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Preface

The exponential growth in data over the last decade coupled with a drastic drop in cost of 
storage has enabled organizations to amass a large amount of data. This vast data becomes 
the new natural resource that these organizations must tap in to innovate and stay ahead of 
the competition, and they must do so in a secure environment that protects the data 
throughout its lifecycle and data access in real time at any time.

When it comes to security, nothing can rival IBM® Z, the multi-workload transactional platform 
that powers the core business processes of the majority of the Fortune 500 enterprises with 
unmatched security, availability, reliability, and scalability. With core transactions and data 
originating on IBM Z®, it simply makes sense for analytics to exist and run on the same 
platform. 

For years, some businesses chose to move their sensitive data off IBM Z to platforms that 
include data lakes, Hadoop, and warehouses for analytics processing. However, the massive 
growth of digital data, the punishing cost of security exposures as well as the unprecedented 
demand for instant actionable intelligence from data in real time have convinced them to 
rethink that decision and, instead, embrace the strategy of data gravity for analytics. At the 
core of data gravity is the conviction that analytics must exist and run where the data resides. 
An IBM client eloquently compares this change in analytics strategy to a shift from “moving 
the ocean to the boat to moving the boat to the ocean,” where the boat is the analytics and the 
ocean is the data.

IBM respects and invests heavily on data gravity because it recognizes the tremendous 
benefits that data gravity can deliver to you, including reduced cost and minimized security 
risks. IBM Machine Learning for z/OS® is one of the offerings that decidedly move analytics 
to Z where your mission-critical data resides. In the inherently secure Z environment, your 
machine learning scoring services can co-exist with your transactional applications and data, 
supporting high throughput and minimizing response time while delivering consistent service 
level agreements (SLAs). 

This book introduces Machine Learning for z/OS version 1.1.0 and describes its unique value 
proposition. It provides step-by-step guidance for you to get started with the program, 
including best practices for capacity planning, installation and configuration, administration 
and operation. Through a retail example, the book shows how you can use the versatile and 
intuitive web user interface to quickly train, build, evaluate, and deploy a model. Most 
importantly, it examines use cases across industries to illustrate how you can easily turn your 
massive data into valuable insights with Machine Learning for z/OS.
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Chapter 1. Overview

This chapter introduces IBM Machine Learning for z/OS (MLz) in the context of industry 
trends in artificial intelligence (AI) that are enabling enterprises to embark on a cognitive 
journey with confidence. MLz brings advanced IBM predictive capabilities to the 
mission-critical IBM Z platform. These advanced capabilities enable enterprises to capitalize 
on actionable insights generated from their transaction processing and to do so without 
exposing their data in motion.

This chapter includes the following topics:

� 1.1, “Challenges of exponential data growth” on page 2
� 1.2, “Trends in artificial intelligence and cognitive systems” on page 2
� 1.3, “IBM’s approach to artificial intelligence and cognitive systems” on page 3
� 1.4, “IBM Machine Learning for z/OS: An enterprise machine learning solution” on page 4
� 1.5, “Unmatched capabilities of Machine Learning for z/OS” on page 4
� 1.6, “Value proposition of Machine Learning for z/OS” on page 7

1
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1.1  Challenges of exponential data growth

The past decade has seen two inversely proportionate trends in digital data growth and data 
storage cost. The amount of human and machine generated data has grown at an explosive 
rate, but the storage cost for the data is on a steep decline. In fact, the volume of digital data 
is so massive and the rate of its growth so fast that John Kelly, IBM SVP and Head of 
Cognitive and Research, calls this phenomenon the “third exponential curve.”

The first exponential curve occurred in the 1960s when Intel co-founder Gordon Moore 
observed that the number of transistors per square inch on integrated circuits had doubled 
every year since their invention. He went on to predict that the trend would continue for the 
foreseeable future and revised the estimate in 1975 to doubling every two years. His 
prediction, which was proven to true, has become known as Moore’s Law.1 The pursuit of 
Moore’s Law to essentially double transistors every 12 to 18 months completely changed the 
landscape for technology and industries.

The second exponential curve took place in the late 1990s to 2000s in the age of Metcalfe’s 
Law, which is sometimes also referred as the law of networking. Governed by Metcalfe’s Law, 
social networking sites, such as Facebook and Snapchat, become more valuable as they 
expand their user base.

The third exponential curve, as Kelly articulates, is occurring right now. Data in the digital 
world grows at a rate that doubles every 12 to 18 months.2 

The preponderance of digital data from the exponential growth curves promises business 
opportunities in the data-driven economy, but it presents profound challenges for industries 
that seek ways to extract values from the data. The massive volume and the unprecedented 
rate force organizations to look beyond human competencies and to drive the increasing 
demand for technologies in artificial intelligence and cognitive systems.

1.2  Trends in artificial intelligence and cognitive systems

The term artificial intelligence (AI) has had many meanings over the years, but a common 
theme appears to be emerging. Forrester research likens AI as “a self-learning system that is 
able to interact with humans naturally, understand the environment, solve problems, and 
perform tasks” without the input of instructions or rules.3

The term cognitive systems implies the application of cognitive science to build systems that 
simulate human thought processes and behaviors. Kelly refers to cognitive systems as those 
that “learn at scale, reason with purpose and interact with humans naturally.”4 

Clear trends have emerged in the areas of artificial and cognitive intelligence. One rising 
trend is the sharp increase in investment in AI systems and the correlated upward growth rate 
of the industry. Businesses like IBM have heavily invested in the research and development of 
AI. The AI industry is expected to grow at an annual compound rate of over 50% through 
2021, surpassing that of Public cloud services.

1  Gordon E. Moore, 1975 IEEE Text Speech, “Progress in Digital Integrated Electronics.”
2  IBM’s Management Presents at 21st Annual Credit Suisse Technology, Media & Telecom Conference. Transcript 

provided by http://www.SeekingAlpha.com
3  Forrester Research, The Top Emerging Technologies to Watch: 2017-2021, 
https://ibm.northernlight.com/document.php?docid=IA20160913900000032&datasource=IBM 

4  John E Kelly. “Computing, cognition and the future of knowing: How humans and machines are forging a new age 
of understanding.” 
https://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf
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The same study reveals another rising trend in the AI space. That is, while the demand for AI 
solutions comes from across the industries, nearly 60% of the market opportunities for 
cognitive systems in 2021 is expected to come from banking and financial management, 
healthcare and life sciences, and retail and consumer packaged goods. It is not surprising 
given that organizations across these three industries have a large amount of customer 
transaction data that can be leveraged to simultaneously grow top line revenue and minimize 
risks and costs. 

Near-term use cases in the banking and financial management industry include customized 
program advisors and recommendations, fraud analysis and detection (including 
in-transaction scoring for retail credit card businesses), automated claims processing, and 
regulatory intelligence. The healthcare and life sciences industry holds the opportunities in 
the areas of diagnostics and treatment, pharma research and development, claims 
management, as well as personalized health services. In the retail and consumer packaged 
goods sector, the focus will be on providing customers with that “celebrity” experience through 
automated customer service agents, expert shopping advisors and recommendations, and 
Omni-channel marketing and merchandising.5 

1.3  IBM’s approach to artificial intelligence and cognitive 
systems

IBM has a different prospective on artificial intelligence and guides its development under the 
principle of what CEO Ginni Rometty calls “augmented intelligence.” The difference is slight in 
terms of terminology but critical in terms of meanings. Rather than attempting to replicate all 
of human intelligence, IBM envisions cognitive systems powered by artificial intelligence (AI) 
to enhance and scale human expertise (Preparing for the Future of Artificial Intelligence).6

For this vision, IBM designs and builds a myriad of capabilities based on machine learning, 
reasoning and decision technologies, language, speech and vision technologies, human 
interface technologies, distributed and high-performance computing, and new computing 
architectures and devices. Specifically, IBM cognitive systems are envisioned to include the 
following core competencies:

� Deep understanding of domains
� Ability to reason towards specific goals
� Continuously learning from experiences
� Naturally interacting with cognitive agents or applications

These core competencies drive the research, design, and development of cognitive solutions 
in hardware, software, services, and applications. This is how IBM brings to you IBM 
Watson® and IBM Machine Learning for z/OS. Coupled with your own data, these solutions 
can serve as a launching pad for your business on its cognitive journey. They can help you 
solve a wide range of practical problems, boost productivity, and optimize your business 
decision-making. When purposefully integrated into your business strategy, these solutions 
can help you not only disrupt the competition, but also change the entire industry in which you 
compete similar to how Amazon has completely changed the landscape of retail businesses 
and how Uber has forever altered the rideshare industry.

5  IBM Market Development & Insights Analysis, GMV, and IDC Cognitive Spending Guide
6  IBM Research. Preparing for the Future of Artificial Intelligence, 
http://research.ibm.com/cognitive-computing/ostp/rfi-response.shtml
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1.4  IBM Machine Learning for z/OS: An enterprise machine 
learning solution

Digital data can originate on premise or from private or public cloud. Most cognitive solutions 
on the market require that data be moved off their premise or private cloud, exposing it to 
potential breaches. IBM recognizes the imperative of allowing businesses to keep their 
sensitive, mission-critical data where they want it and provides solutions that bring cognitive 
capabilities to the data. MLz is the solution that enables you to run machine learning on the 
IBM Z platform while keeping mission-critical data where it is and using the existing Z 
capabilities.

MLz provides a complete enterprise grade platform and tooling for you to put your data to use 
through developing behavioral models that can accelerate and optimize business decisions. 
MLz can help your organization become much more agile with the ability to anticipate 
customer trends, minimize risks, and optimize production environments among other potential 
opportunities. 

MLz includes, but is not limited to, the following key features:

� Community and project management feature to enable timely sharing of resources and 
facilitate close collaboration across teams.

� Support for multiple programming languages, including Scala, Python, and R to enable 
data scientists to use the languages of their choice.

� Integrated Jupyter Notebook to provide a programmatic approach to model development

� Visual Model Builder to provide a guided approach to model development without 
requiring extensive programming knowledge and skills.

� Model management dashboard to monitor the health and performance of deployed 
models.

� Administration dashboard for use by the system programmer to manage system 
configurations, set up and monitor scoring services, provision user access and privileges, 
and configure available kernels.

Together with other IBM cognitive technologies, including Db2 Analytics Accelerator for z/OS, 
MLz can help transform your Z platform into a highly-efficient, hybrid transaction, and analytic 
processing environment. It can build, deploy and manage behavioral models in real time by 
directly consuming data that is stored in Db2 for z/OS (or other sources) and transformed in 
the Accelerator. The data stays securely in the Accelerator as it is being ingested into MLz, 
removing the latency between data creation and transactions.

1.5  Unmatched capabilities of Machine Learning for z/OS

What sets MLz apart from other machine learning frameworks on the market is its unique 
ability to work directly with data that originates from IBM Z while keeping that data in place. 
MLz essentially provides IBM Z clients with a complete enterprise machine learning platform 
that leverages valuable business data to infuse mission-critical applications with intelligence. 
Specifically, MLz provides an enterprise grade platform with the following capabilities that are 
not matched by anything else on the market.

� Secure IBM Z platform for running machine learning with data in place
� Full lifecycle management of models
� Enterprise grade performance and high availability
� Flexible choice of machine learning languages
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� Intuitive self-guided model development
� Developer-friendly API interfaces for applications on the Z platform

1.5.1  Secure IBM Z platform for running machine learning with data in place

Data gravity is at the core of big data analytics. Simply stated, data gravity means the 
movement of data at a large scale. Data movement increases the complexity, risk, and cost of 
managing the data. This is especially true for data that resides on IBM Z platform, the world’s 
most secure and resilient environment. Moving data off the Z system introduces security risks 
and operational costs. MLz enables you to keep the sensitive data of your business in the 
secure Z environment while using the industry leading machine learning capabilities to extract 
actionable insights from the data.

MLz also enables you to use advanced proprietary cognitive technologies from IBM Research 
while seamlessly integrating with the most commonly used open source packages with which 
data scientists are familiar. For example, the technology of cognitive assistant for data 
scientists (CADS) helps data scientists select the best performing algorithms through an 
iterative approach applied to a select data set. When an algorithm has been selected, hyper 
parameter optimization (HPO) is applied to tune the model with the optimal parameters. This 
essentially condenses what used to take weeks into hours or days.

1.5.2  Full lifecycle management of models

Most machine learning frameworks or tools focus on the support for an extensive set of 
algorithms and model development. IBM recognizes that machine learning does not end with 
the creation of models. In fact, model development is just the beginning. A model that is not 
deployed and put into production essentially has no value.

As Figure 1-1 shows, the complete machine learning workflow starts from data preparation 
and include steps like feature engineering and model training before the model gets deployed 
for business applications to consume.

Figure 1-1   Machine learning workflow

The work flow does not end when the model is deployed either. The accuracy of the model 
may degrade over time with new data. The model needs to be continuously monitored and 
retrained based on data from live transactions so as to improve its performance or accuracy. 
This iterative MLz workflow forms a continuous learning loop (see Figure 1-2 on page 6).
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Figure 1-2   Continuous learning loop

The complete learning loop architecture of MLz makes possible the full lifecycle management 
of the model which enables close collaboration between members of your machine learning 
team in your organization. Data scientists can select data sources for model building, training, 
and deployment. Production engineers deploy the model into cognitive applications for 
production use. Application developers develop applications to interact with the model. 
Deployed models are used to make predictions. The models can be optimized as the data is 
pushed back into the machine learning workflow in a feedback loop.

1.5.3  Enterprise grade performance and high availability

The vast majority of applications running on IBM Z are processing and generating 
transactional data. High availability and real-time prediction with minimum impact to 
transaction processing are the key requirements for enterprise machine learning on IBM Z. 
MLz takes this requirement to heart in the architecture of the scoring service that runs 
natively on z/OS. Specifically, while using the advanced tooling that is available through open 
source, MLz also integrates tightly with IBM Z as follows:

� MLz takes full advantage of the Z sysplex technology. MLz supports scoring service 
clusters that reside on a single logical partition (LPAR) or span across multiple LPARs to 
ensure high availability of a standalone scoring service and minimize any downtime. MLz 
also leverages the Z dynamic VIPA and Shareport technologies in its design and 
architecture to ensure high availability of a scoring service cluster. 

� MLz runs the online scoring service in IBM CICS® where most of data transaction and 
processing happen on Z. This flexibility ensures the scoring or prediction requests for 
various models are fast enough to meet service level agreements (or SLAs) for transaction 
processing. The scoring service can be deployed within a CICS region, where most of the 
transactions on Z are processed. Transactions running in CICS call scoring service 
directly through CICS LINK, which rids the latency of network communication. 
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1.5.4  Flexible choice of machine learning languages and scoring engines

IBM data science and machine learning strategy are built with the understanding that data 
scientists and users might have preferred programing languages or machine learning 
frameworks or tools. Similar to other IBM offerings for cognitive systems, MLz supports the 
vast majority of popular machine learning languages, including Python, Scala, R, and scoring 
engines, such as SparkML, Scikit-Learn, and PMML, with a development plan in place to 
include XGboost, LightGBM, H2O, Tensorflow, and Caffe in the near future. This flexibility to 
choose the language and framework with which data scientists and other users have 
experience makes MLz easy to consume.

1.5.5  Intuitive self-guided modeling capabilities

MLz provides a myriad of tools imbued with proprietary IBM technology to assist users with 
varying levels of data science and machine learning skills for model development. For 
example, Jupyter Notebook is integrated to provide advanced users who have strong 
programming skills a tool and framework they can use. A visual model builder is developed for 
beginner business users who have minimal or no programming skills. The visual builder is in 
essence a wizard that guides these users step by step to create models. For intermediate 
users, MLz plans to deliver a canvas tool which balances flexibility with ease of use. Users 
can easily drag and drop data processing elements to create a flow on the canvas and then 
generate machine learning models when running the flow.

1.5.6  Developer-friendly API interfaces for applications on the Z platform

In addition to RESTful APIs, MLz also provides developer-friendly API interfaces for 
applications, for example COBOL applications, that run on the Z platform. This capability 
drastically reduces the amount of effort that are otherwise required for application developers 
to use machine learning capabilities on the mainframe and allows organizations to derive 
benefits from applying predictive capabilities to transactions running on IBM Z.

1.6  Value proposition of Machine Learning for z/OS

MLz brings state-of-the-art machine learning technology behind the firewall on IBM Z, the 
world's most secure and resilient platform. Combined with your own data, MLz can help you 
achieve a competitive edge by creating behavior models and deriving actionable insights from 
the models for business decisions. Specifically, MLz provides the development and runtime 
environment as well as the end-to-end model lifecycle management capability that enable 
your organization to:

� Identify patterns from your data.

� Build models from those patterns that can be deployed and embedded in applications to 
predict behavioral outcomes.

� Manage the lifecycle of models to ensure their accuracy over time.

Insights derived from well performing behavior models can yield top line revenue growth while 
minimizing risks or costs. This benefit can be realized for all lines of businesses from a chat 
bot providing customized product recommendations to a unique prediction for each 
transaction to curtail fraud.
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In summary, when purposefully integrated into your cognitive strategy and operations on 
IBM Z, MLz can deliver the following key benefits:

� Gain new insights from current and historical data on IBM Z systems.

� Combine insights from structured and non-structured data from Z and non-Z data sources.

� Deliver in-transaction predictive analytics capability with real-time data while keeping data 
in place and at the source.

� Minimize the latency, cost, and complexity of data movement.

� Maintain security and governance of data for analytics at a lower cost.

� Use the strength of IBM Z to provide the highest level of availability, reliability, scalability, 
and high-performance machine learning services.

� Significantly reduce and simplify development and deployment tasks based on IBM Z 
DevOps infrastructure, which enable mainframe developers and administrators to use 
machine learning with ease.

� Integrate closely with hardware and software that make up the IBM Z stack, including IBM 
Open Data Analytics for z/OS, Db2 for z/OS, Db2 Analytics Accelerator for z/OS, IBM 
WebSphere® Liberty Profile for z/OS, and CICS Transaction Server.

� Support interoperability across IBM Machine Learning and Data Science Experience 
offerings on Public Cloud, Private Cloud, x86, Power, and Linux on Z.

� Provide built-in solution templates for typical IBM Z mainframe use cases.

� Reduce costs by offloading machine learning workloads to IBM Z Integrated Information 
Processors (zIIPs). Workloads not eligible for zIIP offload, including training and scoring 
services for python models, qualify for Container Pricing for IBM Z (IBM United States 
Software Announcement, 217-519, dated 14 November 2017). You can find more detail 
about Container Pricing online.
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Chapter 2. Planning

Planning can both minimize costly errors during installation and shorten the lead time to get a 
new system up and running for production. Thorough planning is imperative to the successful 
installation of IBM Machine Learning for z/OS, which consists of integrated systems and 
services on different platforms. This chapter can help you develop a high-level, actionable 
plan that includes essential tasks, from obtaining product installers and allocating system 
capacity to provisioning network ports.

This chapter includes the following topics:

� 2.1, “Product installers” on page 10
� 2.2, “Hardware and software requirements” on page 10
� 2.3, “System capacity” on page 12
� 2.4, “Installation options on z/OS” on page 14
� 2.5, “User IDs and permissions” on page 17
� 2.6, “Networks, ports, and firewall configuration” on page 19
� 2.7, “Firewall configuration” on page 21

2
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2.1  Product installers

Machine Learning for z/OS comes with installers or installation files for both z/OS and Linux 
or Linux on IBM Z (hereafter, Linux on Z) systems. Depending on your business need, 
choose one of the following combinations of system environment for installation:

� Installation on z/OS and Linux
� Installation on z/OS and Linux on Z

Your planning activity should start with obtaining all the required installation materials based 
on your decision.

Upon receiving your purchase order from IBM Shopz, verify that it includes the following 
materials:

� SMP/E for z/OS image
� Program Directory for IBM Machine Learning for z/OS
� License Information for IBM Machine Learning for z/OS DVD
� Accessing Machine Learning Services on Linux DVD
� All available maintenance packages

Maintenance packages are version-specific and are posted as they become available. Make 
sure that you have all the updates for the version of Machine Learning for z/OS that you install 
by checking the IBM Support Customer access portal for IBM Machine Learning for z/OS.

The SMP/E image and the maintenance packages, if any, are only part of the installation 
materials. You need to download the remaining installers and scripts from the IBM Web 
Membership (IWM) site.

The Accessing Machine Learning Services on Linux DVD includes a “Memo to Users.” The 
memo contains the product access key and the full URL to the IBM Web Membership site, 
where you will see the following installation files:

� IBM_Machine_Learning_Installer_v1.1.0.5_Linux_x86-64 (for installation on Linux)

� IBM_Machine_Learning_Installer_v1.1.0.5_Linux_s390x (for installation on Linux on Z)

� ITOA-Health-Tree-v1.1.0.5.tar (for installation of ITOA Health Tree application on Linux)

� ITOA-Health-Tree-v1.1.0.5-s390x.tar (for installation of ITOA Health Tree application on 
Linux on Z)

� iml_utilities-v1.1.0.5.tar (for SSL certificate generation on Linux or Linux on Z)

Download the installation files for installing Machine Learning for z/OS in the system 
environments that you decided.

2.2  Hardware and software requirements

Machine Learning for z/OS uses both IBM proprietary and open source technologies and 
requires the installation of various hardware and software products in the z/OS and Linux or 
Linux on Z environments. Make sure that you procure all the prerequisite products for 
installation on the systems that you selected.
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2.2.1  Prerequisites for z/OS

The following hardware and software are required for installing Machine Learning for z/OS in 
the Z environment:

� z14, IBM z13®, or IBM zEnterprise® EC12 system
� z/OS 2.1 or later
� Db2 10 for z/OS (with APAR PI13725 applied) or later
� z/OS Integrated Cryptographic Service Facility (ICSF)
� IBM CICS Transaction Server for z/OS 5.4.0 (or 5.3.0 with APAR PI63005 applied)
� IBM Open Data Analytics for z/OS 1.1.0
� z/OS Spark 2.1.1 (FMID HSPK120)
� z/OS Anaconda (FMID HANA110)
� z/OS Mainframe Data Service 1.1 (FMID HMDS120)
� IBM Tivoli® Directory Server for z/OS LDAP
� IBM 64-bit SDK for z/OS, Java Technology Edition, v8 (with Refresh 4 Fix Pack 10) or later
� Gzip 1.6

CICS is required only if you want to install and run Machine Learning for z/OS scoring 
services in a CICS region. Also, be aware that Java 8 SR5 has a known issue with batch 
processing during the start-up, such as the start-master and start-slave process. To avoid the 
problem, plan to use Java 8 SR5 with FP7 or later.

2.2.2  Prerequisites for Linux

The following hardware and software are required for installing Machine Learning for z/OS in 
the Linux environment:

� Three x86 64-bit servers
� Red Hat Enterprise Linux Server 7.2 or later
� Open JDK 1.8.0 or later

2.2.3  Prerequisites for Linux on Z

The following hardware and software are required for installing Machine Learning for z/OS in 
the Linux on Z environment: 

� Three s390x 64-bit server that runs on an LPAR of a z14, z13, IBM z13s®, zEnterprise 
EC12, zEnterprise BC12, LinuxOne Emperor, or LinuxOne Rockhopper system

� Red Hat 7.2 or later

� Open JDK 1.8.0 or later

Important: Make sure that you install and configure the prerequisite products you 
select and acquire, with the exception of IBM Open Data Analytics for z/OS. The next 
chapter guides you through the installation and configuration of the Open Data 
Analytics for z/OS components.
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2.3  System capacity

The correct system capacity for the correct workload is quintessential to maximize the value 
of Machine Learning for z/OS. A workload is typically defined by the number of concurrent 
model creation jobs run by the Jupyter Notebook or the Machine Learning for z/OS visual 
model builder, the size of modeling training data set (in GB), and the number of model training 
data features. Each model creation job includes the tasks for data loading, data 
transformation, data visualization, feature extraction, feature transformation, model training, 
and model evaluation. Carefully plan adequate system capacity in hardware, processing 
power, and disk storage based on the anticipated needs of your enterprise workload.

2.3.1  Basic system capacity

The scoring and training services of Machine Learning for z/OS run on z/OS, and its 
management services, user interface, and administration dashboard run on Linux or Linux 
on Z. These services require a minimum of system capacity. Although you can use the basic 
system capacity to run any reasonable workload, the rule of thumb is that the heavier the 
workload is, the more capacity you need to allocate.

If you choose the combination of z/OS and Linux for installation, ensure that the systems have 
the basic capacity listed in Table 2-1.

Table 2-1   Basic system capacity for installation on z/OS and Linux

If you choose the combination of z/OS and Linux on Z for installation, ensure that the systems 
have the basic capacity listed in Table 2-2.

Table 2-2   Basic system capacity for installation on z/OS and Linux on Z

Hardware Number of 
LPAR/Server

CPU
(Per LPAR/Server)

Memory (GB)
(Per 
LPAR/Server)

DASD/Disk Space (GB) 
(Per LPAR/server)

IBM z Systems® 1 LPAR 4 zIIP processors, 
1 general purpose 
processor

100 50

Linux system 3 x86 64-bit servers 8 cores 48 250 
(plus a minimum of 650 
GB secondary storage for 
each server)

Hardware Number of 
LPAR/Server

CPU
(Per 
LPAR/Server)

Memory (GB)
(Per 
LPAR/Server)

DASD/Disk Space 
(GB) 
(Per LPAR/server)

z Systems 1 LPAR 4 zIIP 
processors, 
1 general 
purpose 
processor

100 50

Linux on Z 
system

3 s390x 64-bit 
servers

3 IFL processors 48 250 
(plus a minimum of 
650 GB secondary 
storage for each 
server)
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For best performance in either installation scenario, consider dedicating the LPAR for 
Machine Learning for z/OS. Also, allocate a secondary storage to each Linux or Linux on Z 
server and configure it with two mount points in XFS format with the ftype option enabled. 
Make sure that one mount point is appropriated a minimum of 300 GB for installer files and 
the other a minimum of 350 GB for data storage.

2.3.2  Capacity considerations for training services

Machine learning models are trained with data and algorithms. In general, model training is 
CPU intensive and can consume most of the CPU available on a given LPAR. The heavier the 
training workload is, the more CPU is needed. So, allocate enough processors based on your 
projected workload for the LPAR where Machine Learning for z/OS training services run.

The type of models and algorithms also affects the type of processors you need for model 
training on z/OS. For example, Spark and MLeap models are typically trained on zIIP 
processors, and Scikit-learn models are processed primarily on the general processors. 
Increase the number of processors to process the type of models you build and the type of 
algorithms you plan to use.

Last but not least, the size of the training data itself constitutes a significant factor in memory 
usage. Results of repeated tests indicate that memory usage tends to be two to three times of 
the size of the training data, and that number bumps up when training jobs are executed 
concurrently. Therefore, the preferred practice is to allocate adequate memory based on both 
the size of your training data and the number of concurrent training jobs.

2.3.3  Capacity considerations for scoring services

Machine Learning for z/OS processes scoring requests on different processors depending on 
the type of models. For example, while scoring requests for Scikit-learn models are 
processed on the general processor, those for Spark, MLeap, and PMML models are handled 
on zIIP processors. So, take into account the type of models that you develop and allocate the 
appropriate type of processors for the LPAR where scoring services run.

If high availability is essential to your business, consider using a scoring service cluster. In 
such a cluster, multiple instances of a scoring service share the same URI, with each running 
on a different LPAR of a sysplex. The cluster uses a round-robin algorithm of the sysplex 
distributor (SD) to dispatch scoring requests across the LPARs. The cluster processes all the 
scoring requests as long as one of the LPARs is operational.

2.3.4  Capacity considerations for performance

System response time is a key performance indicator in machine learning operations. The 
response time of Machine Learning for z/OS services generally corresponds to the availability 
of system capacity, as evidenced by test results in the following example (see Table 2-3).

Table 2-3   System response time corresponds to availability of system capacity

Processors System response time (minutes)

Number of concurrent model creation jobs Size of 
data set 
(GB)

Number of 
data 
features8 16 32 64

4 zIIP
1 GCP

13 27 56 135 2 100

21 46 94 238 4 200
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In this example, if four zIIPs and one GCP are allocated to run the workload of 16 concurrent 
jobs, one training data set of 2 GB in size, and 100 data features, it can take the system up to 
27 minutes to complete the jobs. If eight zIIPs are allocated for the same workload, system 
response time can be reduced to 15 minutes. Although the actual results of your system 
performance can vary, the example demonstrates the positive correlation between system 
capacity and system response time. In other words, adequate allocation of system capacity 
improves system response time when the same or similar workload is being processed. 
Consider increasing your system capacity to improve the response time and thus the overall 
performance of Machine Learning for z/OS services.

2.4  Installation options on z/OS

Machine Learning for z/OS offers flexibility in terms of where to install the training and scoring 
services on z/OS. Depending on your business need and the system capacity you plan to 
allocate, carefully assess the following installation options and choose one that satisfies your 
machine learning workload while achieving the best performance without exceeding system 
capacity:

� Training and scoring services on the same LPAR
� Training and scoring services on different LPARs
� Training services on an LPAR and scoring services on an LPAR cluster

Machine Learning for z/OS uses z/OS Mainframe Data Service (MDS) as both a data 
connector and a data source. MDS must be on the same LPAR where the machine learning 
training and scoring services run. If you use MDS in your setup, make sure that MDS and the 
training and scoring services are installed on the same LPAR or sysplex.

2.4.1  Option 1: Training and scoring services on the same LPAR

This option suggests the installation of both training and scoring services on a single LPAR 
that is dedicated to Machine Learning for z/OS. The sysplex in Figure 2-1 on page 15 
includes multiple LPARs with one handing exclusively machine learning workload and others 
executing existing applications for production. At run time, data is ingested from one or more 
production systems to the dedicated LPAR for training and scoring services.

8 zIIP
1 GCP

9 15 31 68 2 100

14 21 44 101 4 200
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Figure 2-1   Installing training and scoring services on the same LPAR

There are several advantages to this option. The installation is straightforward with all the 
machine learning component systems and services going to the same location on z/OS. Also, 
the option does not impact the performance of the existing production systems in the sysplex. 
Most importantly, with careful workload balancing for training and scoring requests, the 
services can share and maximize the use of system resources for better performance. 

The disadvantage of this option is the potentially negative impact on the performance of 
scoring services. Both data ingestion for training and scoring requests come from other 
production systems, and heavy network traffic between the LPARs might slow down the 
responses of those services. Consider this option if your machine learning workload is not 
heavy and if you want to keep the production systems for machine learning and other 
applications separate. 
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2.4.2  Option 2: Training and scoring services on different LPARs

This option suggests the installation of machine learning training and scoring services on 
separate LPARs with existing production systems. Figure 2-2 shows an example of this 
installation option.

Figure 2-2   Figure 2: Installing training and scoring services on different LPARs

In this example, the installation of training and scoring services spreads across three different 
LPARs in the sysplex. All of them coexist with other applications on their respective 
production systems where data lives. The training services run on the same LPAR along with 
Db2, IMS, or VSAM which holds the data for model training. The scoring services run on the 
same LPARs where scoring requests originate and can respond to those requests with 
minimal performance impact. 

This installation option addresses the shortcomings in the first option. The biggest upside is 
that it uses and optimizes the use of existing system resources on each LPAR while 
eliminating the potential performance impact due to heavy network traffic. Consider the option 
particularly when fast elapsed time for both scoring and training services is essential to the 
operation of your production systems.

2.4.3  Option 3: Training services that are on an LPAR and scoring services 
that are on an LPAR cluster

This option is similar to the second one in terms of installing the training and scoring services 
on separate LPARs. The difference, which is significant, lies in the suggestion that the scoring 
services be installed on an LPAR cluster. Figure 2-3 on page 17 shows the layout of this 
installation option.
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Figure 2-3   Installing training services on an LPAR and scoring services on an LPAR cluster

In this example, the training services run on a dedicated LPAR in a sysplex, and the scoring 
services are installed on multiple LPARs in another sysplex which is configured as a scoring 
service cluster. The sysplex distributor (SD) is used to balance and distribute scoring 
workloads among multiple instances of scoring services in the cluster. All scoring requests 
are processed as long as one LPAR in the cluster is up and running. This option delivers high 
availability and scalability of Machine Learning for z/OS services. Consider this option if your 
machine learning workload is significantly heavy and high availability and stability are top 
priorities of your business. 

2.5  User IDs and permissions

The Linux or Linux on Z installer of Machine Learning for z/OS uses the default user of each 
node to install component systems and services but requires user-defined IDs with proper 
permissions for installation on z/OS. Dedicated user IDs are also required for Machine 
Learning for z/OS to access Db2 for z/OS and z/OS LDAP with the SDBM backend. Make 
sure that you identify or create all the required IDs and assign them sufficient privileges, as 
listed in Table 2-4, before you start the installation.

Table 2-4   User IDs and permissions required for installing Machine Learning for z/OS

Type of User ID Description Required Privileges or Permission

Db2 for z/OS authorization 
(<db2_auth_id>) 

This authorization ID is 
used by the Machine 
Learning services to 
access Db2 for z/OS.

DBADM authority, which is granted when you run the ALNMLEN 
sample JCL job

z/OS LDAP user ID 
(<zldap_userid>)

This user ID is used by 
the Machine Learning 
services to access z/OS 
LDAP.

RACF SPECIAL authority for validating a new user that you want 
to add
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For ease of installation and post-installation access control, consider using the same user ID 
for installing Machine Learning for z/OS operation handling services, z/OS Spark, z/OS 
Anaconda, Jupyter kernel gateway, and Apache Toree. If you prefer to use different IDs, 
consider applying the same naming convention, such as MLZ(TYPE), to create MLZSPARK, 
MLZLDAP, and MLZSCORS. The naming convention helps make it easier to administer and 
monitor the activities of these IDs.

z/OS Spark, Jupyter kernel 
gateway, Apache Toree, and 
MLz operation handling 
service user ID 
(<spark_jupyter_toree_use
rid>)

This user ID is used for 
installing and 
configuring z/OS Spark, 
Jupyter kernel gateway, 
and Apache Toree. This 
ID is also used for 
creating, configuring, 
and starting the 
operation handling 
service on z/OS.

� Member of IBM RACF® user group <spark-GRP>.
� $SPARK_HOME and $SPARK_OPTS ($SPARK_OPTS="—master 

spark://<ip_address>:<port>") 
Environment variables included in the user’s profile 
($HOME/.profile)

� $IML_HOME environment variable included in the user’s 
profile, which points to <install_dir_zos>.

� Inclusion of the following environment variables in the 
user’s profile:
export ANACONDA_ROOT="<install_dir_anaconda>"
export PATH=$ANACONDA_ROOT/bin:$PATH
export PYTHONHOME=$ANACONDA_ROOT
export FFI_LIB=$PYTHONHOME/lib/ffi
export LIBPATH=$PYTHONHOME/lib:$LIBPATH

� Permission to read and write to 
<install_dir_zos>/configuration and subdirectories

� Permission to read and write to 
<install_dir_zos>/iml-library/tmp

� Permission to read and write to 
<install_dir_zos>/imlpython and subdirectories

� Permission to read and write to 
<install_dir_zos>/ophandling and subdirectories

� Permission to write to 
<install_dir_zos>/iml-library/output

� Permission to read <install_dir_zos>/iml-library
� Permission to read 

<install_dir_zos>/iml-library/brunel
� Permission to write to <install_dir_anaconda>

CICS region owner or user 
ID
(<cics_region_userid>)

This user ID is used to 
start and run the 
scoring service in a 
CICS region.

� Permission to read and write to 
<install_dir_zos>/cics-scoring and subdirectories

� <JVMPROFILEDIR>/ALNSCSER.jvmprofile

Machine Learning scoring 
service user ID 
(<mlz_scoring_userid>)

This user ID is used for 
installing and 
configuring the scoring 
service and for starting 
the service servers.

� Member of RACF user group <spark-GRP>
� $SPARK_HOME and $SPARK_CONF_DIR environment variables 

included in the user's profile
� $PYTHONHOME environment variable included in the user 

profile
� $JAVA_HOME/bin defined in the $PATH environment 

variable in the user’s profile
� READ access to BPX.FILEATTR.APF and 

BPX.FILEATTR.PROGCTL facilities
� Permission to write to <install_dir_zos>
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2.6  Networks, ports, and firewall configuration

Machine Learning for z/OS implements SSL/TLS protocols to secure network 
communications across component systems and uses Kubernetes to manage security 
policies in a cluster. The networks use dedicated ports, some of which are predefined. Make 
sure that you reserve the required ports for Machine Learning for z/OS and configure your 
network firewall accordingly.

2.6.1  Network requirements

The Linux or Linux on Z installer sets up a Kubernetes cluster. The cluster is configured to 
provide high availability to Machine Learning for z/OS services, including the primary web 
user interface and the administration dashboard. Make sure that you meet the following 
network requirements for this cluster:

� All nodes in the cluster run in the same subnet, with each assigned a private static IP 
address.

� Each node is associated with a gateway within the subnet, regardless whether or not the 
gateway allows outbound network access.

� The subnet itself is assigned a private static IP address that is to be used as a proxy 
server address. The IP address must be offline during the installation.

� The SELinux module on each node is set to “permissive” or “enforcing” 
(SELINUX=permissive or SELINUX=enforcing) in the /etc/selinux/config file. Restart the 
node after any change to the setting.

� The cluster requires two unique IP ranges in CIDR format, one to be used by the 
Kubernetes service network and the other by the cluster overlay network.

– Kubernetes service network: A Kubernetes service is an abstraction which defines a 
logical set of pods and a policy. It redirects the network traffic to each of the pods at the 
service's backend. Kubernetes manages the IP range and assigns an IP address to 
each service. You need to assign an IP range for the Kubernetes service network.

– Cluster overlay network: A pod is the basic building block of Kubernetes, which 
encapsulates an application container. Kubernetes relies on an overlay network to 
manage how groups of pods are allowed to communicate with each other and other 
endpoints. You need to assign an IP range for the cluster overlay network.

Make sure that the IP ranges are represented by a CIDR notation. CIDR specifies an IP 
address range by the combination of an IP address and its associated network mask. Take 
the range of 192.168.0.0/16 as an example. Although 192.168.0.0 is the network IPv4 
address itself, the number 16 indicates that the first 16 bits are the network part of the 
address, and the remaining 16 bits are for host addresses. If the subnet mask is 255.255.0.0, 
the range can start from 192.168.0.0 to 192.168.255.255.

Carefully select the required IP ranges. The ranges must not overlap with each other. The IP 
addresses in the ranges must not conflict with those used by the Machine Learning for z/OS 
proxy server or your local networks.
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Table 2-5 shows an example for selecting an internal IP range.

Table 2-5   Example of internal IP ranges

2.6.2  Ports

Machine Learning for z/OS requires dedicated ports for network communication across 
component systems and services. Some ports are predefined, and others can be user 
defined. Make sure that you configure the required ports and open them in your firewall, as 
listed in Table 2-6.

Table 2-6   Ports for systems and services on z/OS and Linux or Linux on Z

Host Network/IP Cluster Overlay 
Network

Kubernetes Service 
Network

Host has a single IP 172.16.x.x 192.168.0.0/16 10.0.0.0/16

Host IP conflicts with the 
overlay network default

192.168.x.x 172.16.0.0/16 10.0.0.0/16

Host has more than one IP 
address

192.168.x.x, 10.3.x.x 172.16.0.0/16 172.17.0.0/16

System or 
Service

Port Number Outbound Inbound Note

Db2 for z/OS User defined Linux or Linux on 
Z system

Db2 subsystem The assignment of this port 
depends on your Db2 configuration.

LDAP User defined
default: 636

Linux or Linux on 
Z system

z/OS system

z/OS Spark 
Master

User defined
default: 7077

Linux or Linux on 
Z system

z/OS system

z/OS Spark 
Master REST API

User defined
default: 6066

Linux or Linux on 
Z system

z/OS system

Operation 
Handling Service

User defined
default: 10080

Linux system z/OS system

Scoring Service User defined Linux or Linux on 
Z system

Liberty Profile for 
z/OS system

The assignment of this port 
depends on the configuration of the 
Liberty Profile server and the 
scoring service by default.

Jupyter kernel 
gateway

1 user defined
 default: 8889

Linux or Linux on 
Z system 

Apache Toree 
kernel

Apache Toree 
kernel

User defined 
(A range of port 
numbers in 
consecutive 
order)

None z/OS system Each Toree kernel must be 
assigned 5 port numbers in 
consecutive order.
All port numbers in the range must 
be in consecutive order.
Example: If you use eight Toree 
kernels in your setup, you must 
prepare a total of 40 ports starting 
from the first port number.
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2.7  Firewall configuration

Instead of a traditional server firewall, Kubernetes uses IP tables for cluster communication. 
So, disable the cluster firewall. If an extra firewall must be in place, set it up around the cluster, 
and open the ports in your local network that need to interact with the cluster, such as port 
443 for web access.

Ensure that every node in the cluster has a single local host entry in the /etc/hosts file that 
corresponds to the 127.0.0.1 address. Do not allow any daemon or script process or any cron 
job to modify the hosts file, IP tables, routing rules, or firewall settings during or after the 
installation.

Repository 
service

12501 Linux system, 
Liberty Profile for 
z/OS system

Linux system

Deployment 
service

14150 Linux system, 
Liberty Profile for 
z/OS system, 
Python run time 
for z/OS

Linux system

Batch scoring 
service

12200 Linux system, 
z/OS Spark 
system

Linux system

RabbitMQ 
service

5671, 5672 Linux system Linux system

Kubernetes 
ETCD

2379 Linux system Linux system

Feedback service 14350 Linux system Linux system

Ingestion service 13100 Linux system Linux system

Pipeline service 13300 Linux system Linux system

Machine 
Learning for z/OS 
UI

443 Your network Linux system
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Chapter 3. Installation and customization

This chapter guides you through the installation and configuration of Machine Learning for 
z/OS and the prerequisite IBM Open Data Analytics for z/OS (IzODA). It also shows you how 
to configure for security, high availability, and scalability. Ultimately, the step-by-step 
instructions help you get Machine Learning for z/OS up and running, ready for use. 

This chapter includes the following topics:

� 3.1, “Installation roadmap” on page 24
� 3.2, “Installing and configuring IzODA” on page 25
� 3.3, “Configuring security” on page 35
� 3.4, “Installing and configuring Machine Learning for z/OS” on page 45
� 3.5, “Configuring high availability and scalability” on page 58

3

Important: The discussion in this chapter assumes that you already installed and 
configured all the prerequisite products, except IzODA, as described in Chapter 2, 
“Planning” on page 9. Do not proceed until you complete the installation and 
configuration of the prerequisites for the system environments that you selected.
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3.1  Installation roadmap

Machine Learning for z/OS consists of integrated component systems and services that run 
on different platforms. The installation and configuration involve multiple sequences of tasks 
that might be performed by people in different roles, each with a unique set of skills and 
authorities. The roles of z/OS system programmer and Linux or Linux on Z system 
administrator are required. While the roles of database administrator, security administrator, 
network administrator, and UNIX shell programmer are optional, their skills and knowledge 
are much wanted. 

Given the number of tasks and roles that are involved, close collaboration is key to 
successfully getting Machine Learning for z/OS up and running. Use the high-level roadmap 
that is shown in Table 3-1 to coordinate, organize, and track all installation and configuration 
tasks.

Table 3-1   Planning checklist for a first-time installation

√ Task IT Role / Skills

 Planning installation options on z/OS z/OS system administrator

 Creating user IDs and assigning permissions z/OS system administrator

 Configuring network, ports, and firewalls Network administrator or engineer

 Procuring, installing, and configuring prerequisite products, 
except IzODA

z/OS, Linux, and Linux on Z system 
administrator or programmer

 Installing IzODA z/OS system programmer with UNIX skills

 Configuring IzODA z/OS system programmer with UNIX skills

 Verifying IzODA installation and configuration z/OS system programmer with UNIX skills

 Authoring and authenticating users z/OS system programmer with UNIX skills, 
security administrator

 Creating, distributing, and installing an SSL certificate z/OS system programmer with UNIX skills, 
Linux or Linux on Z system administrator, 
security administrator

 Configuring LDAP with SDBM for user authentication z/OS system programmer with UNIX skills, 
security administrator

 Installing machine learning services on z/OS z/OS system programmer with UNIX skills

 Installing machine learning scoring service in a CICS region z/OS system programmer with UNIX skills

 Installing machine learning services on Linux or Linux on Z Linux or Linux on Z system administrator

 Configuring TCP/IP for port sharing and load balancing z/OS system programmer with UNIX skills

 Configuring an application cluster with extra compute nodes Machine Learning for z/OS administrator
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3.2  Installing and configuring IzODA

IzODA 1.1.0 consists of z/OS Spark 2.1.1, z/OS Anaconda and Python 3.6.1, and z/OS MDS 
1.1.0. Machine Learning for z/OS uses the high-performance, general execution engine 
technology of z/OS Spark. Built on Apache Spark, z/OS Spark can perform large-scale data 
processing and in-memory computing. 

Machine Learning for z/OS also takes full advantage of z/OS Anaconda that includes various 
Python packages and provides data scientists with a comprehensive machine learning 
solution. You must install and configure Spark and Anaconda before you install Machine 
Learning for z/OS

z/OS MDS provides integration facilities for IBM Z data sources and other off-platform data 
sources. As a data connector, MDS provides Spark applications with optimized, virtualized, 
and parallelized access to varied data sources. Install MDS only if you use it as a data source, 
a data connector, or both. This section assumes that you want to install MDS.

3.2.1  Installing IzODA

Complete the following steps to install IzODA:

1. Locate the SMP/E image, the Preventive Service Planning (PSP) bucket, and the Program 
Directory for IBM Open Data Analytics for z/OS (5655-OD1).

2. Follow the instructions in the Program Directory to install any IzODA prerequisite.

3. Run the SMP/E program and the sample JCL jobs to install Spark, Anaconda, and MDS. 
For more information, see IBM Open Data Analytics for z/OS Installation and 
Customization Guide.

4. Update the permissions of the IzODA installation directories. When the sample jobs are 
done, Spark, Anaconda, and MDS are installed. However, they are not ready for use yet. 
You must update the permissions of the IzODA installation directory and assign the 
directory ownership to user <spark_jupyter_toree_userid> and associated user group. 

Complete the following steps:

a. Log in to OMVS with the authority to change directory ownership.

b. Issue the chown command, as shown in the following example, to make MLZSPARK the 
new owner of the izoda directory:

chown -R MLZSPARK:IZODADEV /usr/lpp/IBM/izoda

c. Verify that the MLZSPARK is the new owner by issuing the ls command. If the change 
occurs, you should see an output similar to the output that is shown in Example 3-1 on 
page 26.

Attention: For the ease of reference, the remaining instructions use the following user 
ID, user group, and directories for installing and configuring IzODA:

� MLZSPARK is user <spark_jupyter_toree_userid>
� IZODADEV is the user group that includes MLZSPARK
� /usr/lpp/IBM/izoda is the root IzODA installation directory
� /usr/lpp/IBM/izoda/spark is the Spark installation directory
� /usr/lpp/IBM/izoda/anaconda is the Anaconda installation directory
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Example 3-1   ls command

TUSER01@BJC08:> ls -la /usr/lpp/IBM/izoda 
total 64
drwxr-xr-x   4 MLZSPARK  IZODADEV     8192 Dec  6 10:01 .
drwxr-xr-x   8 MLZSPARK  IZODADEV     8192 Dec  6 10:01 ..
drwxr-xr-x  15 MLZSPARK  IZODADEV     8192 Dec  6 10:01 anaconda
drwxr-xr-x   5 MLZSPARK  IZODADEV     8192 Dec  6 10:01 spark

5. Ensure that the env program is in the correct path and provides a correct list of the 
environment variables. Spark shell scripts require that the env program runs in the 
/usr/bin directory. 

a. Issue the following command to check whether /usr/bin/env exists and if yes, 
correctly lists all the environment variables:

/usr/bin/env

If /usr/bin/env exists, you should see all the environment variables, some of which are 
visible in Example 3-2.

Example 3-2   Environment variables

TUSER01@BJC08:> /usr/bin/env
_BPX_SHAREAS=
_BPXK_AUTOCVT=
IBM_JAVA_OPTIONS=
STEPLIB=
ANACONDA_HOME=/usr/lpp/IBM/izoda/anaconda
SPARK_HOME=/usr/lpp/IBM/izoda/spark
...

If /usr/bin/env does not exist, check to see where the env program is installed on your 
system. One common location is the /bin directory. 

b. Assuming that the env program is in the /bin/env directory on your system, create a 
symbolic link from /usr/bin/env to /bin/env by issuing the following command:

ln -s /bin/env /usr/bin/env

If the symlink is successfully created, you should see the message that is shown in 
Example 3-3 when you issue the ls -la /usr/bin/env command.

Example 3-3   env command

TUSER01@BJC08:> ls -la /usr/bin/env
lrwxrwxrwx   1 ADFAF  1 8 Dec  4 14:13 /usr/bin/env -> /bin/env

c. Issue the /usr/bin/env command again to confirm that /usr/bin/env is successfully 
resolved to /bin/env. The command should return the same list of environment and 
value pairs that are contained in /bin/env.

Leading practice: Depending on how /usr/bin is configured on your system, the symlink 
for /usr/bin/env might not persist across IPL sessions. In that case, ensure that you add 
the creation of this symlink to your IPL setup.
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3.2.2  Configuring IzODA

Before you can use IzODA, customize your system environment variables based on the 
installation. Some of the customizations are common to z/OS Spark, Anaconda, and MDS, 
while others are unique to each. 

Complete the following steps to configure IzODA:

1. Add IzODA configuration settings to your user profiles. When you log on to UNIX System 
Services, the system automatically loads and applies the environment settings that are 
specified in the following files:

– /etc/profile sets system-wide environment variables on shells for any user. 

– $HOME/.profile sets or changes the values of environment variables for an individual 
user with a .profile in the $HOME directory. The file is loaded when the user logs in. 

– $HOME/.bashrc starts an interactive shell session. The file is loaded when an individual 
user with a .bashrc in the $HOME directory starts the bash shell interactively.

The files are loaded in the order of /etc/profile, $HOME/.profile, and $HOME/.bashrc. If 
you set the default shell to bash, all three files are loaded when you log in. Otherwise, the 
.bashrc file does not run until you start a bash shell. 

To make it easier to set up and use Spark, Anaconda, and MDS with Machine Learning for 
z/OS, add the environment variables that are shown in Example 3-4 to your user-specific 
.profile or .bashrc file or your global /etc/profile file.

Example 3-4   Sample configuration file

# Machine Learning for z/OS configuration
export IML_HOME=/usr/mlz_install/mlz_services
export IML_INSTALL=/usr/mlz_install/
# IBM Open Data Analytics for z/OS Spark configuration
export JAVA_HOME="/usr/lpp/java/J8.0_64"
export IBM_JAVA_OPTIONS="-Dfile.encoding=UTF8"
export SPARK_HOME="/usr/lpp/IBM/izoda/spark/spark211"
export SPARK_CONF_DIR="/etc/spark/conf"
export SPARK_MASTER_PORT=7077
export SPARK_LOCAL_IP=""
export SPARK_WORKER_DIR="/var/spark2/work"
export SPARK_LOCAL_DIRS="/tmp/spark2/scratch"
export SPARK_LOG_DIR="/var/spark2/logs"
export SPARK_PID_DIR="/tmp/spark2/pid"
# IBM Open Data Analytics for z/OS Anaconda and Python configuration
export ANACONDA_HOME="/usr/lpp/IBM/izoda/anaconda"
export PYTHON_HOME="$ANACONDA_HOME"
export FFI_LIB="$PYTHON_HOME/lib/ffi"
export LIBPATH="$PYTHON_HOME/lib:$LIBPATH"
# IBM Open Data Analytics for z/OS MDS configuration
export STEPLIB=hlq.SAZKLOAD:$STEPLIB
# IBM Open Data Analytics for z/OS common configuration
export _BPXK_AUTOCVT="ON"
export _BPX_SHAREAS="NO"
export PATH="$ANACONDA_HOME/bin:$JAVA_HOME/bin:$PATH"
# IBM Open Data Analytics for z/OS optional configuration
export TERM="xterm"
export _CEE_RUNOPTS="FILETAG(AUTOCVT,AUTOTAG) POSIX(ON)"
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The following environment variables are included in the sample configuration file:

– _BPX_SHAREAS specifies whether the created child process is run in a separate address 
space from the login shell’s address space or in the same address space. The default 
is YES. Do not specify the variable if your login shell is tcsh.

– _BPXK_AUTOCVT enables processes that automatically convert EBCDIC to ASCII. The 
default is OFF. IzODA requires the variable set to ON.

– _CEE_RUNOPTS enables you to specify the IBM Language Environment® runtime option. 
To make file tagging not apparent to Python, consider setting the variable to 
“FILETAG(AUTOCVT,AUTOTAG) POSIX(ON)”. This variable is optional.

– ANACONDA_HOME specifies the root installation directory of Anaconda. The default is 
/usr/lpp/IBM/izoda/anaconda.

– FFI_LIB specifies the absolute or relative path to Python's Foreign Function Interface.

– IBM_JAVA_OPTIONS specifies IBM JVM runtime options. Spark requires that the variable 
is set to “-Dfile.encoding=UTF*”.

– IML_HOME specifies the location where the configuration files for Machine Learning for 
z/OS scoring services reside.

– IML_INSTALL specifies the location where Machine Learning for z/OS configuration files 
is installed.

– JAVA_HOME specifies the location where IBM 64-Bit SDK for z/OS Java Technology 
Edition V8 is installed.

– LIBPATH specifies the absolute or relative path to Python’s C dependencies.

– PATH specifies the location where the shell and bash programs can find executable files 
for Python and Conda.

– PYTHON_HOME specifies the path to the Python executable file. The default location is 
/usr/lpp/IBM/izoda/anaconda/bin.

– SPARK_CONF_DIR specifies the location of Spark configuration files. The default is 
$SPARK_HOME/conf.

– SPARK_HOME specifies the Spark installation directory. The default is 
/usr/lpp/IBM/izoda/spark/spark211.

– SPARK_LOCAL_DIRS specifies the directory that stores Spark shuffle and RDD data. The 
default is /tmp.

– SPARK_LOCAL_IP specifies the consistent IP address to which Spark processes bind 
when listening ports are created.

– SPARK_LOG_DIR specifies the directory that stores Spark log files. The default is 
$SPARK_HOME/logs. You must configure this location if you install Spark on an R/O file 
system.

– SPARK_MASTER_PORT specifies the listening port to which the Spark master process 
binds. The default is 7077.

– SPARK_PID_DIR specifies the directory that stores Spark PID files. The setting is /tmp.

– SPARK_WORKER_DIR specifies the directory that stores Spark working data for the worker 
process. The default is $SPARK_HOME/work. You must configure this location if you install 
Spark on an R/O file system.

Leading practice: Place the sample configuration file in an area, such as /etc/spark, 
that can be accessed by all users.
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– STEPLIB is specified when connecting to MDS from Python. The DSDBC package 
explicitly requires that this variable is set to the MDS data set on z/OS.

– TERM enables MacOS users to edit files with vi.

2. Configure the bash shell for issuing Python and Anaconda (or conda) commands. With the 
ownership of the IzODA installation directories and the proper setup of the environment 
variables, you can complete Anaconda configuration by enabling the execution of python 
and conda commands from your bash shell:

a. Log in to OMVS as MLZSPARK and browse to the /usr/lpp/IBM/izoda/anaconda 
directory where Bash 4.2.53 is installed as a prerequisite of IzODA. 

b. From the directory, issue the following command to start a bash session:

./bin/bash

c. Issue the following command to run the install_ensure_scripts_are_in_ebcdic 
script, which tags all executable scripts inside of the /bin/ directory:

./bin/install_ensure_scripts_are_in_ebcdic

Now you can issue both python and conda commands from your bash shell. 

3. Update Spark configuration settings. By default, Spark configuration files are stored in 
$SPARK_HOME/conf. Spark does not write to this directory for its operations, but any 
modification to the configuration files inside is lost during a Spark service update. The best 
way is to copy the configuration files to the $SPARK_CONF_DIR directory that you specified in 
the sample configuration file and make necessary changes there. 

Complete the following steps:

a. Log in to a shell session as MLZSPARK and create the new directory as specified for the 
SPARK_CONF_DIR variable by issuing the following command:

mkdir -p /etc/spark/conf

Make sure that user MLZSPARK and user group IZODADEV have R/W access to the new 
/etc/spark/conf directory. 

b. Copy all the configuration files from $SPARK_HOME/conf to the new /etc/spark/conf 
directory by issuing the following command:

cp $SPARK_HOME/conf/* $SPARK_CONF_DIR

c. Browse to the new directory and open the spark-defaults.conf file that includes the 
default Spark configuration settings, some of which are shown in  Example 3-5.

Example 3-5   spark-defaults.conf

# Default system properties included when running spark-submit.
# This is useful for setting default environmental settings.

# spark.master                     spark://master:7077
# spark.eventLog.enabled           true

# This option is the prefix of the driver jobname and applicable in cluster 
deploy mode only.
spark.zos.driver.jobname.prefix    ODASD

Leading practice: If bash is not the default shell on the system, consider making it your 
login shell by updating the OMVS segment information or by adding the 
/usr/lpp/IBM/izoda/anaconda/bin/bash command to your $HOME/.profile file. When 
you log in, the new command starts a bash shell.
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# Set this option to false if you want to disable client authentication on the 
master port. The default is true, which requires the enablement of AT-TLS on 
z/OS. This option applies to client deploy mode only. 
spark.zos.master.authenticate      false

# The REST server does not support client authentication or application-layer 
TLS. Enable this option only when you have adequate security in place for the 
REST port.
spark.master.rest.enabled          true

d. Set spark.zos.master.authentication to false and spark.master.rest.enabled to 
true. Spark client authentication is enabled by default. Spark uses AT-TLS with Level 2 
client authentication to secure communications between the Spark master and its 
clients, including the Spark worker and driver. 

Although the REST option is enabled by default, Spark disables the port in the 
configuration templates because it currently does not include the required security. 
Make sure that you enable this option after you configure adequate security in place for 
the REST port.

4. Update the MDS configuration by adding the following environmental variable in the 
$HOME/profile file:

export STEPLIB=hlq.SAZKLOAD:$STEPLIB

3.2.3  Verifying IzODA installation and configuration

Before you start to use IzODA, perform some basic tasks to verify that the installation and 
configuration are successful and that Spark, Anaconda, and MDS work individually or 
together. Complete the following steps:

1. Verify that Anaconda is correctly installed and configured and that the python and conda 
executable files are accessible.:

a. Start a bash shell session as MLZSPARK and enter the following command to verify the 
installation of Python 3.6.1:

python

The installation is successful when you see a message similar to Example 3-6.

Example 3-6   python command

MLZSPARK@BJC08:>python
Python 3.6.1 (tags/HANA110:7960479, Aug 29 2017, 23:30:12) [C] on zos
Type "help", "copyright", "credits" or "license" for more information

b. Run the following print command to ensure that the python interpreter works correctly:

print('Machine Learning for z/OS')

The python interpreter is working if you see a message that is similar to the message 
that is shown in Example 3-7.

Example 3-7   Python interpreter

>>> print('Machine Learning for z/OS')
Machine Learning for z/OS

c. Press CRTL+D or run the exit() command to quit the bash shell.
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d. Issue the conda list command to ensure that Anaconda is properly configured and all 
installed packages are accessible:

conda list scikit-learn

The command should list all versions of scikit-learn, which is a popular machine 
learning package. If you see a message similar to the following example, conda is 
correctly configured and that the conda package manager works properly (see 
Example 3-8).

Example 3-8   Conda list command

MLZSPARK@BJC08:>conda list scikit-learn
# packages in environment at /usr/lpp/IBM/izoda/anaconda:

scikit-learn   0.18.  np112py36_1IzODA

2. Verify that Spark is correctly installed and configured by testing the Spark shell, an 
interactive Scala environment that runs on Java JVM. You can use the shell to access 
Spark API or analyze data interactively:

a. Start the spark shell by issuing the following spark-shell command:

$SPARK_HOME/bin/spark-shell 

If you see a message that is similar to Example 3-9, Spark shell is properly started, 
and a Spark context is obtained.

Example 3-9   spark-shell command

MLZSPARK@BJC08:>$SPARK_HOME/bin/spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
...
Spark context Web UI available at http://<ip>:<port>
Spark context available as 'sc' (master = local[*], app id = local-1513132304712).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.1
      /_/
Using Scala version 2.11.8 (IBM J9 VM, Java 1.8.0_151)
Type in expressions to have them evaluated.
Type :help for more information.
Scala>

b. Issue more commands, including sc.parallelize and help, if necessary, to confirm 
that Spark shell works properly.

Note: Spark shell writes three files into the directory where it is started. Ensure that 
user MLZSPARK has read/write permissions to the $SPARK_HOME/bin/ directory where 
the Spark-shell script is stored. You can redirect the output files to another location. 

For more information, see IBM Open Data Analytics for z/OS Installation and 
Customization Guide.
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The sc.parallelize(1 to 1000).count() command should return the value of 1000 
and the :help command should display the help information, as shown in 
Example 3-10.

Example 3-10   Help command

scala> :help
All commands can be abbreviated, e.g. :he instead of :help.
Those marked with a * have more detailed help, e.g. :help imports.
:help [command]            Print this summary or command- 
specific help
:history [num]             Show the history (optional num 
is commands to show)
:h? <string>               Search the history
:imports [name name ...]   Show import history, identifying sources of names
:implicits [-v]            Show the implicits in scope
:javap <path|class>        Disassemble a file or class name
:load <path>               Load and interpret a Scala file

c. Press CRTL+D or enter the :quit command to close the Spark shell.

3. Verify that the spark-submit command can complete successfully, which starts an 
application in Spark. The easiest way to test the command is to run SparkPi, which is one 
of the sample programs that starts the spark-submit script in the background. Issue the 
following command to run the SparkPi sample program:

$SPARK_HOME/bin/run-example SparkPi

The spark-submit command works properly if you see a message that is similar to the 
message that is shown in Example 3-11.

Example 3-11   run-example command

MLZSPARK@BJC08:> $SPARK_HOME/bin/run-example SparkPi
17/12/12 21:38:51 INFO SparkContext: Running Spark version 2.1.1
17/12/12 21:38:52 WARN NativeCodeLoader: Unable to load native-hadoop library for 
your platform… using builtin-java classes where applicable
17/12/12 21:38:53 INFO SecurityManager: Changing view acls to: MLZSPARK
17/12/12 21:38:53 INFO SecurityManager: Changing modify acls to: MLZSPARK
17/12/12 21:38:53 INFO SecurityManager: Changing view acls groups to:
17/12/12 21:38:53 INFO SecurityManager: Changing modify acls groups to:
17/12/12 21:38:53 INFO SecurityManager: SecurityManager: z/OS client 
authentication is disabled
17/12/12 21:38:53 INFO SecurityManager: SecurityManager: authentication disabled; 
ui acls disabled; users with view
17/12/12 21:39:01 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have 
all completed, from pool
17/12/12 21:39:01 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:38) 
finished in 3.223 s
17/12/12 21:39:01 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, 
took 3.890919 s
Pi is roughly 3.138155690778454
17/12/12 21:39:01 INFO SparkUI: Stopped Spark web UI at 
http://<host_IP_address>:4040

The following line at the end of the example indicates that the SparkPi sample was 
successfully started and that the spark-submit command worked properly:

Pi is roughly 3.138155690778454
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4. Verify that a Spark cluster can be started. A spark cluster consists of a Spark master and 
a Spark worker that manage resources for all submitted Spark applications:

a. Start the Spark master by issuing the following command:

$SPARK_HOME/sbin/start-master.sh -h <host_IP_address>  -p <sparkMaster-port>

Where <host_IP_address> is the IP address of the z/OS system and 
<sparkMaster-port> is the Spark master daemon port. The default port is 7077. The 
Spark master daemon attempts to define the port that you specify for the -p parameter. 
If the default port is not available, it increments the -p value by one and attempts to 
bind to the next available port. 

The start-master command generates a Spark master daemon log file in the 
$SPARK_LOG_DIR directory. The log file includes output that is similar to the output that is 
shown in Example 3-12.

Example 3-12   Log file output

MLZSPARK@BJC08:>$SPARK_HOME/sbin/start-master.sh -h <host_IP_address> -p 7077
Starting org.apache.spark.deploy.master.Master, logging to 
/var/spark/logs/spark-MLZSPARK-org.apache.spark.deploy.master.Master-1-BJC08.out

Check the log to make sure that the Spark master is started successfully and to 
determine the port number on which the Spark master daemon is listening.

b. Start the Spark worker by issuing the following command:

$SPARK_HOME/sbin/start-slave.sh spark://<host_IP_address>:<sparkMaster-port>

The start-slave command generates a Spark worker daemon log file in the 
$SPARK_LOG_DIR directory. The output of the command is similar to the output that is 
shown in Example 3-13.

Example 3-13   start-slave command

MLZSPARK@BJC08:>$SPARK_HOME/sbin/start-slave.sh spark://<host_IP_address>:7077
Starting org.apache.spark.deploy.worker.Worker, logging to 
/var/spark/logs/spark-MLZSPARK-org.apache.spark.deploy.worker.Worker-1-BJC08.out

Check the log to make sure that the Spark worker is started successfully.

Leading practice: You do not need to specify the host (-h) and port (-p) parameters 
for the spark-master command if you set the SPARK_LOCAL_IP and 
SPARK_MASTER_PORT variables in the IzODA configuration file.

Note: The start-master and start-slave commands might return an error that 
states “FSUMA904 no matching processes found.” This error occurs when the 
commands check for but cannot find an active master or worker in the current user’s 
processes. Ignore the error if it occurs once or twice. More frequent occurrences 
might indicate that the Spark master or worker daemon process cannot start. Check 
the appropriate log file for more information.
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c. Submit an application to the Spark cluster that you just started. Issue the following the 
spark-submit command on a single line to run the same SparkPi sample that you ran 
earlier by way of the interactive run-example command:

$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi 
--master spark://<host_IP_address>:<sparkREST-port>             
--deploy-mode cluster 
$SPARK_HOME/examples/jars/spark-examples_2.11-2.1.1.jar

Where <sparkREST-port> is the Spark master REST port (the default is 6066). 
Successful execution of the command returns a message similar to the message that 
is shown in Example 3-14.

Example 3-14   spark-submit command

MLZSPARK@BJC08:>$SPARK_HOME/bin/spark-submit --class 
org.apache.spark.examples.SparkPi --master 
spark://<host_IP_address>:<sparkREST-port> --deploy-mode cluster 
$SPARK_HOME/examples/jars/spark-examples_2.11-2.1.1.jar
Running Spark using the REST application submission protocol.
{
  "action" : "CreateSubmissionResponse",
  "message" : "Driver successfully submitted as driver-20171212215012-0000",
  "serverSparkVersion" : "2.1.1",
  "submissionId" : "driver-20171212215012-0000",
  "success" : true
}

d. Verify the submitted application by using the Spark WebUIs. When the Spark master is 
started, a master WebUI is opened on port 8080 by default. You can specify another 
port if needed. View the application by starting your browser and entering the following 
URL:

http://<host_IP_address>:8080

Your browser should display a page similar to what is shown in Figure 3-1.

Figure 3-1   Spark WebUIs
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Notice the following annotations in Figure 3-1 on page 34:

• A shows that the worker daemon process started and completed successfully. 

• B shows that the SparkPi application was submitted and started successfully.

• C shows that the link for the worker page is active. Click the link to open the worker 
page. Check the driver output and see whether it provides an estimate of Pi (see 
Figure 3-2).

Figure 3-2   Spark WebUIs

Note the following annotations in Figure 3-2:

• A shows the finished executors.

• B shows the finished drivers.

• C shows the active link to the stdout of the driver. Click the link to open and view the 
output.

3.3  Configuring security

Machine Learning for z/OS draws on the combined strengths of IBM Security solutions, 
including z/OS Lightweight Directory Access Protocol (LDAP) and Resource Access Control 
Facility (RACF), and industry security standards, including the Secure Sockets Layer (SSL) 
protocol, the Application Transparent-Transport Layer Security (AT-TLS) protocol, and the 
JSON Web Token (JWT). To secure Machine Learning for z/OS, authorize and authenticate 
all users, create and install an SSL/TLS certificate for network communication between all 
component systems, and configure LDAP with SDBM to access RACF for user 
authentication. 

3.3.1  Authorizing and authenticating users

The Machine Learning for z/OS user management service uses LDAP for user authorization 
and RACF for user authentication. A new user with certain privileges is authorized in LDAP, 
and the password and other authentication information are stored in RACF. After the LDAP 
server is configured with SDBM as the backend, the user management service can access 
RACF remotely to authenticate the user.
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When an authorized user signs in from a browser, the user management service sends the 
request to LDAP for authentication. If the user is successfully validated, the user 
management service generates a token and returns it to the browser through the proxy 
service. The user can sign in with the token. The browser then uses the same token to allow 
the user access to the IBM Machine Learning for z/OS UI and services. When an access 
request comes through, the proxy service validates the token and redirects to the right 
component and service.

The token that the user management service issues is the implementation of the JSON Web 
Token (JWT) standard. JWT is an open, industry standard RFC 7519 method for representing 
claims securely between two parties. A JWT token is signed by a user’s private key that is 
provided by the user management service and the token expiry time is 12 hours. The 
machine learning services that receive the token can perform self-validation with the user’s 
public key.

3.3.2  Creating and distributing an SSL certificate 

IBM Machine Learning for z/OS uses the SSL/TLS protocols to secure network 
communications across the component systems. All services on the component systems 
must be configured to use the same CA-signed or self-signed SSL certificate. The certificate 
must contain the IP addresses of all the systems in the installation, including the IP address 
for the Machine Learning for z/OS proxy server.

If you set up an LDAP server with an SSL certificate for your applications, you might want to 
continue to use it for Machine Learning for z/OS. In that case, provide the public key with full 
certificate chain for your LDAP server (named ldapcert.pem) and copy it to the certificate 
directory that Machine Learning for z/OS uses. Otherwise, complete the following steps to 
create an SSL certificate on Linux or Linux on Z and distribute it to z/OS:

1. Collect the IP addresses (and optionally, host names) of all the systems in the installation 
of Machine Learning for z/OS, including the following addresses:

– Virtual IP address of a Linux or Linux on Z server
– LDAP server
– Machine Learning for z/OS proxy server. 

For more information, see 2.6.1, “Network requirements” on page 19.

2. Create a directory on your Linux or Linux system to contain the SSL certificate for Machine 
Learning for z/OS:

a. Log on to one of your Linux or Linux on Z nodes. 

b. If you have not done so, create a root installation directory <install_dir_linux> or 
<install_dir_zlinux> ($IML_INSTALL) for Machine Learning for z/OS. 

c. If you have not done so, retrieve and transfer the iml_utilities-v1.1.0.5.tar file to 
this root installation directory. The .tar file contains scripts for generating a self-signed 
SSL certificate on Linux or Linux on Z. For more information, see 2.1, “Product 
installers” on page 10.

d. Create a subdirectory called certs to contain the SSL certificate you are going to 
create. 

Important: Ensure that your z/OS system administrator can access the certs directory. 
All Machine Learning for z/OS component systems must use the same certificate in the 
certs directory for SSL handshakes. Your z/OS system administrator needs access to 
the certs directory to import the certificate that is used during Step 6 of this process.
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3. Choose the type of SSL certificates to use. You can use a CA-signed or a self-signed 
certificate to secure the Machine Learning for z/OS network communication. The two 
certificate types are compared in Table 3-2. 

Table 3-2   Comparison between CA-signed and self-signed SSL certificate

If you do not have a CA-signed certificate in your organization, consider the use of a 
self-signed certificate. This option is satisfying, given the simplicity of how it is generated 
and the low number of entities on which it is installed.

4. Configure a CA-signed SSL certificate on Linux or Linux on Z. Skip to Step 5 if you choose 
to use a self-signed certificate:

a. Browse to the certs directory.

b. Copy a CA-signed certificate into the directory.

c. Convert the certificate to the PEM format.

d. Rename cert.pem to mycert.pem and cert.key to mykey.key.

e. Choose a password <yourSSLPassword> that you or your z/OS system administrator 
will use to install and use the certificate. 

f. Issue the following command to generate the required mlpubkey.pub file:

openssl rsa -pubout -in mykey.key -out mlpubkey.pub

g. Issue the following command to generate the required certkey.pfx file:

openssl pkcs12 -export -in mycert.pem -inkey mykey.key -out certkey.pfx 
-passout pass:<yourSSLPassword> -name selfsigned

h. Issue the following command to generate the required keystore.jks file:

keytool -importkeystore -deststorepass <yourSSLPassword> -destkeypass 
<yourSSLPassword> -destkeystore keystore.jks -srckeystore certkey.pfx 
-srcstoretype PKCS12 -srcstorepass <yourSSLPassword> -alias selfsigned

Certificate type Advantages Disadvantages

Self-signed 
certificate

No cost Requires that you distribute the certificate, 
minus the private key, to each trading partner 
in a secure manner

Easy to generate Requires that you redistribute the certificate 
to all clients every time it changes

Self-validated Not validated by a third-party entity

Efficient for a few trading 
partners 

Inefficient for many trading partners

CA-signed 
certificate

Eliminates the need that you 
send the certificate to each 
trading partner 

Trading partners must download the digital 
CA-signed certificate that is used to verify the 
digital signature of trading partner public 
keys

No changes are required on the 
trading partner’s system if you 
re-create the digitally signed 
certificate by using the same CA

Must be purchased from a third-party vendor

Important: Proceed to Step 4 if you decide to use a CA-signed SSL certificate or Step 
5 if you choose to go with a self-signed SSL certificate.
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5. Generate a self-signed SSL certificate on Linux or Linux on Z. If you decide to use a 
CA-signed SSL certificate, go back and follow the instructions in Step 4 to configure a 
CA-signed certificate:

a. Browse to the $IML_INSTALL directory (<install_dir_linux> or <install_dir_zlinux>) and 
locate the iml_utilties-v1.1.0.5.tar file.

b. Issue the following command to extract the gen-cert.sh and openssl.cnf.multiple 
files into the misc directory:

tar -xvf iml_utilities-v1.1.0.5.tar

c. Run the gen-cert script and specify the following information when prompted:

• Keystore database password (required): Specify a password that for the keystore 
database that you or your z/OS system administrator creates for storing the 
certificate on z/OS. Ensure that you provide this password when distributing the 
certificate.

• LDAP server IP address (required): Specify the IP address of the LDAP server. The 
host name of the server is optional.

• Proxy server IP address (required): Specify the extra private static IP address that 
is assigned to the subnet for high availability and used by the Machine Learning for 
z/OS proxy server. The host name of the server is optional.

• Additional IP address and DNS (optional): Specify more IP addresses and DNS for 
the certificate. Leave blank if you do not want to do so.

• User Information: Specify information about you or the certificate requester, 
including your email address and the name of your country, state or province, 
locality, organization, and organization unit. It also includes a “common name,” 
which is the host name of your domain server, such as *.ibm.com. The information 
is incorporated into the certificate (see Example 3-15).

Example 3-15   gen-cert.sh

[root@ga311-master-1 misc]# ./gen-cert.sh
...
Generating a 2048 bit RSA private key
... 
Country Name (2 letter code)[XX]:FR
State or Province Name(full name)[]:Herault 
Locality Name (eg, city [Default City]:Montpellier
Organization Name (eg, company)[Default Company Ltd]:IBM
Organization Unit Name (eg, section):ibmccmpl
Common Name (eg, your name or your server’s 
hostname):*.ibm.com
Email Address[]:username@fr.ibm.com
Writing RSA key

d. Issue the following command to verify that the certificate was successfully created. 
This command prints the information of your certificate:

openssl x509 -in certs/mycert.pem -text –noout

e. The certificate you generated is stored in the default certs directory where you run 
the gen-cert.sh script.

f. Verify that the certs directory contains the following files for the certificate:

• mlpubkey.pub
• certkey.pfx
• keystore.jks
38 Turning Data into Insight with IBM Machine Learning for z/OS



• mycert.pem
• mykey.key

6. Create a keystore database on your z/OS system where you installed LDAP. Use the 
database to store the SSL certificate after it is imported from your Linux or Linux on Z 
system:

a. Log on to your z/OS system as a system administrator. 

b. Create a <install_dir_zos> directory ($IML_INSTALL) as the root installation directory for 
Machine Learning for z/OS.

c. Create a certs subdirectory to store the keystore database files you are going to 
create and the SSL certificate files you are going to import from Linux or Linux on Z.

d. Issue the gskkyman command from the certs directory to start the Database menu.

e. Select Option 1 to create a keystore database and specify the following information 
when prompted:

• Key database name (required): Specify a database name of your choice.

• Key database password (required): If you use a self-signed certificate, specify the 
keystore password that you defined in Step 5 during the certificate creation process. 
If necessary, ask your Linux or Linux on Z system administrator for the password.

• Password expiration date: Do not set any password expiration date.

• Database record length: Use the default database record length, which sets a 
non-expiring password for the database.

• FIFS or non-FIFS mode: Select 0 for non-FIFS mode for the database.

f. Press Enter to create the database.

g. Verify that the <mykeystore_name> and <mykeystore_name>.rdb files are present. 

7. Import the SSL certificate from your Linux or Linux on Z system to the new keystore 
database on your z/OS system: 

a. Verify that you can access the certs directory on your Linux or Linux on Z system.

b. Set the FTP program on your z/OS system to run in binary mode. The FTP program 
might return an error message that is similar to the message that is shown in 
Example 3-16 if you do not set it in binary mode.

Example 3-16   FTP error message

----------------------------------------------------------
Unable to import certificate and key. 
Status 0x03353020 – Unrecognized file or message encoding.
----------------------------------------------------------

c. Use the FTP program to copy all the files in the certs directory on your Linux or Linux 
on Z system to the corresponding certs directory on your z/OS system, including 
certkey.pfx, mlpubkey.pub, and keystore.jks.

d. Browse to the certs directory on your z/OS system and issue the gskkyman command 
to start the Key and Certificate menu.

e. Select Option 8 to import a certificate and a private key and specify the following 
information when prompted:

• Import file name: Specify certkey.pfx as the import file.

• Import file password: Specify the password for the SSL certificate.
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• Label: Specify “mlz” as the label. A certificate label is a unique identifier that 
represents the digital certificate stored in your key repository. It provides a 
convenient human-readable name for the key management functions.

f. Select Option 1 from the Key and Certificate menu to display the list of keys and 
certificates.

g. Select Option 1 to display the menu for the “mlz” key.

h. Select Option 3 to set “mlz” as the default key.

i. Select Option 4 to set the “mlz” certificate status as trusted.

j. Enter 0 to exit the menu.

3.3.3  Configuring LDAP with SDBM for user authentication

Machine Learning for z/OS uses RACF to protect the password and other authentication for a 
user that is defined and authorized in LDAP. You can use and configure SDBM (or a similar 
program) as the backend of the LDAP server to manage its access to RACF.

Complete the following steps:

1. Prepare for LDAP configuration with SDBM:

a. Ensure that you know the (absolute or relative) path to the directory on your z/OS 
system that contains the LDAP schema database and checkpoint files, including 
LDBM-1.db, LDBM-2.db, LDBM.ckpt, and schema.db.

b. Verify that user <zldap_userid> is created and assigned proper permissions. For more 
information, see 2.5, “User IDs and permissions” on page 17. The discussion in this 
section uses and references MLZLDAP as <zldap_userid>.

c. Start the RACF service if you have not done so yet.

d. Browse to the $IML_INSTALL directory (<install_dir_zos>) and create a dsconfig 
subdirectory by issuing the following command:

mkdir $IML_INSTALL/dsconfig

2. Copy the following configuration files from the default /usr/lpp/ldap/etc directory to the 
new dsconfig directory:

– ds.profile contains the configuration options for the LDAP server.
– ds.slapd.profile contains the configuration options for the LDAP server backend.
– ds.db2.profile contains Db2-specific configuration options for TDBM or GDBM.
– ds.racf.profile contains RACF-specific configuration options for SDBM.

Issue the commands that are shown in Example 3-17 to copy the files.

Example 3-17   Copy file commands

cp /usr/lpp/ldap/etc/ 
{ds.profile,ds.slapd.profile,ds.db2.profile,ds.racf.profile} 
$IML_INSTALL/dsconfig

You can customize these files in the dsconfig folder when you configure LDAP with SDBM.

3. Use an editor of your choice, such as vi, to customize the ds.profile file in the dsconfig 
directory by setting proper values to the following options: 

– ADMINDN specifies the distinguished name (DN) of a user in SDBM (RACF).

– SDBM_SUFFIX specifies the suffix for the SDBM backend.
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– SCHEMAPATH specifies the name of the file system directory that contains the LDAP 
schema database file.

– ADDRMODE enables 31-bit or 64-bit addressing mode.

– PROG_SUFFIX specifies the suffix of the PROG member to be created in the output 
data set.

– LDAPUSRID specifies the user ID under which the LDAP server runs. This value is the 
<zldap_userid> you created in 2.5, “User IDs and permissions” on page 17.

– OUTPUT_DATASET specifies the name of the data set that contains the output from 
the configuration utility and JCL jobs. The data set must have the appropriate format to 
receive and submit JCL jobs.

– OUTPUT_DATASET_VOLUME specifies the name of the volume for the output data 
set. Use the SMS keyword to indicate that the volume should be SMS-managed.

– APF_JOBCARD_1, PRGCTRL_JOBCARD_1, DB2_JOBCARD_1, 
RACF_JOBCARD_1 specify the job cards for the output JCL jobs that is produced.

– SLAPD_PROFILE specifies the path to the ds.slapd.profile file in the dsconfig 
directory.

– DB2_PROFILE specifies the path to the ds.db2.profile file in the dsconfig directory.

– RACF_PROFILE specifies the path to the ds.racf.profile file in the dsconfig 
directory.

Example 3-18 shows part of a customized ds.profile file that contains these 
configuration options.

Example 3-18   ds.profile file

ADMINDN = "racfid=racf000,profiletype=user,o=IBM"
SDBM_SUFFIX = "o=IBM"
SCHEMAPATH = /var/ldap/schema
ADDRMODE = 31
PROG_SUFFIX = ML 
LDAPUSRID = MLZLDAP
OUTPUT_DATASET = GLD.CNFOUT 
OUTPUT_DATASET_VOLUME = SMS
APF_JOBCARD_1 = //LDAPAPF JOB MSGCLASS=H,NOTIFY=&SYSUID
PRGCTRL_JOBCARD_1 = //LDAPPC JOB MSGCLASS=H,NOTIFY=&SYSUID
DB2_JOBCARD_1 = //LDAPDB2 JOB MSGCLASS=H,NOTIFY=&SYSUID
RACF_JOBCARD_1 = //LDAPRACF JOB MSGCLASS=H,NOTIFY=&SYSUID
SLAPD_PROFILE = /usr/mlz_install/dsconfig/ds.slapd.profile
DB2_PROFILE = /usr/mlz_install/dsconfig/ds.db2.profile
RACF_PROFILE = /usr/mlz_install/dsconfig/ds.racf.profile

Review the volume names and the high-level qualifier that is specified for SSL, RACF, and 
the Language Environment. Ensure that they match your system configuration.

4. Customize the ds.slapd.profile file in the dsconfig directory by setting proper values to 
the following options: 

– LISTEN specifies the URL format of the LDAP server and the port number you set.

– SDBM_ENABLERESOURCES specifies whether the SDBM backend supports 
operations on RACF resources and classes.

– SERVERCOMPATLEVEL specifies the LDAP server compatibility level. 

– SSL_AUTH specifies the SSL/TLS authentication method.
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– SSL_KEYRINGFILE specifies the path and name of the SSL certificate keystore 
database you created in the previous section.

– SSL_KEYRINGFILEPW specifies the password of the SSL certificate keystore 
database you created.

– GSK_PROTOCOL_TLSV1_1, GSK_PROTOCOL_TLSV1_2 are ENVAR variables that 
enable or disable TLS1.1 or TLS1.2.

Example 3-19 shows part of a customized ds.slapd.profile file that contains these 
configuration options.

Example 3-19   ds.slapd.profile file

#LISTEN = ldap://:389
#LISTEN = ldap://hostname:389
LISTEN = ldaps://:636
#LISTEN = ldaps://hostname:636
#LISTEN = ldap://:pc 
SDBM_ENABLERESOURCES = on 
SERVERCOMPATLEVEL = 7
SSL_AUTH = serverAuth
SSL_KEYRINGFILE = /usr/mlz_install/certs/keystore
SSL_KEYRINGFILEPW = <mykeyringfilepassword>
ENVVAR = GSK_PROTOCOL_TLSV1_1=ON
ENVVAR = GSK_PROTOCOL_TLSV1_2=ON

5. Customize the configuration options in the ds.db2.profile file to match your system Db2 
version.

6. Customize the configuration options in the ds.racf.profile file to specify the appropriate 
UID and GID. 

By default, the UID and GID for <zldap_userid> are set respectively to 2 and 1 in the 
ds.racf.profile file. If your installation does not allow shared UID values, ensure that 
the specified value is unique or that the LDAPGID and LDAPUID is replaced with 
AUTOUID and AUTOGID.

7. Issue the dsconfig command to create a set of JCL members, configuration files, and the 
LDAP server start-up procedure: 

a. Issue the following command to export the LDAP sbin directory to the PATH 
environment variable:

export PATH=$PATH:/usr/lpp/ldap/sbin

b. Issue the following command from the dsconfig directory and specify the customized 
ds.profile file as the input file:

dsconfig -i ds.profile -a yes -d error

The command should generate the set of JCL members that is shown in 
Example 3-20.

Example 3-20   JCL members

APF        //APF authorizations 
DSCONFIG   //Main configuration file
DSENVVAR   //LDAP environment variables
MLZLDAP    //Procedure for starting LDAP 
PRGMCTRL   //Program control on the libraries 
PROGLP     //Copy to SYS1.PARMLIB 
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RACF       //RACF update

You use this set of output files to configure your LDAP server and set up the z/OS 
system to run the server. You can start the LDAP server after the JCL jobs are 
successfully submitted and run. 

You can manually update the output DSCONFIG and DSENVAR files, but any manual 
change is lost when you run the dsconfig command again.

c. Review the DSCONFIG file to ensure that the values that are shown in Example 3-21 
are set correctly.

Example 3-21   DSCONFIG file

adminDN
commThreads 10
listen ldaps://:636
maxConnections 65535
schemaPath /var/ldap/schema
sendV3StringsOverV2As UTF-8
serverCompatLevel 7
sendV3StringsOverV2As
sizeLimit 500
timeLimit 3600
validateIncomingV2strings on
sslAuth serverAuth
sslKeyRingFile /usr/mlz_install/certs/keystore
sslKeyRingFilePW <mykeyringfilepassword>
database SDBM GLDBSD31/GLDBSD64
suffix "o=yourCompanyName"
enableResources on
database CDBM GLDBCD31/GLDBCD64 cdbm 

Uncomment the “database CDBM GLDBCD31/GLDBCD64 cdbm” line if it is commented out.

d. Review the DSENVVAR file to ensure that the values that are shown in Example 3-22 
are set correctly.

Example 3-22   DSENVVAR file

NLSPATH=/usr/lpp/ldap/lib/nls/msg/%L/%N
LANG=En_US.IBM-1047
GSK_PROTOCOL_TLSV1_1=ON
GSK_PROTOCOL_TLSV1_2=ON

8. Add the LDAP started task procedure to the procedure library of the target system:

a. Locate the started task procedure in the output data set. The name of the started task 
procedure is the name of the LDAP user ID that is specified on the LDAPUSRID 
statement in the ds.profile file. The pre-assigned name of the LDAP user ID is 
MLZLDAP.

b. Copy the MLZLDAP started task procedure from the output data set to the procedure 
library of the target system.

9. Update RACF by running the RACF and PRGMCTRL JCL jobs in the output data set:

a. Before you run the JCL jobs, meet the following system requirements:

• The profile data set in the JCL job is SYS1.** must match your system profile data 
set .* or .**
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• The DSNR class must contain the DSN9_BATCH resource.

• The JCL must match the version profile of Db2 that runs on your system. The JCL 
job uses UID(1) and GID(2). Make sure those UID and GID are available on your 
system. Otherwise, update the JCL with AUTOID and AUTOGID.

b. Run the following JCL job in the RACF member that allows the LDAP server to run as a 
started task:

RACF member

c. Run the following JCL job in the PRGMCTRL member that sets Program Control on 
libraries used by the LDAP server. The PRGMCTRL member is required only if 
Program Control is active:

PRGMCTRL member

10.Start the LDAP server in SDSF (/s <zldap_userid>) or from the operator’s console 
(s <zldap_userid>).

11.Verify the LDAP server configuration by issuing the ldapsearch command, as shown in 
Example 3-23

Example 3-23   LDAP server configuration

ldapsearch -Z -K /usr/mlz_install/certs/keystore –P <keystorepass> -h 
<host_ip_address> -p 636
-D racfid=mlzldap,profiletype=user,o=IBM -w <mlzlda_password>
-b "profiletype=user,o=IBM" "racfid=tuser01" 
racfid=TUSER01,profiletype=USER,o=IBM

where: 

– Z indicates that the SSL certificate is used, and keystore is the keystore database that 
you created.

– K is your keystore database name.

– P is your keystore database password.

– h is the host name or IP address of your LDAP server (the same z/OS host on which 
the imported SSL certificate resides).

– p is the port of your LDAP server.

– D is the LDAP administrator ID that can be used to search other users. It refers to LDAP 
user MLZLDAP.

– w is the password for the LDAP administrator ID.

– b is the user search base.

– racfid is the user that you want to search. It can be any of the existing users on your 
system.
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3.4  Installing and configuring Machine Learning for z/OS

Machine Learning for z/OS consists of scoring, training, management, and other services and 
processes that run on different platforms. You must install these services on z/OS and Linux 
or Linux on Z systems based on the choice you made in 2.1, “Product installers” on page 10.

3.4.1  Installing machine learning services on z/OS

Machine Learning for z/OS scoring and training services run on z/OS. Complete the following 
procedure to install and configure those services on z/OS:

1. Prepare for the installation and configuration of Machine Learning for z/OS:

a. Log on to your z/OS system by using your <mlz_scoring_userid>. For more information 
about this user ID, see 2.5, “User IDs and permissions” on page 17.

b. Create a <install_dir_zos> directory for storing z/OS system configuration files and a 
<mlz_home> directory for storing service configuration files.

c. For quick and easy access, set $IML_INSTALL and $IML_HOME environment 
variables for the new directories and add them to your /etc/profile file.

d. Ensure that you authorize the RACF user group and the Spark user group 
(<spark-GRP>) access to the new directories.

e. If you have not done so, retrieve and transfer the Machine Learning for z/OS Program 
Directory, SPM/E image, and other installation scripts you received or downloaded 
from IBM to the z/OS system.

2. Run the SMP/E program to install the base code of Machine Learning for z/OS and apply 
any available maintenance package:

a. Follow the instructions in the Program Directory to run the SMP/E program and install 
the machine learning services. 

b. The SMP/E program places the source code in the default /usr/lpp/IBM/aln/v1r1m0/ 
directory. If you specify a different directory, ensure that it contains the /usr 
subdirectory.

c. Follow the instructions at the Customer access portal for Machine Learning for z/OS to 
download and apply the latest product updates (APARs).

d. Verify that the /usr/lpp/IBM/aln/v1r1m0/ directory contains the files that are shown in 
Example 3-24.

Example 3-24   /usr/lpp/IBM/aln/v1r1m0/ directory

bash-4.2# ls /usr/lpp/IBM/aln/v1r1m0
ALNSAMP.pax        IMLzOP.tar         WLP17002.pax
IMLPython.pax      IMLzOS.properties  iml-install.sh
IMLzCICS.tar       IMLzOS.tar.        IMLzOSMF.tar
README
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3. Extract the .pax and .tar files by issuing the following command: 

./iml-install.sh $IML_HOME

You should see a directory structure in $IML_HOME similar to the structure that is shown 
in Example 3-25.

Example 3-25   Directory structure

+- alnsamp/
+- bin/
|  +- server.sh
+- cics-scoring/
+- configuration/
|  +- defaults/
|  |  +- bootstrap.properties
|  |  +- iml/
|  |  |  +- server.xml
|  +- generated/
|  +- log4j.properties
|  +- scoring.cfg 
+- extra/
|  |  +- examples
|  |  +- log4j2.properties 
+- iml-library/
|  +- library/
|  +- runner/
+- imlpython/
+- ophandling/
+- output/
+- usr/
|  +- extension/
|  |  +- lib
|  |  |  +- feature
|  |  |  |  +- scoring-1.0.mf
|  +- servers/
+- wlp/
+- 
zosmf-wf/

The script process might prompt you to overwrite the 
/etc/spark/conf/log4j2.properties file. You can confirm the overwrite because Spark 
was configured with the options specified in the spark-defaults.conf file, instead of the 
log4j2 file.

4. Copy the mlpubkey.pub and keystore.jks files from the $IML_INSTALL/certs directory to 
your $IML_HOME/configuration directory.

5. Install, configure, and start the Jupyter kernel gateway and Apache Toree:

a. Log on to your z/OS system as user <spark_jupyter_toree_userid>. 

b. Run the following kg2at-install.sh script in the $IML_HOME/imlpython/bin directory to 
install the Jupyter kernel gateway and Apache Toree:

./kg2at-install.sh

This script runs the setupEcosystem.sh script and creates a configuration file. 
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c. Run the kg2at-config.sh script in the $IML_HOME/imlpython/bin directory to configure 
the gateway. A default port 8889 is assigned to the gateway. If you want to use a 
different port, specify the port number, as shown in the following example:

./kg2at-config.sh <port>

d. Run the kg2at-start.sh script in the $IML_HOME/imlpython/bin directory with a source 
command to start the gateway:

source kg2at-start.sh

e. Check the gateway.out log in the $IML_HOME /imlpython/logs directory to verify that 
the gateway is started. You should see a message similar to the following example if 
the start was successful:

[KernelGatewayApp] Jupyter Kernel Gateway at http://<ip_address>:8889

If necessary, run the kg2at-stop.sh script to stop the gateway and then run the 
kg2at-start.sh script to restart it.

6. Install the Python packages that are required by Machine Learning for z/OS to train and 
score Scikit-learn models. Run the setupDependencies.sh script in the 
$IML_HOME/imlpython/bin directory: 

./setupDependencies.sh 

It might take a few minutes for the script process to complete.

7. Create, configure, and start a new scoring server for the Machine Learning for z/OS 
scoring service. The $IML_HOME/bin directory contains the server.sh script, which you 
can use to create, start, stop, or remove a scoring server with the appropriate parameter:

a. Log on to your z/OS system as user <mlz_scoring_userid >. 

b. Issue the following command to create a scoring service server: 

bin/server.sh create <serverName>

The command generates a scoring.cfg.<serverName> configuration file in the 
$IML_HOME/configuration directory

c. Customize the scoring scoring.cfg.<serverName> file by setting appropriate values to 
the following configuration options for the scoring service host (IP addresses or host 
names and port numbers):

• scoring_ip specifies the host name or IP address of the system where the scoring 
service runs.

• http_port and https_port specify the HTTP and HTTPS ports of the scoring 
service.

• admin_http_port and admin_https_port specify the administrative HTTP and 
HTTPS ports of the scoring service. 

• flask_http_port and flask_https_port specify the HTTP and HTTPS ports for the 
Python uWSGI server of the scoring service. This port is used by a Python uWSGI 
server for scoring Scikit-learn models. 

After it is started, the uWSGI server listens on the specified port. Each scoring 
service server is defined with a uWSGI server. The scoring server routes a 
Scikit-learn model scoring request to the attached uWSGI server for processing. If 
you do not need Scikit-learn model scoring, specify the flask_http_port -1 and 
flask_https_port -1 parameters to disable the ports when the scoring service 
server is created. If you do need any Scikit-learn model scoring, define the ports of 
your choice.
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The following configuration options are available for the SSL certificate: 

• public_key_path specifies the location where you store the public key 
mlpubkey.pub file on your system. This value should be in the certs folder that you 
imported from the Linux system (/usr/mlz_install/certs/mlpubkey.pub).

• ssl_cert_file_location specifies the location where you store the certificate 
(mycert.pem) file on your z/OS system (/usr/mlz_install/certs/ mycert.pem).

• ssl_key_store_location specifies the location where you store the SSL keystore 
(keystore.jks) file on your z/OS system (/usr/mlz_install/certs/ keystore.jks).

• ssl_key_store_type specifies the type of the SSL keystore file.

• ssl_private_key_location specifies the location where you store the private key 
(mykey.key) file on your z/OS system (/usr/mlz_install/certs/).

• ssl_trust_store_location specifies the location of the SSL truststore file 
(/usr/mlz_install/certs/).

• ssl_key_store_password specifies the encrypted password of the SSL keystore file.

• ssl_trust_store_password specifies the encrypted password of the SSL truststore 
file.

For better security, encrypt the passwords of the SSL keystore and truststore files. 
Complete the following steps to encrypt the passwords:

i. Start a second shell session and browse to the $IML_HOME directory.

ii. Issue the following command to encrypt your SSL keystore password:

wlp/bin/securityUtility encode --encoding=xor <your_keystore_password>

iii. Set the ssl_key_store_password option to the encrypted password.

iv. Repeat Steps ii and iii to encrypt the password for the ssl_trust_store_password 
option.

The following configuration options are available for the repository service:

• repository_host specifies the IP address of the Linux or Linux on Z system where 
the repository service runs. It is the virtual IP address that is used to set up the 
Kubernetes cluster as defined in kube_service_ip in the deploy.cfg file. 

• repository_port specifies the port that is used by the repository service on the 
Linux or Linux on Z system. The default value is 12501.

• repository_ssl_protocol specifies whether HTTPS protocol is used to connect to 
the repository service. By default, the HTTP protocol is used to connect to the 
repository service.

The following configuration options are available for the deployment service:

• deployment_host specifies the IP address of the Linux System where the 
deployment service run, as defined in kube_service_ip on the deploy.cfg file. This 
address should be the Virtual IP Address that was used to set up the Linux cluster.

• deployment_port specifies the port that is used by the deployment service on the 
Linux system. This port is defined during the prerequisite step. The default value is 
14150.

• deployment_ssl_protocol specifies whether HTTPS protocol is used to connect to 
the Machine Learning deployment service. By default, HTTP protocol is used to 
connect to the deployment service.

• enable_monitor enables the monitoring by way of the administration dashboard if it 
is set to true.
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• upload_interval specifies the interval of data uploading by the monitoring service.

d. Issue the following command to start the new scoring server that you created and 
configured:

bin/server.sh start <serverName>

It might take a few minutes for the scoring server to start completely. The server runs in 
the background.

If flask_http_port or flask_https_port is specified, start the Python uWSGI server by 
issuing the following command:

bin/server.sh start-python <serverName>

e. Verify that the scoring server is successfully started by checking the server status 
message in the console.log file in the output/<serverName>/logs directory. If the 
server is successfully started, you should see a message similar to the following 
example:

com.ibm.ml.scoring.online.service.ServiceManager | Scoring server started 
...

If the Python uWSGI server is configured and started, check the server status 
message in the uwsgi.log file in the output/<serverName>/logs directory. The server 
is successfully started if you see a message similar to the following example: 

*** uWSGI is running in multiple interpreter mode ***
spawned uWSGI master process (pid: 6849)
spawned uWSGI worker 1 (pid: 7067, cores: 10)

f. Issue the following command to list all the scoring servers that are currently running:

bin/server.sh list

g. If you need to stop a scoring server or the Python uWSGI server, issue the following 
command:

bin/server.sh stop <serverName>

h. If a uWSGI server is attached, issue the following command to stop the server:

bin/server.sh stop-python <serverName>

i. If you need to remove a scoring server, issue the following command:

bin/server.sh remove <serverName>

8. Create, configure, and start a new server to handle Machine Learning for z/OS operations:

a. Create and customize a new operation handling service server by issuing the following 
command:

bin/ophandling.sh create

The command generates the ophandling.cfg server configuration file in the 
$IML_HOME/configuration directory.

b. Edit the ophandling.cfg file to customize the IP address and port numbers for the 
operation handling service. If necessary, specify --http-port -1 or --https-port -1 
to disable either port. 

c. Start the operation handling service by issuing the following command:

bin/ophandling.sh start

The operation handling service server starts and runs in the background.
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d. Verify that the operation handling service server is successfully started by checking the 
server status message:

bin/ophandling.sh status

e. If you need to stop the operation handling server, issue the following command:

bin/ophandling.sh remove

f. If you need to remove the operation handling server, issue the following command:

bin/ophandling.sh remove

9. Add the new scoring service you created to the Machine Learning for z/OS administration 
dashboard. The service must be added to the Scoring Services page of the dashboard 
for it to become available for model deployment in the Machine Learning for z/OS user 
interface. 

10.Create the database objects that are required by the Machine Learning for z/OS repository 
service. The repository service provides important metadata about models. The metadata 
is stored in Db2 tables that must be created before any service can be started.

A sample ALNMLEN JCL job is provided in the $IML_HOME/alnsamp directory. You can run 
the sample job to create the required database and other database objects in the ALN 
schema:

a. Log on to your Db2 subsystem as user <db2_auth_id> with the privileges required 
CREATE DATABASE and CREATE SEQUENCE. For more information about this user 
ID, see 2.5, “User IDs and permissions” on page 17.

b. Locate the ALNMLEN file in the $IML/HOME/alnsamp directory and issue the following 
command to move it into a PS data set in the ISPF shell:

oget '/usr/mlz_install/mlz_services/alnsamp/ALNMLEN' 
'TUSER01.ALNSAMP(ALNMLEN)' TEXT convert(NO)

c. Follow the instructions in the ALNMLEN file to customize the sample JCL job.

d. Submit the customized ALNMLEN job to create the required database objects, 
including a database, table spaces, sequences, tables, and indexes.

e. Verify that the job runs successfully (with a return code of 0).

3.4.2  Installing the scoring service in a CICS region

If you use CICS to run your online transactions and have the business need for real-time 
scoring within your CICS transactions, you can install and deploy the Machine Learning for 
z/OS scoring service in your CICS regions (see Figure 3-3).

Figure 3-3   Scoring service with CICS
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As shown in Figure 3-3 on page 50, you can start the scoring service and run online scoring 
of Spark, MLeap, and PMML models. To complete this process, you use the EXEC CICS 
LINK API in your COBOL application, instead of the RESTful API: 

1. Ensure that you completed the installation of machine learning services on z/OS or at 
least Steps 1 - 3 as described in 3.4.1, “Installing machine learning services on z/OS” on 
page 45.

2. Verify that the $IML_HOME/cics-scoring directory exists. If the subdirectory does not exist, 
rerun the iml-install.sh script to extract the .pax and .tar files. The IMLzCICS.tar file 
contains the source materials for installing and configuring the Machine Learning scoring 
service in a CICS region.

3. Copy the mlpubkey.pub and keystore.jks files from the $IML_INSTALL/certs directory to 
your $IML_HOME/cics-scoring/configuration directory.

4. Create and configure a new Liberty Profile server named ALNSCSER in a CICS region for 
the Machine Learning for z/OS scoring service. The $IML_HOME/cics-scoring/bin 
directory contains the server.sh script. Use the script to create, configure, start, stop, or 
remove a scoring server in a CICS region.

You can create and start one scoring server per CICS region. If you run multiple CICS 
regions on the same LPAR, you can create a server for each region. Regardless the 
region, the server must be named ALNSCSER:

a. Log on to your z/OS system as user <mlz_scoring_userid >. 

b. Issue the following command from the $IML_HOME directory to create an ALNSCSER 
server:

Cics-scoring/bin/server.sh create <cics_region_name>

The command generates a scoring.cfg.<cics_region_name> server configuration file 
in the $IML_HOME/cics-scoring/configuration directory.

c. Customize the scoring.cfg.<cics_region_name> file by setting appropriate values to 
the following configuration options, in addition to the ones that you specified in the 
scoring.cfg.<serverName> file as described in 3.4.1, “Installing machine learning 
services on z/OS” on page 45:

• -Dcom.ibm.ws.logging.console.log.level specifies the error condition level at 
which the Liberty Profile server writes a message to the JVM server stdout stream. 
The default level is INFO.

• JAVA_HOME specifies the location of the Java directory on your z/OS system.

• WLP_INSTALL_DIR specifies the directory of the Liberty Profile installation in your 
CICS environment. For example, in the IBM CICS Transaction Server for z/OS 5.4.0 
installation, the default Liberty Profile directory is /usr/lpp/cicsts/cicsts54/wlp.

d. Configure the ALNSCSER scoring server for CICS region <cics_region_name> by 
issuing the following command:

cics-scoring/bin/server.sh config <cics_region_name>

The config command reads the options in the scoring.cfg.<cics_region_name> 
configuration file and generates the ALNSCSER.jvmprofile and server.xml files for the 
ALNSCSER server.

You can find the ALNSCSER.jvmprofile file in 
$IML_HOME/cics-scoring/configuration/generated/<cics_region_name> and the 
server.xml file in 
$IML_HOME/cics-scoring/usr/<cics_region_name>/servers/ALNSCSER.
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e. Copy the ALNSCSER.jvmprofile file from 
$IML_HOME/cics-scoring/configuration/generated/<cics_region_name> to 
<JVMPROFILEDIR> that is used by your CICS region.

f. Verify that your CICS region user <cics_region_userid> can read and write to the 
following directories and files:

• $IML_HOME/cics-scoring/bundle
• $IML_HOME/cics-scoring/configuration
• $IML_HOME/cics-scoring/usr/<cics_region_name>
• $IML_HOME/cics-scoring/workdir
• <JVMPROFILEDIR>/ALNSCSER.jvmprofile

5. Define the ALNSCSER JVM server to CICS by issuing a CEDA command, as shown in 
Example 3-26.

Example 3-26   ALNSCSER JVM server 

CEDA DEFINE JVMSERVER(ALNSCSER) GROUP(ALNSCGRP)
DESCRIPTION(JVM SERVER FOR MLZ SCORING SERVER)
JVMPROFILE(ALNSCSER) 
STATUS(ENABLED)

You can also run the sample JCL ALNSCDEF job in the 
$IML_HOME/cics-scoring/extra/jcllib directory to define the JVM server to your CICS 
region.

6. Define the Machine Learning scoring service bundle to CICS by issuing a CEDA 
command, as shown in Example 3-27.

Example 3-27   Define scoring service bundle

CEDA DEFINE BUNDLE(ALNSCBDL) GROUP(ALNSCGRP)
DESCRIPTION(CICS BUNDLE FOR MLZ SCORING SERVER)
BUNDLEDIR(/$IML_HOME/cics-scoring/bundle)
STATUS(ENABLED)

You can also run the sample JCL ALNSCDEF job in the 
$IML_HOME/cics-scoring/extra/jcllib directory to define the scoring service bundle to 
your CICS region.

7. Start the ALNSCSER JVM server and then the Machine Learning scoring service bundle 
by issuing the CEDA commands in the order that is shown in Example 3-28.

Example 3-28   Start the ALNSCSER JVM server

CEDA INSTALL JVMSERVER(ALNSCSER) GROUP(ALNSCGRP)
CEDA INSTALL BUNDLE(ALNSCBDL) GROUP(ALNSCGRP)

8. Verify that the ALNSCSER JVM server and the Machine Learning scoring service bundle 
are successfully started. It takes several minutes for the scoring service to start. 

9. Check scoring-all.log for server status in the 
$IML_HOME/cics-scoring/workdir/<cics_region_name>/ALNSCSER directory. The server is 
successfully started if you see a message similar to the following example:

|com.ibm.ml.scoring.online.service.ServiceManager| Scoring server started...

Alternatively, you can issue the CICS CEMT INQUIRE commands to query the status of 
the JVM server, the scoring service bundle, and the scoring service program (xx), as 
shown in Example 3-29 on page 53.
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Example 3-29   CICS CEMT INQUIRE commands

CEMT INQURIY JVMSERVER(ALNSCSER)
Jvm(ALNSCSER) Ena Prf(ALNSCSER) Ler(DFHAXRO)       
   Threadc(011) Threadl(015) Cur(964350144)
CEMT INQURIY BUNDLE(ALNSCBDL)
Bun(ALNSCBDL) Ena  Par(00001) Tar(00001)         
   Enabledc(00001) Bundlei(scoring-service)

CEMT INQURIY PROGRAM(ALNSCORE)      
Prog(ALNSCORE) Pro Ena   Ced                  
   Resc(0000) Use(0000000000) Any Cex Dpl Ore Ope Jvm

If needed, stop the scoring service and the ALNSCSER server by issuing the CICS 
command that is shown in Example 3-30.

Example 3-30   Stopping service and server

CEMT SET JVMSERVER(ALNSCSER) DISABLED
CEMT SET BUNDLE(ALNSCBDL) DISABLED

Restart the ALNSCSER server and the scoring service by issuing the CICS command that 
is shown in Example 3-31.

Example 3-31   Restarting service and server

CEMT SET JVMSERVER(ALNSCSER) ENABLED
CEMT SET BUNDLE(ALNSCBDL) ENABLED

If needed, remove the ALNSCSER server installation and configuration from a CICS 
region by issuing the following command:

cics-scoring/bin/server.sh remove <cics_region_name>

10.Add the new ALNSCSER scoring service as a native CICS scoring service to the Scoring 
Services page of the Machine Learning for z/OS administration dashboard. You can then 
select and use the new scoring service when creating the deployment of a model. For 
more information, see Chapter 4, “Administration and operation ” on page 63.

3.4.3  Installing machine learning services on Linux or Linux on Z

Machine Learning for z/OS scoring and training services also run on Linux or Linux on Z. You 
can install these services on x86 64-bit Linux systems or s390x 64-bit Linux on Z systems. 
The following instructions apply to Linux and Linux on Z (differences are noted wherever they 
occur):

1. Gather the following materials and information from your z/OS and Linux or Linux on Z 
system administrators:

– Network IP ranges, IP addresses, and port numbers that are allocated and configured 
for Machine Learning for z/OS. For more information, see 2.6.1, “Network 
requirements” on page 19 and 2.6.2, “Ports” on page 20.

Note: The overall installation and configuration process takes about 120 minutes to 
complete, which starts at the shell command line and continues from a web interface. 
Ensure that you plan ahead and allocate enough time for the entire process.
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– Repository service settings, including Db2 subsystem IP address, location, port 
number, and authorization ID. For more information about <db2_auth_id>, see 2.5, 
“User IDs and permissions” on page 17.

– MDSS JAR files if you plan to use MDS as a data source, data connector, or both.

– The ldapsearch script that is used to test LDAP installation.

2. Prepare for the installation and configuration of Machine Learning for z/OS:

a. Log on to one of the cluster nodes as the default user with at least sudo access. The 
Machine Learning for z/OS installer uses the default user of each node to upload 
installation materials and configure the node. The user or user name must have at 
least sudo access, and the password must not contain a single quotation ('), double 
quotation ("), pound sign (#), or white space ( ).

b. Browse to the $IML_INSTALL directory (<install_dir_linux> or 
<install_dir_zlinux>) that you or your system administrator created during the 
creation of an SSL certificate. For more information, see 3.3.2, “Creating and 
distributing an SSL certificate ” on page 36.

Ensure that the $IML_INSTALL/certs directory exists and that the directory contains the 
required SSL certificate files. The installer fails if it cannot find the certs directory.

If you plan to use MDSS as a Machine Learning data source, you must also create a 
mdss_ext_lib subdirectory in the $IML_INSTALL directory and copy the MDSS jars into 
it.

c. If it is not done yet, transfer the following Machine Learning for z/OS installer files to the 
$IML_INSTALL directory:

• IBM_Machine_Learning_Installer_v1.1.0.5_Linux_x86-64 (for installation on Linux)

• IBM_Machine_Learning_Installer_v1.1.0.5_Linux_s390x (for installation on Linux 
on Z)

d. Configure the secondary storage that is required for each node. As described in 2.3.1, 
“Basic system capacity” on page 12, each node requires a secondary storage of at 
least 650 GB. Configure the secondary storage into two partitions in XFS format with 
the ftype=1 option enabled. 

Ensure that one partition has a minimum of 300 GB disk space for installation files and 
the other a minimum of 350 GB for data storage. Both partitions must be mounted to 
the path that is used by the Machine Learning for z/OS installer:

mkfs.xfs -f -n ftype=1 /dev/sdb1
mkfs.xfs -f -n ftype=1 /dev/sdb2

e. Ensure that the secondary storage has good I/O performance. Conduct the following 
simple latency tests and ensure that the performance is better or comparable to 
512000 bytes (512KB) copied, 1.7912 s, and 286 KB/s:

dd if=/dev/zero of=/root/testfile bs=512 count=1000 oflag=dsync

Conduct the following simple throughput tests and make sure that the performance is 
better or comparable to 1073741824 bytes (1.1 GB) copied, 5.14444 s, and 209 MBps:

dd if=/dev/zero of=/root/testfile bs=1G count=1 oflag=dsync

f. Verify that the required network and firewall are properly configured. For more 
information, see 2.6, “Networks, ports, and firewall configuration” on page 19.

Leading practice: Consider configuring the mount points for automatic remount in 
case of a system restart.
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g. Disable the RHN plug-in on all nodes if the nodes do not have access to the Red Hat 
network. Keeping the RHN plug-in enabled without giving the nodes access to the RHN 
network prolongs the installation process considerably. Set enabled=0 in the 
/etc/yum/pluginconf.d/rhnplugin.conf file on all nodes. If necessary, enable the 
plug-in after the installation is completed.

3. Start the installation and configuration at the shell command line. Issue the following 
command to run the installer.

– For Linux:

sh IBM_Machine_Learning_Installer_v1.1.0.5_Linux_x86-64

– For Linux on Z:

sh IBM_Machine_Learning_Installer_v1.1.0.5_Linux_s390x

The installer runs a sequence of eight steps to prepare for installation, including the 
creation of an installation log file and loading IBM Data Platform docker images and 
containers. After the initial setup is completed successfully, the installer prepares for you to 
continue the installation from a web interface.

4. Continue the installation, configuration, and service deployment from the Machine 
Learning for z/OS installer web UI:

a. When prompted, open your browser and enter following link with the IP address and 
the port number shown at the shell command line:

http://<ip_address>:<port>

b. Select the I agree option to accept the terms and conditions and then, click Continue 
to start the Machine Learning for z/OS installer web UI (see Figure 3-4).

Figure 3-4   Machine Learning for z/OS installer web UI

The UI guides you through a four-step process to complete the installation and 
configuration, with the preinstall task already done at the shell command line.

c. On the Assign nodes page, specify physical or virtual nodes for the cluster that will be 
managed by Kubernetes. The installer pings the nodes that you assign and validate the 
information that you provide. Consider the following points:

• A private key can be used as an alternative for sudo credentials.

• The cluster overlay network IP is the IP range that you or your system administrator 
already assigned. For more information, see 2.6.1, “Network requirements” on 
page 19.

• The portable static proxy IP address must be unique.

• The nodes serve as a control, compute, and storage plane for the entire Kubernetes 
cluster. Each node is configured to work as the master and worker. If you specify 
host names instead of IP addresses for the nodes, ensure that the host names are 
specified in lowercase. 

For each node, provide a user name that has sudo access, and the path of the 
directory or directories for the primary and secondary storage disks.
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After all values of all fields are validated, click Next to assign nodes and continue the 
installation.

d. On the Install page, monitor the progress of the remaining installation. The installer 
runs a sequence of 62 steps. Respond to any on-screen instructions. If necessary, 
check the installation log (as shown in Figure 3-5) to understand and address any 
issues that might occur.

Figure 3-5   Installation log

When the progress indicator is at 100%, the installer completed the installation. Click 
Next to start the system configuration.

e. On the Update Admin Account page, specify a new password for the installation 
administrator account. This “admin” user is a default “super” user that cannot be 
removed. The user has the privileges to install and configure Machine Learning for 
z/OS, deploy all services, and manage other users. 

Click Next to update the administrator account and start the IBM Machine Learning for 
z/OS

5. Complete the system configuration and service deployment:

a. On the Sign in page, enter admin as the user name and the new password you created 
for the installation administrator account. 

Click Sign In to start the IBM Machine Learning for z/OS administration dashboard, 
where you can easily configure your system, deploy or redeploy services, add or 
remove users, and manage other system resources.

b. From the sidebar of the administration dashboard, select System configuration to set 
the required parameters to the values based on your installation and configuration. The 
specified parameters, along with some optional parameters, are stored in a deploy.cfg 
file in the /iml/scripts directory. 
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A typical deploy.cfg file can include some of the following parameters:

• certificate_alias specifies the alias name of the certificate when it is generated. 
If you generate the certificate by running the gen_cert.sh script, the default value of 
certificate_alias is set to “selfsigned”.

• certs_location specifies the location of the certs directory where the SSL key 
certificate files are stored on your Linux on Z system.

• image_registry specifies the name of the Docker Registry domain and the port 
number (for example, image_registry = <myregistrydomain.com:5000>).

• image_version specifies the version of the Machine Learning images that are used 
(for example, image_version = 1.1.0, which is the default).

• jdbc_password specifies the Db2 password.

• jdbc_username specifies the Db2 authorization ID.

• jdbc_url specifies where your Db2 is installed (for example, 
jdbc:db2://<host>:<port>/<db2_subsystem_name>).

• jupyter_kernal_gateway_host specifies the host where the Jupyter kernel gateway 
is installed.

• jupyter_kernal_gateway_port specifies the port that is used by the Jupyter kernel 
gateway.

• keystore_password specifies the password that you used for creating the SSL key 
database.

• kube_service_ip specifies the IP address of the host where the Kubernetes master 
runs.

• ldap_cansearch specifies whether the LDAP user ID (<zldap_userid>) has the 
RACF SPECIAL authority and can be used for validating a new user to be added.

• ldap_host specifies the name or IP address of the host where the LDAP server is 
installed. The specified host name or IP must match that of the system on which the 
SSL certificate was generated.

• ldap_password specifies the password for the LDAP credentials used to search the 
directory.

• ldap_port specifies the port that is used by the LDAP server.

• ldap_searchbase specifies the base distinguished name for the LDAP credentials 
that are used to search the directory (for example, profiletype=user,o=IBM, where 
o=IBM is the SDBM_SUFFIX parameter of your LDAP configuration).

• ldap_searchfilter specifies the filter set for the directory search (for example, 
ldap_searchfilter = racfid = {0}, where {0} represents the user ID used to log in 
at the UI for authentication).

• ldap_userdn specifies the user distinguished name for the LDAP credentials that 
are used to search the directory (for example, 
racfid=racf000,profiletype=user,o=IBM, where racf000 is OPERATOR).

Note: If you specify a racfid with the SPECIAL attribute for the UserDN field, it 
implies that when you try to add a user, Machine Learning for z/OS uses this 
racfid as an administration ID to validate whether the new added user is defined. 
If you cannot provide a racfid with the SPECIAL attribute, the value that you 
specify for the UserDN field is for the purpose for testing LDAP connectivity only.
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• mdss_ext_lib specifies the absolute path to the MDSS library. For Linux on Z, the 
path is iml/deployfactory/k8s_deploy_script/ibmml-ga/iml_deploy_scripts. Set 
this parameter only if you want to use MDSS as a data source; otherwise, leave it 
blank.

• nfs_host specifies the IP address of the Linux on Z host where the NFS runs.

• nfs_volume_path specifies the location of the directory to be mounted on the Linux 
on Z system.

• spark_host specifies the host where z/OS Spark runs (for example, spark_host = 
spark://<host_ip>).

• spark_port specifies the port that is used by z/OS Spark.

• spark_web_port specifies the port that is used by the z/OS Spark web user 
interface.

• spark_rest_port specifies the port that is used by the z/OS Spark REST API.

• scoring_host specifies the host where the scoring service runs. This parameter is 
required for installation on Linux on Z only.

• scoring_port specifies the port that is used by the scoring service. The default is 
10080. This parameter is required for installation on Linux on Z only.

• zos_installation_path specifies the absolute path to the $IML_INSTALL directory 
on your z/OS system.

After entering valid values for all the fields, click Next to save the configuration settings 
and prepare for the services deployment process. 

c. On the Deploy window, click Next to deploy the machine learning services. 

After all services are successfully deployed, click Next to start the Users page of the 
administration dashboard. You can start to add users and assign them appropriate 
access level. For more information, see Chapter 4, “Administration and operation ” on 
page 63.

6. Verify that Machine Learning for z/OS was successfully installed and configured. 
Complete one or more of the following tasks to verify:

– Launch and sign onto the Machine Learning for z/OS web user interface.

– Attempt to create and deploy a test model by using the sample. For more information, 
see Chapter 5, “Model development and deployment: A retail example” on page 93.

– Go to the Machine Learning for z/OS administration dashboard to ensure that all 
nodes, pods, and clusters are up and running. For more information, see Chapter 4, 
“Administration and operation ” on page 63.

3.5  Configuring high availability and scalability

Machine Learning for z/OS is highly available and scalable, with multiple scoring services on 
a single LPAR or spanning across different APARs. One way that Machine Learning for z/OS 
achieves high availability and scalability is to use the proven technologies of the IBM Z 
sysplex distributor. 

You can configure TCP/IP with the SHAREPORT or distributed dynamic VIPA (DDVIPA) 
option. Although port sharing can route requests to multiple scoring services on the same 
LPAR, DDVIPAs work as a gateway to distribute requests to scoring services across different 
LPARs. Another way is to scale up your application cluster by adding compute nodes.
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3.5.1  Configuring TCP/IP for port sharing and load balancing 

You can configure a TCP/IP profile for port sharing and load balancing to achieve high 
availability. As shown in Figure 3-6, consider setting up port sharing if you run multiple scoring 
services on the same LPAR. With port sharing, all instances run on the same TCP port and 
requests from applications are routed to the instances by using a weighted, round-robin 
distribution. As a result, online scoring services remain available, even when some of the 
instances are down.

Figure 3-6   Port sharing

If your scoring service instances span across different LPARs, consider configuring the 
sysplex distributor to use DDVIPAs. A DDVIPA address and port also use a round-robin policy 
to route requests to scoring service instances on different LPARs. With DDVIPAs, online 
scoring services are still available even when some LPARs are lost.

Complete the following steps:

1. Define or update the TCP/IP profile in the TCP communication layer of your network 
configuration:

a. If you run multiple scoring service instances on the same LPAR, specify the 
SHAREPORT parameter on the PORT statement in the TCP/IP profile to enable port 
sharing, as shown in the following example:

PORT
    12001 TCP SPARK*  SHAREPORT ;      

Where SPARK* is the user or user ID that starts the scoring process. A wildcard is 
allowed.

All scoring services on the same LPAR can now share and listen on the same port 
11180 for scoring requests from applications. For high availability, each scoring service 
must be defined with a second but unique port, such as 11001, which is called the 
administrative port. The administrative port is required for processing deployment 
requests. 
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When a model is updated, the deployment service must notify all scoring services on 
the same LPAR so they can pick up the right version of the deployed model. Every 
scoring service must have its unique endpoint to receive the notification and every 
endpoint must be defined to a unique port. 

b. If you run multiple scoring services across different LPARs, define the VIPADEFine and 
VIPABackup keywords for the VIPADynamic block in the TCP/IP profile to enable 
DDVIPA for workload distribution, as shown in Example 3-32. The VIPADISTribute 
keyword adds the required sysplex distributor definitions, which keeps all scoring 
services sysplex-aware.

Example 3-32   VIPADynamic block

VIPADYNAMIC
  VIPADEFINE TCP SPARK* SHAREPORT;
  VIPADISTRIBUTE DEFINE
        DISTMETHOD ROUNDROBIN <ip_address>
        PORT 13330
  DESTIP ALL
ENDVIPADYNAMIC

Consider setting up a backup DDVIPA on a separate LPAR by specifying the 
VIPABackup keyword, as shown in Example 3-33. This configuration helps ensure that 
the scoring services are available when one LPAR is down.

Example 3-33   Backup DDVIPA

VIPADYNAMIC
   VIPABACKUP 1 MOVE IMMED 255.255.255.255 <ip_address>
   VIPADISTRIBUTE DEFINE
       DISTMETHOD ROUNDROBIN <ip_address>
       PORT 13330
       DESTIP ALL
 ENDVIPADYNAMIC

2. Update the configuration of the scoring services through the Machine Learning for z/OS 
administration dashboard. The services can be stand-alone, in a scoring cluster, or 
created by a CICS-integrated scoring service. For more information, see Chapter 4, 
“Administration and operation ” on page 63.
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3.5.2  Scaling an application cluster with extra compute nodes

The Machine Learning for z/OS application cluster uses a two-layer architecture for load 
balancing and high availability. As shown in Figure 3-7, the first layer the Keepalived and 
HAProxy technologies to monitor application cluster nodes. Keepalived performs load 
balancing and failover tasks, while HAProxy provides load balancing and high-availability 
services to the application cluster nodes. The second layer is a Kubernetes cluster that is 
made of master and worker nodes.

Figure 3-7   Two layer architecture for load balancing and high availability

With the layered architecture, you can scale out the application cluster by adding new 
compute nodes to satisfy the need of any growing workload. As shown in Figure 3-8, the 
Machine Learning for z/OS services with the maximum number of replicas (pods) are not 
automatically deployed onto the new node. If you redeploy these services, some of them 
might be pushed onto the new node.

Figure 3-8   Scaling the cluster

For more information about how to add compute nodes to an application cluster, see 
Chapter 4, “Administration and operation ” on page 63.
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Chapter 4. Administration and operation 

After Machine Learning for z/OS is up and running, it is important to keep it that way. You can 
manage Machine Learning for z/OS from the web and command-line interfaces. 

This chapter introduces the web-based administration dashboard and describes the UNIX 
commands that you can use to keep Machine Learning for z/OS systems healthy and its 
services uninterrupted.

This chapter includes the following topics:

� 4.1, “Administration dashboard” on page 64
� 4.2, “Administering by using the administration dashboard” on page 72
� 4.3, “Administering by using commands on Linux or Linux on Z” on page 78
� 4.4, “Administering by using commands on z/OS” on page 85

4
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4.1  Administration dashboard

The Machine Learning for z/OS administration dashboard enables system administrators and 
operators to easily monitor and manage various backend systems (for example, Kubernetes 
pods and nodes and Spark clusters), services, users, and other system resources through a 
web user interface. The interface consists of the pages or views that are listed in Table 4-1, all 
of which can be accessed through a sliding sidebar.

Table 4-1   Dashboard pages and views

Dashboard page Description

Presents a visualization of network, CPU, disk, and memory usage at the 
cluster level.

Presents a detailed view of network, CPU, disk, and memory usage at the 
node level.

Provides an entry point to Kubernetes cluster logs where you can view, 
search, and filter logs by node, container, time and date, and error level.

Provides a view of all Kubernetes services, including the administration 
dashboard UI service, its status, and the pod and image in which it runs.

Displays the status of all pods that are defined in a cluster, with which you 
can view the details of a node and when necessary, and redeploy the node.

Lists all current users and their permissions, which allows you to add users 
and assign privileges, change permissions, and remove users, if necessary.

Allows you to view or update the configuration settings of systems, including 
LDAP, Jupyter kernel gateway and Spark, and services, including the 
repository service.

Displays the status of all current scoring services, which allows you to add 
services and start, stop, update, or remove services.

Displays the details of current Spark clusters, which allows you to add or 
remove remote clusters.

A filterable list of alerts that are generated by the Kubernetes cluster in 
response to changes of state in the various services and pods.
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4.1.1  Accessing the administration dashboard

Complete the following steps to access the administration dashboard pages:

1. Sign in the administration dashboard by using one of the following methods:

– Log in to the IBM Machine Learning for z/OS user interface by using your user ID and 
password. Then, select IBM Machine Learning for z/OS administration dashboard 
from the application drop-down menu, as shown in Figure 4-1.

Figure 4-1   Selecting IBM Machine Learning for z/OS administration dashboard

2. Enter the following administration dashboard URL, and then, authenticate by using your 
Machine Learning for z/OS user ID and password:

https://<ip_address>/admin-dashboard/

Where <ip_address> is the IP address or host name of your Machine Learning for z/OS 
proxy server. 

3. In the upper left corner of the Welcome page, click the three vertically stacked bars icon 
( ) to activate the administration dashboard sidebar.

4. From the sidebar, select and start any of the administration dashboard pages or views.

Some of the administration dashboard pages are described next.

4.1.2  Dashboard page

The Dashboard page is the default page when you sign in the administration dashboard 
application. It features the visualization of CPU, memory, disk, and network utilization at the 
cluster level. 

As shown in Figure 4-2, the visualization uses percentage (%) to measure resource usage, 
the colors of a traffic light (green, yellow, and red) to callout potential problems, and the 
continuing timeline to show the network data transmission rate. You can select any point on 
the timeline to view the number of bytes read and written across the nodes in the cluster.

Figure 4-2   Network usage visualization

The visualization also shows the three types of nodes that Machine Learning for z/OS 
supports in a cluster: control, compute, and disk nodes. To maximize usage and reduce 
costs, each physical node is configured for multiple purposes and serves as a control, 
compute, and disk node, as shown in Figure 4-3 on page 66. 
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Figure 4-3   Cluster controls

The cluster that is shown in Figure 4-3 consists of three physical nodes. The physical nodes 
are represented by the columns in the visualization and the multipurpose configuration of 
each node is indicated by the rows. You can display more details about a node by clicking the 
down arrow at the bottom of each cell block.

4.1.3  Control Nodes page

The Control Nodes page (see Figure 4-4) uses a different set of metrics to present the nodes 
in a cluster. The view includes such details as the host name, IP address, and status, and its 
CPU, memory, and storage usage information. As with the Dashboard, the details are listed 
under the control, compute, and storage categories. 

Figure 4-4   Control Nodes page
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Clicking the right arrow shows the partitions that are attached to the node and the capacity of 
each partition. Clicking the host name starts a separate page with the visualization of CPU, 
memory, and storage usage of the node, as shown in Figure 4-5.

Figure 4-5   CPU usage example

4.1.4  Services page

As shown in Figure 4-6, the Services page lists and describes all of the different types of 
Kubernetes services in a Machine Learning for z/OS installation. It also displays the status of 
each service and identifies the pod in which the service deployed. 

Figure 4-6   Services page

You can use the Services page (see Figure 4-7) as a problem diagnosis aid. Clicking the 
name of any service starts a separate page that includes more information, such as the pod 
in which the service is deployed and the node on which the service runs. 

Figure 4-7   More information in Services page
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Clicking the name of any pod starts another page with the visualization of resource usage by 
the specified pod, as shown in Figure 4-8.

Figure 4-8   Pod-specific visualization of resource usage

4.1.5  Pods page

As shown in Figure 4-9, the Pods page flattens the hierarchy of services and pods so that you 
can scan the status of all pods at once and quickly spot the pods that are in trouble. You can 
click the name of any pod to display the resource consumption information. You also can click 
the play button to redeploy a problematic pod after the issue is resolved.

Figure 4-9   Pods page

Note: Although the memory and storage usage graphs label the units for the y-axis, the 
CPU usage graph does not. A value of 1.0 equals one thread on a core/IFL, or one virtual 
processor, depending on the type of CPU that the Linux or Linux on Z system uses.
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4.1.6  Cluster Logs page

The Cluster Log page (see Figure 4-10) provides you the flexibility to display all or some of 
the logs that Machine Learning for z/OS services generate in a cluster. You can use keywords 
to search for specific logs or apply the following filters to narrow your search:

� Node
� Container
� Start and end date and time
� Severity of error condition (info, debug, warn, and error) 

Figure 4-10   Cluster Log page

Performing a keyword search is an especially useful feature. For example, you can quickly 
retrieve the specific log if you search “41p9zDhDM”, as shown in Figure 4-11.

Figure 4-11   Keyword search

The information in the log with the “41p9zDhDM“ ID can help you quickly identify the pod that 
is associated with the error and eventually resolve the error.
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4.1.7  Users page

The Users page (see Figure 4-12) enables you to manage user access and privileges. In 
addition to listing all currently authorized users and their permission level, you can add a user 
and update or remove a user, as shown in Figure 4-12.

Figure 4-12   Users page

The Users page includes the following elements, as shown in Figure 4-12:

� A: Filters the view of users
� B: Total number of users
� C: Add a user
� D: List of users
� E: Edit a user
� F: Delete a user

4.1.8  System Configuration page

By using the System Configuration page, you can view or update the configuration settings of 
services (for example, the repository service) and systems (for example, LDAP, Jupyter kernel 
gateway, and Spark) in a cluster. The System Configuration page also can be used to change 
the port number of the operation handling service on z/OS.

To ensure security and privacy, the password fields are left blank on the System Configuration 
page. You must complete those fields with the correct passwords when you update the 
following configuration settings: 

� LDAP
� Repository service
� SSL certificate
� Kubernetes master login
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4.1.9  Scoring Services page

The Scoring Services page (see Figure 4-13) displays the status and other details (including 
port numbers) of all the scoring services that are available in a cluster. You can add a scoring 
service with z/OSMF and start, stop, update, or remove a service.

Figure 4-13   Scoring Services page

4.1.10  Spark Clusters page

The Spark Cluster page (see Figure 4-14) lists and displays the information about built-in, 
local, and remote clusters in the Machine Learning for z/OS installation. The built-in and local 
(IzODA Spark) clusters are defined and enabled during the Machine Learning for z/OS 
installation process, which cannot be modified or removed. You also can add, update, or 
remove a remote cluster.

Figure 4-14   Spark clusters page
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4.2  Administering by using the administration dashboard

You can use the administration dashboard to perform some common administration and 
operation tasks, including managing users, scoring services, compute nodes, and remote 
clusters.

4.2.1  Managing users and privileges

All users must be authorized and authenticated to access the Machine Learning for z/OS user 
interface and administration dashboard. You can use the administration dashboard to 
manage these users and their privileges. 

Complete the following steps to add a user and assign privileges:

1. Browse to the Users page of the administration dashboard. For more information, see 
4.1.1, “Accessing the administration dashboard” on page 65.

2. Click Add User and specify the full name and valid user name or user ID of the new user. 
A user name is valid if it is defined in the LDAP user directory for Machine Learning for 
z/OS.

3. Choose the appropriate Access Level for the user. An access level is determined by the 
combined permissions of one or more user roles. Each user role is predefined with a 
specific set of privileges. You can assign a user one or more of the roles that are listed in 
Table 4-2.

Table 4-2   Privileges and user roles

Privilege User role

Installation 
administrator 
(installadm)

System 
administrator 
(sysadm)

Machine 
Learning 
administrator 
(mladm)

Model 
developer 
(devuser)

Application 
developer 
(appuser)

Monitoring nodes 
(administration 
dashboard)

Yes Yes

Managing kernels 
(administration 
dashboard)

Yes Yes

Deploying 
services 
(administration 
dashboard)

Yes Yes

Managing users 
and granting 
privileges 
(administration 
dashboard)

Yes Yes

Granting self 
privileges 
(administration 
dashboard)

Yes
72 Turning Data into Insight with IBM Machine Learning for z/OS



4. Click Add to add the new user.

5. Verify that the new user appears in the list that is shown on the Users page.

Editing a user
Complete the following steps to edit a user:

1. On the Users page, select a user that you want to update.

2. From the ACTIONS menu for the selected user, click the Edit (pencil) icon.

3. Modify the Access Level of the user. The user name cannot be edited before it is 
predefined in LDAP.

4. Click Save to update the user.

Remove a user
Complete the following steps to remove a user:

1. On the Users page, select a user that you want to delete.
2. From the ACTIONS menu for the selected user, click the Delete (trash bin) icon.
3. Click Delete to confirm the removal.

Using visual 
model builder 
(Notebook)

Yes Yes Yes

Using canvas 
(Notebook)

Yes Yes Yes

Viewing, 
importing, and 
deleting 
self-owned 
models 
(Notebook)

Yes Yes Yes

Viewing, 
importing, and 
deleting any 
model

Yes Yes

Creating and 
deleting model 
deployments

Yes Yes

Testing model 
predictions

Yes Yes

Running model 
evaluations

Yes Yes

Scoring any model Yes Yes Yes Yes
Chapter 4. Administration and operation  73



4.2.2  Managing scoring services

You can create a scoring service by running the supplied deployment scripts during the 
installation process or by using the z/OSMF workflow service through the administration 
dashboard. 

After a scoring service is created, you must add it to the Scoring Services page of the 
administration dashboard so that the new service is available for model deployment in the 
Machine Learning for z/OS user interface. 

Add a scoring service
Complete the following steps to add a scoring service:

1. Ensure that the target server is started so that the management services can connect to 
and validate it.

2. Browse to the Scoring Services page of the administration dashboard. For more 
information, see 4.1.1, “Accessing the administration dashboard” on page 65.

3. Click Add Scoring Service. In the Service type and cluster configuration panel, select 
one of the following service types:

– Scoring service refers to the scoring service that you created (or will create) on z/OS.

– CICS-integrated scoring service refers to the scoring service that you created in a 
CICS region.

If you select Scoring service, indicate whether you want to add the scoring service to a 
cluster (the default is No). If you choose Yes, select whether you want to add the scoring 
service to an existing or new cluster:

a. To add to an existing cluster, select a cluster from the list.

b. To add to a new cluster, specify a name, host, and HTTP or HTTPS port to create the 
cluster.

4. In the Service host and port configuration panel, specify a name and host for the scoring 
service.

For the Scoring Service Host field, the host name or IP address must be consistent with how 
the scoring_ip property is defined in the configuration file for the target scoring server. The 
two values must match for the scoring service to work correctly.

If the scoring service is added to a cluster, the Scoring Service HTTP Port and Scoring 
Service HTTPS Port fields are automatically populated with the values from the cluster. 
Otherwise, specify the HTTP or HTTPS port.

Optionally, specify the scoring service administrative HTTP or HTTPS port. Although a 
scoring service port number can be common and used by multiple scoring services, an 
administrative port number must be unique. 

Specify the HTTP or HTTPS port for individual scoring services only if those services run on 
the same z/OS LPAR and are instances of the same cluster. If the scoring service is added to 
a cluster, you must specify the common ports and the administrative ports. For more 
information, see 3.5.1, “Configuring TCP/IP for port sharing and load balancing ” on page 59.

Attention: Complete steps 5 and 6 only if you want to use z/OSMF to create a scoring 
service or manage a scoring service.
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5. In the z/OSMF configuration panel, select the option to expand the panel.

Specify the name of the z/OS system, location of the Machine Learning for z/OS 
installation on the system, and URL, user ID, and password for remotely accessing 
z/OSMF. Ensure that the user ID includes the privileges to use the z/OSMF workflow 
service and to create, configure, start, and stop the new scoring service.

Click Validate to verify the information that you provided. The z/OSMF workflow service 
also uses the information to verify whether the scoring service that you specified in the 
previous panel exists on the z/OS system. Consider the following points:

– If the validation fails, resolve the issues that are identified in the error message and 
then, click Validate again.

– If the validation is successful and the scoring service that you specified exists, go to 
Step 7.

– If the validation is successful and the scoring service that you specified does not exist, 
continue to the next configuration panel to create the service.

6. In the Additional configuration for scoring service “serviceName” panel, specify the Flask 
service, authentication key, SSL certificate you use for Machine Learning for z/OS, JVM 
memory sizes, and PMML pool sizes:

– For Flask service, specify the Python Flask HTTP or HTTPS port.

– For Authentication, specify the path to where the public key for authentication is 
located.

– For SSL, specify the keystore location and password, the truststore location and 
password, and the private key location and password.

– For JVM, specify the initial and maximal memory sizes.

– For PMML, specify the initial and maximal pool sizes.

7. Click Add at the bottom of the page to add the service to the Scoring Services page.

8. Verify that the scoring service appears on the Scoring Services page. The scoring service 
is now available for use when you create a model deployment in the Machine Learning for 
z/OS user interface.

9. Start the scoring service by clicking the Play icon under the ACTIONS menu on the 
Scoring Services page.

Editing a scoring service
Complete the following steps to edit a scoring service:

1. On the Scoring Services page, select a service that you want to update.
2. From the Actions menu for the selected service, click the Edit (pencil) icon.
3. Modify the fields as needed and click Save to update the service.

Removing a scoring service
Complete the following steps to remove a scoring service:

1. On the Scoring Services page, select a service that you want to delete.

2. Ensure that the server for the scoring service is stopped and that the server status is 
Paused on the services list as shown in Figure 4-15 on page 76. The server must be 
stopped before the corresponding service can be deleted.
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Figure 4-15   Scoring Services 

3. From the ACTIONS menu for the selected service, click the Delete (trash bin) icon.

4. Click Delete to confirm the removal.

4.2.3  Managing remote Spark clusters

Machine Learning for z/OS uses built-in, local (z/OS IzODA Spark), and remote Spark 
clusters. You can use the administration dashboard to add a remote Spark cluster.

Adding a remote Spark cluster
Complete the following steps to add a remove Spark cluster:

1. Browse to the Spark Clusters page of the administration dashboard. For more information, 
see 4.1.1, “Accessing the administration dashboard” on page 65.

2. Click Add Spark Cluster and specify a name for the new cluster. The name must be 
alphanumeric and can be up to 26 characters in length. Special characters other than “_” 
and “-” are not allowed.

Specify an IP address and a port number for the cluster. The IP address and port number 
are used by the Livy service of the Spark cluster (the Livy API).

3. Click Add to add the cluster.

4. Verify that the new cluster appears on the cluster list on the Spark Clusters page. The new 
Spark cluster is now available when you create or update a notebook in the Machine 
Learning for z/OS user interface. 

5. Enable the new cluster to access the Machine Learning for z/OS library. Issue the 
following commands to mount the Machine Learning for z/OS library on every master and 
worker node in the cluster:

mkdir /<iml-home>
mount -t glusterfs <MLZIP>:<iml-home> /<iml-home>

Where:

– <iml-home> is a Gluster volume that contains the Machine Learning for z/OS library
– <MLZIP> is the IP address of your Machine Learning for z/OS proxy server

Removing a remote Spark cluster
Complete the following steps to removing a remote Spark cluster:

1. In the Spark Clusters page, select a cluster that you want to delete.
2. From the ACTIONS menu for the selected cluster, click the Delete (trash bin) icon.
3. Click Remove to confirm the removal.
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4.2.4  Adding compute nodes

As described in 4.1.2, “Dashboard page” on page 65 and 4.1.3, “Control Nodes page” on 
page 66, a node in a Machine Learning for z/OS cluster is configured to run as a storage, 
control, and compute node. However, you can use the administration dashboard to add a 
dedicated compute node to run machine learning services only.

Complete the following steps:

1. Allocate and install a Linux or Linux on Z server that meets the basic system capacity 
requirement as described in 2.3.1, “Basic system capacity” on page 12. Consider the 
following points:

– Ensure that the system meets all other requirements, such as user name and 
password, access authority, auxiliary storage, network ports, cluster subnet and firewall 
configuration, and RHN plug-in disablement. If you install the new node outside of the 
subnet, ensure that the new node and the existing Kubernetes cluster are authorized to 
communicate with each other.

– Ensure that the server is up and running.

2. Browse to the Nodes page of the administration dashboard. For more information, see 
4.1.1, “Accessing the administration dashboard” on page 65.

3. In the Compute Nodes panel, click Add Node, and enter the IP address of the node that 
you want to add, specify the path to the mounted auxiliary storage disk, and enter the user 
name and password. The user name must have sudo or root authority.

4. Click Add to add the node. A progress window shows the completion status of all nine 
installation steps. You can exit the window by clicking Done at the completion of the steps 
or Close at any time. Clicking Close does not interrupt or end the installation process.

5. Verify that the new node is successfully added and listed under Compute nodes.

4.2.5  Updating system configurations

After the initial Machine Learning for z/OS installation, you update your system configuration if 
any setting is changed. Complete the following steps:

1. Browse to the System Configuration page of the administration dashboard. For more 
information, see 4.1.1, “Accessing the administration dashboard” on page 65.

For security and privacy, all password fields are left blank when you access the System 
Configuration page. You must reenter all of the required passwords. 

2. Follow the instructions as described in Step 5 in 3.4.3, “Installing machine learning 
services on Linux or Linux on Z” on page 53 to complete the system configuration update.
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4.3  Administering by using commands on Linux or Linux on Z

Although the administration dashboard provides a convenient way to manage aspects of the 
Machine Learning for z/OS cluster, the command-line interface presents another (and for 
some, the preferred) way to check system health. 

Because many Machine Learning for z/OS services and processes run on Linux or Linux on 
Z, you might find UNIX-based commands the quickest way to monitor and manage those 
processes and services. For example, the services on Linux or Linux on Z are deployed as 
Docker containers in the multi-node cluster that is managed by Kubernetes and the container 
services all use the GlusterFS file system. You can use UNIX or Linux commands to monitor 
and check the health of the operating system, nodes, cluster, GlusterFS, and Kubernetes 
services.

The services on Linux or Linux on Z are implemented in a multi-node cluster. It is important to 
perform system health checks on all the nodes in the cluster. Consider the use of a separate 
terminal for each node or setting up password-less authentication in SSH so that commands 
can be issued from the master node to the worker nodes in the cluster. Use the root user ID 
for all system checks unless other IDs are deemed necessary.

4.3.1  Monitoring system resource usage

File system storage, memory, and CPU are key resources that can negatively affect the 
performance of any operating system. Regularly check the storage, memory, and CPU use on 
the Linux or Linux on Z operating system in the Machine Learning for z/OS environment, 
which ensures the adequacy of those key resources to support the changing workload. 

File system storage
Consider the use of LVM-based file systems for the operating system mount points and 
Machine Learning for z/OS storage needs. An LVM file system allows you to increase the 
storage without requiring a system outage. 

Typically, monitor the file systems that are listed in Table 4-3 (names can vary).

Table 4-3   File systems

File system Description

Typically contains the operating system files and log files (in the /var/log/ 
directory).

/ibm Contains Machine Learning for z/OS runtime code and overlay-mounted file 
systems.

/data Contains the data for various Kubernetes pods and containers. Each of the 
subdirectories represents bricks in the Gluster clustered file system. Each brick 
from the three nodes comprise a Gluster volume, which is mounted by the various 
Docker containers that are used in the IBM MLz solution.
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Run the df command to check and ensure enough space in each file system, as shown in 
Figure 4-16.

Figure 4-16   Using the df command

If necessary, increase the storage in each file system to meet the demand of your workload.

Memory
Memory usage varies greatly, depending on your workload. Run the free -h command, as 
shown in Figure 4-17, to ensure that sufficient memory is available for processing your 
workload.

Figure 4-17   Using the free -h command

Consider adding memory if significant use of the swap file exists or more paging space if the 
system must support heavier workload.

CPU
System activities that use CPU are always running in the background. For example, a typical 
8-CPU Linux configuration uses approximately up to 7-10% CPU when the system is idle. 
Run the top command, as shown in Figure 4-18, to monitor the system background activities 
and minimize their CPU use

Figure 4-18   Use of top command
Chapter 4. Administration and operation  79



System logs
In addition to the commands, you can check how the key system resources are used in the 
system log files. For example, you can find the log file that Kubernetes generates in the 
/var/log/messages directory. The volume of the messages in the log varies, depending on 
the system workload. The heavier the workload, the longer the log file, which can make the 
file difficult to parse and use.

Consider splitting the kublet and docker messages into separate log files by adding new 
rsyslog rules. To do so, complete the following steps:

1. Add the following lines to the top of the RULES section in /etc/rsyslog.conf file to divest 
Kubernetes messages into three different log files:

:msg, contains, "kubelet_volumes.go"   -/var/log/ml/kubelet_volumes.log

& ~

:syslogtag, isequal, "kubelet:" -/var/log/ml/kubelet.log

& ~

:syslogtag, isequal, "dockerd:" -/var/log/ml/dockerd.log

& ~

2. Save the changes and restart rsyslog by running the following command:

systemctl restart rsyslog

3. Very that the /var/log/ml directory contains the three new log files, as shown in 
Figure 4-19.

Figure 4-19   Three new log files

4.3.2  Checking the status of the GlusterFS file system

Each node in the Machine Learning for z/OS cluster acts as a GlusterFS storage server to 
provide the ‘bricks” for implementing GlusterFS replicated volumes. The GlusterFS replicated 
volumes provide redundancy in the event of a lost node. These volumes are mounted by 
various Kubernetes services. Periodically check the status of the GlusterFS pool and volumes 
and ensure that the volumes are available to the Kubernetes services.
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GlusterFS pool
A GlusterFS pool is made of the nodes in a cluster. Run the gluster pool list command to 
display the status of the nodes, which should be in “Connected” state (see Figure 4-20).

Figure 4-20   Node status

If any of the nodes is not in “Connected” state, check the logs in the /var/log/glusterfs 
directory for more information and correct the problem.

GlusterFS volume
To check the status of all the volumes, run the gluster volume status command. The 
command returns an output that segments the status information about each volume. The 
segment regarding the cloudant-vol00 volume is shown in Figure 4-21.

Figure 4-21   Cloudant-vol00 volume segment

Look for any line in the output that indicates that a brick is down or a self-heal daemon cannot 
be reached. The status for these conditions appears as a single ‘N’ character in the online 
column. If you need more information, review the log file in the /var/log/glusterfs directory.

If you want to check the status of a specific volume, append the volume name at the end of 
the command as shown in the following example:

gluster volume status <volume_name>

4.3.3  Checking the status of machine learning services

Key system and Machine Learning for z/OS services run in the Kubernetes cluster. 
Periodically Check the status of the cluster and the services.

Key Linux or Linux on Z services
Docker, Kubelet, and Haproxy are key Linux or Linux on Z services that are essential to the 
Kubernetes cluster operation. Run the systemctl status command as shown in the following 
example to check the status of each service:

systemctl status <service_name>
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Where <service_name> is “docker”, “kubelet”, or “haproxy”. For example, you can issue the 
systemctl status kubelet command and see the output that is shown in Figure 4-22.

Figure 4-22   Output of systemctl status kubelet command

The output shows the “active(running)” status and a list of recent events that are useful in 
diagnosing problems.

Kubernetes nodes
Kubernetes does not dispatch work to a node that it is not in the “Ready” state. Ensure that 
you regularly check that all nodes are up and running. Run the kubectl get nodes command 
to list the state of each nodes in a cluster, as shown in Figure 4-23.

Figure 4-23   Nodes state

Kubernetes pods
A Kubernetes pod is a group of one or more containers and their required storage and 
networking resources that work together to provide a service. Run the kubectl get pods 
--all-namespaces command (see Figure 4-24) to check the status of all pods. Run the 
kubectl get pods -n <namespace> command for only the pods in a specific namespace.

Figure 4-24   Checking the status of all pods

The “Running” status indicates that a pod is functioning normally. The number pairs, such as 
1/1 or 2/2, in the READY column means that all containers in the pod are running. Because a 
high numeric value in the RESTARTS column suggests that the operation of the pod is not 
stable, investigate the potential problem before the pod goes offline.

You can get a quick count of the pods by running the following command:

kubectl get pods --all-namespaces | wc -l 

The number of pods that is running varies depending on the Machine Learning for z/OS 
release. It is a good idea to note the total number immediately after the initial installation and 
use that number as a baseline. A number that is lower than the baseline during regular 
operation indicates potential problems. 
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Kubernetes logs provide another important source of information about the containers and 
pods and other machine learning services. Access to the logs is simplified and available in 
the GlusterFS-mounted /iml/logs directory, as shown in Figure 4-25.

Figure 4-25   GlusterFS-mounted /iml/logs directory

If the directory is empty, remount the /im directory (and subdirectories) by running the 
/wdp/scripts/mount_iml_gluster_volumes.sh script. Kubernetes also generates and stores 
a series of symlinked log files in the /var/log directory. 

Run the kubectl get logs command to list all of the Kubernetes logs, as shown in the 
following example: 

kubectl get pods --all-namespaces

As shown in Figure 4-26, the command returns the following output with the pod name in the 
left column and the log file name in the right column.

log file name in the right one.
 

Figure 4-26   Output of kubectl get logs command

It can be required to “describe” a pod to get important status and event information. For 
example, run the following command to describe a pod:

kubectl describe pod <pod_name> -n <namespace>

The output is shown in Figure 4-27.

Figure 4-27   Command output

The event information in the output is helpful if the pod does not start correctly or at all.
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Kubernetes services
Kubernetes services can discover each other and enable multiple pods to be logically 
grouped. As a single logical entity, the pods provide a highly available and scalable service.

4.3.4  Stopping and starting nodes

The use of Kubernetes to manage Machine Learning for z/OS services provides availability 
and resilience. If a node or cluster fails, the node or cluster must be restarted. Use the 
following guidelines when you must stop and restart one or more nodes while keeping the 
Machine Learning for z/OS services available:

� Instead of rebooting a node, consider a managed shutdown of Kubernetes and GlusterFS 
services before rebooting the node. For more information, see “Restarting a node”.

� Always restart one node at a time. If multiple nodes are restarted at the same time, the 
files that are hosted on the Gluster volumes can be damaged, which causes 
inconsistencies in data or metadata.

� When a node is restarted and comes back online, verify the following information:

– All GlusterFS volumes are started, all bricks are online, and no active volume tasks 
exist.

– All Kubernetes pods are running, and all containers are ready.

� Allow the cluster sufficient time to stabilize before another node is restarted. The 
GlusterFS cluster needs time to synchronize files on each of the bricks for each of the 
volumes that are managed by the cluster. Unsynchronized files can result in I/O errors 
when the GlusterFS client attempts to read them, which can cause an outage in the 
container that requires the files.

Restarting a node
Complete the following steps to restart a node:

1. Select and stop a node by running a sequence of Kubernetes commands in the following 
order (wait for one command to complete before the next command is run):

– kubectl drain <node_name>

The command directs Kubernetes to stop scheduling work on the node. You might see 
warnings or errors that indicate some of the pods do not fully support the drain 
operation. However, you can proceed because the drain command places the node in 
the wanted state to leave the cluster.

– kubectl get nodes

The command displays that the status of the targeted node changed, as shown in 
Figure 4-28. 

Figure 4-28   Status of targeted node

– systemctl stop kubelet

– systemctl stop docker

– killall glusterfs
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– killall glusterfsd

– killall glusterd

2. Restart the node. After the system is back on, mark it schedulable. 

3. Run the following command to uncordon the node so that Kubernetes can resume the 
scheduling of work to run on it:

kubectl uncordon <node_name>

4. Run the following command to verify that the node is ready to resume work:

kubectl get nodes

Restarting a cluster
If you must stop and restart an entire cluster, make sure to shut down each service in parallel 
across all the nodes. Complete the following steps:

1. Stop all of the nodes in the cluster individually by running the following commands. Ensure 
to run one command at a time across the nodes and wait for the command to complete. 
Run the commands in the following order:

– systemctl stop kubelet
– systemctl stop docker
– killall glusterfs
– killall gluster
– killall glusterd

2. Restart the nodes individually. When restarting the nodes, ensure that master nodes are 
restarted in any order before compute-only nodes. 

3. Very that all nodes in the cluster are successfully restarted and in Ready state.

4.4  Administering by using commands on z/OS

As with Linux or Linux on Z, you might find the use of UNIX-based commands is an efficient 
way to monitor and manage the many Machine Learning for z/OS processes and services 
that run on z/OS or in a CICS region. 

4.4.1  Stopping and starting a Spark cluster

As described in 3.2.3, “Verifying IzODA installation and configuration” on page 30, a Spark 
cluster consists of a Spark master and a Spark worker that manages resources for your 
submitted Spark applications. You can quickly start and stop the cluster at the command line 
by completing the following steps:

1. Log in to a UNIX shell session as MLZSPARK. 

2. Start a Spark master by running the following command: 

$SPARK_HOME/sbin/start-master.sh -h <host_IP_address>  -p <sparkMaster-port>

Where <host_IP_address> is the IP address of the z/OS system and <sparkMaster-port> 
is the Spark master daemon port. The default port is 7077.

3. Start a Spark worker by running the following command:

$SPARK_HOME/sbin/start-slave.sh spark://<host_IP_address>:<sparkMaster-port>

4. Stop the Spark worker by running the following command:

$SPARK_HOME/sbin/stop-slave.sh spark://<host_IP_address>:<sparkMaster-port>
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5. Stop the Spark master by running the following command:

$SPARK_HOME/sbin/stop-master.sh spark://<host_IP_address>:<sparkMaster-port>

Alternatively, you can use batch jobs or z/OS started tasks to control the Spark master and 
worker and manage a Spark cluster.

4.4.2  Checking Spark Java processes

You can check Spark Java processes by defining an alias for spark jobs, or sjobs, to the 
spark user .bashrc profile. Add the entire entry as one line inside a pair of single quotation 
marks, as shown in the following example: 

alias sjobs='COLUMNS=340 ps -A -o jobname,pid,ppid,xasid,thdcnt,vsz=VIRTUAL -o 
stime,ruser,etime,args | grep /java | grep -v -e grep -e "ps -A" -e bash -e sshd | 
sort'

You can customize the COLUMNS display by specifying the -o option or changing the 
COLUMNS values to suit your needs. Ensure that the values are large enough for you to 
receive adequate information about each Java process, as shown in Example 4-1.

Example 4-1   Java process

SPARK:/:> sjobs
SPARK1     67178357          1   67    75  224452   Apr 18    SPARK  4-08:11:50 
/shared/java/J8.0_64/bin/java -cp 
/var/sparkserver2/conf211/:/shared/IBM/izoda/spark/spark211/jars/* 
-Dfile.encoding=UTF8 -Xmx1g org.apache.spark.deploy.worker.Worker --webui-port 
8081 spark://MLZDZ07.DMZ:7077
SPARK8     33621533   33621527   5f    64  228264 20:54:19    SPARK 00:06:13    
/shared/java/J8.0_64/bin/java -cp 
/usr/lpp/aln/IMLzOS/iml-library/library/*:/var/sparkserver2/conf211/:/shared/IBM/i
zoda/spark/spark211/jars/* -Xmx1g org.apache.spark.deploy.SparkSubmit --master 
spark://MLZDZ07.DMZ:7077 --conf spark.executor.extraClassPath=/u
SPARK9     16846706          1   59    83  224656   Apr 18    SPARK  4-08:13:30 
/shared/java/J8.0_64/bin/java -cp 
/var/sparkserver2/conf211/:/shared/IBM/izoda/spark/spark211/jars/* 
-Dfile.encoding=UTF8 -Xmx1g org.apache.spark.deploy.master.Master --host 
MLZDZ07.DMZ --port 7077 --webui-port 8080

4.4.3  Managing the Jupyter kernel gateway

The Jupyter kernel gateway runs on z/OS and is used to allow off-platform clients to run 
Spark and other analytic workloads on z/OS. To manage the gateway, log on to the z/OS 
system as <spark_jupyter_toree_userid>, which is the user that installed the gateway to 
establish a UNIX shell session.

Checking the gateway status
Complete the following steps to check the gateway status by verifying that the gateway 
process is running and that the gateway is listening on its designated port:

1. Log on to z/OS as <spark_jupyter_toree_userid> to start a UNIX shell session.

2. Change to the gateway log directory by running the following command:

SPARK:> cd $IML_HOME/imlpython/logs
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3. List all of the processes by running the following grep command:

SPARK:/usr/lpp/aln/IMLzOS/imlpython/logs:> ps -ef | grep `cat gateway.pid`

The command searches the PID of the gateway, which is saved in the gateway.pid file 
when the gateway is started. If the gate is up and running, the command returns a 
message that is similar to the following example:

SPARK   33622609      68129  - 23:48:07 ttyp0000  0:00 python 
/shared/IBM/izoda/anaconda/bin/jupyter-kernelgateway --KernelSpecManage

4. Verify whether the gate is listening on the port it was configured with by running the 
onetstat command, as shown in Example 4-2.

Example 4-2   Running the onetstat command

SPARK:/usr/lpp/aln/IMLzOS/imlpython/bin:> onetstat -P 8889
MVS TCP/IP NETSTAT CS V2R2       TCPIP Name: TCPIP        
User Id  Conn     State
-------  ----     -----
SPARK6   029334A7 Listen
  Local Socket:   192.168.164.77..8889
  Foreign Socket: 0.0.0.0..0
SPARK6   029334C0 Establsh
  Local Socket:   192.168.164.77..8889
  Foreign Socket: 192.168.164.37..58240

The default port is 8889. If the gateway is available, you see at least the local socket 8889 in 
listen state. If notebooks or other jobs are connected to the gateway, you see the connection 
information for each job. If the gateway is not running, review the 
$IML_HOME/imlpython/log/gateway.out log file for more information.

Restarting the gateway
The gateway must be running always to ensure the normal operation of Jupyter Notebooks 
and other machine learning. Complete the following steps to restart the gateway:

1. Log on to the z/OS system as <spark_jupyter_toree_userid> to start a UNIX shell 
session.

2. Change to the kernel gateway bin directory:

cd $IML_HOME/imlpython/bin

3. Stop the gateway by running the following command:

./kg2at-stop.sh

The script does not usually print any message. 

4. Verify that the gateway is stopped by checking the gateway.out log.

5. Restart the gateway by running the kg2at-start.sh script with a source command to start 
the gateway:

source kg2at-start.sh

6. Follow the instructions as described in Step 5 in 3.4.1, “Installing machine learning 
services on z/OS” on page 45.

7. Verify that the gateway is started by checking the gateway.out log.

8. Verify that the gateway is started on the correct port and listening on the port.
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If the status shows that the gateway is not listening on port 8889 or a configured port, check 
for another running gateway process. You might have to stop the gateway by its PID number 
and then restart the gateway to ensure it is started on the right port.

4.4.4  Managing stand-alone scoring servers

Machine Learning for z/OS scoring servers run inside a WebSphere Liberty container on 
z/OS. This configuration provides an environment for models to be scored by way of REST 
calls.

Checking the status of a scoring server
Complete the following steps to determine the status of a scoring server by monitoring the 
associated WLP process or checking the log files: 

1. Log on to the z/OS system as <spark_jupyter_toree_userid> to start a UNIX shell 
session.

2. Change to the scoring service bin directory where the server.sh script is stored:

cd $IML_HOME/bin

3. List all known scoring servers by running the following list command:

./server.sh list 

The command should return a list of all known scoring servers in the INSTANCE column. 
For each scoring server instance, the command returns information in HOST, HTTP, 
HTTPS, ADMIN_HTTP, ADMIN_HTTPS, FLASK_HTTP, FLASK_HTTPS, LIBERTY_PID, 
and PYTHON_PID columns.

Most of the columns in the output correspond to the configuration options you specified for 
a scoring server. For example, INSTANCE is the <serverName> that you specified in the 
scoring.cfg.<serverName> file. HOST is the scoring_ip that you specified for the system 
where the scoring service runs. LIBERTY_PID is the ID of the WLP server process; 
ADMIN_PID is the ID of the Python process. For more information, see Step 7 in 3.4.1, 
“Installing machine learning services on z/OS” on page 45.

A “-1” port value means that the port is not configured or disabled. A “--" PID value means 
that no process is running.

If more information is needed, check the console.log, flask.log, uwsgi.log, and other log 
files in the $IML_HOME/output/<serverName> directory. 

The base WLP server is started and running if you see a message in the console.log file that 
is similar to the following example:

Server iml started with process ID 50400611.
 [AUDIT] CWWKF0011I: The server iml is ready to run a smarter planet.

The scoring service is ready to handle scoring requests if you see a message similar to the 
following example:

[AUDIT] CWWKT0016I: Web application available (default_host): 
http://mlzdz07.dmz:10080/iml/
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The flask server generates flask.log and uwsgi.log files. The server is started and ready for 
scoring requests if you see a message in uwsgi.log that is similar to the message that is 
shown in Example 4-3.

Example 4-3   Log message

WSGI app 0 (mountpoint='') ready in 2 seconds on interpreter 50088F7FF0 pid: 69021 
(default app)
*** uWSGI is running in multiple interpreter mode ***
spawned uWSGI master process (pid: 69021)
spawned uWSGI worker 1 (pid: 69022, cores: 10)
*** Stats server enabled on /shared/IBM/aln/IMLzOS/output/iml/logs/stats.socket 
fd: 14 ***

Restarting a scoring server
If a scoring server is not running or responding to scoring requests, consider stopping and 
restarting it. Complete the following steps:

1. Log on to the z/OS system as <spark_jupyter_toree_userid> to start a UNIX shell 
session.

2. Change to the scoring service bin directory where the server.sh script is stored:

cd $IML_HOME/bin

3. Stop a scoring server by running the following stop command:

./server.sh stop <serverName> 

4. If a flask server is attached and running, stop it by running the stop-python command:

./server.sh stop-python <serverName>

The commands are successful and the servers are stopped if you see messages that are 
similar to the messages that are shown in Example 4-4.

Example 4-4   Resulting messages

[MLZSCOR@mlzdz07 /usr/lpp/aln/IMLzOS/bin]$ ./server.sh stop iml
Stopping Liberty server.
Stopping server iml.
Server iml stopped.
Cleaning temporary files.
[MLZSCOR@mlzdz07 /usr/lpp/aln/IMLzOS/bin]$ ./server.sh stop-python iml
Stopping uWSGI server iml.
This will take some time, please check the file 
/shared/IBM/aln/IMLzOS/output/iml/logs/uwsgi.log until see "goodbye to uWSGI"
Cleaning temporary files.

5. Start the scoring server by running the start command:

./server.sh start <serverName> 

The command is successful, and the scoring server is started if you see a message that is 
similar to the message that is shown in Example 4-5.

Example 4-5   start command message

[MLZSCOR@mlzdz07 /usr/lpp/aln/IMLzOS/bin]$ ./server.sh start iml
Starting server iml.
Updating Python configuration file encoding.
Starting server iml.
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Server iml started with process ID 50400347.
iml is starting in the background, it may take about 3-4 minutes to finish this 
process, please check the log file 
/shared/IBM/aln/IMLzOS/output/iml/logs/console.log for more details.

6. Start the flask server by running the start-python command:

./server.sh start-python <serverName>

The command is successful and the flask server is started if you see a message that is 
similar to the message that is shown in Example 4-6.

Example 4-6   start-python command

[MLZSCOR@mlzdz07 /usr/lpp/aln/IMLzOS/bin]$ ./server.sh start-python iml
Starting uWSGI server iml.
Updating Python configuration file encoding.
…
…
iml uWSGI server is starting in the background with PID 68746.
For scoring service log, please check 
/shared/IBM/aln/IMLzOS/output/iml/logs/flask.log.
For uWSGI server log, please check 
/shared/IBM/aln/IMLzOS/output/iml/logs/uwsgi.log.

4.4.5  Managing a scoring server in a CICS region

If you installed a Machine Learning for z/OS scoring service in a CICS region, the service is 
embedded in a Liberty Profile (JVM) server in a CICS resource bundle. 

Checking the status of a CICS-integrated scoring server
You can check the status of a CICS-integrated scoring server by looking up the status of the 
JVM process, the status of the WAR bundle, and the log files. Complete the following steps:

1. Log on to a CICS terminal or a z/OS system console as a user who is authorized to run 
CICS commands.

2. Check the JVM process by running the following command:

CEMT INQUIRE JVMSERVER(ALNSCSER)

Where ALNSCSER is the name of the scoring server. The command returns a message 
similar to the message that is shown in Example 4-7.

Example 4-7   Returned message of CEMT INQUIRE JVMSERVER(ALNSCSER) command

CEMT INQUIRE JVMSERVER(ALNSCSER)
RESPONSE=MLZ1               
   Jvmserver(ALNSCSER)      
   Enablestatus(Enabled)  
   Purgetype(         )
   Prfile(ALNSCSER)         
   Lerunopts(DFHAXRO)       
   Threadcount(015)         
   Threadlimit(015 )       
   Currentheap(351917528)   
   Initheap(2G)
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The JVM is up and running when Enablestatus is “Enabled.”

3. Check the status of the WAR bundle by running the following command:

CEMT INQUIRE BUNDLE(ALNSCBDL)

The resource bundle is available if Enablestatus is “Enabled” in the response. 

If more information is needed, check the scoring server log and trace records in the 
$IML_HOME/cics-scoring/workdir/<cics_region_name>/ALNSCSER directory for more 
information. Use a UNIX more command to view the files.

Restarting a scoring server in a CICS region
If the scoring JVM server and the CICS resource bundle are configured during the installation 
to start at system start, you do not need to manually start the scoring server. However, if the 
server is down or not responding, consider stopping and restarting it. Complete the following 
steps:

1. Log on to a CICS terminal or a z/OS system console as a user who is authorized to run 
CICS commands.

2. Disable the JVM server by running the following command:

CEMT SET JVMSERVER(ALNSCSER) DISABLED

3. Verify that the JVM server is stopped.

4. Enable the JVM server by running the following command:

CEMT SET JVMSERVER(ALNSCSER) ENABLED

5. Verify that the JVM server is enabled and running.
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Chapter 5. Model development and 
deployment: A retail example

Machine Learning for z/OS provides an end-to-end enterprise machine learning framework 
through a simple, easy to use web user interface (UI). This chapter introduces the UI and its 
many features. Through a retail example, we describe how the UI can be used to manage the 
entire machine learning workflow, from creating a project to training, evaluating, saving, 
publishing, and deploying a model. 

This chapter includes the following topics:

� 5.1, “Machine Learning for z/OS web UI” on page 94

� 5.2, “Machine learning workflow for model development and deployment” on page 100

� 5.3, “Developing and deploying a model to predict tent sales” on page 102

� 5.4, “Preparing a model for online scoring by using CICS program ALNSCORE” on 
page 113

5
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5.1  Machine Learning for z/OS web UI

The Machine Learning for z/OS web UI enables business analysts, data engineers, data 
scientists, and application developers to collaborate and manage the entire machine learning 
workflow from data preparation to model training, evaluation, deployment, and retraining. In 
addition to the sign-in and welcome pages, the interface consists of the main pages that are 
listed in Table 5-1, all of which can be accessed through a sliding sidebar.

Table 5-1   UI main pages

The main UI pages contain multiple tabs or links to subpages, and some subpages also 
contain multiple tabs. 

5.1.1  Signing in the Machine Learning for z/OS web UI

To access the Machine Learning for z/OS UI, you must have pre-authorization and the URL 
from your system or machine learning administrator. The administrator can authorize you by 
creating a user name in the LDAP user directory and then assigning the user name privileges 
through the administration dashboard. With the required authorization, you can sign in the 
interface by completing the following steps:

1. Open a web browser and enter the URL for the Machine Learning for z/OS UI, as shown in 
the following example:

https://<ip_address>

Where <ip_address> is the IP address or host name of your Machine Learning for z/OS 
proxy server. 

UI page or view Description

Contains a list of links to useful machine learning resources, including 
sample notebooks and Jupyter and Spark basics learning materials.

Lists all machine learning projects and links to each individual project, and 
a self-contained workspace for you to work alone or collaborate with others 
on data and models.

Provides a workspace in which you can manage all of the models that are 
published or saved to the central repository and their deployments.

Provides a view of the status of runtime engines across all projects.
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2. Enter the user name and password that was provided by the administrator and click sign in 
to authenticate yourself. 

Upon successful authentication, the Welcome window opens (see Figure 5-1).

Figure 5-1   Welcome page

The page acts as an information hub that includes sample notebooks, tutorials, and other 
resources for machine learning and for using Machine Learning for z/OS. The page also 
lists recently created or updated projects, which provides a fast path to projects and a 
shortcut to creating projects.

3. In the upper left corner of the Welcome page, click the icon of three vertically stacked bars 
to open the sidebar of the UI.

4. From the sidebar, select and start any of the UI main pages. 

5. From a main page, browse to any tab or subpage.

Next, we describe some of the UI main pages, subpages, and tabs.

5.1.2  Community

As with the Welcome page, the Community page is a repository of links to useful machine 
learning resources, including sample notebooks, tutorials, and basic machine learning 
education materials.
Chapter 5. Model development and deployment: A retail example 95



5.1.3  Projects

The Projects page collects and lists all the Machine Learning for z/OS projects by name, type, 
and (last updated) date, as shown in Figure 5-2. 

Figure 5-2   Projects page

Each project provides business analysts, data engineers, data scientists, and application 
developers a self-contained workspace to collaborate on data preparation and analysis, 
model training and evaluation, model deployment and retraining.

Click the name of a project to open the subpage for the project, as shown in Figure 5-3.

Figure 5-3   Project subpage

The page acts as a gateway to more pages in which you can manage the objects and 
resources of the project. The objects and resources are tallied and grouped into the 
categories of Assets, Environments, Data Sources, and Collaborators. Click each category to 
open the category page and manage the associated objects and resources. 
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Assets
The Assets of a project consist of data sets that are used for analysis, integrated tools or 
frameworks for model development, and models. As shown in Figure 5-4, the tools include 
Notebook, RStudio, and Visual Model Builder.

Figure 5-4   Project assets

Different assets are listed in their sections or tabs on the Assets page. 

Notebook
The integrated Jupyter Notebook provides a programmatic approach to model development. 
You can use the interactive Notebook interface to create models in Python and Scala. Python 
is a popular programming language among data scientists. It includes many handy packages 
for data analysis, and Scala is a language native to Spark. You can add, edit, or delete a 
notebook.

RStudio
The integrated RStudio provides another programmatic approach to model development. You 
can use the RStudio IDE for data preprocessing, visualization, and modeling with open 
source R packages. You can build a model in R and then define and share the model by way 
of PMML.

Visual Model Builder
The Visual Model Builder provides a guided approach to model development. You can use the 
step-by-step wizard to perform quick data analysis and create simple models without the 
need for extensive programming knowledge and skills. You also can add or delete a visual 
model builder.

Models
Models are created with the Notebook, RStudio, and Visual Model Builder within the project. 
The models are available and visible to the project owner and collaborators. You can publish 
the models to the central repository service so that they become available to all users in the 
system. You also can add, publish, or delete a model.

Data Sets
Data Sets are the data that is prepared and analyzed for model training and development. 
The data sets can be imported from remote sources, such as Db2, or uploaded from local 
storage in .csv format. You also can add, export, preview, or delete a data set.
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Environments
Environments are the runtime engines that are used by the project. You can select the Built-in 
Spark Cluster, RStudio, and IBM Open Data Analytics for z/OS as the Environment when you 
create a model (see Figure 5-5). 

Figure 5-5   Environments

You can also add environments to the project. Click the Manage across projects button to 
see a complete list of the environments that are used by all projects.

Data Sources
Data Sources are the databases or repositories that provide input data for creating models. 
You can connect Machine Learning for z/OS to and import data from IBM dashDB®, Db2, 
Db2 for z/OS, HDFS – HDP, Oracle, and Mainframe Data Service (MDS). Data sets that are 
created from the data sources are listed on the Assets page and available for model 
development. You also can add or delete a data source.

Collaborators
Collaborators are the users whom the owner of a project invites to collaborate as a viewer, 
editor, or administrator of the project. A collaborator must be an authorized Machine Learning 
for z/OS user first. A collaborator with the administrator permission can invite other authorized 
users to collaborate on the project. You also can add or remove a collaborator. 

5.1.4  Model Management

The Model Management page provides a workspace for you to manage all the models and 
their deployments. The models can be developed in individual projects and published to the 
central repository service. They also can be trained on another platform and imported by way 
of PMML. The page consists of the Dashboard, Models, and Deployments tabs.

Dashboard
The Dashboard tab is the default view of the Model Management page. It features a visual 
index of the overall health of deployed models and a list view of high-performing and 
under-performing models, as shown in Figure 5-6 on page 99.
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Figure 5-6   Dashboard

The model health index presents a metric of the deployments that are evaluated as normal, 
contain warnings or errors, and are not evaluated. Top-performing models are ranked by the 
number of API calls and the average of response time. 

Under-performing models are listed by warnings or errors. When the performance of a model 
drops below a specified threshold, the owner or users are alerted, and the model is marked 
as under-performing.

Models
The Models tab lists all models in the repository service. These models are also referred as 
published models. They are published from individual projects or imported from external 
sources by way of PMML, as shown in Figure 5-7.

Figure 5-7   Models tab

You can add, deploy, retrain, publish (to WML), export, or delete a model. You can also view 
the details of a model.
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Deployments
After models are created, they cannot be used by external applications unless they are 
deployed. Deployed models are generally referred as deployments, which are listed on the 
Deployments tab (see Figure 5-8).

Figure 5-8   Deployments tab

You can test, update, or schedule deployment evaluations. You can also view information 
about a deployment, including the scoring endpoint and the online feedback endpoint. The 
scoring endpoint is a RESTful API that can be called directly for scoring requests for the 
model.

5.1.5  Environments

Machine Learning for z/OS environments are the runtime engines that are used by projects. 
The Environments tab within a project lists the runtime engines that are used by the project, 
and the Environments main page collects the runtime engines that are used in the entire 
system. If necessary, you can start an environment on this page.

5.2  Machine learning workflow for model development and 
deployment

A typical machine learning workflow involves the following tasks:

� Goal setting
� Data collection
� Data preprocessing
� Model training
� Model evaluation
� Model deployment

After the initial deployment, a model is monitored and retrained if its performance degrades. 
Machine Learning for z/OS implements the workflow through the UI. Some of these stages 
are described next.
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5.2.1  Data collection

Data scientists work to extract insights from business-relevant data and facilitate decision 
making. Therefore, the first step in performing enterprise level machine learning is to clarify 
the business question and collect data that might help answer the question. 

In the Machine Learning for z/OS UI, data collection is implemented through the Data Source 
page and the Data Sets tab. You can connect to a remote data source, such as Db2, IMS, and 
SMF, or import local data and then, create data sets as input data.

5.2.2  Data preparation

At the time of acquisition, data might not be immediately ready as input to train a machine 
learning model. The data might contain categorical features, such state, but it might lack the 
numeric inputs that a model accepts. It is also possible that the data is missing some 
columns. In these cases, the data must be carefully prepared before it can be used.

The Machine Learning for z/OS UI makes data preparation process easy. In the Visual Model 
Builder, you can use the automatic data preparation feature in a Scala package. In the 
integrated Notebook editor, you can preprocess data by using SparkSQL, Python pandas, or 
scikit-learn. If you prefer, you also can analyze data and scale features by defining your own 
functions.

5.2.3  Model training

When the data becomes ready as input, data scientists can start to build the model. Models 
are selected depending on the business questions that they are expected to address. 

One key to building a successful model is the selection of machine learning algorithms. 
Supervised learning and unsupervised learning are two types of frequently used algorithms. 
Unsupervised learning explores the pattern of the data without any specific labels; supervised 
learning deals with data with labels, which specifically shows the outcomes of the records. 

Supervised learning algorithms are divided to classification (binary and multiclass) and 
regression. Classification determines the pattern of how data fits to a discrete label, and 
regression identifies the pattern of how to fit a continuous number.

In the Machine Learning for z/OS UI, you can select data and then algorithm to train a model 
through the Visual Model Builder or the integrated Notebook editor. 

5.2.4  Model evaluation

After the model is trained, you must use different metrics to evaluate how well the model is 
performing on the specific data. Model evaluation helps data scientists improve model 
selection because different models are compared against each other based on the evaluation 
metrics. The better a model performs during the evaluation, the more likely it helps answer the 
business question.

In the Machine Learning for z/OS UI, model evaluation occurs immediately after data fitting 
and algorithm selection through the Visual Model Builder or the integrated Notebook editor. 
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5.2.5  Model deployment

After a model meets the evaluation criteria, you can deploy it to make predictions for new 
records and produce business values. A deployed model is monitored because as the pattern 
of the data changes, the model that is based on old data can become not predictive over time 
when new data is imported. Any under-performing model must be retrained with new data so 
that it matches the new pattern.

You can deploy, evaluate, and retrain a model through the Model Management page of the 
Machine Learning for z/OS UI.

5.3  Developing and deploying a model to predict tent sales

An outdoor equipment e-commerce retailer is developing a marketing strategy for a new tent 
product. It wants to use machine learning to predict potential customers and understand their 
purchase behavior so that it can tailor its promotional activities and ultimately maximize the 
sales of the new product. Y

As the data scientist who works on the mandate, you use IBM Machine Learning for z/OS to 
create, evaluate, deploy, and retain a model to generate the predictions and the underlying 
intelligence that help the retailer with their important decisions. The input data that you use 
includes, but is not limited to, the features of gender, age, profession, and marital status of the 
potential customers.

5.3.1  Creating a project

After you set the goal for the model that you are going to create, the first task is to create a 
project in the Machine Learning for z/OS UI if you do not have one. The project provides the 
workspace for you and your collaborators and all the required resources. 

Complete the following steps to create a project:

1. Browse to the Projects – View all Projects page of the UI. For more information about how 
to sign in to the UI, see 5.1.1, “Signing in the Machine Learning for z/OS web UI” on 
page 94.

2. Click the New Project ( ) button to open in the upper right corner to start the Create 
Project page.

3. Select Blank to create a project from scratch or select From File to create a project from 
a file.

If you select Blank, enter Tent as the name for the project and optionally a short 
description. The new project is empty until you add content to it later.

If you select From File, enter Tent as the name for the project and drop the project file in 
.zip, .jar, or .gz format into the Project File box. Alternatively, you can click Browse to 
locate and upload the project file.

4. Click Create to create the project.

5. Verify that the Tent project shows up in the Project List.
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5.3.2  Adding a data set

After you create a project, you must add resources to it that are required for creating a model. 
Complete the following steps:

1. From the Project List, click Tent to open the new project.

2. Click Assets to open the Assets page for the project. It is normal that the asset category is 
empty.

3. From the Data Sets section, click add data set ( ) to display the panel in which you can 
add a data set. (You can create a data set by importing local data files or connect to 
remote data sources.)

If you select Local File, drop your files into the file loading box or click Select from your 
local file system to choose your files.

If you connect to Remote Data Set, click Select a data source to choose a data source. If 
no data source exists or fits your current purpose, click Add data source to create a data 
source. 

4. Specify a data source name and select a data source type. Supply any other required 
information, depending on the data source type. For example, if you select Db2 for z/OS 
as the data source type, ensure that you provide the required JDBC URL, Db2 user name, 
and password, as shown in Figure 5-9.

Figure 5-9   Adding a data source
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5. Enter TentConn1 as the name for the new data set and optionally a short description. 
Complete the following steps:

a. Specify a schema and enter MLZ.TENTDATA_N_4000 as the table for the new data set.

b. Click Save to create the TentConn1 data set.

c. Verify that the new data set appears in the Data Sets section.

d. Optionally, select Preview from the ACTIONS menu for TentConn1 to preview the data 
set in .csv format, as shown in Figure 5-10.

Figure 5-10   Data set preview

5.3.3  Training and saving a model

Now that the data is ready, you can build a model from the data by using the Visual Model 
Builder or the Notebooks editor or writing your own code.

Creating a model by using the Visual Model Builder
If you want to create a model by using the Visual Model Builder, you must first create a visual 
builder and then, select data, train, evaluate, and save the actual model. Complete the 
following steps:

1. From the Visual Model Builder section, click add visual model builder ( ) to open the 
Add Visual Model Builder panel.

2. Enter Tent as the name and optionally a short description of the new visual model builder.

3. Select IBM_Open_Data_Analytics_for _z/OS as the Environment, which is the runtime 
engine.

4. Click Create to create the visual model builder.

5. Verify that the new Tent visual model builder appears in the Visual Model Builder section, 
as shown in Figure 5-11 on page 105.
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Figure 5-11   Visual Model Builders section

6. Click Tent in the list to open the container for the visual model builder.

7. For Select Data, select Tent.csv as the data asset (see Figure 5-12). Click Next to 
continue.

Figure 5-12   Selecting Tent.csv

8. For Train, select IS_TENT for the required label column and a feature for the optional 
feature column (see Figure 5-13). If a feature column is not selected, all columns are used 
by default.

Figure 5-13   Selecting a technique

A suitable technique (or algorithm) is suggested that is based on the label column 
selection. It is best to use the suggested algorithm. 
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9. Set the data split ratio for test, training, and holdout purposes. The default ratio is 60% for 
training, 20% for test, and 20% for holdout. Data for “Test” is used to test a model, data for 
“Train” is used to train the model and generate evaluation metrics, and data for “Holdout” is 
left out or not used. This data split ratio is recommended, particularly when the data set is 
large and you do not want to feed all of the data to the estimator that slows down model 
training.

10.Select an estimator for the model from the Configured estimators list. If no configured 
estimator is available, click Add Estimators to choose one or more algorithms from the 
selection panel:

– For binary classification, choose from logistic regression, decision tree, random forest, 
and gradient boosted tree. 

– For multiclass classification, choose from decision tree, random forest, and naïve 
bayes.

– For regression, choose from linear regression, decision tree, random forest, gradient 
boosted tree, and Isotonic regression.

The chosen estimators are listed under the Configured estimators section as shown in 
Figure 5-14.

Figure 5-14   Configured estimators

11.Click Next to start the process of training the model.

12.For Evaluate, resolve any training error and review the performance indicators to see 
whether the model meets the performance goals. 

Different estimators use different evaluation measures. For example, binary classification 
includes an area under ROC curve and another under PR curve. Multiclass classification 
includes weighted true positive rate, weighted false positive rate, weighted precision, 
weighted F measure, and weighted recall, as shown in Figure 5-15.

Figure 5-15   Selecting a model

13.Check to see whether the performance of the model meets the goal of the evaluation. The 
overall performance can be rated as Excellent, Good, Fair, or Poor. 

14.If you are satisfied with the performance, click Save to save the model.
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15.Verify that the Tent model appears in the Models section or tab on the Assets page of the 
project.

Creating a model by using the Notebook
If you decide to create a model by using the Notebook editor, you must first create a notebook 
and then, select data, train, evaluate, and save the actual model. The following example 
shows how to create a model by using Python in the Notebooks editor:

1. From the Notebooks section, click add notebook ( ) to open the Create Notebook 
page. 

2. Choose one of the following methods to create a notebook:

– Blank for creating a notebook from scratch. 
– From File for creating a notebook by importing a local notebook file. 
– From URL for creating a notebook by importing a remote notebook file.

If you are creating a model From File, browse and select a local notebook file to import. 
You can also drop the file into the Notebook File box.

If you are creating a model From URL, enter the URL to the remote server where the 
notebook file is stored.

3. Enter Tent_Python as the name and optionally a short description for the new notebook.

4. Select IBM_Open_Data_Analytics_for _z/OS as the Environment, which is the runtime 
engine.

5. Select Python as the Language if you are creating a model from scratch. If you want to 
create a notebook from a local or remote file, the Language field is automatically detected 
based on the specification in the file.

6. Click Create to add the new notebook. The kernel for the notebook is automatically 
started.

For the next part of the process, we assume that you created the notebook from Blank. 

7. Verify that the Tent_Python notebook appears in the Notebooks section. 

8. Click Tent_Python from the Notebooks list to start the integrated Jupyter Notebook 
interface. 

You can use the Tent_Python notebook in the same way that you use any notebook that 
was created in the open source Jupyter Notebook. However, notebooks that are created 
by using the integrated Notebook in Machine Learning of z/OS are supplemented with 
more functions, including the ability to quickly insert project context code and automatic 
generation of data from data sets.

9. Add the required project context code by selecting Inset project context from the Create 
New icon in the Notebook framework (see Figure 5-16).

Figure 5-16   Selecting Insert project context option

A block of code is added to the first cell of the notebook. For security, you must insert 
project context into a notebook whenever you run it.
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10.Select any cell that contains code and click Run cell from the CellToolbar to train, 
evaluate, and save the model (see Figure 5-17).

Figure 5-17   Selecting Run cell

The code in the cell is run. An asterisk is displayed in the square bracket at the upper left 
corner of a cell. This asterisk changes into a number when the cell run completes. The 
output from the run is added below the cell, as shown in Figure 5-18.

Figure 5-18   Run output

11.If necessary, click the Find data icon to access the local and remote data sets available to 
the current project.

From Local, click Insert to code and select Insert Pandas DataFrame or Insert Spark 
DataFrame in Python (see Figure 5-19) to generate a block of code for loading data as 
Pandas or PySpark DataFrame.

Figure 5-19   Selecting Insert to code option

12.From Remote, click Insert to code and then, Insert Spark DataFrame in Python, as 
shown in Figure 5-20.

Figure 5-20   Selecting Insert Spark DataFrame in Python
108 Turning Data into Insight with IBM Machine Learning for z/OS



13.Run the automatically generated code to load and preview the data (see Figure 5-21).

Figure 5-21   Data preview

The data is now in the Notebook workspace and ready for use later.

Creating a model by writing your own code
If you prefer, you can write your own code in Python to preprocess data and train, evaluate, 
and save a model from the Tent_Python notebook you created. The following example shows 
how you can manually build a model in Python:

1. Import the tools for splitting data and running logistic regression:

from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression

The call for data preprocessing is needed when you want to change the format of features 
and modify their values or construct new features. In the case of the Tent model that you 
are creating, you must include the code for data preprocessing because several 
categorical variables cannot be directly input into the model. 

2. Apply label encoding in Scikit Learn to convert a categorical feature to integers between 0 
and n - 1, where n is the number of unique values the feature takes. A sequence of 
integers from 0 to n - 1 exactly correspond to n classes of the categorical feature, as 
shown in the following example:

df1_pd = df_data_1.toPandas()
labelEncoder = preprocessing.LabelEncoder().fit(df1_pd["IS_TENT"])
genderEncoder =  preprocessing.LabelEncoder().fit(df1_pd["GENDER"])
maritalEncoder = preprocessing.LabelEncoder().fit(df1_pd["MARITAL_STATUS"])
professionEncoder = preprocessing.LabelEncoder().fit(df1_pd["PROFESSION"])
df1_pd["marital_status"] = maritalEncoder.transform(df1_pd["MARITAL_STATUS"])
df1_pd["profession"] = professionEncoder.transform(df1_pd["PROFESSION"])

3. Combine label encoding with one hot encoding when more than two classes are in a 
categorical feature. If the data is in the correct format, label encoding is sufficient for data 
preprocess as input to a model. For example, label encoding is sufficient when only two 
classes are in a categorical feature, such as True and False or male and female. The two 
classes are transformed into integers 0 and 1, and the parameter of this feature quantifies 
the difference between class 0 and 1. 
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In some cases, label encoding alone is not enough. In this instance, you must combine 
label encoding with one hot encoding. One hot encoding helps measure the differences 
between classes more accurately. 

Label encoder transforms a four-class feature to values of 0, 1, 2, 3, which implies that 
certain quantitative relations exist between different classes: 2 is twice as 1, and the 
difference between 3 and 2 are the same as difference between 0 and 1, which are not 
necessarily true. 

In the case of the Tent model, columns IS_TENT and GENDER take binary values, and 
MARITAL_STATUS and PROFESSION are multiclass features. These four columns need 
label encoding, and MARITAL_STATUS and PROFESSION need one hot encoding in 
addition to label encoding, as shown in the following example:

Enc = preprocessing.OneHotEncoder().fit(df1_pd[["marital_status", 
"profession"]])

import pandas as pd

colNames = ["marital_" + x for x in list(maritalEncoder.classes_)] + 
["profession_" + y for y in list(professionEncoder.classes_)]
X = pd.DataFrame(Enc.transform(df1_pd[["marital_status", 
"profession"]]).toarray(), columns = colNames)
X["gender"] = genderEncoder.transform(df1_pd["GENDER"])
X["AGE"] = df1_pd["AGE"]
y = labelEncoder.transform(df1_pd["IS_TENT"])

Now that categorical features of marital status, profession, and gender are all transformed 
and the label is specified, the data is ready as input to the estimator. 

4. Split the features and label into training and test sets before estimation:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0)

5. Train the model by specifying logistic regression as the binary classifier and starting the 
logistic regression estimator:

lr = LogisticRegression()
lr.fit(X_train, y_train)

6. Evaluate the model. The estimator includes a scoring method that evaluates the model 
with specific features and labels. Different estimators can use different evaluation 
measures in their scoring methods. The logistic regression estimator uses accuracy in the 
scoring method:

lr.score(X_train, y_train)
lr.score(X_test, y_test)

In addition to the scoring method, the metrics package in sklearn provides various model 
evaluation metrics, such as accuracy and AUC:

from sklearn import metrics
metrics.accuracy_score(y_test, lr.predict(X_test))
metrics.roc_auc_score(y_test, lr.predict_proba(X_test)[:, 1])
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When the code is run, the evaluation metrics produce the accuracy results that are shown 
in Figure 5-22.

Figure 5-22   Accuracy results

The 0.90313122372206245 accuracy means that the model that is trained from the data 
gets 0.90313122372206245 correct prediction on new data. The 0.70210564429164513 
AUC means that the area under the Character Receiver Operator Curve is 
0.70210564429164513 on new data that is different from training data. These results are 
estimates of how the trained model will perform on other future out-of-sample data.

The cross-validation score is also available, as shown in the following example:

from sklearn.model_selection import cross_val_score
cross_val_score(LogisticRegression(), X, y, scoring='accuracy', cv=10)

7. Save the model after the performance goal is obtained, as shown in the following example:

from repository.mlrepository import MetaNames
from repository.mlrepository import MetaProps
from repository.mlrepositoryclient import MLRepositoryClient
from repository.mlrepositoryartifact import MLRepositoryArtifact
ml_repository_client = MLRepositoryClient("http://<metaservice_ip>:12501")
ml_repository_client.authorize_with_token(authToken) 
props1 = MetaProps({MetaNames.AUTHOR_NAME: "author", MetaNames.AUTHOR_EMAIL: 
"author@example.com", MetaNames.MODEL_META_PROJECT_ID: projectName,
MetaNames.MODEL_META_ORIGIN_TYPE: "notebook", MetaNames.IS_EXTERNAL_CALL: 
"True", MetaNames.MODEL_META_ORIGIN_ID: notebookName})
input_artifact = MLRepositoryArtifact(lr, name="Tent", meta_props=props1, 
training_data=X_train, training_target=y_train)
saved_artifact1 = ml_repository_client.models.save(input_artifact)
print("model saved successfully")

8. Verify that the Tent model shows up in the Models section or tab.

5.3.4  Publishing a model

The models that are in the project are visible to users within the project only. When you are 
satisfied with the model and want to share it with other users, you can publish the Tent model 
to the central repository service. Verify that the model is listed with all other published models 
on the Models tab of the Model Management page.
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5.3.5  Deploying a model

After the Tent model is available in the repository service, you can deploy it to be used by 
applications. Complete the following steps:

1. From the Models list, select the Tent model and from the ACTIONS menu (see 
Figure 5-23). Select Deploy.

Figure 5-23   Actions menu

2. On the Create deployment page, enter TentDeploy as the deployment name and then, 
select the deployment type, engine, version, and scoring service, as shown in Figure 5-24.

Figure 5-24   Create deployment page

Online and batch are the two available deployment types. Although online deployment is 
for real-time scoring with faster response time, it scores one record at a time. Batch 
scoring processes a batch of records for prediction, but it often takes slightly longer time to 
complete the scoring.
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3. Verify that the deployed model TentDeploy appears on the Deployments tab of the Model 
Management page. You can view details, test, evaluate, update, or delete the deployment 
(see Figure 5-25).

Figure 5-25   Deployment options

4. From the ACTIONS menu, select View details to configure the deployed model (see 
Figure 5-26). 

Figure 5-26   Deployment details

The URL for the scoring endpoint is a RESTful API that can be called directly to perform the 
process of scoring the model. The scoring results can help the retailer determine who are the 
potential customers of the new tent product, what the marketing strategy is based on the likely 
buyers, how its promotional activities are run, and the methods that can be used to maximize 
sales. 

5.4  Preparing a model for online scoring by using CICS 
program ALNSCORE

If you installed the Machine Learning for z/OS scoring service in a CICS region, you can 
prepare a model for online scoring with the integrated CICS program called ALNSCORE. You 
can use the CICS LINK command in your CICS COBOL application to call ALNSCORE for 
online scoring. The call uses special containers to transfer the scoring input and output 
between the COBOL application and the ALNSCORE program. Because the input and output 
schemas are model-specific, you must carefully prepare each model to ensure appropriate 
mapping and interpretation of the input and output data structures for deployment.
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Complete the following steps to prepare a model for online scoring by using ALNSCROE:

1. Extract the input and output JSON schemas of a model that is deployed. Complete the 
following steps:

a. Log on to the Machine Learning for z/OS web UI by using your user name and 
password.

b. From the sidebar, browse to the Deployments tab of the Model Management page.

c. Select a deployment and then View details from the ACTIONS menu.

d. On the Deployment details page, scroll down to the Schema section, and click JSON 
Schema on the right side to display the Input Schema and Output Schema columns.

e. Copy the input and output schemas into two separate JSON files. Name the files, such 
as modelInput.json and modelOutput.json, and store them on your z/OS UNIX 
System Services.

2. Generate COBOL copybooks for the input and output schemas for the model by using the 
CICS DFHJS2LS utility.

a. Locate the sample JCL ALNJS2LS job file in the following directory:

<install_dir_zos>/cics-scoring/extra/jcllib

b. Customize the JCL job by following the instructions in the ALNJS2LS file to generate 
two COBOL copybooks.

c. Copy and customize the ALNJS2LS job and set JSON-SCHEMA to the path of input 
JSON schema file modelInput.json.

d. Run the customized ALNJS2LS job to generate a PDS member that contains the 
COBOL copybook for the model’s input.

The JCL job reads the JSON schema from the modelInput.json file and creates a PDS 
member that is named MODELIxx that contains the COBOL copybook for the model’s 
input.

e. Customize the ALNJS2LS job again and set JSON-SCHEMA to the path of output 
JSON schema file modelOutput.json.

f. Run the customized ALNJS2LS job and generate another PDS member that contains 
the copybook for the model’s output.

3. Use the new COBOL copybooks to create Java helper classes for the input and output of 
the model. The ALNSCSER scoring server in the CICS region uses the Java helper 
classes to interpret the input data structure that is transmitted from the COBOL application 
and then passes the scoring result back to the COBOL application. Complete the following 
steps:

a. Copy the copybook to a PDS member and add the 01 layer to the data structure and 
the required sections to create a COBOL program.

b. Locate the sample JCL ALNJCGEN job file in the following directory:

<install_dir_zos>/cics-scoring/extra/jcllib

c. Follow the instructions in the ALNJCGEN file to customize the JCL job.

d. Run the customized JCL job to create the Java helper classes. The job compiles the 
MODELIN COBOL program that first creates an ADATA file and then uses the ADATA 
file as the input to generate Java helper class ModelInWrapper.

e. Repeat Steps 3.c - 3.d to create Java helper classes for the input and the output of the 
model.
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4. Use special CICS containers and channels in your COBOL application to call the Machine 
Learning scoring program ALNSCORE. If the Type column is a string, you must set the 
correct length to the corresponding fieldname-length parameter. Each user COBOL 
application that calls ALNSCORE must create its own channel with a unique name for 
passing the input parameters. 

ALNSCORE does not support a model if its input schema contains field names that are 
COBOL-reserved words. If the field names in your training data contain COBOL-reserved 
words, you must rename them during the model training.
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Chapter 6. Use cases: Applying Machine 
Learning for z/OS in business

The e-commerce tent trader that was described in Chapter 5, “Model development and 
deployment: A retail example” on page 93 represents just one segment of the massive retail 
industry. It epitomizes the many businesses that are at the crossroads of the existing process 
of labor-intensive decision-making and the fast-changing landscape of market opportunities. 

With the new development in AI research and cognitive systems, data scientists across the 
industries increasingly turned to machine learning for answers. As a complete enterprise 
machine learning solution, Machine Learning for z/OS can help you optimize 
decision-making, solve business problems, minimize risks and costs, and grow top-line 
revenue by capitalizing on insights from real-time transaction data. 

This chapter describes how you can apply Machine Learning for z/OS in several use cases to 
answer specific business questions. It also provides high-level procedural guidance for 
managing the full lifecycle of building a predictive model from data analysis to model training, 
evaluation, deployment, monitoring, and retraining.

This chapter includes the following topics:

� 6.1, “Customer churn: Reducing customer attrition in banking” on page 118

� 6.2, “Investment advisory: Helping clients make the right decisions” on page 133

� 6.3, “Loan approval: Analyzing credit risk and minimizing loan defaults” on page 140

� 6.4, “Fraud detection: Rooting out frauds in government benefit programs” on page 147

� 6.5, “ITOA: Detecting system anomalies and resolving issues before they arise” on 
page 150

6
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6.1  Customer churn: Reducing customer attrition in banking

Customer churn or attrition in banking refers to the situation when customers end their 
relationship with a bank, close their accounts, and discontinue other services. The high churn 
rate can cause severe financial loss and challenges for banks viability. Although losing 
existing customers is costly, attracting new customers is even more so. To retain customers 
and reduce costs, it is important for banks to predict and identify customers with high attrition 
risk and take proactive actions to mitigate this risk.

Assume that a US-based cognitive bank wants to predict potential churn rate, analyze 
customer behavioral tendencies, and identify the demographics of likely churners. For this 
process, data scientists at the bank use Machine Learning for z/OS to develop a solution that 
consists of visual exploration of historical churn data and building the churn data model. This 
model can predict the probability for churning for a customer with a specific profile. 

Bank IT wants to integrate the developed model with the bank enterprise information system. 
For this purpose, the data scientist deploys the prepared model in Machine Learning for z/OS 
to make it available for integration. 

In this example, the historical churn data is stored in a Db2 for z/OS subsystem. In Machine 
Learning for z/OS UI, you created a “Banking Churn” project, connected to the Db2 
subsystem, and defined “Churn rate data” from the data source.

6.1.1  Analyzing historical churn data

The first step in data analysis is to understand the historical churn data and identify the 
current trend in customer attrition. This analysis can be implemented by using a Scala-based 
notebook. 

To accomplish this task, you create a “Banking churn analysis” notebook and specify Scala as 
the programming language.

To analyze the data in the notebook, you define a Spark data frame object first. This object is 
needed to support data transformations and to supply data for visualizations. The integrated 
Notebook editor supports generating code for creating data frame objects from the data 
sources that are defined in the project, which can be done with a few clicks (see Figure 6-1).

Figure 6-1   Integrated Notebook editor
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Visualization on the loaded data set is helpful for you to understand the variables and the 
relationship between variables. Brunel is an innovative visualization tool for analysts and 
business users that is used to create highly professional interactive visualizations with a few 
lines of descriptive code. It also can be used to visualize the data with the churn rate trend.

You might want to review the churn trend, which is the target of your model building effort. To 
build an interactive bar chart that represents the churn trend with Brunel, you must use the 
Brunel notebook extension (“Brunel magic” %%brunel). Brunel visualization language 
includes the following key elements that you must specify for your visualization:

� Name of the data frame (keyword: data)

� Type of the visualization (for example, bar in this case) 

� Dimensions and measures of the resulting graph; for example, x(<attribute>) 
y(<attribute>)

� Sorting (sort(<attribute>:<ascending|descending>, <secondary attribute>: 
<ascending|descending>))

� Coloring (color(<attribute>))

� Tool tips (tooltip(#all))

� Axis names (axes(x:'Name for X-axis':[grid], y:'Name for Y-axis':[grid])

To generate a bar chart to show the churn rate average and trend over the course of the last 
12 quarters, you can create a cell in the analytical notebook with the code that is shown in 
Example 6-1.

Example 6-1   Code to create a cell

%%brunel data('churnDataRate') x(QUARTER_YEAR) y(CHURN_RATE) bar tooltip(#all) 
axes(x:'Quarters', y:'CHURN RATE':grid) sort(YEAR:ascending, QUARTER:ascending):: 
width=800, height=500
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Running the cell generates the bar chart that is shown in Figure 6-2. The average churn rate 
for credit card customers is approximately 20% in banking industry. As the chart in Figure 6-2 
on page 120 shows, the initial churn rate was within industry standards a couple of years ago. 
However, the churn rate was growing from 18% to 25% over the last three years, which is 
higher than the industry standard.

Figure 6-2   Churn rate bar chart

By visualizing various features, you might choose to continue exploring the data that is behind 
this churn trend to understand how a customer’s demographics, tendencies, and behaviors 
can affect their banking decisions 

Income distribution for the bank’s customers can be influential. To generate the corresponding 
map graph, you can enter the following code:

val groupedChurnByState = churnData.groupBy("STATE"). agg(avg("INCOME") as 
"mean_income")

%%brunel data('groupedChurnByState') map key(STATE) x(STATE) color(mean_income) 
label(STATE) tooltip(#all) :: width=800, height=500
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The results show the average income distribution by state (see Figure 6-3).

Figure 6-3   Average income distribution by state results

The colors that are used in the map that is shown in Figure 6-3 indicate the mean income 
levels. For example, states in dark blue have the lowest average income; states in red bring in 
the highest. States, such as Connecticut, New York, Texas, and California are home to 
customers who on average earn more than residents in all other states.

If the distribution of churn rate by state is similar to the average income map, income might be 
a good predictor. To validate this hypothesis, you can review the geographic distribution of the 
churn rate by state by entering the following code:

val groupedChurnByState = churnData.groupBy("STATE").
agg(avg("CHURN") as "mean_churn")

%%brunel data('groupedChurnByState') map key(STATE) x(STATE) color(mean_churn) 
label(STATE) tooltip(#all) :: width=800, height=500

The resulting graph shows that the bank’s customers in Oregon have the highest risk to 
churn. Taking the average income map into consideration, most states that are suffering from 
high churn rate (states in red in Figure 6-4 on page 122) have relatively high average income 
(states that are not in blue in Figure 6-3).
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Figure 6-4   Highest churn rate risks

Apart from income, other demographic variables are likely to be influential. The next step you 
want to take might be to explore churners distributions by using the dynamic dashboard: 
churner data is color in red and non-churners are in blue.

To explore the details about the banks customers by using interactive dashboard, run the 
following code to generate a dashboard of charts to show the effect of age, income, and 
transaction activities on the churn rate:

%%brunel data('ChurnData')
x(AGE) y(#count:linear) color(CHURN_LABEL) bin(AGE) interaction(select) stack 
bar tooltip(#all) filter(CHURN_LABEL) legends(none) |

x(AVG_DAILY_TX) y(#count:linear) color(CHURN_LABEL) opacity(#selection) 
bin(AVG_DAILY_TX) stack bar tooltip(#all) axes(x:10:'AVG DAILY TX', y) |

x(AVG_TX_AMT) y(#count:linear) color(CHURN_LABEL) bin(AVG_TX_AMT) stack bar 
tooltip(#all) axes(x, y) legends(none) |

x(INCOME) y(#count:linear) color(CHURN_LABEL) bin(INCOME) stack bar 
tooltip(#all) axes(x, y) legends(none)

:: width=800, height=500

Running the code generates the interactive dashboard that is shown in Figure 6-5 on 
page 123, where red indicates churners and blue represents non-churners. The dashboard 
contains rich information. For example, the chart of customer age compared to number of 
churners (upper left) indicates that the churner distribution is skewed towards the millennials, 
while the non-churners distribution is centered around those customers at the age of 45 - 50 
years old, which implies that the bank must focus on millennials to address their needs.
122 Turning Data into Insight with IBM Machine Learning for z/OS



Figure 6-5   Interactive dashboard

To further explore the effect of gender, card activity, and educational background on churn 
rate, you can create another interactive dashboard, which is defined by using the following 
code:

%%brunel data('ChurnData')

x(SEX) y(#count:linear) color(CHURN_LABEL) stack bar tooltip(#all) sort(SEX) 
interaction(select) filter(CHURN_LABEL) axes(x:'GENDER', y) legends(none) |

x(ACTIVITY) y(#count:linear) color(CHURN_LABEL) stack bar tooltip(#all) 
sort(ACTIVITY) opacity(#selection) axes(x:'CARD ACTIVITY', y) |

x(EDUCATION_GROUP) y(#count:linear) color(CHURN_LABEL) stack bar tooltip(#all) 
sort(#count) opacity(#selection) axes(x:'', y)

:: width=800, height=500
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Running the cell generates the interactive dashboard of charts that is shown in Figure 6-6.

Figure 6-6   Interactive dashboard of charts

The dashboard shows that gender does not play a role in the customer churn of the cognitive 
bank while the frequency of bank card use does play a role. Churners tend to use their credit 
cards much less frequently than non-churners. In addition, the use of a bank card once 
versus twice per day makes a large difference in the potential of churning.

The quick analysis of the historical churn data through Brunel visualizations in the notebook 
finds that age, card use, income, and the state in which their customers live contribute to the 
current churn rate and trend. Consider selecting these features to train to build a churn model 
for predicting the churn, as described in the next section.

6.1.2  Building and deploying a churn model

You can train and build a model by using the Visual Model Builder or the integrated Jupyter 
Notebook of Machine Learning for z/OS. Regardless of the methods you use, you must 
explore and transform data, select features and algorithms, train and evaluate the model, and 
publish and deploy the model.

Creating the churn model by using the Visual Model Builder
The Visual Model Builder provides a quick and easy way to create a model because Visual 
Model Builder does not require any manual coding and uses a self-guided wizard. 

The Visual Model Builder guides you through several phases: data preparation, defining 
features, specifying algorithms, training models, selecting the best performing model, and 
publishing the model for use in the applications. 
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Complete the following steps:

1. Select the data that you bring from the data source. 

For this model, the data set that contains the historical churn data is used. Machine 
Learning for z/OS automatically applies any necessary transformations for categorical 
data, although you can also choose to add transformers manually.

2. Select the following data features that can help predict customer churn:

– Choose the following fields that are to be used by the algorithm for predicting the 
outcome:

• GENDER (String)
• AGE (Integer)
• INCOME (Decimal)
• ACTIVITY (Integer)
• NEGTWEETS (Integer)
• EDUCATION_GROUP (String)

– Choose CHURN_LABEL for the field that is used as the Target or outcome of the 
prediction, also known as the label. The target field has a value of true or false in this 
case.

3. Choose the algorithms that are most appropriate to train a churn model. Of the available 
types of algorithm, binary classification is automatically suggested when CHURN_LABEL 
is picked as the label column. Select binary classification as the technique and then 
logistic regression, random forest classifier, and gradient boosted tree classifier as the 
estimators.

4. Split the historical churn data into the subsets of training, validation, and testing. By 
default, 60% of data is used for training, 20% percent for validation, 20% for testing. The 
ratios can be visually adjusted by using the interface (see Figure 6-7).

Figure 6-7   Selecting a technique

The churn model is now defined and ready for training.
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5. Train the churn model. After the training is done, Machine Learning for z/OS presents in 
intuitive terms whether the user built effective models. In the case of the binary classifier, a 
receiver operating characteristics (ROC) curve can be used for machine learning model 
performance. The performance of binary models is frequently assessed by the area under 
the ROC curve, as shown in Figure 6-8.

Figure 6-8   Performance assessment

6. Choose and save the model. In this case, the version that is based on the logistic 
regression algorithm delivers an excellent performance with the highest area under ROC 
curve of 0.99293. You can select this model as final and save it as the Banking churn 
model.

7. Select and deploy the Banking churn model. After the churn model is deployed, you can 
test the model (see Figure 6-9). 

For input, specify the following fields and values that characterize a customer of the bank:

Gender - M, Age - 40, INCOME - 300000.0, Activity - 3, NEGTWEETS - 5, STATE - 
TX

Figure 6-9   Testing the model
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The response includes two numbers that should add up to 1. The numbers represent the 
predicted possibilities of two classes based on the input data. In binary classification, the first 
class is negative and the second is positive. The second number of 0.12391161940699844 
indicates that the customer has the 13.39% probability to churn.

Creating the churn model by using the integrated Notebook editor
You can programmatically code the Scala-based notebook with APIs to create the same or 
similar churn model as you did visually by using the Visual Model Builder. The integrated 
notebook can run code in different languages, including Scala. When you run the code in a 
cell, the notebook appends the output right after the original code, with the top five rows 
shown.

The following process that uses the integrated Netbook editor is similar to building the model 
visually with Visual Model Builder:

1. Prepare and preview the churn data by entering the code that is shown in Figure 6-10.

Figure 6-10   Code to enter

Running the code that is shown in Figure 6-10 in the cell generates the output that shows 
the historical churn data in categories or table view (see Figure 6-11).

Figure 6-11   Historical churn data results

Note: The Input Record field accepts key-value pairs in the format of schema. The Predict 
button is active only when the input pairs are valid.
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2. Split the data into two subsets (70% for training and 30% for testing) by entering the code 
that is shown in Figure 6-12.

Figure 6-12   Splitting data into two subsets

Running the cell generates the previews of the training and testing data sets that are 
shown in Figure 6-13.

Figure 6-13   Training and testing data sets preview

3. Build features by using transformers (see Figure 6-14). As opposed to the UI-based 
approach, you must code every transformation.

Figure 6-14   Coding transformations
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4. Assemble the features to be used in model training by entering the code that is shown in 
Figure 6-15.

Figure 6-15   Assembling model training features

5. Define the algorithm for the churn model. The logistic regression that is used is shown in 
Figure 6-16.

Figure 6-16   Logical regression algorithm

6. Create a complete pipeline for the logistic regression churn model (see Figure 6-17).

Figure 6-17   Logical regression churn model

7. Train the churn model by passing the training data into the pipeline’s fit method (see 
Figure 6-18).

Figure 6-18   Pipeline fit method
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8. Evaluate the churn model. The ROC curve indicates the top performance, as shown in 
Figure 6-19.

Figure 6-19   Churn model evaluation

9. Save the model and then, publish it to the repository service (see Figure 6-20).

Figure 6-20   Publishing model to repository service
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Running the code generates the output that is shown in Figure 6-21 that shows a new 
churn model is successfully saved and published.

Figure 6-21   Output that shows successfully saved and published churn model

You can also verify that the churn model is successfully published by reviewing the Models 
tab of the Model Management page. 

10.Deploy the churn model by entering the code that is shown in Figure 6-22.

Figure 6-22   Deploying churn model

The output from running the code indicates that the churn model was deployed quickly 
and successfully.
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11.Run scoring and predictions to test the churn model. Issue REST calls from an application 
that was developed in Python, PHP, Java, Ruby on rails, or another language. An example 
for a Scala implementation is shown in Figure 6-23.

Figure 6-23   Scala implementation example

6.1.3  Monitoring and reevaluating the churn model

The data is not stale and it changes over time. As a result, the performance of the model can 
degrade, which erodes the accuracy of the predictions. You can prevent this issue from 
occurring by monitoring the performance of the churn model and scheduling it for automatic 
reevaluation.

To set the churn model for automatic retraining, determine a performance threshold and an 
evaluation frequency. Also, specify the data source for retraining the model. 

After the reevaluation is scheduled to run once or at a regular interval, Machine Learning for 
Z/OS collects and displays the model performance information on the dashboard for you to 
monitor.
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6.2  Investment advisory: Helping clients make the right 
decisions

In investment firms, investment advisors strive to give the right recommendations that help 
clients make the right decisions based on the client’s unique situation. Given the changing 
dynamics in financial markets and the inherent risks in investment, making sound 
recommendations require time-sensitive intelligence that is extracted from raw information 
about an investment, which varies from the financial performance of target industries to the 
inclinations of the client. 

By using Machine Learning for z/OS, you can analyze clients and financial markets, no matter 
where the data is stored. By using this analysis, you can quickly extract insights with which 
you can turn into actionable recommendations. 

Consider the industry affinity of your clients as an example. You want to predict and identify 
the industries in which your clients are interested in investing. Thus, together with your data 
scientists, you analyze the client data and predict the client’s industry affinity by developing a 
machine learning model programmatically in Python with PySpark.

6.2.1  Analyze historical client affinity data

A sample data set about the clients is stored in a dashDB. This sample client data contains 
information about 10,000 clients, and includes the following variables:

� Client ID (numeric; 1000000 - 1100000)
� Gender (nominal; M = Male F = Female)
� Age group (ordinal; 18 - 24, 25 - 34, 45 - 54, 55 - 64, 65+)
� Education (ordinal; from high school to doctorate)
� Profession (nominal; doctor, nurse, performer, and so on)
� Income (numeric; 20,000 - $58,000)
� Account balance (numeric; $3,000 - $283,000)
� Number of trades per year (numeric; 0 - 100)

The client data also contains labels for the auto, technology, hotel, and airline industries 
where “1” means affinity and “0” means no affinity.

To analyze the data, you first must load the data from dashDB in a notebook. This process 
can be done by adding a remote data set as described in Chapter 5, “Model development and 
deployment: A retail example” on page 93, or by specifying credentials for the database and 
retrieving data after the connection is set up. The following code shows how to specify 
credentials for a dashDB connection:

dashDBLocal = {
'jdbcurl': 'yourURL'
'user': 'yourUsername'
'password': 'yourPassword'

}
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After the connection is set up, you can load and preview the client data. The top five rows are 
shown in Figure 6-24 (each row being a client).

Figure 6-24   Client data preview

Before reviewing machine learning models, you might want to get more knowledge of the 
industry affinity of your customers. You can expect different customers have affinity to 
different industry, and such differences might be explained to some extent by the 
demographics.

Consider the automotive industry as an example. By running the Brunel code that is shown in 
Example 6-2, you can create several stacked bar plots to show the distribution of 
demographic variables between customers having affinity for the automotive industry (in red) 
and those who do not (in blue), as shown in Figure 6-25 on page 135.

Example 6-2   Brunel code to create bar plots

%%brunel data('autoStocks') 
x(TradesPerYearGroup:linear) y(total:linear)  sum(total) stack bar 
tooltip(#all)  axes(x:'Trades Per Year', y) color(Auto) legends(none) |

x(AgeGroup) y(total:linear) sum(total) stack bar tooltip(#all) axes(x:'Age 
Group', y) color(Auto) |

x(Gender) y(total:linear) sum(total)  stack bar tooltip(#all) axes(x:'Gender', 
y:' ') color(Auto) legends(none)|

x(IncomeGroup:linear) y(total:linear) sum(total)  stack bar tooltip(#all)  
axes(x:'Annual Income', y) color(Auto) legends(none) 

:: width=1000, height=800
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Figure 6-25   Distribution of demographic variables bar graphs

You observe that among all the age groups, middle-aged clients are much more likely to show 
affinity for automotive industry, most of whom are male, and have a high annual income 
$200,000 - $475,000.

So, the question becomes: How are customers who have affinity for the automotive industry 
different from those having affinity for another industry? To answer this question, you create a 
similar set of plots for technology industry by using the following code:

%%brunel data('techStocks') 
x(TradesPerYearGroup:linear) y(total:linear)  sum(total) stack bar 
tooltip(#all)  axes(x:'Trades Per Year', y) color(Tech) legends(none) |

x(AgeGroup) y(total:linear) sum(total) stack bar tooltip(#all)  axes(x:'Age 
Group', y) color(Tech)|

x(Gender) y(total:linear) sum(total)  stack bar tooltip(#all) axes(x:'Gender', 
y:' ') color(Tech) legends(none) |

x(IncomeGroup:linear) y(total:linear) sum(total)  stack bar tooltip(#all)  
axes(x:'Annual Income', y) color(Tech) legends(none) 

:: width=1000, height=800
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The resulting bar graphs are show in Figure 6-26.

Figure 6-26   Technology industry bar graphs

Because the sum of the red and blue bars that are shown in Figure 6-26 represents all of the 
customers in your data, you see the same shape of the stacked bars, but the proportion of 
colors varies. 

The high proportion of red indicates that the technology industry is popular among all age 
groups (younger people are more keen on it than older people), both genders (females are a 
little more likely than males), and customers with any income level (relatively lower income 
group and relatively higher income group show higher probability than middle income group).

If you compare the two sets of plots, it is evident that clients with an affinity for the auto 
industry have distinctively different demographics from those with an affinity for the 
technology industry. This difference in distribution indicates why demographics can be good 
predictors and how they can be used to predict affinity.

6.2.2  Defining a pipeline for an affinity model

Machine learning in Spark uses specific workflow, or pipeline, where various stages 
(transform features, specify machine learning algorithms, and so on) are piped together for 
the data to be passed into. 
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You can change the components when you define the pipeline because it is a collection of 
rules or actions that has no effect on the data yet. After the pipeline is defined, data can be 
passed into the pipeline by using the fit() method, and it is then that the time when the 
computation starts.

To define a pipeline, define the components of the pipeline, stage by stage, and then, 
combine the components to make a complete pipeline.

In this example, you can prepare the pipeline by using the following process:

1. Transform categorical features in your client data to numeric representations. 

The computation of machine learning algorithms is, in essence, mathematical operations. 
Therefore, categorical variables must be represented as numbers. To handle categorical 
features, you can use the StringIndexer() in Scala to turn categorical variables to a 
frequency-based rank number. Then, OneHotEncoder() is used to map the numbers to one 
hot vector. These transformations add new columns to the data frame (the original 
categorical features still exit). 

The cell that is shown in Figure 6-27 applies string indexer and one hot encoder to 
categorical variables in this data set. In this case, the binary categorical feature Gender 
does not require a one hot mapping. Age Group, Profession, and Education as multi-value 
categorical features must be transformed by using StringIndexer and OneHotEncoder.

Figure 6-27   Cell that applies string indexer and one hot encoder

Running the code generates the numeric representations you need of the categorical 
variables (that is, gender, age, profession, and education).

2. Select the feature columns to be used in the affinity model. 

Not all columns are feasible (because the categorical features are still in the data frame) or 
wanted. The code that is shown in Figure 6-28 uses Scala’s VectorAssembler() to select 
the features to be used.

Figure 6-28   Using Scala’s VectorAssembler()

Here, you select the numeric variables (income, account balance, and number of trades 
per year) and the transformed categorical variables (gender_code, age_group_code, 
profession_code, and education_code). 

3. Specify machine learning algorithms. 
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A simple logistic regression is used here to estimate whether a client prefers one industry 
or not. The probability estimate that is produced by the model indicates the likelihood that 
a customer has affinity for the industry. You must specify the label column, the feature 
column (returned by the vector assembler), and the column where the predictions are 
stored by using the code that is shown in Figure 6-29.

Figure 6-29   Column specification code

4. Create a complete pipeline by combining the components of feature transformation, 
feature selection, and algorithm definition in the order in which they were prepared. 

Usually, the order of the stages cannot be changed. For example, feature assembler 
cannot be put before feature transformation because feature assembler is calling columns 
that are built by the feature transformation stage.

However, the order of steps within a stage can be changed. For example, transforming 
gender to numeric representation first and then age group is equivalent to transforming 
age group first, then gender.

The code that is shown in Figure 6-30 generates the pipeline that you need, including the 
string indexers and one hot encoder, followed by feature assembler and machine learning 
algorithms.

Figure 6-30   Code to generate pipeline

6.2.3  Training the affinity model

As a common rule in machine learning, the historical client data must be split before the 
affinity model is trained. The data is split into at least into two sets (a training set and a test 
set) by entering the code that is shown in Figure 6-31.

Figure 6-31   Creating train and test sets
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A training set is used to train the model; a test set is used to test the model’s performance. 
The test set separated from the training set so that the model is tested by using new data that 
the model has not seen before. Such a test is a good imitation of the real-world situation in 
which the model is to be applied on new data for prediction. The ratio of training set size and 
test set size can be adjusted.

After preparing the pipeline and the data, you can pass the training data set into the pipeline 
to train the affinity model by running the code that is shown in Figure 6-32.

Figure 6-32   Passing training data set into the pipeline

Running the code trains the affinity model. This model now is ready for evaluation.

6.2.4  Evaluating the affinity model

After the affinity model is trained, you might want to validate it with the test data set that was 
held separately (Figure 6-33). The test results are used to evaluate the predictions that are 
made by the model. In this case, four machine learning models are used (each for a particular 
industry), for which the accuracy can be computed one by one in a for loop. 

Figure 6-33   Validating the affinity model

Running the code generates the evaluation results of four affinity model, each for a particular 
industry, as shown in Figure 6-34.

Figure 6-34   Evaluation results
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6.2.5  Saving the predictions of the affinity model

The predicted probability includes numbers with many digits, which can take up storage 
space. You can round up the numbers if you do not plan to use them for further calculations. 

In addition, the prediction output includes all of the columns that are used to build the model, 
including the same columns in your original sample data. Many columns are redundant after 
the output is produced. The only information you want to keep often is the predictions. 

The prediction columns that are required are selected from all columns, of which the numbers 
are rounded up, as shown in Figure 6-35.

Figure 6-35   Selecting prediction columns

To write the prediction into the remote database, specify the credentials, such as user name, 
password, current schema, and driver for authentication, and the address and the table name 
(see Example 6-3). With all these settings configured, you can run the code to write your 
predictions to the remote database.

Example 6-3   Code to specify credentials

properties = {
'user': 'yourUsername'
'password': 'yourPassword'
'currentSchema': 'yourCurrentSchema'
'driver': 'yourDriver'

}

stored_batch_prediction.write.jdbc(url='yourURL, table='yourTableName', mode = 
'overwrite', properties = properties)

6.3  Loan approval: Analyzing credit risk and minimizing loan 
defaults

Loans are a major source of income for banks, and banks approve loans regularly. Good 
loans bring tremendous profits, but bad loans can mean significant financial losses. 

Loan default or delinquency is one of the most common types of bad loans. Loan default 
occurs when a borrower fails to make payments when the payments are due. To minimize 
loans in default, banks must carefully analyze each application and accurately determine the 
creditworthiness of an applicant. 
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Typically, banks use the combination of business rules, corporate policies, and expert 
recommendations to evaluate and decide whether to approve or reject a loan application. The 
business rules are explicit statements that are induced from certitudes, facts, laws, and 
regulations. Although this practice might be sufficient when an application is straightforward 
and complete with information of proven creditworthiness, it does not work well in cases 
where explicit rules do not apply, and credit data is incomplete. 

Machine Learning for z/OS can help solve this problem. Instead of relying exclusively on 
explicit rules, machine learning uses a range of algorithms to induce and unveil implicit 
patterns that are hidden in a vast amount of data. These implicit patterns can provide insights 
that you can use to optimize your loan decision-making and expose the hidden credit risk in 
an application, while rooting out applications with the potential to default and thus minimizing 
the possibility of financial loss. 

Next, we consider an example in which you have historical data about past loans and loan 
approvals. You want to use the historical data as a base to build a loan approval model that 
can help predict the risk of default before approving a new loan. The data set is stored in a 
Db2 for z/OS subsystem. You want to build a model in Scala by using the integrated Notebook 
of Machine Learning for z/OS.

6.3.1  Analyzing historical loan approval data

Suppose that the loan approval historical data shows paid and unpaid loans and their 
borrowers. In this example, the sample data set includes the following variables:

� Age (numeric)
� Annual income (numeric)
� Number of credit cards (numeric; 0 - 6)
� Number of car loans (numeric; 0 - 3)
� Education level (ordinal; with eight levels from elementary school to doctoral degree)

The outcome variable is a binary label that indicates whether the loan was reimbursed 
(represented by 1) or not (represented by 0).

The first step in any process such as this process is to load the data (Figure 6-36). The data 
table is stored in a IBM DB2® database. In addition to adding a remote data set by using the 
UI, you can specify the credentials in the notebook and set up a connection by using the 
credentials to fetch data. 

Figure 6-36   Loading the data
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Running the cell connects to your Db2 database and loads the historical data. You can 
preview the data set by printing the first several rows (Figure 6-37). 

Figure 6-37   Previewing the data set

You can use the data visualization library, such as Brunel, in the Notebook editor to further 
examine the historical data.

The cell that is shown in Example 6-4 generates a review of the data through Brunel (see 
Figure 6-38 on page 143). This review provides an insight into the relationship between the 
outcome, a variable indicating whether the loan was repaid in full, and the available data 
points that can help predict the results.

Example 6-4   Code that provides data review

%%brunel data('hist') x(EDUCATION) y(CREDITREIMBURSED) mean(CREDITREIMBURSED) bar 
tooltip(#all) |  
         data('hist') x(CARDS) y(CREDITREIMBURSED) mean(CREDITREIMBURSED) bar 
tooltip(#all) |
         data('hist') x(CARLOANS) y(CREDITREIMBURSED) mean(CREDITREIMBURSED) bar 
tooltip(#all)  
:: width=800, height=500
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Figure 6-38   Data review results

The set of bar charts that is shown in Figure 6-38 shows the proportion of borrowers that 
repaid the loans, varied by education level (the upper plot), number of car loans (the lower left 
plot), and number of credit cards (the lower right plot). 

The bottom two plots suggest a negative effect of owning more credit cards, owning more car 
loans, and perhaps having lower education level on the probability that the client fully repaid 
the loan.

Based on the visualizations, these three factors are likely to be predictive; therefore, you 
might want to include them in your machine learning model.

6.3.2  Defining a pipeline for the loan approval model

In 6.2, “Investment advisory: Helping clients make the right decisions” on page 133, the 
standard procedure to create a pipeline is explained. However, the procedure can be 
customized according to your need. In this section, a modified procedure is described to 
include cross-validation into the pipeline.

In addition to the standard parameters that the model automatically learns from the input 
data, you can manually assign some high-level variables or hyperparameters to 
cross-validate and improve the performance of the model, the effect of which is usually 
assessed by cross-validation method. 

Complete the following steps to define the pipeline:

1. Transform categorical features in your data to numeric representations. The historical loan 
approval data contains the categorical features of age, income, credit cards, car loans, 
and education. The first four categories already are numeric. Education is the only 
category that must be managed by entering the code in a cell that is shown in Figure 6-39 
on page 144. 
Chapter 6. Use cases: Applying Machine Learning for z/OS in business 143



Figure 6-39   Code to manage Education category

2. Select and assemble the features to be used in the model through the vector assembler by 
entering the code that is shown in Figure 6-40.

Figure 6-40   Vector assembler code

Unlike in the investment advisor use case where you created a pipeline with stages from 
feature transformation to model setting, model setting in this case is not included in the 
pipeline because the models are compared with different hyperparameter settings.

3. Specify machine learning algorithms to be included in the pipeline. As shown in 
Figure 6-41, logistic regression is used to manage binary categorical outcome 
CREDITREIMBURSED.

Figure 6-41   Code to manage binary categorical outcome CREDITREIMBURSED

4. Specify evaluation metrics for identifying the hyperparameters that help improve the 
performance of the model. During cross-validation, the performance of the model is 
recorded so that the best set of hyperparameters can be identified based on the metrics. 
The code that is shown in Figure 6-42 uses BinaryClassificationEvaluator as the evaluator 
to measure model performance.

Figure 6-42   Use of BinaryClassificationEvaluator as the evaluator to measure model performance

5. Specify sets of hyperparameters to cross-validate the performance of your model. 

A classic logistic regression does not contain hyperparameters. However, for machine 
learning algorithms that involve linear combination of predictors, you can add high-level 
hyperparameters to penalize the use of too many predictors. This technique known as 
regularization, which helps prevent overfitting of the model.
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L1 norm regularization (LASSO) and L2 norm regularization (Ridge) are among the most 
frequently used methods of regularization. The use of LASSO and Ridge hyperparameters 
together is called Elastic Net. 

In Spark machine learning library, the elastic net hyperparameter (elasticNetParam) is in 
the form of proportion of LASSO hyperparameter in the sum of regularization 
hyperparameters of both methods. A 0 means Ridge only and 1 means LASSO only. Any 
number 0 - 1 indicates an Elastic Net, or a combination of LASSO and Ridge.

Enter the code that is shown in Figure 6-43 to specify the hyperparameters that you want 
to use.

Figure 6-43   Code to specify the hyperparameters

Here, grid search is used to find the best combination of the two hyperparameters. Four 
numbers in regParam and six ratios in elasticNetParam are tested. The number of 
hyperparameter set is 4 x 6 = 24.

6. Create a complete pipeline by combing the components of feature transformation, feature 
selection, algorithm definition, evaluator definition, and hyperparameter specification in the 
correct order. You can use the code that is shown in Figure 6-44 to create the pipeline.

Figure 6-44   Code to create a pipeline

The setNumFolds variable indicates the “k” in k-fold cross validation, which refers to the 
number of times that the training data set is further split for model training and evaluation. 
The setNumFolds (2) is 2-fold, meaning that the training data set is further sliced into two 
halves and that the model is trained and evaluated twice. 

6.3.3  Training the loan approval model

The training set is used to build the model and the test set is used to evaluate the model 
performance. This test imitates the real world scoring problem where you have some known 
data (the training set) to train and select the best model and apply the model on unknown 
future data (the test set).

You can split the historical loan approval data into two subsets, one for training and the other 
for testing, as shown in Figure 6-45.

Figure 6-45   Splitting data into two subsets
Chapter 6. Use cases: Applying Machine Learning for z/OS in business 145



Running the code splits the historical data into a training set (80%) and a test set (20%).

By using the completed pipeline, you can train the loan approval model by passing the 
training data into the pipeline, as shown in Figure 6-46.

Figure 6-46   Passing the training data into the pipeline

It can take much longer if the training includes hyperparameter optimization. In this case, a 
total of 4 x 6 x 2 = 48 models are built to generate a ranking of hyperparameter sets by using 
the current settings.

6.3.4  Evaluating and testing the loan approval model

By using the best set of hyperparameters that emerges in the cross-validation process, the 
final model can be trained on the training data set and applied to the test data set for scoring 
and evaluation, as shown in Figure 6-47.

Figure 6-47   Final model training

Running the code generates the evaluation results that are shown in Figure 6-48.

Figure 6-48   Evaluation results

The results show the area under ROC curve and the PR curve of your best-performing model 
on the training and test data sets. Although the area under ROC curve is less than 0.80 (not 
an ideal number), the area under PR curve is as high as 0.97.

By applying the model on test data, you can get the predicted probability and predicted 
outcome for each loan application in the test set, as shown in Figure 6-49 on page 147.
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Figure 6-49   Applying model on test data

Running the code generates predicted probability and outcome results, as shown in 
Figure 6-50.

Figure 6-50   Predicted probability and outcome results

In this example, a 29-year old loan borrower with an annual income of $105,510, two credit 
cards, one car loan, and a master’s degree is predicted to have a 94.7% probability to pay the 
loan in full. The corresponding outcome is 1, which means the loan will be fully repaid. The 
prediction is consistent with the CREDITREIMBURSED value in the historical data.

6.4  Fraud detection: Rooting out frauds in government benefit 
programs

Fraud is age-old and pandemic across industry sectors and government agencies. As 
businesses and governments move their operations online, fraud crimes become even more 
rampant and sophisticated, and fraud losses are increasingly crippling. 

Take government benefit programs as an example. The programs are put in place to serve 
people in need. But, persistent fraudulent enrollments and claims disrupt the social services 
and deplete the limited resources, which makes it almost impossible for the right people to 
receive the right benefits.

Fighting frauds in government agencies is an uphill battle. Although the perpetrators use 
evolving technologies and change their tactics at will, the process that is used to uncover 
those offenses remains mostly manual, slow, and drawn out. 

Effective fraud detection requires the computational capability to quickly analyze a vast 
amount of data, accurately identify hidden patterns of fraudulent behaviors, and swiftly turn 
them into intelligence that enables organizations to make real-time decisions. Machine 
Learning for z/OS can deliver that industry-leading capability.

Suppose that the State of California runs a Supplemental Nutrition Assistance Program 
(SNAP), intended for families in dire need of food help. Rampant fraudulent enrollments 
threaten to derail that objective. The state decides to use Machine Learning for z/OS to 
detect, expose, and deny fraudulent SNAP applications. 

Assume that as a data scientist, you and your team developed a SNAP anti-fraud model. The 
model was trained with historical SNAP data and fitted with random forest classification. The 
model was developed in R in the RStudio Desktop and exported as a PMML model. 
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You want to use the Machine Learning for z/OS PMML capability to import the model and 
then deploy it to score all incoming SNAP applications and root out the fraudulent 
applications.

6.4.1  Overview of historical SNAP data and the SNAP model

The historical SNAP data contains the following information about more than 16,000 
applicants:

� Gender (nominal; F = female M = male)

� Education (ordinal; from high school to doctorate)

� Income (numeric; 0 - 60000)

� Marital status (nominal; single, married, divorced)

� Employment status (nominal; disabled, medical leave, retired, unemployed, and 
employed)

� County (nominal; 58 counties in California)

The outcome variable is a label showing whether an application is fraudulent (1) or normal 
(0).

A simple random forest model was trained on 80% of the data by using randomForest 
package in Rstudio, which consists of 100 trees. Each tree in a random forest model is slightly 
different, which gives its own prediction. The final prediction is a combination of the 
predictions from all 100 trees. 

The model performance on the test set (20% of the data) is satisfactory, achieving area under 
ROC curve of 0.897 and area under PR curve of 0.806.

6.4.2  Importing, deploying, and testing the SNAP model

PMML models can be imported to MLz and are ready for immediate use by using the 
following process: 

1. Import the SNAP model:

a. On the Models tab of the Model Management page, click Add model and then specify 
a name for the imported model. 

b. Click Browse to select and upload the SNAP model file on your local machine. 

c. Click Add model to confirm importing the SNAP model. Now, you can verify that the 
new model is on the Models list.

2. Deploy the SNAP model.

In the Models list, find your model and click ACTIONS menu, where you can see an option 
to deploy the model. The deployed PMML SNAP model can be handled and used in the 
same way as the models created natively in Machine Learning for z/OS. 

3. Test the SNAP model.

After the model is deployed, you can find your model on the Deployments tab. If you click 
the ACTIONS menu of the model, you can select Test API to start the Input and Result 
page, as shown in Figure 6-51 on page 149.
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Figure 6-51   Input and Result page

You can enter a value in all the input fields and then click Submit to generate the 
corresponding results. 

The example shows the scoring results of the SNAP application from a married male 
applicant in the county of Los Angeles. The applicant has a bachelor’s degree and is 
employed with an annual income of $50,000. The SNAP model predicts that the application 
has a 72% probability to be fraudulent. 

After the model is integrated into production, it scores a new incoming SNAP application with 
all required information in the correct data format. Given the set of results, you can choose 
what you want to do:

� Use predicted label R-LABEL to decide what action to take for fraudulent applications (it 
assigns 1 = fraudulent to the input data when predicted probability of fraud is larger than 
0.5).

� Examine closely the probabilities (RP-1 and RP-0) to assign a fraud label by using 
customized threshold; for example, 0.8, which is based on which action you decide to take.

Important: Compress the PMML file for the SNAP model before you upload the model into 
Machine Learning for z/OS.
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6.5  ITOA: Detecting system anomalies and resolving issues 
before they arise

Machine learning for z/OS and its predictive capability can greatly benefit IT operations. 
Enterprises worldwide use the IBM Z hardware and software, such as Db2 for z/OS, to 
support their mission critical processes. These Z solutions can collect and save extensive 
data of system operation and performance. You can use this historical data to build machine 
learning models for monitoring system operations and predict issues before they arise.

Suppose that you want to use the Machine Learning for z/OS ITOA Health Tree application to 
build a health tree model that is fitted with a linear regression/Pearson algorithm. By using the 
health tree model, you can monitor the operational health of your Db2 for z/OS, establish a 
key performance indicator (KPI) baseline, identify anomalies, and pinpoint the root causes. 
System administrators can then proactively resolve the issues before they disrupt the 
operation and performance of the subsystem.

6.5.1  Preparing historical health tree data

The Machine Learning for z/OS ITOA Health Tree application can use Db2 statistics and 
accounting traces in comma-separated value (CSV) format as input data. Complete the 
following steps to prepare the historical health tree data:

1. Collect the statistics and accounting trace records of your Db2 subsystem. The Db2 
instrumentation facility component (IFC) provides a trace facility to record data. Each trace 
class captures information about several Db2 events that are identified by instrumentation 
facility component identifiers (IFCIDs). Db2 traces include several data types, such as 
statistics, accounting, audit, performance, monitor, and global data. 

The statistics trace reports the usage information of Db2 system and database services, 
while the statistics trace records general information about the subsystem and storage. 
The Db2 system general KPIs include data about CPU time, data set open and close, 
logging, locking, DDF, and latch. The Db2 storage KPIs contain data about real available 
storage, DBM1 real storage usage, active threads, and so on.

The accounting trace records transaction-level data at the completion of a transaction. The 
data enables you to conduct Db2 capacity planning and tune application programs. The 
accounting KPIs contain specific accounting data, including CLASS2_ELAPSED, 
CLASS2_CPU_TOTAL, CLASS2_CPU_AGENT, LASS3_LOCK, CLASS3_LATCH, and 
CLASS3_ACCEL.

2. Convert the statistics and accounting trace records into CSV data. Use the IBM 
OMEGAMON® Spreadsheet Input-Data Generator utility (or a similar product) to generate 
the required CSV files from the SMF Type 100,101,102 historical records. The CSV data 
can then be imported into the train and test a health tree model. Complete the following 
steps:

a. Generate statistics file data set STFILDD1 by issuing the following STATISTIC 
command:

STATISTIC
FILE
DDNAME(STFILDD1)
EXEC
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b. Generate accounting file data set ACFILDD1 with DATATYPE set to GENERAL by 
issuing the following ACCOUNTING command:

ACCOUNTING
FILE
DATATYPE(GENERAL)
DDNAME(ACFILDD1)
EXEC

c. Create two statistics CSV data sets by using the input that is available in the 
Performance Database (PDB) in the TKO2SAMP library and your own input from field 
selection lists in the TKANSAMF library. 

Use the CSVGEN utility (as shown in the following examples) and specify SGEN and 
SSTG as the record types and FPEPSGEN and FPEPSSTG as the corresponding field 
selection lists:

//CSVGEN   EXEC PGM=FPEPCSV, 
//   PARM='SGEN N Y Y , . CANDLE.V540.TKO2SAMP', 
//   COND=(4,LT) 
//STEPLIB  DD  DSN=CANDLE.V540.TKANMOD,DISP=SHR  
//FLDSEL   DD  DSN=CANDLE.V540.TKANSAMF(FPEPSGEN),DISP=OLD

//CSVSTG   EXEC PGM=FPEPCSV,
//   PARM='SSTG N Y Y , . CANDLE.V540.TKO2SAMP', 
//   COND=(4,LT) 
//STEPLIB  DD  DSN=CANDLE.V540.TKANMOD,DISP=SHR
//FLDSEL   DD  DSN=CANDLE.V540.TKANSAMF(FPEPSSTG),DISP=OLD

d. Create an accounting CSV data set by also using the input that is available in the 
performance database (PDB) in the TKO2SAMP library and your own input from field 
selection lists in the TKANSAMF library. 

Use the CSVGEN utility (as shown in the following example) and specify AFGE as the 
record type and FPEPAFGE as the corresponding field selection list:

//FPEPCSV  EXEC PGM=FPEPCSV,                                  
//   PARM='AFGE N Y Y , . CANDLE.V540.TKO2SAMP' 
//STEPLIB  DD  DSN=CANDLE.V540.TKANMOD,DISP=SHR 
//FLDSEL   DD  DSN=CANDLE.V540.TKANSAMF(FPEPAFGE),DISP=OLD

e. Copy the new statistics and accounting CSV data sets to your z/OS UNIX files by using 
the OCOPY command, as shown in the following example:

//CPYTSUS EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//IN DD DISP=SHR,DSN=MLZSAMP.ACCT.CSVGEN
//OUT DD PATH='/tmp/mlzsamp.acct.csvgen',
// PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(IN) OUTDD(OUT)
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6.5.2  Building the health tree model

After the CSV files are created, you are ready to train and build a health tree model in the 
Health Tree application. Complete the following steps:

1. From the sidebar of the Machine Learning for z/OS UI, select and browse to Pattern 
Repository. 

2. On the ITOA tile, click APPLICATION to open the Health Tree application.

3. On the Data Source tab, define data sources in the Health Tree application to train and 
score the health tree model, as shown Figure 6-52.

Figure 6-52   Defining data sources

4. On the Model Configuration tab, specify the training data set and then, click Create 
Model, as shown in Figure 6-53.

Figure 6-53   Specifying the training data set
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Alternatively, you can create a health tree model and visualize the health tree in the 
integrated Notebook editor. View a sample health tree notebook by clicking NOTEBOOK 
on the ITOA tile on the Pattern Repository page.

6.5.3  Building the health tree based on the health tree model

After the health tree model is created, you are ready to configure and build the health tree by 
using the model. Complete the following steps:

1. On the Health Tree Configuration tab, specify the fields to configure the tree.

2. On the Health Tree tab, click Start to display the tree. The tree data is imported into a data 
frame with which the Health Tree application uses to draw the tree, as shown in 
Figure 6-54.

Figure 6-54   Importing tree data

If necessary, click Pause to pause the display of the health tree. Click Play to resume the 
application.
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6.5.4  Monitoring the health of your Db2 subsystem 

As shown in Figure 6-55, the health tree of your Db2 subsystem is split into three trees that 
are accessible on three tabs: Db2 Subsystem General, Db2 Transaction, and Db2 Storage. 
Toggle the tabs to view the trees and monitor the health of your Db2 subsystem.

Figure 6-55   Three heath trees

For each tree, a leaf node represents an individual KPI. A top-level node typically indicates a 
function area, but in some cases, it can also be an individual KPI.

A node can appear in the color of green, yellow, or red, similar to how a traffic light changes 
color. Green indicates normal status, yellow represents a warning, and red denotes an 
anomaly. When a node is in red, a number in the middle of the node shows the duration of the 
abnormal status.

The dynamic baselines of three key KPIs are displayed to the right side of each tree. The 
green line is downward, and the red line is upward while the blue line represents the real 
value of the KPI.

At the bottom of the tree, a graphic timeline is displayed, as shown in Figure 6-56.

Figure 6-56   Timeline display

The timeline displays the health status of your Db2 system over a 24-hour period. You can 
move your cursor over the timeline and pick any point in time to see more information about 
the system health status.
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Appendix A. Machine learning basics

To organizations, the fundamental objective of machine learning is to help solve a business 
problem or explore a business opportunity. This process can be accomplished through 
building, evaluating, deployment, and scoring a machine learning model. 

A machine learning model describes the relationship between the outcome variable and 
multiple predictors, which is mainly expressed by the algorithm, hyper-parameters, and 
parameters. 

The algorithm must be chosen manually. The hyper-parameters are optional (default values 
are provided) but can influence the performance of the final machine learning model. The 
parameters (also called weight or loading in some algorithms) are automatically derived, or 
as the name says, “learned”, from the training data. With a reliable machine learning model, 
predictions can be made to drive business insights and strategies in a more efficient and 
effective way. 

After you understand what a machine learning model is doing, you know how to convert your 
business problem into a machine learning problem so that you can use the power of machine 
learning. 

As the conversation about machine learning moves beyond a data scientist’s office, 
misconceptions start to emerge. One of the common misunderstandings is that machine 
learning is all about algorithms, which are explicitly related to machine learning models. 
Although algorithms and models are inherently essential to machine learning, they are only a 
part of it. In fact, machine learning involves a full workflow that includes the following stages:

� Data collection
� Data cleaning
� Data exploration
� Feature preprocessing
� Model building
� Model evaluation
� Model deployment

A
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This appendix provides some machine learning basic information by briefly introducing each 
of these stages (except for model deployment) from a data scientist’s point of view. Although 
model deployment is integral to the complete machine learning workflow, it is a stage in which 
data scientists are relatively less involved.

This appendix includes the following topics:

� “Data collection” on page 157
� “Data cleaning” on page 157
� “Data exploration” on page 159
� “Feature preprocessing” on page 163
� “Model building” on page 165
� “Model evaluation” on page 175
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Data collection

Unlike an expert system where all the rules are specified by humans, machine learning 
models learn patterns from the training data and automatically form “rules” that are based on 
these patterns. 

Before building a machine learning model, you must collect the data that is used to train the 
model. The data must be related to the problem that you want the model to solve. Examples 
of data sources include public data sets, private data sets (on-premises or on cloud), and 
self-built data set. In some sense, data collection defines the upper bound of the performance 
of your machine learning model, or how good your model performance can be. 

Consider data collection for a rice price model as an example. Assume the price range (low, 
medium, or high) of a 5-pound bag of rice can be perfectly predicted by using its quality, 
variety, and place of origin. “Perfectly” refers to when you have the data for these three 
variables, you can train a machine learning model to predict the rice price 100% correct.

If you do not know how the rice price is derived and you want to predict the rice price and 
attempt to collect data that you think is relevant to the answer, you can collect the following 
information:

� The wanted variables; for example, the quality of the rice.

� The variables that are related to the wanted variables ones; for example, the color of the 
rice, which is related to (but not the same) as the variety of the rice.

� The variables that are unrelated to the wanted variable; for example, the seller.

Compared to the wanted predictors from which the price is derived, you might notice that 
some of the wanted predictors are not collected at all. In this case, the place of origin is not 
collected. This piece of information is lost in the data set that is collected by the data 
scientists.

Assume excluding the place of origin and the use of only the quality and variety reduces the 
accuracy to 80%. By using a data set with no variable providing information about the place of 
origin, you never get an accuracy rate over 80% no matter what great machine learning model 
is used.

In real-world cases, no one knows the wanted predictors. Losing a piece of important 
information (you do not know which information is important) limits the performance of the 
machine learning model.

Data cleaning

You might think model building is the most time-consuming stage in the machine learning 
workflow. However, it is data cleaning or cleansing that takes most of your time because the 
data is rarely clean and ready for use. 

More often than not, you must cleanse and prepare the data before you can use it. It might be 
counter-intuitive, but data scientists often spend up to 60% of their time on data cleaning for a 
machine learning project. 
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Why is data cleaning tedious work? For example, if you want to perform text analysis on 
tweets that are collected from Twitter, the text data contain abbreviations, spelling errors, 
grammatical errors, and other problems. Humans can easily detect these problems and 
understand the content without any issue, but machines cannot do it automatically and 
therefore, these problems prevent machine learning algorithms from figuring out the proper 
patterns. 

Another example is relational data tables, which are a common structure for enterprise data. 
Most of the machine learning algorithms are essentially matrix operations that require the 
input data to be in one matrix. You must join the tables (sometimes aggregate the tables) to 
form a matrix as expected by your machine learning algorithm.

By cleaning the data, you prepare and organize the data set into a form that can be imported 
into the machine learning algorithms. Next, we describe some typical issues that can occur in 
your data sets.

Missing values 

A missing value is a common problem in most of the data sets. The reason why values might 
be missing varies. For example, some fields might not be required on the electronic form 
when the data is collected, or the data entry worker might accidentally skip some cells or 
rows.

Generally, the process for resolving missing values includes:

1. Identify the reason that causes missing values. Sometimes, the values are missing at 
random but other times a pattern exists.

2. Take the corresponding remedy to impute the missing values. 

This problem must be addressed because most of the machine learning algorithms inherently 
cannot deal with missing values.

Duplications

The data set might contain unwanted duplicated records. Although a small portion of 
duplication does not necessarily affect your machine learning algorithms, duplication biases 
the algorithms and makes them favor the duplicates more than the non-duplicates.

Multiple data tables

At times, you must combine information from various data tables. For example, by combining 
a customer profile table, an order history table, and a merchandise information table, you 
want to analyze the spending preferences of the customer and train a machine learning 
model to predict the probability of future purchases.

Data tables can be joined by using the key variables or identifiers. Typical key variables 
include customer ID, merchandise ID, and order numbers. At times, you must aggregate 
tables before or after you prepare the joint table to have a data table in a proper format as 
input to machine learning algorithms.
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Incorrect data

Some information in a data set might be entered by machines. Examples include the receipt 
number that is automatically generated for a transaction, the product number that is scanned 
from the bar code, and the time stamp when a request is processed. Other information in the 
data set might be entered by humans, which is more error-prone.

You must set up several screening criteria to detect incorrect data. These criteria might be 
constraints on the uniqueness of a variable (for example, in a latest customer profile table the 
customer ID should be unique), the length of a variable (for example, the values of a phone 
number should not exceed a specific number of digits), or the range of a variable (for 
example, the number of pets a user registered should not be a negative number).

Coding and recoding

Coding refers to transforming nominal variables into numbers. For example, a binary gender 
variable with two levels (male or female) can be coded by using 0 and 1, where 0 represents 
one gender and 1 represents the other gender. 

Whether this step is required depends on the machine learning function and the programming 
language. For example, linear regression in R supports factor type of data where the coding is 
done behind the scenes. Linear regression in python requires a numeric matrix input where 
coding must be done manually when the data is prepared.

At times, the data is already coded (and usually includes a codebook where the meaning of 
codes or the coding process is explained) but not necessarily in a way you want. Recoding is 
applied in this case.

Data exploration

Understanding the data is the starting point of using it. Data preview, summary tables, and 
visualization plots are the most used data exploration methods. In this example, we use the 
Iris data set in R to describe these methods.

Data preview (head and tail)

When a data set contains thousands of data points, where each data point is an observation 
with values in many variables, it is impossible to examine the data points individually. To get a 
rough idea about the data points and variables in the data set, you can take a closer look at 
the first (the head) and last (the tail) several rows. 

The last several rows cannot provide more clarification, except for the data set that is ordered 
by some variable; for example, time stamps. Having the head part and the tail part sometimes 
gives you a sense of the range of ordered variables.
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The first six rows of the Iris data set are shown in Figure A-1.

Figure A-1   First six rows of iris data set

From the head part of the data set, you see the following variables that are contained in the 
data set and the potential data type, including:

� Sepal length in some scale (numeric)
� Sepal width in some scale (numeric)
� Petal length in some scale (numeric)
� Petal width in some scale (numeric)
� Species of the flower (categorical)

The last six rows of the same data set are shown in Figure A-2.

Figure A-2   Last six rows of iris data set

In this example, the tail part does not provide much more information.

Summary table

A summary table provides descriptive statistics of each variable so that you can view the data 
set at high level. A summary table for the Iris data set is shown in Figure A-3.

Figure A-3   Example summary table for iris data set

This summary table describes the range and distribution of numeric variables (from Sepal 
Length to Petal Width), and the number of instances of each species.
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Visualization

Visualization helps you understand the data intuitively. In this section, we visualize the Iris 
data set in bar, histogram, and scatter plots. 

Bar plot
A bar plot often uses the length (or height) of the bars to indicate value and shows an intuitive 
comparison of values through the comparison of bar length. If you want to know whether and 
how the predictors differ across three species, you can apply bar plot on the mean value of 
the predictors, as shown in Figure A-4.

Figure A-4   Bar plot

The bars are grouped by predictor and colored by species, and the length of the bars 
represents the mean value. The bar plot shows a similar pattern for Petal Length, Petal Width, 
and Sepal Length, where the setosa iris has the lowest mean value, followed by versicolor iris, 
and the virginica iris has the highest mean value. Sepal width is different from the other three 
predictors, in which the setosa iris has the highest mean value.

Note: A more strict and quantitative examination of differences in mean value between 
groups requires statistical tests, such as the t-test that was used in AB tests.
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Histogram plot
A histogram plot looks similar to a bar plot because it also consists of bars. Bar plots are used 
to display aggregated values, such as mean value. Histogram plots are used to display 
distribution, which is the count of observations that have the predictor value in a certain 
range. For example, you can apply histogram plot on the iris data set, as shown in Figure A-5.

Figure A-5   Histogram plot

The plot that is shown in Figure A-5 shows the distribution of each species in each predictor. 
For Petal Length and Petal Width, the distributions of the species have little or none overlap. 
More specifically, the red setosa distribution does not overlap with the other two species, 
which means that by using only one predictor (either Petal Length or Petal Width), the setosa 
iris can be perfectly differentiated and predicted. The slight overlap between the green 
versicolor iris and the blue virginica iris indicates a strong capability of Petal Length and Petal 
Width to distinguish one species from the other.

Scatter plot
A scatter plot displays the data points in a specific feature space, and often includes lines or 
curves to indicate the relationship between two variables. 

According to the bar plot and the distribution plot, you might wonder how Petal Length is 
related to Petal Width because you notice that they share a similar pattern in both plots. You 
can apply scatter plot on these two variables, as shown in Figure A-6 on page 163.
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Figure A-6   Scatter plot

The scatter plot that is shown in Figure A-6 shows the data points on a 2-dimensional panel. 
The colored lines are linear regression lines within species, and the gray line is the linear 
regression line that is computed on all the data points across species. No matter within a 
species or across species, the linear relationship between Petal Length and Petal Width is 
suggested clearly by the plot.

Feature preprocessing

Although the data is in a form that can be imported into machine learning algorithms any time, 
you might want to preprocess the features based on the insights you gain from the exploration 
or the experience you get from previous practices. This review results in removing existing 
features or creating features. 

Feature selection

As the name implies, feature selection is the selection of features. The idea is to select a set 
of the most important features and remove the redundant features. 

One reason is that not all available features in a data set are helpful. In fact, some features 
can be harmful to a model because they introduce noises into the data and make it difficult for 
machine learning algorithms to learn meaningful patterns. 

In addition, many features can cause the so-called curse of dimensionality in some 
algorithms. This issue is particularly true for a fixed number of samples or data points. 

Note: A more strict and quantitative examination of linear relationship requires the 
evaluation of linear model and significance of coefficient.
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As the number of features increases, the number of dimensions increases. Also, the feature 
space keeps growing and the distribution of data points becomes more sparse. Sparsity 
reduces the reliability and validity of the estimate and prediction.

Frequently used feature selection methods include the following examples:

� Checking the predictability of the features individually is the simplest method. Although 
this method is fast and easy, it ignores the combination of features that can yield a larger 
predicting power than the sum of those of individual features.

� Testing all of the possible feature combinations works well for small feature set, where the 
time it takes to go through all possibilities is affordable, as shown in the following 
examples:

– Forward selection
– Backward selection

� Some machine learning algorithms can function as feature selection tools, as shown in the 
following examples:

– Lasso
– Random Forest

Feature transformation

Feature transformation, or feature engineering, refers to the methods that derive new 
features from the existing features. The combination or transformation of several features is 
likely to clarify the patterns in the data set and derive new features and therefore helps 
improve the performance of the model.

For example, combining the amount of credit card debt and the amount of payment yields a 
new payment ratio feature, which is a stronger predictor for credit card default compared to 
the original two features. If the transaction amount has a large range and most of the 
transactions involves a small amount of money, transforming the transaction amount to log 
scale can be more helpful.

Frequently used feature transformation methods include the following examples:

� Principle component analysis (PCA) is a typical technique for dimension reduction, which 
projects (or compresses) the high dimensional data into a low dimensional representation 
in which the variance of data is kept as much as possible.

� Logarithm transformation changes a highly skewed distribution to a normal distribution 
(bell curve). This transformation is a common technique to deal with extremely skewed 
variables, such as number of followers of each social media user, where most people have 
relatively fewer followers while a few users have thousands of followers. Some algorithms 
assume that the variables are normally distributed, and violating this assumption 
negatively affects the performance of a model.
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Model building

After you finalize the features, it is time to input the data into machine learning algorithms to 
train a model. A trained machine learning model consists of the following components:

� Algorithm: Defines the way that your model translates the input data

� Hyper-parameters: Specified manually before model training to further adjust the 
algorithm

� Parameters: Is learned automatically from the data

What happens in model building stage is the computation of the parameters given the 
algorithm, hyper-parameters, and the training data. 

To select the proper machine learning algorithms, you must have a basic understanding of 
common machine learning algorithms.

Two main types of machine learning algorithms are available: unsupervised learning and 
supervised learning.

Unsupervised learning

Unsupervised learning refers to learning patterns on data without outcome variable, and 
clustering is the most frequently used type of unsupervised learning. However, the 
performance of an unsupervised machine learning model can hardly be measured or 
evaluated because of the lack of ground truth. 

For example, customer segmentation is a scenario of unsupervised learning where 
subgroups are derived from the similarity or distance metric that is computed on many 
features (for example, age, gender, occupation, and annual income). In the customer 
segmentation case, no correct answer exists, and how good the segmentation depends on 
the business need.

K-means algorithm

In a K-means algorithm, “K” is the number of subgroups that is determined by data scientists 
in some way. For each subgroup, a point in the space represents the location of the centroid 
of this subgroup. The location of centroids can be initialized randomly and iterated and 
changed until the end of the algorithm. 

The K-means algorithm requires computation of distance, and in some sense is equivalent to 
similarity between each data point and each centroid. The closest centroid becomes the 
subgroup to which this customer belongs. 

In each iteration, the following process occurs:

1. The distance is computed.

2. The subgroup is assigned according to the newly computed distance for each data point.

3. The location of centroid is computed based on the result of assignment by taking the 
average of information of all data points in the corresponding subgroup.

The plot that is shown in Figure A-7 on page 166 shows the result of K-means algorithm 
applied on the Iris data set with three clusters (K = 3). In the computation of clusters, the label 
column Species is removed from the data set. The color of data points represents cluster 
assignment and the shape of data points represents species.
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Figure A-7   Result of K-means algorithm

In this scatter plot, all setosa irises are clustered into one group (green and round points) and 
versicolor and virginica are mixed (triangle points and square points are colored in both red 
and blue). Therefore, it is not a good choice to apply this clustering algorithm on a large 
unlabeled data set and assign the species name to each cluster, except when you are 
concerned about only the differentiating setosa from the other two species.

Supervised learning
Supervised learning refers to learning patterns on data with outcome variable, essentially 
capturing the relationship between a set of predictors and one outcome variable. The 
performance can also be easily evaluated by comparing the predictions to the ground truth 
(that is, the outcome variable).

In supervised learning, model performance largely relies on the size of labeled data and the 
quality of label. For example, in the field of healthcare, sufficient data might not be available to 
train a machine learning model to screen a rare disease. Also, a human expert’s judgment 
whether an x-ray image shows a certain disease is not necessarily true.

Depending on the type of outcome variable, the supervised machine learning algorithms can 
be categorized into regression (continuous outcome variable; for example, revenue, 
temperature, and weight) or classification. 

Regression is a categorical outcome variable, including binomial classification that has 
two-class categorical outcome variable, such as fraud or not, male or female. Multinomial 
classification has a multi-class categorical variable, such as more than two types of product, 
or more than two types of email label.

The supervised learning algorithms can also be categorized into one of the two modeling 
approaches: instance-based or model-based. Instance-based learning does not include a 
model and does not need training. 
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For each new unseen case, instance-based learning compares the case to all of the known 
samples, determines the most similar cases, and predicts the outcome of the unseen case by 
using the known outcome of the most similar cases. In contrast, model-based learning 
requires model training, where the model parameters are derived based on the known 
samples in some way.

Supervised algorithms to be introduced include K-nearest neighbors, decision trees, Naïve 
Bayes classifier, linear regression, logistic regression, and neural networks.

K-nearest neighbors (K-NN)
Imagine that you want to buy a puppy from a breeder. The breeder posts pictures of all the 
available puppies but does not include the price information. How can you get an estimated 
price for the puppy you like?

Intuitively, you can start to search puppies of similar breed and color from similar breeders. 
You can also consider the prices and attributes of other puppies this breeder has available. 
Combining all of these pieces of information, you can get a rough estimate of the price for the 
puppy in which you are interested. 

This example is the idea of K-nearest neighbors algorithm. K-NN predicts the class or value of 
a specific data point by picking and taking into consideration the K-nearest data points. 
Similar to the K-means algorithm, “k” is the number of nearest neighbors that are taken into 
consideration.

Assume that you set K to 3 and after the computation, the three observations that are listed in 
Table A-1 are ranked as the three most similar observations to the puppy you want to buy 
from the breeder. The final prediction of the price is the average of the prices in these three 
observations, which is $1,000.

Table A-1   Three observations ranked

As one of the instance-based learning algorithm, no explicit model parameters are available 
to learn from the known data in k-NN algorithm. Instead, each unseen test case must be 
compared with all of the known data to get the ranks. Then, the computation cost is exploded 
as the number of test cases and the number of known cases increases. 

Note: For model-based learning algorithms, loss function is used to evaluate the 
performance of a set of parameters and provide the guide to improve the model by deriving 
a better set of parameters to derive the model parameters. Loss function defines the 
difference between the actual outcome and the predicted outcome, and the model 
parameters are derived by minimizing such loss.

Rank Breeder Puppy gender Puppy color Price

1 A Male Fawn $1,000

2 A Male Black and white $1,200

3 B Male Fawn $800
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Decision tree 
A decision tree (see Figure A-8) can be considered as an automatically generated rule-based 
algorithm that is composed of a sequence of rules in a tree structure. The sequential rules 
mimic the process of human decision-making. 

Figure A-8   Decision tree

To build a decision tree, the algorithm starts from a pool of data points, recursively picking the 
feature and the split point on the feature that minimizes the loss or maximizes the gain. In 
some sense, this process is close to humans picking the most influential factor and forming 
the rule. Every split is a rule, such as “blood pressure > 16 kPa”, “humidity < 30%”, or “gender 
== female”. 

In each step (splitting and growing branches), the decision tree essentially generates a rule to 
split the data points from a larger group into two smaller subgroups, where a data point in one 
group is more “similar” to members of its group than members of the other groups. 

Given a new test case, the decision tree finds the most similar small group for it following the 
rules. The known data points in this final small space can be used to determine the outcome 
of the test case, which is similar to how K-NN algorithm determines the final prediction.

Decision trees can be used for classification and regression tasks. Classification trees and 
regression trees work in this way. The difference is how to find the best split point when 
building the tree and how to determine the outcome of the test case based on the final small 
group of known data points.

Classification trees usually minimize Gini impurity (measures the heterogeneity in a group of 
data points in terms of outcome label) or maximize information gain (measures the decrease 
of heterogeneity where the heterogeneity computation is different from Gini impurity) to find 
the best split point.

Regression trees use metrics, such as the sum of squares (measures how different the 
continuous outcome values are in a group of data points). Different metric certainly yields 
slightly different rules.

Regarding the prediction, most of the outcome labels in the final small group are the predicted 
label of the unseen test case in classification trees. In regression trees, the predicted value 
can be the average or median of outcome value of all data points in the final small group.

Despite the interpretability, single decision trees suffer from problems, such as overfitting (the 
sequence of rules performs well on the known data but can hardly be generalized) and 
instability (changing a small proportion of data can result in a totally different tree). 
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This technique asks the question: If a single decision tree is not satisfying, can we improve 
the performance by using more trees? Classical decision trees are deterministic, which 
means that given the same setting, the decision tree that is grown from the same data set 
always is the same no matter how many trials you make. 

To improve the model performance by adding decision trees, the first challenge is to build a 
different tree each time. Two common approaches that are used are bootstrap aggregating 
(also known as bagging) and boosting.

� Random Forest (bagging example)

Whenever the tree is built, random forest algorithm randomly samples the data points to 
be used from the known data to generate different decision trees. Some “lucky” data 
points might be included multiple times, while some “unlucky” data points might be 
excluded (that is, bootstrap). 

In addition, only a random proportion of features is used to build the tree. In this way, 
slightly different trees are built, and the predictions that are returned by all of the trees are 
equally considered to be aggregated for the final prediction (that is, of the same weight). 

For classification tasks, the output of each decision tree in a random forest is a label and 
the final predicted label is the majority label. For regression tasks, the output of each 
decision tree is a numeric value, and the final prediction can be the average or median of 
all these values. 

As each tree is built independently, random forest algorithm can be easily parallelized to 
reduce model training time. 

� Gradient Boosted Decision Trees (GBDT) (boosting example)

The classic boosting method builds decision trees on a different data set each time by 
changing the weight on data points. In classification tasks, more weight is placed on 
incorrectly predicted cases. In regression tasks, the change of weight depends on how far 
away the predicted value deviates from the actual values. The new data set that is used to 
build the next decision tree is the original data set times the weight that is calculated 
based on the prediction. 

Gradient boosting takes a slightly different approach by using the negative gradients of the 
loss, which usually are residuals in regression tasks as the new data set to build the next 
decision tree. It allows the output of each new decision tree to adjust the predictions of the 
previous trees, which leads to a better model performance.

For example, if you want to predict the age of users (a continuous outcome variable), build 
the first tree on all the data, the way a single decision tree is built. Then, build the other 
trees on the residual of the actual value and the overall predicted value. 

If the first tree predicts the age of a user to be 60 but the actual age is 40, the residual -20 
instead of the actual age 40 is used in the second data set to build the second tree. Then, 
if the second tree gives a prediction of -10, the overall prediction of their age is 60 + (-10) 
which is 50. The residual of the actual age 40 and this overall prediction 50, which is -10, 
replaces -20 in the third data set to build the third tree.

Compared to random forest, the new data set for each tree in GBDT depends on the 
prediction of all the previous trees, which means the data sets must be generated 
sequentially. The result is much longer model training time.

Note: Although decision trees can theoretically handle categorical variables by generating 
rules, such as “weather == sunny”, this kind of rule is not implemented in many popular 
decision tree libraries, such as scikit-learn in python and randomForest in R. When these 
libraries are used to build the decision trees, categorical predictors still must be 
transformed into numeric format.
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Naïve Bayes classifier
Naïve Bayes classifier is a simple but powerful machine learning algorithm, which is based on 
Bayes’ theorem. Bayes’ theorem explains that given the probability of event A happens (P(A), 
the prior) and the probability of event B happens (P(B), the evidence), how to convert the 
probability of event B happening given that event A happened (P(B|A), the likelihood) to the 
probability of event A happening given that event B happened (P(A|B), the posterior).

Consider the medical test of a disease as an example. Suppose that the test has 99% 
sensitivity (99% of real patients will be diagnosed as positive) and 99% specificity (99% of 
non-patients will be diagnosed as negative). A large-scale national research effort finds that 
0.1% of the population might have the disease. When your doctor tells you that your test 
result is positive, what is the probability that you have the disease? You can use the Naïve 
Bayes classifier to find the answer as shown in the next example.

Given the following evidence:

P(test is positive | have disease) = 99%
P(test is negative | do not have disease) = 99%
P(have disease) = 0.1%

The following formulas and calculations are used:

P(test is positive) = P(test is positive | have disease) * P(have disease) + 
P(test is positive | do not have disease) * P(do not have disease) = 99% * 0.1% 
+ (1 - 99%) * (1 - 0.1%) = 1.094%
P(have disease | test is positive) = P(test is positive | have disease) * 
P(have disease) / P(test is positive) = 99% * 0.1% / 1.094% = 9.05%

Similar logic can be applied to other scenarios, such as spam email classification. Users 
report some emails as spam, from where the conditional probability of a word showing up in 
the email given the email is spam can be computed (P(word | is spam)). For a new email, the 
naïve Bayes classifier computes the probability of this email being spam based on the words 
it contains (P(is spam | word)).

The training time for Naïve Bayes classifiers is relatively short compared to other machine 
learning algorithms. A simple Naïve Bayes model sometimes outperforms more complicated 
machine learning models.

Linear and logistic regression
Modeling the outcome variable as a function of linear combination of predictors is a common 
way to depict the relationship between outcome and predictors. It is easy to understand and 
interpret. Linear regression and logistic regression are two types of popular linear models. In 
these linear models, each predictor has a separate and additive effect. 

Assume that you want to predict the height of a group of children. You collect data about 
weight and age, and then build a linear regression model with the formula “Height = Weight + 
Age + intercept.” The model parameters (coefficient of weight, coefficient of age, and 
intercept) must be derived that can minimize the loss or the difference between predicted 
height and actual height. After the model is built, you can easily tell how weight and age 
influence height.

Linear regression does not work properly when the outcome variable is categorical. One of 
the reasons is that the range of prediction in a linear regression model, or so-called linear 
probability model in this case, on binary outcome exceeds the range that you want. In this 
situation, you can turn to logistic regression.
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Although logistic regression has regression in its name, it can handle a binary outcome 
variable and is considered more as a classification algorithm. Logistic regression can be 
understood as a linear regression with a non-linear sigmoid transformation, which maps the 
outcome of linear regression to a range 0 - 1. Therefore, the predicted value of logistic 
regression always falls in the range 0 - 1.

The chart that is shown in Figure A-9 visualizes linear regression (blue line) and logistic 
regression (red curve) on the Iris data set. Sepal length is used as the only predictor to predict 
two species (setona and versicolor). It is clear that, according to the linear regression model 
in this plot, any iris with sepal length over 6.5 has a probability greater than 1 to be labeled as 
one species, while any iris with sepal length lower than 4.5 has a negative probability to be 
labeled as one species. Compared to the linear regression model, the logistic regression 
model always gives a meaningful prediction 0 - 1.

Figure A-9   Feed forward neural network example

For multi-class prediction problems, multiple logistic regression models can be used. For 
example, if the outcome variable is blood type with four unique values (A, B, AB, and O), four 
logistic regression models can be built with outcome variable A or Not A, B or Not B, AB or 
Not AB, and O or Not O, respectively, and combine the predictions to generate the final 
prediction.

Another slightly different situation is ordinal multi-class prediction where the outcome variable 
is categorical and ordinal. Take egg quality with Grade A - C as an example. Assume that 
Grade A is better than Grade B and Grade B is better than Grade C, and the relationship 
between the predictors and egg quality meets the assumptions of ordinal logistic regression. 
In this case, the use of ordinal logistic regression might be a better choice than building 
multiple logistic regression models. 
Appendix A. Machine learning basics 171



Ordinal logistic regression takes the ordinal relationship within the outcome variable into 
consideration. It also captures the relationship between predictors and outcome variable in 
one model, which is much simpler than building multiple logistic regression models.

Neural networks

Neural networks are a layer-by-layer linear combination of variables with usually non-linear 
activation functions that are applied on each layer (that is, each linear combination). In 
practice, neural networks boost the performance of machine learning in many tasks to an 
extent that surprises and surpasses humans. 

Neural networks require a huge amount of data to learn from and the training takes 
substantially longer time than most of the traditional machine learning algorithms. The 
massively growing data and the rapidly increasing computational capabilities bring neural 
networks to life.

Neural networks feature the following important characteristics:

� The layer-by-layer or hierarchical structure in which each layer contains many hidden units 
allows the model to learn feature combinations automatically in a bottom-up way. For 
example, the lower layers in a convolutional neural network (CNN) that is trained on animal 
images for animal classification tasks can contain detectors of lines and simple curves in 
certain positions. The higher layers are the combination of these simple detectors to 
identify unique and distinguishable patterns like the beak of birds. These patterns are 
useful in differentiating birds from cats or dogs.

� Non-linear activation functions that are applied on a linear combination of features make it 
theoretically possible for neural networks to approximate almost any non-linear 
relationship. Although linear models, such as linear regression and logistic regression, 
sometimes work well, the relationship between the predictors and the outcome variable in 
real world can rarely be expressed by a simple linear combination of variables, Most of the 
relationships are non-linear. 

Although human experts must spend a large amount of time figuring out the correct 
non-linear formula to depict the relationship appropriately, neural networks might achieve 
similar or even better performance by automatically learning from the training data.

Note: The meaningful range of prediction is one of the reasons why logistic regression is a 
better binary classifier than linear regression. Other reasons involve mathematical proofs 
and statistical considerations that support the superiority of logistic regression over linear 
regression in binary classification tasks.
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The basic types of neural networks that are universally popular include feed forward neural 
networks (or fully connected neural networks), convolutional neural networks (CNN), and 
recurrent neural networks (RNN). How a feed forward neural network works is shown in 
Figure A-10.

Figure A-10   Feed forward neural network example

The data in the feed forward neural network is imported into the input layer, and the output of 
each node in the input layer flows into every node in the first hidden layer. After 
transformation, the output of each node in the first hidden layer flows into every node in the 
second hidden layer. 

In the end, the four outputs from the second hidden layer are gathered in the final two nodes 
in the output layer. You might notice that in a feed forward neural network, the output of each 
node flows into all the nodes in the next layer.

Cross validation for hyper-parameter optimization

After you decide on the machine learning algorithms, hyper-parameters also must be 
determined. Hyper-parameters refer to the parameters that are assigned by the data 
scientists to define the model at a high level, such as the number of layers in a neural 
network, which are different from the parameters the model learned automatically from the 
training data. In the case of most of the machine learning algorithms, hyper-parameters can 
influence the model performance significantly (Figure A-11 on page 174).
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Figure A-11   Cross validation for hyper-parameter optimization

To optimize hyper-parameters, one of the frequently used techniques is the train/test split with 
k-fold cross-validation method (“k” is the number of folds). The process includes the following 
steps:

1. Split the entire data set into a training set and test set; for example, split 60% of the data 
into the training set and the remaining 40% into the test set that is held back and kept 
separate during the model training phase.

2. For several sets of hyper-parameters, cross-validation is performed by using only the 
training data set:

a. Training data is further split into k parts. In 5-fold cross-validation, the training data set 
is split into five chunks.

b. The model is trained and evaluated k times, each time by using one unique part as a 
validation set and the remaining four parts as training data set to build the model. In 
5-fold cross-validation, the model is trained and evaluated five times. It is built by using 
different combination of data parts.

c. Average of the metrics across k times evaluation is calculated to determine the final 
evaluation of the model under a particular model setting (a specific machine learning 
algorithm and a specific set of hyper-parameters). Other metrics, such as the standard 
deviation of loss, can also be derived to measure the stability of the model 
performance.

3. The best set of hyper-parameters is used (the criteria depend on the task and expectation) 
to train the final model on all of the data for cross validation, which is the full data set 
excluding the test set.

4. The model is evaluated by using the held-out test set.

Cross-validation is a method to evaluate the model performance more precisely by measuring 
its performance multiple times. Because it evaluates the model performance on the validation 
data set that is not included in data based on which the model is trained (within the 
cross-validation step), cross-validation assesses the generalization capability of 
hyper-parameters.
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Model evaluation

After a trained machine learning model is available, evaluation is needed to understand how 
well or how worse the model’s future predictions might be. 

Loss function measures the difference between the prediction and the actual outcome value, 
which evaluates the performance of a machine learning model. In the training process, a best 
set of parameters is derived to minimize the loss and thus maximize the performance of the 
model.

Loss functions that are used in regression tasks are different from those used in classification 
tasks. For the numeric outcome variable, the difference between the prediction and the actual 
value quantifies the extent to which the prediction is close to truth. For example, when 
predicting temperature, a 1-degree deviation from the truth is better than 10-degree deviation. 
However, the same method cannot be applied to the categorical outcome variable.

In addition to loss, other methods are available to evaluate the model performance.

Regression

In regression tasks, mean squared error (MSE) is one of the most commonly used loss 
functions. It is the average of squared error, where the squared error is calculated as the 
square of the difference between the predicted outcome value and the actual outcome value. 

Mean Absolute Error (MAE) is another popular loss function in regression tasks. It is 
calculated as the average of absolute difference between the predicted outcome value and 
the actual outcome value.

For linear regression, R-squared indicates the range of variance (0% - 100%, the higher the 
better) in the data can be explained by the model, which is calculated as the explained 
variance versus the total variance.

Classification

In classification tasks, the basic loss function is 0-1 loss, which assigns 1 to a misclassified 
case and 0 to a correctly classified case. A 0-1 loss is also used to compute the 
misclassification rate, which is the number of misclassified cases versus the number of all 
cases.

Because all of the classification algorithms produce a predicted probability of the test case 
being in a class, a more careful evaluation can be made by taking the probabilities into 
consideration. For example, in binary classification, a probability more deviated from 0.5 
(which is the default threshold to differentiate predicted label) implies a more “confident” 
classification result. 

Given two binary classification models with 0% misclassification rate, the model that is giving 
predicted probabilities, such as 90% and 10%, is preferred over the other model that is giving 
predicted probabilities, such as 40% and 60%. Loss functions, such as hinge loss and 
exponential loss, assign a larger value to a more deviated prediction.
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Consider the following attributes related to classification models:

� Confusion matrix

Confusion matrix is a popular and useful evaluation of a binary classification model where 
the outcome variable has only two unique labels. All situations where a prediction can be 
identified are listed in Table A-2.

Table A-2   Identifiable predictions

Consider the following points:

– False Positive (FP) refers to the test cases that are negative but predicted as positive.

– False Negative (FN) refers to the test cases that are positive but predicted as negative.

– True Positive (TP) refers to the test cases that are positive and correctly predicted as 
positive. the True Positive Rate (TPR) is the ratio of number of true positive cases (TP) 
versus the number of all actual positive cases (TP + FN).

– True Negative (TN) refers to the test cases that are negative and correctly predicted as 
negative. The True Negative Rate (TNR) is the ratio of number of true negative cases 
versus the number of all actual negative cases (TN + FP).

Accuracy and precision metrics can be derived based on the numbers in a confusion 
matrix. Consider the following points:

– Accuracy is the number of all correctly predicted cases (TP + TN) divided by the 
number of all test cases.

– Precision is the ratio of number of true positive cases (TP) versus the number of all 
predicted positive cases (TP + FP).

� ROC curve and PR curve

As the classification model returns probabilities, the threshold can be moved to generate 
different classification results. For example, in a model that is used to screen a dangerous 
disease, predicting an actual healthy person as patient (false positive) might result in one 
more further screening test. Predicting an actual patient as a healthy person (false 
negative) can cost the person their life. 

In this example, the threshold can be moved lower from 0.5 (by default) to 0.3 so that 
participants who get more than 30% predicted chance to have the disease are reported by 
the model as patient.

Such tradeoff can be shown in receiver operating characteristic (ROC) curve and 
precision-recall (PR) curve, which is obtained by using the metrics that are computed in a 
confusion matrix. You can have multiple ROC curves on a plot and each curve on the plot 
represents a model, which consists of points that are computed under different thresholds. 

In an ROC curve plot, the x-axis is FPR and the y-axis is TPR. The ROC curve describes 
the change in TPR as FPR increases. The TPR increases monotonically because a higher 
false positive rate implies a lower threshold where more actual positive cases can be 
predicted as positive. 

Predicted negative Predicted positive

Actual negative True negative False positive

Actual positive False negative True positive
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The plot that is shown in Figure A-12 is an example of a ROC curve.

Figure A-12   ROC curve example

An ideal model includes a steeply increasing ROC curve at the beginning, which means 
that the model can achieve a high TPR with a low FPR. On the ROC curve, random guess 
is the diagonal line from the origin of the axes at the lower left to the point at the upper 
right. Any model with a ROC curve below or similar to the diagonal line is no better than 
the random guesses.

In a PR curve plot, the x-axis is Recall (TPR) and the y-axis is Precision. Typically, as 
Recall increases, Precision decreases. PR curve is sensitive to class imbalance (a small 
number of positive cases versus many negative cases) and is more useful than ROC 
curve in such situation. 
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The plot that is shown in Figure A-13 is an example of a PR curve.

Figure A-13   PR curve example

An ideal model has steeply decreasing PR curve at the end, which means that the model 
can keep a high precision score regardless of the increase in recall. On a PR curve, 
random guess is a horizontal line whose position depends on the ratio of positive cases 
versus negative cases. Any model with a PR curve below or similar to the horizontal line is 
no better than random guesses.

In addition to visualizing the ROC and PR curves, the area under curve (AUC) can be 
used to evaluate the performance of a model and compared quantitatively. 

The confusion matrix, ROC curve, and PR curve are all designed to evaluate performance 
of binary classification models and it is difficult to apply them on multi-class classification 
models. 

Consider a 3-class classification model as an example. If a confusion matrix is used, the 
predictions and actual values form a 3x3 table where metrics-like false positive rate (FPR) 
cannot be computed by using the same definition. Correspondingly, the ROC curve and 
the PR curve cannot be made. These concepts can be extended to multi-class 
classification with some change in definition and interpretation.
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Appendix B. R and RStudio

In this appendix, we introduce R and RStudio, highlight the benefits of using R for data 
science, and demonstrate the readability of code in R.

This appendix includes the following topics:

� “Overview” on page 180
� “Why R?” on page 181
� “Readability of R” on page 181

B

© Copyright IBM Corp. 2018. All rights reserved. 179



Overview

R is an open-source software environment that was developed for statistical computing and 
became popular among statisticians. It is also one of the most widely used languages for data 
analytics. 

RStudio is an open-source integrated, development environment (IDE) for R. The RStudio 
client user interface (UI) is similar to that of MATLAB, as shown in Figure B-1.

Figure B-1   RStudio UI default configuration

The default configuration of the RStudio UI includes the following components:

� The Script pane (upper left side) shows your scripts in R. You can select to run individual 
lines or the entire script.

� The Interactive console pane (lower left side) shows the code that you ran and the output 
that is generated by that code. It also allows you to enter and run code directly without a 
script. The code that is run is displayed in blue and the output is displayed in black.

� The Workspace pane (upper right side) includes the following tabs by default:

– Environment tab: All variables are listed with related information.
– History tab: Records all of the codes that are run.

� The pane in the lower right side features several tabs, including:

– Plots: Displays plot information.
– Help: Shows the help information for a specific package or function.
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Why R?

By design, R is a language for statisticians and inherently supports concepts, such as matrix 
and data frame. Although being considered not computationally efficient in some cases (for 
example, for loop), R is a great option for data manipulation, exploration, and visualization. 

One of the many R packages available, Tidyverse1, or the so-called Hadley environment, 
consists of several frequently used packages for these purposes. This collection of R 
packages makes writing and reading R code much easier and faster. It also provides simpler 
solutions for data scientists to understand data and therefore, improve their productivity.

Tidyverse includes the following notable packages: 

� dplyr2

This package is the grammar of efficient and clean data manipulation that uses a set of 
verbs for most common operations that can be piped together. This package also works 
seamlessly with remote databases, including the following examples3:

– MySQL and Maria DB
– Postgres and Redshift
– SQLite
– Commercial databases that support ODBC (an open database connectivity protocol)
– Google’s BigQuery

� ggplot24

This package is a plotting system for R that implements a graphic scheme that is named 
Grammar of Graphics, where graphs are built by using semantic components in a 
layer-by-layer manner.

Readability of R

The code in R can be descriptive, and easy to write and read. The examples in this section 
are snippets of R code that demonstrate the readability of ggplot2 and dplyr packages.

Loading a built-in data set
The built-in airquality data set in R contains the daily air quality metrics in New York from May 
1973 to September 1973. Metrics that are included in this data set are Ozone in parts per 
billion, solar radiation in Langleys, average wind speed in miles per hour, and maximum daily 
temperature in degrees Fahrenheit. You can load the data frame into the current environment 
by running the following code in R:

data('airquality')

Visualizing data quickly 
To simplify the problem, we review the relationship between wind speed and Ozone. You 
might ask the following questions: 

� How do the data points distribute in the space? 
� Do the data points that are collected in a different month have different patterns?

1  For more information, see https://www.tidyverse.org/.
2  For more information, see http://dplyr.tidyverse.org/.
3  For more information, see http://db.rstudio.com/dplyr/.
4  For more information, see http://ggplot2.tidyverse.org/.
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You can use ggplot2 to quickly plot the data. By running the following code, you can set the 
x-axis to wind speed and the y-axis to Ozone, plot a LOESS curve to show the local direction 
of change among the data points, and split the plot by month:

airquality %>%
ggplot(aes(x = Wind, y = Ozone)) +
geom_point() +
geom_smooth(method = 'loess', se = False) +
facet.grid(.~Month)

The code generates the plot that is shown in Figure B-2.

Figure B-2   Data plot

The plot shows that in July and August, the relationship between wind speed and Ozone is 
similar. It also shows that the pattern in May and September is similar to each other. The 
curve in June seems to be different from the curve in the other months, which might be 
caused by the missing values.

Exploring the outcome variable
To see how the Ozone varies by month, you might want to use several customized metrics. In 
this example, the mean of values, range of values, number of values, and number of unique 
values are included in the following code:

Airquality %>%
group_by(Month) %>%
summarize(mean.value = mean(Ozone),

range.value = max(Ozone) - min(Ozone),
num.value = length(Ozone),
num.unique.value = length(unique(Ozone))) %>%

ungroup()

Running the code generates the summary table that is shown in Figure B-3.

Figure B-3   Summary table
182 Turning Data into Insight with IBM Machine Learning for z/OS



As anticipated, Ozone in June includes many missing values (nine valid numbers compared 
to over 20 in other months). Insufficient samples in June leads to an unreliable estimate. In 
addition, the air quality in terms of Ozone is relatively low in July and August. The average 
value of Ozone in these months is almost double the average in the other months.
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