 -2.437563 3.845670 0.020105

<u>Note</u>: Au seuil de 5%, la série « limpt » est non stationnaire en niveau (|ADF| <|Mackinnon| ou (prob > 5%)).

Série : PIB réel en logarithme

Commande Stata: dfuller LPIBRt, lags(1) trend regress

Augmented Di	ickey-Fuller	test for unit	root	Numb	er of obs	= 37
			Inte	rpolated	Dickey-Full	er
	Test	1% Cri	tical	5% Cri	tical	10% Critical
	Statistic	. Va	lue	Va	ılue	Value
Z(t)	-3.459) –	4.270		3.552	-3.211
				•		
MacKinnon ar	pproximate p-	value for Z(t) = 0.044	U		
		-value for Z(t E. Std. Err.			 [95% Cor.	f. Interval]
MacKinnon ap		·			[95% Cor.	if. Interval]
D.LPIBRt		Std. Err.			[95% Con	
D.LPIBRt LPIBRt		Std. Err.	t	P> t	-1.209564	313659
D.LPIBRt LPIBRt LPIBRt	Coef Coef -+	Std. Err. 27 .2201766 33 .1798426	-3.46 0.28	P> t 0.002	-1.209564	313659 4162079

_Commande Eviews : uroot lpibrt ou ident lpibrt

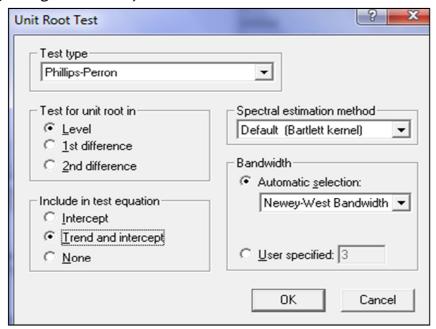
Null Hypothesis: LPIBRT has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Fixed)									
t-Statistic Prob.*									
Augmented Dickey-Fuller test statistic -3.459093 0.0590 Test critical values: 1% level -4.226815 5% level -3.536601 10% level -3.200320									
*MacKinnon (1996) or	ne-sided p-valu	Jes.							
Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations	O(LPIBRT) es : 15:25 964 2000								
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
LPIBRT(-1) D(LPIBRT(-1)) C @TREND(1962)	D(LPIBRT(-1)) 0.050315 0.179843 0.279774 0.7814 C 5.074638 1.457247 3.482346 0.0014								
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.353094 0.294284 0.036552 0.044091 72.04912 1.969188	Mean deper S.D. depen Akaike info Schwarz cr F-statistic Prob(F-stat	dent var criterion iterion	0.020571 0.043511 -3.678331 -3.504178 6.004007 0.002213					

Note: Au seuil de 5%, la série « *lpibrt* » est non stationnaire en niveau (|ADF| <|Mackinnon|: Cfr résultat Eviews). Toutefois, la série serait stationnaire mais affectée d'une tendance non nuisible (Cfr Stata : p - value for Z(t) < 5%)).

b) Test de Philips-Perron (PP)

Les hypothèses du test sont :

Ho: la série est non stationnaire $\rightarrow |PP| < |Mackinnon|$ ou (prob > 5%)H1: la série est stationnaire $\rightarrow |PP| > |Mackinnon|$ ou (prob < 5%)


► Série : Importation en logarithme (LIMPt)

Commande Stata: pperron LIMPt, lags(1) trend regress

Phillips-Perro	on test for un	nit root			er of obs = y-West lags =	
	Test Statistic	1% Criti		5% Crit	Dickey-Fuller Cical 10 Lue	
- (/	-15.999 -3.290	-23. -4.		-18 -3		-15.984 -3.221
MacKinnon appı	roximate p-val	lue for Z(t)	= 0.067	9 		
LIMPt	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
LIMPt L1.	 .4870476	.153194	3.18	0.003	.1741838	.7999114
_trend cons	.0091574 2.887789	.0028673 .8605451		0.003 0.002	.0033016 1.130321	

_Commande Eviews: double cliquer sur la série « limpt » pour l'ouvrir, suivre: View/Unit Root test... → Choisir (Test type): **Philips-Perron**, Level, Trend and Intercept (Cfr image ci-dessous) \rightarrow ok:

	·			
Null Hypothesis: LIMF				
Exogenous: Constant Bandwidth: 2 (Newey-			1	
Dandwidth. 2 (Newey	-vvest using D	artiett Keiner	,	
			Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic		-3.325118	0.0798
Test critical values:	1% level		-4.262735	0.0100
	5% level		-3.552973	
	10% level		-3.209642	
*MacKinnon (1996) or	ne-sided p-valu	ues.		
Residual variance (no	correction)			0.003308
HAC corrected variance		ernel)		0.003203
Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19	: 16:16			
Included observations		stments		
Included observations Variable			t-Statistic	Prob.
	Coefficient -0.512953			
Variable LIMPT(-1) C	: 33 after adju Coefficient -0.512953 2.887791	Std. Error 0.153194 0.860545	-3.348387 3.355769	0.0022 0.0022
Variable	Coefficient -0.512953	Std. Error 0.153194	-3.348387	0.0022
Variable LIMPT(-1) C	: 33 after adju Coefficient -0.512953 2.887791	Std. Error 0.153194 0.860545	-3.348387 3.355769 3.193724	0.0022 0.0022
Variable LIMPT(-1) C @TREND(1962) R-squared Adjusted R-squared	: 33 after adju Coefficient -0.512953 2.887791 0.009157	Std. Error 0.153194 0.860545 0.002867 Mean deper	-3.348387 3.355769 3.193724 ndent var dent var	0.0022 0.0022 0.0033
Variable LIMPT(-1) C @TREND(1962) R-squared Adjusted R-squared S.E. of regression	: 33 after adju Coefficient -0.512953 2.887791 0.009157 0.273314 0.224868 0.060325	Std. Error 0.153194 0.860545 0.002867 Mean deper S.D. depen Akaike info	-3.348387 3.355769 3.193724 ndent var dent var criterion	0.0022 0.0022 0.0033 0.012267 0.068519 -2.691636
Variable LIMPT(-1) C @TREND(1962) R-squared Adjusted R-squared S.E. of regression Sum squared resid	: 33 after adju Coefficient -0.512953 2.887791 0.009157 0.273314 0.224868 0.060325 0.109173	Std. Error 0.153194 0.860545 0.002867 Mean deper S.D. depen Akaike info Schwarz cr	-3.348387 3.355769 3.193724 ndent var dent var criterion	0.0022 0.0022 0.0033 0.012267 0.068519 -2.691636 -2.555590
Variable LIMPT(-1) C @TREND(1962) R-squared Adjusted R-squared S.E. of regression	: 33 after adju Coefficient -0.512953 2.887791 0.009157 0.273314 0.224868 0.060325	Std. Error 0.153194 0.860545 0.002867 Mean deper S.D. depen Akaike info	-3.348387 3.355769 3.193724 Indent var dent var criterion iterion	0.0022 0.0022 0.0033 0.012267 0.068519 -2.691636

Note: la série « limpt » est non stationnaire en niveau (|PP| < |Mackinnon|) ou (prob > 5%)).

Série : PIB réel en logarithme

Commande Stata: pperron LPIBRt, lags(1) trend regress

Phillips-Perro	on test for ur	nit root			er of obs = y-West lags =	
	Test Statistic	1% Criti	cal	_	Dickey-Fuller tical 10 lue	
Z(rho) Z(t) MacKinnon appr	-4.363	-4.	260	-	8.888 3.548	
LPIBRt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LPIBRt L1. _trend _cons	.2770148 .0155874 4.819812	.0036837	1.67 4.23 4.38		0602549 .0081091 2.583617	.0230657

Résultat Eviews:

Null Hypothesis: LPIBRT has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West using Bartlett kernel)									
Adj. t-Stat Prob.*									
Phillips-Perron test st			-4.362969	0.0069					
Test critical values:	1% level 5% level		-4.219126 -3.533083						
	10% level		-3.198312						
*MacKinnon (1996) or	ne-sided p-valu	ues.							
Residual variance (no HAC corrected variance		ernel)		0.001163 0.001178					
Phillips-Perron Test E Dependent Variable: ((LPIBRT)								
	D(LPIBRT) es : 16:33 963 2000	stments							
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19	D(LPIBRT) es : 16:33 963 2000	stments Std. Error	t-Statistic	Prob.					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations	D(LPIBRT) es : 16:33 063 2000 : 38 after adju Coefficient -0.722985	Std. Error 0.166134	-4.351822	0.0001					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations Variable LPIBRT(-1) C	D(LPIBRT) es : 16:33 963 2000 : 38 after adju Coefficient -0.722985 4.819812	Std. Error 0.166134 1.101515	-4.351822 4.375619	0.0001 0.0001					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations Variable LPIBRT(-1)	D(LPIBRT) es : 16:33 063 2000 : 38 after adju Coefficient -0.722985	Std. Error 0.166134	-4.351822	0.0001					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations Variable LPIBRT(-1) C @TREND(1962) R-squared	C(LPIBRT) es : 16:33 963 2000 : 38 after adju Coefficient -0.722985 4.819812 0.015587	Std. Error 0.166134 1.101515 0.003684 Mean deper	-4.351822 4.375619 4.231460	0.0001 0.0001 0.0002 0.021040					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations Variable LPIBRT(-1) C @TREND(1962) R-squared Adjusted R-squared	CitPIBRT) es : 16:33 : 16:33 : 38 after adju Coefficient -0.722985 4.819812 0.015587 0.354490 0.317603	Std. Error 0.166134 1.101515 0.003684 Mean deper	-4.351822 4.375619 4.231460 ident var	0.0001 0.0001 0.0002 0.021040 0.043017					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations Variable LPIBRT(-1) C @TREND(1962) R-squared Adjusted R-squared S.E. of regression	CitPIBRT) es : 16:33 : 16:33 : 38 after adju Coefficient -0.722985 4.819812 0.015587 0.354490 0.317603 0.035535	Std. Error 0.166134 1.101515 0.003684 Mean depersonation	-4.351822 4.375619 4.231460 indent var dent var criterion	0.0001 0.0001 0.0002 0.021040 0.043017 -3.760951					
Dependent Variable: I Method: Least Square Date: 12/09/13 Time Sample (adjusted): 19 Included observations Variable LPIBRT(-1) C @TREND(1962) R-squared Adjusted R-squared	CitPIBRT) es : 16:33 : 16:33 : 38 after adju Coefficient -0.722985 4.819812 0.015587 0.354490 0.317603	Std. Error 0.166134 1.101515 0.003684 Mean deper	-4.351822 4.375619 4.231460 indent var dent var criterion	0.0001 0.0001 0.0002 0.021040 0.043017					

Note: Au seuil de 5%, la série « lpibrt » est non stationnaire en niveau (|PP| < | *Mackinnon*| : Cfr résultat Eviews). Toutefois, la série serait stationnaire mais affectée d'une tendance non nuisible (Cfr Stata : p - value for Z(t) < 5%)).

Constat: les résultats de tests ADF et Philips-Perron convergent.

III.3. Tests de Cointégration (celui de Johansen)

Pour tester l'existence d'une relation de long terme entre des variables, l'on recourt à des procédures statistiques, notamment celle d'Engle et Granger (1987) et celle de Johansen (1988, 1991).

III.3.1. Test d'Engle et Granger (1987)

Le test d'Engle et Granger est souvent sollicité lorsqu'on étudie la relation entre 2 variables. Méthodiquement, suivant Engle et Granger, pour que deux séries soient dites cointégrées :

- o Elles doivent être intégrées de même ordre et de même type ;
- o Le résidu de l'estimation de leur relation de long terme doit être intégré d'ordre « o » (stationnaire à niveau, sans trend).

III.3.2. Test de cointégration de Johansen (1988)

Johansen (1988) teste la cointégration à l'aide des estimateurs du maximum de vraisemblance. Il s'agit d'un test de rang de cointégration, utilisé lorsqu'il y a plusieurs vecteurs cointégrants ou dans le cas d'une régression multiple (plus de 2 variables), qui exige que les séries soient intégrées de même ordre⁽¹⁾. Dans ce test, l'on procède par élimination ou exclusion d'hypothèses alternatives pour deux fins : (i) identifier le nombre de relations de cointégration optimal indispensable pour l'estimation d'un vecteur à correction d'erreurs (modèle VECM ou VEC), et (ii) identifier la forme du modèle VECM/VEC en optant pour des équations avec ou sans tendance déterministe, soit des équations avec ou sans tendance linéaire, soit avec ou sans tendance quadratique.

Les différentes formes ou spécifications de modèle VECM en fonction de types de processus sont reprises dans le tableau ci-dessous (tirées de Bourbonnais R., 2015, p.313).

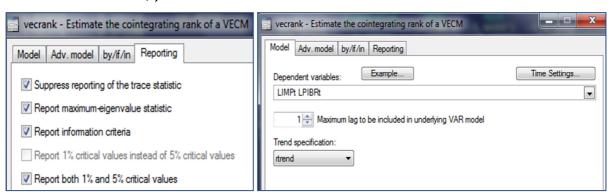
Processus	Formes ou types de spécification VECM						
	I	II	Ш	IV	V		
Tous les processus sont des DS sans dérive	*	*					
Au moins un des processus est un DS avec dérive			*				
Au moins un des processus est un TS				*			
Au moins un processus a une tendance quadratique					*		

Les hypothèses du test sont :

Ho: Pas de relation de cointégration ou rang de cointégration $r=o \rightarrow LR < CV$

H1: Cointégration ou rang de cointégration $r \ge 1 \rightarrow LR > CV$

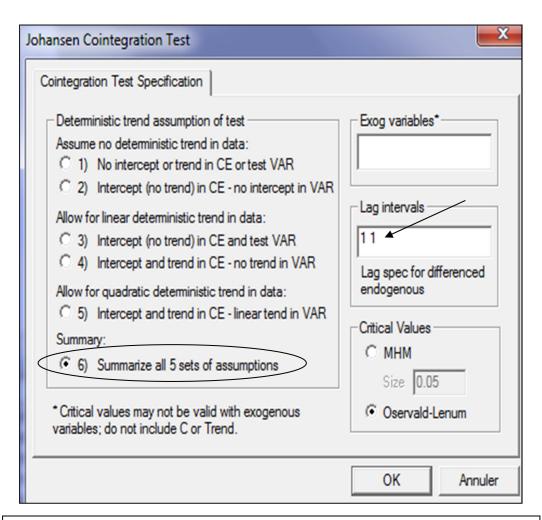
¹ Pour des séries intégrées à des ordres différents, recourir au test de cointégration aux bornes.


Avec:

- LR: likelihood Ratio (le Ratio de vraisemblance, statistique calculée de Johansen);
- CV : Critical value (1%, 5% et 10%).

A noter:

- Dans l'output du test (Cfr Eviews):
 - o <u>En ligne</u>, il est indiqué le nombre d'équations/relations de cointégration ou rang de cointégration;
 - En colonne, il est indiqué la forme de l'équation de cointégration du modèle VEC.
- ♦ Avec Stata, l'on a la possibilité de comparer deux statistiques calculées (Maxlambda statistics et Trace statistics) aux valeurs critiques de Osterwald-Lenun.


Sur Stata, faire:

<pre>Commande : vecrank LIMPt LPIBRt, trend(rtrend) lags(1) notrace max ic levela</pre>							
Johansen tests for cointegration							
Trend: r	trend				Number of o	bs = 33	
Sample:	1963	1995			La	gs = 1	
maximum				max	 5% critical	1% critical	
rank	parms	$_{ m LL}$	eigenvalue	statistic	value	value	
0	2	99.011551		21.6291	18.96	23.65	
1	6	109.82609	0.48078	10.4753	12.52	16.26	
2	8	115.06376	0.27199				
maximum							
rank	parms	$_{ m LL}$	eigenvalue	SBIC	HQIC	AIC	
0	2	99.011551		-5.78879	-5.848971 -5	.879488	
1	6	109.82609	0.48078	-6.020398*	-6.20094* -	6.29249	
2	8	115.06376	0.27199	-6.125923	-6.366645 -6	.488712	

Sur Eviews, suivre: Quick/Group Statistics/Cointegration Test → dans List of series, taper : limpt lpibrt \rightarrow ok \rightarrow dans la boîte de dialogue « Johansen Cointegration Test, cocher « summarize all 5 sets of assumptions » \rightarrow dans lag intervals, taper: 1 $1 \rightarrow$ dans critical value, cocher « oserwald-lenun » \rightarrow ok: les résultats viennent après cette boîte de dialogue qui résume les dernières étapes de la procédure.

Date: 12/09/13 Time: 18:29 Sample: 1962 2000 Included observations: 32 Series: LIMPT LPIBRT Lags interval: 1 to 1

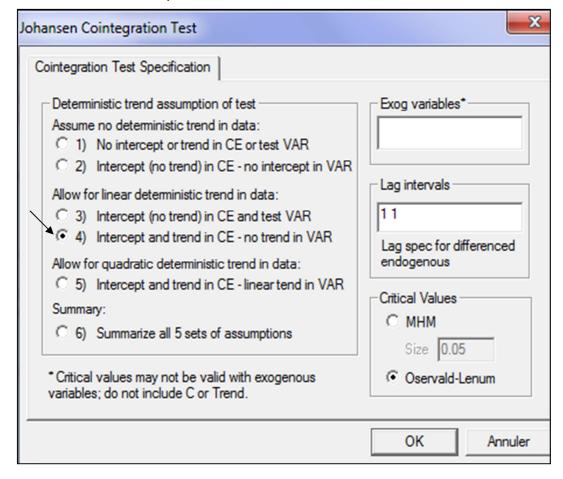
Selected (0.05 level*) Number of Cointegrating Relations by Model

None	None	Linear	Linear	Quadratic
No Intercept	Intercept	Intercept	Intercept	Intercept
No Trend	No Trend	No Trend	Trend	Trend
2	0	0	0	2
0	0	0	0	0
	No Intercept	No Intercept Intercept	No Intercept Intercept Intercept	No Intercept Intercept Intercept Intercept

*Critical values based on Osterwald-Lenum (1992)

Information Criteria by Rank and Model

Data Trend:	None	None	Linear	Linear	Quadratic		
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept		
No. of Ces	No Trend	No Trend	No Trend	Trend	Trend		
	Log Likelihood by Rank (rows) and Model (columns)						
0	94.75693	94.75693	99.91078	99.91078	99.99511		
1	100.3068	100.4114	104.1434	108.1842	108.2258		
2	104.0574	104.2999	104.2999	111.9566	111.9566		



Α	Akaike Information Criteria by Rank (rows) and Model (columns)					
0	-5.672308	-5.672308	-5.869423	-5.869423	-5.749694	
1	-5.769174	-5.713214	-5.883965	-6.074010*	-6.014111	
2	-5.753588	-5.643742	-5.643742	-5.997286	-5.997286	
	Schwarz Cr	iteria by Ran	k (rows) and I	Model (columns	s)	
0	Schwarz Cr -5.489091	iteria by Ran -5.489091	k (rows) and I -5.594598*	Model (columns	-5.383260	
0 1		·	,	•	•	

Piste : Il ressort du test de cointégration de Johansen ce qui suit :

- o Il n'existe qu'une seule relation de cointégration suivant le critère d'Akaike qui offre la valeur la plus minimale pour No of CES égal à «1» (lecture en ligne);
- o La valeur minimale d'Akaike (soit: -6.074010) apparaissant sur la colonne où la caractéristique **Test type** est « Intercept and trend (Linear) », l'on déduit la forme de notre modèle à estimer: il s'agit d'une équation linéaire de cointégration avec intercept et tendance.

Sur base de ces informations (surtout la forme du modèle), nous allons reprendre la procédure en spécifiant la forme de notre modèle (soit en précisant les hypothèses que l'on fait sur la présence ou non de l'intercept et du trend dans le VAR ou le VECM retenu) comme suit :

L'on trouvera dans l'output :

- * Eigen value : valeur propre;
- * Critical value (CV): valeur critique;
- * Likelihood Ratio (LR): Ratio de vraisemblance;
- * Rank or No of CES: Rang ou nombre des équations (relations) de cointégration supposées;
- * Hypothesized: supposition

- None: aucune (rang = 0)

- At most 1: au plus une $(rang \le 1)$

- At most 2: au plus deux $(rang \le 2)$

- At most 1: au plus trois $(rang \le 3)$

Date: 12/09/13 Time: 20:58 Sample (adjusted): 1964 1995 Included observations: 32 after adjustments Trend assumption: Linear deterministic trend (restricted)

> Series: LIMPT LPIBRT Lags interval (in first differences): 1 to 1

Hypothesized	Eigenvalue	Trace	5 Percent	1 Percent
No. of CE(s)		Statistic	Critical Value	Critical Value
None	0.40374482270438	24.0916132850755	25.32	30.45
At most 1	0.210042680900361	7.54484356597454	12.25	16.26

Trace test indicates no cointegration at both 5% and 1% levels *(**) denotes rejection of the hypothesis at the 5%(1%) level

Hypothesized	Eigenvalue	Max-Eigen	5 Percent	1 Percent
No. of CE(s)		Statistic	Critical Value	Critical Value
None	0.40374482270438	16.5467697191009	18.96	23.65
At most 1	0.210042680900361	7.54484356597454	12.25	16.26

Max-eigenvalue test indicates no cointegration at both 5% and 1% levels *(**) denotes rejection of the hypothesis at the 5%(1%) level

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):

LIMPT	LPIBRT	@TREND(63)
7.85169853931581	-42.5972651558931	0.822482871575529
17.3180201328122	-1.15905914413831	-0.294009820696761

Unrestricted Adjustment Coefficients (alpha):

D(LIMPT)	-0.00136037031660071	-0.0292370094359988
D(LPIBRT)	0.025338531007357	-0.00765105857387352

		100.1041
1 Cointegrating Equation(s):	Log likelihood	60207916

Normalized cointegrating coefficients (standard error in parentheses)

LIMPT LPIBRT @TREND(63)

100 1011

1 -5.42522932364199 0.104752222395843 1.1212310856303 0.0257596908460973

Adjustment coefficients (standard error in parentheses)

D(LIMPT) -0.0106812176277825

0.0946911846410738

D(LPIBRT) 0.198950506898872

0.0519737943800937

Résultats: Il ressort des résultats du test de cointégration, tenant compte de la spécification VECM retenue, qu'il n'existe aucune relation de cointégration entre les variables considérées. En fait, les statistiques calculées de la trace (Trace Statistic) et la valeur propre maximale (Max-Eigen Statistic) sont inférieures aux valeurs critiques à 5%, voir même 1%, ce qui amène à accepter l'hypothèse nulle selon laquelle le rang ou le nombre de vecteurs cointégrants est nul (r=o ou « Non »).

Hypot	hèses	Trace		Trace Valeur propre maximale	
Ho	H ₁	Statistique	Val. Critique 5%	statistique	Val. Critique 5%
r = 0	$r \leq 1$	24.09	25.32	16.54	18.96

III.4. Estimation d'un MCE

L'on voudrait ici tester la cointégration entre nos variables et estimer éventuellement un modèle à correction d'erreur/MCE par l'approche proposée par Engle et Granger (1987) dont les étapes sont (Bourbonnais R., 2015, p. 308):

(i) Estimer, par les MCO, la relation de long terme et calculer les résidus de l'estimation (les variables sont prises en logarithme):

$$limp_t = a_0 + a_1 lpibr_t + e_t \dots \dots [3.1]$$

$$\hat{e}_t = limp_t - \hat{a}_0 - \hat{a}_1 lpibr_t \dots \dots [3.2]$$

A ce niveau, pour vérifier l'existence d'une relation de long terme entre nos deux variables, soit tester la cointégration, l'on doit tester la stationnarité des résidus estimés. Les résidus, exprimés par l'équation 3.2, doivent être stationnaires en niveau sans tendance (ni constante) pour valider l'hypothèse d'une cointégration entre les variables étudiées.

(ii) Estimer par les MCO le modèle à correction d'erreur, il intègre dans la dynamique de long terme les ajustements ou fluctuations de court terme, spécifié comme suit :

$$\Delta limp_t = b_1 \Delta lpibr_t + \lambda e_{t-1} + u_t \dots [3.3]$$

Avec « λ » la force de rappel vers l'équilibre ou coefficient d'ajustement. Pour confirmer l'hypothèse de cointégration entre nos deux séries, les conditions suivantes doivent être vérifiées :

- $0 < |\lambda| < 1$: condition de stabilité du processus.
- «λ» est négatif pour garentir l'ajustement ou convergence vers l'équilibre.
- « λ » est statistiquement significatif.

Cette démarche d'Engle et Granger va nous aider à confirmer ou rejeter les résultats précédents fournis par le test de cointégration de Johansen (1988).

a) Estimation de la relation de long terme

Sur Eviews, taper : Is log(imp) c log(pibr)

Dependent Variable: LOG(IMP) Method: Least Squares Date: 01/13/18 Time: 16:13 Sample (adjusted): 1962 1995

Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(PIBR)	0.648755 0.750630	0.346992 0.049422	1.869655 15.18820	0.0707 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.878179 0.874373 0.064767 0.134233 45.84322 230.6815 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	5.916234 0.182731 -2.579013 -2.489227 -2.548393 1.064827

b) Test de stationnarité sur les résidus estimés

Sur Eviews, taper: genr e=resid adf e

Null Hypothesis: E has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=8)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-3.798129	0.0004
Test critical values:	1% level	-2.636901	
	5% level	-1.951332	
	10% level	-1.610747	

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(E) Method: Least Squares Date: 01/13/18 Time: 16:15 Sample (adjusted): 1963 1995

Included observations: 33 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

E(-1) -0.578999 0.152443 -3.798129 0.0006

Comme l'on peut le voir, |ADF| > |McKinnon|, les résidus issus de la relation de long terme sont stationnaires en niveau sans tendance ni constante. Ceci présage l'existence d'une relation de cointégration entre nos deux séries.

c) Estimation du MCE

Sur Eviews, taper: Is d(log(limp)) d(log(lpibr)) e(-1)

Dependent Variable: D(LOG(LIMP))

Method: Least Squares Date: 01/13/18 Time: 16:41 Sample (adjusted): 1963 1995

Included observations: 33 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOG(LPIBR)) E(-1)	0.619282 -0.096438	0.223128 0.025565	2.775457 -3.772335	0.0093 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.381699 0.361754 0.009289 0.002675 108.6117 2.128321	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	0.002065 0.011627 -6.461317 -6.370620 -6.430800

Les résultats d'estimations sont résumés comme suit :

$$\Delta limp_{t} = 0.61 * \Delta lpibr_{t} - \mathbf{0.09} * \mathbf{e_{t-1}}$$

$$(2.77) \qquad (-3.77)$$

$$R^{2} = 0.38 \; ; \; DW = 2.12 \; ; \; N = 2.12 \; ; \; (.) = t - stat$$

Note:

- La force de rappel est négative, comprise entre o et 1 en valeur absolue, et est statistiquement significative. L'on en déduit que nos deux séries sont cointégrées et que l'on peut estimer un modèle à correction d'erreur, contrairement aux résultats trouvés précédemment (Cfr résultats du test de cointégration Johansen).
- Tous les paramètres sont statistiquement significatifs (t-stat > 2), mais le modèle spécifié explique seulement 38% des variations des importations (le modèle a passé avec succès tous les tests post-estimations, sauf l'hypothèse de stabilité qui est violée). La prise en compte d'autres variables explicatives pertinentes serait de nature à améliorer le pouvoir explicatif du modèle.
- Force de rappel: disons que les chocs sur les importations (imp) se corrigent à environ 9% par l'effet de « feed back » ; autrement dit, l'on arrive à ajuster 9% du déséquilibre entre le niveau désiré et effectif des importations.

- Retard moyen = |1/0,096| : un choc constaté sur les importations est entièrement résorbé au bout de 10 ans et 5 mois en moyenne (l'ajustement est lent).
- Elasticité à court terme : à court terme, si le PIB réel augmente de 1%, les importations varie, dans le même sens, de 0,6%.

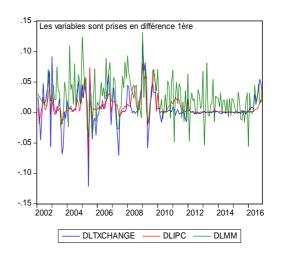
B. ESTIMATION D'UN VECM

Cas pratique 3.2: Vérification de la cointégration et estimation d'un vecteur à correction d'erreur/VECM (taux de change, masse monétaire et inflation).

Les variables considérées, prises en logarithme sur une fréquence mensuelle, sont observées sur la RDC et s'étale sur la période 2002-2016. Les séries sont : le taux de change indicatif (Itxchange), l'indice des prix à la consommation (lipc) et la masse monétaire au sens large (lmm).

Les résultats de test de cointégration (test de Johansen (1988, 1991)), si l'on arrive à valider l'hypothèse de cointégration entre variables, peuvent renseigner 1 ou plusieurs vecteurs cointégrants, ce qui va conduire à estimer un MCE ou VECM selon le cas. Le VECM, rappelons-le, est estimé lorsqu'on a plus de 2 variables intégrées de même ordre (ordre 1).


Ci-dessous une synthèse d'étapes à suivre pour estimer un modèle vectoriel à correction d'erreur:


- Tester la stationnarité des séries (graphique, ADF).
- Déterminer le lag ou décalage optimal du modèle VAR associé.
- Tester l'hypothèse de cointégration entre variables par le test de cointégration de Johansen (test de la Trace et celui de la valeur propre maximale).
- Si cointégration il y a, identifier le nombre de vecteurs cointégrants ou nombre de relations de cointégration et la spécification ou forme du VECM à estimer.
- Estimer le VECM par le maximum de vraisemblance et valider les résultats (tests usuels: absence d'autocorrélation et hétéroscédasticité, exogénéité faible, etc.).
- Valider le VECM estimé.

Nous nous abstenons de reprendre certaines commandes Eviews ou Stata parce que appliquées plus haut.

a) Graphique

b) Stationnarité des variables

Variables	Phillips- Perron	ADF en Niveau	McKinnon à 5%	ADF en différence	Stationnarité
Lmm	-2.62	-2.89	-2.87	-12.66	l(1)
Lipc	-	-1.30	-2.87	-8.55	l(1)
Ltxchange	-	2.38	-2.87	-9.40	l(1)

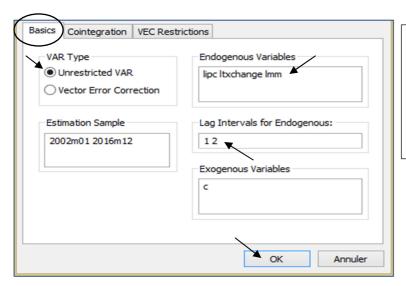
L'on trouve que toutes nos variables, au départ non stationnaires en niveau, deviennent stationnaires après la 1ère différence. Elles sont intégrées de même ordre, ce qui suppose l'existence d'une relation de cointégration entre elles.

Ci-dessous, les différents résultats de test de stationnarité sur nos séries.

Null Hypothesis: LMM he Exogenous: Constant Lag Length: 0 (Automatic		AG=13)		
			t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic		-2.892702	0.0482
Test critical values:	1% level 5% level 10% level		-3.466994 -2.877544 -2.575381	
*MacKinnon (1996) one-si Augmented Dickey-Fuller Dependent Variable: D(LN Method: Least Squares Date: 01/10/18 Time: 17: Sample (adjusted): 2002N Included observations: 17	Test Equation IMM) 41 102 2016M12			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LMM(-1) C	-0.005015 0.092385	0.001734 0.023768	-2.892702 3.886991	0.0043 0.0001

Null Hypothesis: LMM h	as a unit root			
Exogenous: Constant	ias a ariit 100t			
Bandwidth: 4 (Newey-We	est using Bartlett kernel)		
			Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic		-2.626626	0.0895
Test critical values:	1% level		-3.466994	
	5% level		-2.877544	
	10% level		-2.575381	
*MacKinnon (1996) one-s	sided p-values.			
Residual variance (no col HAC corrected variance (,			0.000963 0.001199
Phillips-Perron Test Equa Dependent Variable: D(Li Method: Least Squares Date: 01/10/18 Time: 17 Sample (adjusted): 2002l Included observations: 17	MM) :40 M02 2016M12			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Coefficient	Std. Error 0.001734	t-Statistic	Prob. 0.0043

Null Hypothesis: DLMM h	as a unit root			
Exogenous: Constant, Line	ar Trend			
Bandwidth: 3 (Newey-Wes	t using Bartlett kernel)		
			Adj. t-Stat	Prob.*
Phillips-Perron test statis	stic		-12.66318	0.0000
Test critical values:	1% level		-4.010440	
	5% level		-3.435269	
	10% level		-3.141649	
*MacKinnon (1996) one-sid	ded p-values.			
Residual variance (no corre	,			0.000964 0.001061
HAC corrected variance (B	artiett kerrier)			0.001001
Phillips-Perron Test Equati	on			
Dependent Variable: D(DLI	MM)			
Method: Least Squares				
Date: 01/10/18 Time: 17:4				
Sample (adjusted): 2002M				
Included observations: 178	after adjustments			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLMM(-1)	-0.952469	0.075506	-12.61445	0.0000
c `	0.034422	0.005483	6.278001	0.0000
@TREND(2002M01)	-0.000129	4.68E-05	-2.748090	0.0066


Null Hypothesis: DLTXCHA	NGE has a unit root			
Exogenous: Constant				
Lag Length: 0 (Automatic b	ased on SIC, MAXLA	AG=13)		
				- · ·
			t-Statistic	Prob.*
Augmented Dickey-Fuller	test statistic		-9.409031	0.0000
Test critical values:	1% level		-3.467205	
	5% level		-2.877636	
	10% level		-2.575430	
Augmented Dickey-Fuller T Dependent Variable: D(DL ⁻ Method: Least Squares Date: 01/10/18 Time: 17:3 Sample (adjusted): 2002M0 Included observations: 178	FXCHANGE) 50 03 2016M12			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLTXCHANGE(-1)	-0.669972	0.071205	-9.409031	0.0000
C	0.004836	0.001983	2.438757	0.0157

Null Hypothesis: DLIPC	has a unit root			
Exogenous: Constant				
Lag Length: 0 (Automatic	pased on SIC, MAXLA	\G=13)		
			t-Statistic	Prob.*
Augmented Dickey-Fulle	r test statistic		-8.556092	0.0000
Test critical values:	1% level		-3.467205	
	5% level		-2.877636	
	10% level		-2.575430	
*MacKinnon (1996) one-si	ded p-values.			
Augmented Dickey-Fuller	Test Equation			
Dependent Variable: D(DL	IPC)			
Method: Least Squares				
Date: 01/10/18 Time: 17:	26			
Sample (adjusted): 2002M	03 2016M12			
Included observations: 178				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLIPC(-1)	-0.596725	0.069743	-8.556092	0.0000
c	0.005976	0.001372	4.356147	0.0000

c) Décalage optimal

Pour déterminer le décalage optimal, estimer d'abord le VAR. Dans Eviews, suivre (Cfr menu des raccourcis): Quick/Estimate VAR.. → remplir comme ci-dessous dans la boîte de dialogue qui apparaît:

- * Ensuite, cliquer sur « Ok ».
- * dans l'output de résultat du VAR estimé, suivre : View/Lag **Length Criteria...** →**ok.** L'on a le résultat ci-bas.

VAR Lag Order Selection Criteria

Endogenous variables: LIPC LTXCHANGE LMM

Exogenous variables: C Date: 01/10/18 Time: 17:45 Sample: 2002M01 2016M12 Included observations: 172

LR NA 2270.570	FPE 4.54e-05 6.81e-11	AIC -1.486274	SC -1.431376	HQ -1.464000
			-1.431376	-1.464000
2270.570	6.810-11			
	0.016-11	-14.89692	-14.67733	-14.80783
53.33690*	5.47e-11*	-15.11553*	-14.73124*	-14.95961*
6.156199	5.85e-11	-15.04888	-14.49989	-14.82614
5.808373	6.26e-11	-14.98075	-14.26708	-14.69120
13.37641	6.39e-11	-14.96185	-14.08348	-14.60547
15.51693	6.42e-11	-14.95862	-13.91555	-14.53542
13.70578	6.51e-11	-14.94534	-13.73758	-14.45532
	6.60e-11	-14.93349	-13.56103	-14.37665
		13.70578 6.51e-11	13.70578 6.51e-11 -14.94534	13.70578 6.51e-11 -14.94534 -13.73758

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

d) Test de l'hypothèse de cointégration

Pour tester l'hypothèse de cointégration entre nos séries, l'on recourt au test de cointégration de Johansen (1988) dont on rappelle les hypothèses :

Ho: Pas de relation de cointégration ou rang de cointégration $r=o \rightarrow LR < CV$

H1: Cointégration ou rang de cointégration $r \ge 1 \rightarrow LR > CV$

Avec:

- LR: likelihood Ratio (le Ratio de vraisemblance, statistique calculée de Johansen);
- CV : Critical value (1%, 5% et 10%).

Date: 01/10/18 Time: 17:46 Sample: 2002M01 2016M12 Included observations: 177 Series: LMM LIPC LTXCHANGE _ags interval: 1 to 2 Selected (0.05 level*) Number of Cointegrating Relations by Model Data Trend: None None Linear Linear Quadratic Test Type No Intercept Intercept Intercept Intercept Intercept No Trend No Trend No Trend Trend Trend Trace 1 1 1 2 0 1 Max-Eig 1 *Critical values based on MacKinnon-Haug-Michelis (1999) Information Criteria by Rank and Model Data Trend: None None Linear Linear Quadratic Rank or No Intercept Intercept Intercept Intercept Intercept No. of CEs No Trend No Trend No Trend Trend Trend Log Likelihood by Rank (rows) and Model (columns) 0 1324.445 1324.445 1343.185 1343.185 1349.861 1348.914 1349.060 1352.167 1361.125 1365.256 1 2 1350.946 1357.110 1357.117 1367.845 1366.311 3 1350.996 1358.867 1358.867 1368.218 1368.218 Akaike Information Criteria by Rank (rows) and Model (columns) -14.98148 0 -14.76209 -14.93995 -14.93995 -14.76209 -14.97078 -14.96113 -14.97364 -15.06356 -15.08764* 1 2 -14.92594 -14.97300 -14.96177 -15.04306 -15.04910 3 -14.85871 -14.91375 -14.91375 -14.98552 -14.98552 Schwarz Criteria by Rank (rows) and Model (columns) -14.43909 0 -14.43909 -14.56312* -14.56312* -14.55082 -14.48914 -14.56112 -14.54012 -14.51252 -14.54931 -14.36961 -14.38761 -14.40310 2 -14.39878 -14.41501 -14.21271 -14.21392 -14.21392 -14.23186 -14.23186

Les résultats du test ci-dessus renseignent, au regard de la valeur AIC la plus minimale (AIC = -15,08), 1 vecteur cointégrant pour un VECM avec tendance quadratique, soit la 5^{ème} spécification parmi les cinq disponibles.

Processus			s ou t	•	
	1	II	Ш	IV	٧
Tous les processus sont des DS sans dérive	*	*			
Au moins un des processus est un DS avec dérive			*		
Au moins un des processus est un TS				*	
Au moins un processus a une tendance quadratique					*

En reprenant la procédure du test, tenant compte de la spécification VECM appropriée aux séries, l'on obtient les résultats ci-dessous.

Date: 01/10/18 Time: 17:49

Sample (adjusted): 2002M04 2016M12 Included observations: 177 after adjustments Trend assumption: Quadratic deterministic trend

Series: LMM LIPC LTXCHANGE Lags interval (in first differences): 1 to 2 Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.159661	36.71431	35.01090	0.0325
At most 1	0.028837	5.925159	18.39771	0.8746
At most 2	0.004206	0.746014	3.841466	0.3877

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.159661	30.78915	24.25202	0.0059
At most 1	0.028837	5.179145	17.14769	0.8889
At most 2	0.004206	0.746014	3.841466	0.3877

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):

LMM	LIPC	LTXCHANGE
7.261092	-15.79045	13.57512
5.827733	-1.483937	-11.48240
1.188306	11.66726	-10.78858

Unrestricted Adjustment Coefficients (alpha):

D(LMM)	0.001273	0.003711	0.001308
D(LIPC)	0.003711	0.001927	-0.000310
D(LTXCHANGE)	-0.000809	0.003976	-0.000579

1 Cointegrating Equation(s): Log likelihood 1365.256

Normalized cointegrating coefficients (standard error in parentheses)

LMM LIPC LTXCHANGE 1.000000 -2.174666 1.869571 (0.38675)(0.50460)

Adjustment coefficients (standard error in parentheses)

D(LMM) 0.009245 (0.01674)D(LIPC) 0.026945 (0.00839)D(LTXCHANGE) -0.005874

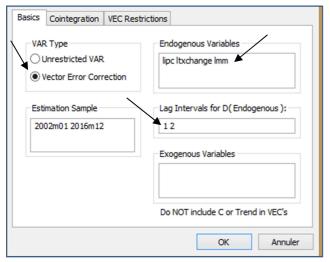
(0.01408)

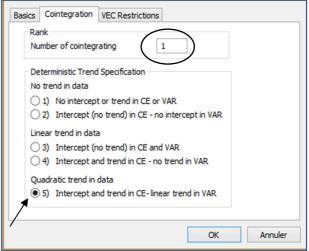
2 Cointegrating Equation(s): Log likelihood 1367.845

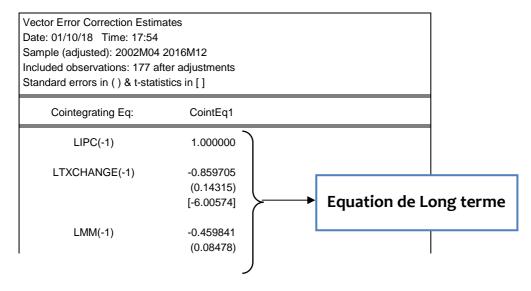
^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

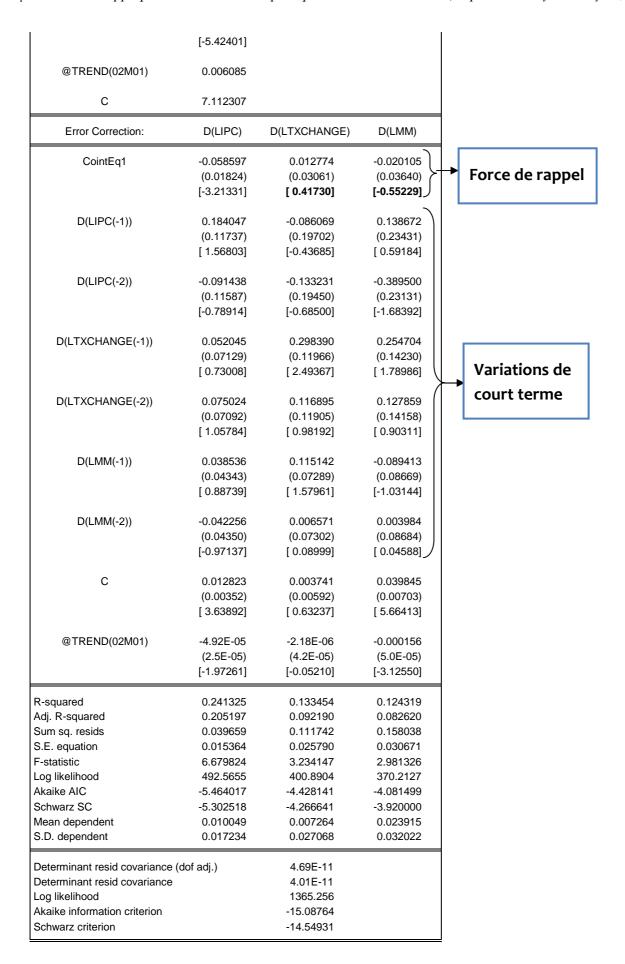
^{*} denotes rejection of the hypothesis at the 0.05 level

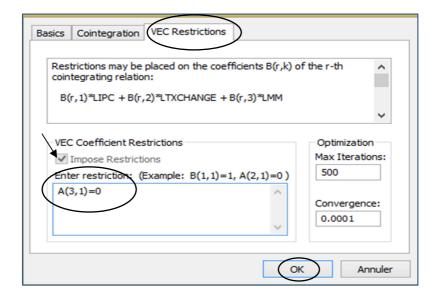

^{**}MacKinnon-Haug-Michelis (1999) p-values


Normalized cointegra	ating coefficients (standard error in parentheses)	
LMM	LIPC	LTXCHANGE	
1.000000	0.000000	-2.479545	
		(0.73597)	
0.000000	1.000000	-1.999901	
		(0.35481)	
Adjustment coefficier	nts (standard erro	in parentheses)	
D(LMM)	0.030874	-0.025612	
	(0.02130)	(0.03628)	
D(LIPC)	0.038174	-0.061456	
	(0.01066)	(0.01816)	
D(LTXCHANGE)	0.017294	0.006874	
	(0.01782)	(0.03036)	


Les statistiques calculées de la trace et la valeur propre maximale sont inférieures aux valeurs critiques (seuil de 5%) pour le rang de cointégration égale à 1, ce qui traduit l'existence d'un vecteur cointégrant. Ainsi, nous pouvons estimer un MCE ou un VECM.

e) Estimation d'un VECM

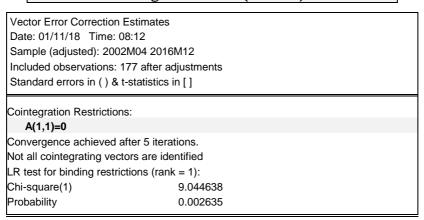

Pour estimer un VECM, sur EViews, suivre la même procédure pour estimer un VAR : Quick/Estimate VAR..→ remplir comme ci-dessous dans la boîte de dialogue qui apparaît→ cliquer sur « Ok ».


Dans l'output de l'estimation, suivre: View/Representations: Afficher la spécification du modèle et les éguations estimées.

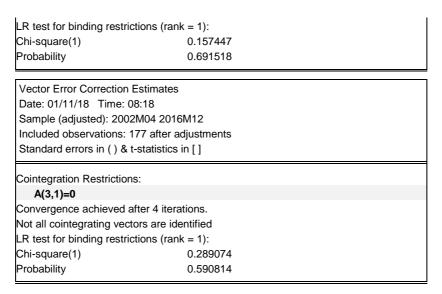
```
Estimation Proc:
EC(E,1) 1 2 LIPC LTXCHANGE LMM
VAR Model:
 _____
D(LIPC) = A(1,1)*(B(1,1)*LIPC(-1) + B(1,2)*LTXCHANGE(-1) + B(1,3)*LMM(-1) + B(1,4)*@TREND(02M01) +
 B(1,5)) + C(1,1)*D(LIPC(-1)) + C(1,2)*D(LIPC(-2)) + C(1,3)*D(LTXCHANGE(-1)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHANGE(-2)) + C(1,4)*D(LTXCHAN
 C(1,5)*D(LMM(-1)) + C(1,6)*D(LMM(-2)) + C(1,7) + C(1,8)*@TREND(02M01)
 D(LTXCHANGE) = A(2,1)^*(B(1,1)^*LIPC(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,2)^*LTXCHAN
 B(1,4)*@TREND(02M01) + B(1,5)) + C(2,1)*D(LIPC(-1)) + C(2,2)*D(LIPC(-2)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(-1)) + C(2,3)*D(LTXCHANGE(
 C(2,4)*D(LTXCHANGE(-2)) + C(2,5)*D(LMM(-1)) + C(2,6)*D(LMM(-2)) + C(2,7) + C(2,8)*@TREND(02M01)
 D(LMM) = A(3,1)^*(B(1,1)^*LIPC(-1) + B(1,2)^*LTXCHANGE(-1) + B(1,3)^*LMM(-1) + B(1,4)^*@TREND(02M01) +
B(1,5)) + C(3,1)*D(LIPC(-1)) + C(3,2)*D(LIPC(-2)) + C(3,3)*D(LTXCHANGE(-1)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHANGE(-2)) + C(3,4)*D(LTXCHAN
C(3,5)*D(LMM(-1)) + C(3,6)*D(LMM(-2)) + C(3,7) + C(3,8)*@TREND(02M01)
 VAR Model - Substituted Coefficients:
D(LIPC) = -0.0585970917448*(\ LIPC(-1) - 0.859704744192*LTXCHANGE(-1) - 0.459840767851*LMM(-1) + -0.459840767851*LMM(-1) + -0.4598407851*LMM(-1) + -
 0.00608541290206*@TREND(02M01) + 7.11230679623) + 0.184046599259*D(LIPC(-1)) -
0.0914381924321*D(LIPC(-2)) + 0.0520447385675*D(LTXCHANGE(-1)) + 0.0750237080815*D(LTXCHANGE(-1)) + 0.0750237080810*D(LTXCHANGE(-1)) + 0.0750237080*D(LTXCHANGE(-1)) + 0.0750237080*D(LTXCHANGE(-1)) + 0.07502370*D(LTXCHANGE(-1)) + 0.0750237080*D(LTXCHANGE(-1)) 
 2)) + 0.0385356647808*D(LMM(-1)) - 0.0422564057558*D(LMM(-2)) + 0.0128234172025 - 4.92074274615e-
05*@TREND(02M01)
D(LTXCHANGE) = 0.012773588715*( LIPC(-1) - 0.859704744192*LTXCHANGE(-1) - 0.459840767851*LMM(-1)
 + 0.00608541290206*@TREND(02M01) + 7.11230679623) - 0.0860685878214*D(LIPC(-1)) -
0.133231410976*D(LIPC(-2)) + 0.298389572005*D(LTXCHANGE(-1)) + 0.116894627793*D(LTXCHANGE(-2)) +
 0.115142304677*D(LMM(-1)) + 0.00657133242735*D(LMM(-2)) + 0.00374060602766 - 2.18148932355e-
06*@TREND(02M01)
 D(LMM) = -0.0201046944543*(LIPC(-1) - 0.859704744192*LTXCHANGE(-1) - 0.459840767851*LMM(-1) + -0.459840767851*LMM(-1)  + -0.459840767851*LMM(-1) + -0.459840767851*LMM(-1) + -0.459840767851*LMM(-1) + -0.4598407851*LMM(-1) + -0.4588407851*LMM(-1) + -0.4588407851*LMM(-1) + -0.4588407851*LMM(-1) + -0.4588407851*LMM(-1) + -0.
 0.00608541290206*@TREND(02M01) + 7.11230679623) + 0.138672166502*D(LIPC(-1)) -
 0.389500340203*D(LIPC(-2)) + 0.2547036735*D(LTXCHANGE(-1)) + 0.127859136453*D(LTXCHANGE(-2)) - 0.389500340203*D(LIPC(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.2547036735*D(LTXCHANGE(-2)) + 0.254703675*D(LTXCHANGE(-2)) 3223092*D(LMM(-1)) + 0.00398428535914*D(LMM(-2)) + 0.0398449922365 -
 0.000155639275223*@TREND(02M01)
```

f) Validation du VECM estimé

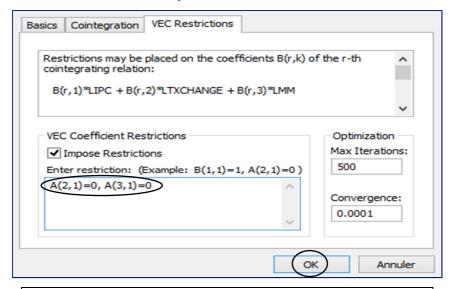
De résultats de l'estimation du VECM, l'on note que les coefficients de termes de force de rappel des variables « lipc et lmm » ont les signes attendus (négatifs), par contre celui de la variable « ltxchange » n'a pas le signe attendu. En outre, tous les coefficients de la « relation de long terme » sont statistiquement significatifs ; par contre, seule la force de rappel associée à l'équation de la variable « lipc » est statistiquement significative (le R² du VECM estimé est aussi faible, ce qui traduit l'omission de certaines variables explicatives pertinentes). Il en ressort que les variables « ltxchange » et « lmm », statistiquement non significatives, sont « faiblement exogènes ». Pour en être convaincu, l'on peut procéder par un « test de contrainte » ou « test d'exogénéité faible » sur les coefficients de nos trois variables sous étude. Pour ce faire, estimer le VECM en précisant des restrictions [A(1,1)=0; A(2,1)=0; A(3,1)=0] dans la boîte de dialogue ci-dessous (Cfr boîte de dialogue pour l'estimation d'un VECM).

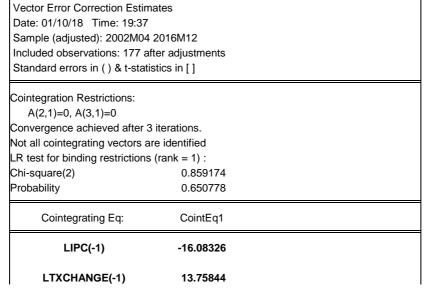


Les hypothèses du test (statistique de chi-deux) sont :


Ho: A(i, j) = 0, (prob > 5%): la variable considérée est faiblement exogène H1: $A(i, j) \neq 0$, (prob < 5%): la variable considérée n'est pas faiblement exogène Les résultats du test sont résumés comme suit :

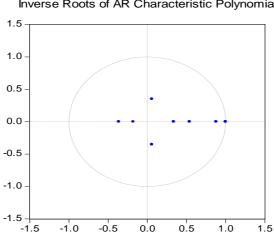
Cointegration Restrictions				
	A(1,1)=0	A(2,1)=0	A(3,1)=0	
Chi-square(1)	9,044	0,157	0,289	
Probability 0,002 0,691 0,590				
Décision rejet H _O accepte H _O accepte H _O				
Not all cointegrating vectors are identified				
LR test for bind	LR test for binding restrictions (rank = 1):			




Vector Error Correction Estimates		
Date: 01/11/18 Time: 08:15		
Sample (adjusted): 2002M04 2016M12		
Included observations: 177 after adjustments		
Standard errors in () & t-statistics in []		
Cointegration Restrictions:		
Cointegration Restrictions: A(2,1)=0		
3		

Les résultats des tests ci-dessus confirment l'exogénéité faible des variables « lxtchange » et « lmm ». A présent, tenant compte de ces résultats, nous estimons à nouveau un VECM partiel ou contraint. Ci-dessous la procédure (boite de dialogue) et les résultats du VECM partiel estimé.

LMM(-1)	7.270948		
@TREND(02M01)	-0.094216		
С	-112.5721		
Error Correction:	D(LIPC)	D(LTXCHANGE)	D(LMM)
CointEq1	0.004027	0.000000	0.000000
	(0.00072)	(0.00000)	(0.00000)
	[5.57658]	[NA]	[NA]
D(LIPC(-1))	0.184844	-0.087482	0.139318
	(0.11723)	(0.19684)	(0.23409)
	[1.57682]	[-0.44442]	[0.59515]
D(LIPC(-2))	-0.090379	-0.134655	-0.388779
	(0.11571)	(0.19429)	(0.23105)
	[-0.78111]	[-0.69305]	[-1.68265]
D(LTXCHANGE(-1))	0.051056	0.298910	0.254273
	(0.07122)	(0.11960)	(0.14223)
	[0.71682]	[2.49924]	[1.78778]
D(LTXCHANGE(-2))	0.073889	0.117326	0.127415
	(0.07087)	(0.11901)	(0.14153)
	[1.04255]	[0.98585]	[0.90029]
D(LMM(-1))	0.038448	0.114875	-0.089358
	(0.04341)	(0.07289)	(0.08669)
	[0.88568]	[1.57593]	[-1.03083]
D(LMM(-2))	-0.042376	0.006344	0.004019
	(0.04349)	(0.07303)	(0.08684)
	[-0.97441]	[0.08687]	[0.04628]
С	0.012822	0.003792	0.039829
	(0.00352)	(0.00591)	(0.00703)
	[3.64257]	[0.64159]	[5.66610]
@TREND(02M01)	-4.92E-05	-2.39E-06	-0.000156
	(2.5E-05)	(4.2E-05)	(5.0E-05)
	[-1.97258]	[-0.05716]	[-3.12498]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.241816	0.133364	0.124301
	0.205712	0.092096	0.082601
	0.039633	0.111754	0.158041
	0.015359	0.025791	0.030671
	6.697752	3.231638	2.980847
	492.6228	400.8813	370.2109
	-5.464665	-4.428037	-4.081479
	-5.303166	-4.266538	-3.919980
	0.010049	0.007264	0.023915
	0.017234	0.027068	0.032022
Determinant resid covariance (Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion	dof adj.)	4.69E-11 4.01E-11 1364.826 -15.08278 -14.54445	



_Tests post estimations (EViews)

Corrélation: View/Covariance Analysis... → cocher « Correlation » et « Probability ».

Covariance Analysis: Ordinary Date: 01/13/18 Time: 21:52 Sample: 2002M01 2016M12 Included observations: 180			
Correlation			
Probability	LIPC	LTXCHANGE	LMM
LIPC	1.000000		
LTXCHANGE	0.987686	1.000000	
	0.0000		
LMM	0.988314	0.971490	1.000000
	0.0000	0.0000	

Stabilité: dans l'output de l'estimation, suivre View/Residuals Tests/Lag Structure/AR Roots Graph.

Inverse Roots of AR Characteristic Polynomial

<u>Causalité</u> : dans l'output de l'estimation, suivre View/Residuals Tests/Lag Structure/Granger Causality.Block Exogeneity Tests...

D(LTXCHANGE) 2.181726 2 0.335 D(LMM) 2.090281 2 0.351	VEC Granger Causality/Block Exogeneity Wald Tests Date: 01/10/18 Time: 19:42 Sample: 2002M01 2016M12 Included observations: 177				
D(LTXCHANGE) 2.181726 2 0.335 D(LMM) 2.090281 2 0.351 All 4.606577 4 0.330	Dependent variable: D(LIPC)				
D(LMM) 2.090281 2 0.351 All 4.606577 4 0.330	Excluded	Chi-sq	df	Prob.	
	,		-	0.3359 0.3516	
Dependent variable: D(LTXCHANGE)	All 4.606577 4 0.3301				
Excluded Chi-sq df Prob.	Excluded	Chi-sq	df	Prob.	

٠.	

D(LIPC) D(LMM)	0.936408 2.517914	2 2	0.6261 0.2840
All	3.483571	4	0.4804
Dependent variable	: D(LMM)		
Excluded	Chi-sq	df	Prob.
D(LIPC) D(LTXCHANGE)	2.843449 5.304340	df 2 2	0.2413 0.0705

Autocorrélation: dans l'output de l'estimation, suivre View/Residuals Tests/Portementau Autocorrelation Test...

VEC Residual Portmanteau Tests for Autocorrelations

Null Hypothesis: no residual autocorrelations up to lag h

Date: 01/10/18 Time: 19:44 Sample: 2002M01 2016M12 Included observations: 177

Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	0.299824	NA*	0.301527	NA*	NA*
2	0.989385	NA*	0.998970	NA*	NA*
3	7.184941	0.6179	7.301345	0.6058	9
4	28.46818	0.0553	29.07668	0.0474	18
5	37.41970	0.0875	38.28842	0.0734	27
6	46.08582	0.1210	47.25861	0.0992	36
7	56.54022	0.1161	58.14349	0.0904	45
8	66.63189	0.1161	68.71288	0.0858	54
9	78.84927	0.0859	81.58475	0.0577	63
10	83.28244	0.1710	86.28338	0.1201	72
11	91.84352	0.1926	95.41176	0.1307	81
12	106.2423	0.1163	110.8577	0.0671	90

*The test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution

<u>Autocorrélation</u>: dans l'output de l'estimation, suivre View/Residuals Tests/ Autocorrelation LM Test...

> VEC Residual Serial Correlation LM Tests Null Hypothesis: no serial correlation at lag order h

Date: 01/10/18 Time: 19:45 Sample: 2002M01 2016M12 Included observations: 177

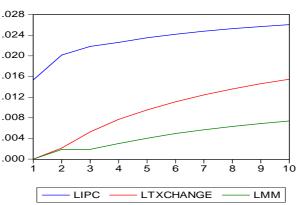
Lags	LM-Stat	Prob
1	9.341854	0.4063
2	7.774762	0.5570
3	7.493943	0.5858
4	21.76719	0.0096
5	10.95408	0.2789
6	11.41286	0.2485
7	12.83332	0.1703
8	12.27141	0.1984

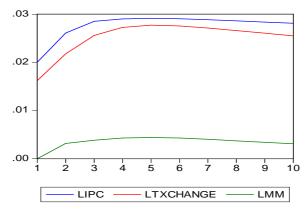
Probs from chi-square with 9 df.			
12	16.00657	0.0667	
11	9.837173	0.3638	
10	6.136025	0.7262	
9	14.79032	0.0969	

Normalité: dans l'output de l'estimation, suivre View/Residuals Tests/Normality Test...

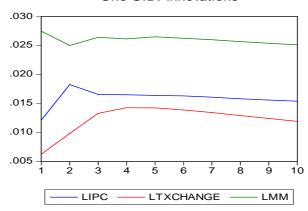
VEC Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: residuals are multivariate normal Date: 01/10/18 Time: 19:45 Sample: 2002M01 2016M12 Included observations: 177 Component Skewness Chi-sq df Prob. -0.148460 0.650188 1 0.4200 2 0.305193 0.0974 2.747706 1 3 0.126931 0.475288 0.4906 1 Joint 3.873183 3 0.2755 Component Kurtosis Chi-sq df Prob. 14.43192 1 1 963.8302 0.0000 2 7.879242 0.0000 175.5767 1 3 2.803866 0.283706 0.5943 1 Joint 1139.691 3 0.0000 Component df Jarque-Bera Prob. 964.4803 2 0.0000 2 178.3244 2 0.0000 3 0.758995 2 0.6842 1143.564 6 0.0000 **Joint**

Hétéroscédasticité: dans l'output de l'estimation, suivre View/Residuals Tests/White Heteroskedasticity Test.


VEC Residual Heteroskedasticity Tests: No Cross Terms (only levels and squares) Date: 01/10/18 Time: 19:47 Sample: 2002M01 2016M12 Included observations: 177 Joint test: Chi-sq df Prob. 233.3396 96 0.0000 Individual components: Dependent R-squared F(16,160) Prob. Chi-sq(16) Prob.


res1*res1	0.350434	5.394899	0.0000	62.02685	0.0000
res2*res2	0.317541	4.652890	0.0000	56.20472	0.0000
res3*res3	0.111743	1.257998	0.2306	19.77844	0.2304
res2*res1	0.316244	4.625111	0.0000	55.97528	0.0000
res3*res1	0.222434	2.860647	0.0004	39.37084	0.0010
res3*res2	0.215980	2.754785	0.0006	38.22855	0.0014

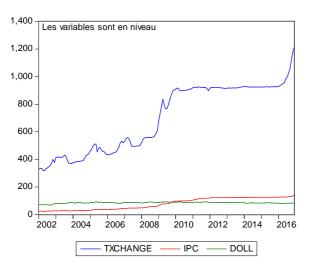
Réponses impulsionnelles: dans l'output de l'estimation, cliquer sur l'onglet « impulse », ensuite cocher sur « Combined Graphs ».

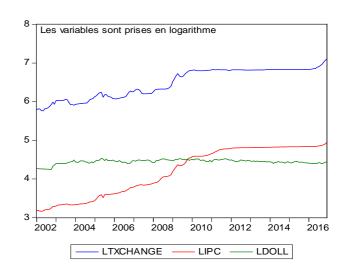


Response of LTXCHANGE to Cholesky One S.D. Innovations

Response of LMM to Cholesky One S.D. Innovations

Décomposition de la variance: dans l'output de l'estimation, cliquer sur l'onglet « impulse », ensuite cocher sur « Table ».


5		nce Decompo						
Period	S.E.	LIPC	LTXCHANGE	LMM				
1	0.015359	100.0000	0.000000	0.000000				
2	0.025502	98.75837	0.708774	0.532854				
3	0.034042	96.61160	2.779516	0.608885				
4	0.041699	93.81653	5.252763	0.930712				
5	0.048982	91.04126	7.604764	1.353977				
6	0.055981	88.42579	9.756789	1.817424				
7	0.062739	86.02633	11.70611	2.267557				
8	0.069286	83.84835	13.45762	2.694029				
9	0.075645	81.88618	15.02322	3.090594				
10	0.081830	80.12282	16.42136	3.455817				
	Variance	Decomposition	n of LTXCHANGE					
Period	S.E.	LIPC	LTXCHANGE	LMM				
1	0.025791	60.46842	39.53158	0.000000				
2	0.042784	59.18205	40.27325	0.544703				
3	0.057584	57.25609	42.00064	0.743263				
4	0.070151	55.72174	43.40288	0.875389				
5	0.080987	54.77801	44.27212	0.949871				
6	0.090448	54.24338	44.77254	0.984078				
7	0.098820	53.96855	45.04324	0.988207				
8	0.106325	53.85807	45.16803	0.973900				
9	0.113134	53.85453	45.19657	0.948908				
10	0.119377	53.92032	45.16143	0.918248				
	Varia	nce Decompo	sition of LMM:					
Period	S.E.	LIPC	LTXCHANGE	LMM				
1	0.030671	15.57884	4.102380	80.31878				
2	0.044682	24.04763	6.724185	69.22818				
3	0.056077	23.97883	9.865402	66.15577				
4	0.065598	23.84394	11.92720	64.22887				
5	0.074006	23.63261	13.06056	63.30683				
6	0.081395	23.55035	13.69612	62.75353				
7	0.087972	23.49090	14.04601	62.46309				
8	0.093893	23.45858	14.21676	62.32465				
9	0.099289	23.44295	14.27058	62.28647				
10	0.104256	23.44025	14.24922	62.31053				
	Cholesky Ordering: LIPC LTXCHANGE LMM							



Cas pratique 3.3: Vérification de la cointégration et estimation d'un vecteur à correction d'erreur/VECM (taux de change, dollarisation et inflation).

Ici, la démarche est similaire au cas précédent (nous prenons la « dollarisation » à la place de la « masse monétaire »), seulement le souci est d'afficher les équations (de cointégration) d'un VECM pour le cas de plus d'un vecteur de cointégration, soit 2 vecteurs cointégrant le cas d'espèce. Pour ne pas revenir sur les mêmes choses, nous n'allons présenter que les outputs sans commentaires, ni commandes ou chemins de commandes EViews/Stata.

Graphique

Test de stationnarité

Variables	ADF	McKinon à 5%	Stationnarité
Ldoll	-3.299379	-2.877544	l(o)
Lipc	-8.556092	-2.877636	l(1)
Ltxchange	-9.409031	-2.877636	l(1)

Null Hypothesis: LDOLL has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=13) Prob.* t-Statistic 0.0163 Augmented Dickey-Fuller test statistic -3.299379Test critical values: 1% level -3.466994 5% level -2.877544 -2.575381 10% level *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LDOLL) Method: Least Squares Date: 01/10/18 Time: 17:20 Sample (adjusted): 2002M02 2016M12 Included observations: 179 after adjustments Variable Coefficient Std. Error t-Statistic Prob.

LDOLL(-1)	-0	0.078200	0.023702	-3.299379	0.0012
С	C).348674	0.105404	3.307966	0.0011
I .	_	_	_	_	

Décalage optimal

VAR Lag Order Selection Criteria

Endogenous variables: LDOLL LIPC LTXCHANGE

Exogenous variables: C Date: 01/10/18 Time: 12:20 Sample: 2002M01 2016M12 Included observations: 168

Lag	LogL	LR	FPE	AIC	SC	HQ
0	415.6939	NA	1.48e-06	-4.913022	-4.857237	-4.890382
1	1363.796	1851.057	2.06e-11	-16.09281	-15.86967	-16.00225
2	1387.337	45.12026	1.73e-11*	-16.26592*	-15.87542*	-16.10743*
3	1392.219	9.183654	1.82e-11	-16.21690	-15.65905	-15.99050
4	1395.936	6.857180	1.94e-11	-16.15400	-15.42879	-15.85967
5	1402.772	12.37132	1.99e-11	-16.12824	-15.23568	-15.76600
6	1407.785	8.891605	2.09e-11	-16.08078	-15.02086	-15.65061
7	1415.288	13.04017	2.13e-11	-16.06295	-14.83568	-15.56486
8	1423.041	13.19946	2.17e-11	-16.04811	-14.65348	-15.48210
9	1435.616	20.95812	2.08e-11	-16.09067	-14.52869	-15.45674
10	1441.894	10.23818	2.16e-11	-16.05826	-14.32892	-15.35641
11	1454.142	19.53917*	2.09e-11	-16.09693	-14.20024	-15.32716
12	1463.628	14.79378	2.08e-11	-16.10271	-14.03867	-15.26502

indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

Test de cointégration de Johansen

Date: 01/10/18 Time: 13:53 Sample: 2002M01 2016M12 Included observations: 177 Series: LDOLL LIPC LTXCHANGE

Lags interval: 1 to 2

Selected (0.05 level*) Number of Cointegrating Relations by Model

None	None	Linear	Linear	Quadratic
No Intercept	Intercept	Intercept	Intercept	Intercept
No Trend	No Trend	No Trend	Trend	Trend
2	3	2	1	1
2	3	2	0	1
		No Intercept Intercept	No Intercept Intercept Intercept	No Intercept Intercept Intercept Intercept

*Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend:	None	None	Linear	Linear	Quadratic
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept
No. of CEs	No Trend	No Trend	No Trend	Trend	Trend

Log Likelih	nood by Rank (ro	ws) and Mode	el (columns)						
0	1412.636	1412.636	1421.511	1421.511	1423.913				
1	1422.983	1428.610	1433.562	1433.765	1436.137				
2	1432.904	1438.735	1442.411	1442.774	1443.608				
3	1432.930	1443.449	1443.449	1443.958	1443.958				
Akaike Information Criteria by Rank (rows) and Model (columns)									
0	-15.75860	-15.75860	-15.82498	-15.82498	-15.81822				
1	-15.80772	-15.86000	-15.89336	-15.88435	-15.88856				
2	-15.85202	-15.89531	-15.92555*	-15.90705	-15.90517				
3	-15.78452	-15.86948	-15.86948	-15.84134	-15.84134				
Schwarz Cı	iteria by Rank (r	ows) and Mod	del (columns)						
0	-15.43560	-15.43560	-15.44815*	-15.44815*	-15.38756				
1	-15.37705	-15.41140	-15.40886	-15.38190	-15.35023				
2	-15.31369	-15.32109	-15.33339	-15.27900	-15.25917				
3	-15.13852	-15.16965	-15.16965	-15.08768	-15.08768				

Date: 01/10/18 Time: 13:51

Sample (adjusted): 2002M04 2016M12 Included observations: 177 after adjustments Trend assumption: Linear deterministic trend Series: LDOLL LIPC LTXCHANGE

Lags interval (in first differences): 1 to 2 Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.127310	43.87537	29.79707	0.0007
At most 1 *	0.095152	19.77248	15.49471	0.0106
At most 2	0.011652	2.074511	3.841466	0.1498

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 * At most 2	0.127310	24.10288	21.13162	0.0185
	0.095152	17.69797	14.26460	0.0138
	0.011652	2.074511	3.841466	0.1498

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level

-0.005388

0.000923

-0.001637

D(LDOLL)

D(LIPC)

D(LTXCHANGE)

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):

LDOLL	LIPC	LTXCHANGE						
22.56740	1.170736	-2.854256						
-1.557723	-12.12120	19.06851						
-4.346497	-3.019694	7.760961						
Unrestricted Adjusti	Unrestricted Adjustment Coefficients (alpha):							

0.003113

0.001625

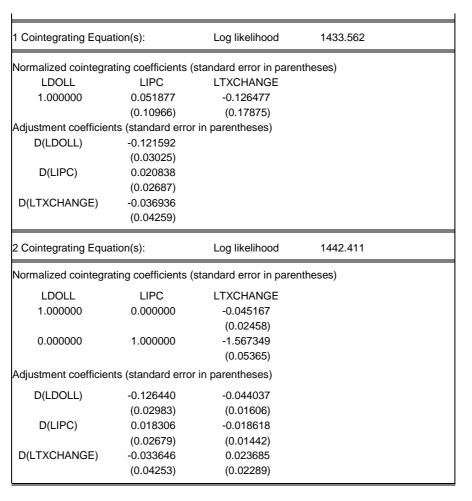
-0.002112

0.000179

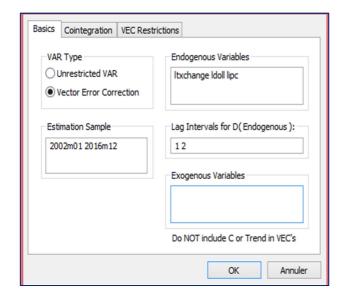
-0.001549

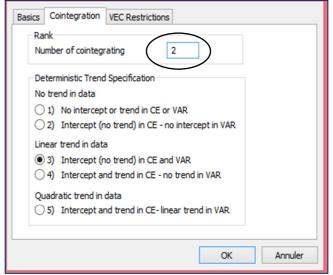
-0.002500

Jonas	<i>KIBALA</i>	KUMA,	DEA-PTC	Economie	(Unikin)	en cours.	Mail:	kibala.j	ionas@gi	nail.com



^{*} denotes rejection of the hypothesis at the 0.05 level


^{**}MacKinnon-Haug-Michelis (1999) p-values


^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Estimation du VECM

Vector Error Correction Estimates Date: 01/10/18 Time: 14:15

Sample (adjusted): 2002M04 2016M12 Included observations: 177 after adjustments Standard errors in () & t-statistics in []

Standard errors in () & t-stat	131103 111 []		
Cointegrating Eq:	CointEq1	CointEq2	
LTXCHANGE(-1)	1.000000	0.000000	
LDOLL(-1)	0.000000	1.000000	
LIPC(-1)	-0.638020	-0.028818	
	(0.02106) [-30.2939]	(0.01532) [-1.88157]	
С	-3.810189	-4.327781	
Error Correction:	D(LTXCHANGE)	D(LDOLL)	D(LIPC)
CointEq1	-0.035603	0.074732	0.028355
	(0.03636)	(0.02550)	(0.02290)
	[-0.97926]	[2.93053]	[1.23821]
CointEq2	-0.033646	-0.126440	0.018306
	(0.04266)	(0.02992)	(0.02687)
	[-0.78879]	[-4.22611]	[0.68137]
D(LTXCHANGE(-1))	0.327272	-0.013242	0.054200
	(0.12058)	(0.08458)	(0.07595)
	[2.71413]	[-0.15657]	[0.71364]
D(LTXCHANGE(-2))	0.157910	-0.060432	0.069584
	(0.11887)	(0.08338)	(0.07487)
	[1.32839]	[-0.72480]	[0.92936]
D(LDOLL(-1))	-0.280170	-0.111181	-0.100069
	(0.10499)	(0.07364)	(0.06613)
	[-2.66864]	[-1.50984]	[-1.51331]
D(LDOLL(-2))	0.124031	-0.051549	0.051377
	(0.10439)	(0.07322)	(0.06575)
	[1.18812]	[-0.70401]	[0.78137]
D(LIPC(-1))	0.002431	0.256313	0.277712
	(0.18929)	(0.13277)	(0.11923)
	[0.01284]	[1.93047]	[2.32925]
D(LIPC(-2))	-0.053505	0.106496	-0.019742
	(0.19037)	(0.13353)	(0.11991)
	[-0.28105]	[0.79755]	[-0.16464]
С	0.004515	-0.001871	0.006732
	(0.00246)	(0.00173)	(0.00155)
	[1.83543]	[-1.08427]	[4.34501]
R-squared	0.180060	0.202422	0.197581
Adj. R-squared	0.141015	0.164442	0.159370
Sum sq. resids	0.105732	0.052017	0.041946
S.E. equation	0.025087	0.017596	0.015801
F-statistic	4.611623	5.329722	5.170852
Log likelihood	405.7830	468.5597	487.6044

Akaike AIC	-4.483424	-5.192765	-5.407960
Schwarz SC	-4.321925	-5.031266	-5.246461
Mean dependent	0.007264	0.000985	0.010049
S.D. dependent	0.027068	0.019250	0.017234
Determinant resid covariance	e (dof adj.)	1.96E-11	
Determinant resid covariance	e	1.68E-11	
Log likelihood		1442.411	
Akaike information criterion		-15.92555	
Schwarz criterion		-15.33339	

Estimation Proc:

EC(C,2) 1 2 LTXCHANGE LDOLL LIPC

VAR Model:

D(LTXCHANGE) = A(1,1)*(B(1,1)*LTXCHANGE(-1) + B(1,2)*LDOLL(-1) + B(1,3)*LIPC(-1) + B(1,4)) + B(1,4) $A(1,2)^*(B(2,1)^*LTXCHANGE(-1) + B(2,2)^*LDOLL(-1) + B(2,3)^*LIPC(-1) + B(2,4)) + C(1,1)^*D(LTXCHANGE(-1)) + B(2,2)^*LIPC(-1)$ C(1,2)*D(LTXCHANGE(-2)) + C(1,3)*D(LDOLL(-1)) + C(1,4)*D(LDOLL(-2)) + C(1,5)*D(LIPC(-1)) + C(1,4)*D(LDOLL(-2)) + C(1,5)*D(LIPC(-1)) + C(1,4)*D(LDOLL(-2)) + C(1,5)*D(LIPC(-1))C(1,6)*D(LIPC(-2)) + C(1,7)

D(LDOLL) = A(2,1)*(B(1,1)*LTXCHANGE(-1) + B(1,2)*LDOLL(-1) + B(1,3)*LIPC(-1) + B(1,4)) + $A(2,2)^*(B(2,1)^*LTXCHANGE(-1) + B(2,2)^*LDOLL(-1) + B(2,3)^*LIPC(-1) + B(2,4)) + C(2,1)^*D(LTXCHANGE(-1)) + B(2,2)^*LIPC(-1)$ C(2,2)*D(LTXCHANGE(-2)) + C(2,3)*D(LDOLL(-1)) + C(2,4)*D(LDOLL(-2)) + C(2,5)*D(LIPC(-1)) + C(2,4)*D(LDOLL(-2)) + C(2,5)*D(LIPC(-1)) + C(2,4)*D(LDOLL(-2)) + C(2,5)*D(LIPC(-1)) + C(2,5)*D(LIPC(-1)) + C(2,4)*D(LDOLL(-2)) + C(2,5)*D(LIPC(-1))C(2,6)*D(LIPC(-2)) + C(2,7)

D(LIPC) = A(3,1)*(B(1,1)*LTXCHANGE(-1) + B(1,2)*LDOLL(-1) + B(1,3)*LIPC(-1) + B(1,4)) + B(1,4) $A(3,2)^*(B(2,1)^*LTXCHANGE(-1) + B(2,2)^*LDOLL(-1) + B(2,3)^*LIPC(-1) + B(2,4)) + C(3,1)^*D(LTXCHANGE(-1)) + B(2,2)^*LIPC(-1)$ C(3,2)*D(LTXCHANGE(-2)) + C(3,3)*D(LDOLL(-1)) + C(3,4)*D(LDOLL(-2)) + C(3,5)*D(LIPC(-1)) + C(3,4)*D(LDOLL(-2)) + C(3,5)*D(LIPC(-1)) +C(3,6)*D(LIPC(-2)) + C(3,7)

VAR Model - Substituted Coefficients:

D(LTXCHANGE) = -0.0356031839097*(LTXCHANGE(-1) - 0.638020070146*LIPC(-1) - 3.81018940117) -0.0336461175068*(LDOLL(-1) - 0.0288175158592*LIPC(-1) - 4.32778093141) + 0.327272482275*D(LTXCHANGE(-1)) + 0.157909782925*D(LTXCHANGE(-2)) - 0.280169529306*D(LDOLL(-1)) + 0.124031464763*D(LDOLL(-2)) + 0.00243068796979*D(LIPC(-1)) - 0.0535051929405*D(LIPC(-2)) + 0.00451462703222

D(LDOLL) = 0.0747317111534*(LTXCHANGE(-1) - 0.638020070146*LIPC(-1) - 3.81018940117) -0.12644033583*(LDOLL(-1) - 0.0288175158592*LIPC(-1) - 4.32778093141) -0.0132418001036*D(LTXCHANGE(-1)) - 0.0604324405551*D(LTXCHANGE(-2)) - 0.111181026926*D(LDOLL(-1)) - 0.051548783578*D(LDOLL(-2)) + 0.256313236611*D(LIPC(-1)) + 0.106496063015*D(LIPC(-2)) -0.00187064301056

D(LIPC) = 0.0283545735992*(LTXCHANGE(-1) - 0.638020070146*LIPC(-1) - 3.81018940117) + 0.0183062351675*(LDOLL(-1) - 0.0288175158592*LIPC(-1) - 4.32778093141) + 0.054200116847*D(LTXCHANGE(-1)) + 0.0695841459942*D(LTXCHANGE(-2)) - 0.100068984044*D(LDOLL(-1)) + 0.0513771552532*D(LDOLL(-2)) + 0.277711801463*D(LIPC(-1)) - 0.01974178851*D(LIPC(-2)) + 0.0067315371403

CHAP IV: MODELES LINEAIRES A EQUATIONS SIMULTANEES

Estimation des modèles à équations simultanées

Cas pratique 4.1 : Modèle de Consommation

Modèle : considérons le modèle linéaire à équations simultanées (traduisant la consommation) ci-dessous:

$$\begin{cases} CO_t = \beta_0 + \beta_1 R_t + e_t \dots \dots (1) \\ R_t = CO_t + Z_t \dots \dots \dots (2) \end{cases} \dots \dots [4.1]$$

Avec:

- o COt: variable endogène (Dépenses en consommation observées au temps t);
- o Rt: Variable endogène (Revenu observé au temps t);
- o Zt : variable exogène (dépenses en investissement observées au temps t).

Travail demandé:

- Identifier l'équation structurelle (1);
- Estimer les équations structurelles (1) et (2) par les Double Moindres Carrés/DMC et les Moindre Carrés Indirects/MCI, et comparer les résultats ;
- Produire les dépenses en consommation attendues pour les années 2000, 2001 et 2002.
- a) Etude de l'identification de « l'équation (1) »

Rappels sur les règles d'identification:

Soient les abréviations suivantes :

g: nombre de variables endogènes (équations) dans le système/modèle;

g': nombre de variables endogènes présentes dans l'équation à identifier;

k: nombre de variables exogènes dans le système/modèle;

k': nombre de variables exogènes figurant dans l'équation à identifier;

r: nombre de restrictions figurant dans l'équation à identifier (restreindre un paramètre structurel c'est lui fixer une valeur suivant l'écriture du modèle)

Les règles de décision sur le statut (l'identificabilité) d'une équation sont les suivantes:

- o (g-g')+(k-k')+r=g-1: l'équation est juste identifiée ;
- o (g g') + (k k') + r > g 1: l'équation est sur-identifiée;
- o (g g') + (k k') + r < g 1: l'équation est non ou sous identifiée.

_Identification de l'équation (1) : avec : g=2 (COt, Rt); g'=2 (COt, Rt); k=1 (Zt); k'=0 et r=0, nous affirmons que cette équation est juste identifiée, car:

$$(g-g') + (k-k') + r = g-1 \Rightarrow (2-2) + (1-0) + 0 = 2-1 \Leftrightarrow 1=1$$

b) Estimation des équations structurelles (1) et (2) par les Double Moindres Carrés/DMC et les Moindre Carrés Indirects/MCI, et comparaison des résultats

Les MCI:

Modèle sous forme réduite :

(2) dans (1) $\Rightarrow CO_t = \beta_0 + \beta_1(CO_t + Z_t) + e_t$, ce qui nous permet d'écrire :

$$CO_t = \frac{\beta_0}{(1-\beta_1)} + \left(\frac{\beta_0}{(1-\beta_1)}\right) * Z_t + \frac{e_t}{(1-\beta_1)} \dots \dots [3]$$

(3) dans (2) donne:

$$R_t = \frac{\beta_0}{(1 - \beta_1)} + \left(\frac{1}{(1 - \beta_1)}\right) * Z_t + \frac{e_t}{(1 - \beta_1)} \dots \dots [4]$$

Posons : $\alpha_0 = \frac{\beta_0}{(1-\beta_1)}$; $\alpha_1 = \frac{1}{(1-\beta_1)}$ et $v_t = \frac{e_t}{(1-\beta_1)}$, ce qui implique les équations réduites suivantes

$$\begin{cases} CO_t = \alpha_0 + (\alpha_1 - 1)Z_t + v_t \dots \dots (1') \\ R_t = \alpha_0 + \alpha_1 Z_t + v_t \dots \dots (2') \end{cases} \dots \dots [4.2]$$

_Estimation de « l'équation (2') » par les MCO :

Sur Eviews:

Sur Stata, faire:

Create a 1993 2002

data COt Zt Rt

Is Rt c Zt

Sur Stata, faire:

tsset annee

reg Rt Zt

Source	SS	df	MS	1	Number of obs	
Model Residual	1452.86429 51.1357143		52.86429 .2271429		Prob > F R-squared	
Total	1504	6 25	0.666667		Adj R-squared Root MSE	= 0.9592
Rt		Std. Err	. t	P> t	[95% Conf.	Interval]
Zt _cons	3.221429	.2702795 7.396973	11.92 6.22	0.000 0.002	2.526653 27.0069	3.916204 65.03595

De cette estimation, nous obtenons les paramètres réduits estimés : $\hat{\alpha}_0 = 46.02$ et $\widehat{lpha}_1=3.22$, grâce auxquels nous allons déduire les paramètres structurels suivant les relations algébriques : $\alpha_0 = \frac{\beta_0}{(1-\beta_1)}$; $\alpha_1 = \frac{1}{(1-\beta_1)}$. Il est pour nous question de calculer β_0 et β_1 . Pour ce faire, écrivons :

D'un côté :
$$3.22 = \frac{1}{(1-\beta_1)} \Longrightarrow (1-\beta_1) = \frac{1}{3.22} \iff (1-\beta_1) = 0.31055 \Longrightarrow \beta_1 = 0.69$$

De l'autre :
$$46.02 = \frac{\beta_0}{(1-\beta_1)} \Longrightarrow \beta_0 = 46.02 * 0.31055 = 14.29$$

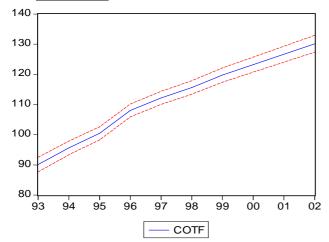
Les DMC :

Sur Eviews, faire: TSLS COt c Rt @ c Zt

Dependent Variable: COT

Method: Two-Stage Least Squares Date: 12/14/13 Time: 01:51 Sample (adjusted): 1993 1999

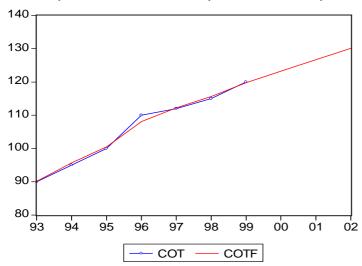
Included observations: 7 after adjustments


Instrument list: C ZT

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RT	14.28603 0.689579	3.484182 0.026045	4.100254 26.47694	0.0094 0.0000
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.993359 0.992031 0.992724 701.0281 0.000001	Mean depen S.D. depend Sum square Durbin-Wats	lent var d resid	106.0000 11.12055 4.927508 2.362376

Commentaires: pour un modèle juste identifié, les estimateurs des MCI sont similaires à ceux obtenus par les DMC (en pratique, les DMC sont préférables aux MCI du fait de la simplicité de sa mise en œuvre/ses procédures d'estimation). NB: R²=99.34% (le revenu/RT influe significativement sur la consommation/COT: un revenu supplémentaire de 10 unités monétaires occasionne une propension marginale à consommer de 6.90 points).

c) <u>Dépenses en consommation attendues pour les années 2000, 2001 et 2002</u>


Sur Eviews, pour prévoir les dépenses en consommation, dans l'output, cliquer sur l'onglet | Forecast | \rightarrow ok (avec COtf = COt prévue ou ajustée):

Actual: COT Forecast sample: 1993 2002 Included observations: 7 0.839005 Root Mean Squared Error Mean Absolute Error 0.611340 Mean Abs. Percent Error 0.573104 Theil Inequality Coefficient 0.003939 **Bias Proportion** 0.000000 Variance Proportion 0.050093 Covariance Proportion 0.949907

<u>Commentaire</u>: au regard de l'indice d'inégalité de Theil (proche de zéro) et du MAPE qui est à 57.3% (Mean Absolute Percent Eror), nous concluons en faveur d'une prévision de bonne qualité. Le graphique affichant les valeurs observées et prévues est illustratif (sur Eviews, taper: plot COt COtf pour le graphique et show **COt COtf** pour les valeurs sous forme tabulaire):

obs	СОТ	COTF
1993	90.00000	90.13969
1994	95.00000	95.65632
1995	100.0000	100.4834
1996	110.0000	108.0687
1997	112.0000	112.2062
1998	115.0000	115.6541
1999	120.0000	119.7916
2000	NA	123.2395
2001	NA	126.6874
2002	NA	130.1353

Cas pratique 4.2 : Modèle macroéconomique simple

Modèle: Soit le modèle linéaire à équations simultanées suivant (les données sont centrées, ce qui justifie l'absence de termes constants):

$$\begin{cases} Y_{1t} = a(Y_{2t} + X_{1t}) + e_{1t} \dots \dots (5) \\ \vdots \\ Y_{2t} = bY_{1t} + cY_{t-1} + e_{2t} \dots (6) \end{cases} \dots \dots [4.3]$$

Avec:

- Y1t: variable endogène (Production nationale au temps t);
- o Y2t: Variable endogène (Consommation de ménages au temps t);
- o X1t: variable exogène (demande finale autre que Y2t au temps t);
- Y1t-1: variable prédéterminé ou exogène (production de l'an passé).

Travail demandé:

- Identifier le modèle :
- Estimer les équations structurelles (5) et (6) par les Moindres Carrés Ordinaires/MCO;
- Estimer les équations (5) et (6) par les Double Moindres Carrés/DMC et les Moindre Carrés Indirects/MCI;
- Comparer les résultats.

a) Identification du modèle

NB: g=2 (Y1t et Y2t) et k=2 (X1t et Y1t-1)

Equations	Identification	Conclusion	Méthode
Eq.(5)	g'=2 (Y1t et Y2t) ; k'=1 (X1t) et r=1 (Y1t et Y2t ont les mêmes coefficients). (g-g')+(k-k')+r? (g-1) (2-2)+(2-1)+1>2-1	L'équation (5) est sur- identifiée	Doubles Moindres Carrés (DMC)
Eq.(6)	g'=2 (Y1t et Y2t) ; k'=1 (Y1t-1) et r=0. (g-g')+(k-k')+r? (g-1) (2-2)+(2-1)+0 = 2-1	L'équation (6) est juste identifiée	Doubles Moindres Carrés/DMC ou Moindres Carrés Indirects/MCI

b) Estimation des équations structurelles (5) et (6) par les Moindres Carrés **Ordinaires/MCO**

__Sur Stata, faire:

(tsset time gen YS=Y2t+X1t reg Ylt YS, noconstant reg Y2t Y1t Y1LAG, nocons

Source	SS	df	MS		Number of obs	= 9	
					F(1, 8)	= 34.75	
Model	2274.36667	1 227	4.36667		Prob > F	= 0.0004	
Residual	523.633333	8 65.	4541667		R-squared	= 0.8129	
+-					Adj R-squared	= 0.7895	
Total	2798	9 310	.888889		Root MSE	= 8.0904	
Y1t	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
YS	.5166667	.0876494	5.89	0.000	.3145468	.7187865	

Source	SS	df	MS		Number of obs	= 9
+					F(2, 7)	= 3.56
Model	777.036285	2 388.	518142		Prob > F	= 0.0856
Residual	762.963715	7 108.	994816		R-squared	= 0.5046
+					Adj R-squared	= 0.3630
Total	1540	9 171.	111111		Root MSE	= 10.44
Y2t	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+						
Y1t	.5187397	.2010013	2.58	0.036	.0434471	.9940323
Y1LAG	.0402599	.2189994	0.18	0.859	4775915	.5581112
,						

NB: Dans le cas d'un système multi-équationnel, les estimateurs de MCO sont biaisés.

c) Estimation des équations (5) et (6) par les Doubles Moindres Carrés/DMC et les Moindres Carrés Indirects/MCI

Estimation par les MCI:

Sous forme réduite, les expressions (5) et (6) deviennent :

$$\begin{cases} Y_{1t} = \left(\frac{a}{1-ab}\right) X_{1t} + \left(\frac{ac}{1-ab}\right) Y_{1t-1} + \left(\frac{1}{1-ab}\right) (e_{1t} + e_{2t}) \dots \dots (5') \\ \vdots \\ Y_{2t} = \left(\frac{ab}{1-ab}\right) X_{1t} + \left(\frac{c}{1-ab}\right) Y_{1t-1} + \left(\frac{1}{1-ab}\right) (be_{1t} + e_{2t}) \dots \dots (6') \end{cases} \\ \text{Posons}: \pi_0 = \left(\frac{a}{1-ab}\right) \; ; \pi_1 = \left(\frac{ac}{1-ab}\right) \; ; \; \pi_2 = \left(\frac{ab}{1-ab}\right) \; ; \; \pi_3 = \left(\frac{c}{1-ab}\right) \; ; \\ u_{1t} = \left(\frac{1}{1-ab}\right) (e_{1t} + e_{2t}) \; \text{et} \; u_{2t} = \left(\frac{1}{1-ab}\right) (be_{1t} + e_{2t}) \end{cases}$$

Ce qui nous amène à écrire :

$$\begin{cases} Y_{1t} = \pi_0 X_{1t} + \pi_1 Y_{1t-1} + u_{1t} \dots \dots (5'') \\ \vdots \\ Y_{2t} = \pi_2 X_{1t} + \pi_3 Y_{1t-1} + u_{2t} \dots \dots (6'') \end{cases} \dots \dots [4.4']$$

Les résultats d'estimation des expressions (5") et (6") se présentent comme suit:

Source	SS	df	MS		Number of obs F(2, 7)	
Model Residual	2195.656 602.344005	2 7 8	1097.828 6.0491435		Prob > F R-squared	= 0.0046 = 0.7847
Total	2798	9 3	10.888889		Adj R-squared Root MSE	= 0.7232 = 9.2763
Y1t	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
X1t Y1LAG	.7174487 .1909748	.145387		0.002 0.351	.3736628 2608938	1.061235 .6428434

mmande:re	g Y2t X1t Y	1LAG, nocon	ເຮ			
Source	SS	df	MS		Number of obs	
Model Residual	565.159746 974.840254				F(2, 7) Prob > F R-squared Adj R-squared	
Total	1540	9 171.1	11111		Root MSE	= 11.801
Y2t	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
X1t Y1LAG	.3553575 .1396827	.1849568	1.92	0.096 0.584	0819959 4351701	.792711

Estimation par les DMC :

_Sur Eviews, taper :

TSLS Y1t YS @ X1t Y1LAG: estimer l'équation (5);

TSLS Y2t Y1t Y1LAG @ X1t Y1LAG: estimer l'équation (6);

Dependent Variable: Y1T

Method: Two-Stage Least Squares Date: 12/14/13 Time: 05:26

Sample: 1995 2003 Included observations: 9 Instrument list: X1T Y1LAG

Variable	Coefficient	Std. Error	t-Statistic	Prob.
YS	0.535520	0.093407	5.733162	0.0004
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.811772 0.811772 8.113737 1.894670	Mean depen S.D. depend Sum square	dent var	0.000000 18.70160 526.6618

Dependent Variable: Y2T

Method: Two-Stage Least Squares Date: 12/14/13 Time: 05:30

Sample: 1995 2003 Included observations: 9 Instrument list: X1T Y1LAG

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Y1T Y1LAG	0.495344 0.045084	0.228271 2.169988 0.220336 0.204614		0.0666 0.8437
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.503610 0.432697 10.45016 3.011822	Mean dependent var S.D. dependent var Sum squared resid		0.000000 13.87444 764.4403

d) Comparaison des résultats

Paramètres		METHODES	
- urumetres	MCO	MCI	DMC
â	0.517/ S	$\hat{\pi}_0 = 0.717/S$; $\hat{\pi}_1 = 0.191/NS$; $\hat{\pi}_2 = 0.355/NS$; $\hat{\pi}_3 = 0.140/NS$	o.536/ S
$\widehat{m{b}}$	0.519/ S	0.495	0.495/ NS
ĉ	o.o4o/ NS	0.045	o.045/ NS

Note: Bien que significatifs, les estimateurs des MCO ne sont pas BLUE pour un système d'équations simultanées (il y a biais : surestimation ou sous-estimation des paramètres). Pour l'expression (6) juste identifiée, le constat est que les résultats sont les mêmes (estimateurs identiques comme nous l'avons souligné au cas précédent); toutefois, en pratique, les DMC sont préférables au MCI.

Cas pratique 4.3 : Modèle macroéconomique de KLEIN (1950)

▶ Modèle : Soit le modèle macroéconomique de KLEIN (il s'agit d'un système linéaire à équations simultanées avec 6 équations et 11 variables économiques, en plus du vecteur « unité ») suivant :

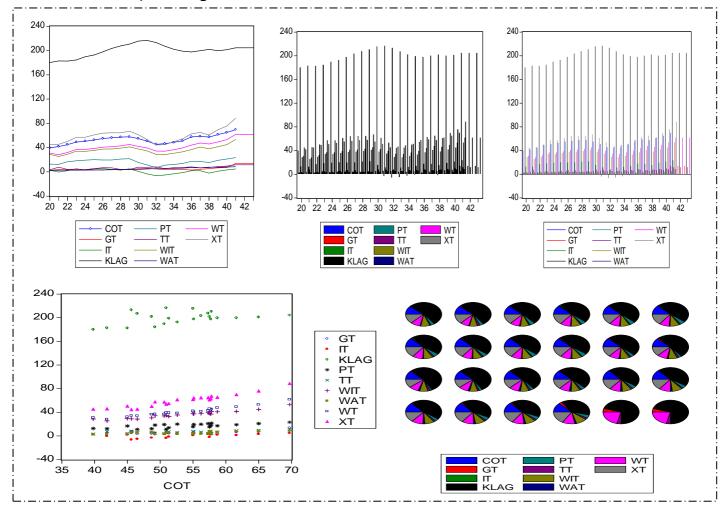
$$\begin{cases}
CO_{t} = \pi_{0} + \pi_{1}P_{t} + \pi_{2}P_{t-1} + \pi_{3}(Wi_{t} + Wa_{t}) + e_{1t} \dots \dots (7) \\
I_{t} = \gamma_{0} + \gamma_{1}P_{t} + \gamma_{2}P_{t-1} + \gamma_{3}K_{t-1} + e_{2t} \dots \dots (8) \\
Wi_{t} = \alpha_{0} + \alpha_{1}X_{t} + \alpha_{2}X_{t-1} + \alpha_{3}t + e_{3t} \dots (9) \dots (9) \dots \dots (4.5] \\
X_{t} = CO_{t} + I_{t} + G_{t} \dots (10) \\
P_{t} = X_{t} - Wi_{t} - T_{t} \dots (11) \\
K_{t} = I_{t} + K_{t-1} \dots (12)
\end{cases}$$

Avec:

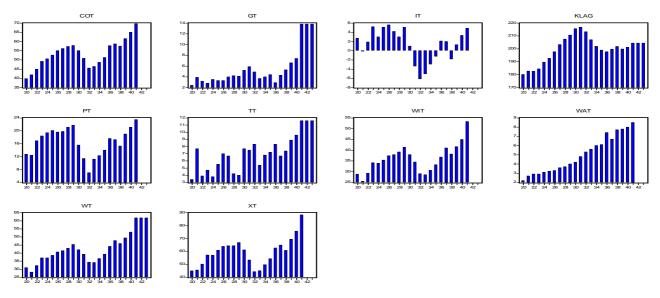
- COt: Consommation au temps t;
- o Pt:Profits au temps t;
- Wit: Salaires (wage) versés par le secteur « industrie » au temps t;
- o Wat: Salaires versés par le secteur « administration » au temps t;
- o It: Investissement au temps t;
- o Xt: Production industrielle au temps t;
- o Kt: Stock de capital à la fin de l'année t;
- o Tt: Impôt sur les bénéfices (profits) au temps t;
- o Gt: Dépenses publiques au temps t;
- t: le temps (la tendance/trend)
- o Kt-1 = KLAG.

Travail demandé :

- Faire une représentation graphique des trajectoires des variables sousétude;
- Repérer les variables endogènes à distinguer de variables exogènes et étudier l'identification de ce modèle;
- Estimer les équations structurelles (7), (8) et (9) par les Moindres Carrés Ordinaires/MCO;
- Recourir à la méthode adéquate pour estimer le modèle.
- Résoudre le modèle et effectuer une prévision.


a) représentation graphique des trajectoires des variables sous-étude

_Sur Eviews, dans l'output des données, suivre: View/Graph → Choisir ensuite (pour les variables groupées ou prises ensemble) :


- o line: pour les lignes;
- Are: pour les surfaces (aires);
- o Bar: pour les barres (bâtons);
- Spike: pour les pointes (tige);
- Scatter/Simple Scatter: pour le nuage de points;

Pie: pour les gâteaux.

Sur Eviews, dans l'output des données, suivre : View/Multiple Graphs→ Choisir ensuite (pour les variables prises séparément) : line, Are, Bar ou Spike.

b) <u>Variables endogènes vs variables exogènes (distinction) et Identification du</u> modèle

- <u>Distinction des variables endogènes et exogènes</u> notons ce qui suit :
 - Les variables endogènes sont (6): COt, It, WIt, Xt, Pt et Kt ($\mathbf{g} = \mathbf{6}$);
 - o Les variables exogènes sont (8): Gt, WAt, Tt, t, Xt-1, Pt-1, Kt-1 et le vecteur de constantes ou vecteur unité (k = 8).
- ▶ Etude de conditions d'identification du modèle: Seules les équations de comportement ou techniques (7), (8) et (9) font l'objet de l'étude des conditions d'identification. Les expressions (10), (11) et (12), traduisant des identités comptables (relations d'équilibre), ne peuvent en aucun cas faire l'objet d'une quelconque identification (aucun paramètre n'est à estimer).

Modèle	Identification	Conclusion	Méthode
Equat (7)	g'=3 (COt, Pt et Wit); $k'=3$ (Pt-1, WAt, constante) et $r=1$ (Wit et WAt ont des coefficients identiques). $(g-g')+(k-k')+r?(g-1)$ $(6-3)+(8-3)+1>6-1$	L'équation (7) est sur-identifiée	Doubles Moindres Carrés (DMC)
Equat (8)	g'=2 (It et Pt); k'=3 (Pt-1, Kt-1 et constante) et r=0. (g-g')+(k-k')+r? (g-1) (6-2)+(8-3)+0 > 6-1	L'équation (8) est sur-identifiée	Doubles Moindres Carrés (DMC)
Equat (9)	g'=2 (Wit et Xt); k'=3 (Xt-1, t et constante) et r=0. (g-g')+(k-k')+r? (g-1) (6-2)+(8-3)+0 > 6-1	L'équation (9) est sur-identifiée	Doubles Moindres Carrés (DMC)

c) <u>Estimation des équations structurelles (7), (8) et (9) par les Moindres Carrés</u> Ordinaires/MCO

```
Sur Eviews, Faire:
Sur Stata, faire:
                                       create a 1920 1943
tsset annee
                                       data COt Gt It Klag Pt Tt Wit WAt Wt Xt
reg COt Pt L.Pt Wt
                                       genr t=@trend(1)
reg It Pt L.Pt Klag
                                       Is COt c Pt Pt(-1) Wt
    WIt Xt L.Xt Klag
                                       Equation eq1.ls COt c Pt Pt(-1) Wt
                                       Equation eq2.ls It c Pt Pt(-1) Klag
                                       Equation eq3.ls WIt c Xt Xt(-1) t
```

Les résultats se présentent comme suit:

```
COt = 16.23660027 + 0.1929343813*Pt + 0.08988489781*Pt(-1) + 0.7962187497*Wt
  It = 10.12578854 + 0.4796356446^{\circ}Pt + 0.3330387135^{\circ}Pt(-1) - 0.1117946837^{\circ}KLAG
 WIt = 10.61420996 + 0.4394769672*Xt + 0.1460899468*Xt(-1) + 0.1302452303*t
```

Note: on peut écrire: Equation eq1.ls COt c Pt Pt(-1) (Wit+Wat)

Commande:re	g COt Pt L.	Pt Wt				
Source	SS	df	MS		Number of obs	
Model Residual	923.549941 17.8794481		.84998 173224		F(3, 17) Prob > F R-squared Adj R-squared	= 0.0000 = 0.9810
Total	941.429389	20 47.0	714695		Root MSE	= 1.0255
COt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Pt						
	.1929342	.0912102	2.12	0.049	.0004976	.3853709
L1.	.0898849	.0906479	0.99	0.335	1013655	.2811354
Wt	.7962187	.0399439	19.93	0.000	.7119444	.880493
_cons	16.2366	1.302698	12.46	0.000	13.48815	18.98506

Commande:re	eg It Pt L	.Pt Klag	Ī			
Source	SS	df	MS		Number of obs	
Model Residual	235.00396 17.3226985				Prob > F R-squared Adj R-squared	= 0.0000 = 0.9313
Total	252.326659	20 12.	6163329		Root MSE	
It	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Pt L1. Klag _cons	.4796356 .3330387 1117947 10.12579	.0971146 .1008592 .0267276 5.465546	4.94 3.30 -4.18 1.85	0.000 0.004 0.001 0.081	1681849	.545833 0554045

Source	SS	df	MS		Number of obs : F(3, 17)	= 21 = 444.57
Model	784.904754	3 261.	634918		Prob > F	
Residual	10.0047374	17 .588	513967		R-squared	
Total	794.909491	20 39.7	454746		Adj R-squared Root MSE	= 0.9852 = .76715
WIt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
xt						
j	.4394769	.0324076	13.56	0.000	.371103	.5078509
L1.	.14609	.0374231	3.90	0.001	.0671341	.2250458
t İ	.1302452	.0319103	4.08	0.001	.0629203	.19757
cons	.0643462	1.151797	0.06	0.956	-2.365732	2.494425

d) Estimation des équations structurelles (7), (8) et (9) par la méthode de **Double Moindres Carrés / DMC**

NB: Seul Eviews est utilisé ici (avec plusieurs possibilités d'estimation).

- **Estimation des équations prises individuellement** : les commandes Eviews sont :
- * Equation eq7.TSLS COt c Pt Pt(-1) Wt @ c t Gt WAt Tt Xt(-1) Pt(-1) Klag: pour Eq.(7);
- * Equation eq8.TSLS It c Pt Pt(-1) Klag @ c t Gt WAt Tt Xt(-1) Pt(-1) Klag: pour Eq.(8);
- * Equation eq9. TSLS WIt c Xt Xt(-1) t @ c t Gt WAt Tt Xt(-1) Pt(-1) Klag: pour Eq.(9).

Précisons que les variables/séries placées après "@" sont exogènes (elles constituent les instruments).

> Dependent Variable: COT Method: Two-Stage Least Squares

Date: 12/14/13 Time: 23:18 Sample (adjusted): 1921 1941

Included observations: 21 after adjustments

Instrument list: C T GT WAT TT XT(-1) PT(-1) KLAG

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PT PT(-1) WT	16.55476 0.017302 0.216234 0.810183	1.467979 0.131205 0.119222 0.044735	11.27725 0.131872 1.813714 18.11069	0.0000 0.8966 0.0874 0.0000
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.976711 0.972601 1.135659 225.9334 0.000000	Mean dependent var S.D. dependent var Sum squared resid Durbin-Watson stat		53.99524 6.860866 21.92525 1.485072

Dependent Variable: IT

Method: Two-Stage Least Squares Date: 12/14/13 Time: 23:26 Sample (adjusted): 1921 1941

Included observations: 21 after adjustments

Instrument list: C T GT WAT TT XT(-1) PT(-1) KLAG

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PT PT(-1) KLAG	20.27821 0.150222 0.615944 -0.157788	8.383249 0.192534 0.180926 0.040152	2.418896 0.780237 3.404398 -3.929751	0.0271 0.4460 0.0034 0.0011
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.884884 0.864569 1.307149 41.20019 0.000000	Mean dependent var S.D. dependent var Sum squared resid Durbin-Watson stat		1.266667 3.551948 29.04686 2.085334

Dependent Variable: WIT

Method: Two-Stage Least Squares Date: 12/14/13 Time: 23:28 Sample (adjusted): 1921 1941

Included observations: 21 after adjustments

Instrument list: C T GT WAT TT XT(-1) PT(-1) KLAG

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C XT XT(-1) T	10.62799 0.438859 0.146674 0.130396	3.076818 0.039603 0.043164 0.032388	3.454217 11.08155 3.398063 4.026001	0.0030 0.0000 0.0034 0.0009
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.987414 0.985193 0.767155 424.1940 0.000000	Mean dependent var S.D. dependent var Sum squared resid Durbin-Watson stat		36.36190 6.304401 10.00496 1.963416

Estimation des équations prises ensemble (en une seule instruction):

Sur Eviews, suivre le chemin : Object/New Object.../System \rightarrow ok \rightarrow dans la boîte de dialogue, écrire :

$$\begin{cases} COT = C(1) + C(2)*PT + C(3)*PT(-1) + C(4)*WT \\ IT = C(5) + C(6)*PT + C(7)*PT(-1) + C(8)*KLAG \\ WIT = C(9) + C(10)*XT + C(11)*XT(-1) + C(12)*T \\ inst c t Gt WAt Tt Xt(-1) Pt(-1) Klag \end{cases}$$

Ensuite, cliquer sur **Estimate** → (dans « Method », sélectionner : Two-Stage Least Squares) \rightarrow ok:

System: SYS1

Estimation Method: Two-Stage Least Squares

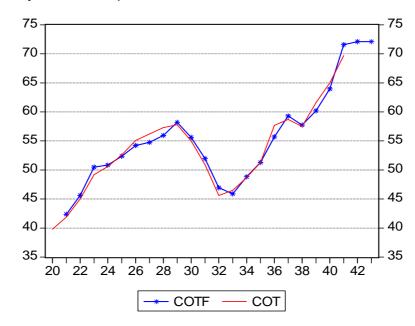
Sample: 1921 1941 Included observations: 21

Total system (balanced) observations 63

	Coefficient	Std. Error	t-Statistic	Prob.		
C(1)	16.55476	1.467979	11.27725	0.0000		
C(2)	0.017302	0.131205	0.131872	0.8956		
C(3)	0.216234	0.119222	1.813714	0.0756		
C(4)	0.810183	0.044735	18.11069	0.0000		
C(5)	20.27821	8.383249	2.418896	0.0192		
C(6)	0.150222	0.192534	0.780237	0.4389		
C(7)	0.615944	0.180926	3.404398	0.0013		
C(8)	-0.157788	0.040152	-3.929751	0.0003		
C(9)	10.62799	3.076818	3.454217	0.0011		
C(10)	0.438859	0.039603	11.08155	0.0000		
C(11)	0.146674	0.043164	3.398063	0.0013		
C(12)	0.130396	0.032388	4.026001	0.0002		
Determinant residual c	ovariance	0.287714				
Equation: COT = C(1) Instruments: C T GT W Observations: 21	, ,	, , , ,) VV I			
R-squared	0.976711	Mean depend	dent var	53.99524		
Adjusted R-squared	0.972601	S.D. depende	ent var	6.860866		
S.E. of regression	1.135659	Sum squared	l resid	21.92525		
Durbin-Watson stat	1.485072					
Equation: IT = C(5) + C(6)*PT + C(7)*PT(-1) + C(8)*KLAG Instruments: C T GT WAT TT XT(-1) PT(-1) KLAG Observations: 21						
R-squared	0.884884	Mean depend	dent var	1.266667		
Adjusted R-squared	0.864569	S.D. depende		3.551948		
S.E. of regression	1.307149	Sum squared		29.04686		
Durbin-Watson stat	2.085334	•				
Equation: WIT = C(9) -	- C(10)*XT + C(11)*XT(-1) + C	(12)*T			

Instruments: C T GT WAT TT XT(-1) PT(-1) KLAG						
Observations: 21						
R-squared	0.987414	Mean dependent var	36.36190			
Adjusted R-squared	0.985193	S.D. dependent var	6.304401			
S.E. of regression	0.767155	Sum squared resid	10.00496			
Durbin-Watson stat	1.963416					

Résolution du modèle de Klein sur Eviews :


_Sur Eviews, suivre: Object/New Object.../Model→ OK→ cliquer sur l'onglet **Text** \rightarrow écrire: Assign @ all F et saisir les équations estimées comme suit:

$$\begin{cases}
COt = 16.55 + 0.017*Pt + 0.216*Pt(-1) + 0.810*Wt \\
It = 20.28 + 0.15*Pt + 0.616*Pt(-1) - 0.158*KLAG \\
WIt = 10.63 + 0.439*Xt + 0.147*Xt(-1) + 0.130*t \\
Xt = COt + It + Gt \\
Pt = Xt - WIt - Tt \\
Kt = It + Klag
\end{cases}$$

Ensuite, cliquer sur l'onglet **Solve** .

▶ **Prévision**: dans l'output de chaque équation estimée, cliquer sur l'onglet **Forecast** (les variables se terminant par « f » sont ajustées ou prédites).

Exemple: plot COt COtf

II. Simulations ou scénarios sur des modèles à équations simultanées

Cas pratique 4.4 : Modèle de KLEIN (1950) : Scénarios et/ou Simulations

Rappel sur le Modèle : Soit le modèle macroéconomique de KLEIN (il s'agit d'un système linéaire à équations simultanées avec 6 équations et 11 variables économiques, en plus du vecteur « unité ») suivant :

$$\begin{cases}
CO_{t} = \pi_{0} + \pi_{1}P_{t} + \pi_{2}P_{t-1} + \pi_{3}(Wi_{t} + Wa_{t}) + e_{1t} \dots \dots (7) \\
I_{t} = \gamma_{0} + \gamma_{1}P_{t} + \gamma_{2}P_{t-1} + \gamma_{3}K_{t-1} + e_{2t} \dots \dots (8) \\
Wi_{t} = \alpha_{0} + \alpha_{1}X_{t} + \alpha_{2}X_{t-1} + \alpha_{3}t + e_{3t} \dots (9) \dots \dots (4.5] \\
X_{t} = CO_{t} + I_{t} + G_{t} \dots (10) \\
P_{t} = X_{t} - Wi_{t} - T_{t} \dots (11) \\
K_{t} = I_{t} + K_{t-1} \dots (12)
\end{cases}$$

Avec:

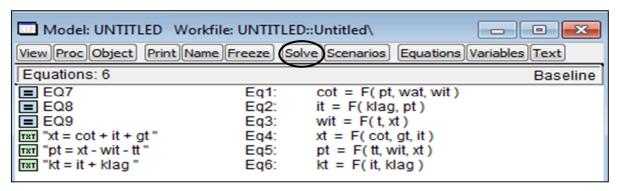
- COt: Consommation au temps t;
- Pt: Profits au temps t;
- o Wit: Salaires (wage) versés par le secteur « industrie » au temps t;
- o Wat: Salaires versés par le secteur « administration » au temps t;
- o It: Investissement au temps t;
- o Xt: Production industrielle au temps t:
- o Kt: Stock de capital à la fin de l'année t;
- o Tt: Impôt sur les bénéfices (profits) au temps t;
- o Gt: Dépenses publiques au temps t;
- o t:le temps (la tendance/trend)
- \circ Kt-1 = KLAG.

Travail demandé:

- Estimer les équations structurelles/de comportement par les DMC;
- Trouver la solution initiale du modèle statique ou Résoudre le modèle (obtenir le Baseline ou solution de base);
- Analyser ou élaborer le 1^{er} Scénario: toutes choses restant égales par ailleurs/Ceteris paribus (c.à.d. bloquer le modèle : autres variables exogènes (Gt et Tt) restant constantes), si la masse salariale/« Wat » augmente de « 1 Milliard » (maintenue sur les 4 ans qui suivent), comment réagiront toutes les variables endogènes? (autrement dit, quel est l'impact dans tout le système si « Wat » varie de 1 milliard positivement?);
- Analyser le **2**ème **Scénario**: Ceteris paribus (bloquer le modèle), si les dépenses publiques non salariales « Gt » augmentent de « 1 milliard » (maintenue sur 4 ans suivants), comment réagira le système (tenir compte des canaux de transmission dans l'analyse)?

- Analyser le 3 ème Scénario : « Ceteris paribus » (mais ne pas bloquer « t »), si les impôts « Tt » baissent de « 2 milliards » en 1942 et les dépenses publiques non salariales « Gt » augmentent de « 1,5 milliard » en même temps (maintenue jusqu'en 1945), comment réagira le système?
- Analyser le 4^{ème} **Scénario**: Pour un objectif de « croissance annuelle à 15% » (Cfr Production industrielle «Xt») sur 4 ans à vernir, quelles mesures de politique budgétaire (« Gt », « Tt » ou « Wat ») mettre en place?

1) Estimation des équations structurelles

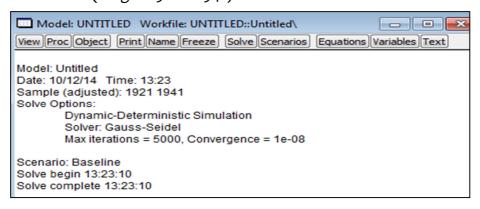

Les résultats d'estimation des équations structurelles 7, 8 et 9 par les DMC ont été déjà présentés précédemment, seulement nous voulons ici insister sur la manière d'estimer l'équation 7 (relative à la consommation) qui accuse une variable composite: soit (Wat+Wit). Pour cette équation, procéder comme suit (obtenir les résultats suivants):

```
Estimation Command:
Equation eq7.TSLS COT C PT PT(-1) (WIT+WAT) @ C T GT WAT TT XT(-1) PT(-1) KLAG
Estimation Equation:
_____
COT = C(1) + C(2)*PT + C(3)*PT(-1) + C(4)*(WIT+WAT)
Substituted Coefficients:
\mathsf{COT} = 16.5547557654 + 0.0173022117998 * \mathsf{PT} + 0.216234040485 * \mathsf{PT}(-1) + 0.810182697599 * (\mathsf{WIT} + \mathsf{WAT})
```

2) Recherche de la solution initiale (baseline)

Dans **EViews 6**:

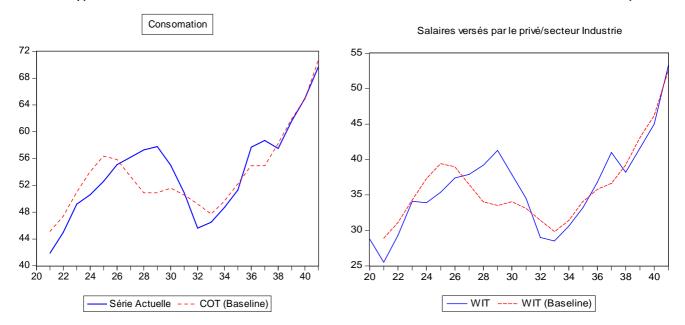
- o Sélectionner les équations enregistrées dans le Workfile→Clic droit→Open as Model \rightarrow Ok \rightarrow un espace s'ouvre (nous l'appelons « **Boîte A** »);
- o Dans l'espace « Boîte A », faire clic droit→insert (pour insérer les relations d'équilibre : 10, 11 et 12) \rightarrow ok. A ce niveau, la « boîte A » s'affiche comme suit :


o Dans la « Boîte A » ci-dessus, cliquer sur | **Solve** | pour résoudre le modèle (simulation statique/solution mathématique ou solution base/Baseline)→dans la boîte de dialogue qui s'affichera, faire le choix sur

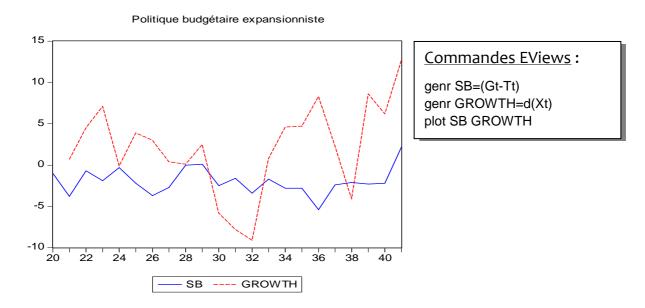
le type de simulation et l'algorithme de résolution. Dans EViews (Cfr onglets : « Basic Options » et « Solver ») et en théorie, l'on distingue :

- *2 types de simulations : simulations déterministe et stochastique ;
- *2 types de solution : solutions statique et dynamique ;
- *3 types d'algorithme : algorithme de Gauss-Seidel (populaire/courant), celui de Newton et celui de Broyden.

Dans notre cas, nous optons pour la simulation dynamique déterministe et retenons l'algorithme de Gauss-Seidel→cliquer sur Ok pour valider. Ainsi les infos suivantes s'affichent (range: 1920 – 1941):

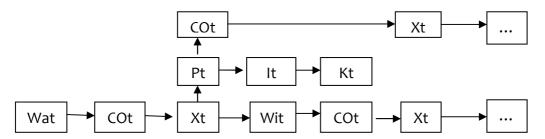

Il s'agit entre autres du nombre d'itérations, de l'algorithme et type de simulation, et des dates de début et de fin de résolution. Ces informations nous aident à vérifier que le modèle a passé le test de convergence et que la solution mathématique du modèle a été trouvée (c'est la procédure de validation du modèle). Toutefois, Cfr d'autres critères pour évaluer la qualité du modèle résolu/prédit, à savoir :

- RMSE : la Racine de l'Erreur Quadratique Moyenne ;
- MAE: l'Erreur Absolue Moyenne;
- Theil Inequality Coefficient (coefficient d'inégalité de theil (u)).
- L'on peut se servir aussi des graphiques (plot série brut et série simulée).


NB: simulation de base = simulation historique (possibilité d'évaluer et quantifier l'impact des politiques alternatives). Servons-nous de graphes historique: elle permet d'évaluer/quantifier les (simulation politiques économiques alternatives/simulations):

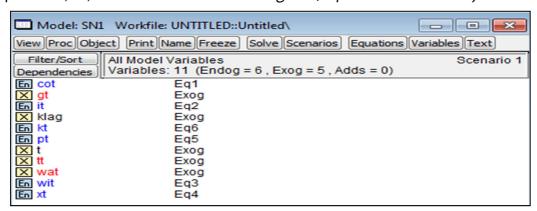
(i) Consommation/Cot et Salaires du secteur industrie/Wit : actual vs baseline)

(ii) Solde budgétaire/SB et Taux de croissance économique/GROWTH: actual vs baseline


Note: considérant l'évolution du solde budgétaire, il va sans dire que la politique budgétaire poursuivie par les USA (entre 1921 et 1941) a été expansionniste (accroissement des dépenses traduit par des déficits budgétaires persistants), avec des taux de croissance économique globalement positifs comme corollaire dans une certaine mesure (ceteris paribus).

3) Scénarios et projections/simulations

(i) <u>Scénario 1 : Ceteris paribus, « Wat » ↑ de 1 milliard sur 4 ans à venir</u>


Schéma: Selon le modèle:

Note: Bouger une variable exogène (Wat), ceteris paribus signifie ignorer les effets d'autres variables exogènes (Gt, Tt, t et Klag) ou bloquer les autres variables exogènes (Gt, Tt, t et Klag considérées constantes dont les dérivées sont nulles : mêmes valeurs entre 1942 et 1945).

Etapes à suivre :

<u>Créer un scénario</u>: dans « Boîte A », procéder comme suit (suivre): View/Scenarios... → **Scenario** 1→dans « scenario Overrids », préciser les variables exogènes du modèle: Gt, Wat et Tt→cliquer sur Ok. Ensuite, dans « Boîte A », cliquer sur l'onglet « | Variables | » pour vérifier que l'on ne s'est pas trompé dans la déclaration des variables exogènes. Les informations suivantes s'affichent (en rouge, les variables exogènes déclarées; en noire celles qui sont automatiquement considérées comme exogènes parce que ne constituant pas des équations; et, en bleu les variables endogènes/équations du modèle):

- Préciser les valeurs prises par les 3 variables exogènes (Gt, Wat et Tt) et la période de projection. Pour ce faire :
 - Etendre l'échantillon (période historique) jusqu'en 1945 (période de projection): dans le Workfile (EViews), double-cliquer sur « Range »→End date: $1945 \rightarrow 0k$;
 - Créer des nouvelles variables exogènes associées à chaque scénario (pour éviter de supprimer les valeurs de départ/initiales). Ex: Clic droit sur « Wat » dans la « **Boîte A** » ci-dessus→Properties→Cocher « use override

series in scenario→Yes→Ok: ainsi, l'on a crée « Wat 1 » par exemple (en faire autant pour « Gt », « Tt », « Klag » et « t »). Ensuite, ouvrir « Wat 1 » et compléter les valeurs relatives à la période de projection comme suit :

- 1942: valeur de 1941 + 1 milliard;
- 1943... 1945 : valeur de 1942 recopiée.

Note: l'on peut suivre aussi « Quick/Generate Series » pour procéder de la même façon.

- Reproduire les mêmes valeurs pour les autres variables exogènes « Gt et Tt », mais aussi « Klag et t » (ceteris paribus).
- Simuler le modèle: Revenir à la «Boîte A», cliquer sur l'onglet « Solve » \rightarrow [Active: **Scenario 1**] \rightarrow Ok \rightarrow le message suivant s'affiche (indiquant que la simulation a réussi):

Model: SN1

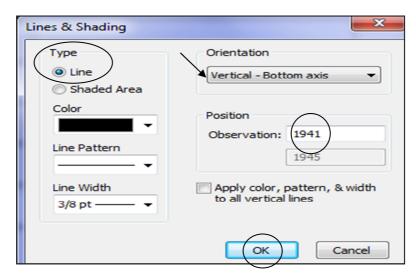
Date: 10/12/14 Time: 22:35 Sample (adjusted): 1921 1945

Solve Options:

Dynamic-Deterministic Simulation

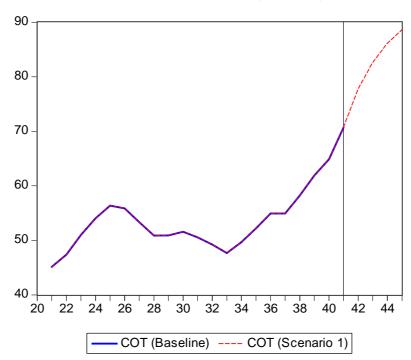
Solver: Gauss-Seidel

Max iterations = 5000, Convergence = 1e-08


Scenario: Scenario 1 Solve begin 22:35:34 Solve complete 22:35:34

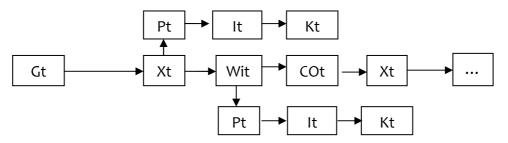
Et nous pouvons observer ce qui suit (Cfr données sur Workfile):

Période	COt_1	Xt_1	Wit_1	Kt_1	Pt_1	Wat_1	It_1
1941	70.71087	88.23387	52.58769	208.2230	24.04618	8.5	3.722996
1942	77.73379	98.55536	58.99777	211.5216	27.95760	9.5	7.021570
1943	82.58550	106.2363	63.88252	214.3508	30.75381	9.5	9.850832
1944	86.10797	111.7791	67.44162	216.3711	32.73749	9.5	11.87113
1945	88.62365	115.7273	69.98730	217.8037	34.14001	9.5	13.30366


Graphiques (plot série brut et série simulée): dans la boîte de dialogue du obtenu (concernant la consommation), graphique cliquer l'onglet « Freeze »→Line/Shade→La boîte ci-dessous complète la procédure (pour tracer une ligne verticale à partir d'une date, 1941 par exemple):

Cliquer sur « Ok » pour obtenir le graphique suivant :

Consommation simulée (scénario 1)



Commentaires: L'augmentation de la masse salariale de l'administration publique/Wat d'1 milliard, ceteris paribus, a des effets positifs sur tout le système (consommation, production, etc.) durant les 4 années à avenir: les variables endogènes subissent des accroissements à des rythmes de plus en plus ralentit d'une année à une autre (Cfr données et graphique ci-haut).

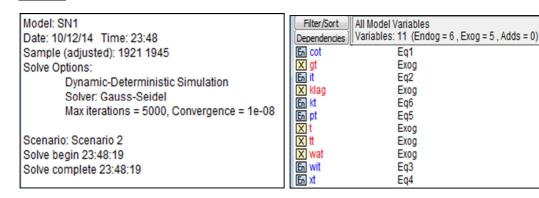
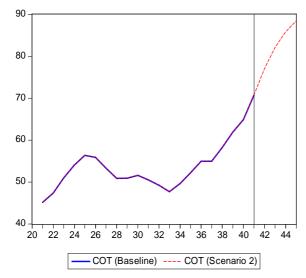
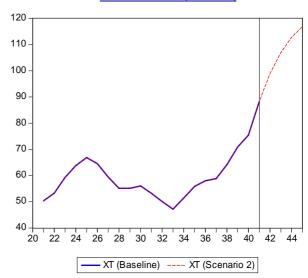

(ii) Scénario 2 : Ceteris paribus, « Gt » ↑ de 1 milliard sur 4 ans à venir

Schéma: Selon le modèle:


Simulation du modèle : Les résultats intermédiaires s'affichent comme suit :

Nous pouvons observer également ce qui suit (Cfr données sur Workfile):


Période	COt_2	Xt_2	Wit_2	Kt_2	Pt_2	Gt_2	It_2
1941	70.71087	88.23387	52.58769	208.223	24.04618	13.80000	3.722996
1942	77.04957	98.90021	59.14911	211.5506	28.15110	14.80000	7.050639
1943	82.11165	106.9328	64.23875	214.5211	31.09404	14.80000	10.02113
1944	85.80976	112.7576	67.97318	216.6478	33.18441	14.80000	12.14783
1945	88.45786	116.9154	70.65222	218.1575	34.66317	14.80000	13.65752

Consommation simulée (Scénario 2)

Production simulée (Scénario 2)

Scenario 2

(iii) Scénario 3: Ceteris paribus, «Wat» ↑ de 1,5 milliard et «Tt» ↓ de 2 milliards sur 4 ans à venir (« t » évolue)

Simulation du modèle: Le modèle a passé le test de convergence avec succès suivant les informations ci-dessous :

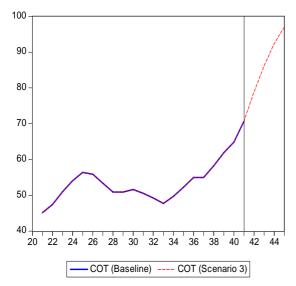
Model: SN1

Date: 10/13/14 Time: 00:49 Sample (adjusted): 1921 1945

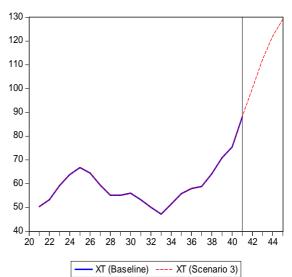
Solve Options:

Dynamic-Deterministic Simulation

Solver: Gauss-Seidel


Max iterations = 5000, Convergence = 1e-08

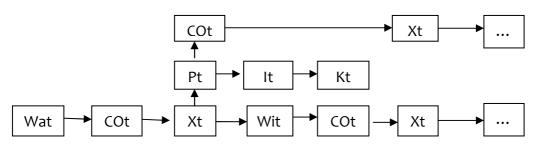
Scenario: Scenario 3 Solve begin 00:49:54 Solve complete 00:49:54


Nous pouvons observer également ce qui suit (Cfr données sur Workfile):

Période	COt_3	Xt_3	Wit_3	Kt_3	Pt_3	Tt_3	It_3	Wat_3
1941	70.71087	88.23387	52.58769	208.2230	24.04618	11.60000	3.722996	8.500000
1942	78.82363	100.0522	59.78508	211.9286	30.66716	9.600000	7.428605	10.00000
1943	86.18423	112.2382	66.99685	216.7540	35.64137	9.600000	12.25399	10.00000
1944	92.34510	121.9975	73.19755	220.3524	39.19994	9.600000	15.85239	10.00000
1945	96.98410	129.2010	77.92070	222.9169	41.68028	9.600000	18.41688	10.00000

Consommation simulée (Scénario 3)

Production simulée (Scénario 3)



(iv) <u>Scénario 4 : Pour que « Xt » ↑ de 15% chaque année (sur 4 ans suivants :</u> de 1942 à 1945), comment « Wat » doit évoluer durant ces 4 ans ?

Note: Il est pour nous question de simuler l'évolution requise des variables budgétaires (Gt, Wat et Tt) correspondant à la trajectoire imposée à la production industrielle (Xt) ou croissance économique. L'on notera que nous considérons « Wat » comme variable de contrôle traduisant la politique budgétaire; car, elle nous permet justement de boucler le modèle (1), toutes choses restantes égales par par ailleurs (« Tt », « Gt », « t » et « Klag » considérées constantes). En pratique, l'exercice consiste à bloquer les variables exogènes «Tt, Gt, t et Klag » (sauf « Wat »), ouvrir la production industrielle « Xt » et obtenir (simulation) l'évolution de « Wat » compatible avec l'objectif fixé (accroissement de « Xt » de 15% chaque année, sur les 4 ans suivants).

Schéma : Selon le modèle (rappelons) :

Etapes à suivre :

- <u>Créer un scénario</u>: dans « Boîte A », procéder comme suit (suivre): Scenario→**Scenario** *View/Scenarios...* → Create New **4**→dans Overrids », préciser les variables exogènes du modèle : Gt, Wat et Tt→Ok.
- ▶ Bloquer les variables exogènes « Tt, Gt, t et Klag » (sauf « Wat ») c.à.d., pour ces 4 variables, répéter les valeurs en 1941 sur les années suivantes – et ouvrir la production industrielle « Xt ». Pour ce faire:
 - Générer des nouvelles variables exogènes associées au 4ème scénario crée. <u>Ex</u>: Clic droit sur «Gt» dans la «**Boîte A**»→Properties→Cocher «use override series in scenario→Yes→Ok: ainsi, l'on a crée « Gt 4 » par exemple (en faire autant pour «Tt», «Wat», «Klag» et «t»). Ensuite, ouvrir les variables générées et compléter les valeurs relatives à la période de projection (répéter les mêmes valeurs, sauf pour « Wat » qui gardera des données manquantes).
 - L'objectif de 15% du taux de croissance économique impose à la production industrielle (« Xt ») une trajectoire de croissance. D'où, pour la « 1942–1945 », ouvrir « Xt » en suivant : Quik/Generate Series... → Dans la boîte de dialogue qui s'affiche, saisir à tour de rôle

¹ La variable qui permet de boucler le modèle est celle d'où part l'impact et où finissent les effets/impacts. « Wat » est ainsi choisie au détriment de « Tt » et « Gt ».

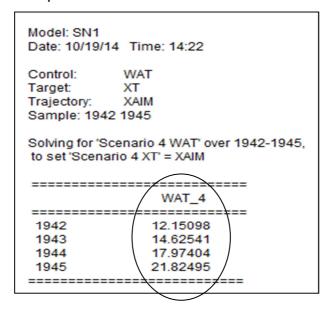
(cliquer sur « ok » et reprendre le processus pour donner d'autres instructions):

```
Xaim=Xt \rightarrow sample: 1920 1945 \rightarrow ok: définir le 4<sup>ème</sup> Scénario
\mathsf{Xaim} \mathtt{=} \mathsf{Xaim} (\mathtt{-}1) \mathtt{*} 1.15 \, \rightarrow \, \mathsf{sample} : \, 1942 \, \, 1945 \, \rightarrow \, \mathsf{ok} : \, \mathit{Xt} \uparrow \mathit{15\%} \, \, \mathit{entre} \, \, 1942 \, \, \mathit{et} \, \, 1945
                                                                        (imposer une trajectoire à « Xt » ou ouvrir « Xt »)
```

En passant, dans « **Boîte A** », cliquer sur l'onglet « Variables | » pour observer les variables exogènes définies/identifiées dans le système (en rouge):

Filter/Sort Dependencies	All Model Variables Variables: 11 (Endog = 6, Exog = 5, Adds = 0)	Scenario 4
En cot	Eq1	
⊠ gt	Exog	
En it	Eq2	
X klag	Exog	
En kt	Eq6	
En pt	Eq5	
X t	Exog	
⋉ tt	Exog	
× wat	Exog	
En wit	Eq3	
En xt	Eq4	

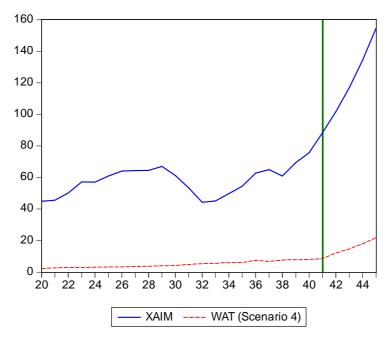
Simulation : Dans « Boîte **A** », suivre: Proc→Solve Control for Target... \rightarrow taper « **en gras** » (dans chaque case) :


(O Solve for values of Control Variable: Wat

o so model solves the Target Variable: Xt

o to the values of the Trajectory Series : Xaim

o Sample: 1942 1945 \rightarrow Ok.

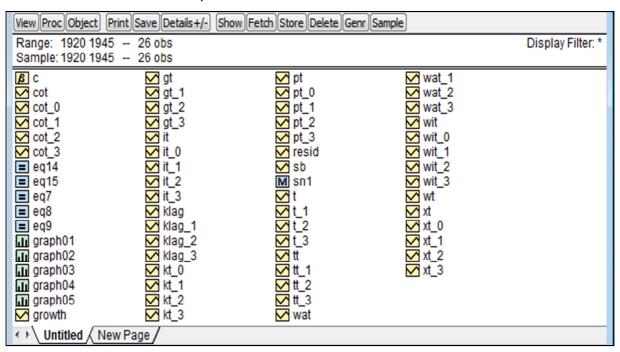

NB: Xt « variable cible/target »; Xaim « sentier de la variable cible sur la période de projection », et Wat « variable de contrôle ». Après avoir cliqué sur « Ok », nous obtenons l'évolution des salaires publics « Wat » (entre 1942 et 1945 : période de projection) – compatible avec le taux de croissance de la production industrielle « Xt » fixé à 15% pour chaque année – comme suit :

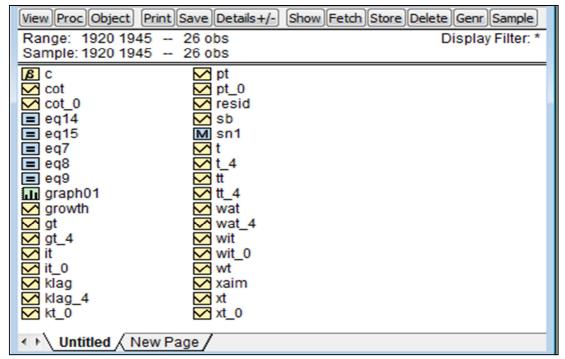
_Graphiques (plot variable cible « Xaim » vs variable de contrôle « Wat ») :

Niveau des salaires publics compatibles avec l'objectif d'une croissance économique à 15% (entre 1942 et 1945) aux USA

Exportation des « résultats/simulations/projections » d'EViews vers Excel :

Dans EViews (6), sélectionner les variables à transférer et suivre : File/Export/Write Text-Lotus-Excel→Choisir le nom du fichier Excel «simulation result » et son emplacment, et préciser le type de fichier de sortie (« Excel »)→dans « Series to export », vérifier que toutes les variables sélectionnées apparaissent dans la boîte de dialogue qui s'affiche→Ok.


Mise à jour du modèle :


- Plusieurs raisons justifient la mise à jour d'un modèle macro-économétrique, entre autres:
 - o Le renouvellement des données par an/trimestre/mois: cela implique réestimation avec l'ajout des nouvelles données ;
 - o Les mutations économiques -> l'augmentation des équations de comportement → prise en compte des chocs ou nouveaux enjeux économiques. L'on notera que, pour les modèles annuels par exemple, ils sont mis à jour au moins une fois par an.
- Etapes à suivre: dans EViews, après avoir introduit toutes les nouvelles quantitatives et/ou qualitatives, suivre (Cfr « Boîte A »): données Proc/Links/Update All Links-Recompile Model. Après, résoudre/simuler/projeter les politiques économiques ou sociales.

<u> Annexe : Workfiles produits (Cfr équations simultanées : Modèle de Klein – </u> Scénarios et/ou Simulations).

Cas pratique 4.5: Estimation d'un modèle à équations simultanées par la méthode de DMC et Simulation/Scénarios

1) Modèle

Soit le modèle du multiplicateur/accélérateur d'un pays donné :

$$\begin{cases} C_t = b_0 + b_1 Y_t + e_{1t} \\ I_t = a_0 + a_1 Y_{t-1} + a_2 Y_t + e_{2t} \dots \dots [4.6] \\ Y_t = C_t + I_t + G_t \end{cases}$$

Avec : a_2 = accélérateur et Gt = dépenses gouvernementales.

NB: multiplicateur (mesure de l'effet d'une variation de l'investissement/It sur le revenu/Yt) et accélérateur (mesure l'effet sur l'investissement de l'augmentation du revenu ou de la consommation/Ct).

2) Identification: dans le système, G=3 et K=2.

Equations	Identification	Conclusion	Méthode
1 ^{ère} équation	g'=2 (Ct et Yt) ; k'=0 et r=0. (G-g')+(K-k')+r ? (g'-1) (3-2)+(2-0)+0>2-1 3 > 1	La 1 ^{ère} équation est sur-identifiée	Doubles Moindres Carrés (DMC)
2 ^{ème} équation	g'=2 (It et Yt) ; k'=1 (Yt-1) et r=0. (G-g')+(K-k')+r? (g'-1) (3-2)+(2-1)+0>2-1 2 > 1	La 2 ^{ème} équation est sur-identifiée	Doubles Moindres Carrés/DMC

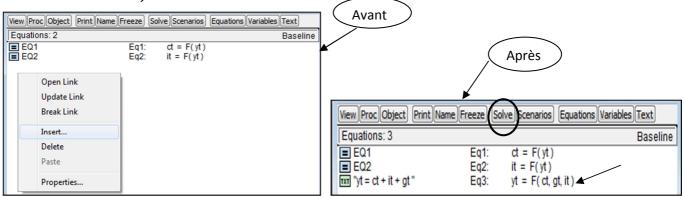
3) Estimation:

Nous estimons ces deux équations (séparément et on les enregistre dans le workfile) par la méthode de doubles moindres carrés/DMC. Sur EViews (6), taper :

Dependent Variable: CT Method: Two-Stage Lea Date: 09/07/14 Time: 1 Sample (adjusted): 196 Included observations: i Instrument list: YT(-1) 0	st Squares 13:10 8 1987 20 after adjustr	nents			Dependent Variable: IT Method: Two-Stage Least Squares Date: 09/07/14 Time: 13:10 Sample (adjusted): 1968 1987 Included observations: 20 after adjustments Instrument list: YT(-1) GT				
Variable Coefficient Std. Error t-Statistic Prob.				Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C YT	252.7037 0.783710	1072.934 0.004367	0.235526 179.4807	0.8165 0.0000	C YT YT(-1)	-3178.841 0.478260 -0.351815	3083.016 0.078715 0.126089	-1.031082 6.075804 -2.790207	0.3169 0.0000 0.0126
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.999446 0.999416 4232.542 32213.32 0.000000	S.D. dependent var Sum squared resid 3.2 Durbin-Watson stat 1.9		90969.04 175079.7 3.22E+08 1.982982 5.32E+09	R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.961953 0.957477 12142.27 221.6616 0.000000	Mean depende S.D. depende Sum squared Durbin-Watsd Second-Stag	dent var ent var d resid on stat	26592.52 58882.71 2.51E+09 1.472678 5.15E+08

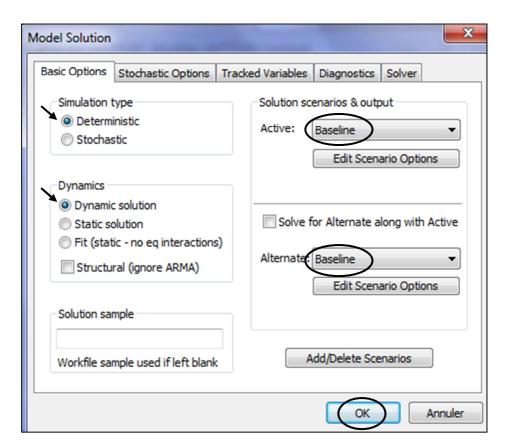
4) Simulations/Scénarios

Travail demandé (les questions sont ordonnées selon les étapes à suivre pour une simulation):


- Trouver la solution initiale du modèle statique ou Résoudre le modèle (obtenir le Baseline ou solution de base);
- Analyser ou élaborer le 1^{er} Scénario : Si « Gt » augmente de « 1% », comment réagiront Ct et It? (autrement dit, quel est l'impact dans tout le système si Gt varie de 1% positivement?);
- Analyser le 2^{ème} Scénario: Si « Yt-1 » augmente de « 2% », toutes choses restant égales par ailleurs (c.à.d. bloquer le modèle), comment réagira le système (tenir compte des canaux de transmission dans l'analyse)?
- Analyser le 3^{ème} Scénario : Si « Gt » augmente de « 1% », l<u>ever l'hypothèse</u> « ceteris paribus » (c.à.d. ne pas bloquer le modèle), et que « Yt-1 » augmente en même temps de 1,5%, comment réagira le système?
- Analyser le 4^{ème} Scénario: Si « Gt » baisse de « 3% », toutes choses restant égales par ailleurs (c.à.d. bloquer le modèle), comment réagira le système? Pour ce scénario, envisager une simulation hors échantillon (sur 1 an, c.à.d. « 1988 »).

a) Recherche de la solution initiale (Baseline)

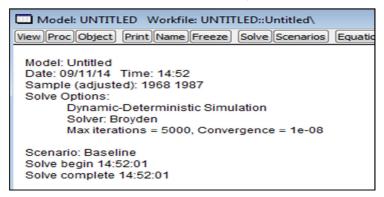
Après avoir estimé nos deux équations séparément et les avoir enregistré dans le Workfile/fichier de travail, procéder comme suit :


o Sélectionner les équations enregistrées dans le Workfile→Clic droit→Open as Model \rightarrow Ok \rightarrow un espace s'ouvre (nous l'appelons « **Boîte A** »);

o Dans l'espace « Boite A », faire clic droit→insert (pour insérer la relation d'équilibre): Yt=Ct+It+Gt→ok (la boîte de dialogue A ci-dessous est illustrative):

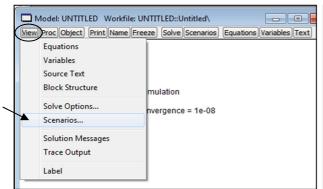


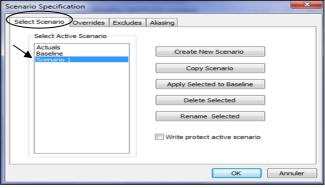
Dans la boîte de dialogue ci-haut (à droite), cliquer sur « **Solve** » pour résoudre le modèle (simulation statique ou solution de base/Baseline)→la boîte de dialogue ci-dessous apparaît:

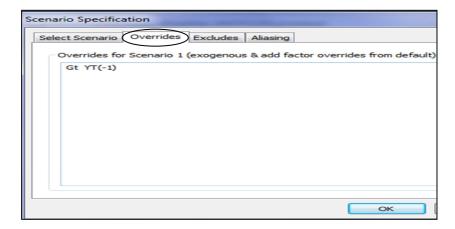

Cliquer sur l'onglet « **Solver** » pour préciser ce qui suit (à décocher) :

Ensuite, cliquer sur « Ok » pour obtenir la solution de base. En fait, les solutions de base sont des variables générées par EViews avec des indices « o »; dans notre cas, ces variables sont : Ct o , It o et Yt o. L'on notera que le modèle est soluble (équations juste-identifiées ou sur-identifiées) s'il passe le test de convergence avec succès (assurance pour la solution mathématique du modèle). Donc, le message

suivant devra s'afficher (il indique le nombre d'itérations, le type de simulation et l'algorithme utilisés, aussi les dates de début et de fin d'itérations/résolution):

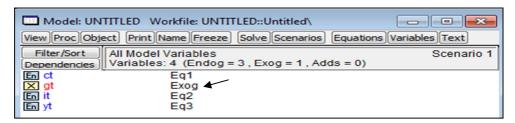

b) Elaboration du 1^{er} Scénario et analyses: si « Gt augmente de 1%, ceteris paribus »


Schéma: Selon le modèle, $Gt \rightarrow Yt \rightarrow Ct$ et $Gt \rightarrow Yt \rightarrow It$

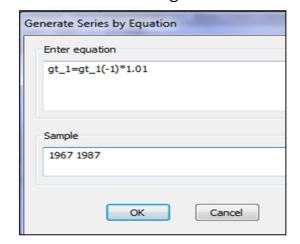

Note: Bouger une variable exogène (Gt), ceteris paribus signifie ignorer les effets d'autres variables exogènes (Yt-1) ou bloquer les autres variables exogènes (Yt-1 considérée constante dont la dérivée est nulle).

_Etapes à suivre :

Dans « **Boîte A** », procéder comme suit (suivre): View/Scenarios... → **Scenario** 1→dans « scenario Overrids », préciser les variables exogènes du modèle : Gt et Yt-1. Les figures ci-dessous sont illustratives :

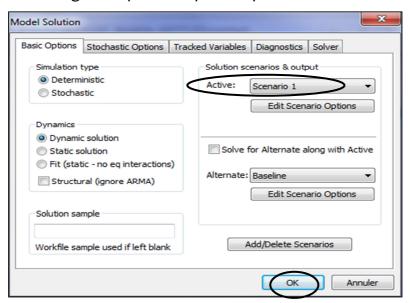


Dans « Boîte A », cliquer sur l'onglet « Variables » pour vérifier que l'on ne s'est pas trompé dans la déclaration des variables exogènes. Les informations suivantes s'affichent:

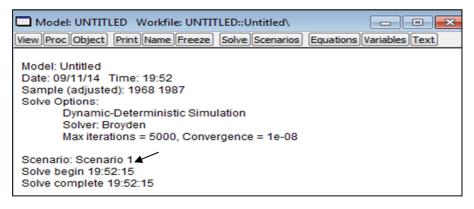

En rouge, les variables exogènes déclarées, et en bleu, les variables endogènes du modèle. Dans notre cas, « Gt » seulement apparaît comme exogène, alors que « Yt-1 » a été également déclarée exogène. L'on notera ainsi que les variables décalées n'apparaissent pas dans la boîte A, à moins de les générer sous un autre nom à des fins de simulation.

Simulation (Gt 1 1% en 1987):

- o La simulation est similaire à la prévision dans l'échantillon (bloquer est nécessaire, mais l'on peut ouvrir/lever l'hypothèse ceteris paribus) comme en dehors de l'échantillon (blocage automatique, soit toujours bloquer). Ici, nous faisons une simulation dans l'échantillon (1987);
- o L'on devra bouger « Gt » et bloquer « Yt-1 » pour voir la réaction du modèle (toutes les variables endogènes);
- o Deux possibilités pour simuler : rester sur la barre de commande ou aller dans : Quik/Generate Series... → Dans la boîte de dialogue qui s'affiche, saisir à tour de rôle (cliquer sur « ok »et reprendre le processus pour donner d'autres instructions), avec « Gt 1 » traduisant la variable du scénario 1 :


```
gt_1=gt \rightarrow sample : 1967 \ 1987 \rightarrow ok : définir le 1^{er} Scénario
gt_1=gt_1(-1)*1.01 \rightarrow sample : 1987 \ 1987 \rightarrow ok : Gt \uparrow 1\% \ en \ 1987 \ (ouvrir \ll Gt \gg)
ylag_1=yt(-1) \rightarrow sample : 1967 1987 \rightarrow ok : définir le 1<sup>er</sup> Scénario (bloquer « Yt-1 »)
ylag_1=@elem(ylag_1, 1986) \rightarrow sample: 1987 1987 \rightarrow ok: bloquer « Yt-1 »
(données 1986=1987 : Constance).
```

A titre illustratif, observons la boîte de dialogue ci-dessous :



Revenir à la « Boîte A », cliquer sur l'onglet « **Solve** »→[Active : **Scenario 1**], la boîte de dialogue ci-après complète la procédure¹:

Résultats: Après avoir cliqué sur « Ok » (Cfr figure ci-dessus), le message suivant s'affiche (indiquant que la simulation a réussi)

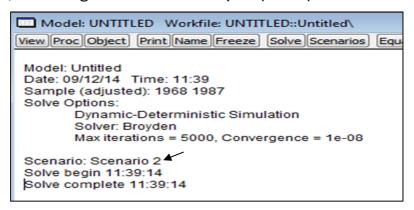
Et nous pouvons observer ce qui suit (Cfr données sur Workfile):

Période	Gt_1	Yt_1	It_1	Ct_1
1986	38.600	7.398.695	1.561.413	5.798.683
1987	38.986	9.798.528	2.080.087	7.679.455
%	1%	32.4%	33.2%	32.4%

Analyses:

¹ La simulation est différente du Scénario du fait que celui-ci cherche à saisir l'évolution d'une variable compatible avec une trajectoire imposée à d'autres variables.

c) Elaboration du 2ème Scénario et Analyses: « Yt-1 » augmente de « 2% », ceteris paribus


Schéma: Selon le modèle, Yt-1→It→Yt→Ct→<mark>Yt→It</mark> **Note**: Cette fois ci, on va bouger Yt-1 et bloquer Gt.

_Etapes à suivre :

- Dans « Boîte A », pour créer un nouveau scénario, procéder comme suit (suivre): View/Scenarios... → Create New Scenario → Sélectionner « **Scenario 2** ».
- Simulation (Yt-1 ↑ 2% en 1987) :
 - o Ici, nous faisons une simulation dans l'échantillon (1987);
 - o L'on devra bouger « Yt-1 » et bloquer « Gt » pour voir la réaction du modèle (toutes les variables endogènes);
 - Suivre: Quik/Generate Series... → Dans la boîte de dialogue qui s'affiche, saisir à tour de rôle, avec « YLAG 2 » traduisant la variable du scénario 2 :

```
ylag 2=yt(-1) → sample : 1967 1987 → ok : définir le 2^{ime} Scénario
ylag_2=ylag_2(-1)*1.02 \rightarrow sample: 1987 \ 1987 \rightarrow ok: Yt-1 \uparrow 2\% \ en \ 1987
gt_2=gt \rightarrow sample : 1967 1987 \rightarrow ok : bloquer «Gt »
gt_2=@elem(gt_2, 1986) \rightarrow sample : 1987 \ 1987 \rightarrow ok : bloquer «Gt » pour 1987.
```

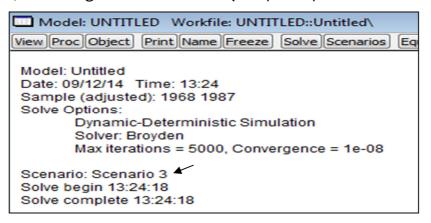
o Revenir à la « Boîte A », cliquer sur l'onglet « **Solve** »→[Active : **Scenario** $2 \rightarrow Ok$, le message suivant s'affiche (indiquant que la simulation a réussi):

Et nous pouvons observer ce qui suit (Cfr données sur Workfile):

Période	Ylag_2	Yt_2	It_2	Ct_2
1986	358.800	7.398.695	1.561.413	5.798.683
1987	365.976	9.621.355	1.995.352	7.540.603
%	2%	30.04%	27.79%	30.04%

Analyses:

d) Elaboration du 3ème Scénario et Analyses : « Gt» augmente de « 1% » et « Yt-1 » augmente en même temps de 1,5% (en 1987)


Schéma: Pour rappel, selon le modèle: $Yt-1 \rightarrow It \rightarrow Yt \rightarrow Ct$ et $Gt \rightarrow Yt \rightarrow It$ _Note : Cette fois ci, on va bouger Yt-1 et Gt en même temps.

_Etapes à suivre :

- Dans « **Boîte A** », procéder comme suit (suivre) : View/Scenarios... → Create New Scenario→Sélectionner « Scenario 3 ».
- Simulation (Yt-1 ↑ 1,5% et Gt 1% en 1987):
 - o Ici, nous faisons une simulation dans l'échantillon (1987);
 - o L'on devra bouger, en même temps, « Yt-1 » et « Gt » pour voir la réaction du modèle (toutes les variables endogènes);
 - Suivre: Quik/Generate Series... → Dans la boîte de dialogue qui s'affiche, saisir à tour de rôle, avec « YLAG 3 » et « Gt 3 » traduisant les variables du scénario 3:

```
y_{13}=y_{11} \rightarrow sample: 1967\ 1987 \rightarrow ok: définir le 3^{eme} Scénario sur « Yt-1 »
ylag_3=ylag_3(-1)*1.015 \rightarrow sample: 1987 \ 1987 \rightarrow ok: Yt-1 \uparrow 1,5\% \ en \ 1987
gt_3=gt \rightarrow sample : 1967 1987 \rightarrow ok : définir le 3<sup>ème</sup> Scénario sur «Gt »
gt_3= gt_3(-1)*1.01 \rightarrow sample : 1987 1987 \rightarrow ok : Gt \uparrow 1\% en 1987.
```

o Revenir à la « Boîte A », cliquer sur l'onglet « | Solve | »→[Active : Scenario 3]→Ok, le message suivant s'affiche (indiquant que la simulation a réussi):

Et nous pouvons observer ce qui suit (Cfr données sur Workfile):

Période	Gt_3	Ylag_3	Yt_3	It_3	Ct_3
1986	38.600	358.800	7.398.695	1.561.413	5.798.683
1987	38.986	364.182	9.621.355	1.995.352	7.540.603
%	1%	1.5%	30.04%	27.79%	30.04%

_Analyses :

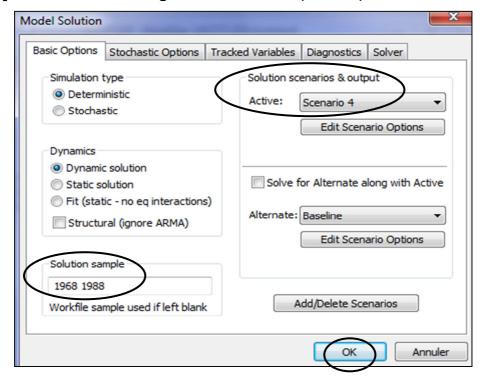
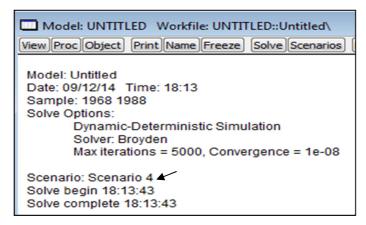

e) Elaboration du 4ème Scénario et Analyses: «Gt» baisse de « 3% », ceteris paribus, mais prévision/simulation hors échantillon (en 1988)

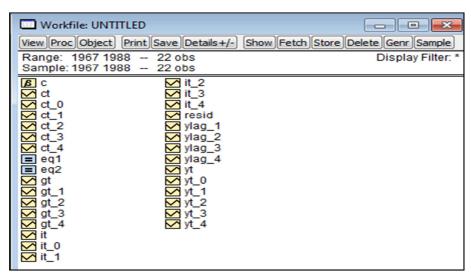
Schéma: Pour rappel, selon le modèle: $Gt \rightarrow Yt \rightarrow It$ et $Gt \rightarrow Yt \rightarrow Ct$ _**Note** : on bouge « Gt », « Yt-1 » reste constante (bloquée). _Etapes à suivre :

- Dans « **Boîte A** », procéder comme suit (suivre): View/Scenarios... →Create New Scenario→Sélectionner « Scenario 4 ».
- Simulation (Gt ↓ 3% en 1988, ceteris paribus):
 - o Ici, nous faisons une simulation hors échantillon (1988);
 - o L'on devra bouger seulement « Gt » pour voir la réaction du modèle (toutes les variables endogènes) en dehors de l'échantillon;
 - o Suivre:
 - o <u>Cfr Workfile</u>: Proc→Structure/Resize Current Page... → dans « End date », indiquer « 1988 »→Ok→Yes : Elargir l'horison temporel jusqu'à 1988 ;
 - o <u>Cfr Barre des menus</u>: Quik/Generate Series... → Dans la boîte de dialogue qui s'affiche, saisir à tour de rôle, avec « Gt 4 » traduisant la variable du scénario 4:


```
ylag_4=yt(-1) \rightarrow sample: 1967 1988 \rightarrow ok: bloquer « Yt-1 »
ylag_4 = @elem(ylag_4, 1987) \rightarrow sample : 1988 1988 \rightarrow ok : bloquer "Yt-1" en 1988
gt_4=gt \rightarrow sample : 1967 1988 \rightarrow ok : définir le 4<sup>ème</sup> Scénario
gt 4=gt\ 4(-1)*0.97 \rightarrow sample: 1988\ 1988 \rightarrow ok: Gt \downarrow 3\% \ en\ 1988
```

o Revenir à la « **Boîte A** », cliquer sur l'onglet « | **Solve** | »→[Active : **Scenario** 4]→... la boîte de dialogue ci-dessous complète la procédure :

→ Cliquer sur « Ok », le message suivant s'affiche (indiquant que la simulation a réussi):



Et nous pouvons observer ce qui suit (Cfr données sur Workfile):

Période	Gt_4	Yt_4	It_4	Ct_4
1987	85.400	9.621.355	1.995.352	7.540.603
1988	82.838	12.616.090	2.645.645	9.887.602
%	-3%	31.13%	32.59%	31.12%

_Analyses:

Annexe: Paysage relatif à notre Workfile

CHAP V MODELES DE PANEL

Modèles :

Modèle de départ (général): Modèle o

$$I_{it} = c + a_i + b_1 P_{it} + e_{it} \dots [5.1]$$

 $(1 \le i \le N; 1 \le t \le T; N = 3 \text{ firmes et } T = 10 \text{ années (de 1982 à 1991, les})$ années 1992 à 1995 sont à prévoir).

Avec:

- o lit: Dépenses d'investissement pour la firme i au temps t;
- o Pit: Profits réalisés par la firme i au temps t;
- Modèle sans effets spécifiques et aléatoires: Modèle 1

$$I_{it} = c + b_1 P_{it} + e_{it} \dots [5.2]$$

Sous l'hypothèse que : $a_1=a_2=a_3=\cdots=a_n=0$ (2 paramètres à estimer).

❖ Modèle à effets fixes : Modèle 2

$$I_{it} = a_i + b_1 P_{it} + e_{it} \dots [5.3]$$

Sous l'hypothèse que les coefficients sont identiques entre les firmes (sauf pour la constante). NB: 4 paramètres sont à estimer (avec « a_i »: les paramètres fixes non aléatoires).

Modèle à effets aléatoires : Modèle 3

$$I_{it} = \mu + b_1 P_{it} + a_i + e_{it} \dots \dots [5.4]$$

Posons : $e_{it} = a_i + v_{it}$, ainsi « 5.4 » s'écrira :

$$I_{it} = \mu + b_1 P_{it} + e_{it} \dots \dots [5.4]'$$

Avec : a_i et v_{it} , respectivement l'effet spécifique et l'effet résiduel. NB : 5 paramètres sont à estimer ici.

Travail demandé:

- Estimer le modèle à effets fixes (Modèle 2), le modèle à effets aléatoires (Modèle 3) et le modèle sans effets (Modèle 1);
- Effectuer les différents tests de spécification sur données de panel (test de Fisher/Likelihood Ratio Test; test de Breusch et Pagan; et test de Hausman);
- Effectuer les différents tests de stationnarité/racine unitaire sur données de panel (test de Im-Pesaran-Shin et celui de Levin-lin) et ceux de cointégration sur données de panel (test de Pedroni);
- Partant des modèles estimés (Modèle 2 et Modèle 3), faire une prévision à horizon de 4 ans;

- Estimer un modèle à correction d'erreur à effets fixes ;
- Estimer un panel dynamique;
- Effectuer les tests post-estimation sur panel (inférence Statistique);
- Estimer un modèle de panel à effets between et un modèle à effets aléatoires avec l'estimateur ml (maximum de vraisemblance);
- Estimer un panel corrigé d'hypothèses violées.

a) Estimation du modèle à effets fixes (Modèle 2), du modèle à effets aléatoires (Modèle 3) et du modèle sans effets

_Extrait des données affichées sur Eviews (à gauche) et sur Stata (à droite):

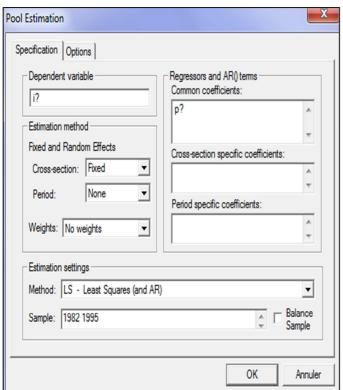
,		
FIRME1-1983	26.30000	25.69000
FIRME1-1984	2.620000	5.480000
FIRME1-1985	14.94000	13.79000
FIRME1-1986	15.80000	15.41000
FIRME1-1987	12.20000	12.59000
FIRME1-1988	14.93000	16.64000
FIRME1-1989	29.82000	26.45000
FIRME1-1990	20.32000	19.64000
FIRME1-1991	4.770000	5.430000
FIRME1-1992	NA	7.000000
FIRME1-1993	NA	10.00000
FIRME1-1994	NA	12.00000
FIRME1-1995	NA	10.00000
FIRME2-1982	20.30000	22.93000
FIRME2-1983	17.47000	17.96000
FIRME2-1984	9.310000	9.160000
FIRME2-1985	18.01000	18.73000
FIRME2-1986	7.630000	11.31000
FIRME2-1987	19.84000	21.15000

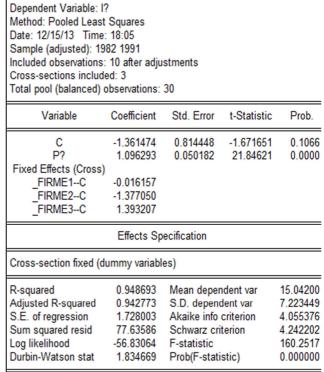
	firme	annee	I	P
1	1	1982	13.32	12.85
2	1	1983	26.3	25.69
3	1	1984	2.62	5.48
4	1	1985	14.94	13.79
5	1	1986	15.8	15.41
6	1	1987	12.2	12.59
7	1	1988	14.93	16.64
8	1	1989	29.82	26.45
9	1	1990	20.32	19.64
10	1	1991	4.77	5.43
11	1	1992		7
12	1	1993		10
13	1	1994		12
14	1	1995		10
15	2	1982	20.3	22.93
16	2	1983	17.47	17.96
17	2	1984	9.31	9.16
18	2	1985	18.01	18.73
19	2	1986	7.63	11.31

Estimation du modèle à effets fixes (Modèle 2)

Sur Stata, après avoir déclaré les données en panel à stata comme suit (le message en bas confirme la déclaration): tsset firme annee

```
panel variable: firme, 1 to 3
 time variable: annee, 1982 to 1995
```


faire:xtreg I P, fe

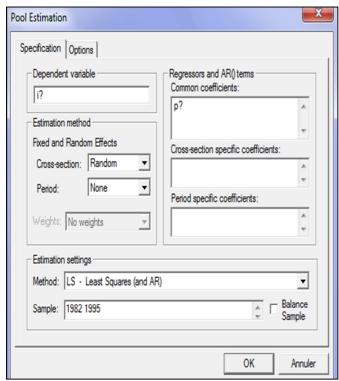

Fixed-effects	(within) reg	ression		Number o	f obs	=	30	
Group variable	e (i): firme			Number o	f group	s =	3	
	= 0.9483 $n = 0.8629$ $n = 0.9247$			Obs per		avg =	10 10.0 10	
corr(u_i, Xb)	= -0.2295						477.26 0.0000	
I	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]	
		.0501823 .8144482						
sigma_e	1.3851987 1.728003 .39120601	(fraction o	of varian	ce due to	u_i)			
F test that al	ll u_i=0:	F(2, 26) =	6.09		Pr	ob > 1	F = 0.0068	

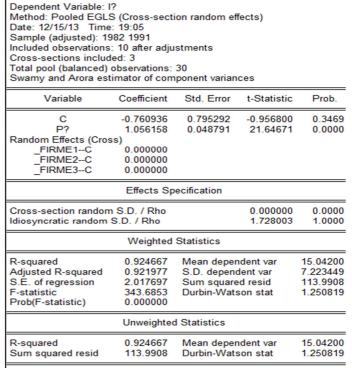
_Sur Eviews, faire : create a 1982 1995 , ensuite suivre le chemin :

Object/New Object.../Pool \rightarrow (écrire les noms des firmes en colonne, précédés chacun d'une sous barre) \rightarrow Sheet \rightarrow (saisir les noms des variables suivi d'un « ? » chacun) \rightarrow (copier et coller les observations) \rightarrow Estimate \rightarrow (cross section=Fixed, period=none) \rightarrow (Method: LS..) \rightarrow (Options: Ordinary) \rightarrow ok.

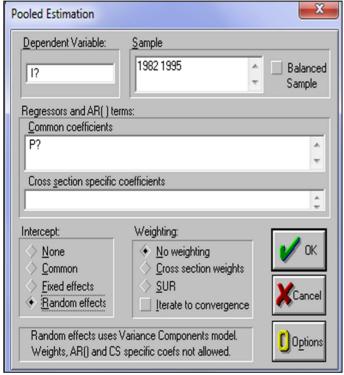
Dans l'output, cliquer sur : View/Representations :

```
I_FIRME1 = -0.0161567914 - 1.361473563 + 1.096293457*P_FIRME1
I_FIRME2 = -1.377049788 - 1.361473563 + 1.096293457*P_FIRME2
I_FIRME3 = 1.39320658 - 1.361473563 + 1.096293457*P_FIRME3
```


Estimation du modèle à effets aléatoires (Modèle 3)


_Sur Stata, faire:xtreg I P, re

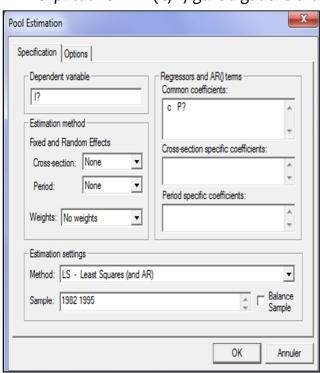
Random-effects Group variable	_	.on			of obs of groups	
	= 0.9483 $n = 0.8629$ $n = 0.9247$			Obs per	group: min avg max	= 10.0
Random effects corr(u_i, X)	-				i2(1) chi2	
I	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
P _cons					.944498 -2.580998	
sigma_u sigma_e rho	1.728003	(fraction	of varian	nce due t	o u_i)	



Sur Eviews, suivre: Object/New Object.../Pool \rightarrow (écrire les noms des individus en colonne, précédés chacun d'une sous barre) → Sheet → (saisir les noms des variables suivi d'un « ? » chacun) \rightarrow (copier et coller les observations) \rightarrow **Estimate** \rightarrow $(cross\ section=random,\ period=none\) \rightarrow (Method:\ LS..) \rightarrow (Options:\ Ordinary) \rightarrow$ ok.

Les résultats (figures) précédents sont produits sur Eviews 5. Sur Eviews 3, les résultats (figures) changent comme illustré ci-dessous :

Dependent Variable: I? Method: GLS (Variance Components) Date: 12/15/13 Time: 19:00 Sample: 1982 1991 Included observations: 10 Number of cross-sections used: 3 Total panel (balanced) observations: 30							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C P? Random Effects	-0.179589 1.017305	0.991966 0.063358	-0.181043 16.05645	0.8576 0.0000			
_FIRME1C _FIRME2C _FIRME3C	-0.019690 1.357057 -1.337367						
G	LS Transforme	d Regression					
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.901299 0.897774 2.309539 1.025955	Mean depen S.D. depend Sum square	15.04200 7.223449 149.3512				
Unweighted	Statistics inc	luding Randor	m Effects				
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.855189 0.850017 2.797470 0.699275	Mean depen S.D. depend Sum square	lent var	15.04200 7.223449 219.1235			


Dans l'output (Cfr Eviews 5), cliquer sur : View/Representations :

```
I FIRME1 = 0 - 0.7609358021 + 1.056157713*P FIRME1
I FIRME2 = 0 - 0.7609358021 + 1.056157713*P FIRME2
I\_FIRME3 = 0 - 0.7609358021 + 1.056157713*P\_FIRME3
```

Dependent Variable: 1?

Estimation du modèle sans effets (Modèle 1)

Sur Eviews, Cfr la procédure pour estimer le modèle à effets fixes ou celui à effets aléatoires. Seulement: sélectionner « None » dans Cross section et dans Period. Aussi, dans common coefficient, ajouter la constante « c » en plus de la variable explicative « P » (Cfr figure à gauche ci-dessous):

Method: Pooled Least Squares Date: 12/16/13 Time: 21:43 Sample (adjusted): 1982 1991 Included observations: 10 after adjustments Cross-sections included: 3 Total pool (balanced) observations: 30							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C	-0.760936	0.928620	-0.819426	0.4195			
P?	1.056158	0.056970	18.53875	0.0000			
R-squared	0.924667	Mean depen	15.04200				
Adjusted R-squared	0.921977	S.D. depend	7.223449				
S.E. of regression	2.017697	Akaike info	4.306131				
Sum squared resid	113.9908	Schwarz cri	4.399544				
Log likelihood	-62.59196	F-statistic	343.6853				
Durbin-Watson stat	1.250819	Prob(F-stati	0.000000				

Dans l'output, cliquer sur : View/Representations :

```
I FIRME1 = -0.7609358021 + 1.056157713*P FIRME1
I FIRME2 = -0.7609358021 + 1.056157713*P FIRME2
I\_FIRME3 = -0.7609358021 + 1.056157713*P\_FIRME3
```

_Sur Stata, taper : reg I P

Source	SS	df	MS		Number of obs	= 30 = 343.69
Model Residual	1399.17728 113.990771	1 1399 28 4.07			Prob > F R-squared Adj R-squared	= 0.0000 = 0.9247
Total	1513.16805	29 52.1	.782087		Root MSE	
I		Std. Err.		P> t		Interval]
P _cons	1.056158 7609357	.0569703	18.54 -0.82	0.000	.9394594	1.172856 1.141256

- b) Tests de spécification sur données de panel (test de Fisher/Likelihood Ratio <u>Test : test de Breusch et Pagan : et test de Hausman)</u>
- ▶ Test de Fisher ou Likelihood Ratio Test : test de presence d'effets fixes (MCO vs Within)

Soient les deux modèles :

Modèle 1 :
$$I_{it} = c + b_1 P_{it} + e_{it} \dots [5.2]$$

Modèle 2 : $I_{it} = a_i + b_1 P_{it} + e_{it} \dots [5.3]$

Contrainte à tester : $a_1 = a_2 = a_3 = \cdots = a_n = 0$.

Les hypothèses du test sont :

Ho : Absence d'effets (prob > 5% ou $F_c < F_t$) : retenir le Modèle 1

H1: Présence d'effets fixes (prob < 5% ou $F_c > F_t$): retenir le Modèle 2

Sur Stata, la statistique de Fisher est automatiquement calculée après estimation du modèle à effets fixes (commande: xtreg I P, fe), il suffit de lire la dernière ligne:

F test that all
$$u_i=0$$
: $F(2, 26) = 6.09$ Prob > F = 0.0068

_Sur Eviews 6, après avoir estimé le modèle à effets fixes (dans l'output), cliquer sur: View → Fixed/Random effects Testing → Redundant Fixed Effects-**Likelihood Ratio:**

10.							
Redundant Fixed Effect Pool: PANJ Test cross-section fixed							
Effects Test		Statistic	d.f.	Prob.			
Cross-section F Cross-section Chi-squ	6.087574 (2,26) 11.522646 2		0.0068 0.0031				
Cross-section fixed effects test equation: Dependent Variable: I? Method: Panel Least Squares Date: 12/15/13 Time: 19:35 Sample (adjusted): 1982 1991 Included observations: 10 after adjustments Cross-sections included: 3 Total pool (balanced) observations: 30							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C P?	-0.760936 1.056158	0.928620 0.056970	-0.819426 18.53875	0.4195 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.924667 0.921977 2.017697 113.9908 -62.59196 343.6853 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		15.04200 7.223449 4.306131 4.399544 4.336014 1.250819			

Commentaire: Parce que « prob < 5% », nous acceptons l'hypothèse alternative selon laquelle il y a présence d'effets fixes dans le modèle (retenir le Modèle 2).

▶ Test de Breusch et Pagan (LM-test): test de présence d'effets aléatoires (MCO vs

Soient les deux modèles :

Modèle 1 :
$$I_{it} = c + b_1 P_{it} + e_{it} \dots [5.2]$$

Modèle 3 : $I_{it} = \mu + b_1 P_{it} + a_i + e_{it} \dots [5.4]$

Les hypothèses du test sont :

Ho : Absence d'effets (prob > 5% ou $F_c < F_t$) : retenir le Modèle 1

H1: Présence d'effets aléatoires (prob < 5% ou $F_c > F_t$): retenir le Modèle 3

Sur Stata, après estimation du modèle à effets aléatoires, faire : xttest0

```
Breusch and Pagan Lagrangian multiplier test for random effects:
         I[firme,t] = Xb + u[firme] + e[firme,t]
         Estimated results:
                                     Var sd = sqrt(Var)
                         I | 52.17821 7.223449
e | 2.985994 1.728003
u | 0 0
        Test: Var(u) = 0

chi2(1) = 6.81

Prob > chi2 = 0.0091
```

Sur Eviews (3, 4, 5, 6 et 7), ce test n'est pas programmé. Nous concluons en faveur du modèle à effets aléatoires (accepter H1 et retenir le Modèle 3).

Test de Hausman: test de présence d'effets aléatoires (MCG vs Within)

Les hypothèses du test sont :

Ho: Présence d'effets aléatoires (prob > 5% ou $H < \chi_k^2$) H1: Présence d'effets fixes (prob < 5% ou $H > \chi_k^2$)

_Sur Stata, faire:

```
---- Coefficients ----
              --- Coefficients ----
(b) (B) (b-B) sqrt(diag(V_b-V_B))
re . Difference S.E.
                                       -.0401357 .0269693
      P | 1.056158 1.096293
                 b = consistent under Ho and Ha; obtained from xtreg
       B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
             chi2(1) = (b-B)'[(V_b-V_B)^{-1}](b-B)
                              2.21
                          0.1367
           Prob>chi2 =
```

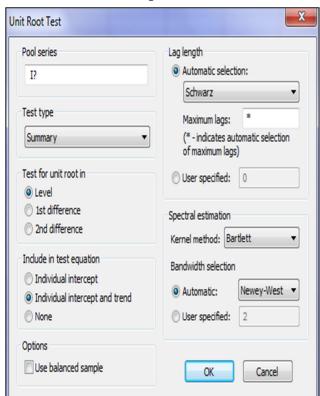

_Sur EViews 6, après avoir estimé le modèle à effets fixes (dans l'output), cliquer sur: View → Fixed/Random effects Testing → Correlated Random Effects-**Hausman Test:**

Correlated Random Effects - Hausman Test Pool: PANJ Test cross-section random effects							
Test Summary	est Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.						
Cross-section random		11.695490	1	0.0006			
** WARNING: estimated	d cross-section	random effect	s variance is a	zero.			
Cross-section random	effects test con	nparisons:					
Variable	Fixed	Random	Var(Diff.)	Prob.			
P?	1.096293	1.056158	0.000138	0.0006			
Sample (adjusted): 1982 1991 Included observations: 10 after adjustments Cross-sections included: 3 Total pool (balanced) observations: 30 Variable Coefficient Std. Error t-Statistic Prob.							
C P?	-1.361474 1.096293	0.814448 0.050182	-1.671651 21.84621	0.1066 0.0000			
	Effects Spe	ecification					
Cross-section fixed (dummy variables)							
Cross-section fixed (du	,)					

Commentaire : Les résultats du test d'Hausman diffèrent selon qu'on recourt à Stata 9 (le modèle retenu est celui à effets aléatoires, car: « prob > 5% ») ou à Eviews 6 (le modèle retenu est celui à effets fixes, car: « prob < 5% »). Nous retenons le modèle à effets fixes (il offre des paramètres plus significatifs).

- c) <u>Tests de stationnarité/racine unitaire sur données de panel et ceux de</u> cointégration sur données de panel
- ▶ Tests de stationnarité/racine unitaire sur données de panel (test de Im-Pesaran-Shin (1997), celui de Levin-lin (1993), de Hadri, d'ADF, etc.)

Les hypothèses des tests sont :


Ho: Présence de racine unitaire/Série non stationnaire (prob > 5%)

H1: Absence de racine unitaire/Série stationnaire (prob < 5%)

_Sur Stata (les commandes sont à télécharger : modules complémentaires).

_Sur **Eviews 6,** dans l'output des données, cliquer sur: View/Unit Root Test...: (à gauche: la suite de la procédure et, à droite: les résultats du test). Les résultats suivants concernent « I » (avec trend and intercept) et « P » [avec trend and intercept—Cfr EViews 5.1 (le test de « Hadri » est intégré), et sans trend ni intercept sur EViews 6.1]: les variables « I et P » sont stationnaires.

Pool unit root test: Summary

Series: I_FIRME1, I_FIRME2, I_FIRME3

Date: 12/15/13 Time: 20:45

Sample: 1982 1995

Exogenous variables: Individual effects, individual linear trends

Automatic selection of maximum lags

Automatic selection of lags based on SIC: 0 to 1 Newey-West bandwidth selection using Bartlett kernel

			Cross-	
Method	Statistic	Prob.**	sections	Obs
Null: Unit root (assumes comm	on unit root p	process)		
Levin, Lin & Chu t*	-5.13760	0.0000	3	25
Breitung t-stat	-0.92847	0.1766	3	22
Null: Unit root (assumes individual)	<u>d</u> ual unit root	process)		
Im, Pesaran and Shin W-stat	-1.05963	0.1447	3	25
ADF - Fisher Chi-square	14.7010	0.0227	3	25
PP - Fisher Chi-square	31.3318	0.0000	3	27

^{**} Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Pool unit root test: Summary Date: 12/25/13 Time: 12:35 Sample: 1982 1995

Series: P_FIRME1, P_FIRME2, P_FIRME3

Exogenous variables: Individual effects, individual linear trends

Automatic selection of maximum lags

Automatic selection of lags based on SIC: 0 to 1 Newey-West bandwidth selection using Bartlett kernel

			Cross-					
Method	Statistic	Prob.**	sections	Obs				
Null: Unit root (assumes comr	non unit roc	ot process)					
Levin, Lin & Chu t*	-5.54090	0.0000	3	37				
Breitung t-stat	-1.75913	0.0393	3	34				
Null: Unit root (assumes individual unit root process) Im, Pesaran and Shin W-stat -3.82076 0.0001 3 37								
ADF - Fisher Chi-square	24.1514	0.0005	3	37				
PP - Fisher Chi-square	42.5277	0.0000	3	39				
Null: No unit root (assumes or	mmon unit	root proce						

Hadri Z-stat	3.54004	3	42
		 	===

^{**} Probabilities for Fisher tests are computed using an asympotic Chi -square distribution. All other tests assume asymptotic normality.

Pool unit root test: Summary

Series: P_FIRME1, P_FIRME2, P_FIRME3

Date: 12/15/13 Time: 20:58 Sample: 1982 1995 Exogenous variables: None

Automatic selection of maximum lags

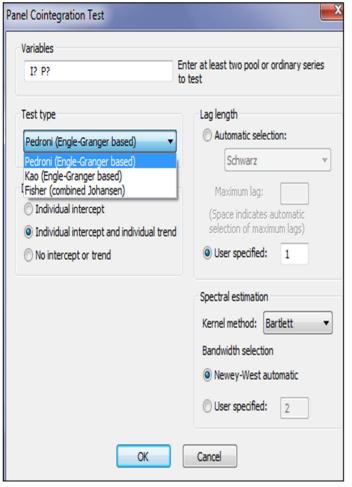
Automatic selection of lags based on SIC: 0 to 2 Newey-West bandwidth selection using Bartlett kernel

H-lb-c-d	01-11-11-	D b ++	Cross-	01-			
Method	Statistic	Prob.**	sections	Obs			
Null: Unit root (assumes comn	non unit root (process)					
Levin, Lin & Chu t*	-0.08291	0.4670	3	35			
Null: Unit root (assumes individual unit root process)							
ADF - Fisher Chi-square	4.22284	0.6465	3	35			
PP - Fisher Chi-square	8.03929	0.2352	3	39			

^{**} Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Tests de cointégration sur données de panel (test de Pedroni, celui de Kao et celui <u>de Fisher)</u>

Les hypothèses des tests sont :


Ho: Les séries ne sont pas cointégrées (prob > 5%)

H1: Les séries sont cointégrées (prob < 5%)

_Sur Stata (les commandes sont à télécharger : modules complémentaires).

Sur **Eviews 6**, dans l'output des données, cliquer sur : View/Cointegration

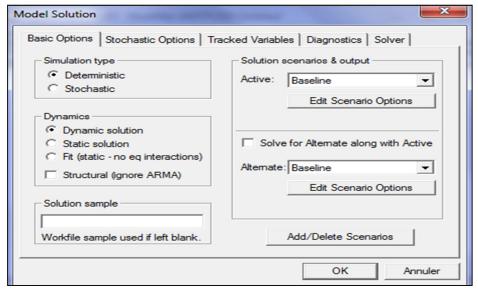
Test...: (à gauche: la suite de la procédure et, à droite: les résultats des tests).

Note: Selon les tests «Rho», «V» et « ADF », les variables « I et P » ne sont pas cointégrées (prob>5%), alors que le test de Philippe et Perron(PP) accepte l'hypothèse de cointégration (prob<5%) pour « I et P ».

Pedroni Residual Cointegration Test Series: I? P? Date: 12/16/13 Time: 22:46 Sample: 1982 1995 Included observations: 14 Cross-sections included: 3 Null Hypothesis: No cointegration Trend assumption: Deterministic intercept and trend Lag selection: fixed at 1 Newey-West bandwidth selection with Bartlett kernel						
Alternative hypoth	nesis: cor	nmon AR coe	fs. (within-di	mension) Weighted		
		Statistic	Prob.	Statistic	Prob.	
Panel v-Statistic	-	-1.047573	0.8526	-1.544106	0.9387	
Panel rho-Statis		0.516791	0.6973	0.278993	0.6099	
Panel PP-Statis		-1.105975	0.1344	-3.239651	0.0006	
Panel ADF-Stat		-0.197424	0.4217	-1.033363	0.1507	
Alternative hypoti	nesis: ind		efs. (between	n-dimension)		
	_	Statistic	Prob.			
Group rho-Stati		1.166881	0.8784			
Group PP-Statis		-2.927485	0.0017			
Group ADF-Stat	istic	-0.261599	0.3968			
Cross section sp						
Cross ID	AR(1)		HAC	Bandwidth	Obs	
_FIRME1	-0.370			8.00	9	
_FIRME2	0.263				9	
_FIRME3	0.152	3.722207	3.769092	1.00	9	
Augmented Dickey-Fuller results (parametric)						
Cross ID	AR(1)	Variance	Lag	Max lag	Obs	
_FIRME1	-0.811	0.955338	1	-	8	
_FIRME2	0.078	1.442996	1		8	
_FIRME3	0.002	3.955053	1		8	

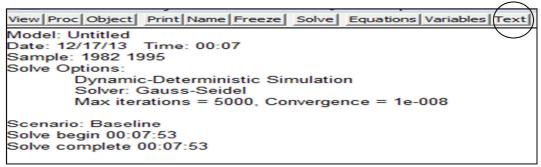
Ci-dessous, le résultat du tests de Kao (Engle-Granger based) et celui du test de Fisher (Combined Johansen) →(sélectionner ces tests dans « Test type » : Cfr figure à gauche ci-haut):

Durbin-Watson stat

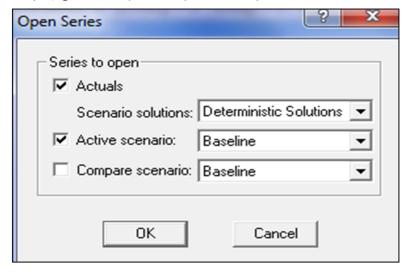

Kao Residual Cointegration Test Series: I? P? Date: 12/16/13 Time: 23:03 Sample: 1982 1995 Included observations: 14 Null Hypothesis: No cointegration Trend assumption: No deterministic trend Lag selection: fixed at 1 Newey-West bandwidth selection using Bartlett kernel t-Statistic Prob ADF -2.053427 0.0200 Residual variance 4.878552 **HAC** variance 1.223970 Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID?) Method: Panel Least Squares Date: 12/16/13 Time: 23:03 Sample (adjusted): 1984 1991 Included observations: 8 after adjustments Cross-sections included: 3 Total pool (balanced) observations: 24 Coefficient Variable Std. Error t-Statistic Prob. RESID?(-1) -1.0325200.307011 -3.3631370.0028 D(RESID?(-1)) 0.130770 0.217271 0.601877 0.5534 0.164603 R-squared 0.434755 Mean dependent var Adjusted R-squared 0.409062 2.322191 S.D. dependent var S.E. of regression 1.785127 Akaike info criterion 4.076512 Sum squared resid 70.10693 Schwarz criterion 4.174683 -46.91814 4.102556 Log likelihood Hannan-Quinn criter.

2.053960

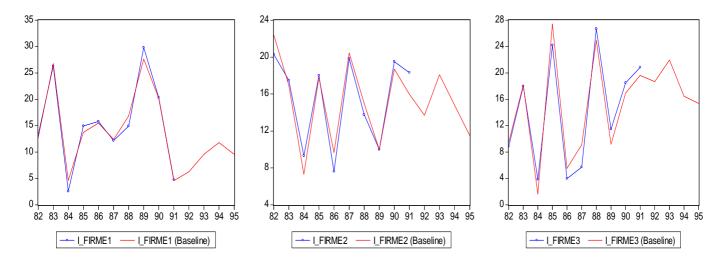
Johansen Fisher Panel Cointegration Test Series: I? P? Date: 12/16/13 Time: 23:07 Sample: 1982 1995 Included observations: 14 Trend assumption: Quadratic deterministic trend Lags interval (in first differences): 11 Unrestricted Cointegration Rank Test (Trace and Maximum Eigenvalue) Hypothesized Fisher Stat.* Fisher Stat.* Prob. (from max-eigen test) Prob. No. of CE(s) (from trace test) 0.0000 None 40.43 0.0000 36.01 At most 1 16.39 0.0118 0.0118 16.39 * Probabilities are computed using asymptotic Chi-square distribution. Individual cross section results Trace Test Max-Eign Test Prob.** Prob.** Cross Section Statistics Statistics Hypothesis of no cointegration 0.0016 23.3727 0.0055 FIRME1 28,1105 FIRME2 27.1105 0.0024 25.6634 0.0023 FIRME3 31,4697 0.0004 27.2910 0.0012 Hypothesis of at most 1 cointegration relationship 4.7378 0.0295 FIRME1 4.7378 0.0295 FIRME2 1.4471 0.2290 1.4471 0.2290 FIRME3 4.1787 0.0409 4.1787 0.0409 **MacKinnon-Haug-Michelis (1999) p-values


d) Prévision (à horizon de 4 ans) des modèles estimés (Modèle 2 et Modèle 3)

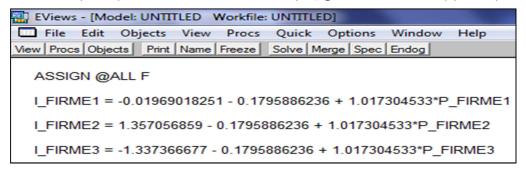

Sur EViews 5.1, dans l'output des résultats (relatif au modèle à effets fixes estimé), cliquer: Proc/Make Model/Solve: la boîte de dialogue ci-dessous apparaît (elle complète la procédure):



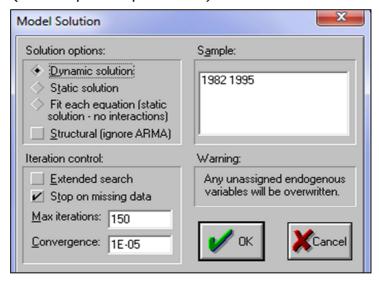
_Cliquer sur « OK » pour obtenir les résultats (affichages) ci-dessous selon les onglets choisis:



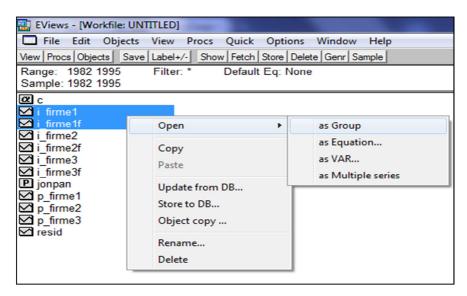
En double cliquant sur une rubrique (ex: i firme1), la boîte de dialogue suivante s'affiche (la figure complète la procédure):



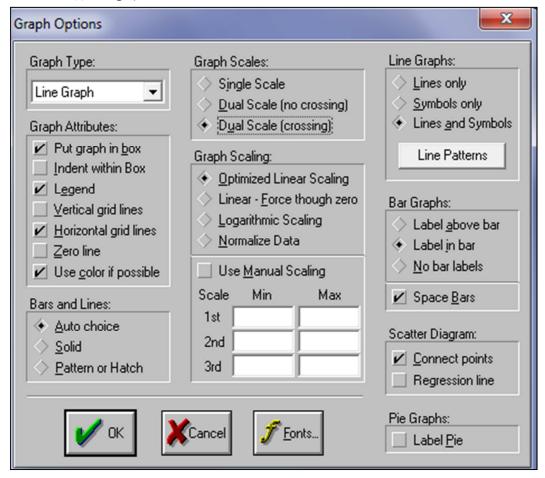
Cliquer sur « OK » pour afficher les données réelles et prévues de la rubrique (variable) choisie. Pour obtenir les graphiques ci-dessous, dans l'output des données affiché, cliquer sur : View/Graph/Line :



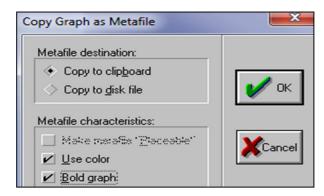
Sur EViews 3.1, dans l'output des résultats (relatif au <u>modèle à effets</u> aléatoires estimé), Cliquer: **Procs/Make Model** (la figure ci-dessous apparaît):



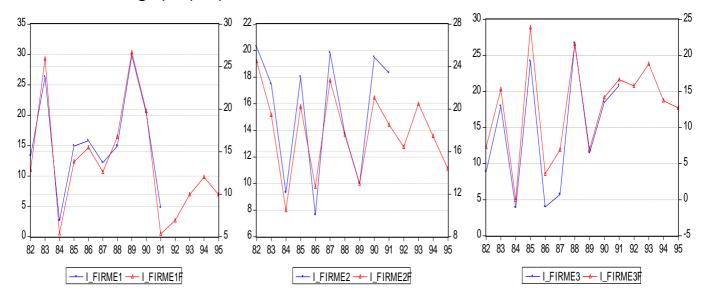
Ensuite, cliquer sur l'onglet | Solve | (Cfr figure précédente) pour afficher la boîte de dialogue qui suit (elle complète la procédure):



Cliquer sur « **OK** » pour produire les valeurs prédites (variables avec l'indice « f ») à côté des valeurs réelles. Dans l'espace de travail, sélectionner deux variables (réelles et prédites. Ex: i firme1 et i firme2) \rightarrow clic droit \rightarrow Open \rightarrow as Group.



Dans l'output des données ainsi obtenu, suivre: View/Graph/Line, pour représenter graphiquement les variables « i firme1 et i firme2 ». Dans l'output du graphique, cliquer: Objects/View Options/Options..., pour obtenir la boîte de dialogue qui suit (elle permet de modifier le graphique présentation/affichage):



Après avoir cliqué sur « OK », faites « CTRL+C », ce qui ouvre la boîte de dialogue cidessous (elle complète la procédure):

Cliquer sur « OK », ensuite « CTRL+V » dans Word, ce qui amène aux graphiques cidessous (reprendre la procédure pour d'autres variables si l'on tient à reproduire les deux autres graphiques):

Les valeurs réelles et prédites (prévues pour les années 1992 à 1995) à l'aide du modèle à effets aléatoires (sur EViews 3.1) se présentent comme suit :

obs	I_FIRME1	I_FIRME1F	I_FIRME2	I_FIRME2F	I_FIRME3	I_FIRME3F
1982	13.32000	12.87308	20.30000	24.50426	8.850000	7.282729
1983	26.30000	25.93527	17.47000	19.44826	17.96000	15.31943
1984	2.620000	5.375550	9.310000	10.49598	3.870000	-0.021518
1985	14.94000	13.82935	18.01000	20.23158	24.19000	23.88514
1986	15.80000	15.47738	7.630000	12.68318	3.990000	3.579740
1987	12.20000	12.60859	19.84000	22.69346	5.730000	6.926672
1988	14.93000	16.72867	13.76000	17.58659	26.68000	21.57586
1989	29.82000	26.70843	10.00000	12.98837	11.49000	6.987711
1990	20.32000	19.78058	19.51000	21.06577	18.49000	14.19023
1991	4.770000	5.324685	18.32000	18.53268	20.84000	16.66228
1992	NA	6.921853	NA	16.43704	NA	15.77722
1993	NA	9.973767	NA	20.50625	NA	18.82914
1994	NA	12.00838	NA	17.45434	NA	13.74261
1995	NA	9.973767	NA	14.40243	NA	12.72531

Les valeurs réelles et prédites (prévues pour les années 1992 à 1995) à l'aide du modèle à effets fixes (Sur EViews 5.1) se présentent comme suit :

Obs	I_FIRME1	I_FIRME1_0	I_FIRME2	I_FIRME2_0	I_FIRME3	I_FIRME3_0
1982	13.32000	12.70974	20.30000	22.39949	8.850000	9.514671
1983	26.30000	26.78615	17.47000	16.95091	17.96000	18.17539
1984	2.620000	4.630058	9.310000	7.303525	3.870000	1.643284
1985	14.94000	13.74026	18.01000	17.79505	24.19000	27.40618
1986	15.80000	15.51625	7.630000	9.660556	3.990000	5.524163
1987	12.20000	12.42470	19.84000	20.44808	5.730000	9.130969
1988	14.93000	16.86469	13.76000	14.94469	26.68000	24.91759
1989	29.82000	27.61933	10.00000	9.989444	11.49000	9.196746
1990	20.32000	20.15357	19.51000	18.69401	18.49000	16.95850
1991	4.770000	4.575243	18.32000	15.96424	20.84000	19.62250
1992	NA	6.296424	NA	13.70588	NA	18.66872
1993	NA	9.585304	NA	18.09105	NA	21.95760
1994	NA	11.77789	NA	14.80217	NA	16.47613
1995	NA	9.585304	NA	11.51329	NA	15.37984

Sur Stata, faire:

predict IF, xb
xtreg I P, re predict IA, xb

- Avec « IF »: Investissement prévu à l'aide du modèle à effets fixes;
- Avec « IA »: Investissement prévu à l'aide du modèle à effets aléatoires.

Années	Firmes	IF	IA
1992	1	6.312581	6.632168
1993	1	9.601461	9.800641
1994	1	11.79405	11.91296
1995	1	9.601461	9.800641
1992	2	15.08293	15.08143
1993	2	19.4681	19.30606
1994	2	16.17922	16.13759
1995	2	12.89034	12.96911
1992	3	<i>17.27551</i>	17.19374
1993	3	20.5644	20.36222
1994	3	15.08293	15.08143
1995	3	13.98664	14.02527

e) Estimation d'un modèle à correction d'erreur à effets fixes

Sous l'hypothèse que les variables «I» et «P» sont cointégrées (intégrées de même ordre et non stationnaire de même type/DS), nous nous proposons d'estimer un modèle à correction d'erreur à effets fixes à la manière de HANDRY, spécifié comme suit :

$$DLI_{it} = a_i + b_1 DLP_{it} + b_2 LI_{it-1} + b_3 LP_{it-1} + e_{it} \dots \dots [5.3]'$$

Avec:

- o DLlit et DLPit : les variables « lit » et « Pit » prises en différences premières ;
- o Llit et LPit: les variables « lit » et « Pit » prises en logarithme;
- o b_1 : l'élasticité à court terme;

- \circ b_2 : la force de rappel ou le coefficient de correction d'erreur indiquant la vitesse avec laquelle tout déséquilibre entre les niveaux désiré et réel de « lit » est résorbé dans l'année qui suit le choc;
- o $\frac{-b_3}{b_2}$: élasticité de long terme.

_Sur EViews 5.1, dans l'output des données, cliquer sur l'onglet PoolGenr et taper les expressions ci-dessous l'une après l'autre en cliquant chaque fois sur « OK » et en allant de nouveau sur « PoolGenr » (pour générer les variables en différences premières et en logarithme):

```
LI?=log(I?)
DLI?=d(LI?)
```

Ensuite, cliquer sur l'onglet **Estimate** et taper :

- o Dans « Dependant variable » : DLI?
- Dans « Regressors and AR() terms »: DLP? LI?(-1) LP?(-1)

NB: Ne pas oublier de sélectionner le modèle à effets fixes dans "Estimation method". Cliquer sur « OK » pour obtenir l'output ci-dessous :

Dependent Variable: DLI? Method: Pooled Least Squares Date: 12/22/13 Time: 13:51 Sample (adjusted): 1983 1991 Included observations: 9 after adjustments Cross-sections included: 3 Total pool (balanced) observations: 27						
Variable Coefficient Std. Error t-Statistic Prob.						
C DLP? LI?(-1) LP?(-1) Fixed Effects (Cross) _FIRME1C _FIRME2C _FIRME3C	-0.015163 0.972912 -1.018984 1.021162 -0.075073 -0.076739 0.151812	0.483370 0.106000 0.219508 0.287093	-0.031370 9.178455 -4.642124 3.556904	0.9753 0.0000 0.0001 0.0019		
	Effects Sp	ecification				
Cross-section fixed (d	ummy variabl	es)				
R-squared 0.934564 Mean dependent var Adjusted R-squared -0.010114 S.E. of regression 0.294049 Akaike info criterion Schwarz criterion 0.582991 Sum squared resid 1.815764 Schwarz criterion 0.870955 Log likelihood -1.870380 F-statistic 59.98534 Durbin-Watson stat 2.178162 Prob(F-statistic) 0.000000						

Commentaire: Le modèle à correction d'erreur à effets fixes estimé semble non valide, car la force de rappel « b_2 » estimée (coefficient associé à LI?(-1)) est statistiquement significatif, mais n'est pas compris entre o et 1.

Contournons le problème en prenant cette fois-ci les variables en niveau (exclure le logarithme). Pour ce faire (Cfr EViews 3.1), dans « PoolGenr », taper cette fois:

Ensuite, cliquer sur l'onglet **Estimate** et taper :

- o Dans « Dependant variable » : DI?
- Dans « Regressors and AR() terms »: DP? I?(-1) P?(-1)

NB: Ne pas oublier de sélectionner le modèle à effets fixes dans "Intercept". Cliquer sur « OK » pour obtenir l'output ci-dessous (à gauche pour EViews 5.1 et à droite pour EViews 3.1: la constante est obligatoire sur EViews 5.1):

Dependent Variable: DI? Method: Pooled Least Squares Date: 12/22/13 Time: 14:30 Sample (adjusted): 1983 1991

Included observations: 9 after adjustments

Cross-sections included: 3 Total pool (balanced) observations: 27						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C DP? I?(-1) P?(-1) Fixed Effects (Cross) _FIRME1C _FIRME2C _FIRME3C	-2.711660 1.135481 -0.927142 1.118548) -0.285082 -1.234882 1.519963	1.691985 0.061322 0.216282 0.265833	-1.602650 18.51680 -4.286726 4.207703	0.1239 0.0000 0.0003 0.0004		
	Effects Sp	ecification				
Cross-section fixed (d	lummy variabl	es)				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.982265 0.978043 1.799763 68.02210 -50.78528 2.074516	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	0.054074 12.14586 4.206317 4.494281 232.6258 0.000000		

Dependent Variable: DI?
Method: Pooled Least Squares
Date: 12/22/13 Time: 14:30
Sample(adjusted): 1983 1991

Included observations: 9 after adjusting endpoints

Number of cross-sections used: 3 Total panel (balanced) observations: 27

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DP? I?(-1) P?(-1) Fixed Effects _FIRME1C _FIRME2C _FIRME3C	1.135481 -0.927142 1.118548 -2.996742 -3.946542 -1.191697	0.061322 0.216282 0.265833	18.51680 -4.286726 4.207703	0.0000 0.0003 0.0004
R-squared Adjusted R-squared S.E. of regression Log likelihood Durbin-Watson stat	0.982265 0.978043 1.799763 -50.78528 2.074516	Mean dependent var S.D. dependent var Sum squared resid F-statistic Prob(F-statistic)		0.054074 12.14586 68.02210 581.5644 0.000000

Commentaire: Le modèle à correction d'erreur à effets fixes estimé est valide, car la force de rappel « b_2 » estimée (coefficient associé à I?(-1)) statistiquement significatif et est compris entre o et 1 (soit $\hat{b}_2 = -0.927$).

Sur Stata, faire:

```
xtreg DI DP L.I L.P, fe
```


Fixed-effects Group variable		ression			obs =		
	= 0.9822 $n = 0.0055$ $n = 0.9731$			Obs per g	_	9.0	
corr(u_i, Xb)	= -0.0334				= = 		
DI	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
DP	1.135481	.0613217	18.52	0.000	1.007956	1.263006	
I L1.	9271422	.2162822	-4.29	0.000	-1.376926	4773589	
	1.118548 -2.711659						
sigma_e	1.3993731 1.7997632 .3767745	(fraction	of varian	ce due to	u_i)		
F test that al	ll u_i=0:	F(2, 21) =	3.10		Prob >	F = 0.0659	

f) Estimation d'un panel dynamique

_Sur Eviews : pas de programmes/commandes appropriés ; _Sur Stata, la commande et les résultats se présentent comme suit :

Commande :	xtabond D	I DP L.I	L.P, r	obust s	small		
Arellano-Bond Group variable		l-data estim	ation		of obs of groups		
Group Variable	; (I). IIIME						
				F(2, 16)	=	16.02
Time variable	(t): annee		Obs per	group: min	=		
				avg			
					max	=	7
One-step resul	Lts						
	 	Robust					
D.DI	Coef.		t	P> t	[95% Conf	Ε.	<pre>Interval]</pre>
	+						
DI							
LD.	.0386632	.0678957	0.57	0.577	1052692		.1825956
DP	 1.08303	0600337	10.04	0 000	0557630		1 210205
D1. I	1.08303	.0600337	18.04	0.000	.955/638		1.210295
LD.	9719573	.1717465	-5.66	0.000	-1.336044		6078711
P							
_		0065404	1 27	0 001	5078227		1.510709
-	1.009266	.2365404	4.47	0.001	. 30 / 022 /		

L'estimation de notre modèle à correction d'erreurs à effets fixes (modèle [5.3]') par l'approche d'Arellano et Bond (1991) --- recours à la méthode GMM/méthode de moments généralisés --- améliore les résultats en ce que les «t de student» produits sont robustes (corrigés d'hétéroscédasticité ou d'éventuelles autocorrélations des erreurs : à titre illustratif, la constante devient significative à 10%).

g) Tests post-estimation sur panel (inférence Statistique)

NB: Pour de raisons d'espace, nos tests ne se rapportent qu'au modèle à effets fixes estimé. Autant dire qu'il faut d'abord estimer le modèle à effets fixes avant d'effectuer tel ou tel autre test ci-dessous :

► Tests de normalité des résidus :

```
____Sur Eviews (les commandes ne sont pas programmées)
```

____Sur Stata, faire (test de Shapiro-Wilk) :

```
predict res, e
ີ່ swilk res
```

	Shapi	ro-Wilk W	test for n	normal	data	
Variable	Obs	W	V		Z	Prob>z
	+					
res	30	0.95530	1.421	0	.726	0.23381

Autrement (Test de Jarque-Berra):

Commande :sktest res									
	Skewness/Ku	ırtosis tests f	or Normality						
Variable	Pr(Skewness)	Pr(Kurtosis)		joint Prob>chi2					
res	0.374	0.436	1.50	0.4713					

► **Test d'hétéroscédasticité de White** : il y a absence d'hétéroscédasticité (prob>5%).

_Sur Stata, faire:

= 30	Number of obs =		MS		df	SS	Source
= 0.09	F(1, 28)						+
= 0.7660	Prob > F		7210215	.827	1	.827210215	Model
= 0.0032	R-squared		1604887	9.1	28	256.493684	Residual
= -0.0324	Adj R-squared						+
= 3.0266	-		7313427	8.87	29	257.320894	Total
Interval]	[95% Conf.	P> t	t	Err.	Std.	Coef.	res2
Interval]1493721	[95% Conf. 	P> t 0.766	t -0.30		Std. .085		res2 + P

_Sur EViews, pas de commandes y relatives.

h) Estimation d'un modèle de panel à effets between et d'un modèle à effets aléatoires avec l'estimateur ml (maximum de vraisemblance)

_Modèle à effets between

```
Commande : xtreg I P, be
Between regression (regression on group means) Number of obs
                                                           30
                                                            10
Group variable (i): annee
                                      Number of groups =
                                      Obs per group: min =
R-sq: within = 0.8997
                                                             3
                                             avg = 3.0
    between = 0.9577
     overall = 0.9247
                                                 max =
                                                             3
                             F(1,8) = 181.02
Prob > F = 0.0000
sd(u_i + avg(e_i.)) = 1.077036
______
        I | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 P | 1.075904 .0799664 13.45 0.000 .8915016 1.260307

_cons | -1.056399 1.244041 -0.85 0.420 -3.925162 1.812364
```

____Modèle à effets aléatoires avec l'estimateur ML

Commande :	xtreg I P	, mle							
Fitting consta	nt-only model	.:							
Iteration 0:	log likeliho	ood = -234.40	6955						
Iteration 1:	log likeliho	ood = -164.3	2753						
Iteration 2:	log likeliho	ood = -128.2	5246						
Iteration 3: log likelihood = -111.04199									
<pre>Iteration 4: log likelihood = -103.94225</pre>									
	log likeliho								
	log likeliho								
Iteration 7:	_								
Iteration 8:	log likeliho	ood = -101.3	7961						
Fitting full m	odel:								
Iteration 0:	log likeliho	ood = -62.62	6851						
Iteration 1:	log likeliho	ood = -62.59	2274						
Iteration 2:	log likeliho	ood = -62.59	1958						
Random-effects	ML regression	n		Number o	of obs =	30			
Group variable	(i): annee			Number o	of groups =	10			
Random effects	u_i ~ Gaussi	.an		Obs per	group: min =	3			
				_		3.0			
						3			
				LR chi2	(1) =	77.58			
Log likelihood				Prob > 0	chi2 =	0.0000			
I	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
•	1.056158								
	7609357 					.9973652			
/sigma_u	0	.695689							
/sigma_e	1.94928	.2516345			1.513532	2.51048			
rho	0	•				•			
Likelihood-rat	io test of si	ama 11=0; ch		= 0.00		r2 = 1.000			

i) Estimation d'un panel corrigé d'hypothèses violées

NB: Pour de raisons d'espace, nous ne nous basons que sur le modèle à effets fixes. Aussi, seul Stata est utilisé (EViews n'offre pas des méthodes de correction d'hypothèses violées sur modèle de panel).

_Sur Stata, suivre les commandes appropriées :

Correction de l'hétéroscédasticité sur un modèle à effets fixes (commande Stata: areg)

```
Commande : areg I P, absorb(firme) robust
                                                               Number of obs = 30
Linear regression, absorbing indicators
                                                               F( 1, 26) = 320.32

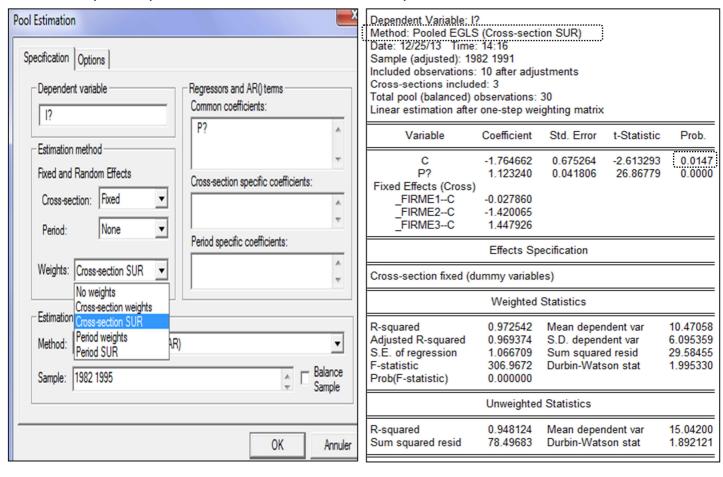
Prob > F = 0.0000

R-squared = 0.9487

Adj R-squared = 0.9428
                                                              Root MSE = 1.728
           | Robust
I | Coef. Std. Err. t P>|t| [95% Conf. Interval]
       P | 1.096293 .0612536 17.90 0.000 .9703849 1.222202 
_cons | -1.361473 .9627057 -1.41 0.169 -3.340343 .6173967
       firme absorbed
                                                                         (3 categories)
```

Correction de l'autocorrélation des erreurs d'ordre 1 sur un modèle à effets fixes (commande Stata: xtregar)

```
Commande : xtregar I P, fe
FE (within) regression with AR(1) disturbances Number of obs = 20
Group variable (i): annee Number of groups = 10
R-sq: within = 0.8349 Obs per group: min = 2
between = 0.9274 avg = 2.0
overall = 0.8935 max = 2
                                                              F(1,9) = 45.50
Prob > F = 0.0001
corr(u_i, Xb) = 0.2875
              I | Coef. Std. Err. t P>|t| [95% Conf. Interval]

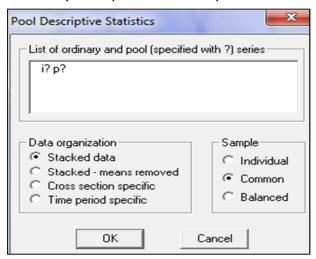

      P |
      .9204059
      .1364445
      6.75
      0.000
      .6117469
      1.229065

      _cons |
      1.245292
      2.056354
      0.61
      0.560
      -3.406503
      5.897086

       rho_ar | .01041954
      sigma_u | 1.6312589
     sigma_e | 2.330513
rho_fov | .32883194 (fraction of variance due to u_i)
F test that all u_i=0: F(9,9) =
                                                                              Prob > F = 0.5646
                                                         0.89
```


_Sur EViews 5.1, dans l'output des résultats, cliquer sur l'onglet | Estimate →dans « Weights », cocher « Cross section SUR » pour corriger le modèle à effets fixes estimé d'éventuelles autocorrélations d'erreurs et/ou d'hétéroscédasticité, grâce à la méthode SUR/Seemingly Unrelated Estimator (à gauche: la figure qui illustre et complète la procédure ; et à droite : les résultats) :

Commentaire: Le modèle à effets fixes corrigé par la méthode SUR paraît plus significatif que tout autre modèle (la constante devient significative à 2%).


- j) Annexes: Statistiques descriptives, évolutions graphiques des variables et <u>évolutions graphiques des résidus</u>
- Statistiques descriptives de données en panel

_Sur Stata, faire:xtsum I P

Variak	ole	Mean	Std. Dev.	Min	Max	Observa	tions
I	overall	15.042	7.223449	2.62	29.82	N =	30
	between		4.93589	5.266667	20.57667	n =	10
	within		5.430967	5.168667	27.75867	T =	3
P	overall	14.68762	5.893947	1.47	26.45	N =	42
	between		3.856906	5.37	20.06667	n =	14
	within		4.537459	6.664285	25.66429	T =	3

EViews 5.1, dans l'output des résultats/données, suivre: View/Descriptive Statistics... → la boîte de dialogue suivante apparaît (elle complète la procédure) → cliquer sur « OK » pour obtenir les résultats à droite :

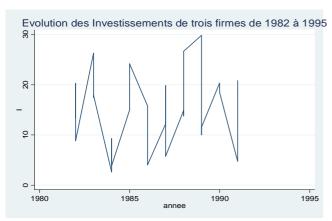
	l?	P?
Mean	15.04200	14.96267
Median	15.37000	15.78500
Maximum	29.82000	26.45000
Minimum	2.620000	1.470000
Std. Dev.	7.223449	6.576709
Skewness	0.021997	-0.125837
Kurtosis	2.260897	2.237055
Jarque-Bera	0.685261	0.806780
Probability	0.709900	0.668051
Sum	451.2600	448.8800
Sum Sq. Dev.	1513.168	1254.340
Observations	30	30
Cross sections	3	3

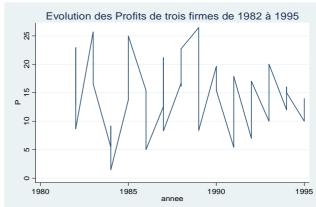
o Dans « Data organization » (Cfr figure ci-dessus), Cocher « Cross section specific » pour obtenir les statistiques par individu/firme pour toutes les périodes comme suit :

	I_FIRME1	I_FIRME2	I_FIRME3	P_FIRME1	P_FIRME2	P_FIRME3
Mean	15.50200	15.41500	14.20900	15.39700	16.55900	12.93200
Median	14.93500	17.74000	14.72500	14.60000	17.51000	12.04500
Maximum	29.82000	20.30000	26.68000	26.45000	22.93000	24.97000
Minimum	2.620000	7.630000	3.870000	5.430000	9.160000	1.470000
Std. Dev.	8.448096	4.825251	8.503865	7.167053	4.527863	7.738222
Skewness	0.172028	-0.563074	0.076323	0.162540	-0.347907	0.147495
Kurtosis	2.353563	1.662029	1.533531	2.158319	1.925079	1.836595
Jarque-Bera	0.223440	1.274323	0.905764	0.339210	0.683172	0.600220
Probability	0.894295	0.528791	0.635793	0.843998	0.710642	0.740737
Sum	155.0200	154.1500	142.0900	153.9700	165.5900	129.3200
Sum Sq. Dev.	642.3330	209.5475	650.8415	462.2998	184.5139	538.9208
Observations	10	10	10	10	10	10

o Dans « Data organization » (Cfr figure ci-haut), Cocher « Time period specific » pour obtenir les statistiques par période pour tous les individus/firmes comme suit:

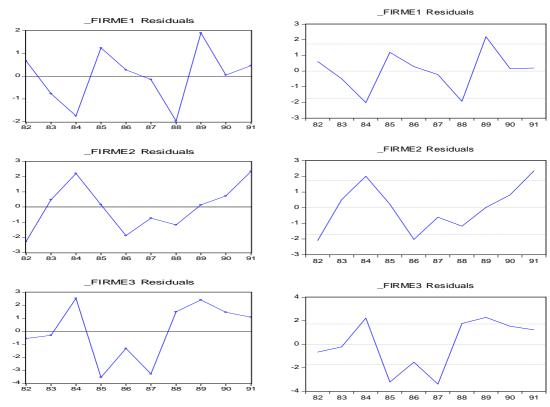
obs	Mean I?	Med I?	Sd I?	Min I?	Max I?	Mean P?	Med P?	Sd P?	Min P?	Max P?
1982	14.15667	13.32000	5.770670	8.850000	20.30000	14.81000	12.85000	7.338992	8.650000	22.93000
1983	20.57667	17.96000	4.962603	17.47000	26.30000	20.06667	17.96000	4.920715	16.55000	25.69000
1984	5.266667	3.870000	3.556970	2.620000	9.310000	5.370000	5.480000	3.846180	1.470000	9.160000
1985	19.04667	18.01000	4.711330	14.94000	24.19000	19.16333	18.73000	5.602583	13.79000	24.97000
1986	9.140000	7.630000	6.048066	3.990000	15.80000	10.57667	11.31000	5.238638	5.010000	15.41000
1987	12.59000	12.20000	7.063080	5.730000	19.84000	14.01333	12.59000	6.542173	8.300000	21.15000
1988	18.45667	14.93000	7.145602	13.76000	26.68000	18.49000	16.64000	3.654873	16.13000	22.70000
1989	17.10333	11.49000	11.03813	10.00000	29.82000	15.47333	11.61000	9.643964	8.360000	26.45000
1990	19.44000	19.51000	0.917006	18.49000	20.32000	18.21000	19.55000	2.399312	15.44000	19.64000
1991	14.64333	18.32000	8.642895	4.770000	20.84000	13.45333	17.06000	6.960204	5.430000	17.87000
1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA



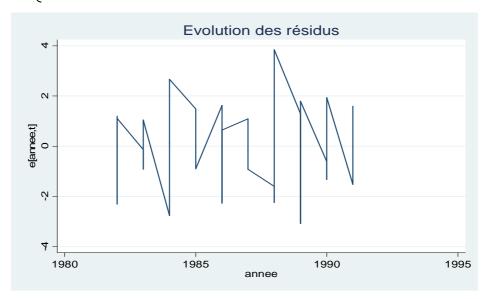

Evolutions graphiques des variables (I et P)

Sur EViews, pas des commandes pour visualiser graphiquement les variables empilées (seul le graphique par individu/firme pour toutes les périodes est disponible).

_Sur Stata, faire (constat : les séries semblent stationnaires) :


- o <u>Graphique à gauche</u>: twoway (line I annee), title (Evolution des Investissements de trois firmes de 1982 à 1995)
- o <u>Graphique à droite</u>: twoway (line P annee), title (Evolution des Profits de trois firmes de 1982 à 1995)

Evolutions graphiques des résidus


_Sur EViews, dans l'output des résultats, cliquer : View/Residuals/Graphs : (à gauche: résultat sur EViews 5.1 et, à droite: résultat sur EViews 7):

_Sur Stata, taper (graphique des résidus pour de données empilées) :

```
xtreg I P, fe
predict res, e
line res annee, title(Evolution des résidus)
```


CHAP VI LES MODELES A VARIABLES QUALITATIVES

Cas pratique 6.1: Créer les variables qualitatives sur base d'autres variables

Travail demandé:

- o Créer/générer la variable : $X = \begin{cases} 1, si \ AGE < 37 \\ 0, ailleurs \end{cases}$; o Créer/générer la variable : $Y = \begin{cases} 2, si \ AGE < 36 \\ 1, si \ 36 \le AGE < 50 ; \\ 0. si \ AGE > 50 \end{cases}$
- Procédures à suivre/Commandes (Sur Eviews):

Sur EViews:

- o Pour le 1^{er} cas, taper : GENR X=1*(AGE<37)+0*(AGE>=37);
- o Pour le 2^{ème} cas, taper :

GENR Y=2*(AGE<36)+1*((AGE>=36) AND (AGE<50))+0*(AGE>=50)

Sur Stata:

o Pour le 1^{er} cas, taper : replace X=1 if AGE<37

o Pour le 2^{ème} cas, taper :

```
gen Y=0 replace Y=2 if AGE<36 replace Y=1 if AGE>=36&AGE<50
```

Les résultats (variables générées) se présentent comme suit :

															0
Υ	2	1	1	1	0	1	0	1	2	2	1	0	1	0	1

Cas pratique 6.2: Relation (lien) entre les variables qualitatives

Données :

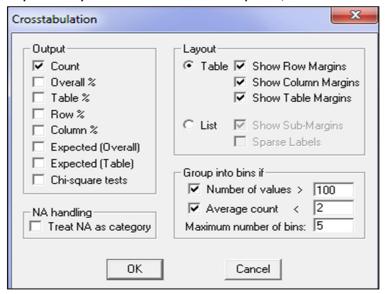
- Taille de l'échantillon (N): 15 personnes ;
- Variable dépendante $ABON = \begin{cases} 1 = la \ personne \ veut \ s'abonner \\ 0 = la \ personne \ ne \ veut \ pas \ s'abonner \end{cases}$
- Variables explicatives :

$$\circ \quad SEXE = \left\{ \begin{array}{l} 1 = Feminin \\ 0 = Masculin \end{array} \right\};$$

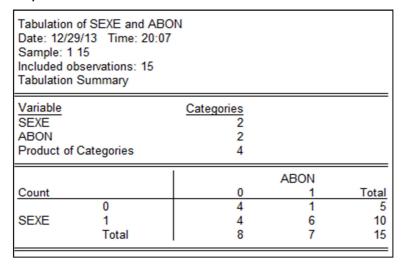
○ AGE = quantitative (discrète)

Travail Demandé :

- Trouver la proportion de personnes qui veulent s'abonner et celle des femmes dans l'échantillon;
- Utiliser le test de Khi-deux pour vérifier si le « SEXE » joue significativement sur la décision (volonté ou pas) de s'abonner;
- Considérant la variable « SEXE », générer les modalités « Féminin et Masculin » ;
- Estimer la probabilité de s'abonner (« ABON ») à l'aide du modèle/procédure « LOGIT », les variables « SEXE » et « AGE » étant explicatives, et commenter les résultats obtenus :
- Vérifier la qualité du modèle LOGIT estimé ou la bonté de l'ajustement par le test de Hosmer-Lemeshow;
- Calculer le pourcentage de bonnes prédictions et celui de prédictions fausses ;
- Estimer de nouveau la probabilité de s'abonner (« ABON »), cette fois-ci à l'aide des modèles « PROBIT » et « GOMBIT », les variables « SEXE » et « AGE » étant explicatives. Aussi, pour chaque modèle, calculer le pourcentage de prédictions fausses.


Résolutions :

a) Proportion de personnes qui veulent s'abonner (ABON) et celle des femmes dans l'échantillon (SEXE)

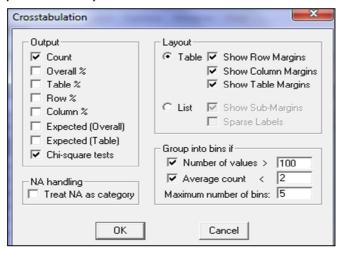

```
Sur EViews, faire:
f create u 1 15
data AGE SEXE ABON
```


→Dans l'output des données relatif aux variables « SEXE » et « ABON » (faire : show SEXE ABON), suivre: View/N-Way Tabulation... →la boîte de dialogue suivante apparaît (elle complète la procédure : dans « Output », cocher « Count ») :

Cliquer sur « **OK** » pour obtenir les résultats suivants :

Sur Stata, faire: tabulate SEXE ABON, row

Key	+ 		
	ABON		
SEXE	0	1	Total
0	+ 4	+ 1	5
U	80.00	20.00	100.00
·	+	+	
1	4	6	10
	40.00	60.00	100.00
Total	 8	7	15
10001	53.33	46.67	100.00


Calcul des proportions: Proportion de personnes voulant s'abonner (PA) et Proportion de femmes dans l'échantillon (PF):

- o PA = 7/15 = 0.4667;
- o PF = 10/15 = 0.6667.
- b) Test de Khi-deux pour vérifier si le « SEXE » joue significativement sur la décision (volonté ou pas) de s'abonner

Les hypothèses du test d'indépendance de Khi-deux sont :

Ho: Egalité des paramètres/Les caractères sont indépendants (prob > 5%) H1: Non égalité des paramètres/Les caractères sont dépendants (prob < 5%)

Sur EViews, dans l'output des données relatif aux variables « SEXE » et « ABON » (faire: show SEXE ABON), suivre: View/N-Way Tabulation... → la boîte de dialogue suivante apparaît (elle complète la procédure : dans « Output », cocher « Count » et « Chi-square tests »):

Cliquer sur « **OK** » pour obtenir les résultats ci-dessous :

Tabulation of SEXE and ABO Date: 12/29/13 Time: 20:22 Sample: 1 15 Included observations: 15 Tabulation Summary	N		
Variable SEXE ABON Product of Categories	Categories 2 2 2 4		
Measures of Association Phi Coefficient Cramer's V Contingency Coefficient	Value 0.377964 0.377964 0.353553		
Test Statistics Pearson X2 Likelihood Ratio G2	<u>df</u> 1 1	Value 2.142857 2.263442	0.1325
WARNING: Expected value is 4).	s less than 5 in	75.00% of c	ells (3 of
Count	0	ABON 1	Total
SEXE 1 Total	4 4 8	1 6 7	5 10 15

_Sur Stata, faire:tab ABON SEXE, chi2

	SEXE		
ABON	0	1	Total
0	+	 4	8
1	1	6	7
Total	+ 5	+ 10	15
P	earson chi2(1) =	2.1429	Pr = 0.143

Commentaire: La statistique de khi-deux calculée (Cfr « Pearson X2 » sur le tableau de résultats) est égale à «2.1429» et la probabilité associée est de « 0.1432 » (soit, prob>5%). Ainsi, il y a lieu d'accepter l'hypothèse nulle/Ho selon laquelle les variables/caractères « SEXE » et « ABON » ne sont pas liés.

c) Création des modalités « Féminin et Masculin » étant donné la variable « SEXE »

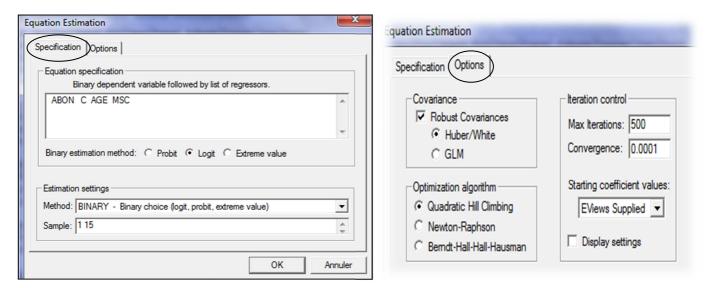
Il est question de générer les modalités :

- o Feminin (FEM) = $\begin{cases} 1, si \ SEXE = 1 \\ 0, ailleurs \end{cases};$ o Masculin (MSC) = $\begin{cases} 1, si \ SEXE = 0 \\ 0, ailleurs \end{cases}$

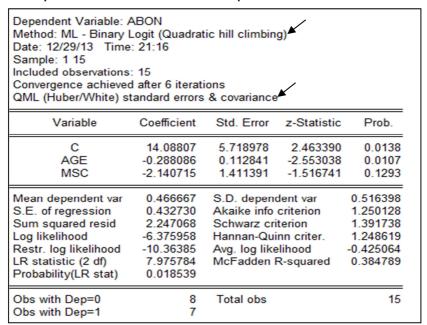
Sur EViews, faire (respectivement pour les modalités Masculin et Féminin):

- \circ genr MSC=1*(SEXE=0)+0*(SEXE<>0)
- o genr FEM=1*(SEXE=1)+0*(SEXE<>1)

_**Sur Stata**, faire:


d) Estimation de la probabilité de s'abonner (« ABON ») à l'aide du modèle/procédure « LOGIT », les variables « SEXE » et « AGE » étant explicatives (suivi des commentaires)

NB : la modalité « Feminin » sert de référence.


Estimation

Sur EViews, suivre : Quick/Estimate Equation... → dans « Method » (Cfr boîte de dialogue), choisir : BINARY-Binary choice (logit, probit, extreme value)→les boîtes de dialogue suivantes s'affichent/Cfr onglets « Specification » et « Options » (elles complètent la procédure):

Cliquer sur « OK » pour obtenir les résultats qui suivent :

_**SurStata**,faire:logit ABON AGE MSC, robust

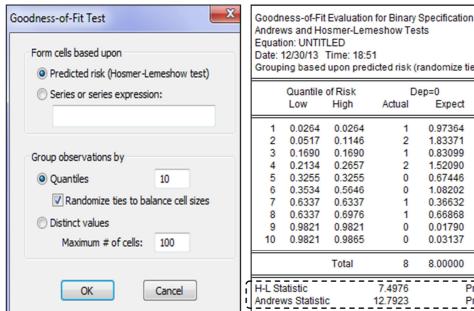
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	log pseudoli log pseudoli log pseudoli log pseudoli log pseudoli log pseudoli	<pre>.kelihood =kelihood =kelihood =kelihood = .</pre>	-6.821908 -6.438475 -6.378796	31 54 55 56			
Logistic regre	ession			Numbe Wald Prob	r of obs chi2(2) > chi2 o R2	=	15 7.43 0.0244 0.3848
ABON	Coef.	Robust Std. Err.	z	P> z	[95% Cd	onf.	Interval]
AGE MSC _cons	-2.140715	.1167984 1.460923 5.919579	-1.47	0.143	-5.00407	72	0591654 .7226424 25.69023

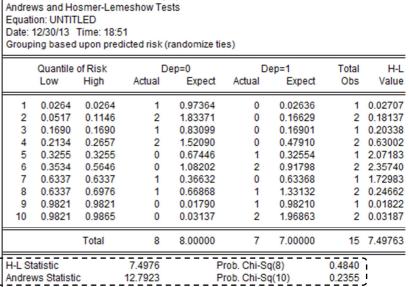
Commentaires (explication de certains éléments de l'output) :

Les éléments de l'output :

- o « Z-statistic » n'est rien d'autres que le « t de student » calculé ;
- o « ML... » signifie : Maximum Likelihood/Maximum de vraisemblance ;
- o « Mean dependent var et S.D dependent var »: respectivement la moyenne et l'écart-type (Standard Deviation) de la variable dépendante ;
- o « S.E of regression »: la somme des carrés expliqués/Régression;
- o « Sum squared resid » : Somme des carrés des résidus/Erreurs ;
- Likelihood »: logarithme de vraisemblance (valeur o «Log totale/maximale):
- o «Avg. Log likelihood»: moyenne du logarithme de vraisemblance (log likelihood/taille de l'échantillon);
- o « Restr. Log likelihood »: logarithme de vraisemblance restreint/contraint (contrainte/hypothèse: tous les paramètres, constante exclue, sont nuls);
- o «LR statistic»: Log Likelihood Ratio Statistic (Ratio logarithme de vraisemblance); et,
- o « McFadden R-squared »: R² de McFadden ou Pseudo-R² (indice du ratio de maximum de vraisemblance).
- <u>Significativité individuelle des variables</u>: Seule la variable « AGE » influe significativement sur la décision/volonté de s'abonner (prob<5%): plus on est âgé/vieux, de moins en moins l'on souhaite s'abonner. Par contre, la modalité « Masculin » – bien que statistiquement non significative – amène à souligner que les femmes ont une forte propension à s'abonner (Sur 7 personnes abonnées, 6 sont des femmes : Cfr tableau de résultats du test de Khi-deux);
- ▶ Significativité globale des variables/bonté de l'ajustement : Au regard du « LR statistic » – dont la probabilité est < 5% (soit : 0,018539) – nous concluons à la significativité globale des paramètres. Toutefois, le « R² de McFadden » – égal à 38,47% – signale le faible pouvoir explicatif du modèle;
- « Mean dependent var » = 0.4667: autant dire qu'il y a 46,67% d'abonnés (ABON=1) dans l'échantillon considéré.

e) <u>Vérification de la qualité du modèle LOGIT estimé ou la bonté de l'ajustement</u> par le test de Hosmer-Lemeshow


Les hypothèses du test d'Hosmer-Lemeshow sont :


Ho: L'ajustement est bon/Goodness of fit (prob > 5%)

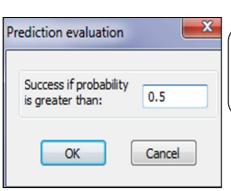
H1: L'ajustement n'est pas bon (prob < 5%)

Sur EViews (6), dans l'output des résultats, cliquer: View/Goodness-of-Fit Test (Hosmer-Lemeshow)→la boîte de dialogue à gauche apparaît (elle complète la procédure)→cliquer sur « OK » pour obtenir les résultats à droite :

Sur Stata, faire:

```
Logistic model for ABON, goodness-of-fit test
       number of observations =
                                        15
number of covariate patterns =
                                        13
                                         8.23
             Pearson chi2(10) =
                                         0.6062
                  Prob > chi2 =
```

Commentaire : la probabilité associée à la statistique de Hosmer-Lemeshow/H-L Statistic calculée étant > 5% (soit, prob = 0.4840), il y a lieu considérer que l'ajustement est bon. <u>NB</u>: plus « H-L stat » est grande, de plus en plus la différence entre les valeurs observées et prédites (des déciles : quantile égal à 10) est prononcée, avec comme conséquence le rejet de l'hypothèse nulle.


f) Calcul du pourcentage de bonnes prédictions et celui de prédictions fausses

Sur Stata, faire: 1stat

Logistic mod	del for ABON		
61 161 1	True		
Classified	D	~D	Total
+	5	2	7
-	2	6	8
Total	 7	8	15
	+ if predicted Pr(D)	>= .5	
	ned as ABON != 0 		
Sensitivity		Pr(+ D)	71.43%
Specificity		Pr(- ~D)	75.00%
_	edictive value		
Negative pre	edictive value 	Pr(~D -)	75.00%
False + rate	e for true ~D	Pr(+ ~D)	25.00%
False - rate	e for true D	Pr(- D)	28.57%
False + rate	e for classified +	Pr(~D +)	28.57%
False - rate	e for classified -	Pr(D -)	25.00%
Correctly cl	lassified		73.33%

_Sur EViews, dans l'output des résultats, cliquer : View/Prediction-Expectation Evaluation→la boîte de dialogue à gauche apparaît (prediction evaluation: 0.5)→cliquer sur « OK » pour obtenir les résultats à droite :

Expectation-Prediction Evaluation for Binary Specification Equation: UNTITLED Date: 12/30/13 Time: 20:14 Success cutoff: C = 0.5								
Estimated Equation Constant Probability Dep=0 Dep=1 Total Dep=0 Dep=1 Total								
P(Dep=1)<=C P(Dep=1)>C Total Correct % Correct % Incorrect Total Gain* Percent Gain**	6 2 8 6 75.00 25.00 -25.00 NA	2 5 7 5 71.43 28.57 71.43 71.43	8 7 15 11 73.33 26.67 20.00 42.86	8 0 8 8 100.00 0.00	7 0 7 0 0.00 100.00	15 0 15 8 53.33 46.67		
	Estim Dep=0	ated Equat Dep=1	ion Total	Cons Dep=0	tant Probat Dep=1	oility Total		
E(# of Dep=0) E(# of Dep=1) Total Correct % Correct % Incorrect Total Gain* Percent Gain**	5.83 2.17 8.00 5.83 72.85 27.15 19.52 41.82	2.17 4.83 7.00 4.83 68.97 31.03 22.30 41.82	8.00 7.00 15.00 10.66 71.04 28.96 20.82 41.82	4.27 3.73 8.00 4.27 53.33 46.67	3.73 3.27 7.00 3.27 46.67 53.33	8.00 7.00 15.00 7.53 50.22 49.78		

Commentaires:

- Le taux de bonnes prédictions (TBP) = 73.33% [TBP = (6+5)/15*100]: prendre les éléments sur la diagonale principale (TBP > 50%: l'ajustement est bon);
- Le taux de prédictions fausses (TFP) = 26.67% [TFP = (2+2)/15*100]: prendre les éléments équidistants à la diagonale principale (TFP < 50%: l'ajustement est bon).
- g) Estimation de la probabilité de s'abonner (« ABON ») à l'aide des modèles « PROBIT » et « GOMBIT », les variables « SEXE » et « AGE » étant explicatives (pour chaque modèle, calcul du pourcentage de prédictions fausses)

NB : la modalité « Feminin » sert de référence.

Estimation du modèle PROBIT

_Sur EViews (6), suivre: Quick/Estimate Equation... →dans « Method » (Cfr boîte de dialogue), choisir: BINARY-Binary choice (logit, probit, extreme value)→[dans l'onglet « Specification »: cocher « Probit »; et dans l'onglet « Options » : cocher « Huber/White »] \rightarrow OK :

Dependent Variable: ABON Method: ML - Binary Probit (Quadratic hill climbing) Date: 12/30/13 Time: 21:08 Sample: 1 15 Included observations: 15 Convergence achieved after 5 iterations QML (Huber/White) standard errors & covariance z-Statistic Prob. Variable Coefficient Std. Error 8.439950 0.0052 C 3.017240 2.797241 AGE 0.059294 -2.915894 -0.1728940.0035 MSC 0.818055 -1.597043 -1.306470 0.1103 McFadden R-squared 0.394091 0.466667 Mean dependent var 0.516398 S.D. dependent var S.E. of regression 0.431277 Akaike info criterion 1.237273 Sum squared resid 2.232001 1.378883 Log likelihood -6.279545 Schwarz criterion Hannan-Quinn criter. 1.235764 Restr. log likelihood -10.36385 LR statistic 8.168609 Avg. log likelihood -0.418636 Prob(LR statistic) 0.016835 Obs with Dep=0 Total obs Obs with Dep=1

Sur Stata, faire: probit ABON AGE MSC, robust

Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log pseudoli log pseudoli log pseudoli log pseudoli log pseudoli	kelihood = kelihood = kelihood =	-6.741916 -6.33169 -6.281594	53 93 18				
Iteration 5:	log pseudoli	.kelihood =	-6.27954	15				
Probit regress	sion			Wald	r of obs chi2(2) > chi2	=	15 9.49 0.0087	
Log pseudolike	elihood = -6 .	279545		Pseud	o R2	=	0.3941	
ABON	Coef.	Robust Std. Err.	z	P> z	[95% Ca	onf.	Interval]	
AGE MSC _cons		.0613738 .8467655 3.123089			-2.966	51	0526038 .3531601 14.56109	

Pourcentage de prédictions fausses (TFP): Cfr « modèle Logit » pour la procédure/commandes (Sur Stata ou EViews).

	Estim	ated Equa	tion	Cons	tant Probal	oility
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total
P(Dep=1)<=C	6	2	8	8	7	15
P(Dep=1)>C	2	5	7	0	0	C
Total	8	7	15	8	7	15
Correct	6	5	11	8	0	8
% Correct	75.00	71.43	73.33	100.00	0.00	53.33
% Incorrect	25.00	28.57	26.67	0.00	100.00	46.67
Total Gain*	-25.00	71.43	20.00			
Percent Gain**	NA	71.43	42.86			
	Estim	ated Equa	tion	Cons	tant Probal	oility
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Tota
E(# of Dep=0)	5.90	2.17	8.08	4.27	3.73	8.00
E(# of Dep=1)	2.10	4.83	6.92	3.73	3.27	7.00
Total	8.00	7.00	15.00	8.00	7.00	15.00
Correct	5.90	4.83	10.73	4.27	3.27	7.53
% Correct	73.80	68.97	71.55	53.33	46.67	50.22
% Incorrect	26.20	31.03	28.45	46.67	53.33	49.78
Total Gain*	20.47	22.30	21.33			
Percent Gain**	43.87	41.82	42.84			

Le taux de prédictions fausses (TFP) = 26.67% [TFP = (2+2)/15*100]: prendre les éléments équidistants à la diagonale principale (TFP < 50%: l'ajustement est bon).

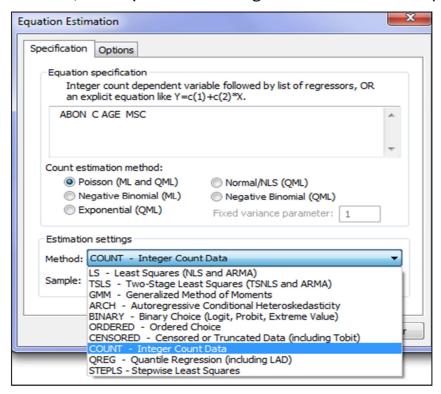
Estimation du modèle GOMBIT

Dependent Variable: ABON

Sur EViews (6), suivre: Quick/Estimate Equation... → dans « Method » (Cfr boîte de dialogue), choisir: BINARY-Binary choice (logit, probit, extreme value)→dans l'onglet « Specification »: cocher « Extreme value »; et dans l'onglet « Options » : cocher « Huber/White »→OK :

> Method: ML - Binary Extreme Value (Quadratic hill climbing) Date: 12/30/13 Time: 21:26 Sample: 1 15 Included observations: 15 Convergence achieved after 5 iterations QML (Huber/White) standard errors & covariance Variable Coefficient Std. Error z-Statistic Prob. C 11.16550 4.780393 2.335687 0.0195 AGE -0 217495 0.088311 -2 462844 0.0138 MSC -1.707759 1.040990 -1.640515 0.1009 0.409186 Mean dependent var 0.466667 McFadden R-squared S.D. dependent var 0.516398 S.E. of regression 0.425981 Akaike info criterion 1.216414 Sum squared resid 2.177517 Schwarz criterion 1.358024 Log likelihood -6.123105 1.214906 Restr. log likelihood Hannan-Quinn criter. -10.36385 LR statistic 8.481490 Avg. log likelihood -0.408207Prob(LR statistic) 0.014397 Obs with Dep=0 15 Total obs Obs with Dep=1

Pourcentage de prédictions fausses (TFP): Cfr « modèle Logit » pour la procédure/commandes (sur EViews).


Expectation-Prediction Evaluation for Binary Specification Equation: UNTITLED Date: 12/30/13 Time: 21:29 Success cutoff: C = 0.5						
	Estim Dep=0	nated Equa Dep=1	tion Total	Cons Dep=0	tant Probat Dep=1	oility Total
P(Dep=1)<=C P(Dep=1)>C Total Correct % Correct % Incorrect Total Gain* Percent Gain**	6 2 8 6 75.00 25.00 -25.00 NA	2 5 7 5 71.43 28.57 71.43 71.43	8 7 15 11 73.33 26.67 20.00 42.86	8 0 8 8 8 100.00 0.00	7 0 7 0 0.00 100.00	15 0 15 8 53.33 46.67
	Estim Dep=0	ated Equa Dep=1	tion Total	Cons Dep=0	tant Probat Dep=1	oility Total
E(# of Dep=0) E(# of Dep=1) Total Correct % Correct % Incorrect Total Gain* Percent Gain**	5.98 2.02 8.00 5.98 74.74 25.26 21.41 45.88	2.06 4.94 7.00 4.94 70.52 29.48 23.85 44.72	8.04 6.96 15.00 10.92 72.77 27.23 22.55 45.30	4.27 3.73 8.00 4.27 53.33 46.67	3.73 3.27 7.00 3.27 46.67 53.33	8.00 7.00 15.00 7.53 50.22 49.78

Le taux de prédictions fausses (TFP) = 26.67% [TFP = (2+2)/15*100]: prendre les éléments équidistants à la diagonale principale (TFP < 50%: l'ajustement est bon).

- ▶ **Constat** : les résultats d'estimation de nos trois modèles diffèrent très peu.
 - h) ANNEXES: Estimation du modèle de Poisson et du modèle Binomial Négatif(NegBin)

Sur EViews, suivre (la boîte de dialogue ci-dessous illustre la procédure):

o Cocher « Poisson (ML and QML) »→OK:

Dependent Variable: ABON Method: ML/QML - Poisson Count (Quadratic hill climbing) Date: 12/30/13 Time: 22:05 Sample: 1 15 Included observations: 15 Convergence achieved after 5 iterations Covariance matrix computed using second derivatives								
Variable	Coefficient	Std. Error	z-Statistic	Prob.				
C AGE MSC	2.461433 -0.068359 -0.870811		1.128363 -1.316092 -0.782049					
R-squared 0.371984 Mean dependent var 0.466667 Adjusted R-squared 0.267315 S.D. dependent var 0.516398 S.E. of regression 0.442021 Akaike info criterion 1.831794 Sum squared resid 2.344591 Schwarz criterion 1.973404 Log likelihood -10.73845 Hannan-Quinn criter. 1.830285 Restr. log likelihood -12.33498 LR statistic 3.193054 Avg. log likelihood -0.715897 Prob(LR statistic) 0.202599								

Dependent Variable: ABON

Date: 12/30/13 Time: 22:29

o Cocher « Negative Binomial (QML) » et « Negative Binomial (ML) »→OK:

Dependent Variable: ABON

Method: QML - Negative Binomial Count (Quadratic hill climbing)

Date: 12/30/13 Time: 22:08

Sample: 115

Included observations: 15

QML parameter used in estimation: 1
Convergence achieved after 5 iterations

Covariance matrix computed using second derivatives

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	2.755213	2.957921 0.931469		0.3516
AGE	-0.074839	0.067557 -1.107788		0.2680
MSC	-0.893460	1.241191 -0.719840		0.4716
R-squared	0.353273	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. LR statistic Prob(LR statistic)		0.466667
Adjusted R-squared	0.245486			0.516398
S.E. of regression	0.448558			2.083552
Sum squared resid	2.414446			2.225162
Log likelihood	-12.62664			2.082044
Restr. log likelihood	-13.76081			2.268340
Avg. log likelihood	-0.841776			0.321689

Sample: 1 15 Included observations: 15 Convergence achieved after 11 iterations WARNING: Singular covariance - coefficients are not unique Covariance matrix computed using second derivatives								
Variable	Coefficient	Std. Error	z-Statistic	Prob.				
С	2.461433	NA	NA	NA				
AGE	-0.068359	NA	NA	NA				
MSC	-0.870811	NA	NA	NA				
	Mixture Parameter							
SHAPE:C(4)	-16.36914	NA	NA	NA				
R-squared	0.371984	Mean dependen	ıt var	0.466667				
Adjusted R-squared	0.200707	S.D. dependent	var	0.516398				
S.E. of regression	0.461676	Akaike info criter	rion	1.965127				
Sum squared resid	2.344591	Schwarz criterio	n	2.153941				
Log likelihood	-10.73845	Hannan-Quinn	criter.	1.963116				
Restr. log likelihood	-12.33498	LR statistic		3.193054				
Avg. log likelihood	-0.715897	Prob(LR statistic	C)	0.362807				

Method: ML - Negative Binomial Count (Quadratic hill climbing)

_**Sur Stata, taper:** nbreg ABON AGE MSC

```
Fitting Poisson model:
Iteration 0: log likelihood = -10.738555
Iteration 1: log likelihood = -10.738453
Iteration 2: log likelihood = -10.738453
Fitting constant-only model:
Iteration 0: log likelihood = -13.76081
Iteration 1: log likelihood = -12.33498
Iteration 2: log likelihood = -12.33498 (not concave)
Fitting full model:
Iteration 0: log likelihood = -10.937678
Iteration 1: log likelihood = -10.738458
Iteration 2: log likelihood = -10.738453
Iteration 3: log likelihood = -10.738453 (not concave)
                                            Number of obs = 15
3.19
                                             Negative binomial regression
Dispersion
            = mean
                                             Prob > chi2
Log likelihood = -10.738453
                                             Pseudo R2
______
      ABON | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      AGE | -.0683594 .0519412 -1.32 0.188 -.1701624 .0334435

MSC | -.8708107 1.113499 -0.78 0.434 -3.053229 1.311608

_cons | 2.461433 2.181419 1.13 0.259 -1.81407 6.736936
   /lnalpha | -21.7867
     alpha | 3.45e-10
Likelihood-ratio test of alpha=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000
```

A savoir :

○ Log likelihood (modèle de poisson) = -10,73845

- o Log likelihood (modèle Binomial négatif) = -12,62664
- o L'on compare le modèle de Poisson au modèle Binomial négatif pour tester sa bonté (son caractère réaliste). Pour notre cas illustratif, Le test est celui de la « raison de vraisemblance/LR-Stat » calculée comme suit :

LR-stat =2[Log likelihood (modèle Binomial négatif) – Log likelihood (modèle de poisson)] $\sim \chi_{dl=1}^2$

Les hypothèses du test:

Ho: La spécification de Poisson est réaliste/LR-stat $<\chi^2_{dl=1}$ (table)/(prob > 5%) H1: La spécification de Poisson n'est pas réaliste/LR-stat $> \chi^2_{dl=1}$ (table)/(prob < 5%)

$$LR - stat = 2(12,62664 - 10,73845) = 3,77638$$

 A 99%, seuil (Chi-carré) = 6,635: LR-stat < Seuil: La spécification de Poisson est réaliste (la retenir).

CHAP VII MODELISATION HETEROSCEDASTIQUE: LES MODELES « ARCH » et GARCH

Cas pratique 7.1 : Simulation des processus ARMA

- ▶ Travail demandé : Simuler (générer) les processus ci-après (avec et : bruit blanc normal centré réduit):
 - o $MA(1): X_t = 2 + e_t + 0.8 e_{t-1}$
 - o AR(1): $X_t = 2 + 0.9 X_{t-1} + e_t$
 - o $MA(2): X_t = 2 + e_t + 0.6 e_{t-1} 0.3 e_{t-2}$
 - o AR(2): $X_t = 2 + 0.9 X_{t-1} 0.7 X_{t-2} + e_t$
 - o ARMA(1,1): $X_t = 2 + 0.9 X_{t-1} + e_t + 0.8 e_{t-1}$
 - o ARIMA(0,1,0): $X_t = 2 + X_{t-1} + e_t$
- Simulation des processus :
 - a) Bruit blanc : e_t (désigné par « E »)

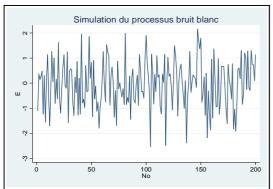
Création de la variable « E » (processus bruit blanc):

Sur EViews:

create u 1 200 gen E=NRND

Sur Stata:

set obs 200 gen u=uniform gen E=invnorm(u)


Notes:

- o **E** (EViews) : variable normale centrée réduite ;
- o **E** (Stata): distribution standard normale centrée sur zéro.

Graphique et corrélogramme du processus bruit blanc :

- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique): après avoir crée la variable "No" (obs: 1 à 200), taper: line E No, title(Simulation du processus bruit blanc)

Date: 01/01/14 Time: 10:07 Sample: 1 200 Included observations: 200								
Autocorrelation Partial Correlation AC PAC Q-Stat Prob								
	(()	1 -0.040 2 -0.144 3 -0.033 4 0.022 5 -0.047 6 0.030 7 -0.003 8 -0.072 9 -0.095 10 0.111	-0.146 -0.046 -0.003 -0.059 0.026 -0.015 -0.071 -0.105	4.5679 4.7874 4.8886 5.3376 5.5234 5.5252 6.6224 8.5289	0.102 0.188 0.299 0.376 0.479 0.596 0.578 0.482			

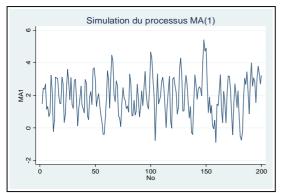
<u>Caractéristiques</u>: Stationnarité; pas des pics significatifs (tous les termes sont compris dans l'intervalle de confiance stylisé par des traits horizontaux). NB: AC (fonction d'autocorrélation simple) et PAC (fonction d'autocorrélation partielle).

b) Processus MA(1): MA1

Création de la variable Moyenne Mobile d'ordre 1/MA(1):

Sur EViews:

create u 1 200 genr MA1=2+E+0.8*E(-1)


Sur Stata:

set obs 200 gen $LE=E[_n-1]$ qen MA1=2+E+0.8*LE

Graphique et corrélogramme pour MA(1):

- * Sur EViews (corrélogramme): View/Correlogram...→OK;
- * Sur Stata (Graphique):

line MA1 No, title(Simulation du processus MA(1))

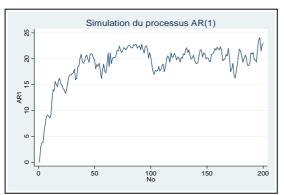
Date: 01/01/14 Time: 10:33 Sample: 1 200 Included observations: 199							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		2 3 4 5 6 7 8 9	-0.181 -0.094 -0.011 -0.004 0.010 -0.026 -0.130 -0.082	-0.401 0.234 -0.207 0.144 -0.103 0.024 -0.186 0.119	31.684 38.360 40.172 40.197 40.199 40.220 40.356 43.901 45.332 48.440	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	

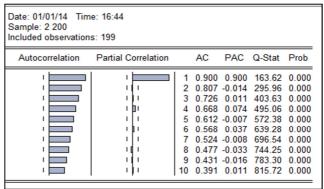
<u>Caractéristiques</u>: Stationnarité; décroissance exponentielle alternée pour la PAC; et le 1^{er} terme de l'AC est significativement différent de zéro (il sort de l'intervalle de confiance stylisé par des traits horizontaux).

c) Processus AR(1): AR1

_Création du processus Autorégressif d'odre 1/AR(1):

Sur EViews: smpl 1 1 genr AR1=0 smpl 2 200 genr AR1=2+0.9*AR1(-1)+E


Sur Stata:


Copier et coller les données depuis EViews $\ll AR(1)$ décalé/AR1[_n-1] » [variable introuvable au moment de la création de la variable « AR(1) dans Stata].

Graphique et corrélogramme de AR(1):

- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique):

line AR1 No, title(Simulation du processus AR(1))

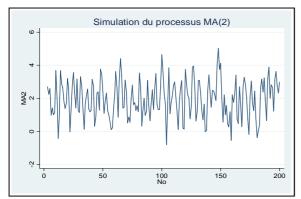
<u>Caractéristiques</u>: Non Stationnarité; décroissance géométrique pour l'AC; et le 1^{er} terme de la PAC est significativement différent de zéro (il sort de l'intervalle de confiance stylisé par des traits horizontaux).

d) Processus MA(2): MA2

<u>Création du processus Moyenne Mobile d'odre 2 MA(2):</u>

```
Sur EViews:
smpl 1 200
genr MA2=2+E+0.6*E(-1)-0.3*E(-2)
```

Sur Stata:


```
set obs 200
gen LE=E[\_n-1]
gen LE2=E[_n-2]
gen MA2=2+E+0.6*LE-0.3*LE2
```

_Graphique et corrélogramme de MA(2) :

- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique):

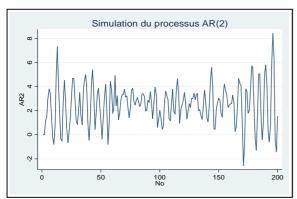
line MA2 No, title(Simulation du processus MA(2))

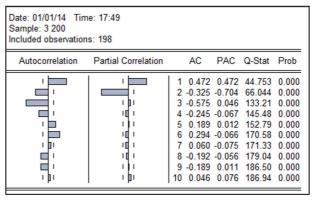
Date: 01/01/14 Time: 17:08 Sample: 1 200 Included observations: 198							
Autocorrelation Partial Correlation AC PAC Q-Stat Prob							
		2 3 4 5 6 7 8 9	-0.352 -0.048 0.016 -0.013 0.026 0.016 -0.126 -0.103	-0.423 0.203 -0.244 0.158 -0.123 0.107 -0.262 0.124	10.060 35.082 35.550 35.600 35.637 35.779 35.834 39.152 41.390 43.911	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	

- <u>Caractéristiques</u>: Stationnarité; décroissance exponentielle alternée pour la PAC; et les deux premiers termes de l'AC sont significativement différents de zéro (ils sortent de l'intervalle de confiance stylisé par des traits horizontaux : le 1^{er} pic est positif et le second est négatif).
 - e) Processus AR(2): AR2

<u> Création du processus Autorégressif d'odre 2 AR(2):</u>

Sur EViews:


smpl 1 2 genr AR2=0 smpl 3 200 genr AR2=2+0.9*AR2(-1)-0.7*AR2(-2)+E


Sur Stata:

Copier et coller les données depuis EViews décalé/AR1[_n-1] $\int \ll AR(1)$ *et* [« *AR*(2) décalé/AR2[n-2]» introuvables au moment de la création de la variable « AR(2) dans Stata].

Graphique et corrélogramme de AR(2) :

- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique): line AR2 No, title(Simulation du processus AR(2))

<u>Caractéristiques</u>: Stationnarité en moyenne ; décroissance sinusoïdale amortie pour l'AC; et les deux premiers termes de la PAC sont significativement différents de zéro (ils sortent de l'intervalle de confiance stylisé par des traits horizontaux : le 1^{er} pic est positif et le second est négatif).

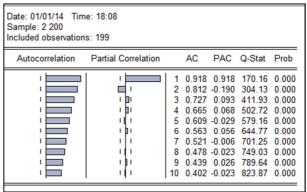
f) Processus ARMA(1,1): ARMA11

Création du processus Autorégressif d'odre 1 et Moyenne Mobile d'ordre 1

ARMA(1,1):

Sur EViews:

smpl 1 1 genr ARMA11=0 smpl 2 200 genr ARMA11=2+0.9*ARMA11(-1)+E+0.8*E(-1)


Sur Stata:

Copier et coller les données depuis EViews[« ARMA(1,1)décalé/ARM A11[n-1]» introuvable au moment de la création de la variable « ARMA11 » dans Stata].

_Graphique et corrélogramme de ARMA(1,1):

- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique): line ARMA11 No, title(Simulation du processus ARMA(1,1))

<u>Caractéristiques</u>: Non Stationnarité; décroissance lente pour l'AC; et le premier terme de la PAC est significativement différent de zéro (il sort de l'intervalle de confiance stylisé par des traits horizontaux).

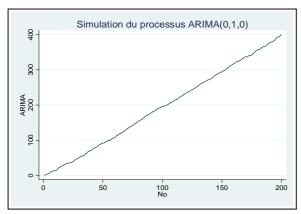
g) Processus ARMA Intégré d'ordre 1 : ARIMA/Marche aléatoire

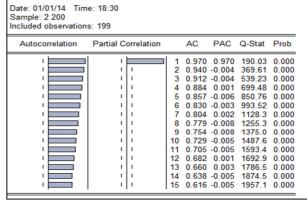
Création du processus ARMA intégré d'ordre 1/ARIMA(0,1,0):

Sur EViews:

smpl 1 1 genr ARIMA=0 smpl 2 200 genr ARIMA=2+ARIMA(-1)+E

<u>Sur Stata</u> :


Copier et coller les données depuis EViews[« ARIMA(0,1,0)décalé/ARIMA[n-1]» introuvable au moment de la création de la variable « ARIMA » dans Stata].


Graphique et corrélogramme d'ARIMA(1,0,1) ou Marche aléatoire :

- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique):

line ARIMA No, title(Simulation du processus ARIMA(0,1,0))

<u>Caractéristiques</u>: Non Stationnarité (Processus marche aléatoire affecté d'une tendance); décroissance lente pour l'AC; et le premier terme de la PAC est significativement différent de zéro (il sort de l'intervalle de confiance stylisé par des traits horizontaux).

Cas pratique 7.2 : Simulation d'un processus ARCH(1)

Modèle: Simuler (générer) le processus ARCH(1) ci-après (avec e_t : bruit blanc normal centré réduit):

$$e_t = u_t \sqrt{1 + 0.8 e_{t-1}^2 \dots \dots [7.0]}$$

- Travail demandé:
 - Générer ce processus (créer la variable EA);
 - Produire le graphique et le corrélogramme de ce processus ;
 - Vérifier la normalité de ce processus (test de Jarque-Berra);
 - En étudier aussi la linéarité (test de Keenan).
 - a) Génération du processus ARCH(1): Modèle (7.1)

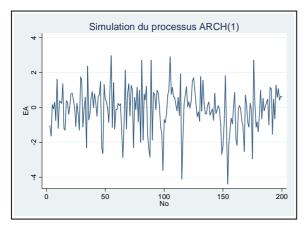
create u 1 200 genr U=NRND smpl 1 1

genr P=0 smpl 2 200

Sur EViews:

genr P=1+0.8*U(-1)*U(-1)

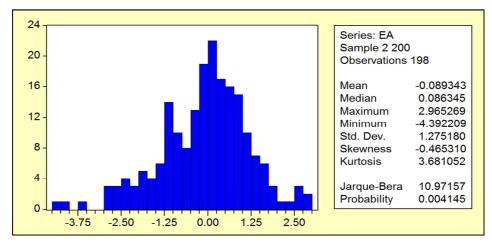
genr EA = sqr(P)*U


Sur Stata:

```
copier et coller « U » généré sur EViews
gen LU=U[_n-1]
gen P=.
replace P=0 in 1
replace P=1+0.8*LU*LU if No>1
gen EA=sqrt(P)*U
```

- b) Graphique et corrélogramme du processus ARCH(1)
- * Sur EViews (corrélogramme): $View/Correlogram... \rightarrow OK$;
- * Sur Stata (Graphique):

line EA No, title(Simulation du processus ARCH(1))


Date: 01/01/14 Time: 19:41 Sample: 2 200 Included observations: 198								
Autocorrelation Partial Correlation AC PAC Q-Stat Prob								
		2 0.034 3 -0.014	0.033 -0.016 0.015 0.024 0.105 -0.095 0.027 0.002	0.3790 0.4260 0.5430 2.8924 4.5095 4.6739 4.6797	0.990 0.822 0.720 0.792 0.861			

Constat : notre processus ARCH(1) est volatile (forte variabilité pour les observations 80 et 140 à 160), les périodes/moments d'instabilité (variance élevée) faisant régulièrement suite à celles de stabilité.

c) Vérifier la normalité de ce processus (test de Jarque-Berra)

* Sur Eviews: View/Descriptive Statistics/Histogram and Stats;

* Sur Stata: sktest EA

	Skewness/Kur	tosis tests for	Normality	
Variable	Pr(Skewness)	Pr(Kurtosis)		joint Prob>chi2
EA	0.008	0.068	9.26	0.0098

Commentaires:

- O Skewness (mesure d'asymétrie, il est nul pour une distribution normale) = -0.465: c.à.d. distribution dissymétrique à gauche (étalée à droite). D'où, présomption de non linéarité (Skewness non nul);
- o Kurtosis (mesure d'applatissement, il avoisine « 3 » pour une distribution normale) = 3.681 > 3: c.à.d. distribution leptokurtique (centre plus elevé/pointu);
- o Jarque-Bera (test de normalité, avec Ho: le processus est normalement distribué). La probabilité associée est de 0.0041 < 5%: rejet de l'hypothèse de

normalité pour le processus ARCH(1) sous-étude (même observation sous Stata).

d) Test de linéarité du processus ARCH(1) de Keenan

Rappels: Pour tester la linéarité d'une série (Y_t) , Keenan propose trois étapes:

(i) Estimer le modèle AR(P) suivant :

$$Y_t = \Phi_0 + \Phi_1 Y_{t-1} + \Phi_2 Y_{t-2} + \dots + \Phi_p Y_{t-p} + u_t$$

(ii) Estimer également :

$$Y_t^2 = a_0 + a_1 Y_{t-1} + a_2 Y_{t-2} + \dots + a_n Y_{t-n} + e_t$$

(iii) Estimer enfin:

$$\hat{u}_t = \lambda \hat{e}_t + v_t$$

Avec: t = p + 1,...,T et p=décalage optimal déterminé à partir des critères d'AKAIKE et SCHWARZ. Ainsi, la statistique «F» du test de Keenan est construit comme suit:

$$\hat{F} = \hat{\beta}^2 \left[\frac{T - 2p - 2}{\sum_{t=p+1}^T \hat{u}_t^2 - \hat{\beta}^2} \right] \sim F_{\alpha(1, T - 2p - 2)}$$

Avec:

$$\hat{\beta}^2 = \hat{\lambda} \left[\sum_{t=p+1}^T \hat{e}_t^2 \right]^{1/2} = \hat{\lambda}^2 \left[\sum_{t=p+1}^T \hat{e}_t^2 \right]$$

Les hypothèses du test sont :

Ho: Y_t est linéaire $(\hat{F}_c < F_t, prob > 5\%)$

H1: Y_t n'est pas linéaire $(\hat{F}_c > F_t, prob < 5\%)$

Avec « \hat{F}_c » : statistique calculée de Keenan.

Application du test sur notre processus ARCH(1)

► Estimation des coefficients pour AR(P) : les modèles sont :

Modèle 1 :
$$EA_t = \Phi_0 + \Phi_1 EA_{t-1} + \Phi_2 EA_{t-2} + \dots + \Phi_p EA_{t-p} + u_t$$

Modèle 2 : $EA_t^2 = a_0 + a_1 EA_{t-1} + a_2 EA_{t-2} + \dots + a_p EA_{t-n} + e_t$

_Sur EViews (nous n'utilisons pas Stata pour de raisons d'espace), faire :

$$\begin{cases} ls \ EA \ c \ EA(-1) \ EA(-2) \ EA(-3) \ EA(-4) \\ GENR \ EA2 = EA^2 \\ ls \ EA2 \ c \ EA(-1) \ EA(-2) \ EA(-3) \ EA(-4) \end{cases}$$

Notes:

- o à gauche (les résultats du modèle 1 estimé) et à droite (les résultats du modèle 2 estimé);
- o l'on vérifiera que le lag optimal (retard/décalage qui minimise le plus les coefficients d'Akaike et/ou Schwarz) est fixé à « 4 » pour les deux modèles.

Dependent Variable: EA Method: Least Squares Date: 01/01/14 Time: 21:31 Sample (adjusted): 7 200

Included observations: 194 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EA(-1) EA(-2) EA(-3) EA(-4)	-0.071640 0.021711 0.037932 -0.009434 0.020438	0.093761 0.072779 0.072831 0.072594 0.072638	-0.764074 0.298312 0.520818 -0.129950 0.281363	0.4458 0.7658 0.6031 0.8967 0.7787
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.002454 -0.018658 1.293363 316.1571 -322.6470 1.999227	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	-0.077861 1.281464 3.377804 3.462028 0.116229 0.976652

Dependent Variable: EA2
Method: Least Squares
Date: 01/01/14 Time: 21:34
Sample (adjusted): 7 200

Included observations: 194 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.598597	0.197802	8.081816	0.0000
EA(-1)	-0.401262	0.153537	-2.613450	0.0097
EA(-2)	0.040156	0.153647	0.261354	0.7941
EA(-3)	-0.045591	0.153146	-0.297695	0.7663
EA(-4)	-0.071090	0.153240	-0.463911	0.6432
R-squared	0.036779	Mean dependent var		1.639747
Adjusted R-squared	0.016393	S.D. dependent var		2.751173
S.E. of regression	2.728530	Akaike info criterion		4.870838
Sum squared resid	1407.081	Schwarz criterion		4.955061
Log likelihood	-467.4713	F-statistic		1.804159
Durbin-Watson stat	1.576230	Prob(F-statistic)		0.129705

o Les sommes des carrés des résidus/SSR (Sum squared resid) pour les deux modèles (t=5 à 200 observations):

SSR(1)=316.1571 et SSR(2)=1407.081

Estimation du coefficient pour : $\hat{u}_t = \lambda \hat{e}_t + v_t$

Commandes EViews:

GENR EA2=EA^2 *ls EA c EA(-1) EA(-2) EA(-3) EA(-4)* genr RESEA=RESID ls EA2 c EA(-1) EA(-2) EA(-3) EA(-4) genr RESEA2=RESID ls RESEA RESEA2

Dependent Variable: RESEA

Method: Least Squares Date: 01/01/14 Time: 22:02 Sample (adjusted): 7 200

Included observations: 194 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESEA2	-0.172427	0.031783	-5.425155	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.132320 0.132320 1.192209 274.3231 -308.8796	Mean depen S.D. depend Akaike info Schwarz cri Durbin-Wats	dent var criterion terion	4.81E-17 1.279890 3.194635 3.211479 2.071825

Calcul des paramètres et de la statistique « F » du test :

L'estimation précédente nous fournit : $\lambda = -0.172427$. Ce qui nous aide à calculer le coefficient « $\hat{\beta}^2$ » comme suit :

$$\hat{\beta}^2 = \hat{\lambda}^2 \left[\sum_{t=p+1}^T \hat{e}_t^2 \right] = (-0.172427)^2 \times (1407.081) = 41.8340$$

Et par endroit, la statistique « F » du test comme suit :

$$\hat{F} = \hat{\beta}^2 \left[\frac{T - 2p - 2}{\sum_{t=p+1}^T \hat{u}_t^2 - \hat{\beta}^2} \right] = \frac{190 \times 41.8340}{316.1571 - 41.8340} = 28.9748 \sim F_{\alpha(1,190)}$$

Les hypothèses du test sont :

Ho: EA est linéaire ($\hat{F}_c < F_t$, prob > 5%)

H1: EA n'est pas linéaire $(\hat{F}_c > F_t, prob < 5\%)$

NB: au seuil de 5%: F(1,190)=3,84, et au seuil de 1%: F(1,190)=6,64.

<u>Décison</u>: nous rejetons l'hypothèse nulle à 5% et 1% ($\widehat{F}_c > F_t$) et affirmons que notre processus ARCH(1) « EA » n'est pas linéaire : ce qui confirme notre présomption sur Skewness.

Cas pratique 7.3: Méthodologie de Box et Jenkins et Modélisation <u>hétéroscédastique</u>

(Cfr page suivante)

VII.1. METHODOLOGIE DE BOX ET JENKINS

VII.1.1. RAPPELS THEORIQUES

L'étude d'une série aux fins de prévision, par l'approche méthodologique de Box et Jenkins, passe par les cinq étapes qui suivent :

- o L'étude de la stationnarité (tests ADF ou PP; graphiques);
- o L'identification du processus adéquat (lecture des corrélogrammes);
- o L'estimation du modèle/processus optimal retenu;
- o L'inférence statistique (diagnostic/validation du modèle estimé);
- o La prévision.

A. Etude de la stationnarité

On se sert des tests formels et informels pour étudier la stationnarité de la série sous-étude (soit X_t). Si elle est non stationnaire, la stationnariser par les MCO ou l'écart à la tendance (TS), soit par la différenciation ou les filtres aux différences (DS).

B. Identification du processus adéquat (modèle optimal) et Estimation

Cette étape consiste à déterminer, dans la famille ARIMA⁽¹⁾, le processus générateur de \mathbf{X}_{t} – par principe de parcimonie – ainsi que son ordre (décalage optimal). Le décalage optimal d'un ARIMA correspond au nombre (k) des coefficients d'autocorrélations simple ou partiel statistiquement significatifs (Cfr corrélogramme de la série). L'on notera que :

- (i) Pour un AR, l'ordre correspond au nombre des coefficients d'autocorrélation partiel (PAC) non nuls (différents de 0), tandis que ;
- Pour un MA, l'ordre correspond au nombre des coefficients (ii) d'autocorrélation simple (AC) non nuls (différents de 0);
- Pour un ARMA, les ordres sont respectivement définis suivant AR et MA. (iii) Toute fois, les processus mixtes (ARMA) présentent parfois des fonctions d'autocorrélation (AC et PAC) complexes/difficiles à interpréter, nécessitant une procédure itérative du genre identificationestimation-diagnostic.

qu'en cas de décroissance trop lente d'une fonction/graphe d'autocorrélation, il est souhaitable de différencier la série avant d'identifier le modèle. En outre, en général, le nombre « k » de décalage optimal admissible – pour que les coefficients d'autocorrélation aient un sens - est donné par l'intervalle : $\frac{n}{6} \le k \le \frac{n}{3}$, soit $k = \frac{n}{5}$ ($\forall n \ge 150$); où n = nombre d'observations.

¹ Nous nous intéressons aux processus non saisonniers (où toute composante saisonnière a été élimée). Les processus ARIMA saisonniers (SARIMA) font l'objet d'une spécification particulière, et ne sont pas abordés dans ce cadre.

Toute fois, la prudence s'impose quant à la l'identification⁽¹⁾. De manière générale, les fonctions d'autocorrélation doivent afficher des décroissances exponentielles monotones ou sinusoïdales. Cela doit s'observer comme suit :

- Pour un AR, la décroissance exponentielle doit s'observer sur la fonction
- Pour un MA, la décroissance exponentielle doit s'observer sur la fonction PAC (Partial autocorrelation).

Les conséquences d'une mauvaise identification sont entre autres l'invalidation des hypothèses de base des MCO (après estimation du modèle), et une prévision moins performante. Pour améliorer les résultats d'estimation et de prévision, le passage d'un processus à un autre se fait comme suit :

$$\begin{cases} ARIMA (p,d,q) \rightarrow ARIMA(p,d,0); \\ ARIMA (p,d,q) \rightarrow ARIMA(p+1,d-1,0) \end{cases}$$

Une fois le processus générateur de la série (X_t) identifié, passer à l'estimation par les MCO.

C. Diagnostic (inférence)

Pour confirmer le processus, il tient de tester la significativité des paramètres estimés (les paramètres statistiquement non significatifs doivent être éliminés/abandonnés). Aussi, tester :

- ▶ Si les résidus sont des bruits blancs⁽²⁾ gaussiens (homoscédasticité, absence d'autocorrélation des erreurs et normalité);
- La linéarité du modèle (test de significativité conjointe des paramètres);
- La stationnarité de la série dans le modèle estimé.

Si l'on considère le modèle ARIMA (2,0,0) estimé comme suit :

$$\hat{X}_{t} = \hat{\Phi}_{1} X_{t-1} + \hat{\Phi}_{2} X_{t-2} \dots \dots [7.1]$$

Tester la stationnarité de X_t à partir ce modèle revient à vérifier que les racines du polynôme retard associé à ce modèle sont à l'extérieur du cercle unité. C'est-àdire:

$$\begin{array}{l} \left(1-\widehat{\Phi}_1L-\widehat{\Phi}_2L^2\right)=0 \Longrightarrow \begin{cases} |L_1|>1\\ |L_2|>1 \end{cases} : \text{ Condition de sationnarit\'e de } X_t \\ \left[\Phi(L)=0 \text{ et que } |L_i|>1 \right] \end{array}$$

Si la prévision dans l'échantillon est bonne. Voir si le coefficient de Theil est proche de o ou si le Mean Absolute Percent Error (MAPE) est faible.

En outre, l'on notera que les étapes d'identification, estimation et diagnostic peuvent être réitérées jusqu'à aboutir au résultat qui soit jugé satisfaisant (retenir le modèle adéquat).

² Les résidus « $\mathbf{u_t}$ » sont des bruits blancs (c.à.d. processus strictement stationnaires) s'ils sont indépendants et identiquement distribués (iid) sur n'importe quel sous ensemble de temps (1,2,...,T).

Jonas KIBALA KUMA, DEA-PTC Economie (Unikin) en cours. Mail: kibala.jonas@gmail.com

¹ C'est l'étape la plus subjective dans la procédure de Box et Jenkins.

Elle dépend de la nature de la série, selon qu'elle est stationnaire en tendance (TS) ou qu'elle est stationnaire en différence (DS).

(i) Si la série est un DS

Soit un processus ARIMA (1,1,0) stationnaire en différence, estimé comme suit :

$$\Delta \hat{X}_{t} = \hat{a}_{0} + \hat{a}_{1} \Delta X_{t-1} \dots [7.2]$$

Sachant que $\Delta X_t = X_t - X_{t-1}$, [7.2] peut s'écrire alors :

$$\widehat{X}_t = \widehat{a}_0 + \widehat{a}_1 \Delta X_{t-1} + \widehat{X}_{t-1}$$

Ainsi:

la prévision à l'horizon « h » sera :

$$\widehat{X}_{t+h} = \widehat{a}_0 + \widehat{a}_1 \Delta X_{t-1+h} + \widehat{X}_{t-1+h}$$

▶ Si **h** = 1, alors :

$$\widehat{X}_{t+1} = \widehat{a}_0 + \widehat{a}_1 \Delta X_t + \widehat{X}_t$$

(ii) Si la série est un TS

Soit le processus ARIMA (1,0,0) stationnaire en tendance, estimé comme cidessous :

$$\hat{\mathbf{Z}}_{t} = \hat{\mathbf{a}}_{1} \mathbf{Z}_{t-1} \dots [7.3]$$

avec:
$$\widehat{Z}_t = X_t - \widehat{X}_t [7.4a] \ et \ \widehat{X}_t = \hat{b}_0 + \hat{b}_1 t [7.5]$$

[**7.5**] dans [7.4a]:

$$\hat{\mathbf{Z}}_{t} = \mathbf{X}_{t} - (\hat{\mathbf{b}}_{0} + \hat{\mathbf{b}}_{1}t) \dots \dots [7.4b]$$

De [7.4b], on déduit que :

$$X_t = \hat{Z}_t + \hat{b}_0 + \hat{b}_1 t \dots [7.6], t = 0, 1, 2, \dots, T \text{ (tendance)}$$

Ainsi:

A l'horizon « h », la prévision de X_t sera :

$$X_{t+h} = \hat{Z}_{t+h} + \hat{b}_0 + \hat{b}_1(t+h)$$

▶ Si h = 2 et que T = 150, alors :

$$\begin{cases} X_{t+1} = \hat{Z}_{t+1} + \hat{b}_0 + \hat{b}_1(t+1) \text{ , avec } T+1 = 151 \\ X_{t+2} = \hat{Z}_{t+2} + \hat{b}_0 + \hat{b}_1(t+2) \text{ , avec } T+2 = 152 \end{cases}$$

Comment trouver $\hat{\mathbf{Z}}_{t+1}$ et $\hat{\mathbf{Z}}_{t+2}$? Référons-nous à [7.3] et faisons :

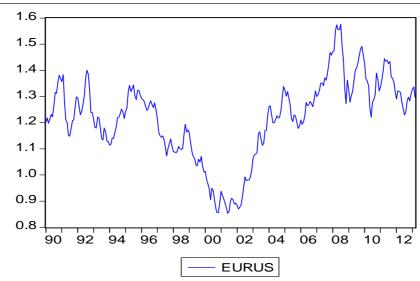
$$\begin{cases} \widehat{Z}_{t+1} = \widehat{a}_1 Z_t \\ \widehat{Z}_{t+2} = \widehat{a}_1 \widehat{Z}_{t+1} \end{cases}$$

<u>NB</u>: Si X_t est une série logarithmique (on écrira LX_t), dans ce cas: $X_{t+h} = e^{(LX_{t+h})}$.

La prévision (ponctuelle) une fois réalisée, il tient de visualiser graphiquement la série brute et la série prévue (ajustée) dans l'échantillon et en dehors de celui-ci (à l'horizon h)⁽¹⁾.

Il tient de préciser aussi qu'il est possible de construire un intervalle de prévision pour juger de la performance de la prévision effectuée. En fait, pour un ARIMA (2,0,0) [Cfr expression 7.1] estimé comme suit : $\hat{X}_t = \hat{\Phi}_1 X_{t-1} + \hat{\Phi}_2 X_{t-2}$, l'intervalle de prévision de X_t à l'horizon h (pour le seuil de confiance de 95%, soit $\alpha = 0.05$) est (2):

$$\widehat{X}_t(h) \pm 1,96\sigma_{\widehat{e}} \left[\sum_{i=0}^{h-1} {\gamma_i}^2 \right]^{\frac{1}{2}} \text{, avec } \begin{cases} \gamma_1 = \emptyset_1 \\ \gamma_2 = \emptyset_1^2 + \emptyset_2 \\ \gamma_3 = \emptyset_1^3 + 2\emptyset_1\emptyset_2 \end{cases} \text{ et } \sigma_{\widehat{e}} = \frac{(SCR)}{T-k}$$


ETUDE DE LA SERIE « EURUS » PAR VII.1.2. METHODOLOGIQUE DE BOX ET JENKINS

- a) Etude de la stationnarité
- Evolution graphique de la parité Euro-dollar (série « EURUS ») : test informel

_Sur EViews, taper :

create m 1990:01 2013:03 plot EURUS

Evolution mensuelle de la parité Euro-Usd (de janvier 1990 à mars 2013)

¹ On parle de la prévision in casting (dans l'échantillon) et out casting (hors échantillon).

 $^{^{2}}$ σ_{θ} = l'écart-type de l'erreur de prévision; SCR = Somme des Carrés des Résidus (SCR); T et k = taille de l'échantillon et nombre des régresseurs.

Jonas KIBALA KUMA, DEA-PTC Economie (Unikin) en cours. Mail: kibala.jonas@gmail.com

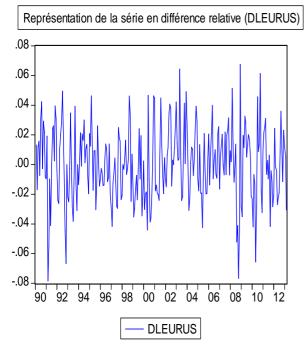
_Constat : à la lecture du graphique ci-haut, l'on présume une non stationnarité en moyenne (la série «EURUS» accuse une tendance évolutive/variable avec le temps) et en variance (à cause de la forte variabilité ou volatilité de la série). NB: l'échantillon a 279 observations.

Test d'Augmented Dickey-Fuller (ADF) : test formel

Sur Eviews, taper:

ident EURUS \rightarrow (lags: 15): pour obtenir la figure à gauche (corrélogramme); uroot EURUS \rightarrow (user specified : 4): pour obtenir les résultats à droite:

	1000 201103					
Date: 01/05/14 Time: 20:43 Sample: 1990M01 2013M03 Included observations: 279						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.945 0.913 0.881 0.850 0.822 0.794 0.773 0.753 0.731 0.709 0.689 0.671 0.657	-0.311 0.131 -0.103 0.081 -0.034 0.036 0.106 -0.056 -0.023 -0.011 0.033 0.046 0.044	981.23 1188.1 1382.0 1563.8 1736.6 1901.1 2056.9 2204.1 2343.4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

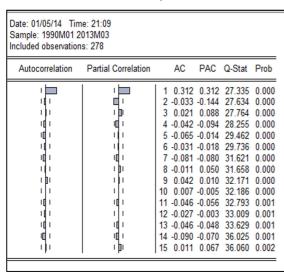

Null Hypothesis: EURUS has a unit root Exogenous: Constant Lag Length: 4 (Fixed)					
			t-Statistic	Prob.*	
Augmented Dickey-F	uller test statis	stic	-2.021600	0.2775	
Test critical values:	1% level		-3.454085		
	5% level		-2.871883		
	10% level		-2.572354		
*MacKinnon (1996) or	ne-sided p-valu	Jes.			
Augmented Dickey-F Dependent Variable: Method: Least Square	es				
Dependent Variable: I	es e: 20:41 990M06 2013N		t-Statistic	Prob.	
Dependent Variable: I Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable	es e: 20:41 990M06 2013M e: 274 after adj	Std. Error			
Dependent Variable: I Method: Least Squar Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable EURUS(-1)	es e: 20:41 990M06 2013N e: 274 after adj	ustments	t-Statistic -2.021600 6.373162	0.0442	
Dependent Variable: I Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable	es e: 20:41 990M06 2013M e: 274 after adj Coefficient -0.023119	Std. Error	-2.021600	0.0442 0.0000	
Dependent Variable: I Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3))	es : 20:41 990M06 2013M : 274 after adj Coefficient -0.023119 0.387072 -0.173665 0.143037	0.011436 0.060735 0.064724 0.064341	-2.021600 6.373162 -2.683156 2.223096	0.0442 0.0000 0.0077 0.0270	
Dependent Variable: I Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3)) D(EURUS(-4))	es : 20:41 990M06 2013M :: 274 after adj Coefficient -0.023119 0.387072 -0.173665 0.143037 -0.071168	0.011436 0.060735 0.064724 0.064341 0.061117	-2.021600 6.373162 -2.683156 2.223096 -1.164459	0.0442 0.0000 0.0077 0.0270 0.2453	
Dependent Variable: I Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3))	es : 20:41 990M06 2013M : 274 after adj Coefficient -0.023119 0.387072 -0.173665 0.143037	0.011436 0.060735 0.064724 0.064341	-2.021600 6.373162 -2.683156 2.223096	0.0442 0.0000 0.0077 0.0270	
Dependent Variable: I Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3)) D(EURUS(-4)) C R-squared	es :: 20:41 990M06 2013M :: 274 after adj Coefficient -0.023119 0.387072 -0.173665 0.143037 -0.071168 0.028225 0.143517	Std. Error 0.011436 0.060735 0.064724 0.064341 0.061117 0.014005 Mean deper	-2.021600 6.373162 -2.683156 2.223096 -1.164459 2.015308	0.0442 0.0000 0.0077 0.0270 0.2453 0.0449	
Dependent Variable: I Method: Least Squar Date: 01/05/14 Time Sample (adjusted): 1! Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3)) D(EURUS(-3)) C R-squared Adjusted R-squared	es : 20:41	0.011436 0.060735 0.064724 0.064341 0.061117 0.014005 Mean deper S.D. depend	-2.021600 6.373162 -2.683156 2.223096 -1.164459 2.015308	0.0442 0.0000 0.0077 0.0270 0.2453 0.0449 0.000234 0.030854	
Dependent Variable: I Method: Least Squara Date: 01/05/14 Time Sample (adjusted): 15 Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3)) D(EURUS(-4)) C R-squared Adjusted R-squared S.E. of regression	es: 20:41 990M06 2013N :: 274 after adj Coefficient -0.023119 0.387072 -0.173665 0.143037 -0.071168 0.028225 0.143517 0.127538 0.028819	Std. Error 0.011436 0.060735 0.064724 0.064341 0.061117 0.014005 Mean deper S.D. depend	-2.021600 6.373162 -2.683156 2.223096 -1.164459 2.015308 Indent var dent var criterion	0.0442 0.0000 0.0077 0.0270 0.2453 0.0449 0.000234 0.030854 -4.233875	
Dependent Variable: I Method: Least Squar Date: 01/05/14 Time Sample (adjusted): 1! Included observations Variable EURUS(-1) D(EURUS(-1)) D(EURUS(-2)) D(EURUS(-3)) D(EURUS(-3)) C R-squared Adjusted R-squared	es : 20:41	0.011436 0.060735 0.064724 0.064341 0.061117 0.014005 Mean deper S.D. depend	-2.021600 6.373162 -2.683156 2.223096 -1.164459 2.015308 Indent var dent var criterion	0.0442 0.0000 0.0077 0.0270 0.2453 0.0449 0.000234 0.030854	

Constat: le lag « 4 » dans « user specified » correspond au nombre de retard ou termes significativement différents de zéro (ceux qui traversent l'intervalle de confiance: Cfr corrélogramme partiel). Au regard des résultats issus du test « ADF » (|ADF| < |Mackinnon| au seuil de 5%), l'on confirme que la série « EURUS » est non stationnaire en niveau du type DS (sans tendance, mais avec dérive). Pour la stationnariser, nous procédons par les filtres aux différences (différence première). Sur **EViews**, faire:

```
genr DLEURUS=d(log(EURUS))
plot DLEURUS
uroot DLEURUS
```

Ce qui nous donne le graphique (à gauche) et les résultats du test ADF (à droite) cidessous. Rien qu'à observer le graphique et, parce que |ADF|>|Mackinnon| à 5%, l'on déduit que la série différenciée d'ordre 1 « DLEURUS » est stationnaire :

Null Hypothesis: DLEURUS has a unit root Exogenous: None Lag Length: 1 (Fixed)							
	t-Statistic Prob.*						
Augmented Dickey-Fuller test statistic							
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(DLEURUS) Method: Least Squares Date: 01/05/14 Time: 21:11 Sample (adjusted): 1990M04 2013M03 Included observations: 276 after adjustments							
I	ncluded observations	: 276 after adj					
-	Variable	Coefficient		t-Statistic	Prob.		
			ustments				


Constat : pour un lag fixé à « 1 » dans « user specified » (Cfr Corrélogramme cibas: identification), notre série différenciée est stationnaire sans trend, ni intercept (les modèles avec trend et/ou intercept se sont révélés non significatifs).

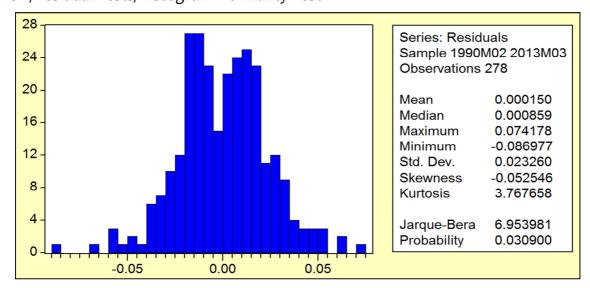
b) L'identification et l'estimation du processus adéquat/optimal

Pour identifier le processus adéquat dans la famille ARIMA – celui qui soit susceptible de nous reproduire le mode opératoire de la série « EURUS » – nous nous référons d'abord au corrélogramme de la série stationnaire « DLEURUS » (méthode quelque peu informelle), ensuite jugerons de la significativité/bonté du modèle ainsi identifié (au cas contraire, retenir le processus significatif par tâtonnement/réitération : Cfr rappels théoriques). A gauche (le corrélogramme de « DLEURUS » et à droite (les résultats du modèle identifié au départ : arima (1,1,1)) :

Dependent Variable: DLEURUS

Sur **EViews**, faire: ident DLEURUS et Is DLEURUS ar(1) ma(1)

Method: Least Square Date: 01/05/14 Time Sample (adjusted): 19 Included observations Convergence achieved Backcast: 1990M02	: 21:35 990M03 2013N : 277 after adj	ustments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) MA(1)	-0.132893 0.512801			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.128512 0.125343 0.023272 0.148933 649.6203	Schwarz crit	dent var criterion terion	0.000223 0.024883 -4.675959 -4.649793 1.989823
Inverted AR Roots Inverted MA Roots	13 51			


_Constat : notre « arima(1,1,1) » nous donne des résultats non satisfaisant pour la composante autorégressive qui est statistiquement non significative. Tout compte fait, nous avons plutôt retenu le processus « arima(0,1,1) » comme adéquat. Sur **EViews**, faire : Is DLEURUS ma(1) :

Dependent Variable: DLEURUS Method: Least Squares Date: 01/05/14 Time: 21:42 Sample (adjusted): 1990M02 2013M03 Included observations: 278 after adjustments Convergence achieved after 7 iterations Backcast: 1990M01					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
MA(1)	0.402891	0.055171	7.302550	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.123917 0.123917 0.023260 0.149868 651.5967				
Inverted MA Roots	40				

c) L'inférence statistique (diagnostic/validation du modèle estimé)

Nous faisons seulement le test de normalité de Jarque-Bera (le test de bruit blanc et celui de présence d'effets ARCH étant concluant).

Test de normalité: Sur Eviews, dans l'output des résultats, suivre : View/Residual Tests/Histogram-Normality Test:

Constat : les résidus du modèle optimal estimé ne sont pas normalement distribués (présomption d'une non linéarité): ils sont leptokurtiques (Skewness > 3) et légèrement étalé vers la droite (Kurtosis ≠ 0 et négative : dissymétrique à gauche).

D'où, nous rejetons la spécification ARIMA au profit de la modélisation hétéroscédastique (ARCH) – qui est adaptée à l'étude des séries chronologiques

accusant une forte variabilité/volatilité (impliquant la non stationnarité, la non normalité ou la non linéarité) – pour prévoir l'évolution future de la parité Eurodollar (soit la série « EURUS »).

VII.2. MODELISATION HETEROSCEDASTIQUE

VII.2.1. RAPPELS THEORIQUES

A. Notes

L'étude des séries chronologiques a conduit au développement de plusieurs modèles parmi lesquels la spécification autorégressive – la modélisation ARMA en général - a été largement utilisée, à cause notamment de ses propriétés statistiques⁽¹⁾ qui rendent facile l'estimation, l'inférence statistique et la prévision (les séries et résidus étant générés par des processus stationnaires). Malgré ces avantages, les modèles ARMA(p,q) souffrent de la non prise en compte de certaines contraintes structurelles liées au phénomène faisant l'objet de la modélisation. Ces contraintes peuvent traduire le caractère volatile de certaines variables ou même le comportement rationnel des agents économiques, et impliquent parfois le recours à des modèles non linéaires susceptibles de rendre inadéquat la spécification ARMA. Dans ce contexte, comme le propose Engle (1982) – pour intégrer la volatilité dans la spécification ARMA – il tient de recourir au modèle Autorégressif Conditionnellement Hétéroscédastique (ARCH). En effet, ce type des modèles est adapté aux chroniques présentant les deux caractéristiques qui suivent :

- La non stationnarité (surtout en variance) ;
- La non normalité de la distribution d'une variable/série, à la suite de son caractère leptocurtique, pouvant conduire à la non linéarité de la variable/série sous étude.

Précisons que ces caractéristiques sont propres aux données financières et monétaires (inflation, taux de change, cours boursiers,...) dont l'évolution est souvent non linéaire et volatile. Il s'en suit que, pour ce type des données, les MCO ne sont pas valides à cause de l'hétéroscédasticité et la non linéarité dans les variables et certains paramètres. D'où, le recours à la méthode du maximum de vraisemblance tient lieu.

Par ailleurs, il est à préciser que le modèle ARCH consiste à représenter, de façon autorégressive, la variance de l'erreur étant donné la connaissance de son information passée⁽²⁾. Dans le groupe/famille de modèles ARCH, il est à distinguer les modèles ARCH linéaires (on y trouve les modèles: ARCH(q), ARCH-M, GARCH-M,

² On parle mieux de la régression ou représentation autorégressive de la variance des erreurs conditionnellement à son information passée.

Jonas KIBALA KUMA, DEA-PTC Economie (Unikin) en cours. Mail: kibala.jonas@gmail.com

¹ A cause de la linéarité dans les variables et dans certains paramètres, les MCO sont facilement applicables). applicables).

GARCH(p,q) et IGARCH(p,q)) des modèles ARCH non linéaires (on y trouve les modèles: TARCH(p,q), TGARCH(p,q) et EGARCH(p,q))⁽¹⁾.

En fait, les ARCH linéaires spécifient la variance conditionnelle des erreurs sous la forme quadratique et ne prend en compte que l'ampleur des valeurs passées; tandis que, les ARCH non linéaires tiennent à la fois compte du signe et de l'ampleur des valeurs passées en levant l'hypothèse des spécifications quadratiques symétriques (on fait des spécifications asymétriques des erreurs).

B. Modélisation

B.1. Les processus ARCH linéaires

L'hypothèse fondamentale sous-tendant les ARCH linéaires est la symétrie des spécifications quadratiques de la variance conditionnelles des erreurs.

1) Modèle ARCH(q)

Rappelons qu'un modèle de type ARCH(q) consiste à spécifier la variance des erreurs de façon autorégressive conditionnellement à son information passée. Une telle spécification peut généralement s'écrire :

$$var(e_t/I_{t-1}) = h_t^2 = a_0 + a_1 e_{t-1}^2 + a_2 e_{t-2}^2 + \dots + a_d e_{t-d}^2 \dots \dots [1]$$

Où $var(e_t/I_{t-1}) = 0$; $a_0 > 0$ et $a_i \ge 0$ (i = 1 ... q),

$$\sum_{i=1}^{q} a_i < 1 : condition de stationnarité$$

Avec « e_t ($t \in \mathbb{Z}$) », le résidu d'un modèle de régression général : $Y_t = AX_t + e_t$ ou d'un ARMA(p,q):

$$Y_{t} = \lambda + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \sum_{i=1}^{q} \theta_{i} e_{t-i} + e_{t} \dots \dots [1]'$$

2) Modèle ARCH Generalised (GARCH(p,q))

Il s'agit d'un modèle ARCH généralisé ; car, dans ce type des modèles, l'information – plus éloignée dans le passé – sur la variance conditionnelle des erreurs est prise en compte dans la spécification de celle-ci en y incluant les valeurs des variances décalées. Selon BOLLERSLEV (1986), le modèle GARCH(p,q) s'écrit :

$$h_t^2 = a_0 + \sum_{i=1}^q a_i e_{t-i}^2 + \sum_{i=1}^p b_i h_{t-i}^2 \dots \dots [2]$$

¹ Signalons de passage qu'il existe des modèles: Threshold Autoregressive/Autoregressif à seuils (TAR), Smooth Transition Autoregressive/Autorégressif à transition douce (STAR), Logistic STAR/STAR Logistique (LSTAR), Exponential STAR/STAR exponential (ESTAR).

Où:

$$a(L) + b(L) = \sum_{i=1}^{q} a_i L^i + \sum_{i=1}^{p} b_i L^i \quad , et$$

$$a(1) + a(1) = \sum_{i=1}^{q} a_i + \sum_{i=1}^{p} b_i < 1 \text{ (condition de stationnarité)}$$

 $\underline{NB}: L^i e_t = e_{t-i} \ (i \ge 0).$

Modèle GARCH integrated (IGARCH(p,q))

Le modèle GARCH intégré ou IGARCH est une spécification GARCH pour des processus non stationnaires en niveau (Engle et Bollerslev, 1986). L'on suppose donc que « $\sum_{i=1}^q a_i + \sum_{i=1}^p b_i > 1$ », à tel enseigne qu'un choc sur « h_t^2 » se répercute sur les valeurs de h_{t+m}^2 (m: horizon de prévision) de façon explosive, sans s'estomper dans le temps. Ce phénomène est appelé « persistance ». Il va sans dire que dans le modèle IGARCH, l'effet de persistance dans la variance des erreurs – caractéristiques des processus non stationnaires – est pris en compte.

En effet, les variances conditionnelles prévues jusqu'à l'horizon « m » s'expriment comme suit :

$$E(h_{t+m}^2/I_t) = (a+b)^m h_t^2 + a_0 \left[\sum_{i=0}^{m-1} (a+b)^i \right] \dots \dots \dots [3]$$

Si l'on considère un modèle IGARCH(1,1), où « a+b=1 », alors :

$$E(h_{t+m}^2/I_t) = h_t^2 + a_0 m \dots [3]'$$

Avec:

$$h_t^2 = a_0 + a_1 e_{t-1}^2 + b_1 h_{t-1}^2 \dots \dots [3]''$$

4) Modèle ARCH in Mean (ARCH-M) et GARCH in Mean (GARCH-M)

Les modèles ARCH et GARCH avec effet de moyenne sont de spécifications dans lesquelles les effets ARCH et GARCH respectivement influencent aussi la moyenne conditionnelle (Engle, Lilien et Robins, 1987).

Considérons la régression suivante :

$$Y_t = CX_t + f(h_t^2) + e_t \dots \dots \dots [4]$$

Où : $Y_t/I_{t-1} \to N(u_t ; h_t^2)$, avec : $u_t = E(Y_t) = CX_t + f(h_t^2)$ et $f(h_t^2)$: fonction de « h_t^2 ».

Dans cette régression, l'espérance conditionnelle « u_t » est exprimée en fonction de la variance conditionnelle « h_t^2 ». Autrement dit, le niveau atteint par la variable est expliquée par sa forte variabilité (volatilité). Considérant l'expression (4) : (i) on fera allusion à un modèle de type ARCH-M si la variance conditionnelle des erreurs « h_t^2 » — tenant compte des effets ARCH — peut s'écrire : $h_t^2 = a_0 + a_1 e_{t-1}^2 + a_2 e_{t-2}^2 + \cdots + a_q e_{t-q}^2$, et (ii) on fera allusion à un modèle de type GARCH-M si la

variance conditionnelle des erreurs « h_t^2 » – tenant compte des effets GARCH – peut s'écrire:

$$h_t^2 = a_0 + \sum_{i=1}^q a_i e_{t-i}^2 + \sum_{i=1}^p b_i h_{t-i}^2$$

B.2. Les processus ARCH non linéaires

L'hypothèse à la base des ARCH non linéaires est la prise en compte de l'asymétrie de l'information ou effet de levier dans les spécifications quadratiques de la variance conditionnelle des erreurs.

5) Modèles Exponential GARCH (EGARCH)

Le modèle GARCH exponentiel, difficile à manier ou à interpréter, est une spécification adaptée au modèle GARCH où « a_i et b_i » sont négatifs, levant ainsi les contraintes de non négativité imposées aux paramètres. Ce type des modèles s'expriment comme suit :

$$\log(h_t^2) = a_0 + \sum_{i=1}^q a_i \left\{ \gamma V_{t-i} + \lambda [|V_{t-i}| + E|V_{t-i}|] \right\} + \sum_{i=1}^p b_i \log(h_{t-i}^2) \dots \dots [5]$$

Avec:

$$V_{t-i} = \frac{e_{t-i}}{h_{t-i}}$$
: l'erreur standardisée

6) Modèles Threshold ARCH (TARCH) et Threshold GARCH (TGARCH)

La modélisation ARCH ou GARCH à seuils consiste à intégrer l'effet d'asymétrie dans les spécifications quadratiques de la variance conditionnelle des erreurs, si bien que le signe et l'amplitude d'un choc dans les erreurs décalées soient déterminants quant à ses effets sur la variance conditionnelle au temps t.

_Le modèle ARCH à seuils (TARCH(q)) s'écrit :

$$h_t^2 = a_0 + a_1 e_{t-1}^2 + \lambda e_{t-1}^2 D_{t-1} \dots \dots [6]$$

Où $D_{t-1} = \begin{cases} 1, si \ e_{t-1} < 0 \\ 0, ailleurs \end{cases}$: variable dichotomique permettant de capter l'effet de levier ou d'asymétrie.

_Le modèle GARCH à seuils (TGARCH(p,q)) s'écrit :

$$h_t^2 = a_0 + \sum_{i=1}^q a_i e_{t-i}^2 + \lambda e_{t-1}^2 D_{t-1} + \sum_{i=1}^p b_i h_{t-i}^2$$

C. Arbitrage entre la modélisation ARMA sans effets ARCH et celle avec effets ARCH

Lorsqu'on cherche à déterminer, dans la famille ARIMA, le processus qui permet de reproduire au mieux le mode opératoire d'une chronique (par principe de parcimonie), il est indispensable d'étudier la volatilité de celle-ci ou d'y tester la présence d'effets ARCH, surtout s'il s'agit d'une variable financière ou monétaire. En fait, la présence d'effets ARCH est synonyme d'autocorrélation de la variance des résidus, avec comme corollaire l'inflation de la variance ou la non stationnarité en variance, la non normalité, et donc la non linéarité de la série concernée. Alors, pour tester la présence d'effets ARCH dans un processus, l'on peut procéder par une série de tests dont :

- L'analyse graphique des séries brutes et stationnaires ;
- L'étude des statistiques descriptives de la série ;
- Les tests de marche aléatoire et de présence d'effets ARCH d'ordre supérieur à 3; et,
- La spécification autorégressive de la série filtrée (stationnaire) au carré.

(i) L'analyse graphique

En représentant sur un même graphique les séries brute et filtrée, l'on aura à présumer l'existence d'une hétéroscédasticité conditionnelle si la série laisse présager des fortes variabilités ou une non stationnarité en variance.

(ii) L'étude des statistiques descriptives

L'une des caractéristiques des processus ARCH est la non normalité (ou non linéarité) de la série. La statistique de Jarque-Bera, ainsi que sa probabilité associée conduisent l'inférence.

(iii) Le test de marche aléatoire

Basé sur la statistique de Ljung-Box, le test de bruit blanc permet de juger de l'hétéroscédasticité de la variance conditionnelle des erreurs lorsque l'on s'intéresse aux corrélogrammes des carrés des résidus. Ces derniers permettent de tester:

Ho: la spécification est du type ARMA (termes du corrélogramme significativement nuls: prob > 5%);

H1: la spécification est du type ARCH (termes du corrélogramme significativement différent de zéro : prob < 5%).

Aussi, le test ARCH d'hétéroscédasticité d'ordre > 3 - appelé aussi test du multiplicateur de vraisemblance - renseigne sur la nécessité ou pas d'une modélisation du type ARCH. Les hypothèses du test sont :

Ho : Absence d'effets ARCH d'ordre > 3 (4) : prob > 5% , $F_c < F_t$);

H1: Existence d'effets ARCH d'ordre > 3 (4): prob < 5%, $F_c > F_t$).

En outre, si l'on considère la spécification des erreurs du type ARCH(q) suivante :

$$h_t^2 = a_0 + a_1 e_{t-1}^2 + a_2 e_{t-2}^2 + \dots + a_q e_{t-q}^2$$

Les hypothèses à vérifier sont :

Ho: $a_1 = a_2 = \cdots = a_q = 0$: Modélisation ARMA des erreurs (prob > 5%, $F_c < F_t$); H1: $a_1 \neq a_2 \neq \cdots \neq a_q \neq 0$: Modélisation ARCH des erreurs (prob < 5%, $F_c > F_t$).

Il s'agit là d'un test de Fisher. L'on peut aussi recourir au multiplicateur de Lagrange (LM) – qui suit la statistique de χ^2 à q degré de liberté – pour vérifier si :

Ho : Modèle linéaire ARMA ($LM < \chi_a^2$); H1: Modèle linéaire ARCH ($LM > \chi_a^2$).

(iv) Spécification autorégressive de la série filtrée au carré

Considérons un AR(1) tel que : $Y_t = \emptyset_0 + \emptyset_1 Y_{t-1} + \varepsilon_t$. La spécification autorégressive d'ordre 1 de la série « Y_t » filtrée au carré s'écrit : $Z_t = \emptyset_0 + \emptyset_1 Z_{t-1}$, avec : $Z_t = (\Delta Y_t)^2$. Les hypothèses sont :

Ho: $\hat{\phi}_1 = 0$: Absence d'hétéroscédasticité conditionnelle (Modélisation ARMA sans effets ARCH (prob > 5%, $|t_c| < |t_t|$);

H1: $\hat{\phi}_1 \neq 0$: Existence d'hétéroscédasticité conditionnelle (Modélisation ARMA avec effets ARCH (prob < 5%, $|t_c| > |t_t|$).

D. Choix ou sélection du processus ARCH adéquat (optimal)

En présence d'une hétéroscédasticité conditionnelle de la variance des résidus, le choix sur un processus ARCH adéquat est guidé par plusieurs critères, notamment le caractère marche aléatoire des résidus issus de la variance conditionnelle, les meilleurs propriétés prédictives (MAPE faible et l'indice d'inégalité de Theil proche de zéro) et la meilleure qualité de l'équation de la moyenne (faible AIC).

Par ailleurs, l'arbitrage peut aussi se faire comme suit :

Modèle ARCH vs GARCH

Partant de la spécification des erreurs de la forme GARCH(p,q) suivante :

$$h_t^2 = a_0 + \sum_{i=1}^q a_i e_{t-i}^2 + \sum_{i=1}^p b_i h_{t-i}^2 \dots \dots [Cfr \ expression \ 2]$$

L'on peut tester si :

Ho: $b_i = 0$: Modélisation ARCH des erreurs ($LM < \chi^2(p), prob > 5\%$); H1: $b_i \neq 0$: Modélisation GARCH des erreurs ($LM > \chi^2(p)$, prob < 5%).

Modèle GARCH vs IGARCH

Si la série brute sous-étude est non stationnaire, le modèle GARCH fait place au modèle GARCH intégré (IGARCH).

Modèle GARCH vs EGARCH

Le modèle GARCH fait place au modèle EGARCH si l'effet de levier est validé : c.à.d. « γ » est statistiquement significatif (Cfr expression 5).

Modèle GARCH vs TGARCH

Le modèle GARCH fait place au modèle TGARCH en présence d'effets seuils, c.à.d. quand « λ » est statistiquement significatif dans « l'expression 6 ».

Modèle ARCH ou GARCH vs ARCH-M ou GARCH-M

Les modèles ARCH ou GARCH font place aux modèles ARCH-M ou GARCH-M si le paramètre associé à la variance conditionnelle « h_t^2 » est statistiquement significatif (Cfr expression 4), ou si graphiquement les fortes inflations lisibles sur la série brute correspondent aux fortes variabilités (lisibles sur la série filtrée) de la série concernée.

E. Estimation des modèles ARCH⁽¹⁾

Pour estimer les paramètres des modèles ARCH, l'on recourt souvent à la méthode de moindres carrés pondérés ou à des algorithmes fondés sur la méthode du maximum de vraisemblance.

F. Prévision des modèles ARCH

La prévision à travers une modélisation ARCH sera dite meilleure si elle minimise le MAPE (Mean Absolute Pourcentage Error) et présente un coefficient de Theil proche de zéro : faut-il encore que les résidus de la variance conditionnelle des erreurs soient des bruits blancs (gaussiens).

VII.2.2 ETUDE DE LA SERIE BRUTE « EURUS » PAR LA MODELISATION **HETEROSCEDASTIQUE (ARCH)**

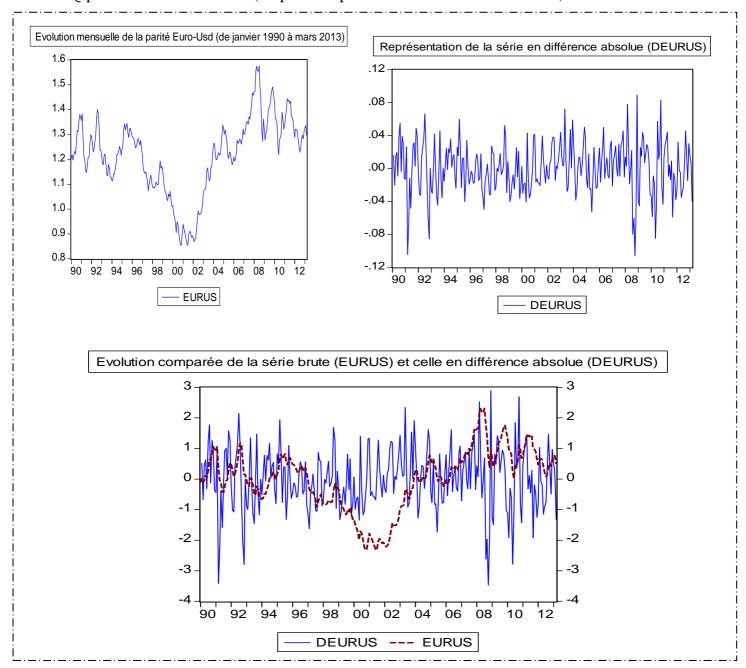
Rappelons que, faisant partie de la famille ARIMA, la modélisation ARCH est de nature à éliminer l'hétéroscédasticité conditionnelle. Aussi, nous y recourons pour deux raisons:

- o Du point de vue « statistique »: Le caractère non normal/non linéaire de notre série « EURUS »;
- o Du point de vue théorique : La paire « Euro-dollars » étant la plus traidée (une bonne part des transactions sur les marchés financiers/Forex⁽²⁾ sont axées sur la parité « EUR/US » : soit 30%), elle est victime des fortes spéculations et, par endroit, d'une forte volatilité (ce qui rend inadéquat l'approche de Box et Jenkins pour la modélisation de ce produit du Forex : la paire « EUR/US »).

² Selon «FxPro» (plateforme d'information financière) ou consulter les analyses des Economistes sur « fr.investing.com/economic-calendar » (A savoir: environ 100 paires des devises font l'objet de 95% des spéculations sur le Forex).

Jonas KIBALA KUMA, DEA-PTC Economie (Unikin) en cours. Mail: kibala.jonas@gmail.com

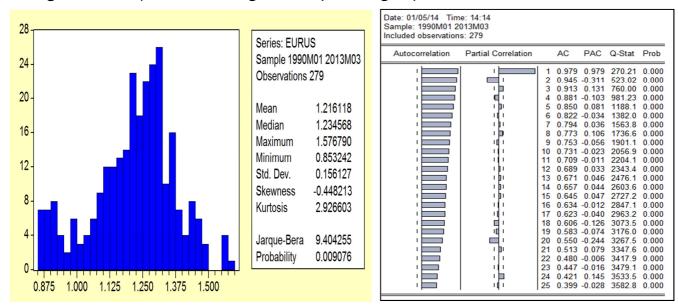
¹ GARCH est identifié suivant la même logique que le processus ARMA.


Précisons aussi que nous allons estimer six modèles (ARCH, GARCH, TGARCH, EGARCH, ARCH-M et GARCH-M) parmi lesquels nous retiendrons le plus performant, et allons procéder comme suit :

- Représentations graphiques des séries « EURUS » et « DEURUS » ;
- (ii) Statistiques descriptives et test de normalité de la série « EURUS » ;
- (iii) Etude de la volatilité de la série « EURUS »;
- (iv) Estimation des modèles (6) et recherche du modèle optimal
- (v) Prévision

A. Représentations graphiques des séries « EURUS » et « DEURUS »

Sur **EViews**, faire:


genr DEURUS=d(EURUS) plot DEURUS EURUS (« options » pour les axes : Normalized data)

B. Statistiques descriptives et test de normalité de la série « EURUS »

_Sur **EViews**, dans l'output des données, cliquer (pour obtenir la figure à gauche): View/Descriptive Statistics/Histogram and stats; et cliquer (pour obtenir la figure à droite): View/Correlogram... \rightarrow (level; lag=25):

Constats:

- o (i) Skewness (mesure d'asymétrie, il est nul pour une distribution normale) = -0.448213: c.à.d. distribution dissymétrique à gauche (étalée à droite). D'où, présomption de non linéarité (Skewness non nul); (ii) Kurtosis (mesure d'applatissement, il avoisine « 3 » pour une distribution normale) = 2.926603 \approx (<) 3: c.à.d. distribution platykurtique (centre moins élevé); et (iii) Jarque-Bera (test de normalité, avec Ho : le processus est normalement distribué). La probabilité associée est de 0.009076 < 5%: rejet de l'hypothèse de normalité pour la série « EURUS » sous-étude ;
- o Notre série brute «EURUS» suivrait un processus du type «AR(2)» (Cfr corrélogramme). Elle accuse aussi une non stationnarité (décroissance lente des termes du corrélogramme simple), serait-il beaucoup plus en variance.

C. Etude de la volatilité de la série « EURUS »

Pour étudier la volatilité de notre série « EURUS », régressons « DEURUS » au carré sur cette même série décalée (cette façon de procéder permet de juger de l'autocorrélation de la variance des résidus/hétéroscédasticité).

```
Sur EViews, faire:
genr DEURUS2=DEURUS^2
ls DEURUS c DEURUS2(-1)
```


Dependent Variable: DEURUS2 Method: Least Squares Date: 01/05/14 Time: 14:07

Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.000769	0.000107	7.176047	0.0000
DEURUS2(-1)	0.184564	0.059266	3.114178	0.0020
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.034065	Mean dependent var		0.000942
	0.030552	S.D. dependent var		0.001549
	0.001525	Akaike info criterion		-10.12609
	0.000640	Schwarz criterion		-10.09992
	1404.463	F-statistic		9.698106
	2.058548	Prob(F-statistic)		0.002039

_Constat: le paramètre associé à « DEURUS2(-1) » est statistiquement significatif, ce qui permet d'accepter l'hypothèse d'hétéroscédasticité conditionnelle (la variation de «EURUS» au temps «t» est fonction de son évolution au temps « t-1 »).

D. Estimation des modèles et recherche du modèle optimal

1) Estimation des modèles

a) Estimation du modèle ARCH

Nous estimons un AR(1)⁽¹⁾ ou un AR(2) à partir duquel nous effectuons le test de présence d'effets ARCH pour juger de la nécessité d'une modélisation ARCH.

Estimation du modèle AR(1):

_Sur **EViews**, faire : Is EURUS c EURUS(-1)

Dependent Variable: EURUS Method: Least Squares Date: 01/05/14 Time: 14:17

Sample (adjusted): 1990M02 2013M03 Included observations: 278 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EURUS(-1)	0.023235 0.981167	0.014424 0.011767	1.610806 83.38097	0.1084 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.961817 0.961679 0.030618 0.258735 575.6954 1.361607	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	1.216169 0.156406 -4.127305 -4.101207 6952.386 0.000000

¹Le processus générateur de la série « EURUS » était un **arima(1,1,1)** si l'on s'en tient aux résultats issus de la procédure Box-Jenkins appliquée à cette série. C'est ainsi que nous estimons les modèles AR(1) et AR(2), le processus arima(1,1,1) étant non significatif.

Estimation du modèle AR(2):

_Sur **EViews**, faire : Is EURUS c EURUS(-1) EURUS(-2)

Dependent Variable: EURUS Method: Least Squares Date: 01/16/14 Time: 14:01

Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.030959	0.013764	2.249333	0.0253
EURUS(-1)	1.299107	0.057303	22.67079	0.0000
EURUS(-2)	-0.324468	0.057363	-5.656356	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.965841	Mean dependent var		1.216163
	0.965592	S.D. dependent var		0.156689
	0.029065	Akaike info criterion		-4.227801
	0.231466	Schwarz criterion		-4.188551
	588.5504	F-statistic		3873.704
	1.910455	Prob(F-statistic)		0.0000000

Commentaires: le modèle AR(2) est plus significatif que le modèle AR(1), ce qui nous amène à retenir le processus AR(2) qui est optimal.

Inférences sur le modèle AR(2) estimé :

_Sur EViews, dans l'output de l'estimation (figure à gauche: obtenir le corrélogramme des résidus (simple)), suivre : View/Residual Tests/Correlogram-Qstatistics→lags=15. Aussi, suivre (figure à droite : obtenir le corrélogramme des résidus aux carrés) : View/Residual Tests/CorrelogramSquared Residuals →lags=15 :

Date: 01/16/14 Time: 23:22 Sample: 1990M03 2013M03 Included observations: 277						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2	-0.140	-0.142	0.4669 5.9931	0.050

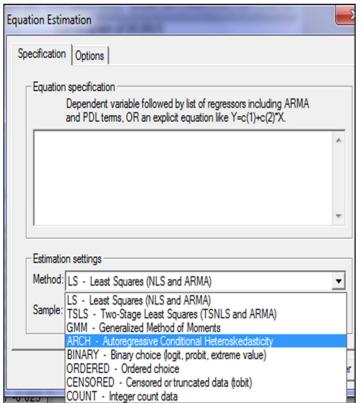
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1		1	0.041	0.041	0.4669	0.494
□ !	<u> </u>	2	-0.140	-0.142	5.9931	0.050
ı þi		3	0.089	0.104	8.2235	0.042
1 1		4	-0.006	-0.037	8.2328	0.083
ıdı	1(1	5	-0.053	-0.024	9.0353	0.108
1) 11	1)1	6	0.026	0.016	9.2291	0.161
q١	[[]	7	-0.098	-0.112	12.002	0.101
1 1	1)1	8	-0.005	0.024	12.008	0.151
ı j i		9	0.064	0.028	13.199	0.154
1)1	1)1	10	0.009	0.024	13.221	0.212
ıdı	1(1)	11	-0.047	-0.039	13.868	0.240
1)1	1 1	12	0.016	0.007	13.941	0.305
1)1	1 1	13	0.015	0.006	14.006	0.373
ıďι	ıdı	14	-0.079	-0.081	15.857	0.322
1 🕽 1		15	0.037	0.052	16.260	0.365

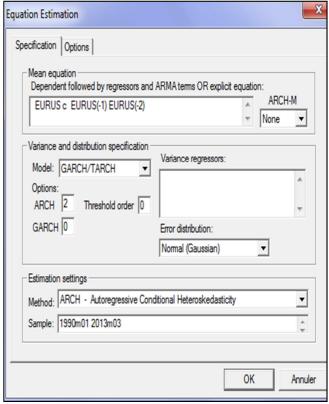
Autocorrelation Partial Correlation AC PAC Q-Stat Prob Image: Control of the control of	Date: 01/16/14 Time: 23:24 Sample: 1990M03 2013M03 Included observations: 277							
2 0.176 0.175 9.0477 0.011 3 0.097 0.089 11.702 0.008 1 1.702 0.008 1 1.702 0.008 1 1.702 0.008 1 1.702 0.008 1 1.702 0.008 1 1.702 0.008 1 1.702 0.008 1 1.702 0.009 1	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
			3 4 5 6 7 8 9 10 11 12 13	0.176 0.097 0.065 0.227 -0.055 0.061 0.021 0.096 -0.026 0.010 -0.033 -0.043	0.175 0.089 0.031 0.202 -0.090 -0.015 0.009 0.085 -0.082 0.015 -0.050 -0.053	9.0477 11.702 12.890 27.574 28.447 29.507 29.638 32.297 32.486 32.517 32.832 33.383	0.011 0.008 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001	

Note: La statistique Q de Ljung-Box indique deux termes statistiquement différents de zéro (autant pour le corrélogramme des résidus que pour celui des résidus aux carrés); Ce qui amène à présumer la présence d'effets ARCH d'ordre 2 dans notre série « EURUS » (le test ARCH ci-dessous nous en dit plus).

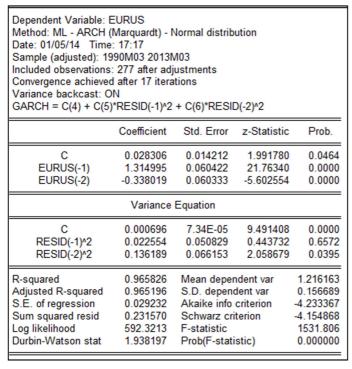
_Test de présence d'effets ARCH sur le modèle AR(2) estimé : Sur EViews, dans l'output des résultats, suivre : View/Residuals Tests/ARCH LM Test... → lag(1) :

Note: la probabilité critique étant > 5% pour un ARCH(1), nous rejetons l'hypothèse de présence d'effets ARCH d'ordre 1 et testons cette hypothèse pour un ordre > 1. Pour un ARCH(2), le coefficient associé à « RESID^2(-1) » est statistiquement significatif au seuil de 5%, ce qui nous amène à tester la présence d'effets ARCH dans notre processus « EURUS » jusqu'à l'ordre 4. Pour ce décalage (4), seul le coefficient associé à « RESID^2(-1) » s'est avéré statistiquement significatif au seuil de 5%: d'où, nous confirmons que notre série brute « EURUS » suit un processus ARCH d'ordre 2.


ARCH (1) Test:				
F-statistic	0.289929	Probability		0.590703
Obs*R-squared	0.291737	Probability		0.589110
ARCH(2) Test:				
F-statistic	4.389019	Probability		0.013304
Obs*R-squared	8.597398	Probability		0.013586
Test Equation: Dependent Variable: Method: Least Square				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000670	0.000111	6.051737	0.0000
RESID^2(-1)	0.026561	0.059732	0.444680	0.6569
RESID^2(-2)	0.174070	0.059764	2.912628	0.0039


ARCH(4) Test:				
F-statistic Obs*R-squared	2.806997 10.97756	Probability Probability		0.026118 0.026817
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000595 0.006613	0.000124 0.061079	4.786558 0.108263	0.0000 0.9139
RESID^2(-2) RESID^2(-3)	0.165760 0.092096	0.060850 0.060863	2.724060 1.513182	0.0069 0.1314
RESID^2(-4)	0.030711	0.061138	0.502325	0.6159

b) Estimation du modèle ARCH(2,0)


Sur EViews, suivre: Quick/Estimate Equation... →les boîtes de dialogue suivantes apparaissent (elles complètent la procédure : à gauche, choisir la méthode ARCH; et à droite, choisir le type du modèle et préciser l'ordre du retard):

Autrement:

Sur EViews, faire: arch(2,0) EURUS C EURUS(-1) EURUS(-2)

Autocorrelation	Partial Correlation		AC	DAC	Q-Stat	Droh
Autocorrelation	Partial Correlation		AC	FAC	Q-Stat	FIUU
ı j ı		1	0.035	0.035	0.3460	0.556
d ·	[]	2	-0.118	-0.119	4.2274	0.121
ւիլ		3	0.077	0.087	5.9014	0.117
1 1	1 1	4	0.001	-0.020	5.9019	0.207
ıdı	(1)	5	-0.063	-0.044	7.0367	0.218
1)1	1 1	6	0.018	0.015	7.1343	0.309
ı d ı	d ·	7	-0.087	-0.103	9.3062	0.231
1 1	1 1	8	-0.006	0.017	9.3173	0.316
ւիլ	1 1	9	0.042	0.015	9.8193	0.365
1 1	1 1	10	0.001	0.011	9.8196	0.456
ıdı	(1)	11	-0.050	-0.044	10.534	0.483
ı j ı	1 1	12	0.026	0.017	10.736	0.552
1)1		13	0.009	-0.001	10.760	0.631
ı d ı	101	14	-0.083	-0.080	12.775	0.544
ı j ı		15	0.026	0.035	12.978	0.604

Log likelihood

Durbin-Watson stat

_Test d'effets ARCH sur le modèle ARCH(2,0) estimé: pas d'effets ARCH (prob>5%), le modèle ARCH(2,0) est accepté.

ARCH Test:			
F-statistic	0.047581	Probability	0.827490
Obs*R-squared	0.047920	Probability	0.826724

c) Estimation du modèle AR(2) avec erreurs GARCH(2,0): c'est le modèle qui nous a paru significatif.

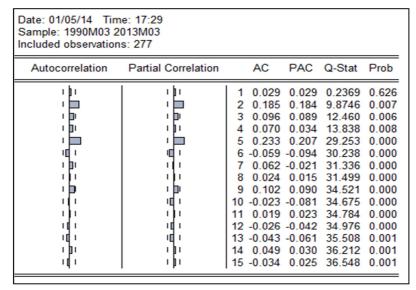
Sur **EViews**, fixer « ARCH : o et GARCH(2) » : à droite, le corrélogramme des résidus simple.

Dependent Variable: EURUS Method: ML - ARCH (Marguardt) - Normal distribution Date: 01/05/14 Time: 17:24 Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments Convergence achieved after 67 iterations Variance backcast: ON GARCH = C(4) + C(5)*GARCH(-1) + C(6)*GARCH(-2)Coefficient Std. Error z-Statistic Prob. 0.030462 0.015262 1.995852 0.0459 C EURUS(-1) 1.296141 0.057142 22.68270 0.0000 EURUS(-2) -0.3208990.055926 -5.7378890.0000 Variance Equation 0.0000 4.83E-05 9.27E-06 5.208103 GARCH(-1) 1.929195 0.032049 60.19537 0.0000 GARCH(-2) -0.9864830.027702 -35.61050 0.0000 R-squared 0.965838 Mean dependent var 1.216163 Adjusted R-squared 0.965208 S.D. dependent var 0.156689 S.E. of regression 0.029227 Akaike info criterion -4.218793Sum squared resid -4.1402940.231487 Schwarz criterion

F-statistic

Prob(F-statistic)

590.3028


1.905273

Date: 01/05/14 Time: 17:26 Sample: 1990M03 2013M03 Included observations: 277								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
		3 4 5 6 7 8 9	-0.137 0.082 -0.007 -0.053 0.022 -0.097 -0.001 0.063 0.010	0.098 -0.039 -0.025 0.014 -0.111 0.027 0.027 0.024	0.6367 5.8862 7.7886 7.8042 8.5986 8.7406 11.424 11.424 12.557 12.584	0.126 0.189 0.121 0.179 0.184 0.248		
1 1 1 1 1 1 1 1		11 12 13 14 15	-0.049 0.015 0.014 -0.081 0.037	0.008 0.004 -0.082 0.055	13.270 13.333 13.390 15.297 15.712	0.276 0.345 0.418 0.358 0.401		

Corrélogramme des résidus aux carrés

1532,378

0.000000

d) Estimation du modèle AR(2) avec erreurs TGARCH(2,1): c'est le modèle qui nous a paru significatif.

Sur **EViews**, fixer « ARCH : 1, GARCH : 2, Threshold order : 1 » :

Dependent Variable: EURUS

Method: ML - ARCH (Marquardt) - Normal distribution

Date: 01/05/14 Time: 17:34 Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments Convergence achieved after 33 iterations

Variance backcast: ON

GARCH = C(4) + C(5)*RESID(-1)*2 + C(6)*RESID(-1)*2*(RESID(-1)<0) + C(7)*GARCH(-1) + C(8)*GARCH(-2)						
	Coefficient	Std. Error	z-Statistic	Prob.		
C EURUS(-1) EURUS(-2)	0.030524 1.287174 -0.311911	0.012777 0.059580 0.059679	2.388933 21.60413 -5.226487	0.0169 0.0000 0.0000		
Variance Equation						
C RESID(-1)^2 RESID(-1)^2*(RESID(-1)<0) GARCH(-1) GARCH(-2)	6.86E-06 0.013850 -0.016190 1.932005 -0.945963	1.60E-06 0.005656 0.006330 0.034659 0.033070	4.277212 2.448956 -2.557801 55.74301 -28.60447	0.0000 0.0143 0.0105 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.965831 0.964942 0.029338 0.231536 598.3572 1.889449	S.D. dependent var Akaike info criterion Schwarz criterion F-statistic		1.216163 0.156689 -4.262507 -4.157842 1086.238 0.000000		

Autocorrelation Partial Correlation AC PAC Q-Stat Prob Image: Correlation of the problem of the proble	Date: 01/05/14 Time: 17:36 Sample: 1990M03 2013M03 Included observations: 277							
	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
14 0.009 -0.008 14.858 0.388 10 1 15 -0.044 -0.004 15.425 0.421		1 1	2 0.043 3 0.018 4 -0.031 5 0.133 6 -0.091 7 0.013 8 0.003 9 0.035 10 -0.076 11 -0.004 12 -0.057 13 -0.102 14 0.009	0.041 0.021 -0.031 0.129 -0.080 -0.002 0.006 0.046 -0.099 0.012 -0.062 -0.104 -0.008	1.0124 1.1028 1.3758 6.4046 8.7639 8.8131 8.8161 9.1757 10.854 10.859 11.808 14.836	0.603 0.776 0.848 0.269 0.187 0.266 0.358 0.421 0.369 0.455 0.461 0.318 0.388		

Constat: Les résidus de l'estimation de ce modèle sont de bruits blancs : le processus AR(2) avec erreurs TGARCH(2,1) est accepté.

e) Estimation du modèle AR(2) avec erreurs EGARCH(2,1): c'est le modèle qui nous a paru significatif.

_Sur **EViews**, fixer « ARCH : 1, GARCH : 2, Asymetric order : 1 » (<u>NB</u> : dans "Model", choisir "EGARCH"):

Date: 01/05/14 Time: 17:46

Dependent Variable: EURUS

Method: ML - ARCH (Marquardt) - Normal distribution

Date: 01/05/14 Time: 17:43

Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments Convergence achieved after 56 iterations

Variance backcast: ON

LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +C(6)*RESID(-1)/@SQRT(GARCH(-1)) + C(7)*LOG(GARCH(-1)) +

C(8)*LOG(GAR	CH(-2))					
	Coefficient	Std. Error	z-Statistic	Prob.		
C	0.035929	0.014977	2.398998	0.0164		
EURUS(-1)	1.355191	0.044893	30.18724	0.0000		
EURUS(-2)	-0.385072	0.044136	-8.724688	0.0000		
Variance Equation						
C(4)	-18.37279	1.966031	-9.345121	0.0000		
C(5)	-0.191991	0.104719	-1.833395	0.0667		
C(6)	0.093409	0.067582	1.382168	0.1669		
C(7)	-0.792802	0.129939	-6.101350	0.0000		
C(8)	-0.810401	0.175188	-4.625888	0.0000		
R-squared	0.965681			1.216163		
Adjusted R-squared	0.964788			0.156689		
S.E. of regression	0.029402			-4.220535		
Sum squared resid	0.232551			-4.115870		
Log likelihood	592.5441			1081.327		
Durbin-Watson stat	2.003091			0.000000		

Sample: 1990M03 2013M03 Included observations: 277							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		7 8 9 10 11 12 13 14	0.055 0.023 0.116	0.080 -0.057 0.029 -0.048 -0.060		0.050 0.014 0.028 0.019 0.000 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.006 0.008	

Constat: Les résidus de l'estimation de ce modèle ne semblent pas de bruits blancs : le processus AR(2) avec erreurs EGARCH(2,1) n'est pas accepté. A cela s'ajoute que le coefficient c(5) est négatif, mais statistiquement non significatif.

f) Estimation du modèle AR(2) avec erreurs ARCH(2)-M: c'est le modèle qui nous a paru significatif.

EViews offre deux possibilités pour estimer le modèle ARCH-M, à savoir :


o <u>1^{ère} possibilité/Hypothèse</u>: la variance conditionnelle intervient dans l'espérance conditionnelle comme suit (notre cas: AR(2) avec erreurs ARCH(2)-M):

$$EURUS_{t} = a_{0} + a_{1}EURUS_{t-1} + a_{2}EURUS_{t-2} + \lambda h_{t}^{2} + e_{t}$$

$$h_{t}^{2} = a_{0} + a_{1}e_{t-1}^{2} + a_{2}e_{t-2}^{2}$$

_Sur **EViews,** suivre : Quick/Estimate Equation... →la boîte de dialogue à gauche apparaît (elle complète la procédure): Estimer le processus AR(2) sans constante avec erreurs ARCH(2)-M ci-dessus : 1ère possibilité – variance.

Dependent Variable: EURUS Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/12/14 Time: 17:40 Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments Convergence achieved after 16 iterations Variance backcast: OFF $GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-2)^2$ Coefficient Std. Error z-Statistic Prob. **GARCH** 37.21625 6.782951 5.486735 0.0000 EURUS(-1) 1.308725 0.033280 39.32504 0.0000 EURUS(-2) -0.332028 0.031868 -10.41883 0.0000 Variance Equation C 0.000802 6.52E-05 12.29029 0.0000 RESID(-1)² -0.073855 0.028884 -2.556920 0.0106 RESID(-2)² 0.076318 0.028730 2.656362 0.0079 R-squared 0.966493 Mean dependent var 1.216163 Adjusted R-squared 0.965874 S.D. dependent var 0.156689 S.E. of regression 0.028945 Akaike info criterion -4.265261 -4.186763 Sum squared resid 0.227054 Schwarz criterion Durbin-Watson stat 1.907045 Log likelihood 596.7387

possibilité/Hypothèse: l'écart-type conditionnel intervient dans l'espérance conditionnelle comme suit (notre cas: AR(2) avec erreurs ARCH(2)-M)

$$EURUS_{t} = a_{0} + a_{1}EURUS_{t-1} + a_{2}EURUS_{t-2} + \lambda \mathbf{h}_{t} + e_{t}$$

$$h_{t}^{2} = a_{0} + a_{1}e_{t-1}^{2} + a_{2}e_{t-2}^{2}$$

Sur **EViews** (même procédure que le modèle précédent) : Estimer le processus AR(2) sans constante avec erreurs ARCH(2)-M ci-dessus : 2^{ème} possibilité – écarttype (dans « ARCH-M » cocher : Std. Dev.):

Dependent Variable: EURUS

Method: ML - ARCH (Marguardt) - Normal distribution

Date: 01/12/14 Time: 17:44

Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments Convergence achieved after 10 iterations

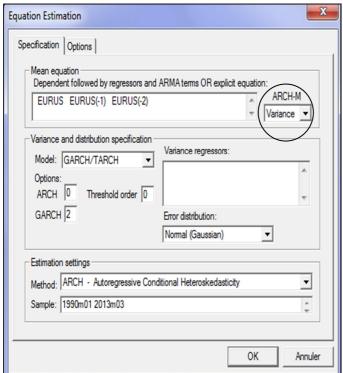
Variance backcast: OFF

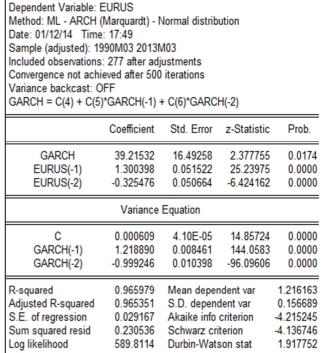
 $GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-2)^2$

	Coefficient	Std. Error	z-Statistic	Prob.			
@SQRT(GARCH) EURUS(-1)	1.464858 1.285147	0.277149 0.014670	5.285453 87.60177	0.0000			
EURUS(-2)	-0.317559	0.017498	-18.14884	0.0000			
Variance Equation							
С	0.000789	6.85E-05	11.51605	0.0000			
RESID(-1) ² RESID(-2) ²	-0.079056 0.120508	0.020678 0.051430	-3.823227 2.343137	0.0001 0.0191			
R-squared	0.966248	Mean dependent var		1.216163			
Adjusted R-squared	0.965626	S.D. dependent var		0.156689			
S.E. of regression	0.029051	Akaike info criterion		-4.254145			
Sum squared resid	0.228709	Schwarz criterion -4.1756		-4.175646			
Log likelihood	595.1991	Durbin-Wats	son stat	1.860842			

g) Estimation du modèle AR(2) avec erreurs GARCH(2,0)-M: c'est le modèle qui nous a paru significatif.

EViews offre deux possibilités pour estimer le modèle GARCH-M, à savoir :


o <u>1^{ère} possibilité/Hypothèse</u>: la variance conditionnelle intervient dans l'espérance conditionnelle comme suit (notre cas: AR(2) avec erreurs GARCH(2)-M)


$$EURUS_{t} = a_{0} + a_{1}EURUS_{t-1} + a_{2}EURUS_{t-2} + \lambda h_{t}^{2} + e_{t}$$

$$h_{t}^{2} = a_{0} + a_{1}e_{t-1}^{2} + a_{2}e_{t-2}^{2} + b_{1}h_{t-1}^{2} + b_{2}h_{t-2}^{2}$$

_Sur **EViews,** suivre : Quick/Estimate Equation... →la boîte de dialogue à gauche apparaît (elle complète la procédure): Estimer le processus « AR(2) sans constante avec erreurs GARCH(2)-M » ci-dessus : 1ère possibilité – variance.

possibilité/Hypothèse: l'écart-type conditionnel intervient l'espérance conditionnelle comme suit (notre cas: AR(2) avec erreurs GARCH(2)-M):

$$EURUS_{t} = a_{0} + a_{1}EURUS_{t-1} + a_{2}EURUS_{t-2} + \lambda \mathbf{h}_{t} + e_{t}$$

$$h_{t}^{2} = a_{0} + a_{1}e_{t-1}^{2} + a_{2}e_{t-2}^{2} + b_{1}h_{t-1}^{2} + b_{2}h_{t-2}^{2}$$

_Sur **EViews** (même procédure que le modèle précédent) : Estimer le processus AR(2) sans constante avec erreurs GARCH(2)-M: 2 eme possibilité – Ecart-type (dans « ARCH-M » cocher : Std. Dev.) :

Dependent Variable: EURUS Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/12/14 Time: 17:53 Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments Convergence not achieved after 500 iterations Variance backcast: OFF GARCH = C(4) + C(5)*GARCH(-1) + C(6)*GARCH(-2)							
	Coefficient	Std. Error	z-Statistic	Prob.			
@SQRT(GARCH) EURUS(-1) EURUS(-2)	1.142573 1.296533 -0.322840						
Variance Equation							
C GARCH(-1) GARCH(-2)	0.000553 1.302960 -1.003735	0.007699 169.2473 0.0000					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.965970 0.965342 0.029170 0.230595 589.6284	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat 1.216163 0.156689 4.213923 4.135425 1.909731					

2) Recherche du modèle optimal

Le tableau ci-dessous présente les résultats des différents modèles estimés (nous y insérons également quelques critères de sélection d'un modèle optimal):

	ARCH(2)	GARCH(2,0)	TGARCH(2,1)	EGARCH(2,1)	ARCH(2)-M Variance	ARCH(2)-M Ecart-type	GARCH(2,0)-M Variance	GARCH(2,0)-M Ecart-type
			Equatio	n de la Moyeni	ne			
Constante (Prob)	0.03 (0.046)	0.03 (0.046)	0.07 (0.02)	0.04 (0.02)	*	*	*	*
AR(1)	1.31 (0.000)	1.30 (0.00)	1.29 (0.00)	1.36 (0.00)	1.31 (0.000)	1.29 (0.00)	1.3 (0.00)	1.30 (0.00)
AR(2)	-0.33 (0.000)	-0.32 (0.00)	-0.31 (0.00)	-0.39 (0.00)	-0.33 (0.000)	-0.32 (0.00)	-0.33 (0.00)	-0.32 (0.00)
	Equation de la Variance							
Constante	0.0007 (0.000)	0.005 (0.00)	0.0007 (0.00)	-18.37 (0.00)	0.0008 (0.000)	0.0008 (0.00)	0.0006 (0.00)	0.0006 (0.00)
ARCH(1)	0.02 (0.68)	*	0.01 (0.01)	*	-0.07 (0.01)	-0.08 (0.00)	*	*
ARCH(2)	0.14 (0.04)	*	*	*	0.08 (0.008)	-0.12 (0.02)	*	*
GARCH(1)	*	1.93 (0.00)	1.93 (0.00)	-0.79 (0.00)	*	*	1.22 (0.00)	1.30 (0.00)
GARCH(2)	*	-0.99 (0.00)	-0.95 (0.00)	-0.81 (0.00)	*	*	-0.999 (0.00)	-1.004 (0.00)
RESID(-1)^2*(RESID(-1)<θ)	*	*	-0.02 (0.01)	*	*	*	*	*

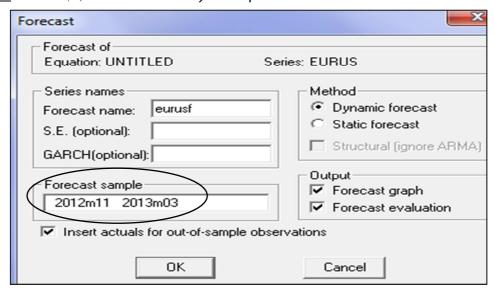
	ARCH(2)	GARCH(2,0)	TGARCH(2,1)	EGARCH(2,1)	ARCH(2)-M Variance	ARCH(2)-M Ecart-type	GARCH(2,0)-M Variance	GARCH(2,0)-M Ecart-type
ABS(RESID(-1)/ @SQRT/GARCH(-1)))	*	*	*	-0.19 (0.07)	*	*	*	*
(RESID(-1)/ @SQRT/GARCH(-1))	*	*	*	0.09 (0.17)	*	*	*	*
GARCH	*	*	*	*	37.22 (0.000)	*	39.22 (0.02)	*
@SQRT(GARCH)	*	*	*	*	*	1.46 (0.00)	*	1.14 (0.02)
R^2	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
AIC	-4.23	-4.22	-4.26	-4.22	-4.27	-4.25	-4.22	-4.21
DW	1.94	1.91	1.89	2.003	1.91	1.86	1.92	1.91
Ljung-Box/LB(36)	27.83	32.35	27.17	28.23	28.92	27.32	34.13	33.62
(Prob)	(0.83)	(0.64)	(0.86)	(0.82)	(0.79)	(0.85)	(0.56)	(0.58)
$LB^{2}(36)$	40.168	56.01	22.67	44.38	50.94	46.59	57.02	60.37
(Prob)	(0.29)	(0.02)	(0.96)	(0.16)	(0.05)	(0.11)	(0.01)	(0.007)
Normalité	Non	Non	Oui	Non	Оиі	Оиі	Non	Non
Effet ARCH	Non	Oui(lag:2)	Non	Oui(lag:2)	Non	Non	Oui(lag:2)	Oui(lag:2)

Commentaire : Si l'on s'en tient au corrélogramme des résidus aux carrés (Cfr $LB^2(36)$), il apparaît que – pour quatre modèles/processus – les résidus issus de la variance conditionnelle ne sont pas des bruits blancs (prob<5%). Il s'agit des modèles: GARCH(2,0); ARCH(2)-M/Variance; GARCH(2,0)-M/Variance et GARCH(2,0)-M/Ecart-type.

_Modèle optimal : au regard des résultats ci-dessus, l'on note le modèle optimal – selon les critères – comme suit :

- o AIC minimum (qualité de l'équation de la moyenne) : ARCH(2)-M/Variance ;
- DW maximal: EGARCH(2,1);
- o LB²(36) minimum (qualité de l'équation de la moyenne) : TGARCH(2,1);

Ainsi, trois modèles sont candidats à la prévision. Dans le point qui suit, nous nous servons des critères de bonne prévision (Mean Absolute Percentage Error/MAPE minimal et Coefficient d'inégalité de Theil proche de zéro) pour sélectionner le modèle optimal parmi les trois.


E. Prévision

a) Choix du modèle optimal (recours aux critères de bonne prédiction)

Nous recourons aux procédures de simulation dynamique de « EViews » pour prévoir notre série brute « EURUS » à travers nos huit modèles (ne disposant pas de nouvelles données, notre série brute a été tronquée de 5 mois. Sur base de cette série tronquée, une ré-estimation nous a aidée à obtenir les prédictions souhaitées).

_Pour ce faire, sur EViews, procéder comme suit :

- o Taper: *smpl* 1990:01 2012:10
- o Estimer les paramètres du modèle sélectionné;
- o après l'estimation des paramètres, dans l'output des résultats, cliquer sur **Forecast** : la boîte de dialogue suivante apparaît (elle complète la procédure. <u>Ex</u>: ARCH(2)-M avec Variance) \rightarrow cliquer sur « Ok »:

Les valeurs MAPE et Theil recueillies, pour différents modèles (nous intégrons aussi les valeurs AIC/Akaike Criteria), sont favorables pour le processus « ARCH(2)-M/Variance » estimé (voir le tableau ci-dessous). Ce dernier est ainsi retenu pour la prévision des valeurs futures de la parité « Euro-Usd » (de Novembre 2012 à Mars 2013, soit 5 mois).

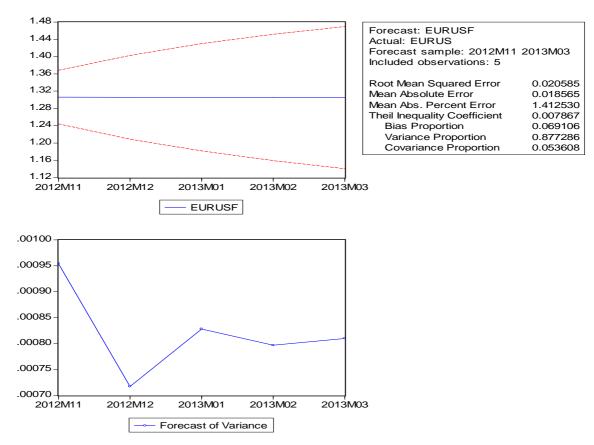
Critàres	Modèles/Processus					
Critères	ARCH(2)	GARCH(2,0)	TGARCH(2,1)	EGARCH(2,1)		
MAPE	1.4207	1.4463	1.4363	1.4960		
THEIL	0.0079	0.0083	0.0081	0.0091		
AIC	*	*	*	*		

	Modèles/Processus (suite)						
Critères	ARCH(2)-	ARCH(2)-M/	GARCH(2,0)-M/	GARCH(2,0)-M/			
	M/Variance	Ecart-type	Variance	Ecart-type			
MAPE	1.4125	1.4151	1.6857	1.9980			
THEIL	0.0079	0.0078	0.010	0.0116			
AIC	-4.2616	-4.2575	*	*			

_Modèle optimal : selon les critères, l'on note le modèle optimal comme suit :

- o MAPE: ARCH(2)-M/Variance;
- THEIL: ARCH(2)-M/Ecart-type;
- o AIC minimum (qualité de l'équation de la moyenne) : ARCH(2)-M/Variance.

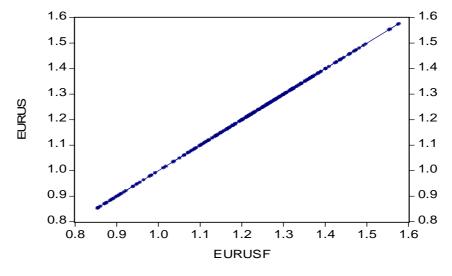
Ce qui revient à dire que le modèle « ARCH(2)-M/Variance » est optimal/meilleur (il remplit les propriétés statistiques d'une bonne prévision).

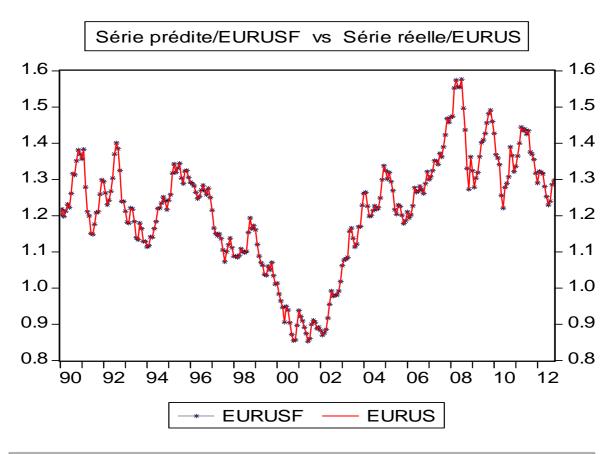

NB: les résultats du modèle « ARCH(2)-M avec Variance » estimé sur la période « 1990:01 à 2012:10 » se présentent comme suit (Voir « AIC »):

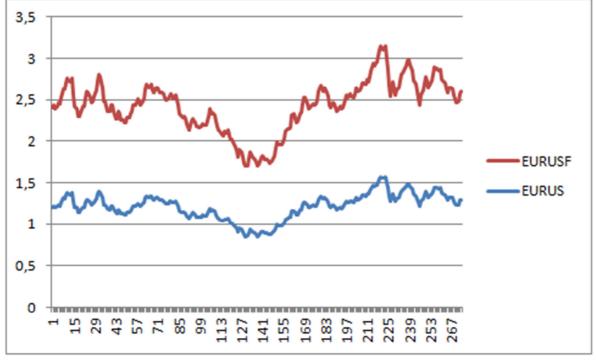
Dependent Variable: EURUS Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/17/14 Time: 19:37 Sample (adjusted): 1990M03 2012M10 Included observations: 272 after adjustments Convergence achieved after 18 iterations Variance backcast: OFF GARCH = C(4) + C(5)*RESID(-1)*2 + C(6)*RESID(-2)*2							
Coefficient Std. Error z-Statistic Prob.							
GARCH EURUS(-1) EURUS(-2)	34.76198 1.299030 -0.320755	6.694769 0.036025 0.034476	5.192408 36.05941 -9.303691	0.0000 0.0000 0.0000			
Variance Equation							
C RESID(-1)*2 RESID(-2)*2	0.000786 -0.072319 0.098253	0.035717 -2.024805 0.042		0.000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.966628 0.966001 0.029054 0.224542 585.5729	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat 1.214419 0.157570 -4.261566 -4.182026 1.879145					

b) Prévision

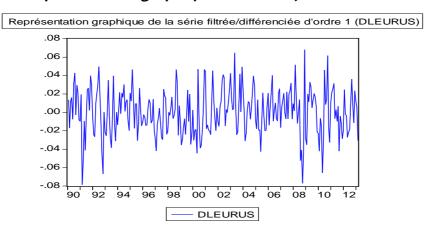
_Cfr procédure EViews (Choix du modèle optimal): Cliquer sur «Ok» pour obtenir les graphiques suivants – ils concernent « ARCH(2)-M avec Variance » – d'où nous avons tiré les valeurs « MAPE » et « Theil » :




Obtenir les données réelles/EURUS et prédites/EURUSF en cliquant sur chaque observation (Cfr fichier de travail):


Mois	EURUS	EURUSF
2012M11	1,282694124	1,306243916
2012M12	1,312795379	1,305643272
2013M01	1,328228317	1,305873768
2013M02	1,335710899	1,305277312
2013M03	1,295552553	1,304885629

Produire les graphiques traduisant l'évolution des données réelles et prédites (sur EViews et Excel): les graphiques montrent que la prédiction est presque parfaite.


ETUDE DE LA SERIE FILTREE « DLEURUS » VII.2.3. PAR LA MODELISATION HETEROSCEDASTIQUE (ARCH)

NB: sur EViews, la série filtrée (différenciée d'ordre 1: Cfr procédure Box et Jenkins) est obtenue en faisant : genr DLEURUS = d(log(EURUS))

Nous allons estimer quatre modèles (ARCH, GARCH, TGARCH et EGARCH) parmi lesquels nous retiendrons le plus performant, et allons procéder comme suit :

- (i) Représentation graphique de la série filtrée « DLEURUS »;
- (ii) Statistiques descriptives et test de normalité de la série « DLEURUS » :
- (iii) Etude de la volatilité de la série « DLEURUS »;
- (iv) Test de bruit blanc de la série filtrée « DLEURUS »;
- (v) Estimation des modèles (4) et recherche du modèle optimal
- (vi) Prévision

A. Représentation graphique de la série filtrée « DLEURUS »

Constat : la série filtrée « DLEURUS » est stationnaire en moyenne, mais non stationnaire en variance (elle est très volatile: l'on peut même distinguer des groupements des fortes variations ou des faibles variations sur la série): ce qui justifie le recours à la modélisation hétéroscédastique pour étudier notre série filtrée. NB: l'échantillon a 278 observations (279 - 1).

B. Statistiques descriptives et test de normalité de la série filtrée « DLEURUS »

Series: DLEURUS Sample 1990M01 2013M03 Observations 278			
Mean	0.000270		
Median	9.81e-06		
Maximum	0.067675		
Minimum	-0.078446		
Std. Dev.	0.024851		
Skewness	-0.087652		
Kurtosis	3.202927		
Jarque-Bera	0.832966		
Probability	0.659362		

_Constats : Au regard de la statistique de Jarque-Berra (prob>5%), notre série filtrée est normalement distribuée. Toutefois, le coefficient de Kurtosis (3.203>3) et celui de Skewness (-0.088<0) calculés nous renseignent respectivement sur la possibilité d'occurrence d'observations extrêmes et sur le fait que notre paire « EURUS » stationnarisée réagit plus à un choc négatif que positif (la distribution est étalée vers la gauche).

C. Etude de la volatilité de la série filtrée « DLEURUS »

Comme pour la série brute, régressons « DLEURUS » au carré sur cette même série décalée (cette façon de procéder permet de juger de l'autocorrélation de la variance des résidus/hétéroscédasticité).

Dependent Variable: DLEURUS2

Method: Least Squares Date: 01/16/14 Time: 12:25

Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments

DLEURUS2(-1) 0.139999 0.059696 2.345184 0.0197 R-squared 0.019607 Mean dependent var 0.000617					
DLEURUS2(-1) 0.139999 0.059696 2.345184 0.0197 R-squared 0.019607 Mean dependent var 0.000617 Adjusted R-squared 0.016042 S.D. dependent var 0.000916 S.E. of regression 0.000908 Akaike info criterion -11.16310 Sum squared resid 0.000227 Schwarz criterion -11.13693 Log likelihood 1548.090 F-statistic 5.499888	Variable	Coefficient	Std. Error	t-Statistic	Prob.
Adjusted R-squared 0.016042 S.D. dependent var 0.000916 S.E. of regression 0.000908 Akaike info criterion -11.16310 Sum squared resid 0.000227 Schwarz criterion -11.13693 Log likelihood 1548.090 F-statistic 5.499888	•				
	Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.016042 0.000908 0.000227 1548.090	S.D. depend Akaike info of Schwarz crit F-statistic	lent var criterion terion	0.000916 -11.16310 -11.13693 5.499888

Constat: le coefficient associé à « DLEURUS2(-1) » est statistiquement significatif, ce qui permet d'accepter l'hypothèse d'hétéroscédasticité conditionnelle (la variation de « EURUS » au temps « t » est fonction de son évolution au temps « t-1 »).

D. Test de bruit blanc de la série filtrée « DLEURUS »

Nous nous servons du corrélogramme ci-dessous pour signaler que notre série filtrée présente au moins 1 terme significatif de part et d'autre (Cfr méthodologie Box et Jenkins, « DLEURUS » est identifiée comme un arima (1,0,1), un ar(1), soit un ma(1)) et, de ce fait, elle n'est pas un bruit blanc (prob<5%).

	Date: 01/16/14 Time: 12:04 Sample: 1990M01 2013M03 Included observations: 278							
	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
14 -0.090 -0.070 36.025 0.001	1	1 .1.	2 -0.033 3 0.021 4 -0.042 5 -0.065 6 -0.031 7 -0.081 8 -0.011 9 0.042 10 0.007 11 -0.046 12 -0.027 13 -0.046 14 -0.090	-0.144 0.088 -0.094 -0.014 -0.080 0.050 0.010 -0.005 -0.005 -0.003 -0.048 -0.070	27.634 27.764 28.255 29.462 29.736 31.621 31.658 32.171 32.186 32.793 33.009 33.629 36.025	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001		

E. Estimation des modèles et recherche du modèle optimal

1) Estimation des modèles

(i) Estimation du modèle ARCH

Nous estimons un $AR(1)^{(16)}$ ou un AR(2) à partir duquel nous effectuons le test de présence d'effets ARCH pour juger de la nécessité d'une modélisation ARCH.

Estimation du modèle AR(1):

Dependent Variable: DLEURUS

Method: Least Squares Date: 01/16/14 Time: 13:32

Sample (adjusted): 1990M03 2013M03 Included observations: 277 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DLEURUS(-1)	0.000104 0.312671	0.001423 0.057424	0.072813 5.444921	0.9420 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.097316 0.094034 0.023685 0.154264 644.7492 1.895575	Mean depend S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	0.000223 0.024883 -4.640788 -4.614622 29.64717 0.000000

¹⁶ Le processus générateur de la série « EURUS » était un **arima(1,1,1)** si l'on s'en tient aux résultats issus de la procédure Box-Jenkins appliquée à cette série. C'est ainsi que nous estimons le modèle AR(1), le processus arima(1,1,1) étant non significatif.

Estimation du modèle AR(2):

Dependent Variable: DLEURUS Method: Least Squares Date: 01/17/14 Time: 00:19

Sample (adjusted): 1990M04 2013M03 Included observations: 276 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLEURUS(-1) DLEURUS(-2)	0.360574 -0.147063	0.059874 0.059848	6.022222 -2.457270	0.0000 0.0146
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.117787 0.114567 0.023437 0.150506 645.3261	Mean deper S.D. depend Akaike info Schwarz cri Durbin-Wats	dent var criterion terion	0.000285 0.024907 -4.661783 -4.635548 1.960152

Commentaire: Nous retenons le processus AR(2) sans dérive qui modélise mieux la série filtrée que le processus AR(1) – l'on peut se servir aussi des critères Akaike et Schwarz (le processus AR(2) les minimise).

Inférences sur le modèle AR(2) estimé :

La statistique Q de Ljung-Box indique un terme statistiquement différent de zéro au 5^{ème} décalage (Cfr corrélogramme des résidus aux carrés); Ce qui amène à présumer la présence d'effets ARCH d'ordre 5 dans notre série filtrée « DLEURUS » (le test ARCH ci-dessous est plus éloquent).

_Test de présence d'effets ARCH sur le modèle AR(1) estimé: la probabilité critique étant < 5% pour un ARCH(5), nous acceptons l'hypothèse de présence d'effets ARCH d'ordre 5 (pour les lags 6,7..., les paramètres des termes autorégressifs se sont révélés non significatifs). D'où nous estimons que notre série filtrée suit un processus ARCH d'ordre 5.

ARCH(5) Test :				
F-statistic Obs*R-squared	2.425079 11.85738	Probability Probability		0.035860 0.036795
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000373	8.49E-05	4.392651	0.0000
RESID^2(-1)	0.024061	0.060870	0.395287	0.6929
RESID^2(-2)	0.109087	0.060792	1.794437	0.0739
RESID^2(-3)	0.082113	0.060980	1.346564	0.1793
RESID^2(-4)	-0.036306	0.060799	-0.597150	0.5509
RESID^2(-5)	0.134511	0.060831	2.211217	0.0279

Note: Signalons – pour les estimations qui suivent – que tous les processus estimés sont valides (les résidus issus des estimations sont tous normalement distribués), malgré la persistance d'effets ARCH pour les processus ARCH(5,0) et TGARCH(5,3).

(ii) Estimation du modèle ARCH(5,0): ce processus est valide. NB: ARCH(5), GARCH(o) et Threshold order(1).

Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/17/14 Time: 00:48 Sample (adjusted): 1990M04 2013M03

Included observations: 276 after adjustments Convergence achieved after 20 iterations Variance backcast: ON

Dependent Variable: DLEURUS

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID($ -3)^2 + C(7)*RESID(-4)^2 + C(8)*RESID(-5)^2

	Coefficient	Std. Error	z-Statistic	Prob.		
DLEURUS(-1) DLEURUS(-2)	0.376872 -0.159946	0.062386 0.060929	6.040972 -2.625143	0.0000 0.0087		
Variance Equation						
C	0.000372	8.02E-05	4.637035	0.0000		
RESID(-1) ²	0.021473	0.059046	0.363659	0.7161		
RESID(-2)^2	0.123515	0.055599	2.221519	0.0263		
RESID(-3)^2	0.029501	0.053975	0.546562	0.5847		
RESID(-4)^2	-0.052399	0.060961	-0.859549	0.3900		
RESID(-5)^2	0.203577	0.089737	2.268604	0.0233		
R-squared	0.117488	Mean deper	ndent var	0.000285		
Adjusted R-squared	0.094438	S.D. depend	S.D. dependent var			
S.E. of regression	0.023702	Akaike info	criterion	-4.671300		
Sum squared resid	0.150557	Schwarz cri	terion	-4.566360		
Log likelihood	652.6393	Durbin-Wats	son stat	1.990322		

(iii) Estimation du modèle AR(2) sans dérive avec erreurs GARCH(4,0): c'est le modèle qui nous a paru significatif (il est valide). NB: ARCH(0) et GARCH(4).

Dependent Variable: DLEURUS

Method: ML - ARCH (Marquardt) - Normal distribution

Date: 01/17/14 Time: 01:02

Sample (adjusted): 1990M04 2013M03 Included observations: 276 after adjustments Convergence achieved after 36 iterations

Variance backcast: ON

GARCH = C(3) + C(4)*GARCH(-1) + C(5)*GARCH(-2) + C(6)*GARCH(

-3) + C(7)*GARCH(-4)

	Coefficient	Std. Error	z-Statistic	Prob.	
DLEURUS(-1)	0.354977	0.056865	6.242460	0.0000	
DLEURUS(-2)	-0.138599	0.051327	-2.700323	0.0069	
Variance Equation					
C	0.000110	9.60E-05	1.147709	0.2511	
GARCH(-1)	0.580696	0.229499	2.530280	0.0114	
GARCH(-2)	0.495953	0.102373	4.844553	0.0000	
GARCH(-3)	0.712997	0.084201	8.467803	0.0000	
GARCH(-4)	-0.989256	0.235598	-4.198908	0.0000	
R-squared	0.117714	Mean dependent var		0.000285	
Adjusted R-squared	0.098035	S.D. dependent var		0.024907	
S.E. of regression	0.023655	Akaike info criterion		-4.654539	
Sum squared resid	0.150519	Schwarz criterion		-4.562717	
Log likelihood	649.3264	Durbin-Watson stat		1.950572	

(iv) Estimation du modèle AR(2) sans dérive avec erreurs TGARCH(5,3): c'est le modèle qui nous a paru significatif (il est valide). NB: ARCH(3), GARCH(5) et Threshold order(1).

> Dependent Variable: DLEURUS Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/17/14 Time: 01:14 Sample (adjusted): 1990M04 2013M03 Included observations: 276 after adjustments Convergence achieved after 52 iterations Variance backcast: ON GARCH = $C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID($ -3)^2 + C(7)*RESID(-1)^2*(RESID(-1)<0) + C(8)*GARCH(-1) + C(9)*GARCH(-2) + C(10)*GARCH(-3) + C(11)*GARCH(-4) + C(12)*GARCH(-5) Coefficient Std. Error z-Statistic Prob. DLEURUS(-1) 0.368325 0.049798 7 396422 0.0000 DLEURUS(-2) -3.670435 0.0002 -0.194681 0.053040 Variance Equation 0.0704 0.000106 5.84E-05 1.809176 0.044068 RESID(-1)^2 -0.102408 -2.323868 0.0201 RESID(-1)^2*(RESID(-1)<0) 0.099577 0.029600 3.364050 0.0008 RÉSID(-2)^2 0.063756 0.029181 2.184880 0.0289 RESID(-3)^2 0.025779 0.035411 0.727995 0.4666 GARCH(-1) 1.009715 0.230055 4.389021 0.0000 GARCH(-2) -0.121980 0.140223 GARCH(-3) 0.065001 8.224632 0.0000 0.534610 GARCH(-4) -1.152146 0.174603 -6.598654 0.0000 0.216804 2.328604 GARCH(-5) 0.504851 0.0199 0.115697 0.000285 Mean dependent var Adjusted R-squared 0.078851 S.D. dependent var 0.024907 S.E. of regression 0.023905 Akaike info criterion -4.678550Sum squared resid 0.150863 Schwarz criterion -4 521141 Log likelihood 657 6399 Durbin-Watson stat 1.966548

(v) Estimation du modèle AR(2) sans dérive avec erreurs EGARCH(4,1): c'est le modèle qui nous a paru significatif (il est valide). NB: ARCH(1), GARCH(4) et Asymetric order(1).

Dependent Variable: DLEURUS Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/17/14 Time: 01:36 Sample (adjusted): 1990M04 2013M03 Included observations: 276 after adjustments Convergence achieved after 112 iterations Variance backcast: ON LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +C(5)*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) + C(7)*LOG(GARCH(-2)) + C(8)*LOG(GARCH(-3)) + C(9)*LOG(GARCH(-4)) Coefficient Std. Error z-Statistic Prob. DLFURUS(-1) 0.332892 0.042317 7.866658 0.0000 DLEURUS(-2) -0.1985770.039599 -5.0146940.0000 Variance Equation -59.30850 2.142623 -27.68033 0.0000 C(3)C(4) -0.140267 0.053983 -2.598364 0.0094 C(5) 0.016009 0.021076 0.759557 0.4475 C(6) -1.773905 0.064309 -27.583930.0000 -2.461994 C(7)0.096577 -25.49247 0.0000 C(8)-1.704552 0.087596 -19.45917 0.0000 -0.899703 0.067469 -13.33496 C(9) 0.0000 0.113485 0.000285 R-squared Mean dependent var 0.086923 Adjusted R-squared S.D. dependent var 0.024907 S.E. of regression 0.023800 Akaike info criterion -4.688926Sum squared resid 0.151240 Schwarz criterion -4.570870Log likelihood 656.0718 **Durbin-Watson stat** 1.891575

2) Recherche du modèle optimal

Le tableau ci-dessous présente les résultats des différents modèles estimés (nous y insérons également quelques critères de sélection d'un modèle optimal):

	ARCH(5)	GARCH(4,0)	TGARCH(5,3)	EGARCH(4,1)						
		ion de la Moyer		, , , , , , , , , , , , , , , , , , , ,						
Constante	*	*	*	*						
AR(1)	0.38	0.35	0.37	0.33						
[z-stat]	[6.04]	[6.24]	[7.40]	[7.87]						
(Prob)	(0.000)	(0.00)	(0.00)	(0.00)						
()	-0.16	-0.14	-0.19	-0.20						
AR(2)	[-2.63]	[-2.70]	[-3.67]	[-5.01]						
(-)	(0.00)	(0.007)	(0.0002)	(0.00)						
	Equation de la Variance									
	0.0004	0.0001		-59.31						
Constante	[4.64]	[1.15]	*	[-27.68]						
Constante	(0.00)	(0.25)	·	(0.00)						
	0.02	(0.23)	-0.10	-1.77						
ARCH(1)	[0.36]	*	[-2.32]	[-27.58]						
ARCH(1)	(0.72)		(0.02)	(0.00)						
	0.12		0.06	-2.46						
ARCH(2)	[2.22]	*	[2.18]	[-25.49]						
ARCH(2)	(0.03)		(0.03)	(0.00)						
	0.03		0.03	-1.70						
ARCH(3)	[0.55]	*	[0.73]	[-19.46]						
11KC11(3)	(0.58)		(0.47)	(0.00)						
	-0.05		(0.77)	-0.90						
ARCH(4)	[-0.86]	*	*	[-13.33]						
11KC11(1)	(0.39)			(0.00)						
	0.20			(0.00)						
<i>ARCH</i> (5)	[2.27]	*	*	*						
111011(0)	(0.02)									
	(, , ,	0.58	1.01	-1.77						
GARCH(1)	*	[2.53]	[4.39]	[-27.58]						
		(0.01)	(0.00)	$(0.00)^{3}$						
		0.50	-0.12	-2.46						
GARCH(2)	*	[4.84]	[-0.87]	[-25.49]						
· /		(0.00)	(0.38)	(0.00)						
		0.71	0.53	-1.70						
GARCH(3)	*	[8.47]	[8.22]	[-19.46]						
()		(0.00)	(0.00)	$(0.00)^{3}$						
		-0.99	-1.15	-0.90						
GARCH(4)	*	[-4.20]	[-6.60]	[-13.33]						
		(0.00)	(0.00)	(0.00)						

	ARCH(5)	GARCH(4,0)	TGARCH(5,3)	EGARCH(4,1)
GARCH(5)	*	*	0.50 [2.33] (0.02)	*
RESID(-1)^2*(RESID(-1)<0)	*	*	0.10 [3.36] (0.0008)	*
ABS(RESID(-1)/ @SQRT/GARCH(-1)))	*	*	*	-0.14 [-2.60] (0.009)
(RESID(-1)/ @SQRT/GARCH(-1))	*	*	*	0.02 [0.76] (0.45)
R^2	0.12	0.12	0.12	0.11
AIC	-4.67	-4.65	-4.68	-4.69
DW	1.99	1.95	1.97	1.89
Ljung-Box/LB(36)	16.001	19.019	17.595	18.932
(Prob)	(0.998)	(0.991)	(0.996)	(0.991)
$LB^2(36)$	21.190	33.254	19.310	28.526
(Prob)	(0.976)	(0.600)	(0.990)	(0.808)
Normalité	Oui	Oui	Oui	Oui
Effet ARCH	Non	Oui(lag:5)	Non	Oui(lag:2)

Commentaire: Si l'on s'en tient au corrélogramme des résidus aux carrés (Cfr $LB^2(36)$), il apparaît que – pour tous les modèles/processus – les résidus issus de la variance conditionnelle sont des bruits blancs (prob>5%).

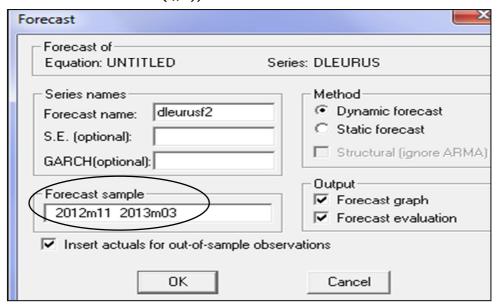
Modèle optimal : au regard des résultats ci-dessus, l'on note le modèle optimal – selon les critères – comme suit :

- o AIC minimum (qualité de l'équation de la moyenne) : **EGARCH(4,1)**;
- o DW maximal: ARCH(5);
- o LB²(36) minimum (qualité de l'équation de la moyenne) : **TGARCH(5,3)**;
- o Effets ARCH: ARCH(5) et TGARCH(5,3).

Le modèle <u>GARCH(4,0)</u> est éliminé à ce niveau, et quatre modèles sont ainsi candidats à la prévision. Dans le point qui suit, nous nous servons des critères de bonne prévision (Mean Absolute Percentage Error/MAPE minimal et Coefficient d'inégalité de Theil proche de zéro) pour sélectionner le modèle optimal parmi les quatre.

F. Prévision

Choix du modèle optimal (recours aux critères de bonne prédiction)


Nous recourons aux procédures de simulation dynamique de « EViews » pour prévoir notre série filtrée « DLEURUS » à travers nos quatre modèles (ne disposant pas de nouvelles données, notre série filtrée a été tronquée de 5 mois. Sur base de

cette série tronquée, une ré-estimation nous a aidée à obtenir les prédictions souhaitées).

Pour ce faire, sur EViews, procéder comme suit :

- o Taper: *smpl 1990:01 2012:10*
- o Estimer les paramètres du modèle sélectionné;
- o après l'estimation des paramètres, dans l'output des résultats, cliquer sur Forecast : la boîte de dialogue suivante apparaît (elle complète la procédure. Ex: GARCH(4,0)):

Prévision

Les valeurs MAPE et Theil recueillies, pour différents modèles, témoignent de la faiblesse des modèles retenus (aucun modèle n'est performant: maintenir la <u>prédiction sur série brute</u>): voir tableau ci-dessous.

Critànas	Modèles/Processus					
Critères	ARCH(5)	GARCH(4,0)	TGARCH(5,3)	EGARCH(4,1)		
MAPE	98.8501	99.8485	98.0892	98.7480		
THEIL	0.9546	0.9688	0.9456	0.9523		

Références bibliographiques

Antoine Terracol (2008), « Stata par la pratique : statistiques, graphiques et éléments de programmation par Eric Cahuzac et Christophe Bontemps », the Stata Journal 8, Number 4, pp. 574-578.

Baltagi Badi H. (2005), « Econometric Analysis of Panel Data », 3è édition, JW edition, Angletere, 316 p.

Benchimol Jonathan, « Formation EViews 7: Introduction », 95 p.

Bocquier Philippe (1996), «L'analyse des enquêtes biographiques à l'aide du logiciel STATA », Documents et Manuels du CEPED n°4, Paris, 224 p.

Bontemps Christophe (2002), « Stata par la pratique – Partie II : les graphiques de Stata », 20 p.

Bourbonnais R. (2015), « Econométrie : cours et exercices corrigés », 9è édition, éd. DUNOD, Paris, 392 p.

<u>(2009)</u>, « Logiciel Eviews », Université de Paris-Dauphine, 31 p.

Bourbonnais, R. et Terraza, M. (2016), « Analyse des séries temporelles – Applications à l'économie et à la gestion : Cours et exercices corrigés », éd. Dunod, 4è édition, Paris, 354 p.

Bozio Antoine (2005), « Introduction au logiciel STATA », Paris, 18 p.

Cadoret I. et al. (2009), « Econométrie appliquée : Méthodes – Applications – Corrigés », éd. de boeck, 2è édition, Bruxelles, 462 p.

Cadot Olivier (2012), « Stata pour les nuls », 65 p.

Casin Philippe (2009), « Econométrie : Méthodes et applications avec EViews », éd. Technip, Paris, 224 p.

Charpentier Arthur, « Cours de séries temporelles : Théories et applications – Volume 2 », 141 p.

Christopher Baum F. (2001), « Stata: the language of choice for time series analysis », in The Stata Journal 1, number 1, pp. 1-16.

Couderc Nicolas, « Econométrie appliquée avec Stata », Université Paris 1 Panthéon-Sorbonne, 22 p.

Deniu C., Fiori G. et Mathis A. (2015), « Sélection du nombre de retards dans un modèle VAR: Conséquences éventuelles du choix des critères », in Economie et prévision, n° 106, 1992-5. Développements récents de la macro-économie, pp. 61-69. (lien: http://www.persee.fr/doc/ecop 0249-4744_1992_num_106_5_5315).

Desjardins Julie (2005), «L'analyse de régression logistique», Tutorial in Quantitative Methods for Psychology, vol. 1(1), pp. 35-41.

Doucoure Fodiye B. (2008), « Méthodes économétriques : cours et travaux pratiques », éd. ARIMA, 5è édition, Dakar, 511 p.

Goaied M. et Sassi S. (2012), « Econométrie de données de Panel sous Stata », 1ère édition, I.H.E.C/LEFA, 45 p.

Gosse, J-B. et Guillaumin, C. (2011), « Christopher A. Sims et la représentation VAR », 15 p.

Hurlin Christophe, « Econométrie des variables qualitatives : Modèles à variable dépendante limitée (Modèles Tobit simples et Tobit Généralisés) », 52 p.

	(2003),	« Econométrie	des	variables	qualitatives:	Modèles
Dichotomiques Univariés (Modèles Probit, Logit et Semi-Paramétriques) », 57 p.						

(2003), « Econométrie des variables qualitatives : Modèles Multinomiaux (Modèles Logit Multinomiaux Ordonnés et non Ordonnés) », 32 p.

______, « L'Econométrie des Données de Panel : Modèles Linéaires Simples », 68 p.

____ (2007), « Modèles ARCH-GARCH: Application à la VaR », Université d'Orléans, 78 p.

Hurlin, C. et Mignon, V. (2006), « Une synthèse des Tests de Cointégration sur Données de Panel », 33 p.

I Gusti Ngurah A. (2009), « Time Series Data Analysis Using Eviews », édition John Wiley and Sons, 635 p.

Kenneth Simons L. (2013), « Useful Stata Commands (for Stata version 12) », 47 p.

Kintambu Mafuku E.G. (2004), « Principes d'Econométrie », Presses de l'Université Kongo, 4è édition, 285 p.

Kpodar Kangni (2007), « Manuel d'initiation à Stata (version 8) », CERDI, Clermont-Ferrand, 97 p.

Lubrano Michel (2008), « Modélisation Multivariée et Cointégration », 32 p. (2008), « Tests de Racine Unitaire », 46 p.

Luyinduladio Menga E. (2009), « Manuel d'initiation à EViews », inédit, Septembre, 79 p.

Michée Sendula, « Guide d'utilisation Stata 9 », inédit, 44p.

Mignon Valérie (2008), « Econométrie : Théorie et Applications », éd. ECONOMICA, 236 p.

Nicholas L., Hébert B-P et Laplante B. (2007), « introduction à Stata », 46 p.

Ouellet Estelle (2005), « Guide d'économétrie appliquée pour Stata pour ECN 3950 et FAS 3900 », Université de Montréal.

Park Hun Myoung (2008), «Univariate Analysis and Normality Test Using SAS, Stata, and SPSS », Working Paper, The University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University, 41 p.

Pellier K. (2007), « Travaux Dirigés d'Econométrie – M1: Guide d'utilisation d'EViews », 14 p.

Pétry F. et Gélineau F., « Guide pratique d'introduction à la régression en sciences sociales – Deuxième édition revue et augmentée », 42 p.

Quantitative Micro Software/QMS (2004), « EViews 7 Command and Programming Reference », USA, Avril, 580 p.

Quantitative Micro Software/QMS (2004), « EViews 7 Object Reference », USA, Novembre, 764 p.

Rabe-Hesketh S. et Everitt B.S. (2004), « A Handbook of Statistical Analyses using Stata », 3è edition, éd. CHAPMAN and HALL/CRC, Londres, 304 p.

Ricardo Perez-Truglia (2009), « Applied Econometrics using Stata », Havard University, 170 p.

Robert Alan Y. (2007), « Robust Regression Modeling with STATA – lecture notes », 93 p.

(2007), « Stata 10 (Time Series and Forecasting) », in Journal of Statistical Software, volume 23, Software Review 1, december, 18 p.

Robert de Jong (2003), « Eviews mini manual », 6 p.

Robert Dixon, « Simulation of the Klein–Goldberger Model using Eviews », 6 p.

Rous Philippe, « Modèles Estimés sur Données de Panel », cours d'Econométrie des données de panel – Master « Economie et Finance », Université de Limoges, 76 p.

Tombola Muke C. (2012), « Séminaire d'Economie Mathématique I-avec initiation aux logiciels EVIEWS, STATA et MATLAB/modules 1 & 2 », Laréq, Décembre, 37 p. (www.lareq.com).

Tsasa Vangu K. JP. (2012), « Introduction à la programmation à l'aide du logiciel EViews - avec 11 programmes exécutables sur EViews: illustrations + commentaires », Laréq, Décembre, 19 p. (www.lareq.com).

Vescovo Aude, « Cours sur le logiciel Stata », IRD-AFRISTAT, 40 p.

