
 

ibm.com/redbooks

Patterns: Extended 
Enterprise 
SOA and Web Services

Martin Keen
Hong Hua Chin

Chidambaram Ganapathi
David Ghazaleh

Pål Krogdahl
Wendy Neave

Mandeep Sahni
Jacob Thorwart

Design secure business-to-business 
solutions using WebSphere

Use the Extended Enterprise 
Patterns for e-business

Learn by example with 
practical scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




Patterns: Extended Enterprise SOA and Web 
Services

January 2006

International Technical Support Organization

SG24-7135-00



© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2006)

This edition applies to WebSphere Application Server V6, WebSphere Business Integration 
Server Foundation V6, and WebSphere Partner Gateway V6.

Note: Before using this information and the product it supports, read the information in 
“Notices” on page xi.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Part 1.  Patterns for e-business and Extended Enterprise . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1.  Welcome to this redbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1  An introduction to this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2  Patterns for e-business SOA series of redbooks  . . . . . . . . . . . . . . . . . . . . 4
1.3  How to read this redbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2.  Introduction to the Patterns for e-business . . . . . . . . . . . . . . . 11
2.1  The Patterns for e-business layered asset model . . . . . . . . . . . . . . . . . . . 12
2.2  How to use the Patterns for e-business  . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1  Selecting a Business, Integration, Composite pattern, 
or a Custom design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2  Selecting Application patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3  Review Runtime patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4  Reviewing Product mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5  Reviewing guidelines and related links . . . . . . . . . . . . . . . . . . . . . . . 24

2.3  Patterns for e-business naming conventions  . . . . . . . . . . . . . . . . . . . . . . 25
2.4  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3.  Beyond the enterprise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1  Overview of Extended Enterprise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2  On Demand Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1  Key business attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2  Key technology attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3  Key requirements for integration flexibility  . . . . . . . . . . . . . . . . . . . . 35
3.2.4  The on demand Operating Environment . . . . . . . . . . . . . . . . . . . . . . 35

3.3  Approaches for delivering the Extended Enterprise  . . . . . . . . . . . . . . . . . 40
3.3.1  SOA and Web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2  Traditional approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3  Ensuring quality of service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
© Copyright IBM Corp. 2006. All rights reserved. iii



Chapter 4.  Extended Enterprise pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1  Using the Extended Enterprise business pattern  . . . . . . . . . . . . . . . . . . . 64
4.2  General guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1  Business and IT drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2  Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3  Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4  Employing the pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.5  What is next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3  Extended Enterprise application patterns . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1  Exposed Direct Connection application pattern  . . . . . . . . . . . . . . . . 71
4.3.2  Exposed Direct Connection: Message Connection variation  . . . . . . 74
4.3.3  Exposed Direct Connection: Call Connection variation. . . . . . . . . . . 75
4.3.4  Exposed Broker application pattern  . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.5  Exposed Broker: Router variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.6  Exposed Serial Process application pattern . . . . . . . . . . . . . . . . . . . 80
4.3.7  Exposed Serial Process: Workflow variation. . . . . . . . . . . . . . . . . . . 83

Chapter 5.  Product descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1  Runtime product descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1  IBM WebSphere Application Server V6  . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2  IBM DB2 Universal Database Enterprise Server Edition V8.2  . . . . . 91
5.1.3  IBM Cloudscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.4  IBM WebSphere MQ V5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.5  IBM WebSphere Business Integration Message Broker V5.0. . . . . . 94
5.1.6  IBM WebSphere Business Integration Server Foundation V5.1 . . . . 94
5.1.7  IBM WebSphere Partner Gateway V6.0 . . . . . . . . . . . . . . . . . . . . . . 95

5.2  Development product descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1  IBM Rational Application Developer V6  . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2  IBM WebSphere Studio Application Developer 

Integration Edition V5.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 6.  Extended Enterprise runtime patterns . . . . . . . . . . . . . . . . . . . 99
6.1  Extended Enterprise runtime patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1  Generic and SOA profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2  Node types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1  App server/services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2  Network infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.3  Protocol firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.4  Domain firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.5  Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.6  Exposed Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.7  Exposed ESB Gateway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.8  ESB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
iv Patterns: Extended Enterprise SOA and Web Services



6.2.9  Rules Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.10  Directory and Security Services  . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.11  Exposed Broker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.12  Exposed Router  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.13  Exposed Process Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.14  Business Service Choreography. . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.15  Staff Worklist Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3  Exposed Direct Connection runtime pattern . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4  Exposed Broker runtime pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5  Exposed Router variation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6  Exposed Serial Process runtime pattern . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7  Exposed Serial Workflow variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.7.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.7.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 7.  Product mappings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1  Product mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2  Exposed Direct Connection product mapping . . . . . . . . . . . . . . . . . . . . . 126

7.2.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3  Exposed Broker product mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.1  Exposed Broker: Generic profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.2  Exposed Router variation: SOA profile . . . . . . . . . . . . . . . . . . . . . . 130

7.4  Exposed Serial Process product mapping  . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.1  Generic profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.2  SOA profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Part 2.  Business scenario and guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 8.  Business scenario used in this book . . . . . . . . . . . . . . . . . . . 137
8.1  WS-I sample business scenario  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2  ITSO Good sample business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.1  Business context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.2  Applications in the supply chain management  . . . . . . . . . . . . . . . . 139
8.2.3  Example of using the ITSO Good sample application. . . . . . . . . . . 140
 Contents v



Chapter 9.  Technology options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.1  Web services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.1.1  XSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.1.2  WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.1.3  SOAP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.1.4  UDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.1.5  WS-BPEL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.1.6  WS-Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2  J2EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.2.1  JMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2.2  Web services for J2EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2.3  JAX-RPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.3  Transport protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3.1  HTTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3.2  HTTP/S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Part 3.  Scenario implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 10.  Exposed Direct Connection runtime pattern: 
generic profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2  Design guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.2.1  Analyze business requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.2.2  Selecting a pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.2.3  Analyze design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.2.4  Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.3  Development guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.3.1  Exposed Direct Connection interaction: Generic profile . . . . . . . . 177
10.3.2  Securing applications using WS-Security . . . . . . . . . . . . . . . . . . . 179
10.3.3  Generating sample key stores  . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.3.4  Configuring WS-Security integrity . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.3.5  Configuring WS-Security confidentiality  . . . . . . . . . . . . . . . . . . . . 204
10.3.6  Exporting EAR files from Rational Application Developer . . . . . . . 214

10.4  Runtime guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.4.1  Solution topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.4.2  Configuring WebSphere Application Server profiles . . . . . . . . . . . 217
10.4.3  Hosting the WSDL files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.4.4  Installing the applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.4.5  Securing the application server using Global Security  . . . . . . . . . 223
10.4.6  Configuring an HTTP server for SSL pass-through  . . . . . . . . . . . 224
10.4.7  Changing the Web service client bindings configuration. . . . . . . . 227
10.4.8  Testing the scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.4.9  Viewing SOAP messages using the TCP/IP Monitor  . . . . . . . . . . 233
vi Patterns: Extended Enterprise SOA and Web Services



Chapter 11.  Exposed Direct Connection runtime pattern: 
SOA profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

11.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
11.2  Design guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

11.2.1  Analyze IT infrastructure requirements . . . . . . . . . . . . . . . . . . . . . 239
11.2.2  Selecting a pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.2.3  Analyze design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
11.2.4  Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

11.3  Development guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
11.3.1  Exposed Direct Connection interaction: SOA profile. . . . . . . . . . . 251

11.4  Runtime guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.4.1  Solution topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.4.2  Creating the basic infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 254
11.4.3  Create and configure a service integration bus. . . . . . . . . . . . . . . 257
11.4.4  Create and configure the Web service gateway . . . . . . . . . . . . . . 281
11.4.5  Connecting the ESB and the Exposed ESB Gateway  . . . . . . . . . 293
11.4.6  Adding WS-Security to the Web service gateway. . . . . . . . . . . . . 304

Chapter 12.  Exposed Broker runtime pattern: generic profile  . . . . . . . . 339
12.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
12.2  Design guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

12.2.1  Analyze business requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . 341
12.2.2  Selecting a pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
12.2.3  Analyze design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
12.2.4  Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

12.3  Development guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
12.3.1  Scenario implementation: Exposed Broker runtime pattern . . . . . 347
12.3.2  Mediations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
12.3.3  Developing a mediation handler class  . . . . . . . . . . . . . . . . . . . . . 352
12.3.4  Assigning and exporting the mediation handlers  . . . . . . . . . . . . . 364

12.4  Runtime guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
12.4.1  Solution topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
12.4.2  Creating the basic infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 367
12.4.3  Configuring the service integration bus. . . . . . . . . . . . . . . . . . . . . 368
12.4.4  Creating the gateway service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
12.4.5  Installing and defining the mediation application. . . . . . . . . . . . . . 376
12.4.6  Creating additional destinations  . . . . . . . . . . . . . . . . . . . . . . . . . . 380
12.4.7  Changing the Warehouse endpoint URL  . . . . . . . . . . . . . . . . . . . 382
12.4.8  Testing the scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
12.4.9  Adding WS-Security to the solution. . . . . . . . . . . . . . . . . . . . . . . . 385

Chapter 13.  Exposed Router runtime pattern: SOA profile . . . . . . . . . . . 387
13.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
 Contents vii



13.2  Design guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
13.2.1  Analyze business requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . 389
13.2.2  Selecting a pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
13.2.3  Analyze design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
13.2.4  Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

13.3  Development guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
13.3.1  Scenario implementation: Exposed Router SOA 

profile interaction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
13.4  Runtime guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

13.4.1  Solution topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
13.4.2  Creating the basic infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 398
13.4.3  Scenario implementation overview . . . . . . . . . . . . . . . . . . . . . . . . 399
13.4.4  Configuring WebSphere Partner Gateway . . . . . . . . . . . . . . . . . . 400
13.4.5  Configuring WebSphere Application Server . . . . . . . . . . . . . . . . . 414
13.4.6  Testing the WebSphere Partner Gateway configuration. . . . . . . . 416

Chapter 14.  Exposed Serial Process runtime pattern: generic profile. . 419
14.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
14.2  Design guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

14.2.1  Analyze business requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . 420
14.2.2  Selecting a pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
14.2.3  Analyze design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
14.2.4  Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

14.3  Development guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
14.3.1  Scenario implementation: Serial process interaction  . . . . . . . . . . 425
14.3.2  Creating the basic infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 427
14.3.3  Configuring WebSphere Studio. . . . . . . . . . . . . . . . . . . . . . . . . . . 429
14.3.4  Creating Manufacturer and LoggingFacility 

Web services clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
14.3.5  Create Java proxy classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
14.3.6  Create a business process using Process Choreographer. . . . . . 439
14.3.7  Create the Warehouse service . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
14.3.8  Exporting the Enterprise Application files . . . . . . . . . . . . . . . . . . . 452

14.4  Runtime guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
14.4.1  Testing with Web Services Explorer . . . . . . . . . . . . . . . . . . . . . . . 453
14.4.2  Testing the business process with ITSO Good . . . . . . . . . . . . . . . 455
14.4.3  Deploying the business process . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Chapter 15.  Exposed Serial Process runtime pattern: SOA profile  . . . . 459
15.1  Business scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
15.2  Design guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

15.2.1  Analyze the business requirement  . . . . . . . . . . . . . . . . . . . . . . . . 460
15.2.2  Selecting a pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
viii Patterns: Extended Enterprise SOA and Web Services



15.2.3  Analyze design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
15.2.4  Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

15.3  Development guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
15.3.1  Scenario implementation: Serial process interaction  . . . . . . . . . . 465
15.3.2  Creating the basic infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 466
15.3.3  Creating a Manufacturer Web service client . . . . . . . . . . . . . . . . . 468
15.3.4  Modify the Manufacturer proxy class  . . . . . . . . . . . . . . . . . . . . . . 469
15.3.5  Modify the Warehouse business process . . . . . . . . . . . . . . . . . . . 469
15.3.6  Generate deployment code and export the process . . . . . . . . . . . 471

15.4  Runtime guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
15.4.1  Configuring the ESB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
15.4.2  Configuring the Exposed ESB Gateway . . . . . . . . . . . . . . . . . . . . 473
15.4.3  Testing the business process with ITSO Good . . . . . . . . . . . . . . . 476

Part 4.  Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Appendix A.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Locating the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Using the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

System requirements for downloading the Web material . . . . . . . . . . . . . 482
How to use the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Appendix B.  Microsoft .NET Web services . . . . . . . . . . . . . . . . . . . . . . . . 483
B.1  Overview and context of .NET Web services . . . . . . . . . . . . . . . . . . . . . 484

B.1.1  How Microsoft .NET is used in the Redbook scenarios . . . . . . . . . 484
B.1.2  Microsoft .NET Web service development overview  . . . . . . . . . . . 485

B.2  Implementing a Microsoft .NET Web service . . . . . . . . . . . . . . . . . . . . . 486
B.2.1  Create a new Web service project . . . . . . . . . . . . . . . . . . . . . . . . . 487
B.2.2  Generating a C# file using a WSDL file and wsdl.exe  . . . . . . . . . . 487
B.2.3  Modifying the C# file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
B.2.4  Finalizing and deploying the Web service  . . . . . . . . . . . . . . . . . . . 491
B.2.5  Testing the .NET Web service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Implementing a test J2EE Client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
B.2.6  Creating a new Rational Application Developer project . . . . . . . . . 494
B.2.7  Importing the necessary WSDLs and XSDs . . . . . . . . . . . . . . . . . . 495
B.2.8  Deploying and testing the J2EEClient  . . . . . . . . . . . . . . . . . . . . . . 497

B.3  Enabling transport-level security with SSL . . . . . . . . . . . . . . . . . . . . . . . 500
B.3.1  Configuring the .NET Web service to require SSL . . . . . . . . . . . . . 501
B.3.2  Importing the SSL certificate into a key database  . . . . . . . . . . . . . 507

Appendix C.  CICS Transaction Server Web services. . . . . . . . . . . . . . . . 513
C.1  CICS Transaction Server V3.1 Web services support  . . . . . . . . . . . . . . 514
C.2  Creating Web services for CICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

C.2.1  CICS Web services assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
 Contents ix



C.2.2  CICS resources for Web services  . . . . . . . . . . . . . . . . . . . . . . . . . 515
C.3  Creating and hosting a ManufacturerC Web service  . . . . . . . . . . . . . . . 516

Appendix D.  WSAdmin Automation Platform . . . . . . . . . . . . . . . . . . . . . . 517
D.1  Employing WSAdmin Automation Platform  . . . . . . . . . . . . . . . . . . . . . . 518

D.1.1  Overview of WSAdmin Automation Platform  . . . . . . . . . . . . . . . . . 518
D.1.2  Downloading WSAdmin Automation Platform  . . . . . . . . . . . . . . . . 519
D.1.3  Running WSAdmin Automation Platform . . . . . . . . . . . . . . . . . . . . 520
D.1.4  WSAdmin Automation Platform examples . . . . . . . . . . . . . . . . . . . 522
D.1.5  The You Name It option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
x Patterns: Extended Enterprise SOA and Web Services



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions 
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, 
modify, and distribute these sample programs in any form without payment to IBM for the purposes of 
developing, using, marketing, or distributing application programs conforming to IBM's application 
programming interfaces. 
© Copyright IBM Corp. 2006. All rights reserved. xi



Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both:

CICS®
Cloudscape™
DB2 Connect™
DB2 Universal Database™
DB2®
developerWorks®
Distributed Relational Database 
Architecture™
Domino®

e-business on demand™
Eserver®
Eserver®
IBM®
IMS™
iSeries™
Lotus®
MQSeries®
PartnerLink®

Rational®
Redbooks (logo) ™
Redbooks™
Tivoli®
Trading Partner®
WebSphere®
xSeries®
z/OS®

The following terms are trademarks of other companies:

EJB, Java, Java Naming and Directory Interface, JDBC, JSP, JVM, J2EE, Sun, Sun Certified Programmer for 
Java, Sun Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United 
States, other countries, or both.

Microsoft, Visual C#, Visual Studio, Windows, and the Windows logo are trademarks of Microsoft 
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others. 
xii Patterns: Extended Enterprise SOA and Web Services



Preface

Service-oriented architecture (SOA) promotes the ability to communicate with 
external enterprises. But what are the issues in creating these Extended 
Enterprise communications? This IBM® Redbook addresses these issues for 
Web services implementations of SOA, using the Patterns for e-business.

The Patterns for e-business are a group of proven, reusable assets that can be 
used to increase the speed of developing and deploying e-business applications. 
This IBM Redbook focuses on building Extended Enterprise SOA solutions using 
WebSphere® Application Server V6, WebSphere Partner Gateway V6, the Web 
services gateway component of WebSphere Application Server Network 
Deployment V6, and WebSphere Business Integration Server Foundation V5.1.

Part 1 introduces the Patterns for e-business, and describes the patterns and 
product mappings within this framework for building Extended Enterprise 
solutions.

Part 2 describes the business scenario used throughout this book, and describes 
the technologies for implementing an SOA solution.

Part 3 provides a set of Extended Enterprise scenarios that include simple as 
well as more complex SOA solutions that use an Enterprise Service Bus.
© Copyright IBM Corp. 2006. All rights reserved. xiii



The team that wrote this redbook
This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization, Raleigh Center.

IBM’s SOA announcements:

In September 2005, IBM announced two products intended to be the primary 
solution for building ESBs:

� WebSphere Enterprise Service Bus V6

Delivers an ESB with Web services connectivity and data transformation.

� WebSphere Message Broker V6

Delivers an advanced ESB with universal connectivity and data 
transformation.

At the time this redbook was written, WebSphere Enterprise Service Bus was 
not generally available. In lieu of this product, the service integration bus of 
WebSphere Application Server V6 is used in the redbook scenario 
implementations to build ESB solutions.

For more information about IBM’s ESB strategy see:

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb

IBM also announced WebSphere Process Server V6, as a runtime for SOA 
business processes. This product will ultimately replace WebSphere Business 
Integration Server Foundation V5.1. WebSphere Process Server was not 
generally available at the time this redbook was written, so this redbook uses 
WebSphere Business Integration Server Foundation V5.1 for all scenarios 
requiring a business process engine.
xiv Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb


Figure 0-1   Redbook team (left to right): Martin, Chidu, Pãl, Wendy, Mr. David, Mandeep, Hong, and Jake

Martin Keen is a Senior IT Specialist at the ITSO, Raleigh Center. He writes 
extensively about WebSphere products, SOA, and Patterns for e-business. He 
also teaches IBM classes worldwide about WebSphere, SOA, and business 
process management. Before joining the ITSO, Martin worked in the EMEA 
WebSphere Lab Services team in Hursley, UK. Martin holds a bachelor’s degree 
in Computer Studies from Southampton Institute of Higher Education, in the 
United Kingdom.

Hong Hua Chin is an Advisory IT Specialist for IBM Software Group, 
ASEAN/South-Asia. He has five years of experience in J2EE™ and middleware 
technologies including WebSphere and DB2®. He holds a degree in Computer 
and Information Sciences from the National University of Singapore. He focuses 
on technical selling of WebSphere Business Integration products. He has written, 
presented and taught extensively on enterprise architecture, service-oriented 
architecture, open computing standards such as Web services, and integration 
best practices.

Chidambaram Ganapathi is an Associate IT Architect with IBM Global Services 
India. He has over seven years experience in the IT Industry architecting and 
delivering e-business solutions for airline, telecommunications and banking 
intustries. He has also worked on e-commerce applications. He specializes in 
building industry-specific frameworks that helps customers in rapid application 
development. His current areas of interest include service-oriented architecture, 
component-based architecture and autonomic computing.

David Ghazaleh is a Software Engineer with IBM in Raleigh, North Carolina, 
U.S. He has 19 years of experience in the Computer Science industry. His areas 
 Preface xv



of expertise include System Software Development, System Test Automation, 
J2EE and Relational Database Management Systems. He is a Sun™ Java™ 2 
Certified Programmer. He holds a bachelor’s degree in Computer Science from 
Catholic University of Petropolis, Brazil.

Pål Krogdahl is a Senior IT Architect and Method Exponent with the IBM Nordic 
Financial Services Sector. He has been working for IBM since 1998 in various 
areas such as software development, technical pre-sales consulting, and solution 
architecture. His areas of expertise are in distributed computing, middleware, and 
Application Services Architecture, with focus on Enterprise Application 
Integration (EAI) and SOA.

Wendy Neave is a Certified Senior IT Specialist in IBM Global Services in 
Australia. She has 16 years of experience in application design and 
development. She holds a Bachelor of Education (Environmental Science) and 
an Associate Diploma in Computing. She is also a Sun Certified Programmer for 
Java™ 2. Her areas of expertise include object-oriented analysis, design and 
development, Java, and WebSphere. Wendy has previously contributed to the 
IBM Redbooks™ Patterns: Direct Connections for Intra- and Inter-enterprise and 
BPEL4WS Business Processes with WebSphere Business Integration.

Mandeep Sahni is an IT Specialist in IBM Global Services, Australia. He has 
over 5 years of experience in IT. He holds a Masters degree in Information 
Technology from Swinburne University of Technology, Melboune. His areas of 
expertise include J2EE, WebSphere, Web Services, WebSphere Business 
Integration Server Foundation, WS-BPEL and other Web technologies.

Jacob Thorwart is a Co-op IT Specialist at the IBM ITSO Center in Raleigh, 
North Carolina. He is currently pursuing a Bachelor of Science degree in 
Information Sciences and Technology at Pennsylvania State University. His 
interests include systems integration and Web applications.

Thanks to the following people for their contributions to this project:

Jonathan Adams and Paul Verschueren
Patterns for e-business leadership and architecture, IBM UK

Lee Gavin,
Edward Oguejiofor
International Technical Support Organization, Raleigh Center

Bob O’Hanlon
IBM Web Services Test Team, Hursley, UK
xvi Patterns: Extended Enterprise SOA and Web Services



Vamsi Namuduri, Mohan Annamalai, Kiran Venkatachala, Ashutosh Arora, 
Robert Perry
IBM WebSphere Partner Gateway Development

Stepan Husek
IBM Global Services, Czech Republic

Linda Robinson and Lauren Bedford-Gaines
ITSO Graphics Support

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook 
dealing with specific products or solutions, while getting hands-on experience 
with leading-edge technologies. You'll team with IBM technical professionals, 
Business Partners and/or customers. 

Your efforts will help increase product acceptance and customer satisfaction. As 
a bonus, you'll develop a network of contacts in IBM development labs, and 
increase your productivity and marketability. 

Find out more about the residency program, browse the residency index, and 
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments 
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8  Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


xviii Patterns: Extended Enterprise SOA and Web Services



Part 1 Patterns for 
e-business and 
Extended 
Enterprise

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1



2 Patterns: Extended Enterprise SOA and Web Services



Chapter 1. Welcome to this redbook

This chapter introduces this redbook to you and provides guidelines for how to 
read it. It contains the following sections:

� An introduction to this document

� Patterns for e-business SOA series of redbooks

� How to read this redbook

1

© Copyright IBM Corp. 2006. All rights reserved. 3



1.1  An introduction to this document
A warm welcome to this redbook, from the IBM Redbook team. We all assembled 
for five intense weeks in Raleigh, North Carolina, and then again remotely 
through the review process, to put together this resource. We hope you find it a 
useful read.

This document focuses on patterns for integrating multiple enterprises together 
(we call this the Extended Enterprise) using service-oriented architecture (SOA) 
and Web services. We expand this focus to include a hot topic in SOA 
architecture called the Enterprise Service Bus (ESB).

This book was designed with IT Architects, System Administrators, and 
Application Programmers in mind. Throughout this book we discuss a number of 
architectural patterns for building Extended Enterprise scenarios, highlight the 
IBM product mappings available to implement these scenarios, then provide 
step-by-step instructions on how to implement these scenarios in the given 
products.

The product mappings we use within this book represent IBM products that were 
generally available at the time of writing. In September 2005, as part of an SOA 
announcement, IBM announced several new products that can also be applied to 
these patterns. Specifically, these products are:

� WebSphere Process Server V6

This product provides Serial Process / Parallel Process / Business Service 
Choreography capabilities, and succeeds WebSphere Business Integration 
Server Foundation V5.1.

� WebSphere Enterprise Service Bus V6

This product provides ESB capabilities, delivering a more powerful alternative 
to the service integration bus of WebSphere Application Server V6 for building 
ESB solutions.

� WebSphere Message Broker V6

This product contains advanced ESB capabilities, primarily for use when 
integrating a large number of non-Web services based solutions is required.

1.2  Patterns for e-business SOA series of redbooks
The Patterns for e-business describe proven solutions to solve common business 
problems. A given business problem is mapped as a set of patterns, and the 
selection of these patterns leads to a number of proven product mappings. In this 
4 Patterns: Extended Enterprise SOA and Web Services



redbook we describe these patterns, and provide implementations for most of the 
product mappings.

The Patterns for e-business contain a number of patterns and product mappings 
for SOA solutions; from simple point-to-point solutions, to complex Extended 
Enterprise solutions using an ESB. A series of redbooks have been created to 
describe these SOA patterns and provide product mapping implementations. 
This redbook is part of this SOA series.

The following redbooks, shown in order of publication, are part of the Patterns for 
e-business SOA series:

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

This book introduces SOA concepts and the rudimentary SOA profile of the 
Patterns for e-business. Scenario chapters are provided, offering design, 
development, and runtime guidelines for building SOA implementations in 
WebSphere Application Server V5.

� Patterns: Implementing an SOA Using an Enterprise Service Bus, 
SG24-6346

This book provides a more in-depth description of SOA and Web services 
technologies and introduces the SOA concept of the ESB. It expands the 
Patterns for e-business SOA profile to provide ESB guidelines. This book also 
provides scenario chapters to show ESB implementations that are created in 
WebSphere Application Server V5 and WebSphere Business Integration 
Message Broker V5. An additional scenario chapter describes how 
WebSphere Business Integration Server Foundation V5.1 can interact with an 
ESB.

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application 
Server V6, SG24-6494

This book extends the SOA Patterns for e-business introduced in Patterns: 
Implementing an SOA Using an Enterprise Service Bus with product 
mappings for WebSphere Application Server V6.

� Patterns: Integrating Enterprise Service Buses in a Service-Oriented 
Architecture, SG24-6773

This book discusses the integration of multiple ESBs within an enterprise. 
The integration between homogeneous and heterogeneous ESBs is 
discussed with product mappings using WebSphere Application Server V6 
and WebSphere Business Integration Message Broker V5.
 Chapter 1. Welcome to this redbook 5



1.3  How to read this redbook
As much as the redbook team would love you to read every page of this book 
cover-to-cover, we anticipate this may not be the case for every reader! To help 
you locate the information you need, and to provide guidance on which chapters 
are of most interest to you, this section provides a short description of each 
chapter.

Part 1. Patterns for e-business and Extended Enterprise
This part introduces the Patterns for e-business and the issues with connecting 
to an external enterprise. It then describes the products and patterns for 
implementing Extended Enterprise solutions.

� Chapter 1. Welcome to this redbook

� Chapter 2. Introduction to the Patterns for e-business

The Patterns for e-business are a group of proven, reusable assets that can 
be used to increase the speed of developing and deploying e-business 
applications. This book uses the Patterns for e-business to indicate how to 
develop and deploy SOA solutions. This chapter provides an introduction to 
what the Patterns for e-business are at a general level.

� Chapter 3. Beyond the enterprise

Discusses the issues of connecting to business logic running in external 
enterprises, from a traditional and Web services viewpoint. This is targeted at 
readers wishing to gain a fuller understanding of the issues involved in 
communicating with an Extended Enterprise.

� Chapter 4. Extended Enterprise pattern

Describes the Extended Enterprise business pattern and Application patterns 
from the Patterns for e-business. These high level patterns help describe the 
common interactions between multiple enterprises, and the tiers required to 
implement these interactions.

� Chapter 5. Product descriptions

Describes the IBM products discussed and implemented within this redbook 
to implement Extended Enterprise scenarios.

� Chapter 6. Extended Enterprise runtime patterns

Explains the Extended Enterprise runtime patterns for the Patterns for 
e-business. Each Runtime pattern describes the logical architecture that is 
required to implement an Application pattern. Both generic and SOA Runtime 
pattern profiles are discussed.

� Chapter 7. Product mappings
6 Patterns: Extended Enterprise SOA and Web Services



Product mappings are typical and proven implementations of a Runtime 
pattern, using IBM products. This chapter highlights product mappings for 
each Extended Enterprise runtime pattern. Most of these product mappings 
are implemented in Part 3 of this redbook.

Part 2. Business scenario and guidelines
This redbook provides six Extended Enterprise scenario implementations, based 
on the product mappings from Chapter 7. Each of these scenario 
implementations uses a common business scenario case study, and a collection 
of technologies. These are introduced in this section.

� Chapter 8. Business scenario used in this book

Describes the business scenario used throughout Part 3 of this redbook. The 
business scenario is based on a sample application provided by the Web 
Services Interoperability Organization (WS-I).

� Chapter 9. Technology options

Introduces the technologies required to implement Extended Enterprise 
interactions using Web services.

Part 3. Scenario implementation
Six Extended Enterprise scenarios are implemented in this section, based on the 
Runtime patterns identified in Chapter 6 and the product mappings described in 
Chapter 7. 

Each scenario chapter is divided into three distinct parts:

� Design guidelines

Primarily intended for architects. This section describes the design 
alternatives that you should consider when designing a particular scenario.

� Development guidelines

Primarily intended for application developers. This section describes the 
application development changes that are required when implementing a 
particular scenario.

� Runtime guidelines

Primarily intended for system administrators. This section describes how to 
deploy a particular scenario, and the runtime alternatives that are available.

This redbook contains the following scenario chapters:

� Chapter 10. Exposed Direct Connection runtime pattern: generic profile

Describes how to design and build a basic Extended Enterprise solution using 
point-to-point connections between Web services, including the use of 
 Chapter 1. Welcome to this redbook 7



HTTP/S and WS-Security. Rational® Application Developer and WebSphere 
Application Server are used. As with all the scenarios, this scenario 
communicates with Web services running in WebSphere Application Server, 
Microsoft® .NET, and CICS® Transaction Server.

� Chapter 11. Exposed Direct Connection runtime pattern: SOA profile

Each SOA profile chapter describes how to implement an Extended 
Enterprise solution in an environment where an ESB is used. This chapter 
describes how to implement point-to-point Web service connections, using an 
ESB implemented in WebSphere Application Server to manage WS-Security.

� Chapter 12. Exposed Broker runtime pattern: generic profile

This chapter describes how to build a WebSphere Application Server 
mediation to an Extended Enterprise solution.

� Chapter 13. Exposed Router runtime pattern: SOA profile

Describes how to configure WebSphere Partner Gateway to communicate 
with the Extended Enterprise.

� Chapter 14. Exposed Serial Process runtime pattern: generic profile

Examines how to combine Extended Enterprise interactions with Web 
services based business processes. It uses WebSphere Business Integration 
Server Foundation as the business process engine.

� Chapter 15. Exposed Serial Process runtime pattern: SOA profile

Describes how WebSphere Business Integration Server Foundation can be 
combined with an ESB for Extended Enterprise access.

Appendixes
Each scenario implementation chapter in Part 3 describes how to invoke Web 
services located in an Extended Enterprise. The Web service implementations in 
the Extended Enterprise run in WebSphere Application Server, Microsoft .NET, 
and CICS Transaction Server.

� Appendix A. Additional material

� Appendix B. Microsoft .NET Web services

Provides step-by-step instructions for implementing Web services in Microsoft 
.NET, and how to secure them. These Web services can be used in the 
scenario implementations in Part 3 of this redbook.

� Appendix C. CICS Transaction Server Web services

Provides a high-level overview of the steps required to build and deploy a 
Web service in CICS Transaction Server that can be used by the scenario 
implementations in Part 3 of this redbook.
8 Patterns: Extended Enterprise SOA and Web Services



� Appendix D. WSAdmin Automation Platform

Introduces a useful tool for configuring WebSphere Application Server that we 
made use of in the development of this redbook.
 Chapter 1. Welcome to this redbook 9



10 Patterns: Extended Enterprise SOA and Web Services



Chapter 2. Introduction to the Patterns 
for e-business

The role of the IT architect is to evaluate business problems and build solutions 
to solve them. The architect begins by gathering input on the problem, 
developing an outline for the desired solution, and considering any special 
requirements that need to be factored into that solution. The architect then takes 
this input and designs the solution, which can include one or more computer 
applications that address the business problems by supplying the necessary 
business functions.

To improve the process over time, we need to capture and reuse the experience 
of the IT architects in such a way that future engagements can be made simpler 
and faster. We do this by capturing knowledge gained from each engagement 
and using it to build a repository of assets. IT architects can then build future 
solutions based on these proven assets. This reuse saves time, money, and 
effort and helps ensure delivery of a solid, properly architected solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their 
purpose is to capture and publish e-business artifacts that have been used, 
tested, and proven to be successful. The information captured by them is 
assumed to fit the majority, or 80/20, situation. The IBM Patterns for e-business 
are further augmented with guidelines and related links. 

2

© Copyright IBM Corp. 2006. All rights reserved. 11



2.1  The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement 
successful e-business solutions through the reuse of components and solution 
elements from proven successful experiences. The Patterns approach is based 
on a set of layered assets that can be exploited by any existing development 
methodology. These layered assets are structured in a way that each level of 
detail builds on the last and include:

� Business patterns that identify the interaction between users, businesses, 
and data.

� Integration patterns that tie multiple Business patterns together when a 
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of 
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout that describe how the 
application components and data within a Business pattern or Integration 
pattern interact.

� Runtime patterns that define the logical middleware structure that supports an 
Application pattern. Runtime patterns depict the major middleware nodes, 
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations 
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and 
management of e-business applications.

Figure 2-1 on page 13 shows these assets and their relationships to each other.
12 Patterns: Extended Enterprise SOA and Web Services



Figure 2-1   The Patterns for e-business layered asset model

Patterns for e-business Web site
The layers of patterns, along with their associated links and guidelines, allow the 
architect to start with a problem and a vision for the solution, then find a pattern 
that fits that vision. In order to navigate from top down from one level to another, 
a decision matrix will be provided to assist the architect in making the right 
decision.

Then, by drilling down using the patterns process, the architect can further define 
the additional functional pieces that the application needs to succeed. Finally, the 
architect can build the application using coding techniques that are outlined in 
the associated guidelines.

The Patterns Web site provides an easy way of navigating through the layered 
Patterns assets to determine the most appropriate assets for a particular 
engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

Best-Practice Guidelines
Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer 
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
 Chapter 2. Introduction to the Patterns for e-business 13

http://www.ibm.com/developerWorks/patterns/


2.2  How to use the Patterns for e-business
As described in the previous section, the Patterns for e-business have a layered 
structure where each layer builds detail on the last. At the highest layer are 
Business patterns. These describe the entities involved in the e-business 
solution.

Composite patterns appear in the hierarchy shown in Figure 2-1 on page 13 
above the Business patterns. However, Composite patterns are made up of a 
number of individual Business patterns and at least one Integration pattern. This 
section discusses how to use the layered structure of Patterns for e-business 
assets. 

2.2.1  Selecting a Business, Integration, Composite pattern, 
or a Custom design

When faced with the challenge of designing a solution for a business problem, 
the first step is to get a high-level view of the goals that you are trying to achieve. 
You need to describe a proposed business scenario and match each element to 
an appropriate IBM Pattern for e-business. You might find, for example, that the 
total solution requires multiple Business and Integration patterns or that it fits into 
a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of 
time and money spent on call centers that handle customer inquiries. By allowing 
customers to view their policy information and request changes online, the 
company can cut back significantly on the resources that are spent handling this 
type of request by phone. The objective allows policy holders to view policy 
information that is stored in existing databases.

The Self-Service business pattern fits this scenario perfectly. You can use it in 
situations where users need direct access to business applications and data. The 
following sections discuss the available Business patterns. 
14 Patterns: Extended Enterprise SOA and Web Services



Business patterns
A Business pattern describes the relationship between the users, the business 
organizations or applications, and the data to be accessed. 

There are four primary Business patterns, that are explained in Table 2-1.

Table 2-1   The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but 
reality says that things can often be more complicated. The patterns assume that 
most problems, when broken down into their basic components, will fit more than 
one of these patterns. When a problem requires multiple Business patterns, you 
can use Integration patterns.

Business Patterns Description Examples

Self-Service 
(user-to-business)

Applications where users 
interact with a business via 
the Internet or intranet.

Simple Web applications

Information Aggregation 
(user-to-data)

Applications where users 
can extract useful 
information from large 
volumes of data, text, 
images, and so forth.

Business intelligence, 
knowledge management, 
and Web crawlers

Collaboration
(user-to-user)

Applications where the 
Internet or intranet 
supports collaborative 
work between users.

Community, chat, 
videoconferencing, e-mail, 
and so forth

Extended Enterprise 
(business-to-business)

Applications that link two or 
more business processes 
across separate 
enterprises.

EDI, supply chain 
management, and so forth
 Chapter 2. Introduction to the Patterns for e-business 15



Integration patterns
Integration patterns allow you to tie together multiple Business patterns to solve 
a business problem. Table 2-2 describes the Integration patterns.

Table 2-2   Integration patterns

The Access Integration pattern maps to User Integration. The Application 
Integration pattern is divided into two essentially different approaches: 

� Process Integration, which is the integration of the functional flow of 
processing between the applications.

� Data Integration, which is the integration of the information that is used by 
applications.

You can combine the Business and Integration patterns to implement 
installation-specific business solutions called a Custom design.

Custom design
Figure 2-2 illustrates the use of a Custom design to address a business problem.

Figure 2-2   Patterns representing a Custom design

Integration Patterns Description Examples

Access Integration Integration of a number of 
services through a 
common entry point

Portals

Application Integration Integration of multiple 
applications and data 
sources without the user 
directly invoking them

Message brokers, 
workflow managers,
data propagators, and data 
federation engines

A
cc

es
s 

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n 

In
te

gr
at

io
n

16 Patterns: Extended Enterprise SOA and Web Services



If you do not use any of the Business or Integration patterns in a Custom design, 
you can show the unused patterns as lighter blocks than those patterns that you 
do use. For example, Figure 2-3 shows a Custom design that does not have a 
Collaboration or an Extended Enterprise business pattern for a business 
problem.

Figure 2-3   Custom design showing unused patterns

If a Custom design recurs many times across domains that have similar business 
problems, then it can also be a Composite pattern. For example, the Custom 
design in Figure 2-3 can also describe a Sell-Side Hub Composite pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified 
and formalized into Composite patterns. Table 2-3 on page 18 shows the 
identified Composite patterns.

A
cc

es
s 

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n 

In
te

gr
at

io
n

 Chapter 2. Introduction to the Patterns for e-business 17



Table 2-3   Composite patterns

Composite Patterns Description Examples

Electronic Commerce User-to-online-buying • http://www.macys.com
• http://www.amazon.com

Portal Typically designed to aggregate 
multiple information sources and 
applications to provide uniform, 
seamless, and personalized access 
for its users.

• Enterprise intranet portal 
providing self-service functions 
such as  payroll, benefits, and 
travel expenses.

• Collaboration providers who 
provide services such as e-mail or 
instant messaging.

Account Access Provide customers with 
around-the-clock account access to 
their account information.

• Online brokerage trading 
applications.

• Telephone company account 
manager functions.

• Bank, credit card and insurance 
company online applications.

Trading Exchange Allows buyers and sellers to trade 
goods and services on a public site.

• Buyer's side - interaction between 
buyer's procurement system and 
commerce functions of 
e-Marketplace.

• Seller's side - interaction between 
the procurement functions of the 
e-Marketplace and its suppliers.

Sell-Side Hub
(supplier)

The seller owns the e-Marketplace 
and uses it as a vehicle to sell 
goods and services on the Web.

http://www.carmax.com (car 
purchase)

Buy-Side Hub
(purchaser)

The buyer of the goods owns the 
e-Marketplace and uses it as a 
vehicle to leverage the buying or 
procurement budget in soliciting the 
best deals for goods and services 
from prospective sellers across the 
Web.

http://www.wwre.org
(WorldWide Retail Exchange)
18 Patterns: Extended Enterprise SOA and Web Services

http://www.wwre.org
http://www.macys.com
http://www.amazon.com
http://www.carmax.com


The makeup of these patterns is variable in that there will be basic patterns 
present for each type. However, you can extend the Composite pattern to meet 
additional criteria. For more information about Composite patterns, refer to 
Patterns for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas 
Koushik, Guru Vasudeva, and George Galambos. 

2.2.2  Selecting Application patterns
After you identify the Business pattern, the next step is to define the high-level 
logical components that make up the solution and how these components 
interact. This is known as the Application pattern. A Business pattern usually has 
multiple possible Application patterns. An Application pattern might have logical 
components that describe a presentation tier for interacting with users, an 
application tier, and a back-end application tier.

Application patterns break down the application into the most basic conceptual 
components that identify the goal of the application. In our example, the 
application falls into the Self-Service business pattern, and the goal is to build a 
simple application that allows users to access back-end information. Figure 2-4 
shows the Self-Service::Directly Integrated Single Channel application pattern, 
which fulfills this requirement.

Figure 2-4   Self-Service::Directly Integrated Single Channel pattern

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node 
containing new or 
modified components

Application node containing 
existing components with 
no need for modification 
or which cannot be changed

Read/Write data

Back-End
Application 2
 Chapter 2. Introduction to the Patterns for e-business 19



This Application pattern consists of a presentation tier that handles the request 
and response to the user. The application tier represents the component that 
handles access to the back-end applications and data. The multiple application 
boxes on the right represent the back-end applications that contain the business 
data. The type of communication is specified as synchronous (one request/one 
response, then next request/response) or asynchronous (multiple requests and 
responses intermixed).

Suppose that the situation is a little more complicated. Let's say that the 
automobile policies and the homeowner policies are kept in two separate and 
dissimilar databases. The user request actually needs data from multiple, 
disparate back-end systems. In this case, there is a need to break the request 
down into multiple requests (decompose the request) to be sent to the two 
different back-end databases, then to gather the information that is sent back 
from the requests, and put this information into the form of a response 
(recompose). In this case, the Self-Service::Decomposition application pattern 
(as shown in Figure 2-5) would be more appropriate.

Figure 2-5   Self-Service::Decomposition pattern

This Application pattern extends the idea of the application tier that accesses the 
back-end data by adding decomposition and recomposition capabilities.

Presentation synchronous Decomp/
Recomp

synch/
asynch 

Application node 
containing new 
or modified 
components

Application node 
containing existing  
components with no need 
for modification or which 
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
   flow)

Back-End
Application 1

Back-End
Application 2
20 Patterns: Extended Enterprise SOA and Web Services



2.2.3  Review Runtime patterns
You can refine the Application pattern further with more explicit functions. Each 
function is associated with a runtime node. In reality, these functions, or nodes, 
can exist on separate physical machines or can coexist on the same machine. In 
the Runtime pattern the physical location of the function is not relevant. The 
focus is on the logical nodes that are required and their placement in the overall 
network structure. 

As an example, let's say that our customer has determined that their solution fits 
into the Self-Service business pattern and that the Directly Integrated Single 
Channel pattern is the most descriptive of the situation. The next step is to 
determine the Runtime pattern that is most appropriate for the situation. 

The customer knows that they will have users on the Internet that are accessing 
their business data; therefore, they require a measure of security. You can 
implement security at various layers of the application, but the first line of defense 
is almost always one or more firewalls that define who and what can cross the 
physical network boundaries into the company network.

The customer also needs to determine the functional nodes that are required to 
implement the application and security measures. Figure 2-6 on page 22 shows 
the Runtime pattern that is one option.
 Chapter 2. Introduction to the Patterns for e-business 21



Figure 2-6   Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the 
roles that each functional node fulfills in the application. The presentation and 
application tiers will be implemented with a Web application server, which 
combines the functions of an HTTP server and an application server. The 
Application pattern handles both static and dynamic Web pages.

Application security is handled by the Web application server through the use of 
a common central directory and security services node. 

A characteristic that makes this Runtime pattern different from others is the 
placement of the Web application server between the two firewalls. Figure 2-7 on 
page 23 shows a variation of this pattern. It splits the Web application server into 
two functional nodes by separating the HTTP server function from the application 
server. The HTTP server (Web server redirector) provides static Web pages and 
redirects other requests to the application server. This pattern moves the 
application server function behind the second firewall, adding further security.

Internal Network
Demilitarized Zone 

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing 
Applications

and Data

D
om

ai
n  

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key 
Infrastructure

User 

Web 
Application

Server

Domain Name 
Server

Directory and 
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing 
Applications

and Data
22 Patterns: Extended Enterprise SOA and Web Services



Figure 2-7   Directly Integrated Single Channel application pattern::Runtime pattern

These are just two examples of the possible Runtime patterns that are available. 
Each Application pattern will have one or more Runtime patterns defined. You 
can modify these Runtime patterns to suit the customer’s needs. For example, 
the customer might want to add a load-balancing function and multiple 
application servers.

2.2.4  Reviewing Product mappings
The last step in defining the network structure for the application is to correlate 
real products with one or more runtime nodes. The Patterns Web site shows 
each Runtime pattern with products that have been tested in that capacity. The 
Product mappings are oriented toward a particular platform. However, it is more 
likely that the customer will have a variety of platforms involved in the network. In 
this case, you can mix and match product mappings (this is dependent on the 
supported platforms of the IBM products).

Internal Network
Demilitarized Zone 

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n  

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key 
Infrastructure

User 

Web
Server 

Redirector

Domain Name 
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing 
Applications

and Data

Application
Server

Directory and 
Security
Services

Existing 
Applications

and Data
 Chapter 2. Introduction to the Patterns for e-business 23



For example, you could implement the runtime variation in Figure 2-7 on page 23 
using the Product mapping depicted in Figure 2-8.

Figure 2-8   Directly Integrated Single Channel application pattern::Product mapping=Windows® 2000

2.2.5  Reviewing guidelines and related links
The Application patterns, Runtime patterns, and Product mappings can guide 
you in defining the application requirements and the network layout. The actual 
application development has not been addressed yet. The Patterns Web site 
provides guidelines for each Application pattern, including techniques for 
developing, implementing, and managing the application, based on the following 
guidelines: 

� Design guidelines provide tips and techniques for designing the applications. 

� Development guidelines take you through the process of building the 
application, from the requirements phase all the way through the testing and 
rollout phases.

� System management guidelines address the day-to-day operational 
concerns, including security, backup and recovery, application management, 
and so forth. 

� Performance guidelines give information about how to improve the application 
and system performance. 

Internal networkDemilitarized zone 
O

ut
si

de
 w

or
ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n 

Fi
re

w
al

l
Web Server
Redirector 

Windows 2000 + SP3
IBM WebSphere Application 
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and 
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing 
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application 
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application 
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway 
V5.0
IBM CICS Transaction Server 
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application 
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
24 Patterns: Extended Enterprise SOA and Web Services



2.3  Patterns for e-business naming conventions
The Patterns for e-business use a standard naming convention with the objective 
of making it easier for the reader to fully identify the referenced asset.

The capitalization convention is to use lower case for pattern and upper case for 
the first and most significant qualifier as seen in the following example:

� Business pattern

When referencing a specific type of pattern, the higher level qualifier (business) 
is not capitalized as seen in the following example:

� Self-Service business pattern

The textual notation Business pattern::Application pattern::Runtime 
pattern::Product mapping is used to represent the position of an asset within the 
hierarchy. Occasionally an intermediate level or the pattern type will be omitted 
for brevity as seen in the following examples: 

� Self-Service::Router application pattern

� Self-Service::Router runtime pattern

In addition, when it is necessary to identify variations or product instances at the 
same level in the hierarchy an '=' sign will be used as seen in the following 
examples:

� Self-Service::Decomposition=Integration Server runtime pattern

� Application Integration::Direct Connection=Message Connection::Product 
mapping=Web services

2.4  Summary
The IBM Patterns for e-business are a collected set of proven architectures. You 
can use this repository of assets to facilitate the development of Web-based 
applications. Patterns for e-business help you understand and analyze complex 
business problems and break them down into smaller, more manageable 
functions that you can then implement.
 Chapter 2. Introduction to the Patterns for e-business 25



26 Patterns: Extended Enterprise SOA and Web Services



Chapter 3. Beyond the enterprise

This chapter discusses the fundamental aspects and needs for system and 
application integration across the enterprise boundaries, by covering the 
following:

� An initial overview of the Extended Enterprise, and the business need.

� The on demand business and operating environment.

� Approaches for delivering the Extended Enterprise including a discussion 
about service-oriented architecture and Web services.

� A quick look at the required Quality of Services.

3

© Copyright IBM Corp. 2006. All rights reserved. 27



3.1  Overview of Extended Enterprise
In the past, executives had the luxury of assuming that business models were 
more or less immortal. Companies always had to work to get better… but they 
seldom had to get different—not at their core. (From “The Quest for Resilience,” 
Gary Hamel and Liisa Valikangas, Harvard Business Review, September 2003) 
But during the last 10 years we have seen an increasing number of organizations 
forced to get different, and not just better, to survive.

As more organizations are looking to streamline their core business processes, 
an inherent need to both outsource noncritical business functions, and integrate 
with customer and supplier IT systems increases. In this fundamental shift from 
an internally controlled Application Access paradigm, to an Extended Enterprise 
interacting within a globally distributed ecosystem, as depicted in Figure 3-1, 
there is a need for a flexible and agile system integration architecture. 

Figure 3-1   The Business Integration Evolution

The fundamental principle of any Extended Enterprise is to support the ability to 
integrate both business processes and IT systems across organizational 
boundaries. By ensuring a flexible and manageable integration with both the 
organizations customers and suppliers as well as value-added business 
partners, the organization is better positioned to focus on its core competencies.

But this shift in business outsourcing and system integration also creates a 
number of complications within the underlying IT infrastructure. In an effort to 
reduce this complexity and streamline the Integration Architecture, IBM 
introduced the on demand operating environment.

3.2  On Demand Business
The IBM vision of On Demand Business™ is to enable customers to succeed in 
an environment with an unprecedented rate of change, or within an architecture 
with a high degree of external integrations.

Access Enterprise Integration Extended Enterprise

Access, Publish, Transact Integrate
Internally

Integrate
Externally
28 Patterns: Extended Enterprise SOA and Web Services



In today’s corporate landscape, businesses want to focus on core competencies, 
reduce spending, and reuse existing information in new ways without performing 
a major overhaul of their existing infrastructure. There exists a constant pressure 
to juggle the often conflicting demands to provide flexibility, cost savings, and 
efficiency. Figure 3-2 outlines the key components required for any On Demand 
Business.

Figure 3-2   On Demand Business overview diagram

3.2.1  Key business attributes
From a business perspective, On Demand Business is about providing a way for 
companies to realign their business and technology environment to match the 
request for reusable business functionality. 

Business drivers can be summarized as having the following key characteristics:

� Focused

Being focused means the enterprise focuses on its core competencies, those 
activities that make that enterprise successful and unique. Strategic alliances 

IntegrationIntegration

AutomationAutomation

VirtualizationVirtualization

Security Availability Provisioning Optimization

Systems and Policy Management

Integration of People - Business Process - Information
Anywhere, Anytime, from Any Device

Pools of Virtual Resources

Collaboration Transactional
Processes

Information
Management

Application Development, Deployment & Maintenance

Servers Storage Distributed
Systems

Business
Objectives

and
Policies

Product
Lifecycle

Management

Customer
Relationship
Management

Enterprise
Resource
Planning

Value
Chain

Management

Legacy &
Strategic

Applications

Customer &
Partner

Applications B
us

in
es

s
Pr

oc
es

se
s

O
pe

n 
St

an
da

rd
s-

B
as

ed
 Chapter 3. Beyond the enterprise 29



are formed to provide needs external to these core competencies, and 
supported by a deployed extended enterprise based IT architecture.

� Responsive

To say an enterprise is responsive, means it has the ability to respond with 
agility to customer demands, market opportunities, or external threats. These 
decisions are guided through insight-driven decision-management features, 
and can be hindered by a badly executed and deployed Extended 
Enterprise-based architecture.

� Variable

Successful enterprises achieve operational and business process flexibility. 
They adapt variable cost structures (fixed to variable) to provide a high level 
of operational efficiency.

� Resilient

The hallmark of a resilient enterprise is the capability and robustness to 
respond to changes in both business and technical environments. Resilient 
enterprises manage changes and threats with predictable outcomes.

Companies can achieve these business imperatives by exploiting current 
technological developments while drawing on experiences that have been 
learned from past architectural constructs.

3.2.2  Key technology attributes
The business drivers of On Demand Business must be supported by a 
well-defined technical infrastructure. Again, here we see a strong bias towards a 
well-defined and executed integration architecture.

These key technological attributes deliver the flexibility, responsiveness, and 
efficiency that on demand organizations require:

� Integration
� Virtualization
� Automation
� Open standards

Figure 3-3 on page 31 provides a high-level overview of the range of each On 
Demand Business attribute.
30 Patterns: Extended Enterprise SOA and Web Services



Figure 3-3   Four key technology attributes of On Demand Business

Integration
The fundamental component of on demand infrastructure is integration.

We define On Demand Business in the following way: “An On Demand Business 
is an enterprise whose business processes, integrated end-to-end with key 
partners, suppliers, and customers, can rapidly respond to any customer 
demand, market opportunity, or external threat.”

http://www-1.ibm.com/partnerworld/pwhome.nsf/weblook/pub_strategies_
ebod.html

Integration can occur at various levels with the following elements: 

� People

To function at an on demand operating level, human-to-human and 
human-to-process interaction requires integration throughout the various 
levels and is not limited to end users. In on demand processes, trading 
partners, customers, and employees are all valuable resources in the chain. 
For example, integration can occur for developers through open tooling 
paradigms based on open standards, for trading partners by the creation of 
horizontal processes, and employees through collaboration. 

on demand

Proprietary InteroperableOpen Standards

VirtualizationPhysical

AutomationManual

IntegrationSilos

Grid

Automated

Full Integration
 Chapter 3. Beyond the enterprise 31

http://www-1.ibm.com/partnerworld/pwhome.nsf/weblook/pub_strategies_ebod.html


� Process

Recurring elements such as security, service levels, monitoring, and so on 
can be shared across applications to provide horizontal services to decouple 
these reusable application components. The use of SOA and Web services, 
for example, to implement these processes, including the emerging Business 
Process Execution Language for Web Services (WS-BPEL), will facilitate 
more rapid changes in these processes, enabling the business to respond 
with agility to changing market conditions.

� Applications

Organizations have invested enormous resources and capital into custom- 
designed and off-the shelf applications. Applications sit on disparate systems 
in an enterprise or across many enterprises. The application integration goal 
is to leverage, rather than replace, these assets by providing ways of 
connecting, routing, and transforming the data that is stored or shared among 
them. 

� Systems

Systems manage, process, and deliver data to the people and applications in 
the solution environment. An on demand operating environment requires the 
system to be transparent to the elements that interact with it.

� Data

Data is the primary business element of a system. The data is the source of 
the information and can more easily be shared through the adoption of 
standards specifications. These specifications allow the transparent sharing 
of data across applications and organizations. 

Virtualization
Various areas of technology in our lives exploit virtualization concepts, including 
cell phones, PDAs, wireless connectivity, printers, and so forth. Aspects of 
virtualization draw on widely adopted architectural concepts, including 
object-oriented design and development, Web services, and XML.

There is a spectrum of virtualization that begins at independent stand-alone 
systems on one side (a large mainframe system, perhaps) and grid computing on 
the other. In the middle are varying degrees of client-server implementations.

A grid paradigm, an absolute example of on-demand virtualization, is a collection 
of distributed computing resources that are available over a local or wide area 
network and that appear to an end user or application as one large virtual 
computing system. 

The Internet, the most widely recognized example of virtualization, provides a 
virtual network that supplies access to content and applications.
32 Patterns: Extended Enterprise SOA and Web Services



The vision is to create virtual, dynamic organizations through secure, 
coordinated resource sharing among individuals, institutions, and resources. 
Grid computing is an approach to distributed computing that spans locations, 
organizations, machine architectures, and software boundaries. 

Figure 3-2 on page 29 depicts virtualization as a set of virtualized resource pools 
based on:

� Servers

This category includes partitioning, hypervisors, VM OS, emulators, I/O 
virtualization, virtual Ethernet, and so forth.

� Storage

Here, the focus is on the addition of intelligence and value in the network.

� Distributed systems

This category includes Web services, scheduling, provisioning, workload 
management, billing and metering, as well as transaction management.

The goal of grid computing, and thus on demand virtualization, is to provide 
unlimited power, collaboration, and information access to everyone connected to 
a grid.

Automation
Autonomic computing addresses an organization’s need to limit the amount of 
time and cost that occurs as a result of:

� Over provisioning
� High cost of new applications and highly skilled labor
� IT budget spent on maintenance, not problem resolution
� Complexities in operating heterogeneous systems
� Amount of time spent on disparate technology platforms, even within one 

organization

So how can organizations begin to address these common concerns using an on 
demand Operating Environment? This is where autonomic computing enters the 
picture. Autonomic computing can be summarized using the four key 
components:

Note: Open Grid Services Architecture (OGSA) is an important starting point 
for grid enablement. For more information about OGSA, refer to the article at:

http://www-106.ibm.com/developerworks/grid/library/gr-visual/
 Chapter 3. Beyond the enterprise 33

http://www-106.ibm.com/developerworks/grid/library/gr-visual/


� Self-healing

Self-healing is a system’s ability to keep functioning, even during component 
or software malfunction. In order to achieve this, the system must detect, 
prevent, and recover from disruptions with minimal or no human intervention. 
This requirement is directly proportional to increased business dependence 
on technical infrastructures. The need for self-healing is directly proportional 
to the organization’s availability requirement.

� Self-configuring

Self-configuring means the system has the ability to adapt to changing 
environments dynamically, adding and removing components to and from the 
systems, and changing the environment to adapt to variable workloads.

� Self-optimization

A self-optimization configuration maximizes operational efficiency, including 
resource tuning and workload management. Self-optimization alleviates the 
constant drain on resources to perform routine tasks. The goal is to tune 
systems to respond to workload changes. Systems monitor and self-tune 
continuously, adapting and learning from the environment around them.

� Self-protecting

Security is one of the inhibitors of the adoption of SOAs as organizations 
prepare themselves to share data externally. Self-protection requires the 
system to provide safe alternatives to secure information and data. 
Self-protecting automation works by anticipating, detecting, identifying, and 
protecting systems from external or internal threats.

Open standards
While described as a separate attribute, open standards affect the on demand 
Operating Environment across the previously defined levels, including 
automation, integration, and virtualization. Each of these elements leverage open 
standards specifications in order to achieve their objectives. Open standards are 
the key element of flexibility and interoperability across heterogeneous systems.

The global adoption of a standard specification enables disparate systems to 
interact with each other. The underlying platforms can be completely different 
and independent, but open standards enable processes to be built despite, or 
because of, these differences.

Open standards provide the On Demand Business Operating Environment with a 
standard, open mechanism with which to invoke system services.
34 Patterns: Extended Enterprise SOA and Web Services



3.2.3  Key requirements for integration flexibility
To enable the business integration that is required by an on demand business 
while maintaining the maximum flexibility of implementation, we need to meet the 
requirements shown in Figure 3-4.

Figure 3-4   On demand key requirements for integration flexibility

Each requirement poses several questions:

� Coupling business processes

– How do we model the business?

– How do we refactor the business into processes, components, and 
services that can interact dynamically and change agilely?

� Decoupling technology

– How do we support business behavior with systems that can interact 
without joining them too tightly?

– How can we change and evolve the systems and interactions on the 
timescales required by the business?

� Enabling infrastructure

– How do we build the technical infrastructure to support, execute, manage, 
and measure these interactions, services, components, and processes?

3.2.4  The on demand Operating Environment
Figure 3-5 on page 36 shows the on demand Operating Environment reference 
architecture.

Coupling business processes

Decoupling technology Enabling infrastructure
 Chapter 3. Beyond the enterprise 35



.

Figure 3-5   On demand Operating Environment architecture

The three core components of the on demand Operating Environment 
(Integration Services, Enterprise Service Bus, and Infrastructure Services) work 
together to provide the capability to meet defined business objectives.

Business services leverage the Application and iNfrastructure Services, which 
are mediated by the Enterprise Service Bus, to provide real business processes 
to end users including customers, employees, and business partners.

Business Service management incorporates the policies and goals of the 
organization, such as service levels, metrics, and other measurable business 
guidelines.

Enterprise Service Bus
The Enterprise Service Bus is emerging as a service-oriented infrastructure 
component that makes large-scale implementation of the SOA principles 
manageable in a heterogeneous world.

On demand applications are business services built from services that provide a 
set of capabilities that are worth advertising for use by other services. Typically, a 
business service relies on many other services in its implementation. Services 
interact through the Enterprise Service Bus, which facilitates mediated 
interactions between service endpoints. The Enterprise Service Bus supports 
event-based interactions as well as message exchange for service request 
handling. One innovation of the Enterprise Service Bus is a common model for 

Service Level Automation and Orchestration

Integration Services
Information

Management
Services

Common
Services

Business
Function
Services

Business
Process

Choreography
Services

User
Access

Services

Security Message Processing Modeling

Integration Mgmt & Autonomic Service Level Intelligence Communication

Enterprise Service Bus 

Utility Business Services

Resource Virtualization

Infrastructure Services

Business
Performance
Management

Business
Service

Business
Service

U
S
E
R

B
U
S
I
N
E
S
S

Business
Services

Quality of ServiceService Interaction

User
Interaction
Services
36 Patterns: Extended Enterprise SOA and Web Services



messages and events. All messages can become events if deploying the service 
binds the message to a topic in the event space.

For both events and messages, you can use mediations to facilitate interactions 
for example, to find services that provide capabilities that a consumer wants, or 
to resolve interface mismatches between consumers and providers with 
compatible capabilities. In this context, we use the term service in a very general 
sense. Additionally, it is worth noting that from the perspective of the bus, all 
application components can be specified through WS-* standards because it 
requires a normalized representation for efficient mediated, capability-based 
matchmaking. However, this does not imply that they all communicate with SOAP 
or WS-* protocol standards. The Enterprise Service Bus supports a broad 
spectrum of ways to get on and off the bus, including on ramps for existing 
applications or business connections that enable external partners in B2B 
interaction scenarios to participate in service interaction.

Although they all look the same from the perspective of the Enterprise Service 
Bus, services implement different facets of an overall on demand application, 
including:

� Realize interactions with people involved in the underlying business process.
� Provide adapters to existing applications that have to be integrated.
� Choreograph the interaction of several services to achieve a business goal.
� Manage resources that are needed to perform required business functions.
� Watch for potential problems in the execution of the process, ready to take 

action to fix them if they occur.

Therefore, in addition to providing the basic infrastructure for service interactions, 
the on demand Operating Environment identifies a set of common patterns for 
construction of on demand applications and provides specific capabilities to 
support realization of distinct service categories that play particular roles in those 
patterns. The two distinct service categories are integration services and 
infrastructure services.

Integration services
The programming model for on demand business services is based on 
application development using component (service) assembly. The services in 
the integration category are used by on demand application builders to create 
new business services; they include services that facilitate integration as well as 
services that provide business functions to be integrated:

� User access services handle adaptation from three orthogonal perspectives:

– Endpoint form factor such as display size, memory, and processor 
limitations ranging from desktop down to pervasive devices
 Chapter 3. Beyond the enterprise 37



– Modes of interaction including conventional display and keyboard 
interactions, as well as speech-based interactions and combinations 
(multimodality)

– Connection types such as peer-to-peer or client/server across a range of 
connection reliability, including fully disconnected operations

� User interaction services handle the direct interactions of people involved in 
the business process; for example, processing work items that are spawned 
by choreography or collaborative process elements.

� Business process choreography services support services that use process 
flow or rule technology. Process flows, for example, describe the interaction of 
other services, meaning nearly any kind of integration service such as 
process flow services, to perform the tasks required to realize the functions 
offered by the new aggregated business service.

� Business function services provide the atomic business functions (those that 
are not composed from other services) that are required by the overall 
business service. Business function services include adapters for packaged 
or existing custom applications as well as brand new application components 
created to meet a functional need that is not already covered by existing 
applications.

� Common services implement useful features or helper functions that are used 
by other business services. Examples of common services include 
implementing personalization of user access and user interaction services, or 
for reporting status and progress of business services.

� Information management services help to integrate information hosted in a 
variety of data sources such as databases or existing applications, to access 
(query, update, and search) that information, to analyze information from 
those sources in business intelligence scenarios, or taking care of metadata 
about information and services used and provided by the business services 
living in the on demand Operating Environment.

� Application services provide containers for integration services, simplifying 
their participation in interactions with other integration services and on 
demand Operating Environment infrastructure services. On demand 
integration service developers focus on realizing the business logic that they 
care about, assembling integration services that provide required business 
function and declaring expected quality of service.

Programmers and administrators annotate their applications and services 
with policy declarations that specify quality of service. The application 
container and the Enterprise Service Bus automate the interactions with 
infrastructure services to achieve the expressed policies. An application 
container also provides generic facilities such as taking care of security or 
transaction management requirements for the services that it hosts, as well 
38 Patterns: Extended Enterprise SOA and Web Services



as kind-specific facilities such as generating events reporting status and 
progress of business process choreography services.

Infrastructure services
The services in the infrastructure category provide and manage the infrastructure 
into which business services and their constituents are deployed. These include:

� Utility business services support functions such as billing, metering, rating, 
peering, and settlement. These services are commonly used, for example, 
when hosting on demand business services or their components.

� Service level automation and orchestration services implement the quality of 
service policy declarations for business services. These services implement 
‘autonomic managers that monitor the execution of services (more precisely, 
services instrumented to be managed elements) in the on demand Operating 
Environment, according to the policy declarations they receive. Service level 
automation and orchestration services then analyze that behavior, and if the 
analysis indicates a problem, plan a meaningful reaction to that problem then 
execute that plan. This closed feedback loop is called an M-A-P-E (Monitor, 
Analyze, Plan, Execute) loop. Several specializations of such services focus 
on, for example: managing, availability, configuration or workload for the 
managed elements, provisioning resources, performing problem 
management, handling end-to-end security for on demand Operating 
Environment services, or managing data placement.

� Resource virtualization services provide the instrumentation of server, 
storage, network, and other resources, including structured (relational) and 
unstructured information content that is held in a variety of data sources, to 
enable management and virtualization of those resources under the control of 
on demand Operating Environment resource managers. Virtualization 
services include mapping requirements of business services and their 
components to available resources based on quality of service declarations of 
the service and knowledge about the current use of available resources.

Besides the fact that they implement very different capabilities that support a 
variety of on demand Operating Environment patterns, the main difference 
between integration and infrastructure services is which user roles build and use 
them. Infrastructure elements are built by middleware providers and ISVs. 
Integration elements are built by on demand infrastructure and application 
builders.

One of the most important insights of the on demand Operating Environment is 
that a common pattern supports both application services and infrastructure 
services. For example: 

� Adapters enable integration of existing infrastructure components into the 
Enterprise Service Bus.
 Chapter 3. Beyond the enterprise 39



� Service choreography is often used for scripting of M-A-P-E execution plans.

� The Enterprise Service Bus provides the infrastructure for exchange of events 
between managed elements and autonomic managers.

� End users interact with infrastructure services through the portal user 
interaction services.

3.3  Approaches for delivering the Extended Enterprise
While IT executives have been facing the challenge of cutting costs and 
maximizing the utilization of existing technology, at the same time they have to 
continuously strive to serve customers better, be more competitive, and be more 
responsive to the business’s strategic priorities.

There are two underlying themes behind all of these pressures: heterogeneity 
and change. Most enterprises today contain a range of different systems, 
applications, and architectures of different ages and technologies. Integrating 
products from multiple vendors and across different platforms is almost always 
challenging. But we also cannot afford to take a single-vendor approach to IT, 
because application suites and the supporting infrastructure are so inflexible. 
More importantly, in an extended enterprise environment the control of product 
and technology selection is dramatically reduced. 

Change is the second theme underlying the questions that today’s IT executives 
face. Globalization and e-business are accelerating the pace of change. 
Globalization leads to fierce competition, which leads to shortening product 
cycles, as companies look to gain advantage over their competition. Customer 
needs and requirements change more quickly driven by competitive offerings 
and the wealth of product information available over the Internet. In response the 
cycle of competitive improvements in products and services further accelerates.

Improvements in technology continue to accelerate, feeding the increased pace 
of changing customer requirements. Business must rapidly adapt to survive, not 
just to succeed, in today’s dynamic competitive environment. As a result, the IT 
infrastructure must enable businesses’ ability to adapt.

As a result, business organizations are evolving from the vertical, isolated 
business divisions of the 1980’s and earlier, to the horizontal 
business-process-focused structures of the 1980’s and 1990’s, towards the new 
ecosystem business paradigm. Business services now need to be 
componentized and distributed. There is a focus on the extended supply chain, 
enabling customer and partner access to business services. Figure 3-6 on 
page 41 shows this evolution of business.
40 Patterns: Extended Enterprise SOA and Web Services



Figure 3-6   The evolution of business

3.3.1  SOA and Web services
The implementation of service-oriented architecture (SOA) using Web services 
technologies is the current state of the art in systems integration. Both topics are 
covered extensively in industry literature, but there is some variation in their 
description, so an introduction is provided here to place the remaining content of 
this redbook in context.

For some time, the vision of much of the IT industry has been to achieve rapid, 
flexible integration of IT systems across all elements of the business cycle. The 
drivers behind this vision include:

� Increasing the speed with which businesses can implement new products and 
processes, or change existing ones

� Reducing implementation and ownership costs

� Enabling flexible pricing models by outsourcing elements of the business or 
moving from fixed to variable pricing, based on transaction volumes

� Simplifying the integration work that is required by mergers and acquisitions

� Achieving better IT utilization and return on investment

� Simplifying the enterprise architecture and computing model

Really achieving these goals affects the entire scope of a business’s processes 
and IT systems, as depicted in Figure 3-7 on page 42. Such pictures should be 
familiar to anyone with an interest in enterprise application integration, 
business-to-business, or portal technologies. However, perhaps it is fair to say 
that until recently the industry has lacked a consistent and comprehensive 
approach to technology and architecture on this scale. Although several systems 
that cover some elements of this scope have been implemented, there has not 
been a single, broadly accepted approach.

Vertical
1980s and Earlier

Horizontal
1980s and 1990s

Ecosystem
The New World
 Chapter 3. Beyond the enterprise 41



The combination of SOA, an approach that draws together proven techniques 
from several proceeding architecture and design styles, with new open standards 
and integration technologies has the potential to provide such a consistent 
approach.

Figure 3-7   Integration across the value chain

To describe why both Web services and SOA are necessary to achieve these 
goals, it is informative to consider the specific technical issues that arise in any 
attempt to integrate flexible systems on the scale that we are discussing:

� Business systems are implemented using a multitude of technologies and 
platforms.

� Business processes are implemented by a mixture of people practices, 
application code, and interactions between people and systems or systems 
and systems.

� Changes to one system tend to imply ripples of change at many levels to 
many other systems.

� No single, fully functional integration solution will talk to all of the systems in 
the enterprise.

� Deployment of any single, proprietary integration solution across the 
enterprise is complex, costly, and time-consuming.

Finance Manufac-
turing

Distri-
bution Retail Telecom Govern-

ment
Industry

Solutions

Customer
Relationship
Management

Enterprise
Resource
Planning

Project
Lifecycle

Management

Value
Chain

Management
Customers

Employees

Suppliers &
Distributors

Infrastructure

Business Integration (Inter- and Intra-Enterprise)

...
42 Patterns: Extended Enterprise SOA and Web Services



� All issues that are involved in internal integration are encountered again when 
integrating with partners and their systems.

� There is no single data, business, or process model across or beyond the 
enterprise.

� Not all integration technologies work as well across a wide area network or 
the Internet as they do across a local area network, perhaps due to:

– The use of exotic protocols
– Constraints imposed by security technologies, including firewalls
– Constraints imposed by network bandwidth

As we discuss Web services and SOA in this section, we see how those issues 
are addressed. More to the point, it is only the appropriate combination of both 
Web services technology and the SOA approach that enables us to address 
them all on the broadest scales. In that vein, we should take stock briefly of what 
both Web services and SOA have achieved separately to date:

� Most significant SOAs are proprietary or customized implementations based 
on reliable messaging and Enterprise Application Integration middleware (for 
example WebSphere Business Integration) and do not use Web services 
technologies. They have, however, demonstrated the benefits of SOA, usually 
within a single enterprise.

� Most existing Web services implementations consist of point-to-point 
integrations that address a limited set of business functions between a 
defined set of cooperating partners, and they use HTTP, an unreliable 
transport, as the communication mechanism. They have, however, 
demonstrated the efficacy of the Web services technologies in integrating 
heterogeneous systems both within and among organizations.

There are several more ambitious efforts underway using both Web services and 
SOA. However, many of these efforts involve building significantly customized 
infrastructure functions in addition to using off-the-shelf products and 
technologies.

It is also worth noting that because we are dealing with enterprise integration and 
implementation in this redbook, we have to be aware of all of the usual 
requirements for enterprise class systems to, for example:

� Leverage existing assets.

� Support customized systems and commercial off-the-shelf (COTS) packages.

� Support incremental adoption and implementation.

� Provide for loose coupling between systems.

� Incorporate synchronous and asynchronous communication and 
transactions.
 Chapter 3. Beyond the enterprise 43



� Maintain security.

� Support multiple programming languages and platforms.

� Handle high volumes and transaction rates that are the hallmark of peak 
behavior.

� Support global deployment, including multiple languages, currency 
independence, and 24/7 operations.

Finally, we should be clear that there is no magic for achieving every aspect of 
the Extended Enterprise. We contend that all of this is possible with Web 
services and SOA, but you cannot just deploy a Web services SOA and start it. 
Instead, we describe an incremental approach to designing and deploying what 
can become an enterprise-class SOA using Web services over an appropriate 
timescale.

What is SOA?
SOA is an integration architecture approach based on the concept of a service. 
The business and infrastructure functions that are required to build distributed 
systems are provided as services that, collectively or individually, deliver 
application functionality to either end-user applications or other services. 

SOA specifies that, within any given architecture, there should be a consistent 
mechanism for services to communicate. That mechanism should be loosely 
coupled and support the use of explicit interfaces.

SOA brings the benefits of loose coupling and encapsulation to integration at an 
enterprise level. It applies successful concepts proved by Object Oriented 
development, Component Based Design, and Enterprise Application Integration 
technology to an architectural approach for IT system integration.

Services are the building blocks of SOA, providing function out of which 
distributed systems can be built. Services can be invoked independently by either 
external or internal service consumers to process simple functions, or can be 
chained together to form more complex functionality and, therefore to devise new 
functionality quickly. 

By adopting an SOA approach and implementing it using supporting 
technologies, companies can build flexible systems that implement changing 
business processes quickly, and can make extensive use of reusable 
components. This concept is shown in Figure 3-8 on page 45.
44 Patterns: Extended Enterprise SOA and Web Services



Figure 3-8   A service oriented approach to building systems

Figure 3-8 illustrates a company that wants to implement a new business 
process to support customers placing orders from a Web site. The company 
already has existing retail, warehouse, and billing systems. It would like to build 
the new process by reusing the functionality provided by those systems, rather 
than having to write new applications or new interfaces to the existing systems.

If the company has already adopted an SOA approach, it has defined the 
interfaces to its existing systems in terms of the functions, or services, that they 
can offer to support building business processes. This makes building the new 
Web front end to the system very simple. To complete the new business process, 
all they have to do is to develop an application that makes calls to the services.

The SOA approach means companies are able to build horizontal business 
processes that integrate systems, people, and processes from across the 
enterprise, quickly and easily responding to changing business needs.

As shown in Figure 3-8, existing systems can be used to implement new 
business processes that extend the use of the system beyond the processes they 
were originally written to support. This means the company is able to maximize 
previous IT investment by reusing existing IT systems without having to invest 
extensively to build new interfaces to the systems.

What is a service?
Having outlined SOA as being an architectural approach to defining integration 
architectures based on services, it is important to define what is meant by a 

Business
Process

Bill
Customer

Defined
Services

Receive
Order

Service

Customer
Billing

Service

Fulfill
Order

Service

Restock
Service

IT
Systems

Web
Application

Retail
System

CRM
Warehouse

System

Receive
Order

Fulfill
Order Restock
 Chapter 3. Beyond the enterprise 45



service in this context to fully describe SOA and understand what can be 
achieved by using it.

A service can be defined as any discrete function that can be offered to an 
external consumer. This can be an individual business function, or a collection of 
functions that together form a process.

There are many additional aspects to a service that must also be considered in 
the definition of a service within an SOA. The most commonly agreed upon 
aspects are:

� Services encapsulate reusable business functions.

� Services are defined by explicit, implementation-independent interfaces.

� Services are invoked through communication protocols that stress location 
transparency and interoperability.

In this redbook we define an SOA as being defined by these common aspects.

Reusable function
Any business function can be a service. SOA often focusses on business 
functions. However as you read further in this redbook, you can see that many 
technical functions can also be exposed as services. When defining function 
there are several levels of granularity that can be considered. Many descriptions 
of SOA refer to the use of large-grained services, however, some powerful 
counter-examples of successful, reusable, fine-grained services exist. For 
example, getBalance is a very useful service, but hardly large-grained.

More realistically, there are many useful levels of service granularity in most 
SOAs. For example, all of the following list items are services, however they have 
different granularity. Some degree of choreography or aggregation is required 
between each granularity level for them to be integrated in an SOA:

� Technical Function Services, for example auditEvent, checkUserPassword, 
checkUserAuthorization

� Business Function Services, for example calculateDollarValueFromYen, 
getStockPrice

� Business Transaction Services, for example checkOrderAvailability, 
createBillingRecord

� Business Process Services, for example openAccount, createStockOrder, 
reconcileAccount, renewPolicy

A service can be any business function. In an SOA however, it is preferable that 
the function is genuinely reusable. The goal of a service in SOA is that it can be 
used by one or more systems that participate in the architecture. For example, 
46 Patterns: Extended Enterprise SOA and Web Services



while the reuse of a Java logging API could be described as design time (when a 
decision is made to reuse an available package and bind it into application code), 
the intention of SOA is to achieve the reuse of services at:

� Runtime 

Each service is deployed in only one place, and remotely invoked by anything 
that must use it. The advantage of this approach is that changes to the 
service (for example, to the calculation algorithm or the reference data it 
depends on) need only be applied in a single place.

� Deployment time 

Each service is built once but redeployed locally to each system or set of 
systems that must use it. The advantage of this approach is increased 
flexibility to achieve performance targets or to customize the service (perhaps 
according to geography).

The service definition should encapsulate the function well enough to make 
reuse possible. The encapsulation of functions as services and their definition 
using interfaces enables the substitution of one service implementation for 
another. For example, the same service might be provided by multiple providers 
(such as a car insurance quote service, which might be provided by multiple 
insurance companies), and individual service consumers might be routed to 
individual service providers through some intermediary agent.

Granularity in SOA
The concept of granularity is used to mean several things in SOA, each of which 
is actually quite separate. We will not be greatly concerned with these issues but 
it is worth identifying them:

� Level of abstraction of services

Is the service a high-level business process, a lower-level business 
subprocess or activity, or a very low-level technical function?

� Granularity of service operations

How many operations are in the service: one, a few, or many? What 
determines which operations are collected together in a service?

� Granularity of service parameters

How are the input and output data of service operations expressed? SOA 
prefers a small number of large, structured parameters rather than a small 
number of primitive types.

Explicit implementation independent interfaces
Using explicit interfaces to define and encapsulate service function is particularly 
important to making services genuinely reusable. The interface should 
 Chapter 3. Beyond the enterprise 47



encapsulate only those aspects of process and behavior that are used in the 
interaction between the service consumer and the service provider. An explicit 
interface definition, or contract, is used to bind a service consumer and a service 
provider. It should specify only the mutual behavior required for the interaction, 
and nothing about the implementation by the consumer or the provider.

By explicitly defining the interaction in this way, those aspects of either system 
(for example the platform they are based on) that are not part of the interaction 
are free to change without affecting the other system. This allows either system 
to change implementation or identity freely.

The use of explicit interfaces to define and encapsulate services function is 
illustrated in Figure 3-9

I

Figure 3-9   Service implementation in SOA

Communication protocols that stress location transparency
Companies have a variety of choices when deciding how to connect applications. 
HTTP, HTTP/S, JMS, CORBA and SMTP are all examples of protocols that can 

SYSTEM 1

Internal code
and process

Service definition of reusable
business function

SYSTEM 2

Internal code
and process

Code definition of reusable
business function

INTERFACE
48 Patterns: Extended Enterprise SOA and Web Services



be used to connect applications. There are also many middleware products, for 
example WebSphere MQ, that are used to provide application-to-application 
connectivity. Even within a single company, a variety of techniques, products, and 
protocols can be used to address different integration requirements. This could 
create problems when trying to extend the integration to connect to applications 
that do not use the same protocols.

SOA does not specify that any one protocol should be used to provide access to 
a service. A key principle of SOA is that a service is not defined by its 
communication protocol, but instead the service is defined as independent of 
protocol. The benefit of being protocol-independent is that it allows different 
protocols to access the same service.

Ideally, a service should only be defined once through a service interface and 
have many implementations with different access protocols. This helps to 
increase the reusability of any service definition.

Also, services should be invoked, published, and discovered in a way that is 
abstracted away from the actual implementation using a single, standards-based 
interface. 

All of this is to say that there is a complimentary nature between SOA and Web 
services.

On Demand Business and SOA
SOA plays a crucial role for companies trying to implement the IBM vision of On 
Demand Business. The vision of IBM On Demand Business (formerly called On 
Demand Business) is to enable customers to succeed in an environment with an 
unprecedented rate of change.

In an on demand world companies need to be able to respond to any customer 
requirement, opportunity, or threat quickly and easily. To succeed in this 
environment a company must be able to implement new processes quickly while 
leveraging existing investment. From a business perspective, On Demand 
Business is about providing a way for companies to realign their business and 
technology environment to match the need for reusable business functionality. 
For a fuller discussion on IBM On Demand Business and how it relates to SOA 
refer to Chapter 10 of the IBM Redbook Patterns: Service-Oriented Architecture 
and Web Services, SG24-6303. 

SOA can be seen as an architectural enabler for On Demand Business. The 
basic relationship between SOA and On Demand Business is that SOA touches 
on the four key elements of On Demand Business:
 Chapter 3. Beyond the enterprise 49



� Open standards

– SOA provides a standard method of invoking services (business logic and 
functionality) for disparate organizations to share across network 
boundaries.

� Integration

– Interfaces are provided to wrap service endpoints to provide a 
system-independent architecture to promote cross-industry 
communication and so integrate end-to-end both inside and outside of the 
enterprise.

– SOAs can provide dynamic service discovery and binding, which means 
that service integration can occur on demand.

– SOA provides an approach to integrate heterogeneous technologies 
inside an enterprise.

� Virtualization

– A key principle of SOA is that services should be invoked by service 
consumers that are oblivious to service implementation details, including 
location, platform, and even the identity of the service provider, if 
appropriate to the business scenario.

� Automation

– Technologies such as grid technologies that apply SOA principles to 
implementing infrastructure services that provide an evolutionary 
approach to increased automation.

What are Web services?
Web services are a recent set of technology specifications that leverage existing 
proven open standards such as XML, URL, and HTTP to provide a new 
system-to-system communication standard. Based on this communication 
model, additional higher-level Web services standards have also been defined to 
address transactions, security, business processes, and so forth: the 
higher-order functions that are required to get systems, applications, and 
processes (rather than objects and components) talking to each other.

Web services learn from the way the Web revolutionized how people talk to 
systems: new customers, new business models, extensions of opportunity, new 
transparency and improved collaboration between employees and employers, 
and, in some cases, reductions in infrastructure costs and complexity. The key to 
these successes is a universal server-to-client model consistent with a highly 
distributed environment, based on simple open standards and industry support.

Web services promises to integrate one business directly with another so that the 
process does not have to wait for people to provide the glue, get your own 
50 Patterns: Extended Enterprise SOA and Web Services



business talking to itself, or your partners to provide integrated IT systems, and 
again the potential for dramatic reductions in infrastructure costs and complexity. 
Once again, the key is a universal program-to-program communication model 
based on simple open standards and industry support. 

Figure 3-10 shows the basic interaction model supported by Web services. 

Figure 3-10   Basic Web services

Basic Web services define interactions among Service Consumers, Service 
Providers, and Service Directories as follows:

Service Consumers find Web services in a UDDI Service Directory. They retrieve 
WSDL descriptions of Web services offered by Service Providers, who previously 
published those descriptions to the Service Directory. After the WSDL has been 
retrieved, the Service Consumer binds to the Service Provider by invoking the 
service through SOAP.

The basic Web services are often described in terms of SOAP, WSDL, and 
UDDI, each of which we define and discuss. However, it should be noted that 

Directory/Namespace

Service
Directory

2. Find
UDDI

1. Publish
WSDL

Client Server

Service
Provider

Service
Consumer SOAP

3. Use

http://mygateway.com/services/createOrder
<order>
    <id>1234</id>
    <customer id>AB35</customer id>
    <line>
        <item>
            <part no>127.87A</part no>
            <quantity>2</quantity>
             ...
 Chapter 3. Beyond the enterprise 51



each of these standards can be used in isolation, and there are many successful 
implementations of SOAP alone, or SOAP and WSDL, in particular.

SOAP
SOAP is an XML messaging protocol that is independent of any specific 
transport protocol. SOAP defines a framework within which messages contain 
headers, which are used to control the behavior of SOAP-enabled middleware, 
and a message body. As SOAP is an XML format, and as XML is text-based, 
SOAP is supportable in the vast majority of existing and new technical 
environments and can be transported over a vast variety of protocols.

In practice, SOAP is most often communicated over HTTP, although this is likely 
to evolve rapidly because HTTP is an unreliable protocol. (For instance, it is 
already possible to send SOAP messages through JMS implementations such as 
WebSphere MQ.) Basic SOAP also makes no reference to characteristics of 
interactions such as security and transactionality. However, as SOAP headers 
provide an extensible model, these aspects are being added gradually to the 
Web services specifications as extensibility elements, as we describe further in 
the next section. The use of SOAP over specific protocols, such as HTTP, is 
usually written as SOAP/HTTP, SOAP/JMS, and so forth.

The SOAP V1.2 specification is available from the World Wide Web Consortium, 
and deliberately does not define a meaning for SOAP as an acronym. (SOAP is 
sometimes referred to as Service Oriented Architecture Protocol, or by its 
definition in the more widely supported SOAP V1.1 specification, Simple Object 
Access Protocol.)

WSDL: Web Services Description Language
WSDL is an XML-based interface definition language that separates function 
from implementation, and enables design by contract as recommended by SOA. 
WSDL descriptions contain a PortType (the functional and data description of the 
operations that are available in a Web service), a Binding (providing instructions 
for interacting with the Web service through specific protocols, such as 
SOAP/HTTP), and a Port (providing a specific address through which a Web 
service can be invoked using a specific protocol binding).

The value of WSDL is that it enables development tooling and middleware for any 
platform and language to understand service operations and invocation 
mechanisms. For example, given the WSDL interface to a service that is 
implemented in Java, running in a WebSphere environment, and offering 
invocation through HTTP, a developer working in the Microsoft .NET platform can 
import the WSDL and easily generate application code to invoke the service.
52 Patterns: Extended Enterprise SOA and Web Services



As with SOAP headers, the WSDL specification is extensible and provides for 
additional aspects of service interactions to be specified, such as security and 
transactionality.

UDDI: Universal Description, Discovery, Integration
UDDI servers act as a directory of available services and service providers. 
UDDI can be searched a couple of ways: 

� You can use SOAP to query UDDI to find the locations of WSDL service 
definitions. 

� You can perform a search through a user interface during design or 
development. 

The original UDDI classification was based on a U.S. government taxonomy of 
businesses, and recent versions of the UDDI specification have added support 
for custom taxonomies.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom 
runs a mirror of the same directory of public services. However, there are many 
patterns of use that involve private registries; see Steve Graham’s articles:

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

SOAP/HTTP uses existing namespaces and infrastructure
One of the important potential benefits of Web services is to reduce the reliance 
of integration on specific integration technologies that require heavyweight 
deployment where such deployment would be problematic or impossible. A 
particular example of this situation is business-to-business interactions, 
particularly as they become more widespread and dynamic.

The specific use of Web services with HTTP as a communication protocol has 
some extraordinary benefits in this area. Because SOAP/HTTP uses HTTP as a 
communication protocol and URL as the addressing format, the entire global 
network of distributed, resilient routing and communications infrastructure that 
the Internet provides can be used. Allowances must be made for the unreliable 
nature of HTTP, but the advantages of a service communication protocol that is 
already deployed and globally pervasive should not be underestimated. 

Web services standards
There are many successful implementations of the basic Web Services 
standards, particularly SOAP and WSDL, but as we previously described, many 
 Chapter 3. Beyond the enterprise 53

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html


aspects of service interaction and integration are not directly supported by those 
basic standards. These integration aspects include security, transactionality, 
delivery assurance, and process modeling.

Web services standards are evolving and maturing to address these aspects of 
interaction and integration, increasing their value to SOA. In this section we cover 
some of the recent and emerging Web services standards that support more 
sophisticated aspects of service interactions and SOA.

Production-level product support for some of these standards is not yet available, 
but early implementations exist. The IBM Emerging Technologies Toolkit (ETTK), 
for example, provides an implementation of WS-ReliableMessaging. The toolkit 
can be downloaded from:

http://www.alphaworks.ibm.com/tech/ettk

Web services security
In theory, Web services can leverage any security model that is appropriate to 
the underlying communication technologies. (SOAP/HTTP can utilize basic 
HTTP authentication or SSL authentication and encryption.) However, such 
simple point-to-point models are insufficient for the widespread integration needs 
of SOA. For example:

� Communication security does not recognize the difference between SOAP 
message headers and the SOAP message body. 

� Credentials can be technology-specific for the communication mechanism, 
but inappropriate for communication mechanisms that are used farther down 
the interaction chain.

� Combining many interactions in a secure overall chain involves trust models 
between the participants in the chain. Such models are often customized or 
proprietary and are not consistent. Flexibly changing participants in the chain 
imply a technology barrier to participation.

In 2002, IBM and Microsoft proposed an architecture and roadmap for Web 
services security (WS-Security). This set out a framework consisting of several 
Web services specifications, including WS-Security, WS-Trust, WS-Privacy, and 
WS-Policy. It also accommodated existing security technologies such as 
Kerberos, XML Digital Signatures, and XML Encryption.

Support for the basic WS-Security standards is available in existing products and 
can be used to implement secure Web Services solutions. Understanding the 
security requirements of specific SOA situations and selecting appropriate 
technologies, include those compliant with the WS-Security standards, is a key 
decision in SOA implementation.
54 Patterns: Extended Enterprise SOA and Web Services

http://www.alphaworks.ibm.com/tech/ettk


Further information about security
� Security in a Web Services World: a Proposed Architecture and Roadmap

http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

WS-ReliableMessaging and SOAP/JMS
The HTTP protocol that is used widely in SOAP interactions and specified in the 
WS-I Basic Profile offers relatively poor reliability in contrast to communication 
protocols that are often associated with valuable business transactions, such as 
WebSphere MQ. Many SOA scenarios involve interactions that require a level of 
delivery assurance beyond that provided by HTTP.

The WS-ReliableMessaging specification defines a protocol for reliable 
communication (including SOAP messages) that use a variety of communication 
technologies, which might themselves be less reliable. An updated specification 
was published in March 2004, but production support is not yet available in 
middleware products.

Until WS-ReliableMessaging is widely available, alternative approaches are 
possible using implementations of SOAP over more reliable communication 
infrastructures. For example, SOAP messaging is supported through the JMS 
API to WebSphere MQ by WebSphere MQ, WebSphere Application Server, and 
WebSphere Business Integration Server Foundation. However, such approaches 
tend to be implementations by specific technology vendors so, although they are 
useful in particular SOA implementations, they do not have all of the potential 
benefits of a fully open-standard implementation.

Further information about messaging
� Updated: Web Services Reliable Messaging: A new protocol for reliable 

delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Implementation Strategies for WS-ReliableMessaging: How 
WS-ReliableMessaging can interact with other middleware communication 
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

Business Process Execution Language for Web Services
Because the encapsulation and exposure of business functions as services in an 
SOA enables the definition of processes containing those services, Business 
Process Execution Language for Web Services (WS-BPEL) provides a standard, 
XML language for expressing business processes consisting of functions that are 
 Chapter 3. Beyond the enterprise 55

http://www.ibm.com/developerworks/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/
http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/


defined through WSDL interfaces. WS-BPEL supports both short-lived and 
long-lived processes. These are processes that must wait at certain points until 
some event occurs, such as the receipt of an event.

As with WSDL, WS-BPEL has both design time and runtime uses. At design 
time, development or modeling tools can use, import, or export WS-BPEL to 
enable business analysts to specify processes. Developers can refine them and 
bind process steps to specific service implementations. However, runtime 
choreography and workflow engines can use WS-BPEL to control the execution 
of process and invoke the services that are required to implement them.

Although WS-BPEL is a relatively new standard, product support such as 
WebSphere Business Integration Server Foundation V5.1 and WebSphere 
Process Server V6 is available. This provides additional facilities to compensate 
failed processes (a proprietary equivalent to the WS-BusinessActivity standard 
described in the next section, “Web services transactions”) and provide a user 
workflow interface to enable human actions to fulfill WSDL-defined steps in a 
WS-BPEL process.

Further information about WS-BPEL
� WS-BPEL specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with WS-BPEL, a series of introductory articles and 
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� WS-BPEL support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� WS-BPEL support in WebSphere Studio Application Developer Integration 
Edition

http://www.ibm.com/software/integration/wsadie/features/

Web services transactions
Although WS-ReliableMessaging provides a means to assure the delivery of 
individual communications in a Web services interaction, a means is also 
required to control the integrity of business transactions in an SOA that consist of 
one or more Web services invocations or interactions. 

Within the framework of the Web services coordination (WS-Coordination) 
specification, both synchronous (WS-AtomicTransaction) and long-lived 
(WS-BusinessActivity) transaction models have been defined. These replace the 
previous WS-Transaction specification.
56 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/
http://www.ibm.com/software/integration/wbisf/features/


The WS-AtomicTransaction specifies a model for synchronous, two-phase 
committal of distributed transactions using Web services protocols. 
WS-BusinessActivity defines an asynchronous model for compensating failed 
processes using undo actions to reverse the affects of individual steps of the 
process. Neither specification has mature product support to date.

Further information transactions
� WS-AtomicTransaction specification 

http://www.ibm.com/developerworks/library/ws-atomtran/

� WS-BusinessActivity specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� Transactions in the world of Web Services, part 1 and part 2 

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination specification

http://www.ibm.com/developerworks/library/ws-coor/

Web Services Policy Framework (WS-Policy)
The Web Services Policy Framework is intended to provide a set of languages by 
which service consumers and providers can express their requirements and 
capabilities for qualities of service of service interactions, such as security, 
transactionality, and communication reliability. Eventually a framework of such 
languages, supported by Enterprise Service Bus middleware, will enable 
open-standard implementations of negotiated coupling between various aspects 
of service interactions.

A WS-Policy specification is available, although specific policy languages for 
quality of service aspects such as security are still required, and product support 
has yet to emerge.

Further information about WS-Policy
� WS-Policy framework specification

http://www.ibm.com/developerworks/library/ws-polfram/

� Web Services Policy Framework: New specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/
summary.html

Web Services Resource Framework (WS-ResourceFramework)
As we write this redbook, WS-ResourceFramework is an architectural proposal 
rather than a standard. However, WS-ResourceFramework relates to some 
 Chapter 3. Beyond the enterprise 57

http://www.ibm.com/developerworks/library/ws-atomtran/
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/library/ws-coor/


aspects of SOA that we have only touched on in discussing Web services, 
principally the design, rather than the technical implementation of services.

To enable middleware to provide increasingly sophisticated support for such 
stateful interactions, the Web Services Resource Framework provides a model 
for associating Web services with stateful resources (for example data such as 
rows in a database), as opposed to stateful processes (as can be accomplished 
with WS-BPEL). In essence, WS-ResourceFramework is essentially a model for 
making Web services middleware and infrastructure aware of stateful identifiers 
such as transaction IDs.

Further information about WS-ResourceFramework
� WS-ResourceFramework overview

http://www.ibm.com/developerworks/webservices/library/ws-resource/
ws-wsrfpaper.html

What are the advantages of SOA and Web services?
Using SOA has the following advantages in achieving loosely coupled, flexible 
integration of IT systems:

� Using implementation-independent interfaces to describe services means 
that heterogeneous systems can be integrated.

� Describing service interfaces in terms of a common business process and 
data model minimizes any interdependencies to only what matters to the 
business.

� Encapsulating services with standard interfaces enables reuse and flexibility. 
Each service is defined and implemented in only one place, so changing it is 
straightforward.

There are benefits for development and maintenance costs too, but flexibility is 
the primary goal of SOA. 

With clearly defined interfaces between all business systems, it is possible to 
model and change the business process captured by them at a level above 
individual systems. This means SOA is an enabler for process modelling and 
automation at the enterprise scale.

Currently, and for some time to come, many of the technologies used to 
implement SOAs are evolving rather than mature and stable. Therefore, 
individual SOA solutions must make carefully balanced decisions among 
customized, proprietary, and open-standard technologies, which SOA 
characteristics and components to implement, and which areas of business 
function and process to which to apply them. Of course, these decisions will be 
58 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpaper.html


balanced between business benefits, technology maturity, and implementation or 
maintenance efforts.

3.3.2  Traditional approaches
Traditionally, integration approaches to any extended enterprise scenarios are 
technology-centric. Organizations that want to integrate their systems select a 
product- or platform-related solution based on the installed infrastructure and 
communications protocols to be used between the partner systems. 

While this approach can be seen as inflexible and inappropriate for any 
integrations crossing departmental or organizational boundaries, there are a 
number of scenarios which still favor a more traditional integration over the use of 
SOA and Web services. The following list represents examples where a more 
traditional approach would be favored over the use of SOA:

� A low number of static integration points

There are a number of situations where the integration between two systems 
can be seen as contained and static, and will not require any future additional 
integrations or constant changes. In this scenario, there are limited drivers for 
implementing the integration using SOA principles.

A good example of this is the integration between two systems on a 
production line. While the overriding production process might change 
(alterations in design or change of production model, for example), there is 
limited scope for the communication protocol or implemented technology 
changing frequently. In this situation, the performance and development gains 
obtained by the tight-coupling is preferable to the benefits obtained by SOA 
principles.

� High dependency on real-time communication

While it might not be a big issue in day-to-day transactional enterprise 
integrations, a number of systems rely on real-time communication. A good 
example is an early warning missile system that has to detect an attack, and 
facilitate a counter-attack with minimal or no delay. In this scenario, a 
five-minute delay in a queue is not be acceptable. Another example is any 
delay in having to translate a transaction request from any proprietary to open 
standards.

Most business systems however, can be viewed in a very different light. If we 
look at most business scenarios for any extended enterprise, the need for 
flexibility and open standards support is more critical.

� Within a homogeneous environment

Admittedly, there are few enterprises these days that are running a true 
homogeneous environment. But in scenarios where you are connecting 
 Chapter 3. Beyond the enterprise 59



together two systems which are built and deployed on identical platforms , the 
need for open standards is reduced.

While this scenario is probably more relevant to smaller, specialized 
organizations, there are instances in any integration where this could be true. 
One example which is commonly repeated is the integration of ERP based 
systems, such as SAP, between business partners where the application and 
protocols are the same. In this scenario, there are benefits in both the SOA 
and traditional approach to system integration. The selection then, must be 
based on both future change cases and frequency of change.

� Technology centric integrations

In some integration scenarios, the integration is focused on the technology 
requirements rather than the business operations or interactions. In general 
this would be related to micro level integrations, such as within a service.

An example of this could be the interactions between a number of Java or 
.NET components within an application, or the interaction between a number 
of CICS Transaction Server transactions. We use a technology-centric 
integration approach to facilitate the interactions between these components 
at the micro level, but externalize the operations in a open standards-based 
interface at the macro level.

3.3.3  Ensuring quality of service
The following quality of service concerns are of particular importance when 
working in the Extended Enterprise domain.

Availability
High availability can be a particularly significant issue in the interenterprise 
integration domain. It is important that you use careful availability management to 
provide acceptable levels of customer service or, in some cases, to meet 
contractual obligations regarding the availability of the application service being 
provided.

Federation
To avoid overlap and inconsistencies in the implementation and management of 
an interenterprise application integration scenario, it is crucial to clearly define 
and agree to the responsibilities of each partner. In particular, agreed upon 

Important: This profile is intended as a rough preliminary guide to quality of 
service concerns that differentiate this domain, high-level architectural design. 
However, it is not a substitute for thorough analysis at a later design stage.
60 Patterns: Extended Enterprise SOA and Web Services



mechanisms are needed to pass resource and user authentication and 
authorization information between domains.

Performance
With interenterprise application integration, components of the end-to-end 
solution are outside the enterprise boundaries and cannot be directly influenced. 
A client to an external application will find it difficult to control such variables as 
response time, workload, and availability.

To minimize such dependencies, consider loosely coupled and reliable 
communications.

Security
This topic includes a range of complex issues. For the purpose of this discussion, 
the communication channel is secured by using firewalls and proper 
authentication, authorization, and so forth.

In addition, we secure the exchange of the data itself. In the case of an 
intraenterprise scenario, it can be sufficient to use a trustworthy network. For 
interenterprise communication, this is most likely not possible. There is a need to 
protect (encrypt) the data and be certain of the sender's identity (signature).

Standards compliance
To enable interoperability between enterprises, standards compliance is a key 
capability in the interenterprise integration domain. Widely accepted public 
standards normally are required to have agreement between partners. There is 
also usually a need for compatibility with standard firewalls when communicating 
between trusted private networks and untrusted networks, such as the Internet.
 Chapter 3. Beyond the enterprise 61



62 Patterns: Extended Enterprise SOA and Web Services



Chapter 4. Extended Enterprise pattern

The Extended Enterprise business pattern from the Patterns for e-business, also 
known as the Business-to-Business (B2B) pattern, addresses the interactions 
and collaborations between business processes in separate enterprises. This 
pattern can be observed in solutions that implement programmatic interfaces to 
connect interenterprise applications. It does not cover applications that are 
directly invoked through a user interface by business partners across 
organizational boundaries.

4

Note: The Application patterns for Extended Enterprise are basically the 
implementation of Application Integration across organizational boundaries. 
The difference is mainly how quality of service aspects affect the Runtime 
patterns.
© Copyright IBM Corp. 2006. All rights reserved. 63



4.1  Using the Extended Enterprise business pattern
Table 4-1 shows some cross-industry examples of the Extended Enterprise 
pattern.

Table 4-1   Cross-industry examples

Table 4-2 lists some industry-specific example applications that can be 
implemented though the Extended Enterprise pattern.

Table 4-2   Industry-specific examples

If you are not yet sure that your business problem can be solved by the 
functionality enabled through an Extended Enterprise solution design, the 

Service Examples

Buy Side � Direct Procurement
� Indirect Procurement
� Supply chain execution

Sell Side � B2B e-commerce (Distributors)

Trading Partner® Modernization � EDI modernization

Exchange Participation � Private e-exchanges
� Public e-exchanges

Industry Example applications

Manufacturing � Supply chain planning
� Supply chain execution
� Vendor-managed inventory

Travel � Checking flight or room availability
� Making or modifying reservations

Retail � Checking supplier inventory
� Placing replenishment orders
� Paying suppliers automatically

Financial � Transferring payments
� Checking account balances
� Obtaining credit information
� Loan origination
� Processing securities

Telecommunication � OSS integration
� Cross-organization order management
� Managed service provider interconnect
64 Patterns: Extended Enterprise SOA and Web Services



guidelines in the next section provide additional information about choosing this 
business pattern. Business and IT drivers, the e-business context appropriate for 
this solution type, and additional solution details are discussed here.

If you determine that the Extended Enterprise business pattern can provide an 
appropriate solution design for your business needs, the next step is to select an 
Application pattern. The Extended Enterprise business pattern can be 
implemented using any one of three Application patterns discussed here. They 
provide solution flexibility so that the selected Business pattern can address the 
specific needs of the business process being automated.

4.2  General guidelines
This section details a business and IT scenario for an Extended Enterprise 
solution and helps you to determine whether the Extended Enterprise business 
pattern is appropriate for your interenterprise application integration.

4.2.1  Business and IT drivers
Use the Extended Enterprise business pattern if your business is developing a 
solution with the following characteristics:

� The business processes need to be integrated with existing business systems 
and information.

� The business processes need to integrate with processes and information 
that exist at partner organizations.

4.2.2  Context
Figure 4-1 on page 66 illustrates the general problem addressed by this pattern. 
Interactions between partners form a public process, or potentially multiple public 
processes. Each of these processes must be integrated into the private business 
process flows of each partner. Such integration can be as simple as passing data 
to a particular application, or as sophisticated as initiating or resuming a 
multistep workflow involving several applications and user interactions. 

For example, Partner A, the source application, and Partner B, the target 
application, agree upon sharing specific business processes and a process flow. 
Partner A invokes a public process flow that, in turn, invokes a private, internal 
process flow within Partner B’s organization. Partner A is not concerned with the 
details of Partner B’s private process flow. Instead, Partner A cares only about 
the results that it expects in response to the invoked process in Partner B.
 Chapter 4. Extended Enterprise pattern 65



Figure 4-1   Extended Enterprise context

The golden rule of business-to-business integration is that it is better to know 
less about the trading partner's private processes and the implementation details 
of their applications. This loose coupling enables organizations to evolve their 
applications without affecting trading partner's applications.

Obviously, specific functionality supported by these applications depends on the 
particular details of the trading partner agreements and service level agreements 
between the organizations involved. Yet a survey of such applications in multiple 
industries reveals certain common approaches that have been successful. These 
commonalities of success are harvested as the various Application patterns that 
can be used to implement this Business pattern.

For example, consider the case of a company that wants to integrate their retail 
organization with a range of external manufacturers. The Extended Enterprise 
pattern improves organizational efficiency and reduces the latency of business 
events by integrating the external manufacturers with the inventory 
replenishment system and reducing the likelihood of unfilled orders. The 
Extended Enterprise pattern also applies a structured exchange with trading 
partners and supports real-time access to and from applications. This allows the 
resellers to receive the benefits of an updated inventory and receive real-time 
notice of any out of stock items.

The Extended Enterprise pattern also allows this company to minimize 
application complexity and to integrate their applications with resellers that have 
unique infrastructure designs. They can leverage their current skills and existing 
investments, while eliminating the need for extensive retraining and infrastructure 
investments.

Nonshared
business

processes

Nonshared
business

processes

Nonshared
business

processes

Nonshared

Process
flow

Nonshared
business

processes

Nonshared
business

processes

Nonshared
business

processes

Partner A

Nonshared

Process
flow

Nonshared
business

processes

Nonshared
business

processes

Shared
business

processes

Shared

Process
flow

Partner B
66 Patterns: Extended Enterprise SOA and Web Services



4.2.3  Solution
The Extended Enterprise pattern may consist of all or some of the following 
elements:

� Business entities consisting of programs, applications, or databases that exist 
within an organization and need access and connection to other business 
entities across the network.

� A network that:

– Is based on TCP/IP and other Internet technologies
– Can be a dedicated wide area network (WAN) connection

� Business rules that:

– Manage the integration between the business entities

– Describe trading partner agreements

– Use workflow rules to determine the sequence of steps and the data flow 
that needs to be used to facilitate the integration. These rules:

• Describe the sequence of steps that a message needs to go through 
before transferring to the other business entity

• Specify how and where the message should be delivered

– Use transformation rules to specify format and protocol transformations 
that need to be applied to messages that flow between the business 
entities

� A set of interactions that includes the execution of a jointly-agreed business 
process

� Patterns based on those described by the business interaction patterns 
framework

4.2.4  Employing the pattern
This pattern can be observed in such solutions as:

� A manufacturer or wholesaler enabling external resellers to place orders to 
their inventory management system

� Extended value chain functions within e-Marketplaces that support 
cross-enterprise processes such as demand planning and collaborative 
design

4.2.5  What is next?
If you determine that the Extended Enterprise business pattern can provide an 
appropriate solution design for the application you are developing, then selecting 
 Chapter 4. Extended Enterprise pattern 67



an appropriate Application pattern is your next step. If the Extended Enterprise 
business pattern is not appropriate for your development efforts, review the 
Business patterns again to determine which pattern best addresses your 
e-business needs.

4.3  Extended Enterprise application patterns
We present the Extended Enterprise Application patterns in order of increasing 
flexibility and sophistication. As the Application patterns build on each other, their 
capabilities and reliance on middleware increase, and they require less 
application development. Use the graph show in Figure 4-2 to select the 
Application pattern that best fits your requirements.

Figure 4-2   The Extended Enterprise application patterns

Note: While the Exposed Parallel Process Application pattern is another 
possibility, it is not currently being observed in the Extended Enterprise 
domain. We expect the Exposed Parallel Process Application pattern to 
appear at a later stage. 

Exposed Direct Connection
Variations: Message/Call Connection

No Yes

N
o

Ye
s

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Source
Application

Target
Application

Exposed Broker
Variation: Exposed Router

Exposed Serial Process
Variation: Exposed Serial Workflow

Connection
Rules

Target
ApplicationSource

Application
Broker
Rules

Target
ApplicationTarget

Application

Target
ApplicationSource

Application

Serial
Process
Rules
Tier

Target
ApplicationTarget

Application
68 Patterns: Extended Enterprise SOA and Web Services



Business and IT drivers
Table 4-3 and Table 4-4 on page 70 summarize the business and IT drivers for 
the Extended Enterprise application patterns and their variations.

Table 4-3   Business drivers

Business drivers

E
xp

o
se

d
 D

ir
ec

t 
C

o
n

n
ec

ti
o

n
M

es
sa

g
e 

co
n

n
ec

ti
o

n

E
xp

o
se

d
 D

ir
ec

t 
C

o
n

n
ec

ti
o

n
C

al
l c

o
n

n
ec

ti
o

n

E
xp

o
se

d
 R

o
u

te
r 

va
ri

at
io

n

E
xp

o
se

d
 B

ro
ke

r

E
xp

o
se

d
 S

er
ia

l P
ro

ce
ss

E
xp

o
se

d
 S

er
ia

l W
o

rk
fl

ow
 

va
ri

at
io

n

Improve organizational efficiency

Reduce the latency of business events

Support a structured exchange with business partners

Support real-time one-way message flows to partner 
processes

Support real-time request/reply message flows to partner 
processes

Support dynamic routing of message between partners to 
one of many target applications

Support dynamic distribution of message between partners 
to multiple target applications

Support automated coordination of business process flow 
between partners

Support human interaction and intervention within the 
process flow between partners
 Chapter 4. Extended Enterprise pattern 69



Table 4-4   IT drivers

IT drivers

E
xp

o
se

d
 D

ir
ec

t 
C

o
n

n
ec

ti
o

n
M

es
sa

g
e 

co
n

n
ec

ti
o

n

E
xp

o
se

d
 D

ir
ec

t 
C

o
n

n
ec

ti
o

n
C

al
l c

o
n

n
ec

ti
o

n

E
xp

o
se

d
 R

o
u

te
r 

va
ri

at
io

n

E
xp

o
se

d
 B

ro
ke

r

E
xp

o
se

d
 S

er
ia

l P
ro

ce
ss

E
xp

o
se

d
 S

er
ia

l W
o

rk
fl

o
w

 
va

ri
at

io
n

Minimize total cost of ownership (TCO)

Leverage existing skills

Leverage the existing investment

Enable back-end application integration

Minimize application complexity

Minimize enterprise complexity

Improve maintainability

Improve flexibility by externalizing process logic from 
application logic

Support long running transactions
70 Patterns: Extended Enterprise SOA and Web Services



Legend for Extended Enterprise application patterns
The conventions shown in Figure 4-3 are used to describe the Extended 
Enterprise application patterns in illustrations that follow.

Figure 4-3   Application pattern diagram conventions

4.3.1  Exposed Direct Connection application pattern
The Exposed Direct Connection application pattern represents the simplest 
interaction type based on a one-to-one topology. It allows a pair of applications to 
directly communicate with each other across organization boundaries. 
Interactions between a source and a target application can be arbitrarily 
complex. Generally, complexity can be addressed by breaking down interactions 
into more elementary interactions.

More complex point-to-point connections have modeled connection rules, such 
as business rules, associated with them, as shown in Figure 4-4 on page 72. 
Connection Rules generally control the mode of operation of a connector, 
depending on external factors. Examples of Connection Rules are:

� Business data mapping rules (for adapter connectors)
� Autonomic rules (such as priority in a shared environment)
� Security rules
� Capacity and availability rules

Transient data
Work in progress
Cached committed 
data
Staged data
(data replication flow)

Application node containing 
existing code with no need
for modification for this project
or that cannot be changed.

Read/write data

Read only data

Application node 
containing new or modified 
code for this project.
A set of applications whose 
characteristics are unspecified.  
Only the means with which
to interact with them is specified.

A small solid circle indicates the initiating node.

A single arrow indicates that a response is not needed.

Double arrows indicate that a response is needed.
 Chapter 4. Extended Enterprise pattern 71



Figure 4-4   Exposed Direct Connection application pattern

The Exposed Direct Connection application pattern has two variations:

� Message Connection variation
� Call Connection variation

All applications of the Direct Connection application pattern are one variation or 
the other. The variation required depends on whether the initiating source 
application needs an immediate response from the target application to proceed 
with execution.

Both variations can be used either with synchronous or asynchronous 
communication protocols. However, there are preferences for a specific protocol 
type, depending on the variation. For example, the Call Connection variation has 
a more natural fit with synchronous protocols. The Message Connection variation 
favors asynchronous protocols.

We examine these two variations in more detail later in this section.

Business and IT drivers
The business and IT drivers for choosing the Exposed Direct Connection 
application pattern are to:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange with business partners
� Support real-time one-way message flows to partner processes
� Support real-time request/reply message flows to partner processes
� Leverage existing skills

Note: The Connection Rules component is not needed when no modeled 
rules are associated with the connection.

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zone

Target
Application

Source
Application

Connection
Rules
72 Patterns: Extended Enterprise SOA and Web Services



� Leverage the existing investment
� Enable back-end application integration
� Minimize application complexity

The primary goal of the Exposed Direct Connection application pattern is to 
permit an application to gain direct and real-time access to another application 
that is outside the organization to reduce the latency of business events.

Solution
The Exposed Direct Connection application pattern, as shown in Figure 4-4 on 
page 72, is divided into a number of logical components:

� The Source Application tier represents one or more applications that are 
interested in initiating an interaction with the target application in another 
organization.

� The Connection is the line between the source application and the target 
application representing a point-to-point connection between the two 
applications.

� The Connection Rules tier represents any business rules associated with the 
connection, such as data mapping rules and security rules.

� The Target Application tier represents a new application, a modified existing 
application, or an unmodified existing application. This application is 
responsible for implementing the necessary business services.

Because this application is directly exposed across organizational boundaries, it 
must implement or exploit the necessary security features such as 
authentication, authorization, confidentiality, integrity, and logging for 
non-repudiation purposes.

Guidelines for use
Direct integration between applications can be inflexible. That is any changes to 
one application can have knock-on, unexpected, effects on other applications. 
This is especially dangerous when integrating across organizational boundaries. 
Any changes to the exposed target application might require changes to many 
partner applications. Such changes can be both expensive and time-consuming.

You can minimize such knock-on effects by using document-based adapters that 
wrap the applications in the exposed connection. Document-based adapters are 
small programs that convert the mutually agreed upon messages into application 
programming interface (API) calls to existing or new back-end applications. This 
layering technique isolates the exposed applications from partner applications 
and increases flexibility. Any changes to these exposed applications only impact 
the adapter, provided there is no need to change the mutually agreed upon 
messages.
 Chapter 4. Extended Enterprise pattern 73



The message definition should be generalized to further promote flexibility. Do 
not tightly couple messages with back-end application APIs. Rather the message 
should capture all the necessary information required for that logical interaction 
across business boundaries. Such generalization helps to cope with changes to 
the back-end application API without changing the agreed upon message format.

Benefits
The use of this pattern allows the complete integration of applications belonging 
to different companies, assuring a real-time and service-oriented access to 
external data and processes. Source and target applications are clearly 
decoupled, as are business logic and communication details. Therefore, it is 
possible to develop different parts of the whole system independently.

Limitations
This pattern implements a direct connection between the source and target 
application. Therefore, this pattern cannot be used for the intelligent routing of 
requests, decomposition and recomposition of requests, or for invoking complex 
business process workflow as a result of a request from a partner application. 
Under such circumstances, consider a more advanced Application pattern, such 
as Exposed Broker or Exposed Serial Process.

4.3.2  Exposed Direct Connection: Message Connection variation
The Message Connection variation, shown in Figure 4-5, applies to solutions 
where the business process does not require a response from the exposed target 
application within the scope of the interaction.

Figure 4-5   Message Connection variation

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zone

Target
Application

Source
Application
74 Patterns: Extended Enterprise SOA and Web Services



Business and IT drivers
The business and IT driver for choosing the Message Connection variation of the 
Direct Connection application pattern is to support real-time, one-way message 
flows. The main driver for selecting this variation is when the business process 
has no interest in the result of the operation. This variation also has the most 
natural fit when message-oriented middleware is used, such as IBM WebSphere 
MQ.

4.3.3  Exposed Direct Connection: Call Connection variation
The Call Connection variation, shown in Figure 4-6, applies to solutions where 
the business process depends on the exposed target application to process a 
request and return a response within the scope of the interaction.

Figure 4-6   Call Connection variation

Business and IT drivers
The business and IT driver for choosing the Call Connection variation of the 
Direct Connection application pattern is to support real-time request/reply 
message flows. The main driver for selecting this variation is when the business 
process requires a result message in the interaction.

Note: We do not show the Connection Rules box in Figure 4-5 because we 
want to focus on the connection itself.

Note: We do not show the Connection Rules box in Figure 4-6 because we 
want to focus on the connection itself.

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zone

Target
Application

Source
Application
 Chapter 4. Extended Enterprise pattern 75



4.3.4  Exposed Broker application pattern
The Exposed Broker application pattern, shown in Figure 4-7, is based on a 
one-to-n topology that separates distribution rules from the applications. It allows 
a single interaction from a partner’s source application to be distributed to 
multiple target partner applications concurrently.

Figure 4-7   Exposed Broker application pattern

The Exposed Broker application pattern applies to solutions where the source 
application starts an interaction that is distributed to multiple target applications 
across organization boundaries. It separates the application logic from the 
distribution logic based on broker rules. The decomposition and recomposition of 
the interaction is managed by the Broker Rules tier.

The Exposed Broker pattern reuses the Exposed Direct Connection pattern to 
provide connectivity between the tiers. The Broker Rules tier can support the 
Message Connection variation or Call Connection variation (or both variations) of 
the Exposed Direct Connection pattern.

Business and IT drivers
The primary business driver for selecting this Application pattern is to permit one 
application to interact with one or more of multiple partner applications across 
organization boundaries. Using a hub-and-spoke architecture instead of a 

Partner B

Partner A

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zones

Source
Application

Broker
Rules

Target
Application

Target
Application

WIP

Broker Rules
& WIP Results

Partner C

Target
Application
76 Patterns: Extended Enterprise SOA and Web Services



point-to-point architecture allows for the seamless integration of applications 
while minimizing the complexity. 

A request for information can be routed to one of many targets or simultaneously 
to multiple targets. The resulting request message can be decomposed into 
multiple request messages. The reply messages are then recomposed into a 
single reply message using the appropriate recomposition rules. This 
externalization of routing, decomposition, and recomposition rules from individual 
source and target applications increases the maintainability and flexibility and 
reduces the enterprise-wide integration complexity.

The primary IT driver for selecting this Application pattern is to permit loose 
coupling of clients and services with minimum modification to each. The solution 
should allow for multiple transmission protocols to be used and for transformation 
of protocols between client and service. 

Solution
This Application pattern, as shown in Figure 4-7 on page 76, is divided into 
several logical components:

� The Source Application tier represents one or more applications that are 
interested in interacting with the target applications in another organization.

� The Broker Rules tier reduces the proliferation of direct connections. In 
addition, it supports message routing, decomposition and recomposition, and 
message enhancement and transformation. These rules are often captured 
as business rules that govern the behavior of the broker tier. This tier also 
uses a work-in-progress data store to retain the intermediate results from the 
responses coming back from target applications until all the necessary 
responses are received.

� The Target Application tier represents new, modified existing, or unmodified 
existing applications in a partner organization. These applications are 
responsible for implementing the necessary business services.

Guidelines for use
To increase the flexibility of the solution and responsiveness to changing 
business requirements, we recommend that you pay particular attention to the 
definition of reusable messages and services that pass through the Broker Rules 
tier.

Use robust transaction processing systems to implement the back-end 
applications to ensure availability, scalability, and performance.
 Chapter 4. Extended Enterprise pattern 77



A decomposition implementation (one source message to multiple target 
messages) requires state persistence and re-composition of the response 
messages.

Use standards where possible to minimize future changes required to the source 
and target applications. This is particularly important in an interenterprise 
solution.

Security is a primary concern when opening up business processes to external 
organizations. The solution should include robust security mechanisms to protect 
resources.

Benefits
The benefits of this Application pattern are:

� It allows the integration of multiple, diverse applications between partner 
organizations.

� It minimizes the impact to existing applications.

� The broker provides routing services, relieving the source application from 
being aware of the target application. 

� The broker provides transformation services that allow the source and target 
to use different communication protocols.

� The broker can provide decomposition and recomposition of messages, 
allowing one request from the source to be satisfied using multiple target 
applications. The fact that the response is a composite of multiple requests 
and responses is hidden from the source application.

� The use of a central broker minimizes the impact of changes in the location of 
the target application.

Limitations
You must implement logic at the broker for routing, decomposition, and 
recomposition tasks. 

4.3.5  Exposed Broker: Router variation
The Router variation of the Exposed Broker application pattern, shown in 
Figure 4-8 on page 79, applies to solutions where the partner’s source 
application initiates an interaction that is forwarded to, at most, one of multiple 
target applications. The selection of the target application is controlled by the 
distribution rules that govern functioning of the connector component.
78 Patterns: Extended Enterprise SOA and Web Services



Figure 4-8   Router variation

Business and IT drivers
The requirements and their solution are less complex than those defined by the 
Exposed Broker application pattern in that the decomposition of messages and 
transmission to multiple targets simultaneously are not required.

This pattern is also applicable to the one-to-one application integration scenario. 
In this case, the source and target do not adhere to the same message and 
interface formats. Therefore, they require a transformation service in the 
Enterprise Application Integration (EAI) infrastructure. 

Solution
This Application pattern, as shown in Figure 4-8 on page 79, is divided into 
several logical components:

� The Source Application tier represents one or more applications that are 
interested in interacting with the target partner applications, one target at a 
time.

� The Router Rules tier represents any business rules associated with the 
message handling, such as routing and transformation. It receives requests 
from multiple source applications and routes them intelligently to the 
appropriate partner applications. This tier implements minimal business logic.

Partner B

Partner A

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zones

Source
Application

Router
Rules

Target
Application

Target
Application

Partner C

Target
Application

R/O

Router Rules
 Chapter 4. Extended Enterprise pattern 79



� The Target Application tier represents new, modified, existing, or unmodified 
existing applications. These applications are responsible for implementing the 
necessary business services.

Guidelines for use
The guidelines for this Application pattern are the same as those for the Exposed 
Broker application pattern.

Benefits
The benefits of this Application pattern are:

� It allows the integration of multiple, diverse partner applications.

� It minimizes the impact to existing applications.

� It provides routing services, relieving the source application from being aware 
of the target application.

� It provides transformation services that allow the source and target to use 
different communication protocols.

� The use of a central router minimizes the impact of changes in the location of 
the target application.

Limitations
With the Router variation, there is limited ability in the router to manipulate the 
requests. It performs intelligent routing and protocol transformation. However, it 
does not have the ability to send simultaneous requests to the target applications 
based on one incoming request, nor does it have the ability for decomposition or 
recomposition.

4.3.6  Exposed Serial Process application pattern
The Exposed Serial Process application pattern, shown in Figure 4-9 on 
page 81, extends the one-to-n topology provided by the Exposed Broker 
application pattern by facilitating the sequential execution of business services 
hosted by a number of target applications. It enables the orchestration of a serial 
business process across enterprise boundaries, in response to an interaction 
initiated by the source application. 
80 Patterns: Extended Enterprise SOA and Web Services



Figure 4-9   Exposed Serial Process application pattern

The Exposed Serial Process application pattern separates the process logic from 
application logic that is distributed across organization boundaries. The process 
logic is governed by Serial Process Rules that define execution rules for each 
target application, together with control flow and data flow rules. It can also 
include any necessary adapter rules.

Business and IT drivers
The primary business driver for selecting this Application pattern is to support the 
automated coordination of business process flow between partners. From an IT 
perspective, the key driver for selecting this Application pattern is to improve the 
flexibility and responsiveness of IT by externalizing the process flow logic from 
the application logic.

Solution
The Exposed Serial Process application pattern is broken down into three logical 
tiers:

� The Source Application tier represents an application in another organization 
that is interested in interacting with the Exposed Serial Process.

� The Serial Process Rules tier supports most of the services provided by the 
broker tier in the Exposed Broker application pattern, including the routing of 
requests, protocol conversion, message broadcasting, and message 
decomposition and recomposition. In addition, it supports the separation of 
business process flow logic from individual application logic. 

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zone

Source
Application

Serial 
Process
Rules

WIP

Intermediate
Results

R/O

Process 
Execution

Rules

Target
Application
Target

Application
Target

Application
 Chapter 4. Extended Enterprise pattern 81



The process logic is governed by serial process rules that define execution 
rules for each target application, together with control flow and data flow rules. 
It can also include any necessary adapter rules. The combination of these 
process execution rules is stored in read-only databases. This externalization 
of process flow logic is essential for the implementation of a flexible and 
responsive IT environment that can respond quickly to changing business 
needs. It also makes it possible to compose new end-to-end processes by 
combining different business services provided by different applications. 
Finally, this tier uses a work-in-progress (WIP) database to store the 
intermediate results from the execution of different process steps. 

� The Target Application tier represents new, modified, existing, or unmodified 
existing applications that are responsible for implementing the necessary 
business services.

Guidelines for use
The flexibility and responsiveness provided by this Application pattern heavily 
depend on the externalization of process execution logic from individual partner 
applications. Applications that are based on a service-oriented architecture 
(SOA) approach, which have well-defined and coarse-grained business services 
that represent a unit of work, are better suited for participation in this Application 
pattern. You must be able to compose these business services into an 
end-to-end process flow. A given service may need to participate in more than 
one end-to-end process.

Standards should be used where possible to minimize future changes required to 
the source and target applications. This is particularly important in an 
inter-enterprise solution.

Security is a primary concern when opening business processes to external 
organizations. The solution should include robust security mechanisms to protect 
resources.

Benefits
The Exposed Serial Process application pattern improves the flexibility and 
responsiveness of an organization. It does this by implementing end-to-end 
process flows across organization boundaries and by externalizing process logic 
from individual applications. In addition, it provides a foundation for automated 
support for Business Process Management that enables the monitoring and 
measurement of the effectiveness of business processes.

Limitations
This Application pattern is ideally suited for straight-through processing where 
human interactions are not necessary to complete an end-to-end process. If 
82 Patterns: Extended Enterprise SOA and Web Services



support for human interactions is needed to complete certain process steps, 
consider the Workflow variation of this Application pattern. 

Similarly it does not support the parallel execution of multiple tasks. As the 
process composition technologies mature, we expect to see more widespread 
use of the Exposed Parallel Process application pattern in Extended Enterprise 
scenarios.

4.3.7  Exposed Serial Process: Workflow variation
The Workflow variation of the Exposed Serial Process application pattern, shown 
in Figure 4-10, extends the basic serial process orchestration capability by 
supporting human interaction for completing certain process steps.

Figure 4-10   Exposed Serial Workflow variation

Business and IT drivers
All the business and IT drivers listed under the Exposed Serial Process 
application pattern also apply to this variation. The additional business driver for 
selecting this variation is the need to support human interaction and intervention 
within the process flow between partners. Support for long-running transactions 

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zone

Source
Application

Serial 
Workflow

Rules

WIP

Intermediate
Results

R/O

Process 
Execution

Rules including
Task-resource relationship

Target
Application
Target

Application
Target

Application

Human 
Interaction
Resolution
 Chapter 4. Extended Enterprise pattern 83



is another IT driver. This is often a prerequisite for the automation of complex 
process flows involving human interaction.

Solution
The Serial Workflow variation is broken down into three logical tiers:

� The Source Application tier is the same as for the Exposed Serial Process 
application pattern.

� The Serial Workflow Rules tier supports all the services provided by the serial 
process rules tier within the Exposed Serial Process application pattern. In 
addition, it supports certain tasks within the process to be routed to a person 
or people for completion. To accomplish this, the process execution rules are 
augmented with task-resource relationships that define which resources are 
capable of performing which tasks.

In this context, consider the following points:

– A task is a portion of the end-to-end process.
– Resources are capable of executing these tasks.
– People, departments, and target applications can all be resources capable 

of executing a particular task.

This tier resolves the task-resource relationship during the execution of a 
process. If the need for human interaction is identified, the task is added to a 
work list associated with an individual or a department as a work item to be 
completed by a person. The process is typically suspended until the 
completion of the task. 

Finally, this tier provides support for long-running transactions. It uses a WIP 
database to store the intermediate results from the execution of different 
process steps until the complete execution of the end-to-end process.

� The Target Application tier is the same as for the Exposed Serial Process 
application pattern.

Guidelines for use
The following guidelines apply to this variation in addition to the guidelines that 
are documented in the Exposed Serial Process application pattern. We 
recommend that people-based exception handling be implemented for the 
majority of the automated tasks within the process. If an automated task reaches 
certain error conditions, people must be able to intervene and handle the 
exceptions.
84 Patterns: Extended Enterprise SOA and Web Services



Benefits
The Exposed Serial Workflow application pattern improves the flexibility and 
responsiveness of an organization. It implements end-to-end process flows 
across organization boundaries that externalize process logic from the individual 
application. Further flexibility is introduced by the externalization of task-resource 
resolution rules.

In addition, it provides a foundation for automated support for Business Process 
Management. This enables monitoring and measurements of the effectiveness of 
business processes.

Limitations
Exposed Serial Process: Workflow variation does not support the parallel 
execution of multiple tasks. As the process composition technologies mature, we 
expect to see more widespread use of the Exposed Parallel Workflow variation in 
Extended Enterprise scenarios.
 Chapter 4. Extended Enterprise pattern 85



86 Patterns: Extended Enterprise SOA and Web Services



Chapter 5. Product descriptions

This chapter describes products that are discussed and used throughout this 
book for both development and runtime activities. The products described are:

� IBM WebSphere Application Server V6

� IBM DB2 Universal Database Enterprise Server Edition V8.2

� IBM Cloudscape

� IBM WebSphere MQ V5.3

� IBM WebSphere Business Integration Message Broker V5.0

� IBM WebSphere Business Integration Server Foundation V5.1

� IBM WebSphere Partner Gateway V6.0

� IBM Rational Application Developer V6

� IBM WebSphere Studio Application Developer Integration Edition V5.1

5

© Copyright IBM Corp. 2006. All rights reserved. 87



5.1  Runtime product descriptions
This section describes the IBM products that are discussed and used in runtime 
scenarios throughout this book.

5.1.1  IBM WebSphere Application Server V6
WebSphere Application Servers are a suite of servers that implement the J2EE 
specification. This simply means that any enterprise applications that are written 
to the J2EE specification can be installed and deployed on any of the servers in 
the WebSphere Application Server family.

The foundation of the WebSphere brand is the application server. The application 
server provides the runtime environment and management tools for J2EE and 
Web services-based applications. Clients access these applications through 
standard interfaces and APIs. The applications, in turn, have access to a wide 
variety of external sources such as existing systems, databases, and Web 
services, that can be used to process the client requests (see Figure 5-1).

Figure 5-1   WebSphere Application Server product overview

Web 
server

WebSphere 
Application 

Server

Application 
Server

Application 
Server

Clients

Web browser

Java

Msg 
Queue

Msg 
Queue

Legacy 
systems

CICS
IMS
DB2
SAP
etc.

Application 
Server

J2EE applications

Messaging

Web 
services
provider

Enterprise 
application 
developer

Rational 
Application 
Developer

Rational Web 
Developer

Web 
application 
developer

Secure 
access

Tivoli 
Access 

Manager

Web services
Application 

Server

Service
Integration B

us

Service
Integration B

us
88 Patterns: Extended Enterprise SOA and Web Services



WebSphere Application Servers are available in multiple packages to meet 
specific business needs. They are also available on a wide range of platforms, 
including UNIX®-based platforms, Microsoft operating systems, IBM z/OS®, and 
iSeries™. Although branded for iSeries, the WebSphere Application Server 
products for iSeries are functionally equivalent to those for the UNIX and 
Microsoft platforms.

Highlights and benefits
WebSphere Application Server provides the environment to run your 
Web-enabled e-business applications. You can think of an application server as 
Web middleware, or a middle tier, in a three-tier e-business environment. The first 
tier is the HTTP server that handles requests from the browser client. The third 
tier is the business database (for example, DB2 UDB for iSeries) and the 
business logic (for example, traditional business applications such as order 
processing). The middle tier is IBM WebSphere Application Server, which 
provides a framework for consistent, architected linkage between the HTTP 
requests and the business data and logic.

IBM WebSphere Application Server is intended for organizations that want to 
take advantage of the productivity, performance advantages, and portability that 
Java provides for dynamic Web sites. IBM WebSphere Application Server 
includes the following benefits:

� J2EE V1.4 support

� High performance connectors to many common back-end systems to reduce 
the coding effort required to link dynamic Web pages to real line-of-business 
data

� Application services for session and state management

� Web services that enable businesses to connect applications to other 
business applications, to deliver business functions to a broader set of 
customers and partners, to interact with marketplaces more efficiently, and to 
create new business models dynamically

� The service integration bus infrastructure to complement and extend 
WebSphere MQ and the application server

It is suitable for those that are currently using the WebSphere Application 
Server V5 embedded messaging and for those that need to provide 
messaging capability between WebSphere Application Server and an existing 
WebSphere MQ backbone. 

The service integration bus features include:

– Multiple messaging patterns (APIs) and protocols for message-oriented 
and service-oriented applications.

– J2EE V1.4 compliant JMS default messaging provider
 Chapter 5. Product descriptions 89



– Web services standards for supporting JAX-RPC APIs

– Reliable message transport capability

– Tightly and loosely coupled communications options

– Intermediary logic (mediations) to intelligently adapt message flow in the 
network

– Clustering support to provide scalability and high availability

– Quality of service options

– Support for the WebSphere Business Integration programming model, 
converging functions from workflow, message brokering, collaborations, 
adapters, and the application server.

– Fully integrated within WebSphere Application Server, including security, 
installation, administration console, performance monitoring, trace, and 
problem determination.

– Support for connectivity into a WebSphere MQ network

Packaging for distributed platforms
Because different levels of application server capabilities are required at different 
times for various e-business application scenarios, WebSphere Application 
Server is available in multiple packaging options. Although they share a common 
foundation, each product provides unique benefits to meet the needs of 
applications and the infrastructure that supports them. So, at least one 
WebSphere Application Server product package will fulfill the requirements of 
any particular project and the prerequisites of the infrastructure that supports it. 
As your business grows, the WebSphere Application Server family provides a 
migration path to higher configurations.

WebSphere Application Server - Express V6
The Express package is geared to those who need to get started quickly with 
e-business. It is specifically targeted at medium-sized businesses or 
departments of a large corporation, and is focused on providing ease of use and 
application development. It contains full J2EE V1.4 support, but is limited to a 
single server environment. 

The WebSphere Application Server - Express offering is unique from the other 
packages in that it is bundled with an application development tool. Although 
there are WebSphere Studio and Rational Developer products designed to 
support each WebSphere Application Server package, they are normally ordered 
independently of the server. WebSphere Application Server - Express includes 
the Rational Web Developer application development tool. It provides a 
development environment geared toward Web developers and includes support 
90 Patterns: Extended Enterprise SOA and Web Services



for most J2EE V1.4 features, with the exception of EJB™ and J2EE Connector 
Architecture development environments.

However, keep in mind that WebSphere Application Server - Express does 
contain full support for EJB and the J2EE Connector Architecture, so you can 
deploy applications with them.

WebSphere Application Server V6
The WebSphere Application Server package is the next level of server 
infrastructure in the WebSphere Application Server family. Though the 
WebSphere Application Server is functionally equivalent to that shipped with 
Express, this package differs slightly in packaging and licensing. The 
development tool included is a trial version of Rational Application Developer, the 
full J2EE V1.4 compliant development tool.

WebSphere Application Server Network Deployment V6
WebSphere Application Server Network Deployment is an even higher level of 
server infrastructure in the WebSphere Application Server family. It extends the 
WebSphere Application Server base package to include clustering capabilities, 
edge components, and high availability for distributed configurations. These 
features become more important at larger enterprises, where applications tend to 
service a larger customer base, and more elaborate performance and availability 
requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A 
Web server plug-in installed in the Web server can distribute work among 
clustered application servers. In turn, Web containers running servlets and JSPs 
can distribute requests for EJBs among EJB containers in a cluster.

More information can be found at the IBM WebSphere Application Server Web 
site:

http://www.ibm.com/software/webservers/appserv/was/

More information about using IBM WebSphere Application Server V6 can be 
found in the redbook WebSphere Application Server V6 System Management 
and Configuration Handbook, SG24-6451.

5.1.2  IBM DB2 Universal Database Enterprise Server Edition V8.2
IBM DB2 Universal Database™ Enterprise Server Edition is a multi-user version 
of DB2 Universal Database that allows you to create and manage single 
partitioned or partitioned database environments. Partitioned database systems 
can manage high volumes of data and provide benefits such as high availability 
and increased performance. Other features include:
 Chapter 5. Product descriptions 91

http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/webservers/appserv/was/


� A data warehouse server and related components

� DB2 Connect™ functionality for accessing data stored on midrange and 
mainframe database systems

� Satellite administration capabilities

DB2 Universal Database V8.2 delivers new features to address the ever 
increasing demands and requirements on important data, which include:

� Broadened autonomic computing that automate and simplify potentially time 
consuming and complex database tasks

� A significant amount of new capabilities as well as further integration of DB2 
tooling into the Microsoft .NET and WebSphere Java environment

These new capabilities simplify the development and deployment of DB2 
applications and allow application developers to take advantage of the 
openness, performance, and scalability of DB2, without regard to the 
back-end database or the chosen application architecture

� Integration of industry proven high availability disaster recovery technology 
allow line-of-business managers and the enterprise itself to benefit because 
applications face less risk of downtime

You can find more information about the IBM DB2 Universal Database Enterprise 
Server Edition at:

http://www.ibm.com/software/data/db2/udb

5.1.3  IBM Cloudscape
IBM Cloudscape™ is an open source Java relational database management 
system that can be embedded in Java programs and used for online transaction 
processing. IBM Cloudscape features include:

� Rapid application development through the Java-based relational database 
management system (RDBMS) built from the ground up for the embedded 
environment. This platform-independent, small footprint database integrates 
tightly with any Java based solution, allowing shortened development cycles. 

� Supports Java technology standards. Single application versions can be 
created that run on any standard Java Virtual Machine (JVM™). 

� Does not require database administration or resource management and is 
invisible to non-technical users, thus eliminating the need for database 
administration at each client installation site. IBM Cloudscape can also be 
deployed anywhere, from notebook or desktop applications to robust server 
solutions.
92 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/software/data/db2/udb


� Tuned for high performance as well as efficient use of resources, with a 
straightforward migration path to various IBM DB2 versions.

� Supports international characters and formats as well as a rich set of RDBMS 
features that are based on SQL-92E, including row locking, triggers, and 
stored procedures.

� Available access to IBM Cloudscape from inside Java programs using 
JDBC™ and the ability to embed the IBM Cloudscape database inside Java 
applications on the server.

Cloudscape Network server comes as part of the IBM Cloudscape package. This 
provides multi-user connectivity to IBM Cloudscape databases within a single 
system or over a network using Standard Distributed Relational Database 
Architecture™ protocol.

You can find more information about IBM Cloudscape at:

http://www.ibm.com/software/data/cloudscape

5.1.4  IBM WebSphere MQ V5.3
IBM WebSphere MQ provides assured, once-only delivery of messages across 
more than 35 industry platforms using a variety of communication protocols. The 
transportation of message data through a network is made possible through the 
use of a network of WebSphere MQ queue managers. Each queue manager 
hosts local queues that are containers used to store messages. Through remote 
queue destinations and message channels, data can be transported to its 
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must 
make a connection to a WebSphere MQ queue manager, the services of which 
enable it to receive (get) messages from local queues or send (put) messages to 
any queue on any queue manager. The application’s connection can be made 
directly (where the queue manager runs locally to the application) or as a client to 
a queue manager that is accessible over a network.

Dynamic workload distribution is another important feature of WebSphere MQ. 
This feature shares the workload among a group of queue managers that are 
part of the same cluster. This enables WebSphere MQ to balance the workload 
across available resources automatically and provide hot standby capabilities if a 
system component fails. This is a critical feature for companies that must 
maintain around-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces (APIs), 
including MQI, AMI, and JMS that provide support for several programming 
languages as well as point-to-point and publish/subscribe communication 
 Chapter 5. Product descriptions 93

http://www.ibm.com/software/data/cloudscape


models. In addition to support for application programming, WebSphere MQ 
provides several connectors and gateways to a variety of other products, such as 
Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS Transaction Server, and 
IMS™, to name just a few.

To learn more, visit the IBM WebSphere MQ Web site:

http://www.ibm.com/software/ts/mqseries

5.1.5  IBM WebSphere Business Integration Message Broker V5.0
IBM WebSphere Business Integration Message Broker V5.0 extends the 
messaging capabilities of WebSphere MQ by adding message routing, 
transformation, and publish/subscribe features. WebSphere BI Message Broker 
provides a runtime environment that executes message flows, which consist of a 
graph of nodes that represent the processing that is needed for integrating 
applications. They can be designed to perform a wide variety of functions, 
including:

� Routing of messages to zero or more destinations based on the contents of 
the message or message header. Both one-to-many and many-to-one 
messaging topologies are supported.

� Transformation of messages into different formats so that diverse applications 
can exchange messages that each of them can understand.

� Processing message content in several message domains, including the XML 
domain that handles self-defining (or generic) XML messages, the Message 
Repository Manager (MRM), which handles predefined message sets, and 
unstructured data (BLOB domain).

For more information, visit the IBM WebSphere Business Integration Message 
Broker Web site: 

http://www.ibm.com/software/integration/wbimessagebroker/

5.1.6  IBM WebSphere Business Integration Server Foundation V5.1
IBM WebSphere Business Integration Server Foundation V5.1 builds on 
WebSphere Application Server to provide a premier Java 2 Enterprise Edition 
(J2EE) and Web services technology-based application platform for deploying 
enterprise Web services solutions for dynamic On Demand Business. 

It includes Business Process Choreographer, which provides IBM WebSphere 
Application Server with the ability to choreograph intraenterprise and 
interenterprise services into business processes described with open-standard 
Business Process Execution Language for Web Services (WS-BPEL). Each 
94 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/software/ts/mqseries
http://www.ibm.com/software/integration/wbimessagebroker/


activity in the business process is defined as a service using WSDL. The 
business process itself is also exposed as a WSDL-defined Web service. 

The business processes that are implemented in an enterprise typically require a 
mixture of human and IT resources, and these processes are supported by 
Business Process Choreographer. A process is a directed graph that starts with 
an Input node and ends with an Output node. A process itself is described in 
WSDL. Its input and output are described as WSDL messages.

A process can contain many activities. An activity can be the invocation of an 
EJB, a Java class, a service, or another process. A process can also be 
event-driven. For example, it can be paused to wait for an event and then 
resumed when a message arrives.

Business Process Choreographer supports processes that can be:

� Long-running and interruptible (with human intervention)
� Short-running and part of a single transaction

For more information about IBM WebSphere Business Integration Server 
Foundation V5.1, visit the Web site:

http://www.ibm.com/software/integration/wbisf/

5.1.7  IBM WebSphere Partner Gateway V6.0
WebSphere Partner Gateway enables business-to-business process integration 
and data sharing between partners of all types and sizes. It also provides support 
for Web services. It is implemented on top of J2EE, and designed for multitier 
and single-server implementations. 

WebSphere Partner Gateway is provided in three editions:

� WebSphere Partner Gateway Express

This edition is specifically designed for the small-and-medium business 
(SMB) market. It has a small footprint and is easy to use, but it has limited 
features and deployment options.

� WebSphere Partner Gateway Advanced

This edition has all the features of WebSphere Partner Gateway. It has a rich 
set of features and can handle any complexity in your business-to-business 
environment. Many more protocols and standards are supported for both 
inbound and outbound communication. Also, WebSphere Partner Gateway 
Advanced has a document engine that can handle the transformation and 
validation of documents. The document engine also checks for duplicate 
documents.
 Chapter 5. Product descriptions 95

http://www.ibm.com/software/integration/wbisf/


� WebSphere Partner Gateway Enterprise

This edition has the same features of WebSphere Partner Gateway 
Advanced. Its main differentiator is that a user of WebSphere Partner 
Gateway Enterprise is licensed to implement more connections than 
WebSphere Partner Gateway Advanced.

WebSphere Partner Gateway offers the following features:

� Applies security management using SSL, public-key cryptography, certificate 
validation, authentication, AS1, AS2.

� Document Manager component of WebSphere Partner Gateway provides the 
mediation capabilities like message routing, transformation and validation. It 
can also handle digital signature verification.

� Business-to-business capabilities allow us to specify the type of documents 
and also specific document attributes that each partner is allowed to send and 
receive.

� Non-repudiation repository

� Partner profile management

� Customization of document-handling and workflow through user exits. User 
exits can be used to extend or modify an existing document-handling function 
or to create entirely new ones for transport & business protocol options not 
offered by WebSphere Partner Gateway.

More information about IBM WebSphere Partner Gateway V6 can be found at:

http://www.ibm.com/software/integration/wspartnergateway/

5.2  Development product descriptions
This section describes products discussed and used in development scenarios 
throughout this book. 

5.2.1  IBM Rational Application Developer V6
Rational Application Developer is an integrated development environment with 
full support for the J2EE programming model including EJB development, Web 
services, Web applications and Java. In previous releases, this product was 
known as WebSphere Studio Application Developer. This tool includes integrated 
portal development, UML editing, code analysis, automated test and deployment 
tools, built-in version control, and team tools. Everything needed to allow a 
developer to be productive, and make sure written code is well designed, 
scalable, and ready for production is included in Rational Application Developer. 
96 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/software/integration/wspartnergateway/


Additionally everything is provided for version control and protection when 
developers work in large teams or on complex projects. Rational Application 
Developer is optimized for IBM WebSphere software.

Rational Application Developer V6.0 is part of the Rational Software 
Development Platform used to develop applications to be deployed to IBM 
WebSphere Application Server V6.0, V5.0.x, and IBM WebSphere Portal 
V5.0.2.2 and V5.1. The Rational Software Development Platform provides an 
integrated development environment (IDE) and tooling used to design, develop, 
test, debug, and deploy applications in support of the application development 
life cycle. 

The IBM Rational Software Development Platform is built upon the IBM Eclipse 
SDK 3.0, which is an IBM supported version of the Eclipse V3.0 Workbench 
containing many new features, and a new look and feel. When used with the 
Rational Software Development Platform, developers can access a broad range 
of requirements directly from Rational Application Developer for WebSphere 
software:

� Rational Web Developer tools for accelerated use of portal, SOA and J2EE

� Shorten the Java learning curve with use of drag-and-drop components and 
point-and-click database connectivity

� Automated tools for applying coding standard reviews, component, and Web 
service unit testing and multi-tier runtime analysis to help improve code 
quality

� Business applications integrated with Web services and SOA

More information can be found at the IBM Rational Application Developer Web 
site: 

http://www.ibm.com/software/awdtools/developer/application

5.2.2  IBM WebSphere Studio Application Developer 
Integration Edition V5.1

IBM WebSphere Studio Application Developer Integration Edition builds on the 
complete set of functionality offered by WebSphere Studio Application Developer 
to deliver a development environment designed to deliver on-demand e-business 
applications by simplifying build-to-integrate tasks, accelerating large-scale 
application development, and enabling real-time application flexibility for 
applications that deploy to WebSphere Business Integration Server Foundation 
V51. WebSphere Studio Application Developer Integration Edition V5 is used to 
develop processes for Business Process Choreographer.
 Chapter 5. Product descriptions 97

http://www.ibm.com/software/awdtools/developer/application


The visual process editor provides intuitive drag-and-drop tools to easily 
compose and choreograph application interactions and dynamic workflows 
among J2EE components, Web services, existing applications, and human 
activities. Developers can quickly and easily build, debug, and deploy complex 
applications using powerful workflow tools and advanced messaging capabilities 
to streamline and automate business processes. New services can be added, or 
existing services modified, without affecting the other components in the 
business process.

More information can be found at the IBM Web site:

http://www.ibm.com/software/awdtools/studiointegration/about/
98 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/software/awdtools/studiointegration/about/


Chapter 6. Extended Enterprise runtime 
patterns

This section describes the Runtime patterns that are relevant to the Extended 
Enterprise business pattern including both generic and SOA profiles.

This chapter describes the following Extended Enterprise runtime patterns:

� Exposed Direct Connection runtime pattern including Message and Call 
variations

� Exposed Broker runtime pattern

� Exposed Router variation 

� Exposed Serial Process runtime pattern

� Exposed Serial Process Workflow variation 

It also provides a description of each of the node types used in the runtime 
patterns.

6

© Copyright IBM Corp. 2006. All rights reserved. 99



6.1  Extended Enterprise runtime patterns
A Runtime pattern uses nodes to group functional and operational components. 
The nodes are interconnected to solve a business problem. Each Application 
pattern leads to one or more underpinning Runtime patterns. 

Runtime patterns describe the logical architecture that is required to implement 
an Application pattern. These patterns depict the major nodes, their roles and the 
interactions between these nodes.

We can overlay the Application pattern onto the Runtime pattern to identify 
where business logic is deployed on nodes. The Runtime patterns illustrated give 
some typical examples of possible solutions, but should not be considered 
exhaustive.

The Extended Enterprise Runtime patterns are:

� Exposed Direct Connection: Call variation
� Exposed Direct Connection: Message variation
� Exposed Broker
� Exposed Broker: Exposed Router variation
� Exposed Serial Process
� Exposed Serial Process: Workflow variation

To understand the Runtime pattern, review the node definitions provided in 6.2, 
“Node types” on page 102.

6.1.1  Generic and SOA profiles
Each Extended Enterprise runtime pattern has a generic and an SOA profile. 

The generic profile describes the basic implementation of each Runtime pattern 
in the context of the Extended Enterprise business pattern. The generic profile 
specifies an infrastructure that can be used by all applications, including services 
in an SOA. 

The SOA profile describes an infrastructure tailored specifically for services in an 
SOA. When moving to an SOA, existing applications must first be exposed as 
services. This allows each service to communicate to other services using SOA 
techniques as shown in Figure 6-1 on page 101:

Note: The Generic profile can be applied when designing solutions for use 
with an SOA. The distinction between SOA solutions designed using the 
generic profile and the SOA profile is that the SOA profile introduces and 
exploits more specific SOA concepts such as an ESB.
100 Patterns: Extended Enterprise SOA and Web Services



1. Service provider publishes service interface to registry.

2. Service consumer retrieves service interface from registry. 

3. Service consumer uses the retrieved interface to make calls to the service 
hosted by the service provider.

Figure 6-1   Basic Web service interaction model

The generic profile, which covers a wide range of implementations, includes this 

level of SOA.

The second step in creating an SOA is to build an SOA infrastructure for these 
services. This includes things like an ESB, an Exposed ESB Gateway for 
Extended Enterprise services, and Business Service Choreography for 
choreographing the services. The SOA profile describes how to build this SOA 
infrastructure. This profile provides a more extensive set of quality of service 
capabilities over the generic profile, by including support for:

� Multiple messaging styles
� Protocol transformation
� Decoupling of service consumers from service providers
� Namespace transformation

Service
Consumer

Service
Registry

Service
Provider

Find Publish

Use

12

3

Exposes business functions as 
Web services
Publishes functions to registry
Listens to and accepts requests

Requires business functions
Searches registry for matching 
functions
Binds and make requests 

Maintains repository of 
business functions
Accessed via UDDI

Business functions 
described in WSDL 
using UDDI

Business functions 
described in WSDL 
using UDDI

Business functions 
using SOAP

UDDI: Service Registry
WSDL: Service Description
SOAP: Service Invocation 
 Chapter 6. Extended Enterprise runtime patterns 101



These capabilities provide a more robust and secure implementation of a 
service-oriented architecture. To achieve these capabilities, the SOA profile for 
the Extended Enterprise pattern always includes Exposed ESB Gateway and 
ESB nodes.

6.2  Node types
A Runtime pattern consists of several nodes representing specific functions. 
Most Runtime patterns consist of a core set of common nodes, with the addition 
of one or more nodes unique to that pattern. To understand the Runtime pattern, 
you need to review the following node definitions.

6.2.1  App server/services
The application server / services (App Server / Services) node provides the 
infrastructure for application logic and can be part of a Web application server. It 
is capable of running both presentation and business logic, but it generally does 
not serve HTTP requests. In other situations, it can be used for business logic 
only. The application server node supports hosting of Web services applications.

Services can be implemented in a variety of technologies and can be 
custom-developed enterprise applications, such as those typically implemented 
in WebSphere Application Server, CICS Transaction Server, IMS Transaction 
Manager, and software packages.

6.2.2  Network infrastructure
Inter-enterprise network infrastructure includes the network infrastructure 
allowing connectivity between enterprises. Network infrastructure has 
unspecified internal characteristics; only the means with which to interact with it 
is specified.

6.2.3  Protocol firewall
A firewall is a hardware/software system that manages the flow of information 
between the Internet and an organization's private network. Firewalls can prevent 
unauthorized Internet users from accessing private networks connected to the 
Internet, especially intranets, and can block some virus attacks (as long as those 
viruses are coming from the Internet). A firewall can separate two or more parts 
of a local network to control data exchange between departments. Components 
of firewalls include filters or screens, each of which controls transmission of 
102 Patterns: Extended Enterprise SOA and Web Services



certain classes of traffic. Firewalls provide the first line of defense for protecting 
private information, but comprehensive security systems combine firewalls with 
encryption and other complementary services, such as content filtering and 
intrusion detection.

Firewalls control access from a less trusted network to a more trusted network. 
Traditional implementations of firewall services include:

� Screening routers (the protocol firewall)
� Application gateways (the domain firewall)

A pair of firewall nodes provides increasing levels of protection at the expense of 
increasing computing resource requirements. The protocol firewall is typically 
implemented as an IP router.

6.2.4  Domain firewall
The domain firewall is implemented typically as a dedicated server node.

A domain firewall is usually used to separate a secure zone, such as the internal 
network, from a demilitarized zone. This provides added security protection from 
the unsecure zone, such as the Internet.

6.2.5  Connector
This node, which is deployed in the demilitarized zone (DMZ) between two 
firewalls, provides a communication link over the internet for incoming requests 
from external applications as well as outgoing requests to external services.

It provides connectivity from the Enterprise Secure Zone to the Interenterprise 
Zone. It might be a low-level component (for example a TCP/IP infrastructure) 
which is omitted from the runtime pattern diagrams, or it might have more 
advanced capabilities such as caching of reusable content (for example a Web 
server).

Depending on the required level of detail, a connector can be:

� A primitive (or unmodeled) connector, represented by a simple line between 
components.

� A component (or modeled) connector, represented by a rectangle on a line 
between components.

A connector can be an adapter connector, a path connector, or both.
 Chapter 6. Extended Enterprise runtime patterns 103



Adapter connector
Adapter connectors are concerned with enabling logical connectivity by bridging 
the gap between the context schema and protocols used by the source and 
target components. An adapter connector is one that supports the transformation 
of data and protocols.

Path connector
Path connectors are concerned with providing physical connectivity between 
components. A path connector can be very complex (for example, the Internet), 
or very simple (an area of shared storage).

6.2.6  Exposed Connector
The Exposed Connector provides the connectivity between two partner 
enterprises. A connector is always present to facilitate interaction between two 
components within these enterprises.

6.2.7  Exposed ESB Gateway
An Exposed ESB Gateway makes the services of one organization available to 
others, and vice versa, in a controlled and secure manner. Although this might 
require capabilities such as partner provisioning and management, which are 
distinct from ESB capabilities, the intent of this component is different from the 
intent of the ESB, which is to provide a service infrastructure within an 
organization. For both of these reasons, the Exposed ESB Gateway is likely to be 
integrated with, but not be a part of, the ESB.

6.2.8  ESB
The Enterprise Service Bus (ESB) is a key enabler for an SOA because it 
provides the capability to route and transport service requests from the service 
consumer to the correct service provider. The ESB controls routing within the 
scope of a service namespace. 

The true value of the ESB, however, is to enable the infrastructure for SOA in a 
way that reflects the needs of today’s enterprise: to provide suitable service 
levels and manageability that enable you to operate and integrate in a 
heterogeneous environment. Furthermore, the ESB needs to be centrally 
managed and administered and have the ability to be physically distributed.

The following are the minimum set of functions that this node should support:

� Routing
104 Patterns: Extended Enterprise SOA and Web Services



This function removes the need for applications to know anything about the 
bus topology or its traversal. The interaction that a consumer initiates is sent 
to one provider.

� Addressing

Addressing complements routing to provide location transparency and 
support service substitution. Service addresses are transparent to the service 
consumer and can be transformed by the ESB. The ESB obtains the service 
address from the namespace directory.

� Messaging styles

The ESB should support at least one or more messaging styles. The most 
common are request/response, fire and forget, events, publish/subscribe, and 
synchronous and asynchronous messaging.

� Transport protocols

The ESB should support at least one transport that is or can be made widely 
available, such as HTTP/S. The ESB can provide protocol transformation. If a 
protocol transformation is required that is not supported by the ESB, then a 
specific connector can be used to perform the transformation (see 6.2.6, 
“Exposed Connector” on page 104).

� Service interface definition

Services should have a formal definition, ideally in an industry-standard 
format, such as WSDL.

� Service messaging model

The ESB should support at least one model such as SOAP, XML, or a 
proprietary EAI model. 

In addition to these capabilities, the ESB can support more advanced 
capabilities, such as:

� Integration

Additional integration services that can be provided include service mapping 
and data enrichment.

� Quality of service

These services can include transaction management (for example, ACID 
properties, compensation, or WS-Transaction), various assured delivery 
paradigms (such as WS-ReliableMessaging), or support for Enterprise 
Application Integration middleware.

� Message processing

The ESB can support more advanced message processing capabilities such 
as encoded logic, content-based logic, message and data transformations, 
 Chapter 6. Extended Enterprise runtime patterns 105



message/service aggregation and correlation, validation, intermediaries, 
object identity mapping, service/message aggregation, and store and 
forward.

� Modelling

The ESB can support more advanced modelling capabilities such as object 
modelling, common business object models, data format libraries, public 
versus private models for business-to-business integration, and development 
and deployment tooling.

� Service level

Service level indicators might need to be measured, particularly in an 
enterprise mission critical environment. The key indicators are availability and 
performance, which includes response time, throughput, and capacity.

� Infrastructure intelligence

More advanced infrastructure capabilities can be provided. These include:

– Business rules
– Policy-driven behavior, particularly for service levels
– Security and quality of service capabilities (WS-Policy)

6.2.9  Rules Directory
This node holds the read-only process execution rules that support the process 
flow execution. These rules control the sequencing of activities and, therefore, 
support flow control within the context of an end-to-end process flow. The 
implementation of this node involves persistent data technologies, such as a flat 
file or a DBMS.

6.2.10  Directory and Security Services
This node supplies authentication and authorization services. It also holds the 
user ID and password and related privileges. This node typically leverages 
LDAP-based directories. 

This node contains configuration information needed to support secure and 
controlled access to services. 

6.2.11  Exposed Broker
The Exposed Broker node allows distribution, decomposition, and recomposition 
of messages so a single interaction from a source component can be switched, 
split, and joined to multiple target components concurrently. The Expoxed Broker 
separates the application logic from the distribution logic based on broker rules. 
106 Patterns: Extended Enterprise SOA and Web Services



The broker also manages the decomposition and recomposition of the interaction 
using these rules.

The Exposed Broker node exposes external processes to the broker functions 
within the node. A variation of this would be to use the Exposed Broker to expose 
internal processes to external partners.

6.2.12  Exposed Router
The Exposed Router node is a variation of the Exposed Broker node. It allows a 
single interaction from a source component to be switched and adapted to only 
one of multiple target components. It separates the application logic from the 
distribution logic based on router rules.

It exposes external processes to the Router functions in the node. A variation of 
this would be to use the Exposed Router node to expose internal processes to 
external partners.

6.2.13  Exposed Process Manager
This node contains the process flow execution engine. It provides the capability 
for model-driven business process automation. It also enables tracking by 
leveraging the process execution rules stored in the associated database.

These processes can span multiple applications and organizational boundaries. 
The node maintains state and tracks sequencing through the process flow. In 
doing so, it often leverages the associated repository to store intermediate 
results. 

This node is also responsible for invoking target applications as necessary 
through their associated connectors.

The Process Manager node can support serial processes in which there is a 
sequential execution of process steps and parallel processes where process 
steps or sub-processes can execute concurrently.

The Process Manager should support the following key capabilities:

� Process definition standards, such as WS-BPEL, and the ability to execute 
process definitions that have been defined and exported from a modelling tool

� Monitoring and analysis of processes by capturing information about process 
execution for historical analysis 

It should also support integration with system management and 
administration tools.
 Chapter 6. Extended Enterprise runtime patterns 107



� Ability to meet non-functional requirements such as performance, availability 
and scalability will be important for mission critical enterprise applications 

Other key non-functional requirements are security and transaction 
management particularly supporting the integrity and recovery of long 
running business processes.

� Multiple levels of process abstractions.

� Correlation of events or incoming messages with existing process instances.

� Support for branching, parallel branch execution and recomposing if the 
process manager supports parallel process execution.

The Exposed Process Manager exposes external processes to the process flow 
execution engine in the node. A variation of this would be to use the Exposed 
Process Manager node to expose internal serial processes to external partners.

6.2.14  Business Service Choreography
The Business Service Choreography node executes the business process flow 
logic that governs the sequence and control of service invocations. The business 
process is controlled centrally and is not part of the program logic in individual 
applications. As a result, the business process can be modelled and 
implemented centrally. The Business Service Choreography node facilitates the 
implementation of changes to the business process and monitoring and analysis 
of business process execution.

The Business Service Choreography node provides the same support for 
model-driven business process automation as the Exposed Process Manager 
node, but in this instance the responsibility for routing and transporting service 
requests is the responsibility of the ESB. The Exposed ESB Gateway provides 
support for secure Extended Enterprise interactions. An external partner has no 
direct interaction with the business processes available on the node.

6.2.15  Staff Worklist Adapter
A specialized Staff Worklist Adapter is responsible for presenting the work items 
to be executed by a particular person or a department. This adapter enables 
human interaction within automated business processes. It is the primary 
interface through which the humans interact within the end-to-end workflow. 
108 Patterns: Extended Enterprise SOA and Web Services



6.3  Exposed Direct Connection runtime pattern
When using the Exposed Direct Connection runtime pattern, the source 
application uses a connector to access the target application. This allows a 
single interaction from the source application to be adapted and transported to 
one partner target application.

6.3.1  Generic profile
This Runtime pattern allows two different organizations to talk to each other with 
a mutually agreed upon message format and protocol. Each partner can use 
their own internal messaging format, then use a connector adapter to convert 
from the internal format to the external format.

The connector itself can be explicitly or implicitly modeled. If the connector is 
explicitly modeled, the modeler can use decomposition and abstraction 
techniques to expand the connector to the appropriate level of detail.

The term Connector can be qualified by both the connector variation and by the 
interaction variation. Some examples are:

� Adapter Connector
� Path Connector
� Message Connector
� Call Connector
� Call Adapter Connector

The target application relies on services provided by its hosting server. These are 
modeled using the Application Server/Services component.

The Rules Directory might or might not exist. If it does exist, it is a modeling 
decision as to whether the rules need to be shown in the Runtime pattern. For 
example, analysis might determine that connection rules are not an important 
part of the solution, so the Rules Directory might be left off the Runtime pattern.

The Directory and Security Services node supplies authentication and 
authorization services. It also holds the user ID as well as password and related 
privileges. This node typically leverages LDAP-based directories. It also contains 
configuration information needed to support secure access between the 
enterprise and partner services. 

The generic profile of the Exposed Direct Connection runtime pattern is shown in 
Figure 6-2 on page 110.
 Chapter 6. Extended Enterprise runtime patterns 109



Figure 6-2   Exposed Direct Connection runtime pattern: generic profile

Figure 6-2 shows a standard pattern of Path Connectors (firewalls and network 
infrastructure), but other variations do exist with fewer or more firewalls.

The secure zone Connector is primarily concerned with logical connection of the 
Path Connector to the Application Services, and will therefore often be modeled 
as an Adapter Connector.

Less secure applications and connectors can be placed within the Demilitarized 
Zone, depending on local security policies. The less secure applications are 
usually placed as shown in Figure 6-2.

We do not have separate Runtime patterns for the message and call variations of 
the Exposed Direct Connection application pattern. It is still important to identify 
that your business scenario requires a message or call application pattern 
because you can use this knowledge as a consideration when selecting a 
Product mapping. 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Directory
& Security
Services

Target
Application

Connection
Rules

Source
Application

Exposed Direct Connection
110 Patterns: Extended Enterprise SOA and Web Services



6.3.2  SOA profile
In the SOA profile for the Exposed Direct Connection runtime pattern, the 
Exposed Connector, Rules Directory, and Partner Infrastructure are specialized 
as shown in Figure 6-3 to instead become:

� An Exposed ESB Gateway
� An ESB
� Service Consumers and Providers

Figure 6-3   Exposed Direct Connection runtime pattern: SOA profile

The Exposed ESB Gateway provides support for the exposed requirement of the 
Extended Enterprise pattern. It provides a single point of access between:

� External Service Consumers and Service Providers in the Enterprise Secure 
Zone

� Service Consumers in the Enterprise Secure Zone and external Service 
Providers

The Exposed ESB Gateway secures the connection between enterprises and 
provides namespace mapping.

The ESB meets the Connector and Rules Directory requirement of the Direct 
Connection runtime pattern generic profile, but also gives support for the SOA 
infrastructure by providing for service location transparency and interoperability, 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Target
Application

Connection
Rules

Source
Application

Exposed Direct Connection
 Chapter 6. Extended Enterprise runtime patterns 111



encapsulated reusable business function and explicit implementation- indepen- 
dent interfaces within the enterprise.

Service Consumers and Service Providers replace the Application Server and 
Services from the generic profile.

6.4  Exposed Broker runtime pattern
The Exposed Broker runtime pattern applies to solutions where the source 
application starts an interaction that is distributed to multiple target applications 
across organizational boundaries. It allows a single interaction from a partner’s 
source application to be distributed to multiple target partner applications 
concurrently. It separates the application logic from the distribution logic based 
on broker rules from the Rules Directory. 

The Exposed Broker pattern reuses the Exposed Direct Connection pattern to 
provide connectivity between the tiers. The Broker Rules tier can support 
Message variation or Call variation (or both variations) of the Exposed Direct 
Connection pattern.

6.4.1  Generic profile
The Broker Rules tier of the application pattern is implemented in this Runtime 
pattern with an Exposed Broker node as shown in Figure 6-4 on page 113. The 
Exposed Broker node is responsible for the routing and distribution of incoming 
or outgoing messages to the target applications. It has the ability to decompose 
and recompose messages. It also includes functionality to include external 
partners by exposing their processes to internal processes.
112 Patterns: Extended Enterprise SOA and Web Services



Figure 6-4   Exposed Broker runtime pattern: generic profile

The Directory and Security Services supplies authentication and authorization 
services. It also holds the user ID and password and related privileges. This node 
typically leverages LDAP-based directories. It also contains configuration 
information needed to support secure access between the enterprise and 
partner services. 

The Application Server and Services nodes execute the logic of the target and 
source applications.

6.4.2  SOA profile
In the SOA profile for the Exposed Broker runtime pattern, the Exposed Broker, 
Rules Directory and Partner Infrastructure are specialized as shown in Figure 6-5 
on page 114 to instead become:

� an Exposed ESB Gateway
� an ESB
� Service Consumers and Providers

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
Broker

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

App Server/
Services

Rules
Directory

Directory
& Security
Services

Broker
Rules

Source
Application

Exposed Broker

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

WIP

Broker Rules &
WIP Results
 Chapter 6. Extended Enterprise runtime patterns 113



Figure 6-5   Exposed Broker runtime pattern: SOA profile

The Exposed ESB Gateway provides support for the exposed requirement of the 
Extended Enterprise pattern. It provides a single point of access between:

� External Service Consumers and Service Providers in the Enterprise Secure 
Zone

� Service Consumers in the Enterprise Secure Zone and external Service 
Providers

The Exposed ESB Gateway secures the connection between enterprises and 
provides namespace mapping.

The ESB meets the broker and rules directory requirement of the Runtime 
pattern generic profile, but also gives support for the SOA infrastructure by 
providing for service location transparency and interoperability, encapsulated 
reusable business function and explicit implementation-independent interfaces 
within the enterprise.

Service Consumers and Service Providers replace the Application 
Server/Services in the generic profile.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Broker
Rules

Source
Application

Exposed Broker

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

WIP

Broker Rules &
WIP Results
114 Patterns: Extended Enterprise SOA and Web Services



6.5  Exposed Router variation
The Exposed Router variation of the Exposed Broker runtime pattern applies to 
solutions where the partner’s source application initiates an interaction that is 
forwarded to, at most, one of multiple target applications. The selection of the 
target application is controlled by the distribution rules that govern functioning of 
the connector component.

6.5.1  Generic profile
In the Exposed Router variation shown in Figure 6-6, the Exposed Router node 
provides the logic to perform intelligent routing of messages to one target 
application at a time. It does not include the simultaneous distribution or 
decomposition capabilities that the Exposed Broker node provides.

Figure 6-6   Exposed Router runtime pattern: generic profile

The Exposed Router variation of the Exposed Broker application pattern can be 
thought of as an extension to the Router variation of the Broker application 
pattern. It also includes functionality to include external partners in a solution by 
exposing their processes to internal processes.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
Router

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

App Server/
Services

Rules
Directory

Directory
& Security
Services

Router
Rules

Source
Application

Exposed Broker: Router variation

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

R/O

Router Rules
 Chapter 6. Extended Enterprise runtime patterns 115



The Directory and Security Services supplies authentication and authorization 
services. It also holds the user ID and password and related privileges. This node 
typically leverages LDAP-based directories. It also contains configuration 
information needed to support secure access between the enterprise and 
partner services. 

The Application Server/Services nodes execute the logic of the target and source 
applications.

6.5.2  SOA profile
In the SOA profile for the Exposed Router runtime pattern, the Exposed Router, 
Rules Directory, and Partner Infrastructure are specialized as shown in 
Figure 6-7 to instead become:

� An Exposed ESB Gateway
� An ESB
� Service Consumers and Providers

Figure 6-7   Exposed Router runtime pattern: SOA profile

The Exposed ESB Gateway provides support for the exposed requirement of the 
Extended Enterprise pattern. It provides a single point of access between:

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Router
Rules

Source
Application

Exposed Broker: Router variation

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

R/O

Router Rules
116 Patterns: Extended Enterprise SOA and Web Services



� External Service Consumers and Service Providers in the Enterprise Secure 
Zone

� Service Consumers in the Enterprise Secure Zone and external Service 
Providers

The Exposed ESB Gateway secures the connection between enterprises and 
provides namespace mapping.

The ESB meets router and rules directory requirement of the Runtime pattern 
generic profile, but also gives support for the SOA infrastructure by providing for 
service location transparency and interoperability, encapsulated reusable 
business function and explicit implementation-independent interfaces within the 
enterprise.

Service Consumers and Service Providers replace the Application Server and 
Services in the generic profile.

6.6  Exposed Serial Process runtime pattern
The Exposed Serial Process runtime pattern applies to solutions where a single 
interaction from the partner’s source application executes a sequence of target 
applications based on process logic. This process logic is separated from the 
application logic. The process logic is governed by serial process rules that 
define execution rules for each target application, together with control flow and 
data flow rules. It can also include any necessary adapter rules.

6.6.1  Generic profile
In the Exposed Serial Process runtime pattern, the Exposed Process Manager 
node shown in Figure 6-8 on page 118 contains the process flow execution 
engine which provides the capability for model-driven business process 
automation. It also enables tracking by leveraging the process execution rules 
stored in the associated database. 
 Chapter 6. Extended Enterprise runtime patterns 117



Figure 6-8   Exposed Serial Process runtime pattern: generic profile

These processes can span multiple applications and organizational boundaries 
within an enterprise. The node maintains state and tracks sequencing through 
the process flow. In doing so, it often leverages the associated repository to store 
intermediate results. This node is also responsible for invoking target 
applications as necessary through their associated connectors.

The Directory and Security Services supplies authentication and authorization 
services. It also holds the user ID and password and related privileges. This node 
typically leverages LDAP-based directories. It also contains configuration 
information needed to support secure access between the enterprise and 
partner services. 

The Application Server and Services nodes execute the logic of the target and 
source applications.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l Exposed

Process
Manager

Rules
Directory

App Server/
Services

Directory
& Security 
Services

Serial
Process

Rules Tier

Exposed Serial Process

Source
Application

Target
Application

Target
Application

Target
Application

WIPWIP

Process
Execution

Rules

R/OR/O

Intermediate
Results
118 Patterns: Extended Enterprise SOA and Web Services



6.6.2  SOA profile
In the SOA profile for the Exposed Serial Process runtime pattern, the Exposed 
Process Manager, Rules Directory, and Partner Infrastructure are specialized as 
shown in Figure 6-9 to instead become:

� An Exposed ESB Gateway
� An ESB
� A Business Service Choreography node
� Service Consumers and Providers

Figure 6-9   Exposed Serial Process runtime pattern: SOA profile

The Exposed ESB Gateway provides support for the exposed requirement of the 
Extended Enterprise pattern. It provides a single point of access between:

� External Service Consumers and Service Providers in the Enterprise Secure 
Zone

� Service Consumers in the Enterprise Secure Zone and external Service 
Providers

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Provider>

App Server/
Services

ESBESBESB

Business
Service

Choreography

Directory
& Security 
Services

Serial
Process

Rules Tier

Exposed Serial Process

Source
Application

Target
Application

Target
Application

Target
Application

WIPWIP

Process
Execution

Rules

R/OR/O

Intermediate
Results
 Chapter 6. Extended Enterprise runtime patterns 119



The Exposed ESB Gateway secures the connection between enterprises and 
provides namespace mapping.

The ESB gives support for the SOA infrastructure by providing for service 
location transparency and interoperability, encapsulated reusable business 
function and explicit implementation-independent interfaces within the enterprise.

The Business Service Choreography node provides support for the Process 
Manager requirement of the Serial Process pattern.

Service Consumers and Service Providers replace the Application 
Server/Services in the generic profile.

6.7  Exposed Serial Workflow variation
The Serial Workflow variation of the Serial Process runtime pattern extends the 
basic serial process orchestration capability by supporting human interaction for 
completing certain process steps.

6.7.1  Generic profile
The Serial Workflow variation of the Runtime pattern shown in Figure 6-10 on 
page 121 provides specialized support for tasks requiring human interaction 
within the process logic. When a particular task requires human interaction, the 
Exposed Process Manager node creates a work item, identifies a particular 
person or a department responsible for executing that task, and adds the work 
item to its worklist.
120 Patterns: Extended Enterprise SOA and Web Services



Figure 6-10   Exposed Serial Workflow runtime pattern: generic profile

The Directory and Security Services supplies authentication and authorization 
services. It also holds the user ID and password and related privileges. This node 
typically leverages LDAP-based directories. It also contains configuration 
information needed to support secure access between the enterprise and 
partner services. 

The Staff Worklist Adapter then presents the work items to be executed by a 
particular person or a department. 

6.7.2  SOA profile
In the SOA profile for the Exposed Serial Workflow runtime pattern, the Exposed 
Process Manager, Rules Directory and Partner Infrastructure are specialized as 
shown in Figure 6-11 on page 122 to instead become:

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l Exposed

Process
Manager

Rules
Directory

App Server/
Services

Directory
& Security 
Services

Serial
Process

Rules Tier

Exposed Serial Process: Workflow variation

Source
Application

Target
Application
Target

ApplicationTarget
Application

WIPWIP
Process Execution
Rules including 
Task-resource 
relationship

R/OR/O

Intermediate
Results

Staff
Worklist
Adapter

Human 
Interaction 
Resolution
 Chapter 6. Extended Enterprise runtime patterns 121



� An Exposed ESB Gateway
� An ESB
� A Business Service Choreography node
� Service Consumers and Providers

Figure 6-11   Exposed Serial Process Workflow runtime pattern: SOA profile

The Exposed ESB Gateway provides support for the exposed requirement of the 
Extended Enterprise pattern. It provides a single point of access between:

� External Service Consumers and Service Providers in the Enterprise Secure 
Zone

� Service Consumers in the Enterprise Secure Zone and external Service 
Providers

The Exposed ESB Gateway secures the connection between enterprises and 
provides namespace mapping.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Provider>

App Server/
Services

ESBESBESB

Business
Service

Choreography

Directory
& Security 
Services

Staff
Worklist
Adapter

Serial
Process

Rules Tier

Exposed Serial Process: Workflow variation

Source
Application

Target
Application
Target

ApplicationTarget
Application

WIPWIP
Process Execution
Rules including 
Task-resource 
relationship

R/OR/O

Intermediate
Results

Human 
Interaction 
Resolution
122 Patterns: Extended Enterprise SOA and Web Services



The ESB gives support for the SOA infrastructure by providing for service 
location transparency and interoperability, encapsulated reusable business 
function and explicit implementation-independent interfaces within the enterprise.

The Business Service Choreography node provides support for the Process 
Manager requirement of the Serial Workflow pattern.

Service Consumers and Service Providers replace the Application 
Server/Services in the generic profile.
 Chapter 6. Extended Enterprise runtime patterns 123



124 Patterns: Extended Enterprise SOA and Web Services



Chapter 7. Product mappings

This chapter provides Product mappings for the following Runtime patterns:

� Exposed Direct Connection runtime pattern
– Generic profile
– SOA profile

� Exposed Broker runtime pattern

– Generic profile

� Exposed Router variation 

– SOA profile

� Exposed Serial Process runtime pattern

– Generic profile
– SOA profile

You can find an overview of the products used in these Product mappings in 
Chapter 5, “Product descriptions” on page 87.

7

© Copyright IBM Corp. 2006. All rights reserved. 125



7.1  Product mappings
After choosing a Runtime pattern, you need to determine the products and 
platforms that you will use. The Product mappings in this section are suggested 
mappings and address the scenario implementations that Part 3, “Scenario 
implementation” starting on page 155 of this book discusses. These Product 
mappings are also typical Product mappings used for production systems. 

We suggest that you make the final product selection decisions based on your 
particular non-functional requirements, such as volumetric data, performance, 
availability, scalability, security, manageability, and supportability. You typically 
define these non-functional requirements during the solution analysis process.

Other considerations that influence the product selection include:

� Specific technology and product standards
� Existing systems and platform investments
� Existing development skills

Each scenario highlights the interoperability benefits of Web services technology 
with each of the external partner applications being developed and hosted using 
a different technical environment:

� WebSphere Application Server V6.0.2
� Microsoft .NET
� CICS Transaction Server V3.1

7.2  Exposed Direct Connection product mapping
Our sample scenario illustrates use of both the Call and Message variations of 
the Exposed Direction Connection pattern. One-way and two-way intra 
enterprise requests are used between components within the Enterprise Secure 
Zone. Component interactions are performed with Web services using the 
SOAP/HTTP protocol.

The Extended Enterprise interaction uses the Message variation of the Exposed 
Direct Connection pattern, with the external partner responding to acknowledge 
that the request has been processed. These Web service interactions also use 
the SOAP/HTTP protocol. 

Note: The Product mappings in this section do not include hardware nodes 
and operating systems. The sample scenarios in Part 3, “Scenario 
implementation” starting on page 155 of this book were implemented on 
xSeries® servers running the Windows 2000 operating system.
126 Patterns: Extended Enterprise SOA and Web Services



7.2.1  Generic profile
This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone as shown in Figure 7-1.

Figure 7-1   Exposed Direct Connection: generic profile product mapping

WebSphere Application Server V6.0.2 acts as an Exposed Connector by 
performing as a SOAP provider. 

The Rules Directory node is implemented by WebSphere Application Server 
V6.0.2. WebSphere Application Server V6.0.2 allows you to override the 
Endpoint URL in the Web services client binding for installed Web and EJB 
modules providing the ability to update service locations at runtime.

The Directory and Security services node provides support for WS-Security as 
the application code for the Application Services in the Enterprise Secure Zone 
has been developed, so that all interactions include support for WS-Security 
integrity and confidentiality.

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation from SOAP/HTTP to SOAP/HTTPS thus delivering transport level 
security between the enterprise and the partner organizations.

7.2.2  SOA profile
The Direct Connection SOA profile shown in Figure 7-3 introduces the ESB and 
Exposed ESB Gateway components which are central to all the SOA profiles.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6Internet

WebSphere 
Application 
Server V6.0.2
(SOAP 
provider)

WebSphere
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2WebSphere 

Application 
Server V6.0.2

Directory
& Security
Services

WebSphere 
Application 
Server V6.0.2
 Chapter 7. Product mappings 127



Figure 7-2   Exposed Direct Connection: SOA profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone.

The ESB is run in a service integration bus within WebSphere Application Server 
Network Deployment V6.0.2, providing service location transparency between 
Service Consumers and Service Providers within the enterprise. With the 
Network Deployment offering, you can implement a scalable clustering of 
multiple WebSphere Application Servers. 

The Web services gateway provided with WebSphere Application Server 
Network Deployment V6.0.2 is the Exposed ESB Gateway in our Product 
mapping. It is used to provide a standard, consistent interface for the internal 
processes that access external processes. Using an Exposed ESB Gateway 
minimizes the disruption caused by changes in the external partner 
infrastructure. 

The Directory and Security services node is configured to secure all transactions 
to the external Partner Zone to use WS-Security integrity and confidentiality. In 
this scenario, the Application Services in the Enterprise Secure Zone do not 
include support for WS-Security. WebSphere Application Server Network 
Deployment V6.0.2 allows you to configure a service integration bus to use 
WS-Security to secure the SOAP messages that pass between the Service 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6

Internet

<Service Provider>

WebSphere 
Application Server 
Network Deployment 
V6.0.2 Web Service 
Gateway

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2

<Service Provider>

• Service Integration Bus 
& WebSphere 
Administration (part of 
WebSphere Application 
Server V6.0.2)

• DB2 Universal Database

Directory
& Security
Services

WebSphere 
Application Server 
Network Deployment 
V6.0.2 Web Service 
Gateway
128 Patterns: Extended Enterprise SOA and Web Services



Consumer and the target partner Service Provider. Interactions within the 
enterprise will not be secured.

A local DB2 Universal Database database is used to store the SDO (Service 
Data Object) repository.

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS thus delivering transport level security between 
the enterprise and the partner organizations.

7.3  Exposed Broker product mapping
For our Exposed Broker scenarios, the responsibility for implementing the 
business rules to identify which external partner organization to communicate 
with has been implemented with an Exposed Broker or Exposed Router node.

7.3.1  Exposed Broker: Generic profile
Figure 7-3 illustrates the Product mapping for the Exposed Broker. The Exposed 
Broker includes the means to expose partner processes to internal processes.

Figure 7-3   Exposed Broker: generic profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
Broker

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

IBM HTTP 
Server V6

Microsoft .NET WebSphere 
Application 
Server V6.0.2

Internet

App Server/
Services

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

WebSphere 
Application 
Server V6.0.2

Rules
Directory

Directory
& Security
Services

WebSphere 
Application Server 
V6.0.2 Network 
Deployment Web 
Services Gateway

WebSphere Application 
Server V6.0.2 Network 
Deployment Web Services 
Gateway

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database
 Chapter 7. Product mappings 129



The Exposed Broker node is implemented with the Web services gateway that is 
part of WebSphere Application Server Network Deployment V6.0.2, which 
supports the exposed nature of this node by providing a standard, consistent 
interface for the internal processes to access external processes.

The Rule Directory node is implemented using the service integration bus 
mediation support within WebSphere Application Server Network Deployment 
V6.0.2.

In the Directory and Security services node, the Web services gateway security 
will be configured for all transactions to the external Partner Zone to use 
WS-Security integrity and confidentiality. In this scenario, the Application 
Services in the Enterprise Secure Zone do not include support for WS-Security. 
WebSphere Application Server Network Deployment V6.0.2 allows you to 
configure a service integration bus to use WS-Security to secure the SOAP 
messages that pass between the Service Consumer and the target partner 
Service Provider. Interactions within the enterprise will not be secured.

A local DB2 Universal Database database is used to store the SDO repository.

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS, thus delivering transport level security between 
the enterprise and the partner organizations.

7.3.2  Exposed Router variation: SOA profile
Figure 7-4 on page 131 illustrates the Product mapping for the Exposed Router 
variation. The Router logic is provided by the ESB node performing intelligent 
routing of messages to one target application at a time. It does not include the 
simultaneous distribution or decomposition capabilities that the Broker node 
provides.
130 Patterns: Extended Enterprise SOA and Web Services



Figure 7-4   Exposed Router variation: SOA profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone.

The ESB is run in a service integration bus within WebSphere Application Server 
Network Deployment V6.0.2, providing service location transparency between 
Service Consumers and Service Providers within the enterprise. With the 
Network Deployment offering, you can implement a scalable clustering of 
multiple WebSphere Application Server servers. 

A local DB2 Universal Database database is used to store the SDO repository.

The WebSphere Partner Gateway acts as the Exposed ESB Gateway node 
providing a standard, consistent interface for the internal processes to access 
external processes. An Exposed ESB Gateway minimizes the disruption caused 
by changes in the external partner infrastructure.

In the Directory and Security services node, the service integration bus within 
WebSphere Application Server Network Deployment V6.0.2 is configured to 
secure all transactions to the external Partner Zone to use WS-Security integrity 
and confidentiality.

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS thus delivering transport level security between 
the enterprise and the partner organizations.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP 
Server V6

Microsoft .NET

WebSphere 
Partner 
Gateway V6.0

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database

WebSphere 
Application 
Server V6.0.2

<Service Provider>
Internet

App Server/
Services

<Service Provider>

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

WebSphere 
Application 
Server V6.0.2

Directory
& Security
Services

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database
 Chapter 7. Product mappings 131



7.4  Exposed Serial Process product mapping
The Product mappings documented in this section for Serial Process patterns 
and their workflow variations primarily focus on the key nodes (the Exposed 
Process Manager and Business Service Choreography nodes) in the appropriate 
Runtime patterns. 

7.4.1  Generic profile
In this Product mapping for the Serial Process runtime pattern, shown in 
Figure 7-5, the Exposed Process Manager node is implemented using 
WebSphere Business Integration Server Foundation V5.1.

Figure 7-5   Exposed Serial Process: generic profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone.

An application service uses the Web Services Invocation Framework (WSIF) to 
invoke the automated process instance implemented by the Process Manager 
node. The Exposed Process Manager implemented using WebSphere Business 
Integration Server Foundation V5.1 invokes the external partner application 
services.

The Rules Directory node implemented using WebSphere Business Integration 
Server Foundation V5.1 identifies which external partner organization application 
service to invoke.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l Exposed

Process
Manager

Rules
DirectoryApp Server/

Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6

Internet

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2

• WebSphere Business 
Integration Server 
Foundation V5.1

Directory
& Security 
Services

WebSphere Application 
Server V6.0.2 Network 
Deployment Web 
Services Gateway

• WebSphere Business 
Integration Server 
Foundation V5.1
132 Patterns: Extended Enterprise SOA and Web Services



In the Directory and Security services node, the service integration bus within 
WebSphere Application Server Network Deployment V6.0.2 is configured secure 
all transactions to the external Partner Zone to use WS-Security integrity and 
confidentiality. 

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS thus delivering transport level security between 
the enterprise and the partner organizations.

7.4.2  SOA profile
The SOA mapping shown in Figure 7-6 shares many of the same characteristics 
as the Generic profile. The Process Manager functionality is replaced with the 
Business Service Choreography node, although this node is still implemented by 
WebSphere Business Integration Server Foundation V5.1.

Figure 7-6   Exposed Serial Process: SOA profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone. 

The ESB is run as a service integration bus within WebSphere Application 
Server Network Deployment V6.0.2, providing service location transparency 
between Service Consumers and Service Providers within the enterprise. With 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP 
Server V6

Microsoft .NET

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database

WebSphere 
Application 
Server V6.0.2

<Service Provider>
Internet

App Server/
Services

<Service Provider>

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1 WebSphere 

Application 
Server V6.0.2

ESBESBESB

Business
Service

Choreography

• WebSphere Business 
Integration Server 
Foundation V5.1

WebSphere 
Application Server 
V6.0.2 Network 
Deployment Web 
Services Gateway

WebSphere Application 
Server V6.0.2 Network 
Deployment Web 
Services Gateway

Directory
& Security 
Services
 Chapter 7. Product mappings 133



the Network Deployment offering, you can implement a scalable clustering of 
multiple WebSphere Application Server servers. 

An application service uses the ESB to invoke the Business Service 
Choreography node’s automated process instance by the using the Web 
Services Invocation Framework (WSIF). The Business Service Choreograhy 
node is implemented using WebSphere Business Integration Server Foundation 
V5.1.

A local DB2 Universal Database database is used to store the SDO repository.

The Web services gateway provided with WebSphere Application Server 
Network Deployment V6.0.2 is the Exposed ESB Gateway in our Product 
mapping. It is used to provide a standard, consistent interface for the internal 
processes to access external processes. Using an Exposed ESB Gateway 
minimizes the disruption caused by changes in the external partner 
infrastructure. 

In the Directory and Security services node, the service integration bus within 
WebSphere Application Server Network Deployment V6.0.2 is configured secure 
all transactions to the external Partner Zone to use WS-Security integrity and 
confidentiality. 

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS, thus delivering transport level security between 
the enterprise and the partner organizations.
134 Patterns: Extended Enterprise SOA and Web Services



Part 2 Business 
scenario and 
guidelines

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 135



136 Patterns: Extended Enterprise SOA and Web Services



Chapter 8. Business scenario used in 
this book

Part 3, “Scenario implementation” on page 155 uses a common business 
scenario for all of the scenario implementation chapters. This business scenario 
is called ITSO Good. The ITSO Good business scenario is based on the WS-I 
sample business scenario. 

This chapter contains the following sections:

� A description of the WS-I sample business scenario

� The business context of the ITSO Good sample business scenario

� A definition of each application in the ITSO Good sample business scenario

� An example of using the ITSO Good sample business scenario

8

© Copyright IBM Corp. 2006. All rights reserved. 137



8.1  WS-I sample business scenario
The Web Services Interoperability Organization (WS-I) has developed a supply 
chain management business scenario that demonstrates the features, and tests 
for compliance of the WS-I Basic Profile V1.0. The following documents describe 
the WS-I sample business scenario and the technical solution overview:

� WS-I Supply Chain Management Use Cases V1.0
� WS-I Usage Scenarios V1.0
� WS-I Supply Chain Management Technical Architecture V1.0

For full details, see the Web Services Interoperability Organization Web site:

http://www.ws-i.org

This WS-I sample business scenario is a simplified supply chain for a consumer 
electronics retailer. The scenario consists of several Web service interfaces 
(WSDL files) and a Web-based GUI. Each Web services engine provider wishing 
to demonstrate the WS-I sample business scenario must provide an 
implementation for the Web services interfaces.

IBM provides an implementation of the WS-I sample business scenario using 
Web services implementations written in J2EE and which run in WebSphere 
Application Server. Other Web service engine providers have created other 
implementations, using other programming languages and application servers.

In this redbook we use a modified version of the IBM implementation of the WS-I 
sample business scenario, the ITSO Good sample business scenario, to 
demonstrate extended enterprise capabilities using SOA and Web services.

8.2  ITSO Good sample business scenario
In this redbook we use a fictional company called ITSO Good to demonstrate 
design, development, and runtime considerations for extended enterprise 
solutions. The ITSO Good sample is a modified version of the IBM 
implementation of the WS-I sample business scenario. This section describes: 

� The high-level business context of the sample business scenario
� How the supply chain works
� Screenshots from a run through of the ITSO Good sample application 

implementation.
138 Patterns: Extended Enterprise SOA and Web Services

http://www.ws-i.org


8.2.1  Business context
The ITSO Good enterprise provides a Web site which allows users to place 
orders for electronic goods such as televisions, DVD players, and video cameras. 
The ITSO Good supply chain management application handles the order of 
these goods through a Retailer, the delivery of these goods through a 
Warehouse, and the restocking of the Warehouse through a number of 
Manufacturers. The Manufacturers are all external organizations to ITSO Good. 
The users of the ITSO Good Web site are all internal ITSO Good employees. 

The applications that make up the ITSO Good supply chain management 
scenario are shown in Figure 8-1.

Figure 8-1   High level business context of ITSO Good

8.2.2  Applications in the supply chain management
The supply chain management scenario works as follows:

� The SCMSampleUI application provides a Web front-end for users to access 
the ITSO Good supply chain management process.

� The Retailer application can be used to retrieve a list of products sold by the 
Retailer, and to place orders.

ITSO Good

Intranet

SCM
Application WarehouseRetailer

Logging
Facility Manufacturer C

Manufacturer B

Manufacturer A

I
n
t
e
r
n
e
t

 Chapter 8. Business scenario used in this book 139



� The Warehouse application ships product orders if the Warehouse has 
sufficient stock.

� The Manufacturer applications, three of those, replenish the Warehouse of 
products if the Warehouse stock levels fall below a certain threshold. Each 
Manufacturer produces different products, and all are external to the ITSO 
Good organization.

� The Logging Facility application records the status of orders as they pass 
through the supply chain management scenario. This can be used to track the 
progress of a given order.

8.2.3  Example of using the ITSO Good sample application
This section shows an implementation of the ITSO Good sample application 
running in WebSphere Application Server. It shows the Web-based GUI and how 
the supply chain management process works.

The first screen the user sees is shown in Figure 8-2.

Figure 8-2   SCM Sample application
140 Patterns: Extended Enterprise SOA and Web Services



To use the application. a user clicks Place New Order. This retrieves a list of all 
the products that the Retailer application sells. This list of products is shown in 
the Shopping Cart screen, as shown in Figure 8-3.

Figure 8-3   SCM Sample product listing

You can order multiple quantities of each product. If the Warehouse has sufficient 
stock for the product, an order is placed. 

If the placement of the order causes the Warehouse’s stock level of that product 
to drop below a certain threshold, then a reorder request is sent to the external 
Manufacturer of the product.

The Order Status screen, Figure 8-4 on page 142, shows which orders were 
placed and which orders were not placed due to insufficient stock.
 Chapter 8. Business scenario used in this book 141



Figure 8-4   SCM Sample order status page

The progress of orders can be tracked by clicking the Track Order button. This 
retrieves information stored in the Logging Facility application. Figure 8-5 on 
page 143 shows the results of an order in which products 605001 and 605002 
were shipped and a reorder for 19 units of product 605002 was placed with 
Manufacturer B.
142 Patterns: Extended Enterprise SOA and Web Services



Figure 8-5   SCM Sample track order page

The ITSO Good sample application does not retain state. Therefore all 
Warehouse stock levels return to their default values the next time an order is 
placed.
 Chapter 8. Business scenario used in this book 143



144 Patterns: Extended Enterprise SOA and Web Services



Chapter 9. Technology options

This chapter discusses the essential technologies that this book uses to 
implement the Extended Enterprise SOA patterns.

It describes the following technologies:

� Web services

Web services are one of the most popular set of open standards used to 
implement SOA. This section describes the basic Web services specifications 
including SOAP, WSDL, and UDDI. This section then goes on to describe 
some of the advanced Web services specifications including WS-BPEL and 
WS-Security.

� J2EE

Java 2 Enterprise Edition is an important technology in implementing SOA 
and Extended Enterprise capabilities as it is the technology behind 
WebSphere Application Server. This section introduces some of the main 
J2EE technologies for Extended Enterprise scenarios including JMS and 
Web services for J2EE.

� Transport protocols

Open, widely available transport protocols are vital in an Extended Enterprise 
SOA environment. This section describes the HTTP and HTTP/S transport 
protocols.

9

© Copyright IBM Corp. 2006. All rights reserved. 145



9.1  Web services
Web services are a recent reinvention of concepts that have been around for 
some time. They introduce many new advantages and capabilities. In a sense, 
none of the function that Web services provide is new. CORBA has provided 
much of this function for many years. Web services, however, builds upon 
existing open Web technologies, such as XML, URL, and HTTP. Web services 
are defined in several different standards, such as SOAP and WSDL which build 
upon general Web and other Web services standards. These standards are 
defined by the World Wide Web Consortium, the Organization for the 
Advancement of Structured Information Standards (OASIS), and Web Services 
Interoperability Organization (WS-I). The basic Web services support provides 
for three simple usage models:

� One-way usage scenario

A Web services message is sent from a consumer to a provider and no 
response message is expected.

� Synchronous request/response usage scenario

A Web services message is sent from a consumer to a provider and a 
response message is expected.

� Basic callback usage scenario

A Web service message is sent from a consumer to a provider using the 
two-way invocation model, but the response is just treated as an 
acknowledgement that the request has been received. The provider then 
responds by calling, making use of a Web service callback to the consumer.

Other Web service standards are built upon these basic standards and 
invocation models to provide higher level functions and qualities of service.

Examples of these standards are WS-Transaction, WS-Security, and 
WS-ResourceFramework. One of the main aims of Web services is to provide a 
loose coupling between service consumers and service providers. While this is 
limited to a certain extent by a requirement for the consumers and providers to 
agree on a WSDL interface definition, Web services have been created with 
significant flexibility with regard to the location of these Web services. Figure 9-1 
on page 147 shows how the Web services interaction model has been designed 
with this form of loose coupling.
146 Patterns: Extended Enterprise SOA and Web Services



Figure 9-1   Web services interaction model

The interactions work as follows:

1. The service provider publishes WSDL, defining its interface and location to a 
service registry.

2. The service consumer contacts the service registry to obtain a reference to a 
service provider.

3. The service consumer, having obtained the location of the service provider, 
makes calls on the service provider.

Note: This section lists some of the Web services standards. This list is in no 
way exhaustive because new standards are emerging and maturing over time. 
For further information about Web services, visit the Web services section of 
the IBM developerWorks® Web site:

http://www.ibm.com/developerworks/webservices

Service
Consumer

Service
Registry

Service
Provider

Find Publish

Bind

12

3

Exposes business functions as 
Web services
Publishes functions to registry
Listens to and accepts requests

Requires business functions
Searches registry for matching 
functions
Binds and make requests 

Maintains repository of 
business functions
Accessed via UDDI

Business functions 
described in WSDL 
using UDDI

Business functions 
described in WSDL 
using UDDI

Business functions 
using SOAP

UDDI: Service Registry
WSDL: Service Description
SOAP: Service Invocation 
 Chapter 9. Technology options 147

http://www.ibm.com/developerworks/webservices


9.1.1  XSD
XML Schema Definition (XSD), is a recommendation of the World Wide Web 
Consortium (W3C). It specifies the formal description of elements within an 
Extensible Markup Language (XML) document. This description is used to verify 
that each item of content in a document adheres to the description of the element 
in which the content is to be placed.

In general, a schema is an abstract representation of an object's characteristics 
and relationship to other objects. An XML schema represents the 
interrelationship between the attributes and elements of an XML object (for 
example, a document or a portion of a document). To create a schema for a 
document, you analyze its structure, defining each structural element as you 
encounter it. For example, within a schema for a document describing a Web 
site, you would define a Web site element, a Web page element, and other 
elements that describe possible content divisions within any page on that site. 
Just as in XML and HTML, elements are defined within a set of tags. 

XSD has several advantages over earlier XML schema languages, such as 
document type definition (DTD) or Simple Object XML (SOX). For example, it is 
more direct: XSD, in contrast to the earlier languages, is written in XML, which 
means that it does not require intermediary processing by a parser. Other 
benefits include self-documentation, automatic schema creation, and the ability 
to be queried through XML Transformations (XSLT). Despite the advantages of 
XSD, it has some detractors who claim, for example, that the language is 
unnecessarily complex. 

9.1.2  WSDL
Web Services Description Language (WSDL) is an XML-based interface 
definition language that separates function from implementation and enables 
design by contract as recommended by SOA. 

WSDL descriptions contain a port type (the functional and data description of the 
operations that are available in a Web service), a binding (providing instructions 
for interacting with the Web service through specific protocols, such as SOAP 
over HTTP), and a port (providing a specific address through which a Web 
service can be invoked using a specific protocol binding).

9.1.3  SOAP
SOAP is an XML-based format for constructing messages in a transport 
independent way and a standard on how the message should be handled. SOAP 
messages consist of an envelope that contains a header and a body. It also 
148 Patterns: Extended Enterprise SOA and Web Services



defines a mechanism for indicating and communicating problems that occurred 
while processing the message, which are known as SOAP faults.

The headers section of a SOAP message is extensible and can contain many 
different headers that are defined by different schemas. The extra headers can 
be used to modify the behavior of the middleware infrastructure. For example, the 
headers can include information about transactions that can be used to ensure 
that actions performed by the service consumer and service provider are 
coordinated.

The body section contains the content of the SOAP message. When used by 
Web services, the SOAP body contains XML-formatted data. This data is 
specified in the WSDL that describes the Web service. When talking about 
SOAP, it is common to talk about SOAP in combination with the transport 
protocol that is used to communicate the SOAP message. For example, SOAP 
that is transported using HTTP is referred to as SOAP over HTTP or 
SOAP/HTTP.

The most common transport that is used to communicate SOAP messages is 
HTTP. This is expected because Web services are designed to make use of Web 
technologies. However, SOAP can also be communicated using JMS as a 
transport. When using JMS, the address of the Web service is expressed in 
terms of a JMS connection factory and a JMS destination. Although using JMS 
provides a more reliable transport mechanism, it is not an open standard, 
requires extra and potential expensive investment, and does not interoperate as 
easily as SOAP over HTTP.

The SOAP version 1.1 and 1.2 specifications are available from the World Wide 
Web Consortium at:

http://www.w3.org/TR/soap/

9.1.4  UDDI
Universal Description, Discovery, Integration (UDDI) servers act as a directory of 
available services and service providers. SOAP can be used to query UDDI to 
find the locations of WSDL definitions of services, or the search can be 
performed through a user interface at design or development time. The original 
UDDI classification was based on a U.S. government taxonomy of businesses 
and recent versions of the UDDI specification have added support for custom 
taxonomies.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom 
runs a mirror of the same directory of public services. However, there are many 
patterns of use that involve private registries. For more information, see the 
following articles:
 Chapter 9. Technology options 149

http://www.w3.org/TR/soap/


� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

9.1.5  WS-BPEL
Business Process Execution Language for Web Services (WS-BPEL) provides a 
means to formally specify business processes and interaction protocols.

WS-BPEL (formerly BPEL4WS) provides a language for the formal specification 
of business processes and business interaction protocols. By doing so, it extends 
the Web services interaction model and enables it to support business 
transactions. WS-BPEL defines an interoperable integration model that should 
facilitate the expansion of automated process integration in both the 
intra-corporate and the business-to-business spaces.

9.1.6  WS-Security
The security protocols for Web services begin with the WS-Security specification 
that defines a token-based architecture for secure communications. There are six 
major component specifications built on this base: 

� WS-Policy and its related specifications define the policy rules on how 
services interact.

� WS-Trust defines the trust model for secure exchange.

� WS-Privacy defines how privacy of information is maintained.

� WS-SecureConversation defines how to establish a secured session between 
services for exchanging data using the rules defined in WS-Policy, WS-Trust, 
and WS-Privacy.

� WS-Federation defines the rules of distributed identity and how it is managed.

� WS-Authorization handles the processing for authorization to access and 
exchange data.

9.2  J2EE
Java technology is both an object-oriented programming language and a platform 
originally developed by Sun Microsystems. The Java platform consists of the 
Java Application Programming Interface (API) and the Java Virtual Machine 
(JVM), an interpreter between the programming language and the underlying 
150 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html


software and hardware architectures. The Java API is a large collection of 
ready-made software components to ease the development and deployment of 
applets and applications, including robust, secure and interoperable enterprise 
applications. 

J2EE (Java 2 Enterprise Edition) is the enterprise version of Java that simplifies 
the construction and deployment of multitier enterprise applications by basing 
them on standardized modular components. It provides a complete set of 
services to those components, and by handling many details of application 
behavior automatically without complex programming.

Java technology is critical to the IBM On Demand Business initiative. Java was 
one of the first technologies to support open standards in the enterprise, 
enabling customers to adopt XML and Web services in seamless information and 
application integration. Additionally, Java serves as the cornerstone of many IBM 
products and technology consulting services.

9.2.1  JMS
Java Message Service (JMS) is an API that adds a provider framework that 
enables the development of portable, message-based applications for the Java 
platform by defining a common set of messaging concepts and programming 
strategies that will be supported by all JMS technology-compliant messaging 
systems.

9.2.2  Web services for J2EE
Web services for J2EE (WSEE) leverages J2EE technologies, defining the 
needed mechanism to standardize a deployment model for Web services. This 
standardization aims to achieve interoperability across different, compliant J2EE 
platforms, transforming the migration among them into a routine process and 
ensuring that vendors interoperate.

WSEE defines the concepts, interfaces, file formats, and responsibilities to 
support the development and runtime models for Web services. 

Note: A large community of developers, testers and technology experts 
contribute to the Java APIs through a community process known as the Java 
Community Process (JCP). IBM has contributed significantly to the JCP since 
the birth of J2EE and continues to do so. You can track the JCP at:

http://www.jcp.org/en/home/index/
 Chapter 9. Technology options 151

http://www.jcp.org/en/home/index/


WSEE-compliant Web service providers certify that their services can be 
redeployed in other compliant servers. WSEE enables developers, assemblers, 
and deployers to configure Web services through XML-based deployment 
descriptors.

9.2.3  JAX-RPC
Java API for XML-based RPC (JAX-RPC) facilitates distributed computing in a 
Web services environment. JAX-RPC-based Java applications can easily 
communicate with non-Java-based technologies in the RPC style fashion.

A JAX-RPC server application’s entry point is also known as an endpoint. A Web 
service endpoint is described using a WSDL document. JAX-RPC is about Web 
services interoperability across heterogeneous platforms and languages. This 
makes JAX-RPC a key technology for Web services-based integration.

9.3  Transport protocols
The fundamental transport mechanisms between Web components are HTTP 
and HTTP/S.

9.3.1  HTTP
HyperText Transfer Protocol (HTTP) is a request/response protocol between 
clients and servers. It is also the default communication protocol of the World 
Wide Web.

An HTTP server listening on that port waits for an HTTP client to send a request 
string, such as GET/HTTP/1.1 followed by an optional body of arbitrary data. 

Upon receiving the request string (and message, if any), the server sends back a 
response string, such as 200 OK, and a message of its own, the body of which is 
perhaps the requested file, an error message, or some other requested 
information.

An HTTP client, such as a Web browser, typically initiates a request by 
establishing a TCP/IP connection to a particular port on a remote host (typically 
port 80). 

Both responses and requests have headers which contain useful information. 
Some headers are optional, while others, such as Host, are required by the 
HTTP/1.1 protocol. 
152 Patterns: Extended Enterprise SOA and Web Services



9.3.2  HTTP/S
HTTP/S is the secure version of HTTP. Instead of using plain text socket 
communication, HTTP/S encrypts the session data using either a version of the 
Secure Socket Layer (SSL) protocol or the Transport Layer Security (TLS) 
protocol, thus ensuring reasonable protection from eavesdroppers, and man in 
the middle attacks. The default TCP/IP port of HTTP/S is 443.

The level of protection depends on the correctness of the implementation by the 
Web browser and the server software and the actual cryptographic algorithms 
supported.

In Web pages that use HTTP/S, the URL begins with https:// rather than 
http://.
 Chapter 9. Technology options 153



154 Patterns: Extended Enterprise SOA and Web Services



Part 3 Scenario 
implementation

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 155



156 Patterns: Extended Enterprise SOA and Web Services



Chapter 10. Exposed Direct Connection 
runtime pattern: 
generic profile

The simplest form of integrating with an Extended Enterprise is by using the 
Exposed Direct Connection runtime pattern, where service consumers and 
providers communicate through direct point-to-point interactions.

This chapter describes the design, development and runtime guidelines to 
implement the Exposed Direct Connection runtime pattern using a generic 
profile.

This includes step-by-step instructions for configuring WebSphere Application 
Server V6.0.2 to make secure Web service calls to a variety of service providers 
including Microsoft .NET and CICS Transaction Server. Step-by-step instructions 
also describe how to use Rational Application Developer to secure Web service 
interactions using WS-Security.

10
© Copyright IBM Corp. 2006. All rights reserved. 157



10.1  Business scenario
The business scenario implemented in this chapter represents the supply chain 
management on demand scenario defined in Chapter 8, “Business scenario 
used in this book” on page 137. 

The supply chain management application of ITSO Good makes requests to the 
Retailer system to help customers buy electronic goods online. The Retailer 
receives stock from the Warehouse, and the Warehouse replenishes stock from 
the external Manufacturers that reside outside the enterprise, on a one-to-one 
basis, as shown in Figure 10-1.

Figure 10-1   High-level business context of the scenario

Having successfully integrated their internal Retail and Warehouse systems, 
ITSO Good have now decided to integrate with their external Manufacturing 
partners. As a result, ITSO Good have come up with the following business 
requirements related to the integration of their Warehouse system with the 
external Manufacturing partner systems:

� ITSO Good requires the Warehouse system to have real-time access to the 
Manufacturer systems that reside outside the enterprise to reduce the latency 

ITSO Good

Intranet

SCM
Application WarehouseRetail

System

Logging
Facility Manufacturer C

Manufacturer B

Manufacturer A

I
n
t
e
r
n
e
t

158 Patterns: Extended Enterprise SOA and Web Services



of business events and also requires the Manufacturer to respond in real-time 
to the replenishment order placed by the Warehouse.

� The Warehouse system also needs to have the flexibility to support the 
heterogeneous and existing environments of their Manufacturing partner 
systems. ITSO Good expects its IT systems to use interoperable standards 
for its integration with external systems.

� This scenario represents the organization’s first attempt to implement a 
service-oriented architecture (SOA) solution. The systems that make up the 
scenario are fixed and established. Their location and naming conventions 
are not expected to change.

10.2  Design guidelines
Besides the usual guidelines that govern application integration design, 
integration in an extended enterprise has some additional guidelines related to 
the qualities of service, policies, and so forth.

In an intraenterprise application integration scenario, interactions are made 
within an enterprise’s trusted networks. But in an extended enterprise, integration 
with the partner's business processes might involve interactions that are exposed 
to less secured zones such as the internet or shared Wide Area Networks 
(WANs). As a result, qualities such as security, reliability, and interoperability 
need special attention. These service qualities manifest themselves with differing 
degrees of importance and specificity in different integration scenarios.

The design guidelines detailed here and in the following chapters are also 
influenced by the trading partner agreements and service level agreements 
between the organizations involved.

The design guidelines section is split into the following categories:

� Analyze business requirements

Describes the system context of the problem this chapter is trying to solve.

� Selecting a pattern

Describes which Extended Enterprise runtime pattern from the Patterns for 
e-business is suitable to solve this business problem.

� Analyze design options

Describes design decisions in building the solution.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 159



� Products

Lists the appropriate IBM products that can be used to implement the 
solution, and provides a product mapping of the products used in the actual 
implementation.

10.2.1  Analyze business requirements
Figure 10-2 shows the system context diagram depicting the interactions of ITSO 
Good with external systems.

Figure 10-2   System context for the Exposed Direct Connection generic profile scenario

The Warehouse system is expected to integrate with three different types of 
Manufacturer systems, implemented in Microsoft .NET, CICS Transaction Server, 
and a WebSphere Application Server J2EE-based environment respectively. The 
interactions are two-way (request/response) with the Manufacturer’s systems 
responding to the submitted purchase order with an order confirmation.

10.2.2  Selecting a pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern 
to apply to this scenario. The Patterns approach is based on a set of layered 
assets that can be exploited by any existing development methodology.

Figure 10-3 depicts these assets and their relationships to each other.

Manufacturer A
(WebSphere 

Application Server)

Manufacturer B
(CICS Transaction 

Server)

Manufacturer C
(Microsoft .NET)

Type: User Interactive
Protocol: HTTP

Placing Order
Track Order

Customer
Service

Representative

ITSO Good

     Order Confirmation

Type: Interactive

                    Order Request

         Order Request

 Order Confirmation 

Type: Interactive

                                     Order Request
WebSphere
Application

Server

                                           Order Confirmation

Type: Interactive
160 Patterns: Extended Enterprise SOA and Web Services



Figure 10-3   The Patterns for e-business layered asset model

Here, we describe a step-by-step approach used to navigate the Patterns for 
e-business asset catalog:

1. Business pattern

We select the Extended Enterprise business pattern since the given scenario 
requires interactions between the business processes in the Warehouse and 
Manufacturer systems that reside in separate enterprises.

2. Application pattern

The Warehouse and Manufacturer systems are required to interact on a 
one-to-one basis representing point-to-point connections. Therefore we select 
the Exposed Direct Connection application pattern. This pattern has two 
variations:

– Message Connection variation
– Call Connection variation

Because the business scenario requires the proposed solution to support 
real-time request/reply message flows to partner processes, we select the 
Call Connection variation.

Best-Practice Guidelines
Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer 
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 161



3. Runtime pattern

The Application pattern provides us with the Direct Connection runtime 
pattern for the proposed solution. Since this solution represents the first-step 
in SOA transformation for ITSO Good, we select the generic profile of the 
Direct Connection runtime pattern to keep the proposed solution simple.

Figure 10-4 shows the level 0 decomposition of the generic profile of the 
Exposed Direct Connection runtime pattern, mapped onto the Exposed Direct 
Connection application pattern.

Figure 10-4   Exposed Direct Connection::Runtime pattern = Generic profile

10.2.3  Analyze design options
Direct integration between applications can provide fast response time but at the 
same time can be inflexible, in that any changes to one application can have 
knock-on effects on other applications. This is especially dangerous when 
integrating across organizational boundaries. Any changes to the exposed target 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Directory
& Security
Services

Target
Application

Connection
Rules

Source
Application

Exposed Direct Connection
162 Patterns: Extended Enterprise SOA and Web Services



application might require changes to many partner applications. Such changes 
can be both expensive and time consuming.

Such knock-on effects can be minimized using message adapters that wrapper 
the applications in the exposed connection. This is represented by the Exposed 
Connector component in the Exposed Direct Connection application pattern in 
Figure 10-4 on page 162. These Connectors can be explicitly or implicitly 
modeled. They convert the mutually agreed upon messages into API calls to 
existing or new backend applications. This layering technique isolates the 
exposed applications from partner applications and increases flexibility. Any 
changes to these exposed applications would only impact the Connector, 
provided there is no need to change the mutually agreed upon messages. 

Message definition should also be generalized to further promote flexibility. In 
other words, messages should not be tightly coupled with backend application 
APIs. Rather the message should capture all the necessary information required 
for that logical interaction across business boundaries. Such generalization will 
help cope with changes to the backend application API without having to change 
the agreed upon message format. 

For example, the use of WSDL (Web Services Definition Language) to describe 
the services offered by the Manufacturers would provide for a standard way to 
define the interaction semantics.

Also since the interaction is directly exposed across organizational boundaries, it 
must implement or exploit the necessary security features such as 
authentication, authorization, confidentiality, integrity, and logging for 
nonrepudiation purposes.

Using these guidelines, the following architectural decisions were made for the 
given scenario.

Architectural decision: integration options
The requirement to integrate ITSO Good with external service providers presents 
a number of integration options. These are discussed in Table 10-1 on page 164.

Note: The following decisions are based on the sample business scenario for 
this Redbook. In reality, there might be other factors such as existing assets, 
organization skills, business strategies, and policies that need to be 
considered while making any architectural decisions.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 163



Table 10-1   Integration options

Subject area Integration options between 
Warehouse and Manufacturer

Issue or problem statement To select the technology solution used to 
integrate the replenishment business 
process of the Warehouse with the 
Manufacturing process in the external 
partner systems across organizational 
boundaries.

Assumptions The three partner Manufacturer systems 
are built using J2EE, Microsoft .NET and 
CICS Transaction Server platforms 
respectively.

Motivation ITSO Good requires the Warehouse 
system to have the flexibility to support the 
heterogeneous and existing environments 
of their Manufacturing partner systems.

Alternatives 1. Web-service standard based 
integration using SOAP over 
HTTP(s).

2. Use custom technology specific 
adapters to integrate with each of 
the CICS Transaction Server, 
Microsoft .NET and WebSphere 
Application Server J2EE based 
Manufacturer systems.

3. Use of COTS 
(Commerical-Off-The-Shelf) 
packages like WebSphere 
Business Integration Adapters to 
integrate with each of the CICS 
Transaction Server, Microsoft 
.NET and WebSphere Application 
Server J2EE based Manufacturer 
systems.

Decision Web-services using SOAP over HTTP/S 
will be used to integrate the Warehouse 
system with each of the Manufacturer 
system.
164 Patterns: Extended Enterprise SOA and Web Services



Securing Web services
Having decided to use Web services as the means to integrate the Warehouse 
and Manufacturer systems that reside in separate enterprises, we need to 
ensure that these Web services interactions are secured.

Justification Alternative#1: The use of Web services to 
integrate the Warehouse and 
Manufacturer services allows loose 
coupling between the two and is also 
independent of the service 
implementation of either systems. Use of 
Web services also fosters inter-operability 
since it is not technology dependent.

Alternative#2: The use of custom 
technology-specific adapters to connect to 
the different heterogeneous platform 
environments of the Manufacturer. This 
might improve performance in some cases 
but it comes at the cost of flexibility and 
maintainability. Flexibility/adaptability is a 
key factor in an extended enterprise 
scenario. Also firewall restrictions could 
pose problems for certain native 
communication/transport protocols.

Alternative#3: The use of WebSphere 
Business Integration Adapters, which are 
off-the-shelf software based on the 
WebSphere Adapter Framework, is a 
useful asset. It could help in rapid 
application development. But even this 
option would not be a flexible one. Firewall 
restrictions could also pose concerns.

In conclusion, Web services are an open 
standard that is supported by WebSphere 
Application Server, Microsoft .NET and 
CICS Transaction Server along with many 
other application platforms. Web services 
provides an inter-operable way to 
integrate heterogeneous systems with 
minimal cost.

Subject area Integration options between 
Warehouse and Manufacturer
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 165



In this section, we take a brief look into the various security options available and 
design a security solution based on the business requirements.

Today, securing Web services involves:

� Message level security (WS-Security)
� Transport level security (SSL/TLS)

These elements are shown in Figure 10-5.

Figure 10-5   Securing Web services

Message level security: WS-Security 
WS-Security is a standard set of SOAP extensions that handles three aspects of 
Web services security (commonly known as the security triad of WS-Security) 
namely: authentication, integrity, and confidentiality.

These three mechanisms can be used independently (for example, to pass a 
security token) or in a tightly integrated manner (for example, signing and 
encrypting a message and providing a security token hierarchy associated with 
the keys used for signing and encryption).

Authentication
Authentication ensures that the security credentials (business identity, user 
name, digital certificates, and so forth) of the service consumer passed in the 

Securing Web
Services

Message Level
Security

(WS Security))

Confidentiality

(XML Encryption)

Integrity

(Digital Signature)

Transport
Level Security

(TLS/SSL)

Authentication

(Security Tokens/
Digital Certificate)

Advanced/Higher
Level Security

(Policy Authorization,
Trust, Federation, etc.)
166 Patterns: Extended Enterprise SOA and Web Services



Web service request are really who they claim. Security tokens are used in 
WS-Security to pass these credentials. They are broadly of two types:

� UsernameToken

An XML-based security token specified in the <Security> header of a SOAP 
message. It contains the username and an optional password information that 
can be passed as plaintext or as a digest format.

The syntax of this element is:

<UsernameToken Id="...">
    <Username>...</Username>
    <Password Type="...">...</Password>
</UsernameToken>

In this form of authentication, also known as basic authentication, the user 
credentials (user name and password) are validated and authenticated by the 
service provider against a local security repository such as Tivoli® Access 
Manager.

� BinarySecurityToken

The BinarySecurityToken element defines a security token that is binary 
encoded. The encoding is specified using the ValueType attribute that 
indicates what the security token is (for example, X.509 Certificates, Kerberos 
tickets) and the EncodingType attribute indicates how the security token is 
encoded (for example, Base64 encoding, hex encoding).

The syntax of this element is:

<BinarySecurityToken Id=... 
                        EncodingType=... 
                        ValueType=.../>

Digital Certificates such as X.509 Certificates contain: 

– Identity credentials that can be mapped to a user by using public key 
infrastructure 

– A pair of public and private keys associated with it 

Using the certificate on its own would make for relatively easy replay attacks. 
As a result, a common practice is to use the private key of the certificate to 
digitally sign a piece of information, elements in the SOAP header or body. By 
validating the signed information using the public key associated with the 
sender’s certificate, the receiver can authenticate the sender as being the 
owner of the certificate, thereby validating the sender’s identity. When both 
the service consumer and provider authenticate each other using their 
respective certificates it is called mutual authentication. This also requires the 
consumer and provider to maintain the public keys of each other’s certificate 
in a private key store.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 167



Integrity
Message integrity is provided by leveraging an XML signature in conjunction with 
security tokens to ensure that messages are transmitted without modifications. In 
order to validate the integrity of the information contained in the SOAP message, 
the data can be digitally signed using the security keys.

When building trust into an application based on a digital signature, there are 
other technologies, such as certificate evaluation, that should be incorporated.

Confidentiality
Message confidentiality leverages XML encryption in conjunction with security 
tokens to keep portions of a SOAP message confidential. Encryption of data can 
be achieved using symmetric or asymmetric algorithms:

� Symmetric algorithms such as Triple DES use a shared key for both 
encryption and decryption.

� Asymmetric algorithms such as RSA-V1.5 use a pair of keys, public and 
private keys, for encryption and decryption. One of the keys is used for 
encrypting the information while the other is used for decrypting it. 

Symmetric algorithms are more efficient than asymmetric algorithms; however, 
they require management of shared keys between the parties and have inherent 
security risks of being exposed to others outside of your organization or business 
partners. On the other hand asymmetric algorithms are highly performance 
intensive and hence care should be taken to ensure that only highly confidential 
elements of a SOAP message are encrypted using this method.

A common practice is to use a symmetric algorithm to encrypt the SOAP 
message, then include the shared key itself in the SOAP message with the key 
encrypted and decrypted using an asymmetric algorithm. This provides an 
efficient solution and one that is easy to manage.

WS-Security design guidelines
This section discusses a set of guidelines for designing Web services security 
using WS-Security.

� Message level security for Web services using WS-Security should be used 
when application to application security is required and not just security over 
the internet between nodes at the enterprise boundary.

� Digital signature capability provided by WS-Security is an ideal choice for 
providing message integrity when mission-critical or confidential data needs 
to exchanged in a SOAP message between applications.

� Both XML digital signature and XML encryption will have an impact on the 
performance of Web services. If performance is a primary concern over all 
other requirements, then encryption at the transport level using SSL is 
168 Patterns: Extended Enterprise SOA and Web Services



probably a better choice. On the other hand, XML digital signature can also 
be used judiciously to sign only specific elements of a SOAP message like the 
security tokens in the SOAP header to provide authentication.

� As noted in the W3C specification of XML encryption, cryptographic 
vulnerabilities could be introduced when combining digital signatures and 
encryption over a common XML element. Encrypting digitally signed data, 
while leaving the digital signature in the clear, might allow plaintext guessing 
attacks. This vulnerability can be mitigated by using secure hashes and 
nonces in the text being processed.

� When messages are exchanged over an untrusted zone, it is recommended 
that messages include digitally signed elements to allow message receivers 
to detect replays of the message. Digital signatures must be combined with 
an appropriate means to ensure the uniqueness of the message, such as 
timestamps or sequence numbers. This could otherwise lead to denial of 
service attacks on the service provider. 

� Interoperability should be a primary goal. The Web Services-Interoperability 
Organization (WS-I) is working on a draft called WS-I Basic Security Profile 
1.0 that is based on a set of non-proprietary Web services specifications, 
along with clarifications and amendments to those specifications to promote 
interoperability. As an extension of the Basic Profile, the Basic Security Profile 
is designed to support the addition of security functionality to SOAP 
messaging, in an interoperable manner. 

The latest version of this specification is available at:

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

WS-Security by itself does not provide a complete security solution. Instead, 
WS-Security is a building block that can be used in conjunction with other Web 
service extensions and higher-level, application-specific protocols to 
accommodate a wide variety of security models and encryption technologies.

Transport level security for Web services
HTTP, the most widely used Internet communication protocol, is currently also 
the most popular protocol for Web services. HTTP is an inherently insecure 

Important: When designing the security aspects of a system, it is important to 
understand that absolute security is unobtainable. The security measures that 
we put in place only reduce the chances of a system being attacked by 
malicious users and cannot prevent it totally. A resource can be considered 
safe if the cost of an attack is made so high as to make it unattractive. This 
principle should be borne in mind when designing security. Security policies 
also play an important role in monitoring and managing the security measures 
put in place.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 169

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html


protocol, because all information is sent in clear text between unauthenticated 
peers over an insecure network. 

To secure HTTP, you can apply transport-level security. Secure Sockets Layer 
(SSL) and Transport Layer Security (TLS), its successor, are cryptographic 
protocols which provide secure communications on the Internet. 

In typical use, only the server is authenticated (its identity is ensured) while the 
client remains unauthenticated; mutual authentication requires PKI deployment 
to clients. 

Unlike message-level security, HTTPS encrypts the entire HTTP data packet. 
There is no option to apply security selectively on certain parts of the message. 
SSL and TLS provide security features including authentication, data protection, 
and cryptographic token support for secure HTTP connections. Therefore 
transport level security is recommended when there are no intermediaries 
involved between the service provider and requester.

Architectural decision: Securing the Web service interaction
The business requirements as described in 10.1, “Business scenario” on 
page 158 require us to integrate the Warehouse service with the Manufacturing 
service in the external partner systems, providing a real-time and 
service-oriented access between them. The security of these interactions is 
discussed in Table 10-2 on page 171.

Trivia: You can use TLS / SSL connections to encrypt data transferred over 
other application level protocols, such as File Transfer Protocol (FTP), 
Lightweight Directory Access Protocol (LDAP), and Simple Mail Transfer 
Protocol (SMTP). 
170 Patterns: Extended Enterprise SOA and Web Services



Table 10-2   Securing the Web services

Subject Area Securing the interaction between the 
ITSO Good enterprise and external 
Manufacturer

Issue Or Problem Statement The Web service interaction between the 
Warehouse system and the partner 
Manufacturing system that reside in 
separate enterprises needs to be secured. 

Some of the additional security 
requirements that need to be addressed 
by the solution are:
� The proposed solution needs to be 

secure with no dependency on the 
network infrastructure used to 
connect the Warehouse and 
Manufacturing systems. They are 
initially expected to be connected over 
the ubquitious but untrusted internet.

� The corporate security policy requires 
that all confidential information 
exchanged between the boundary 
nodes of the enterprise and partner 
systems be protected using SSL.

Assumptions Web-services using SOAP over HTTP/S is 
used by the Warehouse system to invoke 
the Manufacturing service exposed by the 
partner systems.

Motivation Because the partner systems are 
implemented in different technology 
environments, we need to use standard 
and inter-operable security features. 

Alternatives 1. Providing message-level security using 
WS-Security
2. Providing transport-level security using 
SSL/TLS.
3. A combination of WS-Security and 
TLS/SSL.

Decision Option#3: Message level security using 
XML digital signature & XML encryption 
and transport layer security using SSL 
would be used to secure the Web service 
interaction. Username token would be 
used for identification.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 171



The proposed security model shown in Figure 10-6 on page 173, uses multiple 
security tokens in the SOAP header. The UsernameToken sends the user 
credentials and the keys associated with the X.509 Certificate 
(BinarySecurityToken) digitally sign the UsernameToken using XML Digital 
signature. By validating the signature, the Manufacturing system authenticates 
the sender and also validates the integrity of the message. The SOAP body was 
not digitally signed because, in the given business scenario, it did not contain any 
confidential data. 

Both the Warehouse and Manufacturing systems import each other’s Digital 
certificate (X.509 Certificate) into their keystores.

Justification � Option 1: Message-level security 
alone doesn’t satisfy the requirement 
to have the messages exchanged 
across the boundary nodes of the 
enterprises to be secured at the 
transport layer as well.

� Option 2: Given that there are no 
intermediaries involved (Direct 
Connection) between the Warehouse 
and Manufacturer systems, transport 
level security could have been an 
ideal option. But it does not satisfy the 
requirement for the solution to be 
independent of the network 
infrastructure.

� Option 3: This provides an ideal 
choice as this provides security at two 
levels. In case the use of XML 
encryption induces performance 
overhead, we could limit the 
encryption of data at the transport 
level alone using SSL along with XML 
digital signature at the message-level 
for authentication and data integrity.

Related Decision Non-repudiation would be handled by 
logging the events and transactions into 
the Logging Service utility provided by 
ITSO Good.

Subject Area Securing the interaction between the 
ITSO Good enterprise and external 
Manufacturer
172 Patterns: Extended Enterprise SOA and Web Services



Figure 10-6   Web services security model between the Warehouse and Manufacturer.

In Figure 10-6, the Timestamp detail in the SOAP header is also digitally signed 
to protect against replay attacks. This also ensures that no duplicate 
replenishment orders are processed by the Manufacturing service as a result of 
the replays.

XML encryption at the message layer provides confidentiality. If the overhead 
associated with XML encryption results in unacceptable performance, transport 
level security using SSL could be used for data confidentiality to ensure better 
performance.

A peek into the advanced security features
The WS-Security specification discussed previously only includes a subset of 
security services. A more general security model is needed to cover other 
security aspects, such as logging and nonrepudiation in a real-world scenario. 
The definition of those requirements is given in a common Web services security 
model framework, a security white paper of Web Services Security Roadmap 

Warehouse
Application

(WA)

SOAP Response Envelope

SOAP Request Envelope

XML Encryption
XML Digital Signature

Username
TokenRouting Timestamp Request

Message Data

SOAP Header

X.509
Certificate

SOAP Body

SOAP Header

X.509 Certificate Response Message Data

SOAP Body

XML Encryption
XML Digital Signature

Key Store Key Store

Warehouse Application's Certificate
Root Certificate of MA's Certificate Authority

Manufacturer Application's Certificate
Root Certificate of WA's Certificate Authority

Manufacturer
Application

(MA)
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 173



proposed by IBM and Microsoft. A brief description of this Roadmap is provided 
here. For more detailed information about this roadmap, refer to these resources:

http://www-128.ibm.com/developerworks/library/specification/ws-secmap/

http://msdn.microsoft.com/library/en-us/dnwssecur/html/securitywhitepaper.asp

Web services security model framework
The Web services security model introduces a set of individual interrelated 
specifications to form a layering approach to security. It includes several aspects 
of security: identification, authentication, authorization, integrity, confidentiality, 
auditing, and nonrepudiation. It is based on the WS-Security specification, 
codeveloped by IBM, Microsoft, and VeriSign.

The Web services security model schema is shown in Figure 10-7.

Figure 10-7   Web Services Security Roadmap

These specifications include different aspects of Web services security including:

� WS-Policy

This policy describes the capabilities and constraints of the security and other 
business policies on intermediaries and endpoints, required security tokens, 
supported encryption algorithms, and privacy rules, for example. The 
WS-SecurityPolicy specification defines a set of security policy assertions 
which apply to Web Services Security: SOAP Message Security, WS-Trust, 
and WS-SecureConversation.
174 Patterns: Extended Enterprise SOA and Web Services

http://www-128.ibm.com/developerworks/library/specification/ws-secmap/
http://msdn.microsoft.com/library/en-us/dnwssecur/html/securitywhitepaper.asp
http://www-128.ibm.com/developerworks/library/specification/ws-secmap/
http://msdn.microsoft.com/library/en-us/dnwssecur/html/securitywhitepaper.asp


� WS-Trust

This policy describes a framework for trust models that enables Web services 
to securely interoperate. This specification is responsible for managing trusts 
and establishing trust relationships.

� WS-Privacy

This policy describes a model for how Web services and consumers state 
privacy preferences and organizational privacy practice statements.

� WS-Federation

This policy describes how to manage and broker the trust relationships in a 
heterogeneous federated environment, including support for federated 
identities.

� WS-Authorization

WS-Authorization describes how to manage authorization data and 
authorization policies.

� WS-SecureConversation

This specification is built on top of the WS-Security and WS-Policy models to 
provide secure communication between services. This specification defines 
mechanisms for establishing and sharing security contexts, and deriving keys 
from security contexts, to enable a secure conversation.

10.2.4  Products
We discussed several design decisions were which influence product choice in 
10.2.3, “Analyze design options” on page 162. This section looks at the products 
that you can use to implement these design decisions and the product choices 
that were made for this particular implementation.

Product implementation options
Product choices for this scenario are based on:

Attention: An updated version of the Web Services Security Policy 
Language (WS-SecurityPolicy) specification has been released by IBM, 
Microsoft, RSA Security, and VeriSign. IBM, Microsoft and 12 other 
coauthors also announced that this WS-SecurityPolicy specification, 
together with Web Services Trust Language (WS-Trust) and Web Services 
Secure Conversation Language (WS-SecureConversation), was submitted 
to OASIS for standardization in September 2005.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 175



� Design decisions made in 10.2.3, “Analyze design options” on page 162
� Extended Enterprise capabilities of the products
� Products that are currently available

For this scenario, we can use the following currently available products to 
implement the generic profile of the Exposed Direct Connection runtime pattern:

� WebSphere Application Server V6.0.2
� WebSphere Application Server Network Deployment V6.0.2
� WebSphere Application Server Network Deployment V6.0.2 Web Services 

Gateway

You can find a comparison between available products and their Extended 
Enterprise capabilities in Chapter 5, “Product descriptions” on page 87.

Product mapping selected
For this scenario, we will use WebSphere Application Server V6.0.2 because it 
meets all of the requirements. The Product mapping is shown in Figure 10-8.

Figure 10-8   Exposed Direct Connection:: Product mappings

In this Product mapping, WebSphere Application Server V6.0.2 was used for all 
services within the ITSO Good enterprise. The Warehouse service invokes the 
Manufacturing service that are implemented in the three heterogeneous 
technical environments namely, CICS Transaction Server V3.1, WebSphere 
Application Server V6.0.2 and Microsoft .NET respectively. The Warehouse 
service connects to the Manufacturing service through a SOAP/HTTP Web 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l
Exposed

Connector

Rules
Directory

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6Internet

WebSphere 
Application 
Server V6.0.2
(SOAP 
provider)

WebSphere
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2WebSphere 

Application 
Server V6.0.2

Directory
& Security
Services

WebSphere 
Application 
Server V6.0.2
176 Patterns: Extended Enterprise SOA and Web Services



service call using the SOAP Provider in the WebSphere Application Server 
Network Deployment V6.0.2.

The Directory and Security services are being provided by the WebSphere 
Application Server Network Deployment in this scenario to keep the solution 
simple. For more advanced configuration, consult the IBM redbook Enterprise 
Security Architecture Using IBM Tivoli Security Solutions, SG24-6014.

10.3  Development guidelines
The scenario in this book describes the development guidelines for implementing 
the product mapping shown in Figure 10-8 on page 176 for the Exposed Direct 
Connection runtime pattern. This product mapping describes how to add 
WS-Security to Web service interactions by configuring enterprise applications in 
Rational Application Developer.

10.3.1  Exposed Direct Connection interaction: Generic profile

Figure 10-9 on page 178 shows the interactions that are made by each 
component in the sample application.

Note: The development guidelines in this section use Rational Application 
Developer V6.0.1.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 177



Figure 10-9   Scenario implementation using the Exposed Direct Connection pattern::Generic profile

Figure 10-9 shows how the application has been written and how it interacts with, 
other components. Shown are the enterprise applications (blue boxes), Web 
services (white boxes), and the Web service operations (smaller white boxes 
such as getCatalog). The e connectivity between the application’s components is 
synchronous. Arrows connecting the operations indicate Web service 
invocations.

The application interacts as follows:

1. The SCMSampleUI application:

a. Provides a Web user interface.
b. Invokes the Retailer Web service to get a list of all the items for purchase.
c. Invokes the Retailer Web service to order an item.
d. Invokes the LoggingFacility to track an order.

2. When an order is submitted, the Retailer Web service:

a. Invokes the LoggingFacility to log events that occur in the order.

Manufacturer C (CICS Transaction Server)

Manufacturer B (Microsoft .NET)

Manufacturer

Manufacturer A (WebSphere Application Server 6)

submitPO

LoggingFacility

LoggingFacility

logEvent

getEvents

SCMSampleUI

SCMSampleUI

ITSO Good

getEvents

getCatalog

submitOrder

Retailer

Retailer

shipGoods

logEvent

getCatalog

submitOrder

Warehouse

shipGoods
submitPO

logEvent

Warehouse

Indicates a Web service request

Key:

Indicates a one-way operation
Indicates a request/response operation

A Web service operation 
or onMessageOperation name
178 Patterns: Extended Enterprise SOA and Web Services



b. Invokes the Warehouse to obtain whether the order can be shipped and, if 
so, has it shipped.

3. When a request to ship goods is made, the Warehouse Web service:

a. Determines if there is enough of an item in stock to ship the order.

• If there is not enough quantity in stock, it refuses to ship the order.
• If there is enough quantity in stock, it ships the order.

b. Determines if more of the goods need to be ordered:

• If more goods need to be ordered, it submits a purchase order to the 
relevant Manufacturer.

• If there is enough of a particular item in stock, it does nothing.

4. When a purchase order is submitted, the Manufacturer Web service receives 
and process it, then returns to the Warehouse.

The calls between the Warehouse Web service and the Manufacturer Web 
services are interenterprise across an untrusted network, therefore these calls 
need to be secured.

10.3.2  Securing applications using WS-Security
The WS-Security specification provides message-level security, which is used to 
implement message content integrity and confidentiality. 

The advantage of using WS-Security rather than SSL is that WS-Security can 
provide end-to-end message-level security. This means that message security 
can be protected even if the message goes through multiple services called 
intermediaries.

Additionally, WS-Security is independent of the transport layer protocol; it can be 
used for any Web service binding (for example, HTTP, JMS, RMI). Using 
WS-Security, end-to-end security can be achieved (Figure 10-10).

Figure 10-10   End-to-end security with message-level security

Web service
provider

Web service
consumer

Security Context

Intermediary
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 179



Configuring WS-Security
To secure a Web service application with WS-Security, it is necessary to define 
WS-Security configurations using Rational Application Developer V6.0 or the 
Application Server Toolkit. If the appropriate WS-Security configurations exist in 
the application EAR file, the WS-Security runtime is invoked when the SOAP 
message is outgoing or incoming and the SOAP messages are secured. This 
chapter provides information about how to configure WS-Security using Rational 
Application Developer V6.0.1.

There are a vast array of possible configurations using WS-Security. The 
particular configuration needed for a service is dictated by the security 
requirements of the project. To limit the scope of this chapter, we describe how to 
configure two mechanisms, Integrity and Confidentiality, to secure the request 
SOAP message from Warehouse to Manufacturer (Figure 10-11):

� Integrity is provided by applying a digital signature to a SOAP message.
� Confidentiality is applied by SOAP message encryption.

Figure 10-11   Securing the connection between the Warehouse and Manufacturer

The responses from the Manufacturer back to the Warehouse will not be signed 
or encrypted. A real WS-Security configuration will almost certainly be more 
complex than shown in this section and might involve both signing and 
encrypting requests and responses.

Example 10-1 on page 181 shows a partial SOAP message without WS-Security.

Warehouse

Warehouse

submitPO

Manufacturer

submitPO

secure the SOAP 
message using a 
digitial signature and  
encryption 

Web service consumer
(client)

Web service provider
(server)
180 Patterns: Extended Enterprise SOA and Web Services



Example 10-1   SOAP message without applying security

<soapenv:Envelope
  xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soapenv:Header>
    <p67:Configuration
      
xmlns:p67="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Configuration.xsd">
      <p67:UserId>1b63ce7e:10581adfdda:-7ff9</p67:UserId>
    </p67:Configuration>
    <p900:StartHeader>

Example 10-2 shows a partial SOAP message with integrity and confidentiality, 
appropriate when the message includes personal information, such as a credit 
card or bank account number. The whole SOAP body is signed and encrypted.

Example 10-2   SOAP message with WS-Security

<soapenv:Envelope
  xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
  xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <soapenv:Header>
    <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
      <wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-mess
age-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509"
        wsu:Id="x509bst_5963606011209195163"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-u
tility-1.0.xsd">
        
MIIBzjCCATegAwIBAgIEQueSaTANBgkqhkiG9w0BAQQFADAsMQswCQYDVQQGEwJVUzEMMAoGA1UECxM
DSUJNMQ8wDQYDVQQDEwZDbGllbnQwHhcNMDUwNzI3MTM1NTUzWhcNMDkwNzI2MTM1NTUzWjAsMQswCQ
YDVQQGEwJVUzEMMAoGA1UECxMDSUJNMQ8wDQYDVQQDEwZDbGllbnQwgZ4wDQYJKoZIhvcNAQEBBQADg
YwAMIGIAoGAYg6ZmQFokKxQmupTPGOGNeJAfxx8EWhSmhwQzm4Hww7WVv3BUvjKtv4DoO2aeTXo/e2f
07oq5cPn7ZazKSkV48p30t32UHZisJ4ZyRG13iu3W9HFSGDiSkLNIwYxN8NDE7+Vxr1gf/Q0Fnn7J9M
YgtKV7oDH4wTds5gUQg0qB6UCAwEAATANBgkqhkiG9w0BAQQFAAOBgQA789EMk9oaw3cpYbKslVjZbz
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 181



LCIQ2XSscYeyj0Vh7H930/7wJwG+7rgeL1n3lwn47gpfhnJyeI0aYIGDBKFbzJ4mKKk+bWjpNjMiJOr
DqH5RH+xL3DMYhqLCDLH+6Uh3JmUbBhzhfjI4uZxfCHpzR5AbIoeWWKcLiTnSFLZIIeTQ==
      </wsse:BinarySecurityToken>

How to define a WS-Security configuration
While many steps are necessary to configure WS-Security, we describe how to 
configure two security mechanisms: integrity, and confidentiality. Figure 10-12 
shows an overview of the resources that need to be defined for these 
mechanisms.

Figure 10-12   WS-Security binding elements

You can use GUI editors for specifying WS-Security configurations for both the 
client and server. Rational Application Developer V6.0 provides two GUI editors 
for WS-Security configuration: one for the client and one for the server.

Here is the outline of the steps used to configure WS-Security in our sample 
application:

1. Configure WS-Security for sending the request message (WarehouseEJB - 
client)

Edit the ejb-jar.xml file for the request generator with the Deployment 
Descriptor Editor.

WS-Security
Configuration

Integrity

Token
Generator

Confidentiality

Encryption
Information

Callback
Handler

Key

Key Locator

Key

Key 
Information

Signing
Information

Part 
Reference

Transforms

Key Locator

Key

Key 
Information
182 Patterns: Extended Enterprise SOA and Web Services



2. Configure WS-Security for receiving the request message (Manufacturer - 
server)

Edit the webservices.xml file for the request consumer with the Web Services 
Editor.

Examining the client configuration
Before you configure WS-Security, import the projects where security needs to 
be added into a Rational Application Developer workspace. The projects for this 
scenario are located in the DirectConnection\projects directory of the 
additional material that is supplied with this book (see Appendix A, “Additional 
material” on page 481).

To import the projects:

1. In Rational Application Developer, click File → Import. Select Project 
Interchange and click Next.

2. Locate DirectConnectionProjects.zip in the DirectConnection\projects 
directory of the additional material that is supplied with this book.

3. Select all the projects in this file then click Finish. Ignore all errors that appear 
in the Problems view.

For the client configuration, you access the GUI for the WS-Security 
configuration from the Deployment Descriptor Editor:

Note: The client-side security information is accessed through the 
Deployment Descriptor Editor of the client module:

� For a Web client (servlet, JSP™, JavaBean), edit the web.xml file. 

� For an EJB client (a session bean accessing a Web service), edit the 
ejb-jar.xml file. 

� For a J2EE application client, edit the application-client.xml file.

In each editor, there are two tabs for WS-Security configuration: 

� WS Extension — What security measures to apply
� WS Binding — How to apply the security measures

Note: The projects you import contain WSDL files. These WSDL files import 
resources from an HTTP server with the address 
http://appsrv1a.itso.ral.ibm.com. In order to resolve these errors in the WSDL 
file you need to configure this HTTP server. See 10.4.3, “Hosting the WSDL 
files” on page 219 for details.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 183



1. To open the GUI in Rational Application Developer, expand the client project 
(EJB Projects → WarehouseEJB) in the Project Explorer and double-click 
the deployment descriptor. You can alternatively expand ejbModule → 
META-INF and open the ejb-jar.xml file directly.

2. When the Deployment Descriptor Editor opens, select the WS Extension or 
WS Binding tab. The WS Extension page is for editing the client’s 
deployment descriptor extension file, so you can specify what security is 
required. The WS Binding page is for editing the client’s binding file, so you 
can specify how to apply the required security. Figure 10-13 shows the 
WS-Binding page in the Deployment Descriptor Editor.

Figure 10-13   WS-Binding page in the deployment descriptor

Examining the server configuration
For the server configuration, you access the GUI for the WS-Security 
configuration using the Web Services Editor.

1. To open the GUI, expand the server project (Dynamic Web Projects → 
ManufacturerWeb) in the Project Explorer and double-click the 
webservices.xml file under WebContent → WEB-INF.
184 Patterns: Extended Enterprise SOA and Web Services



2. When the Deployment Descriptor Editor opens, select the Extensions or 
Binding Configurations tab. The Extensions page is for editing the server’s 
extension file, so you can specify what security is required. The Binding 
Configurations page is for editing the server’s binding file, so you can specify 
how to apply the required security. Figure 10-14 shows the Extensions page 
in the Web Services Editor.

Figure 10-14   Extensions page in the Web Services Editor

10.3.3  Generating sample key stores
Before starting the WS-Security configuration, you have to prepare the client and 
server key stores to sign or encrypt the message. This section shows how to 
create a sample key store for testing WS-Security. If you want to apply 
WS-Security to a real application, you should prepare the appropriate certificate 
and keys. Do not use this sample key store for a real application.

We create two key stores that contain the following keys. The keys are created by 
using the Java keytool:

Client key
Algorithm RSA
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 185



Distinguished Name CN=Client, OU=IBM, C=US
Key size 1024
Storepass client
Storetype JKS
Keypass client_rsa
Alias client_rsa
Key store file client.jks
Certificate file client_rsa.cer

Server key 
Algorithm RSA
Distinguished Name CN=Server, OU=IBM, C=US
Key size 1024
Storepass server
Storetype JKS
Keypass server_rsa
Alias server_rsa
Key store file server.jks
Certificate file server_rsa.cer

Using the Java keytool
To generate sample key stores, follow these steps:

1. Go to the directory where you want to generate the key stores. Here, we 
generate key stores in <WAS_HOME>\etc\ws-security\samples\ITSOGood. 

2. Run the keytool in a command prompt as follows. The keytool is located in 
<RAD_HOME>\runtimes\base_v6\java\jre\bin if you are using the Integrated 
Test Server, or <WAS_HOME>\java\jre\bin if you are using a standalone 
WebSphere Application Server.

a. Set the PATH environment variable:

set PATH=<RAD60_HOME>\runtimes\base_v6\java\jre\bin;%PATH%

b. Generate a client RSA key:

keytool -genkey -keyalg RSA -keystore client.jks -storetype jks 
-storepass client -alias client_rsa -keypass client_rsa -dname 
"CN=Client, OU=IBM, C=US" -keysize 1024 -validity 1460

c. Generate a server RSA key:

keytool -genkey -keyalg RSA -keystore server.jks -storetype jks 
-storepass server -alias server_rsa -keypass server_rsa -dname 
"CN=Server, OU=IBM, C=US" -keysize 1024 -validity 1460

d. Export a client RSA certificate:

keytool -export -keystore client.jks -storetype jks -storepass client 
-alias client_rsa -file client_rsa.cer
186 Patterns: Extended Enterprise SOA and Web Services



e. Import a client RSA certificate to a server key store:

keytool -import -noprompt -keystore server.jks -storetype jks -storepass 
server -alias client_rsa -file client_rsa.cer

f. Export a server RSA certificate:

keytool -export -keystore server.jks -storetype jks -storepass server 
-alias server_rsa -file server_rsa.cer

g. Import a server RSA certificate to a client key store:

keytool -import -noprompt -keystore client.jks -storetype jks -storepass 
client -alias server_rsa -file server_rsa.cer

3. You should now have two key store files and two certificate files:

Client key store file client.jks
Server key store file server.jks
Client certificate file client_rsa.cer
Server certificate file server_rsa.cer

4. To verify the key information in these key stores, run the following commands:

keytool -list -keystore client.jks -storepass client -v
keytool -list -keystore server.jks -storepass server -v

The expected output is shown in Figure 10-3.

Example 10-3   Expected output from the keytool command

Keystore type: jks
Keystore provider: IBMJCE

Your keystore contains 2 entries

Alias name: client_rsa
Creation date: Nov 2, 2005
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Client, OU=IBM, C=US
Issuer: CN=Client, OU=IBM, C=US
Serial number: 43684e07
Valid from: 11/2/05 1:26 PM until: 11/1/09 1:26 PM
Certificate fingerprints:
         MD5:  DD:EA:E6:60:6F:C1:2A:C5:09:0B:17:F3:D2:CA:2E:0D
         SHA1: A0:16:70:58:91:F4:0B:3D:DA:0A:F8:B1:BD:CF:83:5E:43:43:98:BB

*******************************************
*******************************************
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 187



Alias name: server_rsa
Creation date: Nov 2, 2005
Entry type: trustedCertEntry

Owner: CN=Server, OU=IBM, C=US
Issuer: CN=Server, OU=IBM, C=US
Serial number: 43685105
Valid from: 11/2/05 1:39 PM until: 11/1/09 1:39 PM
Certificate fingerprints:
         MD5:  5B:D9:3A:C4:1D:5B:C6:C0:6E:77:04:5E:48:E2:F2:70
         SHA1: 26:AD:2A:54:8F:F8:20:4D:B8:38:57:2A:C1:83:F9:29:68:35:CB:EE

*******************************************
*******************************************

10.3.4  Configuring WS-Security integrity
Integrity is provided by applying a digital signature to a SOAP message. This 
section describes how to configure integrity in Rational Application Developer. It 
contains the following steps:

� Configuring the client integrity
� Configuring the server integrity
� Integrity on the response message

WS-Security integrity requires a number of components to be defined, as 
highlighted in Figure 10-15 on page 189.

Important: When using the keytool, only a self-signed certificate can be 
created. If you want to create a certificate path, you have to use another tool. 
More detailed information about creating certificates and keys is provided in 
WebSphere Application Server V6: Security Handbook, SG24-6316.
188 Patterns: Extended Enterprise SOA and Web Services



Figure 10-15   WS-Security binding elements - integrity

Configuring the client integrity
To configure integrity for a request message sent by a client, open the 
WarehouseEJB deployment descriptor and go to the WS Extension tab.

1. Under Service References select service/ManufacturerService.

2. Expand Request Generator Configuration, then expand Integrity.

3. Click Add and enter the following information in the Integrity dialog window 
(Figure 10-16 on page 190): 

a. Enter a name identifying the part in the Integrity Name field of the value 
int_body.

b. Select the order in which the signature is generated. In our case, we select 
1.

c. Click Add under Message Parts. This creates one integrity part. The 
default created part is for signing the SOAP body. If you want to sign the 
SOAP body only, you have nothing more to do.

d. Click OK.

WS-Security
Configuration

Integrity

Token
Generator

Confidentiality

Encryption
Information

Callback
Handler

Key

Key Locator

Key

Key 
Information

Signing
Information

Part 
Reference

Transforms

Key Locator

Key

Key 
Information
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 189



Figure 10-16   Integrity dialog

4. Save the configuration.

The corresponding integrity part information must be specified on the WS 
Binding page:

1. Click the WS Binding tab and expand Security Request Generator Binding 
Configuration, then expand Token Generator.

2. To insert a security token into the message for signing click Add and perform 
the following:

a. Enter a Token generator name of gen_dsigtgen.

b. For the Token generator class, select the field ending in 
X509TokenGenerator.

c. Do not select a Security token.

d. Select Use value type, and then select X509 certificate token in the 
Value type field and the X509CallbackHandler in the Call back Handler 
field.
190 Patterns: Extended Enterprise SOA and Web Services



e. Select Use key store. In our case, we enter client as the storepass, 
${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood\client.jks 
as the key store path, and select JKS as key store type.

f. Click Add under Key and enter client_rsa as the alias, client_rsa as the 
key pass, and CN=Client, OU=IBM, C=US as the key name.

g. Click OK, and a token generator is created. Save the changes.

Figure 10-17 on page 192 shows the Token Generator dialog for specifying a 
signature by an X.509 certificate.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 191



Figure 10-17   Token Generator dialog for signing by an X.509 certificate

3. Expand Key Locators and click Add. Specify how to retrieve a key for 
signing:

a. Enter a Key locator name of gen_dsigklocator.
192 Patterns: Extended Enterprise SOA and Web Services



b. Select or enter a Key locator class name. The class to retrieve a key 
implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator 
interface. In our case, we select the KeyStoreKeyLocator.

c. Specify the key store and key by selecting Use key store. Enter the same 
information as in the previous dialog, including the key store details and 
the addition of a key called client_rsa.

d. Click OK, and a key locator is created.

Figure 10-18 shows the Key Locator dialog for specifying a signature by an 
X.509 certificate.

Figure 10-18   Key Locator dialog for signing by an X.509 certificate

4. Expand Key Information and click Add. Specify which type of security token 
reference is used:

a. Enter a name of gen_dsigkeyinfo.

b. Select STRREF in the Key information type. The key information class 
name is filled in when a type is selected.

c. Select Use key locator and select a Key locator from the list. Key locators 
that have been defined are listed. Select gen_dsigklocator. Also select 
the predefined key CN=Client, OU=IBM, C=US as the key name.

d. If a security token is inserted into the message, and a token generator is 
specified already, select which token generator is used. Select Use token 
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 193



and select gen_disgtgen from the list. The selected token generator is 
invoked to generate the token that is referenced from this key information. 
Click OK, and the key information is created.

Figure 10-19 shows a Key Information dialog for specifying a signature by an 
X.509 certificate.

Figure 10-19   Key Information dialog for signing by an X.509 certificate

5. Expand Signing Information and click Add. You have to specify how to sign:

a. Enter a name of sign_body.

b. Select the Canonicalization method algorithm 
http://www.w3.org/2001/10/xml-exc-c14n#.

c. Select the Signature method algorithm 
http://www.w3.org/2000/09/xmldsig#rsa-sha1

d. Enter a Key information name of sign_kinfo.

e. Select a Key information element from the list. Predefined key information 
is listed. Select gen_dsigkeyinfo.

f. Click OK, and the signing information is created.

Figure 10-20 on page 195 shows a Signing Information dialog for specifying a 
signature by an X.509 certificate.
194 Patterns: Extended Enterprise SOA and Web Services



Figure 10-20   Signing Information dialog for signing by an X.509 certificate token

6. Expand Part References and click Add to specify an integrity part that 
applies to this signature information:

a. Enter a Part reference name of sign_part.

b. Select an Integrity part from the list of parts defined on the WS Extensions 
page. In our case, we select int_body. 

c. Select a Digest method algorithm from the list. The supported digest 
method algorithm is http://www.w3.org/2000/09/xmldsig#sha1. 

d. Click OK, and a part reference is created.

Figure 10-21 on page 196 shows a Part Reference dialog for specifying a 
signature by an X.509 certificate.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 195



Figure 10-21   Part Reference dialog for signing by an X.509 certificate

7. After adding part references, adding a transform becomes enabled. Expand 
Transforms and click Add and complete the dialog:

a. Enter a name of sign_trans.

b. Select the http://www.w3.org/2001/10/xml-exc-c14n# transform 
algorithm from the list.

c. Click OK, and a transform is created.

Figure 10-22 shows a Transform dialog for specifying a signature by an X.509 
certificate.

Figure 10-22   Transform dialog for signing by an X.509 certificate

8. Save your changes to the deployment descriptor.

Configuring the server integrity
To configure how to verify integrity, open the webservices.xml file in the 
ManufacturerWeb project with the Web Services Editor. To receive the digitally 
signed request message from a client, a server should configure signature 
verification on the Extensions page as follows.

1. Under Port Component Binding, click Manufacturer to highlight it.
196 Patterns: Extended Enterprise SOA and Web Services



2. Expand Request Consumer Service Configuration Details, then Required 
Integrity and click Add:

a. Enter a name denoting the part of reqint_body.

b. Select the Usage type, Required.

c. Click Add under Message Parts to specify an integrity required part. We 
select http://..../dialect-was and body.

d. Click OK, and a required integrity part is created. Save the changes.

Figure 10-23 shows a Required Integrity dialog for specifying that integrity 
is required on the SOAP body.

Figure 10-23   Required Integrity dialog

3. We have to provide corresponding information about the binding 
configuration. 

a. Select the Binding Configurations tab and expand Request Consumer 
Binding Configuration Details.

b. Add a Token Consumer; expand Token Consumer and click Add:

c. Enter a name of con_dsigtcon. 
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 197



d. Select the Token consumer class X509TokenConsumer. 

e. Do not select a security token.

f. Select Use value type and select X509 certificate token.

g. Select Use jaas.config and enter system.wssecurity.X509BST as the 
name. 

h. Select Use certificate path settings and select Trust any certificate.

i. Click OK.

Figure 10-24 on page 199 shows a Token Consumer dialog for signature 
verification by X.509 certificates.
198 Patterns: Extended Enterprise SOA and Web Services



Figure 10-24   Token Consumer dialog for signature verification (X.509 certificate)

4. Expand Key Locators and click Add to specify how to retrieve a key for a 
signature verification: 

a. Enter a name of con_dsigklocator, and select the 
X509TokenKeyLocator class.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 199



b. Click OK.

Figure 10-25 shows a Key Locator dialog for signature verification by X.509 
certificates.

Figure 10-25   Key Locator dialog for signature verification (X.509 certificate)

5. Expand Key Information and click Add to specify which type of security 
token reference is required. The type should match the client configuration:

a. Enter a name of con_dsigkeyinfo, select STRREF as the type.

b. Select Use key locator and set the Key locator to con_dsigklocator.

c. Select Use token and select the token con_dsigtcon. On the consumer 
side, we do not have to specify the key name.

d. Click OK.

Figure 10-26 on page 201 shows a Key Information dialog for signature 
verification by X.509 certificates.
200 Patterns: Extended Enterprise SOA and Web Services



Figure 10-26   Key Information dialog for signature verification (X.509 certificate)

6. Expand Signing Information and click Add to define how to verify a required 
integrity part:

a. Enter a name of sign_body.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as the 
Canonicalization method algorithm and 
http://www.w3.org/2000/09/xmldsig#rsa-sha1 as the Signature method 
algorithm. 

c. For the Signing key information, click Add, enter sign_kinfo as the Key 
information name, and select con_dsigkeyinfo as the Key information 
element.

d. Click OK.

Figure 10-27 on page 202 shows a Signing Information dialog for signature 
verification by X.509 certificates.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 201



Figure 10-27   Signing Information dialog for signature verification (X.509 certificate)

7. Expand Part References and click Add and complete the dialog:

a. Enter a name of sign_part.

b. Select reqint_body from the list and 
http://www.w3.org/2000/09/xmldsig#sha1 as the algorithm.

c. Click OK.

Figure 10-28 on page 203 shows a Part Reference dialog for signature 
verification by X.509 certificates.
202 Patterns: Extended Enterprise SOA and Web Services



Figure 10-28   Part Reference dialog for signature verification (X.509 certificate)

8. Expand Transforms and click Add and complete the dialog:

a. Enter a name of sign_trans.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as the algorithm.

c. Click OK.

Figure 10-29 shows a Transform dialog for signature verification by X.509 
certificates.

Figure 10-29   Transform dialog for signature verification (X.509 certificate)

9. Save the changes to the deployment descriptor.

Integrity on the response message
Optionally, you can add integrity on the response message from the server. To do 
this you need to configure the Response Generator in the server configuration 
and the Response Consumer in the client configuration:

� For the server configuration, you can configure the Response Generator 
Service Configuration Details in the Extensions page and the Response 
Generator Binding Configuration Details in the Binding Configurations page 
by referring to “Configuring the client integrity” on page 189.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 203



� For the client configuration, you can configure the Response Consumer 
Configuration in the WS Extension page and the Security Response 
Consumer Binding Configuration in the WS Binding page by referring to 
“Configuring the server integrity” on page 196.

Securing the response message in a real scenario is important, but for the simple 
scenario in this chapter we do not secure the response message. 

10.3.5  Configuring WS-Security confidentiality
Confidentiality is applied by SOAP message encryption. This section describes 
how to configure confidentiality in Rational Application Developer. It contains the 
following steps:

1. Configuring the client confidentiality
2. Configuring the server confidentiality
3. Confidentiality on the response message

WS-Security confidentiality requires a number of components to be defined, as 
highlighted in Figure 10-30.

Figure 10-30   WS-Security binding elements - confidentiality

WS-Security
Configuration

Integrity

Token
Generator

Confidentiality

Encryption
Information

Callback
Handler

Key

Key Locator

Key

Key 
Information

Signing
Information

Part 
Reference

Transforms

Key Locator

Key

Key 
Information
204 Patterns: Extended Enterprise SOA and Web Services



Configuring client confidentiality
To configure confidentiality for a request message sent by a client, open the 
WarehouseEJB deployment descriptor and go to the WS Extension page. 

1. Expand Request Generator Configuration, expand Confidentiality, then 
click Add: 

a. Enter a name of conf_body.

b. Select the order in which the encryption is generated. In our case, we 
select 2.

c. Click Add for Message Parts, and select http://..../dialect-was and 
bodycontent as the keyword.

d. Click OK, and a confidentiality part is created. If you need multiple 
confidentiality parts, you can add more.

2. Save the configuration.

Figure 10-31 shows a Confidentiality dialog for specifying the encryption of the 
SOAP body content.

Figure 10-31   Confidentiality dialog for body content encryption
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 205



After specifying a confidentiality part, the corresponding information must be 
specified. Go to the WS Binding page and complete the following:

1. Expand Security Request Generator Binding Configuration. Expand Key 
Locators and click Add to specify how to retrieve a key for encryption: 

a. Enter a name of gen_encklocator. 

b. Select KeyStoreKeyLocator as the class name. The class to retrieve a 
key implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator 
interface. 

c. Select Use key store and specify a client key store and server public key. 
We specify client, 
${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood\client.jks 
and JKS.

d. Click Add under Key to define the key. Enter server_rsa as the alias and 
CN=Server, OU=IBM, C=US as the key name. Key pass should be empty, 
because a client does not know the key password of a server key in the 
client key store.

e. Click OK.

Figure 10-32 shows a Key Locator dialog for specifying the encryption of the 
SOAP body content.

Figure 10-32   Key Locator dialog for body content encryption
206 Patterns: Extended Enterprise SOA and Web Services



2. Expand Key Information and click Add to specify which type of key reference 
is used:

a. Enter a name of gen_enckeyinfo, and select a type of KEYID from Key 
information type list. 

b. Select Use key locator, and then select gen_encklocator and 
CN=Server, OU=IBM, C=US.

c. Click OK.

Figure 10-33 shows a Key Information dialog for specifying the encryption of 
the SOAP body content.

Figure 10-33   Key Information dialog for body content encryption

3. Expand Encryption Information and click Add and specify how to encrypt:

a. Enter a name of enc_body.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as Data 
encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as Key encryption 
method algorithm from the list.

d. Enter Key information name to specify the key information reference. We 
specify enc_keyinfo.

e. Select a Key information element from the list of the key information that 
was defined. The selected key information is used for encryption. In our 
case, we select gen_enckeyinfo from the list.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 207



f. Select a Confidentiality part from the list of confidentiality parts that were 
defined in the extensions. In our case, we select conf_body from the list.

g. Click OK, and the encryption information is created.

Figure 10-34 shows an Encryption Information dialog for specifying the 
encryption of the SOAP body content.

Figure 10-34   Encryption Information dialog for body content encryption

4. Save the changes to the deployment descriptor.

Configuring server confidentiality
To configure how to decrypt the message, open the webservices.xml file in the 
ManufacturerWeb project with the Web Services Editor. 

To receive an encrypted message from a client, the server should configure how 
to decrypt the message on the Extension page under Request Consumer 
Service Configuration Details as follows:

1. Expand Required Confidentiality and click Add:

a. Enter a name of reqconf_body.

b. Select the Usage type Required.

c. Click Add for Message Parts and type http://.../dialect-was and 
bodycontent as the keyword.

d. Click OK, and a required confidentiality part is created.
208 Patterns: Extended Enterprise SOA and Web Services



Figure 10-35 shows a Required Confidentiality dialog for decryption of the SOAP 
body content.

Figure 10-35   Required Confidentiality dialog for body content decryption

After specifying the required confidentiality part, the corresponding information 
must be specified on the Binding Configurations page. Switch to this tab and 
perform the following:

1. Expand Request Consumer Binding Configuration Details. These settings 
should match the client configuration. Expand Token Consumer, click Add 
and complete the dialog:

a. Enter a name, for example, con_enctcon.

b. Select com.ibm.wsspi.wssecurity.token.X509TokenConsumer as the 
class. 

c. Select Use value type and select X509 certificate token. 

d. Select Use jaas.config and enter system.wssecurity.X509BST as the 
name. In addition, specify a jaas.config properties by clicking Add.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 209



e. Specify a jaas.config property name of 
com.ibm.wsspi.wssecurity.token.x509.issuerName. Set the value of this 
property to CN=Server, OU=IBM, C=US.

f. Click Use certificate path settings and then select Trust any certificate.

g. Click OK.

Figure 10-36 on page 211 shows a Token Consumer dialog for decryption of 
the SOAP body content.
210 Patterns: Extended Enterprise SOA and Web Services



Figure 10-36   Token Consumer dialog for body content decryption

2. Expand Key Locators and click Add to specify how to retrieve a key for 
decryption:

a. Enter a name of con_encklocator. 
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 211



b. Select com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator as the 
class.

c. Select Use key store and specify the server key store and server private 
key. In our case, we specify server, 
${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood\server.jks 
and JKS. 

d. Click Add under Key and enter server_rsa as the alias, server_rsa as the 
key pass, and CN=Server, OU=IBM, C=US as the key name.

e. Click OK.

Figure 10-37 shows a Key Locator dialog for the decryption of the SOAP body 
content.

Figure 10-37   Key Locator dialog for body content decryption

3. Expand Key Information and click Add to specify which type of security 
token reference is required:

a. Enter a name of con_enckeyinfo. The type should match the client 
configuration, select KEYID.

b. Select Use key locator, and then select con_encklocator and 
CN=Server, OU=IBM, C=US from the pull-down menus. 

c. Select Use token and select con_enctcon.

d. Click OK.
212 Patterns: Extended Enterprise SOA and Web Services



Figure 10-38 shows a Key Information dialog for the decryption of SOAP body 
content.

Figure 10-38   Key Information dialog for body content decryption

4. Expand Encryption Information and click Add to define how to decrypt a 
required confidentiality part:

– Enter a name of enc_body.

– Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc for the Data 
encryption method algorithm and 
http://www.w3.org/2001/04/xmlenc#rsa-1_5 for the Key encryption 
method algorithm.

– Click Add under Encryption key information. Enter enc_kinfo as the Key 
information name and select con_enckeyinfo as the Key information 
element. 

– Select reqconf_body as the RequiredConfidentiality part.

Figure 10-39 on page 214 shows an Encryption Information dialog for the 
required confidentiality part.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 213



Figure 10-39   Encryption Information dialog for body content decryption

5. Save your changes to the configuration.

Confidentiality on the response message
If you want to add confidentiality on the response message from the server, you 
have to configure the Response Generator in the server configuration and the 
Response Consumer in the client configuration:

� For the server configuration, you can configure the Response Generator 
Service Configuration Details on the Extensions page and the Response 
Generator Binding Configuration Details on the Binding Configurations page. 

� For the client configuration, you can configure the Response Consumer 
Configuration on the WS Extension page and the Security Response 
Consumer Binding Configuration on the WS Binding page.

10.3.6  Exporting EAR files from Rational Application Developer
Now that you have configured WS-Security, you need to export ITSOGood and 
Manufacturer EAR files in order to install them on the applications servers.

Perform the following steps:

1. In the Project Explorer view of the J2EE perspective, expand Enterprise 
Applications. 
214 Patterns: Extended Enterprise SOA and Web Services



2. Right-click ITSOGood and select Export → EAR file. Enter a destination to 
save the EAR file, making sure to name it ITSOGood.ear. Click Finish.

3. Repeat this process for the Manufacturer project, saving the file as 
Manufacturer.ear.

10.4  Runtime guidelines
This section takes you through the steps that are involved for configuring the 
sample application using the Extended Enterprise Direct Connection pattern. 
The following activities are needed to successfully setup and test the sample 
application:

� Configuring WebSphere Application Server server profiles
� Hosting the WSDL files
� Installing and configuring the applications
� Securing the Application Servers using Global Security
� Configuring the Web server for SSL routing
� Running and using the Supply Chain application

10.4.1  Solution topology
In order to represent the complete business scenario, the sample application is 
divided into four subapplications:

� ITSOGood contains the SCMSampleUI, Retailer, Warehouse, and 
LoggingFacility services.

� Manufacturer, ManufacturerB, ManufacturerC are three individual services, 
each packaged separately, and deployed to three different enterprises.

As described in the Product mapping in “Product mapping selected” on 
page 176, we use WebSphere Application Server V6.0.2 to host the ITSOGood 
and Manufacturer applications, Microsoft .NET to host the ManufacturerB 
application, and CICS Transaction Server to host the ManufacturerC application. 
This arrangement is shown in Figure 10-40 on page 216.

Important: Any described port number in this chapter and the following ones 
should be translated to the local equivalent in your scenario implementation. 
For instance, port 9080 used in some of our URLs might not necessarily be 
the HTTP Transport port in your scenario. Rather, your port number might be 
9081 instead. The same concept of localized translation applies to hostnames 
and IP addresses as well.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 215



Figure 10-40   Solution topology

The runtime guidelines in this chapter describe how to prepare WebSphere 
Application Server profiles for the ITSOGood and Manufacturer applications, and 
the HTTP server. The guidelines describe how to configure these profiles to use 
the WS-Security integrity and confidentially settings that we defined in the 
development guidelines. 

Optionally, you can implement the ManufacturerB and ManufacturerC 
applications as well. To do this you will need access to a Microsoft .NET server 
and a CICS Transaction Server V3.1 region. The connection between the 
ITSOGood applications and the ManufacturerB and ManufacturerC applications 
will not be secured using WS-Security settings in this sample (although in a 
production environment this should be configured too).

Instructions for configuring the ManufacturerB and ManufacturerC servers are 
described in:

Note: You do not need to configure the ManufacturerB and ManufacturerC 
servers to build a working end-to-end sample application.

WebSphere 
Application Server V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

Manufacturer
Application

WebSphere 
Application Server V6

ManufacturerB
Application

Microsoft .NET

ManufacturerC
Application

CICS Transaction 
Server V3.1

IBM HTTP
Server V6

SSL 
pass-through

rules
SOAP / HTTPS
Message
216 Patterns: Extended Enterprise SOA and Web Services



� Appendix B, “Microsoft .NET Web services” on page 483
� Appendix C, “CICS Transaction Server Web services” on page 513

10.4.2  Configuring WebSphere Application Server profiles
This section describes how to create server profiles for the ITSOGood and 
Manufacturer servers. It assumes the use of WebSphere Application Server 
V6.0.2, and that you have this product already installed.

Because this scenario describes an extended enterprise scenario, these two 
profiles should, in theory, be located on physically different machines, in different 
organizations, and connect using the internet. However, for the purposes of this 
sample, both profiles can be installed on the same physical machine with the 
same network address. The instructions assume that a single machine is used, 
but these instructions can equally be applied to a real extended enterprise 
scenario.

Creating the ITSOGoodProfile
The ITSOGoodProfile server profile will be used to host the ITSOGood 
enterprise application. This correlates to the Exposed Direct Connection pattern 
generic profile product mapping as indicated by the circle in Figure 10-41.

Figure 10-41   ITSOGoodProfile in the Exposed Direct Connection product mapping

To create a WebSphere Application Server profile for use by the ITSOGood 
application, perform the following steps on the machine with WebSphere 
Application Server V6.0.2 installed:

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6Internet

WebSphere 
Application 
Server V6.0.2
(SOAP 
provider)

WebSphere
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2WebSphere 

Application 
Server V6.0.2

Directory
& Security
Services

WebSphere 
Application 
Server V6.0.2
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 217



1. Start the WebSphere Application Server Profile Creation Wizard. On a 
Windows system, this can either be done from the Start menu (Start → 
Programs → IBM WebSphere → Application Server V6 → Profile 
creation wizard) or by running the pctWindows.exe command from the 
<WAS_HOME>\bin\ProfileCreator directory.

2. Navigate through the Process creation wizard to create a new application 
server profile, with the following attributes:

a. Set profile name to ITSOGoodProfile.
b. Assign a node name of ITSOGoodNode.
c. Leave the port value assignments to default (for example the 

Administrative console port should be 9060). The application is hard coded 
to use port 9080.

Creating the ManufacturerProfile
The ManufacturerProfile server profile will be used to host the Manufacturer 
enterprise application. This correlates to the Exposed Direct Connection pattern 
generic profile product mapping as indicated by the circle in Figure 10-42.

Figure 10-42   ManufacturerProfile in the Exposed Direct Connection product mapping

To create a WebSphere Application Server profile for use by the Manufacturer 
application, use the Profile creation wizard again to create another application 
server profile, this time specifying the following attributes:

� Set the profile name to ManufacturerProfile.
� Assign a node name of ManufacturerNode.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6Internet

WebSphere 
Application 
Server V6.0.2
(SOAP 
provider)

WebSphere
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2WebSphere 

Application 
Server V6.0.2

Directory
& Security
Services

WebSphere 
Application 
Server V6.0.2
218 Patterns: Extended Enterprise SOA and Web Services



� Leave the port value assignments at their defaults. Notice that the Profile 
creation wizard assigns ports numbers that do not clash with the previous 
profile ITSOGoodProfile. For example, the Administrative console port should 
now be 9061. This allows both profiles to be running on the same machine at 
the same time.

Starting the application servers
You need both application server profiles running to configure them for this 
scenario. To start the profiles, follow these steps:

1. From a Command Prompt, navigate to the bin directory of the profile, which 
by default is located at <WAS_HOME>\profiles\ITSOGoodProfile\bin.

2. Run the command startserver server1 to start the ITSOGoodProfile server.

3. Navigate to <WAS_HOME>\profiles\ManufacturerProfile\bin and run the 
command startserver server1 to start the ManufacturerProfile server.

Once started, you can access the administrative consoles for each server profile 
as follows:

� Access the ITSOGoodProfile administrative console using:

http://localhost:9060/ibm/console

� Access the ManufacturerProfile administrative console using:

http://localhost:9061/ibm/console

10.4.3  Hosting the WSDL files
Each Web service client in the sample application attempts to retrieve WSDL 
files that contain port type and binding information. Import statements dictate the 
location of these files. For example, the SCMSampleUI enterprise application 
contains a WSDL file that tries to retrieve the Retailer port type and binding by 
using the following import:

<wsdl:import location="http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl" 
namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/200
2-08/Retailer.wsdl"/>

As a result, it is necessary to host an HTTP server where these files can be 
retrieved. This HTTP server host must be assigned the host address of 
appsrv1a.itso.ral.ibm.com. 

Assuming IBM HTTP Server V6 (shipped with WebSphere Application Server 
V6) is installed, complete the following steps:

1. Assign the host name appsrv1a.itso.ral.ibm.com to map to your local 
machine by opening the hosts file.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 219



For Windows hosts open: 

<WINDOWS_HOME>\system32\drivers\etc\hosts

For Linux/Unix hosts open:

/etc/host.conf

2. Add the following statement to the hosts file. This ensures that all requests 
sent to appsrv1a.itso.ral.ibm.com are redirected to your local machine.

127.0.0.1 appsrv1a.itso.ral.ibm.com

3. In addition, add statements which will assign host addresses for the 
ITSOGood and Manufacturer services. If you are hosting the ITSOGood and 
Manufacturer servers on the same physical machine, map these to 127.0.0.1 
as shown below:

127.0.0.1 itsogood.itso.ral.ibm.com
127.0.0.1 manufacturera.itso.ral.ibm.com

4. [Optional] If you intend to install ManufacturerB and ManufacturerC, add an 
entry in the hosts file pointing each host name to the IP address of the 
Microsoft .NET server and CICS Transaction Server region:

<ip_address_of_.NET> manufacturerb.itso.ral.ibm.com
<ip_address_of_CICS> manufacturerc.itso.ral.ibm.com

5. We installed IBM HTTP Server V6. The WSDL files to be hosted on this HTTP 
server are provided with the additional materials that are supplied with this 
book. For information about how to obtain the additional materials see 
Appendix A, “Additional material” on page 481. Copy the contents of the 
\DirectConnection\wsdl directory from the additional material to the 
following directory:

<HTTP_SERVER_HOME>\htdocs\en_US\wsdl

6. Make sure that the HTTP server is started, then test that the WSDL is 
available by entering the following URL into a Web browser:

http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl

The contents of the WSDL file for the Retailer Web service should be displayed.

10.4.4  Installing the applications
In this section we install the enterprise applications ITSOGood and Manufacturer 
into the relevant application servers.

Installing the ITSOGood application
1. Using a Web browser, start the WebSphere administrative console for the 

server where the ITSOGood application will be deployed. If you have 
220 Patterns: Extended Enterprise SOA and Web Services



configured your hosts file correctly, you should be able to use the following 
URL:

http://itsogood.itso.ral.ibm.com:9060/ibm/console

2. Log in, then select Applications, and click Install New Application.

3. In the page that opens, as shown in Figure 10-43, enter the location of the 
ITSOGood.ear file on your local file system by either entering it directly or by 
clicking Browse and navigating to the file in the open file dialog.

Figure 10-43   Specify enterprise application to install

4. Click Next.

5. On the next page that opens, accept the defaults and click Next.

6. The next page to open is the first page of the installation wizard. The 
application is fully configured and deployed so that you should use the 
defaults on each page. Either click Next until the final page, or click the last 
step that is labelled Summary.

7. Click Finish. When the application has been installed, a screen similar to 
Figure 10-44 on page 222 is displayed.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 221



Figure 10-44   Application installation finished page

8. Save the configuration.

Installing the Manufacturer application
1. Follow the same procedure as in “Installing the ITSOGood application” on 

page 220 to install the Manufacturer enterprise application, this time using the 
administrative console at the following URL:

http://manufacturera.itso.ral.ibm.com:9061/ibm/console

2. Log in, then select Applications, and click Install New Application. This 
time install Manufacturer.ear.

3. Once installed, save the changes to the configuration,
222 Patterns: Extended Enterprise SOA and Web Services



10.4.5  Securing the application server using Global Security
We secure the applications using Global Security settings on WebSphere 
Application Server through the administrative console. Global Security must be 
turned on in order to use WS-Security.

Perform the following steps on the ITSOGoodProfile server:

1. Log in to the administrative console, and click Security → Global security.

2. Under the User registries category (top right), select Local OS.

3. Enter a user ID and password under General Properties. The user ID and 
password you enter need to be a real user ID and password for your local 
operating system. This user ID must have administrator priviledges. Click OK.

4. Return to the main panel, select the Enable global security option, and then 
clear Enforce Java 2 security.

5. Select Local OS from the Active user registry list. This means that the local 
operating system security repository will be used with Global Security. The 
panel should now look similar to Figure 10-45.

Figure 10-45   Global security configuration in the administrative console
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 223



6. Click OK and save the configuration.

7. Restart the application server. Global Security should now be on, which 
means you will need to provide a real user ID and password to log on to the 
administrative console. Use the user ID and password you specified in the 
Local OS setting.

Repeat this process to enable Global Security for the ManufacturerProfile profile.

10.4.6  Configuring an HTTP server for SSL pass-through
In the generic profile of the Exposed Direct Connection runtime pattern, a 
Connector is required in the demilitarized zone. In the product mapping we have 
selected, this Connector is implemented with IBM HTTP Server V6, as indicated 
in Figure 10-46.

Figure 10-46   Use of IBM HTTP Server as a Connector node

The purpose of the HTTP server in this implementation is to serve as a 
connector between the applications in the Enterprise Secure Zone and those in 
the Inter-enterprise Zone.

The HTTP server will contain SSL pass-through rules: receiving requests from 
Web service clients over SOAP/HTTP and forwarding them to the relevant 
Manufacturer Web service endpoint URL using SOAP/HTTPS. This is shown for 
the first Manufacturer in Figure 10-47 on page 225.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6Internet

WebSphere 
Application 
Server V6.0.2
(SOAP 
provider)

WebSphere
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2WebSphere 

Application 
Server V6.0.2

Directory
& Security
Services

WebSphere 
Application 
Server V6.0.2
224 Patterns: Extended Enterprise SOA and Web Services



Figure 10-47   Use of an IBM HTTP Server for SSL pass-through

For convenience, you can use the same IBM HTTP Server that has been 
configured to host WSDL files, as described in 10.3.4, “Configuring WS-Security 
integrity” on page 188.

Create a keystore for use by the HTTP server
The secured connection between the HTTP server and the application server 
requires a certificate key store to store its own private and public key files as well 
as the public certificate from the Web container key file. 

In this section, we reuse a precreated key store named ihs.kdb. It is found with 
other essential files in the additional material supplied with this redbook at the 
following location:

\DirectConnection\keystore\ihsssl.zip

After you have obtained ihsssl.zip, perform the following:

1. On the system where the IBM HTTP Server is installed, create a directory 
named C:\keys (assuming you are using Windows). 

2. Unzip all the contents of ihsssl.zip into the newly created directory.

3. Log in to the administrative console for the ManufacturerProfile server profile.

4. You need to determine the TCP/IP port assigned to SSL incoming 
connections. To do this, select Servers → Application servers. Click 
server1. Under Communications, expand Ports and note the value of 
WC_defaulthost_secure (see Figure 10-48 on page 226).

WebSphere 
Application Server V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

WebSphere 
Application Server V6

SOAP / HTTP
Message

Manufacturer
Web service client

Manufacturer
Application

Manufacturer
Web service

IBM HTTP
Server V6

SSL 
pass-through

rules

SOAP / HTTPS
Message
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 225



Figure 10-48   Port used to receive SSL requests

If you want to create your own self-signed certificate and use it in the key store 
instead of using the one supplied with this redbook, follow the steps listed in the 
WebSphere Application Server Infocenter:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.
ibm.websphere.ihs.doc/info/aes/ae/tihs_certselfsigned.html

If have created your own self-sign certificate, import this certificate into the 
server-based key file. The key file is used by the application server to store 
private keys for client-certificate authentication purposes. The default location 
and file name for WebSphere Application Server V6 is: 

<WAS_HOME>/profiles/<server_name>/etc/DummyServerKeyFile.jks.

Configuring SSL pass-through in the HTTP server
We need to modify the HTTP server configuration file to enable SSL, specify the 
keystore to use, and add ProxyPass statements for each Manufacturer request 
that will flow through the HTTP server.

Perform the following steps:

1. Open the HTTP server configuration file httpd.conf in a text editor. You can 
find it in the <HTTP_SERVER_HOME>\conf\ directory.

2. Add the statements shown in Example 10-4 on page 227 to the end of the 
configuration file. These entries indicate to the HTTP server that incoming 
HTTP requests are to be encrypted using the keys in the indicated key store 
file before being routed to the various Manufacturer Web services based on 
the distinct URIs.
226 Patterns: Extended Enterprise SOA and Web Services

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_certselfsigned.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_certselfsigned.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_certselfsigned.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.ihs.doc/info/aes/ae/tihs_certselfsigned.html


Example 10-4   Modifications to the httpd.conf file

SSLProxyEngine on
Keyfile "C:\keys\ihs.kdb"
ProxyPass  /Manufacturer/ https://manufacturera.itso.ral.ibm.com:9444/Manufacturer/
ProxyPass  /ManufacturerB/ https://manufacturerb.itso.ral.ibm.com/ManufacturerB/
ProxyPass  /ManufacturerC/ https://manufacturerc.itso.ral.ibm.com/ManufacturerC/

3. Append the entries shown in Example 10-5 to httpd.conf to load the various 
code modules necessary for SSL-based routing to work.

Example 10-5   Loading SSL modules to the httpd.conf file

LoadModule ibm_ssl_module     modules/mod_ibm_ssl.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ftp_module modules/mod_proxy_ftp.so

4. Save and close httpd.conf.

5. Restart the HTTP server so the new changes take effect.

10.4.7  Changing the Web service client bindings configuration
Web service clients bind to a specific port endpoint URL. This endpoint URL can 
be specified in a number of places, including in the WSDL file of the Web service, 
and in the Java code of the Web service client.

We can use WebSphere Application Server to override the endpoint URL used 
by Web service clients. We override the Web service clients in the ITSOGood 
enterprise application that make calls to the Manufacturers. We override each 
endpoint URL to point to the HTTP server which contains SSL pass-through 
rules to each Manufacturer (see Figure 10-47 on page 225).

Perform the following steps in the administrative console of the ITSOGoodProfile 
server:

1. From the administrative console where the ITSOGood enterprise application 
is installed, select Applications, and click Enterprise Applications.

2. From the list of installed applications click ITSOGood. The application 
configuration screen opens.

Note: Example 10-4 assumes that the value of the SSL port on WebSphere 
Application Server for ManufacturerProfile is 9444. Be sure to use the correct 
port number in your environment based on the value of the 
WC_defaulthost_secure port name, as determined in the previous section.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 227



3. Click EJB Modules. The server-module installation binding for an EJB 
module screen is displayed.

4. In the list of EJB Modules click WarehouseEJB.jar. The selected EJB 
Module configuration screen is displayed.

5. Click Web services client bindings and the screen shown in Figure 10-49 
opens.

Figure 10-49   Web services client bindings

6. The Web service name ManufacturerA is ManufaturerService, 
ManufacturerB is ManufacturerBService and ManufacturerC is 
ManufacturerCService. Click Edit under the Port Information column for 
ManufacturerService.

7. The Port Information screen allows us to override the endpoint URL. Set the 
Overridden Endpoint URL to:

http://itsogood.itso.ral.ibm.com/Manufacturer/services/Manufacturer

This means that the Web service client for the Manufacturer (located in the 
WarehouseEJB project of ITSOGood) will use this URL to contact the Web 
service. This URL points to the HTTP server, where the request will be 
redirected to the external Manufacturer Web service. See Figure 10-50 on 
page 229.
228 Patterns: Extended Enterprise SOA and Web Services



Figure 10-50   Overriding the endpoint URL for the Manufacturer

8. Click OK.

9. If you have created implementations of ManufacturerB and ManufacturerC, 
you need to repeat this process to override these endpoint URLs as indicated 
in Table 10-3.

Table 10-3   Overridden endpoint URLs for Manufacturers B and C

10.Save your changes to the configuration.

10.4.8  Testing the scenario
This section describes how to test the scenario. For more information about the 
sample application, see Chapter 8, “Business scenario used in this book” on 
page 137. 

To test the sample application, perform the following steps:

1. Enter the following URL in a Web browser to start the ITSOGood sample 
application:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI/

This assumes the unsecured HTTP transport port number is 9080. If this is 
not the case, use the URL above with the appropriate HTTP transport port 
number.

Web service name Overridden endpoint URL

ManufacturerBService http://itsogood.itso.ral.ibm.com/ManufacturerB/
ManufacturerB.asmx

ManufacturerCService http://itsogood.itso.ral.ibm.com/ManufacturerC/
ManufacturerC
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 229



The Supply Chain Management Sample Application should start, as shown in 
Figure 10-51.

Figure 10-51   SCM Sample application

2. Click Place New Order. This generates a Web service call to the Retailer 
Web service. The Shopping Cart screen displays a list of ten products, as 
shown in Figure 10-52 on page 231.
230 Patterns: Extended Enterprise SOA and Web Services



Figure 10-52   SCM Sample product listing

3. Place an order that will trigger the Warehouse to replenish its stock level. The 
Warehouse replenishes stock by sending a stock request order to a 
Manufacturer. 

The Warehouse stock level is stored in the 
org.ws_i.www.Impl.WarehouseImpl class in the WarehouseEJB project. For 
example, the stock level for the first three products is shown in Table 10-4.

Table 10-4   Warehouse stock level

If the current stock level falls below the minimum stock level, the stock is 
reordered so that, after the reorder arrives, the stock is at the maximum level. 
For example, if you order six items of product number 605001, it reduces the 
current stock level to four (10 - 6 = 4). A reorder is made for 21 new items to 
bring the stock level back to the maximum desired stock level.

Product number Current level Minimum level Maximum level

605001 10 5 25

605002 7 4 20

605003 15 10 50
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 231



Each Manufacturer only manufactures certain products. For example 
Manufacturer A manufactures products 605001, 605004, and 605007.

Place an order for 6 items of product 605001 and click Place Order. This will 
trigger a re-order of product 605001 from Manufacturer A (the Manufacturer 
hosted in the WebSphere Application Server ManufacturerProfile server). In 
our scenario this Manufacturer is in an extended enterprise, hence this will 
test our WS-Security and SSL settings.

4. The order status screen, as shown in Figure 10-53, shows which orders were 
placed and which orders were not placed due to insufficient stock. 

Figure 10-53   SCM Sample order status page

5. Click Track Order to see the entries that were written to the LoggingFacility. 
Figure 10-54 shows the results of an order in which product 605001 was 
shipped.

Figure 10-54   SCM Sample track order page

6. To confirm the successful invocation of the Manufacturer service, check the 
SystemOut.log of the ITSOGoodProfile application server. The Warehouse 
writes a message saying that a Manufacturer was invoked. The message 
should look like this:
232 Patterns: Extended Enterprise SOA and Web Services



Warehouse: Response from Manufacturer --> Manufacturer_A has received 
and processed a request.

You should also see the following message in the SystemOut.log file of the 
ManufacturerProfile application server:

Manufacturer A: Processing Purchase Order

7. To start a new order, click Configure. At this point, all state is lost, and the 
Warehouse stock levels return to their default values. If you have configured 
the Microsoft .NET and CICS Transaction Server manufacturers, try ordering 
products 605002 and 605003 to place orders with Manufacturer B and 
Manufacturer C.

10.4.9  Viewing SOAP messages using the TCP/IP Monitor
You can confirm that the WS-Security integrity and confidentiality settings have 
been applied to a SOAP message by viewing the contents of the SOAP 
message. The easiest way to do that is to use the TCP/IP Monitor provided with 
WebSphere Application Server.

To configure the TCP/IP Monitor, perform the following on the machine hosting 
ITSOGood:

1. In a Command Prompt, set the PATH environment variable so the java.exe 
command can be run (substituting <WAS_HOME> for the path where WebSphere 
Application Server is installed):

set PATH=<WAS_HOME>\java\bin;%PATH%

2. Navigate to the <WAS_HOME>\lib directory:

cd <WAS_HOME>\lib

3. Launch the TCP/IP Monitor:

java -classpath webservices.jar com.ibm.ws.webservices.engine.utils.tcpmon

4. The TCP/IP Monitor should launch in a new window. The monitor works as a 
proxy. You send TCP/IP requests to it, and it forwards them on to another 
destination. The advantage of sending messages through the TCP/IP Monitor 
is it shows you the content of that message. This is very useful for inspecting 
SOAP messages.

Enter a Listen Port of 81. Select Act as a Listener. Specify Target Hostname 
as itsogood.itso.ral.ibm.com and Target Port as 80. See Figure 10-55 on 
page 234.
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 233



Figure 10-55   TCP/IP Monitor configuration

5. Click Add to add a new tab at the top of the TCP/IP Monitor called Port 81. 
Click this tab to view any TCP/IP messages that are received on port 81 by 
the TCP/IP Monitor. Currently, it shows no messages (Figure 10-56).

Figure 10-56   TCP/IP Monitor waiting for messages
234 Patterns: Extended Enterprise SOA and Web Services



We use the TCP/IP Monitor to intercept messages sent between the 
Manufacturer Web service client in ITSOGood and the HTTP server, as shown in 
Figure 10-57.

Figure 10-57   Redirecting the SOAP/HTTP message through the TCP/IP Monitor

To achieve this, you must update the Web service client binding for the 
Manufacturer Web service client to point to the TCP/IP Monitor. Perform the 
following steps:

1. Log in to the administrative console of the ITSOGoodProfile server.

2. Access the Web service client binding of the Manufacturer Web service. Click 
Applications → Enterprise Applications → ITSOGood → EJB 
Modules → WarehouseEJB.jar → Web services client bindings, then click 
Edit under the Port Information column for ManufacturerService.

3. Set the Overridden Endpoint URL to:

http://itsogood.itso.ral.ibm.com:81/Manuacturer/services/Manufacturer

4. Click OK, then restart the ITSOGood enterprise application for the change to 
take effect.

Test the scenario again, as described in 10.4.8, “Testing the scenario” on 
page 229. This time you should see the content of the SOAP message sent to 
the Manufacturer, and the response from the Manufacturer in the TCP/IP Monitor. 
Notice that it uses WS-Security (Figure 10-58 on page 236).

WebSphere 
Application Server V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

WebSphere 
Application Server V6

SOAP / HTTP
Message

Manufacturer
Web service client

Manufacturer
Application

Manufacturer
Web service

IBM HTTP
Server V6

SSL 
pass-through

rules

SOAP / HTTPS
Message

TCP/IP Monitor
 Chapter 10. Exposed Direct Connection runtime pattern: generic profile 235



Figure 10-58   Viewing a SOAP message in the TCP/IP Monitor
236 Patterns: Extended Enterprise SOA and Web Services



Chapter 11. Exposed Direct Connection 
runtime pattern: 
SOA profile

In this chapter, we specialize the Exposed Direct Connection pattern for the SOA 
environment using the SOA Profile.

This chapter builds upon the scenario described in Chapter 10, “Exposed Direct 
Connection runtime pattern: generic profile” on page 157. We define how to 
achieve a point-to-point connection between Web services located in different 
enterprises by using an Enterprise Service Bus (ESB) and an Exposed ESB 
Gateway.

This chapter uses the service integration bus of WebSphere Application Server 
V6 to implement the ESB, and uses the Web services gateway of WebSphere 
Application Server Network Deployment V6 to implement the Exposed ESB 
Gateway.

This chapter also describes how to add integrity and confidentiality to SOAP 
messages sent between enterprises by configuring WS-Security in the Exposed 
ESB Gateway component.

11
© Copyright IBM Corp. 2006. All rights reserved. 237



11.1  Business scenario
The business scenario implemented in this chapter is similar to that defined in 
Chapter 10, “Exposed Direct Connection runtime pattern: generic profile” on 
page 157, shown in Figure 11-1.

Figure 11-1   High-level business context of the scenario

Having exposed the retail and warehouse functions as services, the next step in 
the SOA transformation for ITSO Good is to build an infrastructure that can 
manage these services on an enterprise scale. 

The SOA transformation for ITSO Good is a more strategic one driven by the 
business requirement to align their IT services more closely with the business. 
This also requires an infrastructure component that would provide them the 
required flexibility to integrate their business aligned services across the 
enterprise.

The ITSO Good business strategy plan is to expose many more business 
functions within their enterprise as services. As more and more business 
functions are exposed as services, it is vitally important that this infrastructure 
have the capability to support the management of SOA on an enterprise scale.

ITSO Good

Intranet

SCM
Application WarehouseRetail

System

Logging
Facility Manufacturer C

Manufacturer B

Manufacturer A

I
n
t
e
r
n
e
t

238 Patterns: Extended Enterprise SOA and Web Services



Successfully implementing an SOA requires applications and infrastructure that 
can support the SOA principles. In the previous chapter, we SOA-enabled the 
applications by exposing the business functions as services. Now in its quest to 
build a comprehensive SOA solution, ITSO Good wants to build a basic SOA 
infrastructure that addresses the following requirements:

� Build an SOA infrastructure that provides the ability to integrate and manage 
the Retail, Warehouse, and other new services that are expected to be 
exposed within the enterprise.

� To provide access to external services of the Manufacturing partner systems 
in a controlled and secured manner. This will provide ITSO Good a single 
point of control to implement and manage its corporate security policy with 
regards to accessing partner systems.

11.2  Design guidelines
This section analyzes the infrastructure requirements described in the business 
scenario. It uses the Patterns for e-business to select the appropriate runtime 
pattern and also discusses the various architectural decisions involved in 
implementing the solution.

11.2.1  Analyze IT infrastructure requirements
ITSO Good requires a middleware component that can support its SOA 
infrastructure requirements. So, what are these requirements for an SOA 
infrastructure? 

This has been the subject of much debate among the different vendors in the 
SOA marketplace, often for competitive reasons. Taking a neutral and 
customer-centric view, we look at some of the basic and commonly agreed upon 
aspects of an SOA infrastructure.

SOA infrastructure requirements
The goal of ITSO Good is to build a flexible and durable infrastructure that makes 
it easy to integrate the business aligned services created in an SOA.

The basic requirements for a service oriented infrastructure are:

Service in an SOA environment: A service represents a reusable business 
function that is defined by explicit implementation-independent interfaces, 
loosely bound and is invoked through communication protocols that stress 
location transparency and interoperability.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 239



� Distributed is the ability to integrate services that are distributed across the 
enterprise and even beyond in the extended enterprise comprising partners 
and suppliers.

� Flexibility/Interoperability enable interaction through services that are 
defined by explicit implementation-independent interfaces and are loosely 
coupled.

� Communication provides support for communication protocols that stress 
location transparency and interoperability.

� Integration provides the ability to integrate services seamlessly across the 
heterogeneous systems and also provide support for other integration 
paradigms in the SOA ecosystem like message-driven and event-driven 
based integration.

� Mediation services support service routing and substitution, protocol and 
message transformations, and other message processing services.

� Quality of service includes security, transactionality, and availability.

� Leverage existing IT investments supports both service-enabled applications, 
such as Web services enabled, as well as existing applications based on 
traditional Enterprise Application Integration (EAI) standards and 
technologies, while providing a consistent service model.

� Management provides a central point for managing and monitoring the 
deployed services and also to provide the ability to integrate with systems 
management tools.

The infrastructure requirements above are implemented as services themselves, 
as Infrastructure Services. And more importantly these services need to be 
nonintrusive to the business aligned services.

Relevant infrastructure requirements
The infrastructure requirements that are relevant to the given scenario are:

� Distributed is the ability to integrate the Retail and Warehouse services that 
are distributed across the enterprise to the Manufacturing services of the 
external partner systems.

Note: The requirements listed here are not exhaustive in nature. We have only 
thrown light upon some of the basic features of an SOA infrastructure in this 
chapter. There are also other aspects such as Autonomic capabilities and 
Infrastructure Intelligence, which are provided in some of the products 
available in the market today.
240 Patterns: Extended Enterprise SOA and Web Services



� Flexibility/Interoperability enable interaction through services that are 
defined by explicit implementation-independent interfaces and are loosely 
coupled.

� Communication provides support for communication protocols that stress 
location transparency and interoperability.

� Integration provides the ability to integrate services seamlessly across the 
Manufacturing partners’ heterogeneous systems. The three Manufacturers 
that need to integrated with the Warehouse service of ITSO Good are 
implemented using CICS Transaction Server, Microsoft .NET and WebSphere 
Application Server.

� Mediation services support service routing and substitution.

11.2.2  Selecting a pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern 
to apply to this scenario. Described here is a step-by-step approach used to 
navigate the Patterns for e-business asset catalog:

1. Business pattern

We select the Extended Enterprise business pattern because the given 
scenario requires interactions between the business processes in the 
Warehouse and Manufacturer systems that reside in separate enterprises.

2. Application pattern

The Warehouse and Manufacturer systems are required to interact on a 
one-one basis representing point-point connections. So, we select the 
Exposed Direct Connection application pattern. This pattern has two 
variations:

– Message Connection Variation 
– Call Connection Variation

As the business scenario requires the proposed solution to support real-time 
request/reply message flows to partner processes, we select the Call 
Connection variation.

3. Runtime pattern

The selection of the Application pattern provides us with the Runtime patterns 
for the proposed solution. Because this solution requires building an SOA 
infrastructure, we select the SOA profile of the Exposed Direct Connection 
runtime pattern to customize the solution to the SOA environment.

Figure 11-2 shows the level 0 decomposition of the SOA profile of the Exposed 
Direct Connection runtime pattern, mapped on to the Exposed Direct Connection 
application pattern.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 241



Figure 11-2   Exposed Direct Connection::Runtime pattern = SOA profile

11.2.3  Analyze design options
As shown in the Runtime pattern in Figure 11-2, the Enterprise Service Bus 
(ESB) is truly emerging as a middleware infrastructure component that supports 
the implementation of SOA within an enterprise. The need for an ESB can be 
seen by considering how it supports the infrastructure requirements of the SOA 
implementation by:

� Decoupling the consumer’s view of a service from the actual implementation 
of the service.

� Decoupling technical aspects of service interactions (mediation services).

� Integrating and managing services in the enterprise.

The true value of the ESB concept, however, is to enable the infrastructure for 
SOA in a way that reflects the needs of today's enterprise: to provide suitable 
service levels and manageability, and to operate and integrate in a 
heterogeneous environment.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Target
Application

Connection
Rules

Source
Application

Exposed Direct Connection
242 Patterns: Extended Enterprise SOA and Web Services



Relevant ESB capabilities
This scenario exploits the following ESB capabilities:

� Communications

This means routing of requests from service consumers to the relevant 
service provider based on endpoint definitions.

� Integration

This means protocol transformation to allow decoupling of the protocol that is 
used between the service consumers and service providers. This allows 
service consumers to invoke services that are exposed using a different 
protocol (for example, SOAP/HTTP to SOAP/JMS).

� Security

Security services such as confidentiality, authentication and authorization are 
provided by a combination of secure protocols such as HTTP/S, and central 
control by the Exposed ESB Gateway and the ESB.

� Service interaction

The services are defined using WSDL and made available across 
enterprises.

Extending the ESB with the Exposed ESB Gateway for this business-to-business 
scenario fulfils the following requirements:

� Addressing of remote services

Remote services are defined in WSDL and the definitions are made available 
across enterprises.

� Security over the internet

The layering of the solution into an HTTP server, Exposed ESB Gateway, 
ESB and applications allows for a robust security environment to be 
configured.

� Restricting service access to authorized consumers

Internal service consumers can only access those external services that are 
provided by the Exposed ESB Gateway.

Note: A more detailed analysis of the various ESB capabilities is outside the 
scope of this redbook. In this redbook we focus on only those ESB capabilities 
that are relevant to the various scenarios discussed.

For more information about ESB capabilities, consult Patterns: Implementing 
an SOA Using an Enterprise Service Bus, SG24-6346.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 243



Architectural decision: implementing an ESB
There are various technology options available today to implement an ESB, 
ranging from the sophisticated and proprietary EAI products to the less mature 
open-standards based products. They differ in their degree of support for the 
various ESB capabilities, that enable you to build an SOA infrastructure. 

Table 11-1 summarizes the requirements and looks at the various alternatives 
available for implementing an ESB.

Table 11-1   Architectural decision: Implementing an ESB

Subject Area Implementing an ESB

Issue Or Problem Statement To select the product/technology to be 
used for implementing an ESB that 
satisfies the following capabilities:
1. Provide service routing and addressing.
2. Provide support for communication 
protocols that stress location transparency 
and interoperability. In other words, the 
infrastructure should allow clients to 
invoke services in a manner independent 
of the service location and the 
communication protocol involved.
3. Ability to integrate services seamlessly 
across heterogeneous systems. 
4. Support loosely coupled services that 
are defined through 
implementation-independent interfaces.

Assumptions None.

Motivation To build a basic SOA infrastructure that 
satisfies the current requirement and is 
based on open and interoperable 
standards. This would provide us with the 
required flexibility and extensibility to 
migrate to a more sophisticated SOA 
infrastructure as the standards and 
technologies around them mature over 
time.

Alternatives Implement the ESB using:
Option1: Service integration bus 
component of WebSphere Application 
Server V6.0.2
Option2: WebSphere Business Integration 
Message Broker.
244 Patterns: Extended Enterprise SOA and Web Services



WebSphere Business Integration Message Broker as an ESB
WebSphere Business Integration Message Broker is a mature messaging 
middleware that satisfies most of the ESB capabilities:

� Supports high volume and complex data transformations, routing decisions 
and data validation. 

� Integration with heterogeneous systems through the use of WebSphere 
Business Integration Adapters and WebSphere MQ bridges. 

� Support for Web services in terms of service routing, SOAP message 
transformation and protocol translation. However V5 does lack the 
sophistication of Web services support that might be required in an ESB 
implementation which makes extensive use of these standards like 
WS-Security, and so forth.

Building an ESB that is based entirely on WebSphere Business Integration 
Message Broker is an option when there is a need to interoperate with systems 
that are not only Web services-based, but also quality-of-service requirements 
demand the use of mature middleware.

Decision The service integration bus component of 
WebSphere Application Server V6.0.2 will 
be used to implement the ESB.

Justification Given that the integration of the services 
within the ITSO Good enterprise and also 
their integration with the external 
Manufacturing partner systems is based 
on interoperable Web services standards, 
the Service Integration Bus component of 
WebSphere Application Server V6.0.2 
would be an ideal choice because it 
provides extensive support to Web 
services based interaction. This would 
provide us with the basic SOA 
infrastructure required to start. We could 
then migrate it to a more sophisticated 
infrastructure that would involve a 
combination of the service integration bus 
and WebSphere Business Integration 
Message Broker in a federated manner.

Subject Area Implementing an ESB
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 245



WebSphere Application Server as an ESB
Building an ESB using the service integration bus component of WebSphere 
Application Server is an option when Web services support is critical and the 
service provider and consumer environment is predominantly built on J2EE. 

The role of the Exposed ESB Gateway
In our scenario, the Warehouse service requires access to the external 
manufacturing service through the ESB. Access to these external services 
requires us to provide additional control (service routing) and security measures. 
This is achieved by using the Exposed ESB Gateway component as depicted in 
Figure 11-2 on page 242.

An Exposed ESB Gateway makes the services of one organization available to 
others, and vice versa, in a controlled and secure manner. Although this might 
require capabilities such as trading partner provisioning and management, which 
are distinct from ESB capabilities, the intent of this component is different from 
the intent of the ESB, which is to provide a service infrastructure within an 
organization. For both these reasons, the Exposed ESB Gateway is likely to be 
integrated to, but not part of, the ESB. This component allows us to provide more 
sophisticated control over external service access by providing additional 
security models and additional transformations of protocol, data formats, or 
models of delivery assurance.

Architectural decision: Securing the Web service interaction
In this section we look into how the additional business requirements of this 
scenario influences the security solution that was put in place in Chapter 10, 
“Exposed Direct Connection runtime pattern: generic profile” on page 157.

Securing the Web service interaction between the Warehouse and 
Manufacturing services has been discussed in detail in the previous chapter. 
What changes in the given scenario in this chapter is the need to provide a 
controlled and secured access to these external services from within the 
enterprise, through the Exposed ESB Gateway component. This means that we 
have to move these Web service security features (WS-Security) from within the 
internal applications of the enterprise to the Exposed ESB Gateway component 
so that they can be centrally managed and governed in accordance with the 
corporate security policy.

Architectural decision: Maintaining an audit trail
When business interactions span between enterprises in any typical B2B 
integration scenario, it is important to ensure that an effective audit trail 
mechanism is put in place through which the access and usage of external 
services is monitored. 
246 Patterns: Extended Enterprise SOA and Web Services



The key drivers that influence the auditing requirements are:

� Regulatory requirements such as the Sarbanes-Oxley Act in the U.S., and 
industries such as health care, utilities and banking mean that business 
activities are heavily regulated in most countries.

� To provide assurance that the business transactions are recorded in an 
accurate manner.

� To handle nonrepudiation of any claims made by partners.

In our business scenario, this means that the external manufacturing partners 
should be unable to claim that a replenishment order was not requested when 
in fact it was. That is, it ensures nonrepudiation of the transaction by the 
partner. Digitally signed receipt acknowledgements of messages can be 
demanded depending on the auditing requirements.

In an enterprise system, audit-trails are not only maintained for events related to 
user activity or business transactions but they are also maintained for other types 
of events such as: 

� Configuration events that are produced by the enterprise infrastructure to 
monitor health

� Security events that are generated to help detect external intrusions

Having identified the key drivers that influence the auditing requirements of an 
enterprise, we can now look at some of the design considerations that are 
involved in providing an auditing solution.

Common design considerations for an auditing solution are:

� Distributed versus centralized collection and storage of audit trails and events: 

In the distributed model, audit data typically remains in the system where the 
data is generated. With the centralized approach, data is sent to a central 
collection and data storage and logging facility. Having a centralized 
repository of audit data makes it easier to ensure compliance with regulatory 
requirements and also makes it easier to administer changes necessitated by 
the security policies of an enterprise at a single central location.

� Common representation of audit data and events

One of the common issues faced when these audit trails are maintained 
locally across various heterogenous systems in an enterprise is that they are 
represented in different formats. This makes it difficult to correlate events 
generated across different systems for a given user activity. The Common 
Base Event (CBE) specification is an effort to standardize the representation 
of these audit data and events. For more information about CBE and related 
standards, refer to resources at the following links:

http://www.ibm.com/developerworks/library/specification/ws-cbe/
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 247

http://www.ibm.com/developerworks/library/specification/ws-cbe/


http://www.ibm.com/software/tivoli/features/cei/

Also, products like WebSphere Partner Gateway have support for a separate 
nonrepudiation repository.

For the business scenario considered in this chapter, we implement a simple 
auditing solution that store the events in a centralized repository using the 
Logging Facility as shown in Figure 11-1 on page 238.

The architecture decision discussed in Table 11-2 evaluates the options for 
implementing an effective audit trail mechanism.

Table 11-2   Architectural Decision: Handling the Auditing Requirement

Subject Area Implementing the audit trail for B2B 
interactions.

Issue Or Problem Statement Need to put in an effective audit 
mechanism to monitor and track the usage 
of the Manufacturing services by the 
Warehouse. Need to decide which 
component in the proposed solution would 
handle this responsibility.

Assumptions None.

Motivation Ensure compliance to industry 
regulations.

Alternatives 1. Log and store audit events in a 
distributed manner at the Retail, 
Warehouse and SCM application 
systems respectively.

2. Log and store audit events in a 
centralized Logging Facility.

Decision The audit trail for the interactions/ with the 
external manufacturing partner systems 
would be maintained in the centralized 
Logging Facility.

Justification Storing these events in a centralized 
repository facilitates the correlation of 
events generated across the different 
systems in response to a online customer 
request. It also allows for easier 
administration of security policies related 
to auditing as well as compliance to 
federal regulatory requirements.
248 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/software/tivoli/features/cei/


11.2.4  Products
The SOA profile of the Exposed Direct Connection pattern differs from the 
Generic profile in its use of an ESB and an Exposed ESB Gateway in its Runtime 
pattern as shown in Figure 11-2 on page 242. So in this section we look at the 
products available to implement the ESB and the Exposed ESB Gateway 
component. 

Product implementation options
Product choices for this scenario are based on:

� Design decisions discussed in 11.2.3, “Analyze design options” on page 242
� Extended Enterprise capabilities of the products
� Products that are currently available

ESB component
We can use the following currently available products to implement the ESB 
component in the given scenario:

� WebSphere Application Server Network Deployment V6.0.2
� WebSphere Message Integration Message Broker 

For this scenario, the service integration bus in WebSphere Application Server 
Network Deployment V6.0.2 meets all of the requirements and hence is the 
product of choice. 

Exposed ESB Gateway component
We can use the following currently available products to implement the ESB 
component in the given scenario:

� Web services gateway component available in WebSphere Application Server 
Network Deployment V6.0.2.

� WebSphere Partner Gateway.

In our scenario, there is no requirement for advanced functions such as Partner 
Management and provisioning that are provided by the WebSphere Partner 
Gateway product. Because the Web services gateway component in WebSphere 
Application Server Network Deployment V6.0.2 is used to implement the 
Exposed ESB Gateway.

Product mapping selected
The complete product mapping for this scenario is shown in Figure 11-3 below:
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 249



Figure 11-3   Exposed Direct Connection:: Product mappings

In this Product mapping, the WebSphere Application Server V6.0.2 Network 
Deployment was used for all services within the ITSO Good enterprise. The 
Manufacturing services of the three external partner systems are implemented 
using CICS Transaction Server V3.1, WebSphere Application Server V6.0.2 and 
Microsoft .NET respectively. 

The ESB is implemented using the service integration bus component provided 
in the WebSphere Application Server Network Deployment and uses a DB2 
Universal database internally for holding the SDO repository.

The ESB component routes service requests from within the enterprise to these 
external Manufacturing partner systems through the Exposed ESB Gateway 
component implemented using the Web Service Gateway component of 
WebSphere Application Server Network Deployment V6.0.2.

11.3  Development guidelines
The scenario in this book is based on the WS-I sample application. This section 
discusses how the scenario makes use of the Exposed Direct Connection 
runtime pattern using the SOA profile.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6

Internet

<Service Provider>

WebSphere 
Application Server 
Network Deployment 
V6.0.2 Web Service 
Gateway

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2

<Service Provider>

• Service Integration Bus 
& WebSphere 
Administration (part of 
WebSphere Application 
Server V6.0.2)

• DB2 Universal Database

Directory
& Security
Services

WebSphere 
Application Server 
Network Deployment 
V6.0.2 Web Service 
Gateway
250 Patterns: Extended Enterprise SOA and Web Services



11.3.1  Exposed Direct Connection interaction: SOA profile

Figure 11-4   Scenario implementation using the Exposed Direct Connection:: SOA profile 

As shown in Figure 11-4, the SOA profile is implemented by introducing the ESB 
and the Exposed ESB Gateway component. The ESB integrates all the services 
calls at an enterprise level. Any interaction with an extended enterprise are 
managed through the Exposed ESB Gateway (Web Services Gateway).

In the Exposed Direct Connection pattern Generic profile where services 
consumer and providers are within the enterprise, services consumers invoke 
the service provider directly.

In the SOA profile of the Exposed Direct Connection pattern, where services 
consumer and providers are within the enterprise, services consumer invoke an 
inbound service on the ESB. This inbound service is responsible for sending the 
request to an outbound service, which then forwards the request to service 
provider.

Where the service provider is in an extended enterprise, services consumer 
invoke an inbound service on the ESB. The ESB is responsible for sending the 

LoggingFacility

LoggingFacility

logEvent

getEvents

Manufacturer C (CICS)

Manufacturer B (.Net)

Manufacturer
Manufacturer (JAVA)

submitPO

Exposed ESB Gateway
(Web Services Gateway)

SCMSampleUI

SCMSampleUI

ITSO Good

getEvents

getCatalog

submitOrder

Retailer

Retailer

shipGoods

logEvent

getCatalog

submitOrder

Warehouse

shipGoods
submitPO

logEvent

Warehouse

ESB
(Service Integration Bus)
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 251



request to the Exposed ESB Gateway, which then invokes the service provider. 
The Exposed ESB Gateway provides extended enterprise capabilities such as 
security.

11.4  Runtime guidelines
This section takes you through the steps that are involved for configuring the 
sample application using the Exposed Direct Connection SOA profile pattern. It 
assumes the following products are already installed:

� WebSphere Application Server Network Deployment V6.0.2
� DB2 Universal Database V8.2

This section describes the following activities:

� Creating the basic infrastructure
� Create and configure a service integration bus
� Create and configure a Web services gateway
� Create and configure a service integration bus link
� Enabling security on the Web services gateway

In this chapter we describe how to build an SOA implementation of the Exposed 
Direct Connection scenario progressively. To allow the user to test each of the 
activities listed easily, we use unsecure versions of the ITSOGood and 
Manufacturer applications when creating and configuring the service integration 
bus, Web services gateway, and the service integration bus link.

Finally we replace the unsecure version of the Manufacturer application with a 
version of the application which has security constraints applied to incoming 
messages, and describe how to enable the Web services gateway to support 
WS-Security.

11.4.1  Solution topology
As in the previous chapter, to represent the complete business scenario the 
sample application is divided into four subapplications:

� ITSOGood contains the SCMSampleUI, Retailer, Warehouse, and 
LoggingFacility services.

� Manufacturer, ManufacturerB, ManufacturerC are three individual services, 
each packaged separately, and deployed to three different enterprises.

As described in the Product mapping in “Product mapping selected” on 
page 249, we use WebSphere Application Server Network Deployment V6.0.2 to 
host the ITSOGood and Manufacturer applications, Microsoft .NET to host the 
252 Patterns: Extended Enterprise SOA and Web Services



ManufacturerB application, and CICS Transaction Server to host the 
ManufacturerC application. This is shown in Figure 11-5.

Figure 11-5   Solution topology

The runtime guidelines in this chapter describe how to prepare the 
ITSOGoodProfile server profile as an ESB and an Exposed ESB Gateway. This 
includes the configuration of WS-Security integrity and confidentiality which in 
this scenario is defined in the Exposed ESB Gateway rather than in individual 
enterprise applications.

The ESB component is primarily implemented in the service integration bus 
feature of WebSphere Application Server Network Deployment V6.0.2. The 
Exposed ESB Gateway component is implemented in the Web services gateway 
feature of WebSphere Application Server Network Deployment V6.0.2.

Optionally, you can implement the ManufacturerB and ManufacturerC 
applications as well. To do this, you will need access to a Microsoft .NET server 
and a CICS Transaction Server V3.1 region. The connection between the 
ITSOGood applications and the ManufacturerB and ManufacturerC applications 
will not be secured using WS-Security settings in this sample (although in a 
production environment this should be configured too).

WebSphere 
Application Server 

Network Deployment V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

Manufacturer
Application

WebSphere 
Application Server V6

ManufacturerB
Application

Microsoft .NET

ManufacturerC
Application

CICS Transaction 
Server V3.1

IBM HTTP
Server V6

SSL 
pass-through

rules
SOAP / HTTPS
Message
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 253



Instructions for configuring the ManufacturerB and ManufacturerC servers are 
described in:

� Appendix B, “Microsoft .NET Web services” on page 483
� Appendix C, “CICS Transaction Server Web services” on page 513

11.4.2  Creating the basic infrastructure
If you have completed the previous scenario (Chapter 10, “Exposed Direct 
Connection runtime pattern: generic profile” on page 157) you can use that 
configuration as the basis for this scenario.

However, if you have not completed the previous scenario, you need to complete 
the following steps:

1. Create WebSphere Application Server server profiles for ITSOGoodProfile 
and ManufacturerProfile by following the instructions in 10.4.2, “Configuring 
WebSphere Application Server profiles” on page 217.

2. Configure an HTTP server to perform:

– Hosting of WSDL files used by the enterprise applications, as described in 
10.4.3, “Hosting the WSDL files” on page 219.

– Configuration of SSL pass-through as described in 10.4.6, “Configuring an 
HTTP server for SSL pass-through” on page 224.

After you have completed these steps, or if you are reusing the configuration you 
built for the previous scenario, you need to make the following additions to build 
the basic infrastructure:

� Add the ITSOGoodProfile server profile to a WebSphere Application Server 
Network Deployment deployment manager. This is required to enable the 
Web services gateway feature.

� Install ITSOGood and Manufacturer enterprise applications that do not 
contain WS-Security settings. In this scenario the WebSphere Application 
Server administrative console is used to define these WS-Security 
configuration settings rather than the enterprise applications themselves.

Creating a deployment manager
To enable Web services support, you need to create and start a deployment 
manager, and federate the ITSOGoodProfile server to this deployment manager.

Note: You do not need to configure the ManufacturerB and ManufacturerC 
servers to build a working end-to-end sample application.
254 Patterns: Extended Enterprise SOA and Web Services



Perform the following steps:

1. Start the WebSphere Application Server profile creation wizard. On a 
Windows system ,select Start → Programs → IBM WebSphere → 
Application Server Network Deployment v6 → Profile creation wizard.

2. When the profile creation wizard starts, select Create a deployment manger 
profile. Specify the following settings in this profile:

– Profile name: Dmgr01
– Node name: ITSOGoodCellManager01
– Host name: itsogood.itso.ral.ibm.com
– Cell name: ITSOGoodCell01

3. Start the deployment manager by running:

<WAS_HOME>\bin\startManager -profileName Dmgr01

4. Federate the ITSOGoodProfile server to the deployment manager node:

<WAS_HOME>\bin\addNode itsogood.itso.ral.ibm.com -profileName ITSOGoodProfile

5. Start the ITSOGoodProfile server:

<WAS_HOME>\bin\startServer server1 -profileName ITSOGoodProfile

Installing ITSOGood and Manufacturer applications
The ITSOGood and Manufacturer enterprise applications used in the previous 
scenario contain settings for WS-Security integrity and confidentiality. At runtime 
WebSphere Application Server uses these settings to determine the levels of 
WS-Security to apply. The downside to this approach is that it requires each 
application to specify its security configuration at build-time, and this 
configuration needs to be replicated for all enterprise applications that need to 
use security.

In this scenario, the WS-Security configuration is configured through the 
WebSphere Application Server Network Deployment administrative console. 
Therefore, we need to replace the ITSOGood and Manufacturer enterprise 
applications that contain WS-Security settings used in the previous scenario with 
new enterprise applications that do not contain WS-Security settings.

Perform the following steps:

1. Log in to the WebSphere Application Server Network Deployment 
administrative console of the deployment manager:

http://itsogood.itso.ral.ibm.com:9062/ibm/console

Note: This URL uses a port of 9062. The HTTP port assigned to your 
deployment manager might be different.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 255



2. Click Applications → Enterprise Applications.

3. Click Install New Application to install a new version of ITSOGood.

4. Browse to the path where the ITSOGood enterprise application can be found. 
You can find this enterprise application in the additional material that is 
supplied with this redbook at:

\DirectConnectionSOA\ears\ITSOGood_NoSec.ear

5. Click Next click Step 7 Summary, then click Finish to install the new 
enterprise application.

6. When it is installed, save the configuration, and start the new ITSOGood 
enterprise application.

Repeat this process for the Manufacturer enterprise application on the 
ManufacturerProfile server. Remember to complete the following:

1. Log in to the administrative console:

http://manufacturera.itso.ral.ibm.com:9061/ibm/console

2. Remove the existing Manufacturer enterprise application, if it is already 
installed from the previous scenario.

3. Install the new Manufacturer enterprise application from:

\DirectConnectionSOA\ears\Manufacturer_NoSec.ear

4. Start the new Manufacturer enterprise application.

Finally, you need to override the Web service client binding in the ITSOGood 
enterprise application so that it points to the HTTP server that forwards the 
request on to the Manufacturer.

Perform the following in the administrative console of the deployment manager:

1. Select Applications, and click Enterprise Applications.

2. From the list of installed applications click ITSOGood → EJB Modules → 
WarehouseEJB.jar → Web services client bindings.

3. Click Edit under the Port Information column for ManufacturerService.

4. The Port Information screen allows us to override the endpoint URL. Set the 
Overridden Endpoint URL to:

http://itsogood.itso.ral.ibm.com/Manufacturer/services/Manufacturer

This means that the Web service client for the Manufacturer (located in the 
WarehouseEJB project of ITSOGood) will use this URL to contact the Web 

Note: This URL uses a port of 9061. The HTTP port assigned to your 
ManufacturerProfile server may be different
256 Patterns: Extended Enterprise SOA and Web Services



service. This URL points to the HTTP server, where the request will be 
redirected to the external Manufacturer Web service. See Figure 11-6.

Figure 11-6   Overriding the endpoint URL for the Manufacturer

5. Click OK, then save your changes.

6. Restart the ITSOGood enterprise application to ensure the change to the 
Web services client binding is in effect.

You should now have a working end-to-end scenario that does not use 
WS-Security:

� If you want to test this scenario, follow the instructions in 10.4.8, “Testing the 
scenario” on page 229.

� You can use the TCP/IP Monitor to confirm the SOAP messages do not 
contain WS-Security integrity and confidentiality entries by following the 
instructions in 10.4.9, “Viewing SOAP messages using the TCP/IP Monitor” 
on page 233.

11.4.3  Create and configure a service integration bus
In this section, you create a service integration bus that implements many of the 
functions required of the ESB component in the SOA profile of the Exposed 
Direct Connection pattern (Figure 11-7).
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 257



Figure 11-7   Exposed Direct Connection:: Product mappings

In this section you perform all of the steps necessary to configure a service 
integration bus to redirect Web services requests to appropriate Web services 
endpoints.

Creating a bus
The first step in the process is to create a new service integration bus. We use 
the Web services support of the service integration bus to act as an intermediary 
between the Web services invocation. In the context of this scenario, the service 
integration bus is a component of the ESB.

Create a bus on the ITSOGoodProfile server:

1. In the deployment manager administrative console, expand Service 
integration and click Buses.

2. Click New. In the field labeled Name, enter ESBBus, as shown in Figure 11-8 
on page 259. 

3. Uncheck the Secure check box, because we do not require any security 
checks on nodes within the ITSOGood enterprise. For the other values, 
accept defaults.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6

Internet

<Service Provider>

WebSphere 
Application Server 
Network Deployment 
V6.0.2 Web Service 
Gateway

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2

<Service Provider>

• Service Integration Bus 
& WebSphere 
Administration (part of 
WebSphere Application 
Server V6.0.2)

• DB2 Universal Database

Directory
& Security
Services

WebSphere 
Application Server 
Network Deployment 
V6.0.2 Web Service 
Gateway
258 Patterns: Extended Enterprise SOA and Web Services



Figure 11-8   New bus details entry page

4. Click OK, and the bus is created. Save the changes.

Adding a bus member
Creating a bus just creates an administrative entity. It does not create any 
resources for messaging. To create resources, we need to add a bus member, 
which has the effect of creating a messaging engine. The messaging engine is 
used by the bus to forward requests and responses between service providers 
and service consumers.

To add a bus member, follow these steps:

1. Click ESBBus to show its properties. Under Topology, click Bus members.

2. Click Add. Accept the defaults, and click Next.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 259



3. This page is a details summary page. Click Finish. The server is added as a 
member of the bus, and a messaging engine created.

4. Save the changes.

Installing the Service Data Objects (SDO) repository
The service integration bus Web services support stores the WSDL and 
schemas for Web services in the SDO repository. When WebSphere Application 
Server is installed it does not install the SDO repository, so this step must be 
performed manually.

To install the SDO repository, follow these steps:

1. In a command prompt window, navigate to the <WASND_HOME>/bin directory, 
where <WASND_HOME> is the directory where you installed WebSphere 
Application Server Network Deployment.

2. Run the following command to create the SDO repository enterprise 
application on the ITSOGoodProfile server:

wsadmin -f installSdoRepository.jacl ITSOGoodNode server1

3. After the script completes successfully, the SDO repository has been 
installed. You can confirm the installation by examining the installed 
enterprise applications. You should see a new enterprise application added 
and started that is called SDO Repository.

Configuring the SDO repository
The SDO repository supports a wide variety of databases. By default, the SDO 
repository uses embedded Cloudscape. However, in this scenario, we use DB2 
Universal Database.

To create a database, follow these steps:

1. Open the DB2 Command Window by clicking Start → Programs → IBM 
DB2 → Command Line Tools → Command Window.

2. From the DB2 Command Window enter the following:

a. db2 create database sdodb

b. db2 connect to sdodb

c. db2 create schema sdorep

d. db2 create table sdorep.bytestore (name varchar(250) not null, 
bytes blob(1G), timestamp1 bigint not null)

e. db2 disconnect sdodb

3. Now with the databases and tables created, configure the connectivity to 
them from WebSphere Application Server. Create a directory structure into 
260 Patterns: Extended Enterprise SOA and Web Services



which the client JAR files for DB2 Universal Database should be placed. This 
is to ensure that WebSphere Application Server can connect to the database 
through the drivers supplied by the database.

a. From a Command Prompt or from Windows Explorer navigate to 
<WAS_HOME> and create a subdirectory name db2udb.

b. Copy these following three jar files from <DB2_HOME>\java to 
<WAS_HOME>\db2udb:

db2jcc.jar
db2jcc_license_cu.jar
db2jcc_license_cisuz.jar

4. The data source used by the SDO repository needs to have a 
component-managed authentication alias. An authentication alias is used to 
allow the same user ID and password combination to be used in many 
different places. In this case the DB2 database has security configured so you 
need to specify the same user ID and password as created during the DB2 
install. Complete the following steps to create an alias:

a. In the deployment manager administrative console navigation panel click 
Security → Global security 

b. Under Authentication expand JAAS Configuration and click J2C 
Authentication data → New. 

c. Enter the setting values as shown in Figure 11-9 on page 262.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 261



Figure 11-9   Setting the J2C authentication data

– Alias

This field contains the name by which this alias will be known in the admin 
console. This alias can be anything you want, but in this case we specify 
the name DB2ESBAlias.

– User ID

You must specify a value for the user ID that will be used to log in. Specify 
the same value as the ID created when installing DB2. In this case we 
specify the name db2admin.

– Password

This is the password associated with the user ID. A value must be 
specified. Specify the same value as the password created when installing 
DB2. 

d. Click OK and save the changes to the master configuration by clicking 
Save.

5. Creating a JDBC provider for IBM DB2 Universal Database V8.2

The next step is to configure the service integration bus to access the SDO 
repository database using DB2. To do this, you need to define a new JDBC 
provider. In the administration console, complete the following steps to 
create a JDBC provider:
262 Patterns: Extended Enterprise SOA and Web Services



a. In the navigation panel click Resources → JDBC Providers.

b. Clear the Node entry field and click Apply,

c. With the cell scope now applied, click New to create the JDBC provider.

d. Next, some general information about the type of database and the 
connection mechanism is needed as shown in Figure 11-10. It should be 
noted that the pull-down boxes are disabled until the values in the 
preceding boxes have been entered. 

Figure 11-10   Specifying properties for DB2 JDBC provider

i. Setup the database type.

This is used to specify the type of database to which the JDBC provider 
will connect. In this case, choose DB2.

ii. Select the provider type.

This is used to specify how the database will be accessed. In this case, 
choose DB2 Universal JDBC Driver Provider.

iii. Select the implementation type.

This is used to specify how the provider will be implemented. In this 
case choose XA data source.

e. Click Next.

f. Modify the following JDBC provider properties panel:

i. Remove the existing Class path entries and add the three DB2 classes 
you copied to the <WAS_HOME>\db2udb directory in the previous section.

ii. Clear the Native library path field. 
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 263



iii. The completed panel is shown in Figure 11-11. Accept all other 
defaults and click OK.

Figure 11-11   Specifying additional properties for DB2 JDBC provider

g. Save the changes to the master configuration by clicking Save.

6. Create the JDBC data sources.

The next step is to create the JDBC data sources for accessing the SDO and 
messaging engine tables in DB2. Assuming that you are at the JDBC 
providers panel from the preceding step, complete the following steps to 
create the JDBC data sources:

a. Click DB2 Universal JDBC Driver Provider (XA) → Data sources → 
New.

Note: Figure 11-11 is restricted to showing two of the three DB2 
classes. Ensure you enter all three. Also, ensure that you enter the 
class path entries using the forward slash to delimit directories.
264 Patterns: Extended Enterprise SOA and Web Services



b. You now need to enter the details for the new data source used for the 
SDO repository. The panel is a long, scrolling, browsing panel. The top 
half should look like Figure 11-12.

Figure 11-12   Specifying the SDO data source parameters - part 1

The bottom half of the same panel should look similar to Figure 11-13 on 
page 266.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 265



Figure 11-13   Specifying the SDO data source parameters - part 2

– Name

The name is just an administrative entity that only has meaning within the 
administrative console. This can be specified as anything you like. 

In our example we used SDODB Datasource.

– JNDI Name

The JNDI name is the location from where applications pick the data 
source. Specify a value of:

jdbc/com.ibm.ws.sdo.config/SdoRepository

– Component-managed authentication alias

This is the alias that will be used when making connections to the 
database where the application managed authentication is being used by 
the application.
266 Patterns: Extended Enterprise SOA and Web Services



Select the value that ends in DB2ESBAlias.

– DB2 Universal data source properties

Enter the path to the SDO DB2 database.

i. Database name

The name of the SDO database. Enter SDODB.

ii. Driver type

Change to driver type 4. 

iii. Server name

The host name where the DB2 server is running. Enter 
itsogood.itso.ral.ibm.com

c. Leave all other values as default. Click OK.

d. Save the changes to the master configuration by clicking Save.

e. To ensure that the data sources have been created successfully check the 
datasource and click Test connection. You should see confirmation of a 
successful connection.

7. Return to the command prompt window, then navigate to <WAS_HOME>\bin. 
Change the SDO data source backend type by running the following 
command:

wsadmin -f installSdoRepository.jacl -editBackendId DB2UDB_V82

Installing the Web services applications
The service integration bus Web services support is packaged in four different 
applications. To get support for SOAP over HTTP, it is only necessary to install 
three of them. The fourth package is required for SOAP over JMS support. You 
need to install only three applications for this scenario. To install these 
applications, follow these steps:

1. Install the resource adapter first. To install the resource adapter navigate to 
<WAS_HOME>\bin and execute the following command:

wsadmin -f <WAS_HOME>/util/sibwsInstall.jacl INSTALL_RA -installRoot 
<WAS_HOME> -nodeName ITSOGoodNode

Note: Type 4 JDBC drivers are direct-to-database pure Java drivers 
(thin drivers).

Note: If the data source connection fails, then try restarting the 
deployment manager, node and the application server.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 267



2. Install the Web services support application:

wsadmin -f <WAS_HOME>/util/sibwsInstall.jacl INSTALL -installRoot 
<WAS_HOME> -nodeName ITSOGoodNode -serverName server1

3. Although the Web services support has been installed, you cannot use it until 
at least one endpoint listener application is installed. There are two endpoint 
listener applications: one for SOAP over HTTP and one for SOAP over JMS. 
For this scenario, you need to install the SOAP over HTTP application only. 
Install this application by running the following command:

wsadmin -f <WAS_HOME>/util/sibwsInstall.jacl INSTALL_HTTP -installRoot 
<WAS_HOME> -nodeName ITSOGoodNode -serverName server1

Creating the endpoint listener
Next, you need to create an endpoint listener, which will use the endpoint listener 
application at runtime. Endpoint listeners listen for incoming Web service 
requests and forward them onto the relevant inbound serve. Inbound services 
are bound to an endpoint listener when they are created.

1. From the administrative console of the deployment manager, expand Servers 
and click Application servers.

2. Click server1.

3. Under Additional Properties, click Endpoint Listeners.

4. Click New.

5. Create and endpoint listener using the dialog box as shown in Figure 11-14 
on page 269.

Important: Replace <WAS_HOME> with the directory where you installed 
WebSphere Application Server. The second <WAS_HOME> must have elements 
in the path separated by a forward slash (/) even on Windows system. So a 
path of C:\WAS\AppServer becomes C:/WAS/AppServer.
268 Patterns: Extended Enterprise SOA and Web Services



Figure 11-14   Creating an endpoint listener

In this dialog box, enter the following information:

� The Name, which is the name of the endpoint listener, must have the name 
SOAPHTTPChannel1.

� The URL root is the base URL for Web service requests into this endpoint 
listener. The URLs that are used for making Web service requests to the 
service integration bus will have this root at the beginning.

Set this to:

http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1

You can replace 9080 with the correct port number for your server.

� WSDL serving HTTP URL root, which is the location of the HTTP URL that is 
serving your Web service WSDL. Enter a value of:

http://appsrv1a.itso.ral.ibm.com/wsdl

6. Click Apply.

7. Under Additional Properties click Connection Properties.

8. Click New to create a new connection property.

9. Select ESBBus from the Bus Name list and click OK.

10.Save the changes.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 269



Creating the outbound services
Outbound services define Web service requests that leave the service 
integration bus and are received by a Web service provider. We need to define 
an outbound service for every service that we will route through the service 
integration bus. These services are illustrated in Figure 11-15.

Figure 11-15   Web services that require an outbound service defined in the bus

Note that in Figure 11-15 you can see we have not yet implemented an Exposed 
ESB Gateway, therefore the service integration bus contacts each Manufacturer 
service directly. We will add an Exposed ESB Gateway to access the 
Manufacturers later in the chapter.

To define an outbound service for the LoggingFacilityService Web service, 
perform the following tasks:

1. From the administrative console, expand Service Integration and click 
Buses.

2. Click ESBBus.

3. Under Services, click Outbound Services.

4. Click New.

LoggingFacility

LoggingFacility

logEvent

getEvents

Manufacturer C (CICS Transaction Server)

Manufacturer B (Microsoft .NET)

Manufacturer

Manufacturer (WebSphere Application Server 6)

submitPO

SCMSampleUI

SCMSampleUI

ITSO Good

getEvents

getCatalog

submitOrder

Retailer

Retailer

shipGoods

logEvent

getCatalog

submitOrder

Warehouse

shipGoods
submitPO

logEvent

Warehouse

ESB
(Service Integration Bus)
270 Patterns: Extended Enterprise SOA and Web Services



5. The first page of the wizard (Figure 11-16) requires you to specify a URL or 
UDDI repository where a WSDL definition of the service can be found. In this 
case, use a URL. The URL option allows you to specify an HTTP URL or a file 
system path. Enter the following URL and click Next:

http://appsrv1a.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.wsdl

Figure 11-16   Web service definition selection

6. The next page displays the available services that are defined in the WSDL 
file. You can select the service for which you want to create an outbound 
service. In this case, there is only one service to select, 
LoggingFacilityService. Click Next.

7. The next page (Figure 11-17 on page 272) displays the ports that are defined 
for the selected service. There is only one port in our service, so select 
LoggingFacility and click Next.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 271



Figure 11-17   Port selection page

8. On this page you can change the name of the outbound service, service 
destination name and port destination name. You can also specify a port 
selection mediation. Accept the defaults and click Next.

9. On this page you can select the bus member you wish to assign the outbound 
service. Accept the default and click Finish. The outbound service is created.

10.Repeat these steps to define outbound services for the other Web services, 
as shown in Table 11-3.

Table 11-3   Outbound service definitions

11.Save the changes. You should see six outbound services defined, as shown 
in Figure 11-18 on page 273.

Web service WSDL location

ManufacturerService http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturer_Impl.wsdl

ManufacturerBService http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerB_Impl.wsdl

ManufacturerCService http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerC_Impl.wsdl

RetailerService http://appsrv1a.itso.ral.ibm.com/wsdl/Ret
ailer_Impl.wsdl

WarehouseService http://appsrv1a.itso.ral.ibm.com/wsdl/War
ehouse_Impl.wsdl
272 Patterns: Extended Enterprise SOA and Web Services



Figure 11-18   All outbound services defined

12.A Web service destination and port destination are created for each outbound 
service. You can see these destinations by selecting Destinations in the bus 
details page.

Creating the inbound services
Inbound services define Web service requests that are received by the service 
integration bus. These requests are then routed to the appropriate outbound 
service. We need an inbound service definition for each outbound service.

To define an inbound service for the LoggingFacilityService Web service, perform 
the following tasks:

1. From the bus details page for ESBBus under Services, click Inbound 
Services.

Tip: If the WSDL file referenced in the WSDL location field is updated at any 
time after creation of an outbound service, you must click Reload on the 
Outbound service panel and save the configuration. The reason for this is the 
values from the WSDL file are saved to the SDO repository and the file is then 
not referenced directly. Changing the WSDL file means the reference in the 
SDO repository must also be reloaded.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 273



2. Click New.

3. Select the service destination name and supply the template WSDL service 
definition, as shown in Figure 11-19.

Figure 11-19   Service destination and template WSDL settings page

– Service destination name, which is the destination on which the inbound 
service requests should be placed. In this case, you want to specify the 
Web service destination that was created for the LoggingFacility outbound 
service.

Select the following:

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-2008/L
oggingFacility.wsdl:LoggingFacilityService

– Template WSDL location, which specifies the WSDL definition of the Web 
service to be invoked. While the WSDL that is used by client applications 
will be slightly different, it is based on this WSDL. In this scenario, you can 
specify the WSDL of the Web service endpoint that will ultimately be 
invoked after the request has been routed through the bus:

Enter the following:

http://appsrv1a.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.wsdl

4. Click Next.

5. Select the template WSDL service that should be used. Our WSDL has only 
one entry so accept the default, and click Next.

6. Rename the inbound service and specify which endpoint listener is to be 
used, as shown in Figure 11-20 on page 275.
274 Patterns: Extended Enterprise SOA and Web Services



Figure 11-20   Specify inbound service name and endpoint listener

– Inbound Service name is the service in the WSDL. It affects the code that 
is generated by the application development tooling. By default, the name 
is based on the service destination name with InboundService at the end. 
Enter LoggingFacilityService.

– Endpoint listener defines what mechanism is used to get Web service 
requests into the inbound service. There is only one endpoint listener 
available, for SOAPHTTPChannel1.

7. Click Next.

8. Specify UDDI specific properties. Because you are not using UDDI, you can 
accept the defaults and click Finish.

9. The default port name for the inbound service is based on the endpoint 
listener name followed by the phrase InboundPort. In this case, the inbound 
port name is SOAPHTTPChannel1InboundPort. Because our clients are 
calling a port called LoggingFacility, the clients would be unable to invoke the 
service. To fix this issue:

a. From the inbound service listing page, click LoggingFacilityService.

b. Under Additional Properties, click Inbound Ports.

c. Click the port name that ends with SOAPHTTPChannel1_InboundPort.

d. Modify the inbound port name as shown in Figure 11-21 on page 276. 
Change the name to LoggingFacility and click OK.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 275



Figure 11-21   Inbound port details page

10.Repeat these steps to create the other inbound service definitions. Use 
Table 11-4, Table 11-5, Table 11-6 on page 277, Figure 11-7 on page 277, 
and Table 11-8 on page 277 for guidance.

11.When all inbound services are defined, save the changes.

Table 11-4   Inbound service settings for ManufacturerService

Table 11-5   Inbound service settings for ManufacturerBService

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-2008/Man
ufacturer.wsdl:ManufacturerService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturer_Impl.wsdl

Inbound service name ManufacturerService

Endpoint listener SOAPHTTPChannel1

Inbound port name Manufacturer

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-2008/Man
ufacturer.wsdl:ManufacturerBService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerB_Impl.wsdl

Inbound service name ManufacturerBService

Endpoint listener SOAPHTTPChannel1
276 Patterns: Extended Enterprise SOA and Web Services



Table 11-6   Inbound service settings for ManufacturerCService

Table 11-7   Inbound service settings for RetailerService

Table 11-8   Inbound service settings for WarehouseService

Inbound port name ManufacturerB

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-2008/Man
ufacturer.wsdl:ManufacturerCService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerC_Impl.wsdl

Inbound service name ManufacturerCService

Endpoint listener SOAPHTTPChannel1

Inbound port name ManufacturerC

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-2008/Reta
iler.wsdl:RetailerService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Ret
ailer_Impl.wsdl

Inbound service name RetailerService

Endpoint listener SOAPHTTPChannel1

Inbound port name Retailer

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-2008/War
ehousewsdl:WarehouseService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/War
ehouse_Impl.wsdl

Inbound service name WarehouseService

Field Value
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 277



Overriding Web services client bindings
Currently, all Web services calls are point-to-point connections. Now that you 
have created the inbound services on the service integration bus, you have to 
change your Web services consumers to point to the inbound services on the 
service integration bus. For example Figure 11-23 shows how a Web service 
client for Retailer needs to be changed to point to the service integration bus.

Figure 11-22   Overriding the Web service client bindings for the Retailer Web service

This can be achieved by changing the endpoint for the Web services provider in 
the code or by overriding the Web services client binding through the admin 
console. In this chapter, we implement the latter.

To override Web services client binding, follow these steps:

1. In the administrative console, click Service integration → Buses, then click 
ESBBus.

2. Under Services, click Inbound Services and then RetailerService.

3. Under Additional Properties, click Publish WSDL files to ZIP file.

4. On this page, click RetailerService.zip. Click Open on the file dialog that 
opens.

Endpoint listener SOAPHTTPChannel1

Inbound port name Warehouse

Field Value

ITSOGood Application

Retailer
Web service client

SCMSampleUIWeb

ITSOGood Application

Retailer
Web service

RetailerWeb

Service Integration Bus
WebSphere Application Server V6

H
TT

P 
en

dp
oi

nt
 

lis
te

ne
r Retailer

inbound service
Retailer

outbound service
278 Patterns: Extended Enterprise SOA and Web Services



5. If you have a program with ZIP files, a list of WSDL files will open. Select and 
open the service WSDL file in a text editor. In our case, this is the 
ESBBus.RetailerServiceService.wsdl file.

6. Make note of the location text:

http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1/soaphttpengine/ESBBus/R
etailerService/Retailer

Now that you know the endpoint for your inbound service, you will override the 
Web service client binding in the enterprise application’s Web and EJB 
modules.

7. Click Applications → Enterprise Application, and then click ITSOGood 
and Web modules.

8. Click SCMSampleUIWeb.war and the under Additional Properties click Web 
services client bindings.

9. On the Web services client bindings screen, click Edit.. under the Port 
Information column for RetailerService Web service.

10.Enter the following in the Overrriden Endpoint URL field for Retailer port 
with the endpoint for the RetailerService inbound service. 

http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1/soaphttpengine/
ESBBus/RetailerService/Retailer 

This is the endpoint URL taken from ESBBus.RetailerServiceService.wsdl. 
See Figure 11-23.

Figure 11-23   Overriding the endpoint URL for RetailerService

11.Repeat these steps to update the following Web service client bindings so 
they point to the relevant inbound service:

– SCMSampleUIWeb

• LoggingFacilityService Web service
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 279



– RetailerWeb

• LoggingFacilityService Web service
• WarehouseService Web service

– WarehouseEJB

• LoggingFacilityService Web service
• ManufacturerService Web service
• ManufacturerBService Web service
• ManufacturerCService Web service

Testing sample application and the service integration bus
At this stage, you can test your configuration. This test does not use an Exposed 
ESB Gateway to contact the Manufacturers, and does not use WS-Security. 
However, it is a way to validate that you have correctly implemented the previous 
steps. 

Figure 11-24 shows how the ESB currently connects to the Manufacturers. The 
HTTP server is used to ensure that SOAP messages sent to each Manufacturer 
are sent over SOAP/HTTPS.

Figure 11-24   Implementation of Manufacturers without an Exposed ESB Gateway

1. When all configuration has been completed, restart the application server.

IBM HTTP
Server V6

SSL 
pass-through

rules

ManufacturerA
Web service

ManufacturerB
Web service

ManufacturerC
Web service

ESB

Inbound 
Services

Outbound 
Services

Manufacturer
Service

ManufacturerB
Service

ManufacturerC
Service

Manufacturer
Service

ManufacturerB
Service

ManufacturerC
Service

SOAP/
HTTP

SOAP/
HTTP

SOAP/
HTTP

SOAP/
HTTPS

SOAP/

HTTPS

SOAP/HTTPS

Note: If you have only implemented ManufacturerA, the Warehouse will only 
be able to replenish stock for 605001, 605004, and 605007. 
280 Patterns: Extended Enterprise SOA and Web Services



2. You can test the sample application by opening a Web browser and entering:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI/

3. For instructions on how to test the application server, see 10.4.8, “Testing the 
scenario” on page 229.

11.4.4  Create and configure the Web service gateway
The Web services gateway is essentially a tool that gives administrators an easy 
way to map Web services across a service integration bus. It enables the 
mapping of different protocols. In our scenario, one protocol (SOAP/HTTP) is 
used for the Web service invocation. A SOAP/HTTP request comes into the 
gateway from the ESB (another service integration bus) and is then retargeted to 
an external service, also over SOAP/HTTP. 

Figure 11-25 on page 282 shows the flow of request and response messages 
through the bus, and highlights the different steps required for configuring a 
gateway service as follows:

1. Create an endpoint listener and reply destination and connect it to the bus. 

2. Create a gateway instance on the bus. 

3. Create a gateway service on the gateway instance, including creating and 
configuring: 

a. Request and response destinations for the gateway 
b. An outbound service and an outbound service destination
c. An outbound port and an outbound port destination
d. An inbound port

4. Export the Web service gateway WSDL.

5. Connect the client (in our case the ESB) to the gateway service.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 281



Figure 11-25   Overview of Web services gateway configuration

Creating a bus
We first need to create a new service integration bus. We will then create a Web 
service gateway instance to run on this bus. In the context of this scenario the 
Web services gateway is the Exposed ESB gateway component of the Direct 
Connection runtime pattern: SOA profile.

In the ITSOGood server profile, create a bus named ExposedESBGatewayBus and 
a bus member as described in “Creating a bus” on page 258 and “Adding a bus 
member” on page 259.

Destination

Destination

Response
Destination

Request
Destination

Service Integration Bus

Reply
Destination

SOAP/HTTP

Endpoint Listener

Gateway
InstanceGateway

Service

Outbound Service

Outbound Port

Client

External
Service

SOAP/HTTP

Inbound Port
282 Patterns: Extended Enterprise SOA and Web Services



Create an endpoint listener
We need to create a new endpoint listener as an entry point into the gateway. 
“Creating the endpoint listener” on page 268 describes the steps required to set 
up an endpoint listener. Use the following settings on the Endpoint Listeners 
page in the WebSphere Application Server Network Deployment administrative 
console to configure the new endpoint listener:

� Name: SOAPHTTPChannel2
� URL Root: http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp2
� WSDL serving HTTP URL Root: http://appsrv1a.itso.ral.ibm.com/wsdl
� Additionally, create a new connection property for this new endpoint listener 

and set it to the ExposedESBGatewayBus.

Create a gateway instance
Create a gateway instance on the bus. The gateway instance allows you to 
partition gateway and proxy services into logical groups for ease of management.

1. Expand Service Integration and click Buses.

2. Click ExposedESBGatewayBus.

3. Under Additional Properties, click Web service gateway instances.

4. Click New.

5. Specify the settings for the gateway instance as shown in Figure 11-26 on 
page 284.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 283



Figure 11-26   Create a gateway instance

Enter the following values then click OK:

– Name, which is an arbitrary name for the gateway instance. Enter a value 
of ExposedESBGateway.

– Gateway namespace, also an arbitrary name. Enter a value of 
http://esb.gateway.

– Default proxy WSDL URL, which is the generic template WSDL file 
supplied with WebSphere Application Server Network Deployment. Enter 
http://itsogood.itso.ral.ibm.com:9080/sibws/proxywsdl/ProxyServic
eTemplate.wsdl.

6. Save the changes.

Create a gateway service
The gateway service is associated with a single external service, defined by the 
WSDL supplied when creating the gateway service. To create the gateway 
service:

1. Expand Service Integration and click Buses.

2. Click ExposedESBGatewayBus.
284 Patterns: Extended Enterprise SOA and Web Services



3. Under Additional Properties, click Web service gateway instances.

4. Click ExposedESBGateway.

5. Under Additional Properties, click Gateway services.

6. Click New.

7. Select WSDL-defined web service provider as the type of target service, 
shown in Figure 11-27.

Figure 11-27   Selecting the type of target service

8. Click Next.

Configuring the request and response destinations
9. Enter the gateway service and destination names as shown in Figure 11-28 

on page 286.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 285



Figure 11-28   Specifying the gateway service and service destination names

Some of the values can keep their defaults. The following list are the values 
that you must enter:

– Gateway service name: ManufacturerGatewayService (This is an arbitrary 
name.)

– Gateway request destination name: 
ManufacturerGatewayRequestDestination. This destination processes the 
request messages for the gateway.

– Gateway response destination name: 
ManufacturerGatewayResponseDestination. This destination processes 
the response messages for the gateway.

10.Click Next.

Note: In WebSphere Application Server Network Deployment, a destination is 
defined as a virtual location within a service integration bus. Applications can 
attach as producers, consumers or both to exchange messages.
286 Patterns: Extended Enterprise SOA and Web Services



Configuring an outbound service and destination
11.Specify the location of the target service WSDL using the page displayed in 

Figure 11-29. We are using a URL location type.

Figure 11-29   Locating the target service WSDL

Enter the following value for the WSDL location:

http://appsrv1a.itso.ral.ibm.com/wsdl/Manufacturer_Impl.wsdl, 

12.Click Next.

13.We now select the service in the WSDL to configure. The Manufacturer 
application only exposes one service, so we can select the default value, 
shown in Figure 11-30.

Figure 11-30   Selecting the service

14.Click Next.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 287



Selecting an outbound port and port destination
15.We can now select the port to be enabled. As shown in Figure 11-31, for our 

application, we select the default port.

Figure 11-31   Selecting the port

16.Click Next.

17.The external service is configured as an outbound service, and we associate 
its destination with the gateway service destination created earlier. The page 
used to name these destinations is shown in Figure 11-32.

Figure 11-32   Naming the destinations
288 Patterns: Extended Enterprise SOA and Web Services



18.Some of the values can keep their defaults. The following lists the values that 
you must enter:

– Outbound service name: ManufacturerOutboundService
– Service destination name: ManufacturerOutboundServiceDestination
– Port destination name: ManufacturerOutboundPortDestination

19.Click Next.

Configuring an inbound port
20.To select the bus member, accept the default and click Next, as shown in 

Figure 11-33.

Figure 11-33   Selecting the bus member

21.We can now select the endpoint listener we created earlier by accepting the 
default value and clicking Next. The page for selecting the endpoint listener is 
shown in Figure 11-34 on page 290.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 289



Figure 11-34   Selecting the endpoint listener

22.For our scenario, we will not be publishing to a UDDI registry, so just click 
Finish on the final page.

23.Save the changes.

Renaming the inbound port
Rename the inbound port by following these steps:

1. Expand Service Integration and click Buses.

2. Click ExposedESBGatewayBus.

3. Under Services, click Inbound Services.

4. Click on ManufacturerGatewayService.

5. Under Additional Properties, click Inbound Ports.

6. Replace ITSOServer01Node01_server1_SOAPHTTPChannel2_InboundPort 
with ManufacturerGatewayInboundPort (Figure 11-35 on page 291) then 
click OK.
290 Patterns: Extended Enterprise SOA and Web Services



Figure 11-35   Renaming the inbound port

7. We have now configured a service integration bus to contain a Web service 
gateway as shown in Figure 11-36 on page 292.

8. Save your changes.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 291



Figure 11-36   Our Web service gateway configuration

Exporting the gateway WSDL
We need to export the WSDL that defines the inbound service for the 
Manufacturer Web service gateway service, so that the ESB can be configured to 
access this service.

1. Expand Service Integration and click Buses.

2. Click ExposedESBGatewayBus.

3. Under Services, click Inbound Services.

4. Click ManufacturerGatewayService.

5. Click Publish WSDL files to ZIP file.

Manufacturer
Outbound

 PortDestination

Manufacturer
Outbound

ServiceDestination

Manufacturer
GatewayResponse

Destination

Manufacturer
GatewayRequest

Destination

ExposedESBGatewayBus

SOAPHTTPChannel2
Reply

SOAP/HTTP

SOAPHTTPChannel2

ExposedESB
GatewayManufacturer

Gateway
Service

Manufacturer
Outbound Service

Manufacturer 

ESB

External 
Manufacturer

Service

SOAP/HTTP

Manufacturer Gateway
Inbound Port
292 Patterns: Extended Enterprise SOA and Web Services



6. On this page, click ManufacturerGatewayService.zip. Click Open on the file 
dialog that appears.

7. A list of WSDL files as shown in Figure 11-37 will open in the program 
associated with ZIP files. Extract these files to the IBM HTTP Server WSDL 
directory (<HTTP_SERVER_HOME>/htdocs/en_US/wsdl), so that this new gateway 
WSDL will be served by the HTTP server.

Figure 11-37   Exported WSDL files 

Creating Gateway services for the other Manufacturers
We now need to create GatewayServices in a similar manner for ManufacturerB 
and ManufacturerC. To do so apply the steps and naming conventions from 
“Create a gateway service” on page 284.

You do not need to complete these steps if you are not implementing 
ManufacturerB and ManufacturerC.

11.4.5  Connecting the ESB and the Exposed ESB Gateway
When the ESB (implemented in the service integration bus) needs to 
communicate with the Manufacturer Web services, it delegates this task to the 
Exposed ESB Gateway (implemented in the Web services gateway). Therefore 
we have to connect the outbound service for each Manufacturer in the ESB to the 
relevant service in the Exposed ESB Gateway.

There are two approaches to do this:
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 293



� Create a new outbound service on the ESB that points to the relevant 
Manufacturer inbound service on the Exposed ESB Gateway. This uses 
SOAP/HTTP messages to communicate between the ESB and Exposed ESB 
Gateway. This solution could also be implemented using SOAP/JMS.

� Create a service integration bus link between the ESB and the Exposed ESB 
Gateway, and have the ESB place a message directly on the relevant 
outbound service destination on the Exposed ESB Gateway. This uses 
messaging to communicate between the ESB and the Exposed ESB 
Gateway.

Both scenarios are discussed in this section. You can choose to implement just 
one of these options, or you might prefer to try each option in turn.

Connecting using new outbound services
In this scenario, new outbound services are created in the ESB that point to the 
relevant Manufacturer Gateway service on the Exposed ESB Gateway. This is 
shown in Figure 11-38.

Figure 11-38   Connecting the ESB and Exposed ESB Gateway using SOAP/HTTP

This implementation has the advantage of being easy to implement, as the only 
change is to create new outbound services in the ESB component, and redirect 
the inbound services to point to them. However, the disadvantage is that this 
implementation uses SOAP/HTTP or SOAP/JMS to communicate between the 
ESB and Exposed ESB Gateway which in many cases may not be as efficient as 
using a service integration bus link.

If you want to implement this method for connecting the ESB and Exposed ESB 
Gateway you will need to complete the following steps:

IBM HTTP
Server V6

SSL 
pass-through

rules

Exposed ESB GatewayESB

Inbound 
Services

Outbound 
Services

Manufacturer
GatewayService

ManufacturerB
GatewayService

ManufacturerC
GatewayService

Gateway 
Services

Manufacturer
GatewayService

ManufacturerB
GatewayService

ManufacturerC
GatewayService

SOAP/
HTTP

Manufacturer
Service

ManufacturerB
Service

ManufacturerC
Service

SOAP/
HTTP

SOAP/
HTTP

ManufacturerA
Web service

ManufacturerB
Web service

ManufacturerC
Web service

SOAP/
HTTPS

SOAP/

HTTPS

SOAP/HTTPS

SOAP/
HTTP

SOAP/
HTTP

SOAP/
HTTP
294 Patterns: Extended Enterprise SOA and Web Services



1. Creating new outbound services on the ESB
2. Reconfiguring the inbound services
3. Testing the new outbound services

Creating new outbound services on the ESB
The existing outbound services we have defined for the Manufacturers point 
directly to the HTTP server, which forwards them on to the relevant Web service. 
We need to create new outbound services that instead points to the relevant 
Manufacturer Gateway service.

1. Follow the instructions in “Creating the outbound services” on page 270 to 
create a new outbound service in ESBBus, which points to the 
ManufacturerGatewayService. To do this, you use the WSDL generated for 
the ManufacturerGatewayService. Use the values in Table 11-9.

Table 11-9   Values for ManufacturerGatewayService

2. You should now see a new outbound service defined in the outbound service 
list for ESBBus called ManufacturerGatewayService (Figure 11-39 on 
page 296).

Field Value

WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/ExposedESBGatew
ayBus.ManufacturerGatewayServiceService.wsdl

Outbound service name ManufacturerGatewayService

Service destination name ManufacturerGatewayDestination

Port destination name ManufacturerGatewayPortDestination
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 295



Figure 11-39   Definition of the ManufacturerGatewayService outbound service

3. Define similar outbound services to point to ManufacturerBGatewayService 
and ManufacturerCGatewayService.

Reconfiguring the inbound services
We now want to configure the ManufacturerService inbound service to point at 
this new outbound destination.

1. Expand Service Integration and click Buses.

2. Click ESBBus.

3. Under Services, click Inbound Services.

4. Click ManufacturerService and select the new outbound service, 
ManufacturerGatewayDestination from the Service destination name drop 
down list shown below in Figure 11-40 on page 297.
296 Patterns: Extended Enterprise SOA and Web Services



Figure 11-40   Updated inbound service

5. Click OK and save the changes. The list of inbound services now looks like 
Figure 11-41.

Figure 11-41   List of inbound services

6. Repeat this process for ManufacturerBService and ManufacturerCService so 
that they point to the new Gateway outbound services you have defined for 
them.

Testing the new outbound services
Run the SCMSampleUI sample application again to verify that the scenario is 
working:

1. Open a Web browser and enter the URL: 
http://localhost:9080/SCMSampleUI/

2. Navigate through the application, and place an order for nine items of product 
605001. This generates a stock replenishment request for ManufacturerA.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 297



3. The application should complete successfully. To confirm that the Web 
service gateway was used, look in the SystemOut.log file of the 
ITSOGoodProfile application server profile for the line shown in bold in 
Example 11-1.

Example 11-1   Output from a successful invocation of ManufacturerA using the Web services gateway

SystemOut     O Warehouse: Calling Manufacturer A
ServletWrappe A   SRVE0242I: [sibwshttp2.ITSOServer01Node01.server1] [/wsgwsoaphttp2] 
[SIBus_HTTPRouter]: Initialization successful.
SystemOut     O Warehouse: Response from Manufacturer --> Manufacturer_A has received and 
processed a request

Connecting using a service integration bus link
In this scenario, the ESB connects to the Exposed ESB Gateway using a service 
integration bus link. Both the ESB and the Exposed ESB Gateway run within their 
own service integration bus (the Exposed ESB Gateway uses a Web services 
gateway on top of its service integration bus) and these buses can be linked 
together. When the ESB needs to call a Manufacturer Gateway service on the 
Exposed ESB Gateway, it uses this service integration bus link to place a 
message on the relevant Manufacturer Gateway service destination. This is 
shown in Figure 11-42.

Figure 11-42   Connecting the ESB and Exposed ESB Gateway using a service integration bus link

This implementation has the advantage of the possibility of increased 
performance for messages sent between the ESB and Exposed ESB Gateway. 
Messages are sent directly between buses rather than converting them to SOAP 
over HTTP or JMS messages. The disadvantage of this approach is that it 
requires more configuration than the previous implementation.

IBM HTTP
Server V6

SSL 
pass-through

rules

Exposed ESB GatewayESB

Inbound 
Services

Gateway 
Services

Manufacturer
GatewayService

ManufacturerB
GatewayService

ManufacturerC
GatewayService

Manufacturer
Service

ManufacturerB
Service

ManufacturerC
Service

ManufacturerA
Web service

ManufacturerB
Web service

ManufacturerC
Web service

SOAP/
HTTPS

SOAP/

HTTPS

SOAP/HTTPS

SOAP/
HTTP

SOAP/
HTTP

SOAP/
HTTPSe

rv
ic

e 
In

te
gr

at
io

n 
B

us
 L

in
k

298 Patterns: Extended Enterprise SOA and Web Services



If you wish to implement this method for connecting the ESB and Exposed ESB 
Gateway you need to complete the following steps:

1. Creating a foreign bus
2. Creating the service integration bus link
3. Defining destinations which route to the other bus
4. Reconfiguring the inbound services
5. Testing the service integration bus link

Creating a foreign bus 
A foreign bus represents another service integration bus in another cell (or within 
the same cell) or a WebSphere MQ network, with which a service integration bus 
can exchange messages. Messages are routed to a foreign bus either directly or 
through a link between the buses. The service integration bus link allows a link to 
be established between messaging engines on two service integration buses.

To create a foreign bus, follow these steps:

1. Expand Service Integration and click Buses.

2. Click on ESBBus.

3. Under Topology, click Foreign buses.

4. Click New.

5. A four-step wizard opens. You first enter the name of the foreign bus. It is 
important to ensure that the name that you enter is the name of the Exposed 
ESB Gateway bus. So, specify a value of ExposedESBGatewayBus, as shown in 
Figure 11-43 on page 300, and click Next.

Note: Remember that this is an alternative way to connect the ESB and 
Exposed ESB Gateway. If you have already connected the ESB and Exposed 
ESB Gateway using the instructions in “Connecting using new outbound 
services” on page 294, then it is not necessary to implement these steps to 
build a working implementation.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 299



Figure 11-43   New foreign bus wizard

6. In the next page, you select the routing type. There are three options:

– Direct, service integration bus link
– Direct, WebSphere MQ link
– Indirect

The default is Direct, service integration bus link, which is the option we need. 
So, just click Next.

7. In the next page, you specify the user ID to be used for inbound and outbound 
message authentication. These setting are not needed for this scenario, so 
click Next.

8. The last page is a summary page. Click Finish, and the foreign bus is 
created.

9. Save the changes.

10.Repeat this process to create a foreign bus called ESBBus on the 
ExposedESBGatewayBus. Make sure you define this foreign bus for the 
ExposedESBGatewayBus bus, and specify a foreign bus name of ESBBus.

Creating the service integration bus link
The next step is creating the service integration bus link. You must create a 
service integration bus link for each bus. This link connects a messaging engine 
on one bus to a messaging engine on another. To create this link:

1. Expand Service Integration and click Buses.

2. Click on ESBBus.

3. Under Topology, click Messaging engines.

4. Click the messaging engine name of ITSOGoodNode.server1-ESBBus.
300 Patterns: Extended Enterprise SOA and Web Services



5. Under Additional Properties, click Service integration bus link.

6. Click New.

7. In the next page, shown in Figure 11-44, you set up the service integration 
bus link.

Figure 11-44   Creating a new service integration bus link.

Complete only the mandatory information in this page:

– Name is an administrative entity. Enter SIBLink.

– Foreign bus name is the foreign bus to which this messaging engine is 
linked. This is a drop-down list and contains a single entry. Select 
ExposedESBGatewayBus.

– Remote messaging engine name, which is the name of the messaging 
engine on the foreign bus to which this messaging engine is connected. 
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 301



Enter the name of the messaging engine on the foreign bus. In 
Figure 11-44, we entered ITSOGoodNode.server1-ExposedESBGatewayBus.

– Bootstrap endpoints specify where to find the messaging engine. It is a 
comma-separated list of entries. Each entry consists of up to three parts. If 
one part is missing, that part assumes a default value. The parts are 
separated with a colon:

• Host numb is the name of the host.

• Port number is the port number on which the remote messaging engine 
is listening. This setting defaults to 7276. You can determine the port 
number of a messaging engine by clicking Servers → Application 
Servers → server1 → Ports and by noting the value of the 
SIB_ENDPOINT_ADDRESS port name.

• Protocol name, which is the symbolic name of the messaging protocol 
that is used. There are currently two: BootstrapBasicMessaging and 
BootstrapSecureMessaging. The default is BootstrapBasicMessaging.

In this case, we are using the default values, so simply enter 
localhost:7276.

8. Click OK. The service integration bus link has been configured.

9. Save the changes.

You must repeat this process for the ExposedESBGatewayBus bus to create a 
service integration bus link, also called SIBLink, to the ESB bus.

Defining destinations which route to the other bus
Configure three destinations (one for each Manufacturer) which will be used to 
forward messages to the Exposed ESB Gateway. Create the following queue 
type destinations:

� ManufacturerServiceDestination
� ManufacturerBServiceDestination
� ManufacturerCServiceDestination

Perform the following tasks:

1. Expand Service Integration and click Buses.
2. Click on ESBBus.
3. Under Destination Resources, click Destinations and click New.
4. Accept the default value of Queue and click Next.
5. Enter ManufacturerServiceDestination as the Identifer and click Next.
6. Click Next to accept the default bus member.
7. Click Finish on the summary panel and save the changes.
8. Repeat this process to define queue type destinations called 

ManufacturerBServiceDestination and ManufacturerCServiceDestination.
302 Patterns: Extended Enterprise SOA and Web Services



You can now set the forward routing paths for each destination to point to the 
relevant Gateway service destination on the Exposed ESB Gateway. Perform the 
following:

1. Under the list of destinations for ESBBus, click the 
ManufacturerServiceDestination queue.

2. On the page that appears as shown in Figure 11-45, set up a default forward 
routing path.

Figure 11-45   Configuring the forward routing path

A default forward routing path is applied to messages sent to a destination if 
the forward routing path of that message is available. Thus, messages that 
are sent to the ManufacturerServiceDestination can be routed elsewhere, 
which in our case is the Exposed ESB Gateway bus. The format of this box is 
a comma-separated list of qualified destination names. A qualified destination 
name consists of a bus name and a destination name separated by a colon. 
The bus name is optional if the destination is on the current bus.

Enter the following in the Default forward routing path:

ExposedESBGatewayBus:ManufacturerGatewayRequestDestination

3. Click OK. Requests to the ManufacturerService will now be forwarded to the 
Exposed ESB Gateway Bus.

4. Repeat these steps for the ManufacturerBService and ManufacturerCService 
destinations, entering the forward routing paths as shown in Table 11-10.

Table 11-10   Inbound service destination default forward routing paths

5. Save your changes.

Reconfiguring the inbound services
We need to update each Manufacturer inbound service to use the destinations 
we have defined in the previous step. Perform the following steps:

Destination Default forward routing path

ManufacturerBServiceDestination ExposedESBGatewayBus:ManufacturerBGatewayRe
questDestination

ManufacturerCServiceDesination ExposedESBGatewayBus:ManufacturerCGatewayRe
questDestination
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 303



1. Expand Service Integration and click Buses.

2. Click on ESBBus.

3. Under Services, click Inbound Services.

4. Click ManufacturerService.

5. Under Service destination name drop down list, select the destination that is 
called ManufacturerServiceDestination and click OK.

6. Repeat these steps for the ManufacturerBService and ManufacturerCService 
inbound services, using the service destination name shown in Table 11-11.

Table 11-11   Inbound service mappings to destinations

7. Save your changes.

Testing the service integration bus link
We can now test that the service integration bus link allows us to communicate 
with the Manufacturers using the Exposed ESB Gateway. Perform the following:

1. To start the service integration bus link, restart the application server. When 
the application server has restarted, check the SystemOut.log file of the 
ITSOGoodProfile server profile for the message shown in Example 11-2.

Example 11-2   Successful service integration bus links

CWSIT0032I: The inter-bus connection SIBLink from messaging engine ITSOGoodNode.server1-ESBBus 
in bus ESBBus to messaging engine ITSOGoodNode.server1-ExposedESBGatewayBus in bus 
ExposedESBGatewayBus started.

2. Open a Web browser and enter the URL:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI/

3. Navigate through the application, and place an order for nine items of product 
605001 to generate a stock replenishment request for ManufacturerA.

4. The application should complete successfully.

11.4.6  Adding WS-Security to the Web service gateway
In our Extended Enterprise scenario, we must ensure that the information we are 
sending to the partner Manufacturer enterprise is secure. We can achieve this by 
using the support provided by the Web service gateway for WS-Security. This will 

Inbound service name Service destination name

ManufacturerBService ManufacturerBServiceDestination

ManufacturerCService ManufacturerCServiceDestination
304 Patterns: Extended Enterprise SOA and Web Services



mean the connection between the Warehouse Web service client and the 
Manufacturer Web service is secured during WS-Security as shown logically in 
Figure 11-46. (Note that Figure 11-46 does not show the ESB and Exposed ESB 
Gateway as middle tiers between the Warehouse and Manufacturer).

Figure 11-46   Using WS-Security for calls to the Manufacturer

Although the Web service gateway provides support for a number of different 
facets of WS-Security, we have identified that of primary concern in our scenario 
are integrity and confidentiality.

We need to complete the following steps to secure the transmission of messages 
from the Warehouse to the Manufacturer:

� Create a WS-Security configuration
� Create a WS-Security binding
� Configure the WS-Security configuration and binding for integrity
� Configure the WS-Security configuration and binding for confidentiality
� Apply the WS-Security resources to the Web service gateway bus
� Enable global security

WS-Security resources can be applied to both inbound and outbound services. 
They can be classified as:

Note: This scenario differs from Chapter 10, “Exposed Direct Connection 
runtime pattern: generic profile” on page 157 because that scenario required 
us to change the Web service consumer in Rational Application Developer to 
add additional deployment descriptors for WS-Security. In this scenario, the 
Web service consumer remains unchanged, and we define the WS-Security 
settings as an administrative task in WebSphere Application Server.

Warehouse

Warehouse

submitPO

Manufacturer

submitPO

secure the SOAP 
message using a 
digitial signature and  
encryption 

Web service consumer
(client)

Web service provider
(server)
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 305



� Request consumer

Used on requests from a client to an inbound service. 

� Request generator

Used when generating requests from an outbound service to a target Web 
service. 

� Response consumer

Used on responses from a target Web service to an outbound service. 

� Response generator

Used when generating responses from an inbound service to a client. 

Figure 11-47 illustrates these security resource types.

Figure 11-47   WS-Security resources used in the service integration bus

For this scenario we configure the outbound services on the Web service 
gateway responsible for communicating with the different Manufacturers as 
request generators. Our scenario does not require the message returned from a 
Manufacturer to the Warehouse to be secure.

We need to create both a WS-Security binding and a WS-Security configuration. 
The binding and configuration can then be applied to each of the outbound 
services on the Web service gateway instance. Before beginning to configure 
WS-Security we need to copy the keystore files to the file system. As we are only 
securing the outbound service, we only require the client keystore files:

� client.jks
� client_rsa.cer

Note: We only illustrate the steps required to create a secure request 
generator. Similar concepts can be applied when creating secure request 
consumers, response generators and response consumers.

WS-Security 
bindings
WS-Security 
configuration

WS-Security 
bindings

WS-Security 
configuration

Outbound
Port

client 
requestor

Service Integration Bus

target
web

service

Inbound
Port

Inbound service request

Inbound service response

Outbound service request

Outbound service response

Uses response generator

Uses request consumer

Uses response consumer

Uses request generator
306 Patterns: Extended Enterprise SOA and Web Services



You can find these files in the additional material supplied with this redbook in the 
DirectConnectionSOA\keystore directory. The files should be copied to 
${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood where 
${WAS_INSTALL_ROOT} is the WebSphere Application Server installation directory.

Installing the secure Manufacturer application
In order to use WS-Security we need to use a Web service that is expecting a 
secured SOAP message. We described how to build a secured Manufacturer 
application in Chapter 10, “Exposed Direct Connection runtime pattern: generic 
profile” on page 157. Perform the following to install it:

1. Log in to the ManufacturerProfile administrative console at the following URL:

http://manufacturera.itso.ral.ibm.com:9061/ibm/console

2. Select Applications, and click Enterprise Applications.

3. We need to uninstall the unsecured Manufacturer, so check the 
Manufacturer enterprise application and click Stop. After it is stopped, check 
Manufacturer again and click Uninstall. After it is uninstalled, save your 
changes.

4. Now install the secured Manufacturer application. Under Applications click 
Install New Application. Install Manufacturer_Sec.ear which you can find in 
the DirectConnectionSOA\ears directory of the additional material supplied 
with this book.

5. When the .ear file is installed, save the changes to the configuration.

6. Check the newly installed Manufacturer enterprise application and click 
Start.

Creating a WS-Security configuration
Figure 11-48 on page 308 gives a conceptual view of the elements required 
when creating and configuring a WS-Security configuration for integrity and 
confidentiality.

Important: When implementing WS-Security in the bus, you have to ensure 
that you obtain WS-Security information, such as binding information and key 
stores, from the owning parties of the client when securing inbound services 
and the target Web service when securing outbound services.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 307



Figure 11-48   WS-Security configuration elements

To create the WS-Security configuration using the WebSphere Application 
Server Network Deployment administrative console for ITSOGoodProfile:

1. Expand Service Integration and expand Web services.

2. Click WS-Security configurations and click New.

3. Accept the default of security version 1.0 and click Next.

4. Select the Outbound security type option and click Next.

5. Enter ManufacturerSecurityConfig as the unique name for the configuration 
in the WS-Security configuration type panel as shown in Figure 11-49 on 
page 309 and click Next.

WS-Security
Configuration

Integrity

Message Part

Confidentiality

Message Part
308 Patterns: Extended Enterprise SOA and Web Services



Figure 11-49   WS-Security configuration type panel

6. Click Finish on the Summary panel and save the changes. The list of 
WS-Security configurations now looks similar to Figure 11-50.

Figure 11-50   WS-Security configurations

Creating a WS-Security binding
Figure 11-51 on page 310 gives a conceptual view of the elements required 
when creating and configuring a WS-Security binding for integrity and 
confidentiality.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 309



Figure 11-51   WS-Security binding elements

To create the WS-Security binding using the WebSphere Application Server 
Network Deployment administrative console for ITSOGoodProfile:

1. Expand Service Integration and expand Web services.

2. Click WS-Security bindings and click New.

3. Accept the default of security version 1.0 and click Next.

4. Select the Request generator security binding type option and click Next.

5. Enter ManufacturerSecurityBinding as the unique name for the binding in 
the WS-Security binding panel as shown in Figure 11-49 on page 309 and 
accept the default Web services security namespace,

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secex
t-1.0.xsd.

WS-Security
Configuration

Integrity

Token
Generator

Confidentiality

Encryption
Information

Callback
Handler

Key

Key Locator

Key

Key 
Information

Signing
Information

Part 
Reference

Transforms

Key Locator

Key

Key 
Information
310 Patterns: Extended Enterprise SOA and Web Services



Figure 11-52   Creating the WS-Security binding

6. Click Next.

7. Click Finish on the Summary panel and save the changes. The list of 
WS-Security bindings now looks similar to Figure 11-53.

Figure 11-53   WS-Security bindings

Now we need to edit the configuration and binding to provide support for integrity 
and confidentiality.

Updating the WS-Security configuration for integrity
First we need to create an integrity constraint and associated message part for 
the configuration. 

1. Expand Service Integration and expand Web services.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 311



2. Click WS-Security configurations.

3. From the WS-Security configuration panel, click 
ManufacturerSecurityConfig. The Configuration panel for this security 
configuration is displayed as shown in Figure 11-54.

Figure 11-54   WS-Security configuration

4. Under Request generator, click Integrity and then click New to create a new 
integrity constraint.

5. Specify the name and order of the constraint. Enter int_body as the value for 
name and 1 for value of order and click OK. 

6. Figure 11-55 on page 313 shows the list of integrity constraints. Click Save to 
apply the changes.
312 Patterns: Extended Enterprise SOA and Web Services



Figure 11-55   Integrity constraints list

7. Click the Integrity name int_body.

8. Under Additional Properties, click Message parts and click New to create a 
new message part.

9. Figure 11-56 on page 314 shows the Message part panel. Enter the following 
values:

– Name is an arbitrary name for the message part. Enter a value of 
IntegrityMP.

– Dialect specifies the message dialect to use. Accept the default value of 
http://www.ibm.com/websphere/webservices/wssecurity/dialect-was.

– Keyword identifies the message part in a way defined by the chosen 
dialect. Enter body. This specifies the SOAP body.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 313



Figure 11-56   Message part settings for integrity

10.Click OK and save the changes.

Updating the WS-Security binding for integrity
We need to configure the binding to define the location of keys, encryption 
settings and signing parameters.

To configure the WS-Security binding for integrity we need to:

� Create a token generator, callback handler and associated key.
� Create a key locator
� Create key information
� Create signing information

Creating the token generator
Follow these steps to create the token generator: 

1. Expand Service Integration and expand Web services.

2. Click WS-Security bindings.

3. From the WS-Security binding panel, click ManufacturerSecurityBinding. 
The Configuration panel for this security binding is displayed in Figure 11-57 
on page 315.
314 Patterns: Extended Enterprise SOA and Web Services



Figure 11-57   WS-Security binding

4. To insert a security token into the message for signing, under Additional 
Properties, click Token generators and click New (Figure 11-58 on 
page 316).
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 315



Figure 11-58   Creating a token generator

5. Figure 11-58 shows the token generator general properties panel. Some of 
the values can keep their defaults. The following lists the values that you must 
enter:

– Token generator name, which specifies the name of the token generator 
configuration. Enter a value of gen_dsigtgen.

– Token generator class name, which specifies the token generator 
implementation class name. Enter 
com.ibm.wsspi.wssecurity.token.X509TokenGenerator
316 Patterns: Extended Enterprise SOA and Web Services



– Value type Local name, enter 
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-toke
n-profile-1.0#X509

6. Click Apply.

7. Now under Additional Properties, click Callback handler.

8. Figure 11-59 on page 318 shows the callback handler general properties 
panel. Some of the values can keep their defaults. The following list is the 
values that you must enter:

– Callback handler class name. Enter 
com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

– Key store Password, enter client

– Key store Path, which specifies the location of the keystore file. Enter 
${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood\client.jks

– Key store type, which specifies the keystore file format type. Select JKS.

Important: The Help text for the Value type settings is incorrect. The 
URI value must be entered in the Local name field.

Important: Be sure that the values you have entered have been saved 
correctly. The WS-Security binding and configuration panels appear to 
sometimes lose the values entered or to set values from lists back to the 
default value when saving. Exercise caution to be certain that all the values 
have been saved properly
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 317



Figure 11-59   Creating a callback handler

9. Click Apply. 

10.Now under Additional Properties, click Keys and click New. The Key 
Configuration panel shown in Figure 11-60 on page 319 is displayed.
318 Patterns: Extended Enterprise SOA and Web Services



Figure 11-60   Creating a key

11.Enter the following values:

– Key name specifies the name of the key object. The key is used by the 
request generator signing information to determine which key is used to 
digitally sign the message. For encryption the key name is used to 
determine the key used for encryption. Enter CN=Client, OU=IBM, C=US.

– Key alias is used by the key locator to find the key within the keystore file. 
Enter client_rsa.

– Key password is the password used to access the key object within the 
keystore file. Enter client_rsa.

12.Click OK, and save all the changes to the configuration.

Creating the key locator
Now we will create the key locator specifying how to retrieve a key for signing.

1. Expand Service Integration and expand Web services.

2. Click WS-Security bindings.

3. From the WS-Security binding panel, click ManufacturerSecurityBinding.

4. Under Additional Properties, click Key locator and click New.

5. The Key locator panel shown in Figure 11-61 on page 320 is displayed.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 319



Figure 11-61   Creating a key locator

6. Enter the following values:

– For Key locator name, enter gen_dsigklocator.

– For Key locator class name, enter 
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator.

– For Key store Password, enter client.

– Key store Path specifies the location of the keystore file. Enter 
${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood\client.jks.

– Key store type specifies the keystore file format type. Select JKS.

7. Click Apply.

8. Now under Additional Properties, click Keys and click New.

9. Enter the following values:

– Key name CN=Client, OU=IBM, C=US

– Key alias client_rsa

– Key password client_rsa
320 Patterns: Extended Enterprise SOA and Web Services



10.Click OK, and save all the changes to the configuration.

Creating the key information
Now, we create the key information for specifying a signature by X.509 certificate.

1. Expand Service Integration and expand Web services.

2. Click WS-Security bindings.

3. From the WS-Security binding panel, click ManufacturerSecurityBinding.

4. Under Additional Properties, click Key information and click New. The key 
information panel as shown in Figure 11-62 on page 322 is displayed.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 321



Figure 11-62   Creating the key information

5. Some of the values can keep their defaults. The following lists the values that 
you must enter:

– Key information name specifies the name for the key information 
configuration. Enter a value of gen_dsigkeyinfo.

– Key information type specifies how to reference security tokens. Select a 
value of Security token reference from the drop-down list.
322 Patterns: Extended Enterprise SOA and Web Services



– Key locator reference specifies the reference that is used to retrieve the 
key for digital signature and encryption. Select gen_dsigklocator from the 
drop-down list.

– Click Get keys, and select CN=Client, OU=IBM, C=US from the Key 
name reference drop-down list. The key reference name specifies the 
name of the key that is used for generating the digital signature and 
encryption.

– Token reference is used to specify the name of a token generator that is 
used for processing a security token. Select gen_dsigtgen from the drop 
down list.

6. Click OK and save the changes.

Creating the signing information
Now we create the signing information for specifying a signature by X.509 
certificate.

1. Expand Service Integration and expand Web services.

2. Click WS-Security bindings.

3. From the WS-Security binding panel, click ManufacturerSecurityBinding.

4. Under Additional Properties, click Signing information and click New. 
Figure 11-63 on page 324 shows the Signing information General Properties 
panel.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 323



Figure 11-63   Creating the signing information

5. Enter the following values:

– Signing information name specifies the name assigned to the signing 
configuration. Enter a value of sign_body.

– Signature method specifies the algorithm URI of the signature method. 
Select a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 from 
the drop-down list.

– Canonicalization method is the algorithm URI of the canonicalization 
method. Select http://www.w3.org/2001/10/xml-exc-c14n# from the drop 
down list.

– Key information signature type specifies how to sign a KeyInfo element if 
dsigkey or enckey is specified for the signing part in the deployment 
descriptor. If no value is selected, the keyinfo value will be used by 
WebSphere Application Server by default. Select (none) from the 
drop-down list.

– Signing key information specifies a reference to the key information that 
WebSphere Application Server uses to generate a digital signature. Select 
gen_dsigkeyinfo from the drop-down list.

6. Click Apply.
324 Patterns: Extended Enterprise SOA and Web Services



7. Under Additional Properties, click Part references and click New. 
Figure 11-64 shows the Part reference General Properties panel.

Figure 11-64   Creating the part reference

8. Enter the following values:

– Part name specifies the name assigned to the part reference 
configuration. Enter a value of sign_part.

– Part reference name specifies the name of the <integrity> element for the 
signed part of the message. Enter a value of int_body.

– Digest method algorithm is the algorithm URI of the digest method used 
for the signed part that is specified by the part reference. Select 
http://www.w3.org/2000/09/xmldsig#sha1 from the drop-down list.

9. Click Apply.

10.Under Additional Properties, click Transforms and click New. Figure 11-65 
on page 326 shows the Transforms General Properties panel.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 325



Figure 11-65   Creating the transform

11.Enter the following values:

– Transform name specifies the name assigned to the transform algorithm. 
Enter a value of sign_trans.

– Transform algorithm is the algorithm URI of the transform algorithm. Select 
http://www.w3.org/2001/10/xml-exc-c14n# from the drop-down list.

12.Click OK and save all changes.

We have now completed updating the WS-Security binding to support integrity.

Updating the WS-Security configuration for confidentiality
Now we need to create a confidentiality constraint and associated message part 
for the configuration, in the same way as we have previously created the integrity 
constraint described in , “Updating the WS-Security configuration for integrity” on 
page 311:

1. Expand Service Integration and expand Web services.

2. Click WS-Security configurations.

3. From the WS-Security configuration panel, click 
ManufacturerSecurityConfig. 

4. Under Additional Properties, click Confidentiality and then click New to 
create a new confidentiality constraint.

5. Specify the name and order of the constraint. Enter conf_body as the value for 
name and 2 for value of order. Click OK and save the changes. 
326 Patterns: Extended Enterprise SOA and Web Services



6. Now click the Confidentiality name conf_body.

7. Under Additional Properties, click Message parts and click New to create a 
new message part.

8. Figure 11-66 shows the Message part panel. Enter the following values:

– Name is an arbitrary name for the message part. Enter a value of 
ConfidentialityMP.

– Dialect specifies the message dialect to use. Accept the default value of 
http://www.ibm.com/websphere/webservices/wssecurity/dialect-was

– Keyword identifies the message part in a way defined by the chosen 
dialect. Enter bodycontent. This specifies the SOAP body.

Figure 11-66   Message part settings for confidentiality

9. Click OK and save the changes.

Updating the WS-Security binding for confidentiality
We now need to configure the binding to define the location of keys and 
encryption settings for confidentiality.

To configure the WS-Security binding for confidentiality we need to:

� Create a key locator
� Create key information
� Create encryption information
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 327



Creating the key locator
In this section, we create the Key locator, specifying how to retrieve a key for 
signing. 

1. Expand Service integration and expand Web services.

2. Click WS-Security bindings.

3. From the WS-Security bindings panel, click ManufacturerSecurityBinding.

4. Under Additional Properties, click Key locator and click New.

5. Figure 11-67 on page 329 shows the Key locator settings for confidentiality. 
Enter the following values:

– For Key locator name, enter gen_encklocator.

– For Key locator class name, enter:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

– For Key store Password, enter client.

– For Key store Path, enter:

${WAS_INSTALL_ROOT}\etc\ws-security\samples\ITSOGood\client.jks

– For Key store type, select JKS.

Note: More information, including diagrams describing the configuration of 
Key locators and Key information, is described in “Updating the WS-Security 
binding for integrity” on page 314.
328 Patterns: Extended Enterprise SOA and Web Services



Figure 11-67   Key locator for confidentiality

6. Click Apply.

7. Now under Additional Properties, click Keys and click New.

8. Enter the following values, as shown in Figure 11-68 on page 330:

– The Key name is CN=Server, OU=IBM, C=US.

– The Key alias is server_rsa.

– The Key password should be left blank.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 329



Figure 11-68   Key settings

9. Click OK, and save all the changes to the configuration.

Creating the key information
Now we will create the key information.

1. Expand Service Integration and expand Web services.

2. Click on WS-Security bindings.

3. From the WS-Security bindings panel, click ManufacturerSecurityBinding.

4. Under Additional Properties, click Key information and click New.

5. Figure 11-69 on page 331 shows the key information settings for 
confidentiality. Some of the values on the key information general properties 
can keep their defaults. The following lists the values that you must enter:

– For Key information name, enter a value of gen_enckeyinfo.

– For Key information type, select a value of Key identifer from the drop- 
down list.

– For Key locator reference, select gen_encklocator from the drop-down 
list.

– Click Get keys, and select CN=Server, OU=IBM, C=US from the Key 
reference name drop-down list.
330 Patterns: Extended Enterprise SOA and Web Services



Figure 11-69   Key information for confidentiality

6. Click OK and save the changes.

Creating the encryption information
Create the encryption information for body content encryption.

1. Expand Service Integration and expand Web services.

2. Click WS-Security bindings.

3. From the WS-Security bindings panel, click ManufacturerSecurityBinding.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 331



4. Under Additional Properties, click Encryption information and click New.

5. Figure 11-70 on page 332 shows the Encryption information settings for 
confidentiality. Enter the following values:

– Encryption information name specifies the name for the encryption 
information. Enter a value of enc_body.

– Data encryption algorithm specifies the algorithm URI of the data 
encryption method. Select a value of 
http://ww.w3.org/2001/04/xmlenc#tripledes-cbc from the drop-down 
list.

– Key encryption algorithm specifies the algorithm URI of the key encryption 
method. Select http://ww.w3.org/2001/04/xmlenc#rsa-1_5 from the 
drop-down list.

– Encryption key information specifies the key information reference that is 
used for encryption. Select gen_enckeyinfo from the drop-down list.

– Part reference name specifies the name of the <confidentiality> element 
for the generator binding. Enter the value conf_body.

Figure 11-70   Encryption information for confidentiality

6. Click OK and save the changes.
332 Patterns: Extended Enterprise SOA and Web Services



The details of the WS-Security resources are saved by WebSphere Application 
Server Network Deployment into the sibws-wssecurity.xml file. This file is at the 
cell level for both the deployment manager and the application server.

Applying WS-Security resources to the Web service gateway
After you have created and configured your WS-Security resources, you can then 
apply them to services within the Web service gateway. To do this using the 
WebSphere administrative console:

1. Expand Service Integration and click Buses.

2. Click on ExposedESBGatewayBus.

3. Under Services, click Outbound Services and then click 
ManufacturerOutboundService.

4. Under Additional Properties click Outbound Ports and then click 
Manufacturer.

5. On the Outbound Port panel shown in Figure 11-71 on page 334, select the 
WS-Security resources you want to apply. From the Security request binding 
drop down list, select ManufacturerSecurityBinding (1.0).

6. From the Security configuration drop down list, select 
ManufacturerSecurityConfig (1.0).
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 333



Figure 11-71   Applying the security resources

7. Click OK and save all changes.
334 Patterns: Extended Enterprise SOA and Web Services



The Web service gateway is now configured to use the WS-Security resources 
we have defined.

Testing with WS-Security
This section describes how to test the scenario. For more information about the 
sample application, see Chapter 8, “Business scenario used in this book” on 
page 137. 

For full instructions on testing the sample application see 10.4.8, “Testing the 
scenario” on page 229. In summary, perform the following steps:

1. Restart the ITSOGoodProfile application server so the WS-Security settings 
take effect.

2. Enter the following URL in a Web browser to start the ITSOGood sample 
application:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI/

This assumes the unsecured HTTP transport port number is 9080. If this is 
not the case, use the URL above with the appropriate HTTP transport port 
number.

3. Order six items of product 605001. This will trigger the Warehouse to contact 
ManufacturerA to replenish its stock for this product.

4. To confirm the successful invocation of the Manufacturer service, check the 
SystemOut.log of the ITSOGoodProfile application server. The Warehouse 
writes a message saying that a Manufacturer was invoked. The message 
should look like this:

Warehouse: Response from Manufacturer --> Manufacturer_A has received 
and processed a request.

You should also see the following message in the SystemOut.log file of the 
ManufacturerProfile application server:

Manufacturer A: Processing Purchase Order

To confirm the SOAP message is using the WS-Security settings you have 
defined, use the TCP/IP Monitor. Use of the TCP/IP Monitor is fully described in 
10.4.9, “Viewing SOAP messages using the TCP/IP Monitor” on page 233. In this 
scenario, you need to modify the outbound service for the Manufacturer in the 
Exposed ESB Gateway.

In summary, perform the following tasks:

Note: In our scenario we are only securing messages sent to the Java 
implementation of the Manufacturer. The messages sent to the .NET and 
CICS Manufacturer implementations will remain unsecured.
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 335



1. In a Command Prompt, set the PATH environment variable so the java.exe 
command can be run (substituting <WAS_HOME> for the path where WebSphere 
Application Server is installed):

set PATH=<WAS_HOME>\java\bin;%PATH%

2. Navigate to the <WAS_HOME>\lib directory:

cd <WAS_HOME>\lib

3. Launch the TCP/IP Monitor:

java -classpath webservices.jar com.ibm.ws.webservices.engine.utils.tcpmon

4. The TCP/IP Monitor should launch in a new window. Enter a Listen Port of 81. 
Select Act as a Listener and specify Target Hostname as 
itsogood.itso.ral.ibm.com and Target Port as 80.

5. Click Add. This adds a new tab at the top of the TCP/IP Monitor called Port 
81. Click this tab to see any TCP/IP messages that are received on port 81 by 
the TCP/IP Monitor. 

6. Open the Manufacturer_Impl.wsdl file in a text editor. Find this file installed in 
the HTTP server directory at: <HTTP_SERVER_HOME>\htdocs\en_US\wsdl

7. Change the following line in Manufacturer_Impl.wsdl so it uses port 81 as 
shown below, then save the change:

<wsdlsoap:address 
location="http://itsogood.itso.ral.ibm.com:81/Manufacturer/services/Manu
facturer"/>

8. Reload this WSDL file for the Manufacturer outbound service on the Exposed 
ESB Gateway. In the ITSOGoodProfile administrative console click Service 
integration → Buses → ExposedESBGatewayBus → Outbound 
Services → ManufacturerOutboundService and click Reload WSDL. This 
reloads the port change made in Manufacturer_Impl.wsdl from the HTTP 
server.

9. Save your changes, then run the sample application again. You should see 
the SOAP message sent from the Warehouse to the Manufacturer in the 
TCP/IP Monitor, and that the request message has WS-Security applied 
(Figure 11-72 on page 337).
336 Patterns: Extended Enterprise SOA and Web Services



Figure 11-72   Viewing a SOAP message in the TCP/IP Monitor
 Chapter 11. Exposed Direct Connection runtime pattern: SOA profile 337



338 Patterns: Extended Enterprise SOA and Web Services



Chapter 12. Exposed Broker runtime 
pattern: generic profile

This chapter describes how to architect, develop, and implement the generic 
profile of the Exposed Broker runtime pattern.

In this chapter we describe how to add broker functionality, where a Broker node 
receives a single request and sends responses to multiple targets in other 
enterprises. To do this, we: 

� Develop mediations using the mediation API of WebSphere Application 
Server. 

� Describe how to deploy the mediations to a Web services gateway, 

� Describe how to test the application.

12
© Copyright IBM Corp. 2006. All rights reserved. 339



12.1  Business scenario
The business scenario implemented in this chapter builds on the business 
scenario discussed in Chapter 10, “Exposed Direct Connection runtime pattern: 
generic profile” on page 157.

Having successfully integrated their Warehouse systems with the external 
Manufacturing partners, ITSO Good would now like to scale up their operations 
and also plans to improve the overall quality of service to the customer. 

ITSO Good’s IT Operations team have come up with the following additional 
requirement for the supply chain management solution to align effectively with 
the business decision to scale up their operations:

� The distribution logic and rules within the Warehouse need to be separated 
from the application logic to provide the application services the required 
flexibility to scale independently.

Figure 12-1displays the high-level business context of our business scenario.

Figure 12-1   High-level business context of the scenario

ITSO Good

Intranet

SCM
Application WarehouseRetail

System

Logging
Facility Manufacturer C

Manufacturer B

Manufacturer A

I
n
t
e
r
n
e
t

340 Patterns: Extended Enterprise SOA and Web Services



12.2  Design guidelines
In this section, we analyze the business requirements and apply the Patterns for 
e-business to determine the appropriate Runtime pattern for the solution. We 
then discuss the various design options available to us in implementing the 
solution and also look at the product mappings.

12.2.1  Analyze business requirements
The business scenario requires the distribution rules to be separated from the 
application logic within the Warehouse system for the order replenishment 
process. For example, if a customer order results in the product stock falling 
below the threshold level, then the Warehouse raises a single replenishment 
request with the products that need to be replenished to a Broker component. 
The Broker, in turn, brokers the request into multiple replenishment orders and 
sends them to each Manufacturer partner application required to fulfill the 
replenishment orders.

The Broker additionally has to handle the decomposition and recomposition of 
the SOAP messages exchanged across the organization boundary in a 
seamless manner so as to make it look like a single interaction for the 
Warehouse and in turn the customer placing the order.

To summarize, the Broker component has to address the following requirements 
in the given scenario:

� Service/message routing
� Decomposition/recomposition of SOAP messages
� Message transformation, if required
� Maintain business rules related to the above aspects

12.2.2  Selecting a pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern 
to apply to this scenario. This section describes a step-by-step approach used to 
navigate the Patterns for e-business asset catalog:

1. Business pattern

We select the Extended Enterprise business pattern because the given 
scenario requires interactions between the business processes in the 
Warehouse and Manufacturer systems that reside in separate enterprises.
 Chapter 12. Exposed Broker runtime pattern: generic profile 341



2. Application pattern

Because the source application (Warehouse) initiates an interaction that is to 
be distributed to multiple target partner applications concurrently, we choose 
the Exposed Broker application pattern, as shown in Figure 12-2.

Figure 12-2   Exposed Broker application pattern

3. Runtime pattern

The selection of the Application pattern provides us with the possible runtime 
patterns for the proposed solution. Because the business requirement does 
not mandate an SOA infrastructure, we select the generic profile of the 
Exposed Broker runtime pattern.

Figure 12-3 on page 343 shows the level 0 decomposition of the generic profile 
for the Exposed Broker runtime pattern, mapped to the Exposed Broker 
application pattern.

Partner B

Partner A

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zones

Source
Application

Broker
Rules

Target
Application

Target
Application

WIP

Broker Rules
& WIP Results

Partner C

Target
Application
342 Patterns: Extended Enterprise SOA and Web Services



Figure 12-3   Exposed Broker::Runtime pattern = generic profile

12.2.3  Analyze design options
This section discusses the architectural decisions that we made and their 
implementation options for the given business scenario using the Exposed 
Broker runtime pattern.

Most of the design decisions we made in the previous chapters also apply to the 
Broker interactions:

� “Architectural decision: integration options” on page 163, describing the use 
of Web services to integrate with the external partner services.

� The design guidelines in the “Securing Web services” on page 165.

� The architectural decision related to securing the Web services in 
“Architectural decision: Securing the Web service interaction” on page 170

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
Broker

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

App Server/
Services

Rules
Directory

Directory
& Security
Services

Broker
Rules

Source
Application

Exposed Broker

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

WIP

Broker Rules &
WIP Results
 Chapter 12. Exposed Broker runtime pattern: generic profile 343



Additional design decisions that are specific to this scenario are discussed in the 
following sections.

Architectural decision: designing the broker component
The architectural decisions for designing the broker component are discussed in 
Table 12-1.

Table 12-1   Architectural decision: designing the broker component

Decision title The most suitable operational topology

Issue or Problem statement To externalize the routing and distribution rules for 
the interaction with the external partner 
applications by using a broker.
The broker would have to satisfy the following 
requirements:
� Service / Message routing
� Decomposition / recomposition of the SOAP 

messages.
� Message transformation, if required.
� Maintain business rules related to the above 

aspects.
Since the Broker component would be the one 
interacting with the partner services across the 
boundary, it should also handle,
� Securing the Web service interaction between 

the Warehouse and the external Manufacturing 
service.

Assumptions None.

Motivation

Alternatives 1) WebSphere Business Integration Message 
Broker.
2) Web services gateway component in 
WebSphere Application Server Network 
Deployment.

Decision The Web services gateway component in 
WebSphere Application Server Network 
Deployment will be used to implement the Broker 
component. It would handle 
� Security by using the WS-Security features.
� Decomposition/recomposition of the SOAP 

messages using the mediation support 
available in the service integration bus where 
the Web services gateway runs.
344 Patterns: Extended Enterprise SOA and Web Services



12.2.4  Products
In this section we look at the products available to implement the various 
components in the Exposed Broker runtime pattern. 

Product implementation options
Product choices for this scenario are based on:

� Design decisions made in 12.2.3, “Analyze design options” on page 343.
� Extended Enterprise capabilities of the products
� Products currently available

We can use the following currently available products to implement the Broker 
component in the given scenario:

� Web services gateway component in WebSphere Application Server Network 
Deployment.

� WebSphere Business Integration Message Broker 

For this scenario, the Web services gateway component in WebSphere 
Application Server Network Deployment meets all of the requirements and, as a 
result, is the product of choice. 

The complete product mapping for this scenario is shown in Figure 12-4 on 
page 346.

Justification WebSphere Business Integration Message Broker 
would be an ideal choice if there is a need to handle 
high-volume of messages, reliable messaging and 
other sophisticated capabilities of integration.
Given the lack of clarity on these non-functional 
aspects and in order to keep the solution simple, we 
would use the Web services gateway. The solution 
could be migrated to WebSphere Business 
Integration Message Broker at a later time.
 Chapter 12. Exposed Broker runtime pattern: generic profile 345



Figure 12-4   Exposed Broker :: Product mappings

In this Product mapping, WebSphere Application Server V6.0.2 Network 
Deployment was used for all services within the ITSO Good enterprise. The 
Manufacturing services of the three external partner systems are implemented 
using CICS Transaction Server V3.1, WebSphere Application Server V6.0.2 and 
Microsoft .NET respectively. 

The Exposed Broker is implemented using the Web services gateway 
component in WebSphere Application Server Network Deployment.

12.3  Development guidelines
The scenario this book uses is based on the WS-I sample application, as 
described in Chapter 8, “Business scenario used in this book” on page 137. We 
use a modified version of this sample application called the ITSO Good sample 
application. 

This section discusses how the scenario uses the Exposed Broker runtime 
pattern. In order to complete this section, you need to use Rational Application 
Developer V6.0.1 or later.

To follow the steps in this section we provide you the required projects in a zip file 
called BrokerGenericProjects.zip. You need to unzip the file and import the 
projects into your Rational Application Developer workspace. You can find the 
files you need under \BrokerGeneric\projects directory in the additional 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
Broker

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

IBM HTTP 
Server V6

Microsoft .NET WebSphere 
Application 
Server V6.0.2

Internet

App Server/
Services

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

WebSphere 
Application 
Server V6.0.2

Rules
Directory

Directory
& Security
Services

WebSphere 
Application Server 
V6.0.2 Network 
Deployment Web 
Services Gateway

WebSphere Application 
Server V6.0.2 Network 
Deployment Web Services 
Gateway

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database
346 Patterns: Extended Enterprise SOA and Web Services



material provided along with this book. For information about how to obtain the 
additional materials, see Appendix A, “Additional material” on page 481.

Perform the following activities to setup and test successfully the sample 
application with Exposed Broker runtime pattern:

� Understand the scenario implementation.
� Import provided projects into your Rational Application Developer workspace.
� Create the Broker EJB project.
� Code the Broker by implementing mediation handlers.
� Assign and export the mediation handlers.
� Export the EAR files.

12.3.1  Scenario implementation: Exposed Broker runtime pattern
Figure 12-5 shows the interactions that are made by each component in the 
ITSO Good sample application.

Figure 12-5   Exposed Broker scenario

In this scenario, we move the business routing logic supporting which 
Manufacturers the Warehouse should call. We move this logic from the 

Manufacturer C

Manufacturer B

Manufacturer A

Manufacturer

submitPO

LoggingFacility

LoggingFacility

logEvent

getEvents

SCMSampleUI

SCMSampleUI

ITSO Good

getEvents

getCatalog

submitOrder

Retailer

Retailer

shipGoods

logEvent

getCatalog

submitOrder

Warehouse

shipGoods
submitPO

logEvent

Warehouse

Indicates a Web service request

Key:

Indicates a one-way operation
Indicates a request/response operation

A Web service operation 
or onMessageOperation name

Service Integration Bus
(Web Services Gateway - Mediation Support)
 Chapter 12. Exposed Broker runtime pattern: generic profile 347



Warehouse application itself into a mediation running in the service integration 
bus. By moving this logic out of the Warehouse application, we have a more 
flexible architecture that allows changes to the business routing logic without 
having to change the applications themselves.

How the scenario works
This is the runtime process: 

1. When replenishing stock, the Warehouse sends a single request to a 
Manufacturer listing all of the products that need to be restocked. This call is 
intercepted by the service integration bus mediation. 

2. The mediation determines which Manufacturers need to be invoked. The 
mediation generates and sends new SOAP request messages for each 
Manufacturer needed. 

3. The Manufacturers each return a SOAP response. 

4. This response is received by the mediation. The mediation waits for all 
responses, and then packages these responses into a single SOAP response 
message and send this message back to the Warehouse. 

5. The Warehouse is not aware that multiple SOAP messages were required to 
complete the stock replenishment.

12.3.2  Mediations
In this scenario there are multiple Manufacturers to be called depending on the 
purchase order. A broker could be implemented by using JAX-RPC handlers, but 
JAX-RPC handlers do not natively support the generation of multiple SOAP 
messages from a single SOAP message. 

Mediations in the service integration bus of WebSphere Application Server V6 
supports features such as aggregation and disaggregation. We decided to 
implement the broker using these mediations.

A WebSphere Application Server V6 mediation handler processes messages 
that are between production by one application and consumption by another 
application. Mediations provide functionality that allows customization of the 
messaging behavior of the service integration bus, which can include processing 
such as: 

� Transforming a message from one format to another

� Routing messages to one or more targets that were not specified by the 
sending application

� Augmenting messages by adding data from a data source

� Distributing messages to multiple target destinations
348 Patterns: Extended Enterprise SOA and Web Services



A mediation is associated with a destination. A destination is a virtual location in 
a service integration bus that can be used to exchange messages by the 
applications connected to the service integration bus. 

When a mediation is applied to a destination, it becomes a mediated destination 
that has two parts: premediated and postmediated. Applications send messages 
to the premediated part and receive them from the postmediated part. The 
mediation receives messages from the premediated part, transforms them in 
some way, then places them on the postmediated part. In this way, the mediation 
controls the progress of the messages to their intended target destination.

The behavior of a mediation is defined by a mediation handler list which contains 
mediation handlers and can be identified by:

� A unique name
� A description of the message processing provided by the mediation
� A set of properties that control behavior during message processing

A mediation handler list is a collection of mediation handlers that are invoked in 
sequence. A mediation handler is a Java program that performs the function of a 
mediation and can be deployed in a mediation handler list. The unique name for 
a mediation handler list is determined by the programmer who deployed the 
mediation.

A mediation is configured for a particular destination in a service integration bus. 
The physical location of the destination is referred to as a mediation point. The 
message processing by the mediation is started when the mediation point 
receives a messages from the messaging runtime.

Mediation APIs
Several application programming interfaces (APIs) are provided to allow you to 
work with the message context and code mediations. 

� MediationHandler 

This interface defines the method which is invoked by the mediation runtime. 
The method returns boolean true if the message passed into this method 
should continue along the handler list. Otherwise, it returns false. The API 
has just one method handle, handle(), which is used by the runtime to invoke 
a mediation.

In addition to the context information that is passed from one handler to 
another, it can return a reference to an SIMessage and an 
SIMediationSession. The SIMessage is the service integration bus 
representation of the message that is processed by the MediationHandler. 
The SIMediationSession is a handle to the runtime resources. 
 Chapter 12. Exposed Broker runtime pattern: generic profile 349



� MessageContext

This interface abstracts the message context that is processed by a handler in 
the handle method. The MessageContext interface provides methods to 
manage a property set. The API has two methods:

– getSIMessage() is a method to get the service integration bus 
representation of the message being mediated

– getSession() is a method to get an SIMediationSession object, which is a 
handle to the core runtime.

� SIMessage

This interface is the public interface to a service integration bus message for 
use by mediations. The SIMessage interface has many methods which allow 
you to work with the message properties, header contents, routing path, 
metadata, and others.

In particular, the method getDataGraph() returns the SDO data graph which 
contains the SIMessage content in a tree representation. This method allows 
you to work directly with the individual fields in the message payload. 

Forward and reverse routing paths define a sequential list of intermediary bus 
destinations that messages must pass through to reach a target bus 
destination. A routing path is used to apply the mediations configured on 
several destinations to messages sent along the path. The methods 
getForwardRoutingPath(), setForwardRoutingPath(), 
getReverseRoutingPath(), and getReverseRoutingPath() allow you to get 
and set the contents of the forward routing path and reverse routing path for 
this SIMessage. 

� SIMediationSession

This interface defines the methods for querying and interacting with the 
service integration bus. and also includes methods that provide information 
about where the mediation is invoked from, and the criteria that are applied 
before the message is mediated. 

The API has these methods:

– getBusName() returns the name of the bus upon which the mediation is 
associated.

– getDestinationName() returns the name of the destination with which the 
mediation is associated.

– getDiscriminator() returns the discriminator that is defined in the 
mediation definition.

– getMediationName() returns the name of the mediation that is being 
executed.
350 Patterns: Extended Enterprise SOA and Web Services



– getMessageSelector() returns the message selector that is defined in the 
mediation definition.

– getMessagingEngineName() returns the name of the messaging engine 
from which the mediation was invoked.

– getSIDestinationConfiguration() returns the SIDestinationConfiguration 
object associated with the destination that is specified by destinationName 
or destinationAddress.

– receive() receives an SIMessage from the service integration bus.

– send() sends a copy of an SIMessage to the service integration bus in 
addition to the message that is returned by the message interface.

SDO DataGraphs
A message published in one format (for instance, a Web services SOAP 
message) can be routed to a service provider that requires another format (Java 
beans, for example), using the Java API for XML-based RPC (JAX-RPC). 
Equally, the routing could be in the other direction. If the message is operated on 
by a mediation as it passes through the bus, in either direction, the mediation 
must be able to operate on the message regardless of the underlying format. 
This is achieved by using a common message model for the data mediators to 
use. The model is called SDO DataGraph and it gives an abstract view of the 
message, allowing you to concentrate on the information being conveyed (such 
as the parameters of the request, and the data of the response) without having to 
worry about the packaging of that information.

SDO is based on the concept of data graphs. In the data graphs architecture, a 
mediation retrieves a data graph from a message, transforms the data graph, and 
applies the data graph changes back to the data source. A data graph is a 
collection of tree-structured or graph-structured data objects.

In general, a graph that is generated from a message is a tree structure. The 
service presents a standard SDO data graph representation of the message 
payload, whatever the format of the incoming message‘s payload. A data object 
holds a set of named properties, each of which contains either a primitive-type 
value or a reference to another Data Object. The Data Object API provides a 
dynamic data API for manipulating these properties.

Routing paths
A routing path defines a sequential list of intermediary bus destinations that 
messages must pass through to reach a target bus destination. A routing path is 
used to apply the mediations configured on several destinations to messages 
sent along the path.
 Chapter 12. Exposed Broker runtime pattern: generic profile 351



A forward routing path identifies a list of bus destinations that a message should 
be sent to from the producer to the last destination from which receivers retrieve 
messages. The reverse routing path is constructed automatically for 
request/reply messages, and identifies the list of destinations that any reply 
message should be sent to from the receiver back to the producer. Use of 
reverse routing path enables a reply message to take a different route back to the 
producer, and therefore have more mediations applied.

When a message arrives at a destination in the path, mediations can manipulate 
the entries in the forward routing path, to change the sequence of destinations 
through which messages pass. If a mediation manipulates the forward routing 
path, and the reverse routing path has been set (for a request message that 
expects a reply), then the mediation is responsible for making any corresponding 
changes to the reverse routing path.

A destination without mediations can be included in a routing path to provide a 
future option to apply a mediation assigned to that destination.

12.3.3  Developing a mediation handler class
Mediations are implemented as mediation handlers. A mediation handler 
executes some specific message processing at runtime, for example, 
transforming a message format or routing a message to a particular destination. 
A mediation handler is a Java program framework to which you add the code that 
performs the mediation function.

This section describes how to use IBM Rational Application Developer V6 to 
create the mediation handler. This product provides support for developing 
mediation handler code and adding mediation handlers to the J2EE deployment 
descriptors. The Application Server Toolkit that is provided with WebSphere 
Application Server also provides support for developing mediation handlers.

In Rational Application Developer, a mediation handler class can be defined 
either in a Java project or an EJB project. This section describes how to create 
mediation handlers in an EJB project. However, the steps are very similar if you 
want to create a Java project, because you simply define a target server for either 
a Java project or an EJB project and the server runtime plug-in sets the classpath 
correctly.

To create a mediation handler, start Rational Application Developer and perform 
the following steps:

1. From Rational Application Developer, click File → Import. In the Import 
dialog, select Project Interchange and click Next.
352 Patterns: Extended Enterprise SOA and Web Services



2. On the From zip file field, click Browse to select the project interchange to 
import.

3. Navigate to the file in the open file dialog and open 
BrokerGenericProjects.zip file. This file is found in the additional material 
supplied with this redbook in the \BrokerGeneric\projects directory.

4. The Import Projects window is populated with all available projects as shown 
on Figure 12-6. Click Select All and then deselect projects 
ManufacturerBroker and ManufacturerBrokerEJB.

5. Click Finish. The projects are imported.

Figure 12-6   Import projects

6. Right-click in the Project Explorer and select New → Project. In the New 
Project dialog box expand EJB and select EJB Project. Click Next.

7. In the New EJB Project dialog, as shown on Figure 12-7 on page 354, enter 
the name of the EJB ManufacturerBrokerEJB. Click Show Advanced and 
enter ManufacturerBroker in the EAR project field. We do not need an EJB 
client, so deselect Create an EJB client JAR project to hold the client 
interfaces and classes. Click Finish.
 Chapter 12. Exposed Broker runtime pattern: generic profile 353



Figure 12-7   Create a new EJB project

8. Create a mediation handler class. The mediation handler class implements 
the com.ibm.websphere.sib.mediation.handler.MediationHandler interface. In 
the Project Explorer view, expand the ManufacturerBrokerEJB project and 
right click ejbModule. Select New → Class. In the New Java Class dialog 
(Figure 12-8 on page 355), enter com.ibm.itsogood.broker in the Package 
field. Enter RequestMediator in the Name field. Click Add and add interface 
MediationHandler. Click Finish.
354 Patterns: Extended Enterprise SOA and Web Services



Figure 12-8   Create a Java class

9. Create a ResponseMediator class. Repeat step 8 on page 354 using the 
same package and interface name, but name the class ResponseMediator.

10.In addition to RequestMediator and ResponseMediator classes, we need to 
import another Java class, called DataGraphHolder, to hold a data graph and 
routing path. The source code for this class is located in the 
\BrokerGeneric\projects directory from the additional material that 
accompanies this book. To import the source code:

a. In the Package Explorer view, right-click com.ibm.itsogood.broker 
package and select Import.

b. Select File System and click Next.

c. Browse to the directory where you downloaded the additional material, 
select DataGraphHolder.java, and click Finish.

Adding code to the mediations
Now that we have created the mediation handler classes, we need to add code to 
them. The mediations perform the following functions:
 Chapter 12. Exposed Broker runtime pattern: generic profile 355



� Request mediation

The request mediation separates the list of purchase orders sent by the 
Warehouse into multiple purchase orders, one for each Manufacturer. The 
request mediation creates a new Web Service SOAP request for each 
purchase order and sends it to the relevant Manufacturer.

� Response mediation

The response mediation receives the SOAP response messages from each 
Manufacturer and sends one single SOAP response message back to the 
Warehouse.

Request mediation code
The RequestMediator class must implement the handle() method. The handle() 
method provides access to the service integration bus in WebSphere Application 
Server V6 to send and receive messages. It is invoked by the arrival of a 
message on the destination that it has been configured to mediate.

When the mediation is invoked, the method gets a handle to the 
MessageContext interface. The mediation abstracts the message context that is 
processed by a handler in the handle() method. The MessageContext interface 
provides methods to manage a property set. Message context properties enable 
handlers in a handler chain to share processing related state.

The request mediation:

1. Receives the SOAP request from Warehouse.

2. Gets the name of the log queue, which is defined as a property of the 
mediation within WebSphere Application Server V6. The log queue is used to 
hold control data that indicates how many messages were sent out to 
Manufacturers. This information is used by the request mediation to indicate 
how many responses it should expect.

3. Parses the request message and builds new messages to send to relevant 
Manufacturer.

4. Sends these messages to the Manufacturers.

5. Sends a control message to the log queue.

In Rational Application Developer, perform the following steps to modify the 
handle() method of the RequestMediator class:

1. Open the RequestMediator.java file in the Java Editor. By default, the 
handle() method returns false. You must change that to true. Example 14-1 
shows the RequestMediator class definition.
356 Patterns: Extended Enterprise SOA and Web Services



Example 12-1   RequestMediator class

public class RequestMediator implements MediationHandler
{
  public boolean handle(MessageContext arg0) throws MessageContextException
  {
    // Enter handle() code here
    return true;
  }

}

2. Enter the code shown in Example 12-2 in the handle() method.

Example 12-2   ResponseMediator handle() method 

System.out.println("ManufacturerBroker REQUEST Mediator: Starting ...");
    try {
      // cast message context to SIMessageContext
      SIMessageContext contextMessage = (SIMessageContext) arg0;
      // get the session
      SIMediationSession session = contextMessage.getSession();
      // get message
      SIMessage message = contextMessage.getSIMessage();
      // get mesage context property logQueueName
      String logQueueName = (String) arg0.getProperty("logQueueName");
      // store the original message in the DataGraphHolder
      DataGraphHolder dgHolder = new DataGraphHolder(message);
      // call separateMessage() to separate the messages for each manufacturer
      DataGraphHolder[] dgHolderArray = separateMessages(contextMessage, 
dgHolder);
      // get the number of messages that have been separated
      int messageCount = dgHolderArray.length;

      for (int i = 0; i < messageCount; i++) {
        // Clone the message
        SIMessage clonedMessage = (SIMessage) message.clone();
        // Copy the API message id from the incomming message.
        clonedMessage.setApiMessageId(message.getApiMessageId());
        // Override the message body.
        clonedMessage.setDataGraph(dgHolderArray[i].getDataGraph(), 
dgHolderArray[i].getFormat());
        // set the forward routing path
        if (dgHolderArray[i].getFrp() != null) {
          clonedMessage.setForwardRoutingPath(dgHolderArray[i].getFrp());
        }
        // Send the message in the current global unit of work.
        session.send(clonedMessage, false);
      }

      // create a new datagraph to be sent to logQueue
 Chapter 12. Exposed Broker runtime pattern: generic profile 357



      DataGraph logMessageBody = message.getNewDataGraph("JMS:text");
      // record the number of messages sent
      logMessageBody.getRootObject().setString("data/value", "" + 
messageCount);
      message.setDataGraph(logMessageBody, "JMS:text");
      // set forward routing path
      List frp = new ArrayList(1);
      
frp.add(SIDestinationAddressFactory.getInstance().createSIDestinationAddress(lo
gQueueName, true));
      // send control message to logQueue
      message.setForwardRoutingPath(frp);
    } catch (Exception e) {
      e.printStackTrace();
      throw new MessageContextException(e.getMessage());
    }

    System.out.println("ManufacturerBroker REQUEST Mediator: Finished.");
    return true;

3. Create a new method in the RequestMediator class named 
saparateMessages(). The method signature must be similar to this:

private DataGraphHolder[] separateMessages(SIMessageContext 
messageContext, DataGraphHolder inDataGraphHolder) throws Exception

4. Enter the code shown Example 12-3 in the separateMessages() method.

Example 12-3   RequestMediator separateMessages() method 

// create data graph holders for each manufacturer
    DataGraph dgManufacturerA = inDataGraphHolder.getNewDataGraph();
    DataGraph dgManufacturerB = inDataGraphHolder.getNewDataGraph();
    DataGraph dgManufacturerC = inDataGraphHolder.getNewDataGraph();
    //  Delete items from copied datagraphs
    DataObject manufacturerArootNode = dgManufacturerA.getRootObject();
    DataObject manufacturerAPONode = 
manufacturerArootNode.getDataObject("Info/body/PurchaseOrder");
    DataObject manufacturerAItemsNode = 
manufacturerArootNode.getDataObject("Info/body/PurchaseOrder/items");
    manufacturerAItemsNode.delete();
    DataObject manufacturerBrootNode = dgManufacturerB.getRootObject();
    DataObject manufacturerBPONode = 
manufacturerBrootNode.getDataObject("Info/body/PurchaseOrder");
    DataObject manufacturerBItemsNode = 
manufacturerBrootNode.getDataObject("Info/body/PurchaseOrder/items");
    manufacturerBItemsNode.delete();
    DataObject manufacturerCrootNode = dgManufacturerC.getRootObject();
    DataObject manufacturerCPONode = 
manufacturerCrootNode.getDataObject("Info/body/PurchaseOrder");
358 Patterns: Extended Enterprise SOA and Web Services



    DataObject manufacturerCItemsNode = 
manufacturerCrootNode.getDataObject("Info/body/PurchaseOrder/items");
    manufacturerCItemsNode.delete();
    // Create empty items entries
    manufacturerAPONode.createDataObject("items");
    manufacturerBPONode.createDataObject("items");
    manufacturerCPONode.createDataObject("items");
    manufacturerAItemsNode = 
manufacturerArootNode.getDataObject("Info/body/PurchaseOrder/items");
    manufacturerBItemsNode = 
manufacturerBrootNode.getDataObject("Info/body/PurchaseOrder/items");
    manufacturerCItemsNode = 
manufacturerCrootNode.getDataObject("Info/body/PurchaseOrder/items");

    // Navigate to items of the input datagraph
    DataObject rootNode = inDataGraphHolder.getDataGraph().getRootObject();
    DataObject itemlistNode = 
rootNode.getDataObject("Info/body/PurchaseOrder/items");
    // Get List of items from items
    List items = itemlistNode.getList("Item");
    // Loop thru items list from input datagraph, update itemlist of 
appropriate
    // manufacturer datagraph
    Iterator it = items.iterator();
    DataObject newitem = null;
    while (it.hasNext()) {
      DataObject itemNode = (DataObject) it.next();
      String compare = itemNode.getString("ID");
      System.out.println("ManufacturerBroker REQUEST Mediator: Processing 
product " + compare + ".");
      if (compare.equals("605001") || compare.equals("605004") || 
compare.equals("605007")) {
        newitem = manufacturerAItemsNode.createDataObject("Item");
        newitem.setString("ID", itemNode.getString("ID"));
        newitem.setString("qty", itemNode.getString("qty"));
        newitem.setString("price", itemNode.getString("price"));
      } else if (compare.equals("605002") || compare.equals("605005") || 
compare.equals("605008")) {
        newitem = manufacturerBItemsNode.createDataObject("Item");
        newitem.setString("ID", itemNode.getString("ID"));
        newitem.setString("qty", itemNode.getString("qty"));
        newitem.setString("price", itemNode.getString("price"));
      } else if (compare.equals("605003") || compare.equals("605006") || 
compare.equals("605009")) {
        newitem = manufacturerCItemsNode.createDataObject("Item");
        newitem.setString("ID", itemNode.getString("ID"));
        newitem.setString("qty", itemNode.getString("qty"));
        newitem.setString("price", itemNode.getString("price"));
      } else
 Chapter 12. Exposed Broker runtime pattern: generic profile 359



        System.out.println("Warehouse RequestMediator: ### Invalid item");
    }
    //  If manufacturer has items in items add it to datagraph holder
    List graphs = new ArrayList(3);
    List newitems = manufacturerAItemsNode.getList("Item");
    SIDestinationAddress destination = null;

    if (newitems.size() > 0) {
      List frp = new ArrayList(1);
      destination = SIDestinationAddressFactory.getInstance()
                                      
.createSIDestinationAddress("ManufacturerOutboundServiceDestination", false);
      frp.add(0, destination);
      graphs.add(new DataGraphHolder(dgManufacturerA, 
inDataGraphHolder.getFormat(), frp));
    }
    newitems = manufacturerBItemsNode.getList("Item");
    if (newitems.size() > 0) {
      List frp = new ArrayList(1);
      destination = SIDestinationAddressFactory.getInstance()
                                       
.createSIDestinationAddress("ManufacturerBOutboundServiceDestination", false);
      frp.add(0, destination);
      graphs.add(new DataGraphHolder(dgManufacturerB, 
inDataGraphHolder.getFormat(), frp));
    }
    newitems = manufacturerCItemsNode.getList("Item");
    if (newitems.size() > 0) {
      List frp = new ArrayList(1);
      destination = SIDestinationAddressFactory.getInstance()
                                        
.createSIDestinationAddress("ManufacturerCOutboundServiceDestination", false);
      frp.add(0, destination);
      graphs.add(new DataGraphHolder(dgManufacturerC, 
inDataGraphHolder.getFormat(), frp));
    }
    
    return (DataGraphHolder[]) graphs.toArray(new DataGraphHolder[0]);

5. Right-click in the Java Editor and select Source → Organize Imports. This 
adds import statements for each of the classes used in the source code. You 
are challenged which imports to select in the Organize Imports window. At 
this point select the following:

– java.util.List
– java.util.Iterator

6. Save RequestMediator.java. It should contain no errors.
360 Patterns: Extended Enterprise SOA and Web Services



Response mediation code
The response mediation class must also implement the handle() method. The 
response mediation:

1. Receives the SOAP responses from Manufacturers.

2. Get the names of the log queue and the temporary storage queue. These 
names are defined as properties of the mediation within WebSphere 
Application Server V6.

3. Read the control message from log queue.

4. If the messages count on a log queue is greater than one, then:

a. Decrement count field on the control message, rewrite the control 
message to the log queue and put a SOAP response message from the 
Manufacturer on a temporary storage queue.

5. If the message count on a log queue is equal to one, then:

a. Read messages from the temporary storage queue.
b. Build a single SOAP response message for the Warehouse service.
c. Send the response message back to the Warehouse service.

In Rational Application Developer, perform the following steps to modify the 
response mediation handle() method:

1. Open the ResponseMediator.java file with the Java Editor. By default, the 
handle() method returns false. You must change that to true 
(Example 12-4).

Example 12-4   ResponseMediator class definition

public class ResponseMediator implements MediationHandler
{

  public boolean handle(MessageContext arg0) throws MessageContextException
  {
    // TODO Auto-generated method stub
    return true;
  }
}

2. Enter the code shown in Example 12-5 into the handle() method:

Example 12-5   ResponseMediator handle() method

System.out.println("ManufacturerBroker RESPONSE Mediator: Started.");
    try {
      // Convert to an SIMessageContext
      SIMessageContext messageContext = (SIMessageContext) arg0;
      // Get the SIMediationSession
 Chapter 12. Exposed Broker runtime pattern: generic profile 361



      SIMediationSession mediationSession = messageContext.getSession();
      // Get the message
      SIMessage message = messageContext.getSIMessage();
      // Get the name of the log queue
      String logQueueName = (String) arg0.getProperty("logQueueName");
      // Get the name of the queue used to store already received messages
      String tempStorageQueueName = (String) 
arg0.getProperty("tmpStorageQueueName");
      // Get the message count log message.
      SIMessage logMessage = mediationSession.receive(logQueueName, 0, null, 
"SI_MessageID='" + message.getCorrelationId() + "'", false);
      // Get the message body as a datagraph, changes to the datagraph affect 
message body.
      DataGraph logMsgDataGraph = logMessage.getDataGraph();
      // Get the body of the message
      String body = logMsgDataGraph.getRootObject().getString("data/value");
      int number = Integer.parseInt(body);
      
      if (number == 1) { // Last message from manufacturers
        // receive messages from temStorageQueue
        SIMessage receivedMessage = null;
        int numberOfManufacturers = 0;
        String respMsg = "ManufacturerBroker RESPONSE Mediator: Message from 
Manufacturer: ";

        // process last response message, which is the current message.
        DataObject msgRootNode = message.getDataGraph().getRootObject();
        DataObject bodyNode = msgRootNode.getDataObject("Info/body");
        String ackPO = getAckPO(bodyNode);
        System.out.println(respMsg + ackPO);
        if (!ackPO.startsWith("FAILED"))
          numberOfManufacturers++;
        
        // process messages from temp storage queue
        while ((receivedMessage = 
mediationSession.receive(tempStorageQueueName, 0, null, "SI_CorrelationID='" + 
message.getCorrelationId() + "'", false)) != null) {
          DataObject receivedRootNode = 
receivedMessage.getDataGraph().getRootObject();
          DataObject receivedBodyNode = 
receivedRootNode.getDataObject("Info/body");
          ackPO = getAckPO(receivedBodyNode);
          System.out.println(respMsg + ackPO);
          if (!ackPO.startsWith("FAILED"))
            numberOfManufacturers++;
        }
        
        // set response message to Warehouse
362 Patterns: Extended Enterprise SOA and Web Services



        bodyNode.setString("ackPO", "ManufacturerBroker has submitted Purchase 
Orders to " + numberOfManufacturers + " Manufacturer(s).");
      } else {
        // decrement message count and resend to the log queue.
        logMsgDataGraph.getRootObject().setString("data/value", "" + (number - 
1));
        List frp = new ArrayList(1);
        SIDestinationAddress logQueueDestination = 
SIDestinationAddressFactory.getInstance().createSIDestinationAddress(logQueueNa
me, true);
        frp.add(logQueueDestination);
        logMessage.setForwardRoutingPath(frp);
        // send new message to logQueue
        mediationSession.send(logMessage, false);
        // route the message to the temporary storage queue until the 
lastcmessage arrives.
        frp = new ArrayList(1);
        SIDestinationAddress tempQDestination =  SIDestinationAddressFactory
                                                .getInstance()
                                                
.createSIDestinationAddress(tempStorageQueueName, true);
        frp.add(tempQDestination);
        message.setForwardRoutingPath(frp);
      }
    } catch (Exception e) {
      System.out.println("ManufacturerBroker RESPONSE Mediator FAILED: " + 
e.getMessage());
      e.printStackTrace();
      throw new MessageContextException(e.getMessage());
    }
    
    System.out.println("ManufacturerBroker RESPONSE Mediator: Finished.");
    return true;

3. Add the code shown in Example 12-6 to define a new method to the 
RequestMediator class:

Example 12-6   getAckPO() method

private String getAckPO(DataObject node)
  {
    String result = null;
    try {
      result = node.getString("ackPO");
    } catch(Exception e) {
      result = "FAILED to call a Manufacturer";
 Chapter 12. Exposed Broker runtime pattern: generic profile 363



    }
    
    return result;
  }

4. Right-click in the Java Editor and select Source → Organize Imports. This 
adds import statements for each of the classes used in the source code. You 
are challenged which imports to select in the Organize Imports window. At 
this point, select the following:

– java.util.List

5. Save ResponseMediator.java. It should contain no errors.

12.3.4  Assigning and exporting the mediation handlers
To use the mediation handler classes, you must assign them to mediation 
handler lists, then export the code to an enterprise application project so it can 
be imported into WebSphere Application Server.

Assigning the mediation handlers
To assign the mediation handlers, follow these steps:

1. In the Project Explorer view, expand EJB Projects → 
ManufacturerBrokerEJB, and double-click Deployment Descriptor. The 
EJB Deployment Descriptor editor opens.

2. In the EJB Deployment Descriptor editor, click Mediation Handlers. This 
section allows you to define the mediation handlers.

3. In the Mediation Handlers section, click Add to add a request mediation 
handler.

4. In the Define Mediation Handler window, set the mediator name to 
RequestMediator and use the Browse button to set the Handler class to 
com.ibm.itsogood.broker.RequestMediator. Click Finish.

5. In the Mediation Handlers section, click Add to add a response mediation 
handler.

6. In the Define Mediation Handler window (Figure 12-9 on page 365), set the 
mediator name to ResponseMediator and use the Browse button to set the 
Handler class to com.ibm.itsogood.broker.ResponseMediator. Click 
Finish.
364 Patterns: Extended Enterprise SOA and Web Services



Figure 12-9   Defining mediation handler

7. Save the EJB Deployment Descriptor editor.

Exporting the mediation EAR file
To export the EAR file, complete these tasks:

1. In the Project Explorer view, expand Enterprise Applications, right-click 
ManufacturerBroker and select Export → EAR File.

2. In the Export wizard, enter a destination where you want to save the EAR file 
and click Finish.

12.4  Runtime guidelines
This section takes you through the steps that are involved for configuring the 
Exposed Broker runtime pattern using WebSphere Application Server V6. It 
describes the following tasks:

� Building the solution topology
� Configuring the service integration bus and Web services gateway
 Chapter 12. Exposed Broker runtime pattern: generic profile 365



� Installing and configuring the applications
� Running and using the ITSO Good sample application
� An overview of the steps to add WS-Security to the completed solution

12.4.1  Solution topology
As in the previous chapters, to represent the complete business scenario the 
sample application is divided into four subapplications:

� ITSOGood contains the SCMSampleUI, Retailer, Warehouse, and 
LoggingFacility services.

� Manufacturer, ManufacturerB, ManufacturerC are three individual services, 
each packaged separately, and deployed to three different enterprises.

As described in the Product mapping in “Product implementation options” on 
page 345, we use WebSphere Application Server Network Deployment V6.0.2 to 
host the ITSOGood and Manufacturer applications, Microsoft .NET to host the 
ManufacturerB application, and CICS Transaction Server to host the 
ManufacturerC application. This is shown in Figure 12-10.

Figure 12-10   Solution topology

WebSphere 
Application Server 

Network Deployment V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

Manufacturer
Application

WebSphere 
Application Server V6

ManufacturerB
Application

Microsoft .NET

ManufacturerC
Application

CICS Transaction 
Server V3.1

IBM HTTP
Server V6

SSL 
pass-through

rules
SOAP / HTTPS
Message
366 Patterns: Extended Enterprise SOA and Web Services



The runtime guidelines in this section describe how to prepare the 
ITSOGoodProfile server profile as an Exposed Broker. This includes describing 
how to add mediations, configure a service integration bus for Web services, and 
defining a Web services gateway.

The ESB component is primarily implemented in the service integration bus 
feature of WebSphere Application Server Network Deployment V6.0.2. The 
Exposed ESB Gateway component is implemented in the Web services gateway 
feature of WebSphere Application Server Network Deployment V6.0.2.

You need to implement either one or both additional manufacturers: 
ManufacturerB and ManufacturerC. At least two manufacturers are required to be 
able to demonstrate the Exposed Broker capability. To do this, you need access 
to a Microsoft .NET server, a CICS Transaction Server V3.1 region, or both.

Instructions for configuring the ManufacturerB and ManufacturerC servers are 
described in:

� Appendix B, “Microsoft .NET Web services” on page 483
� Appendix C, “CICS Transaction Server Web services” on page 513

12.4.2  Creating the basic infrastructure
To prepare the environment, you need to complete the following steps:

� Create WebSphere Application Server server profiles for ITSOGoodProfile 
and ManufacturerProfile by following the instructions in 10.4.2, “Configuring 
WebSphere Application Server profiles” on page 217.

� Configure an HTTP server to perform:

– Hosting of WSDL files used by the enterprise applications, as described in 
10.4.3, “Hosting the WSDL files” on page 219.

– Configuration of SSL pass-through as described in 10.4.6, “Configuring an 
HTTP server for SSL pass-through” on page 224.

Important: If you are setting up this scenario in a host that is connected to the 
Internet, you need to follow these instructions:

1. Add the following statement to the hosts file:

127.0.0.1 www.ws-i.org

2. From the additional material, copy the contents of the 
\BrokerGeneric\SampleApplications directory to the following directory in 
the HTTP server:

<HTTP_SERVER_HOME>\htdocs\en_US\SampleApplications
 Chapter 12. Exposed Broker runtime pattern: generic profile 367



� Add the ITSOGoodProfile server profile to a WebSphere Application Server 
Network Deployment deployment manager. This is required to enable the 
Web services gateway feature. Instructions for completing this task are 
described in “Creating a deployment manager” on page 254.

� Install ITSOGood and Manufacturer enterprise applications that do not 
contain WS-Security settings. In this scenario, use the WebSphere 
Application Server administrative console to define these WS-Security 
configuration settings rather than the enterprise applications themselves. 
Instructions for completing this task are described in “Installing ITSOGood 
and Manufacturer applications” on page 255.

After completing these steps, you should be able to test a working end-to-end 
ITSOGood sample application, as described in 10.4.8, “Testing the scenario” on 
page 229.

12.4.3  Configuring the service integration bus
This section describes how to configure a service integration bus for use with 
Web services, defines the service integration bus, then configures the Web 
services gateway.

These resources all run on the ITSOGoodProfile application server.

Perform the following tasks to create an SDO repository, and prepare 
WebSphere Application Server Network Deployment to use the service 
integration bus with Web services:

1. Install an SDO repository as described in “Installing the Service Data Objects 
(SDO) repository” on page 260.

2. Configure the SDO repository database as described in “Configuring the SDO 
repository” on page 260.

3. Install the Web services applications for the service integration bus as 
described in “Installing the Web services applications” on page 267.

When you have completed these installation tasks, you are ready to proceed with 
the remainder of the configuration.

Creating a service integration bus
Create a service integration bus by performing the following tasks:

1. From your Web browser, access and log into the Network Deployment 
administrative console at:

http://itsogood.itso.ral.ibm.com:9062/ibm/console
368 Patterns: Extended Enterprise SOA and Web Services



Assuming port 9062 has been assigned as the administrative port. Enter your 
correct port number if it is different. 

2. Expand Service integration and click Buses.

3. Click New. In the field labeled Name, enter BUZLITEAR. Deselect the Secure 
option.

4. Click OK, and the bus is created. Save the configuration.

Adding a bus member
To add a bus member, follow these steps:

1. Expand Service integration and click Buses.

2. Click BUZLITEAR to show its properties. Under Additional Properties, click 
Bus members.

3. On the Bus members page click Add. 

4. Accept the defaults, and click Next.

5. The next page that opens is the summary of your selections. Click Finish. 
The server is added as a member of the bus, and a messaging engine is 
created.

6. Save the configuration.

Creating the endpoint listener
Next, you need to create an endpoint listener (which will use the endpoint listener 
application at runtime). Endpoint listeners listen for incoming Web service 
requests and forward them onto the relevant inbound serve. Inbound services 
are bound to an endpoint listener when they are created.

1. From the administrative console of the deployment manager, expand Servers 
and click Application servers.

2. Click server1.

3. Under Additional Properties, click Endpoint Listeners.

4. Click New.

5. Create and endpoint listener using the dialog box as shown in Figure 12-11 
on page 370.
 Chapter 12. Exposed Broker runtime pattern: generic profile 369



Figure 12-11   Creating an endpoint listener

6. In this dialog box, enter the following information:

– Name is the name of the endpoint listener. It must have the name 
SOAPHTTPChannel1.

– URL root is the base URL for Web service requests into this endpoint 
listener. The URLs that are used for making Web service requests to the 
service integration bus will have this root at the beginning. Set this to:

http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1

You can replace 9080 with the correct port number for your server.

– WSDL serving HTTP URL root is the location of the HTTP URL that is 
serving your Web service WSDL. Enter a value of:

http://appsrv1a.itso.ral.ibm.com/wsdl

7. Click Apply.

8. Under Additional Properties click Connection Properties.

9. Click New to create a new connection property.

10.Select BUZLITEAR from the Bus Name list and click OK.

11.Save the changes.
370 Patterns: Extended Enterprise SOA and Web Services



12.4.4  Creating the gateway service
The gateway service is associated with a single external service, defined by the 
WSDL, which is supplied during the creation of the gateway service.

To create the gateway service:

1. From the administrative console, expand Service Integration and click 
Buses.

2. Click BUZLITEAR.

3. Under Additional Properties, click Web service gateway instances.

4. The Web service gateway services page appears. Click New.

5. In the General Properties, as shown in Figure 12-12 on page 372, enter the 
following:

a. A unique name for the instance. In our case GatewayInstance.

b. Enter a gateway namespace. This is the namespace that will be used in all 
gateway-generated WSDL. It is a good practice to use a namespace that 
you are happy with from the start, because changing it later will require 
you to redeploy any associated gateway services. We use the namespace: 
http://itsogood.gateway.

c. Enter a default proxy WSDL URL, which is the generic template WSDL file 
supplied with WebSphere Network Deployment. Enter:

http://itsogood.itso.ral.ibm.com:9080/sibws/proxywsdl/ProxyServiceTem
plate.wsdl.
 Chapter 12. Exposed Broker runtime pattern: generic profile 371



Figure 12-12   Web service gateway creation

6. Click Apply.

7. Under Additional Properties, click Gateway services.

8. On the Gateway services page, click New.

9. Under Select type of target service, select WSDL-defined web service 
provider as the type of target service and click Next.

10.On the next wizard page (Figure 12-13 on page 373) enter the gateway 
service and destinations names.
372 Patterns: Extended Enterprise SOA and Web Services



Figure 12-13   Specify gateway service name and destinations

11.Mediations will not be configured at this time, so leave them set to (none). The 
following lists the values that you must enter:

– Gateway service name: ManufacturerGatewayService.

– Gateway request destination name:

ManufacturerGatewayRequestDestination.

– Gateway response destination name:

ManufacturerGatewayResponseDestination.

– Click Next.

12.On the next page, specify the location of the target service WSDL. We are 
using a URL location type. Under WSDL location type, select URL. Enter 
http://appsrv1a.itso.ral.ibm.com/wsdl/Manufacturer_Impl.wsdl for the 
WSDL location. Click Next.

13.On the next page, select the service in the WSDL that you want to configure. 
The Manufacturer application only exposes one service. Click Next.

14.Select the port Manufacturer and click Next.

15.On the next page, name the service and destinations, as shown in 
Figure 12-14 on page 374.
 Chapter 12. Exposed Broker runtime pattern: generic profile 373



Figure 12-14   Naming the destinations

16.Enter the following values:

– Outbound service name: ManufacturerOutboundService
– Service destination name: ManufacturerOutboundServiceDestination
– Port destination name: ManufacturerOutboundPortDestination
– Click Next.

17.Each port destination needs to be assigned to a bus member. Select the bus 
member and click Next.

18.Select the Endpoint listener and click Next.

19.For our scenario, we will not be publishing to a UDDI registry. Click Finish.

20.Save the configuration.

Creating additional Manufacturer outbound services
Outbound services define Web service requests that leave the service 
integration bus and are received by a service provider.

To define an outbound service for the ManufacturerB Web service:

1. From the administrative console, expand Service Integration and click 
Buses.

2. Click BUZLITEAR.
374 Patterns: Extended Enterprise SOA and Web Services



3. Under Services, click Outbound Services. Notice there is already one 
outbound service defined, ManufacturerOutboundService, which was created 
as a result of defining the gateway service.

4. Click New.

5. The first page of the wizard requires you to specify a URL or UDDI repository 
where a WSDL definition of the service can be found. In this case, use a URL. 
The URL option allows you to specify an HTTP URL or a file system path. 
Enter the following URL and click Next.

http://appsrv1a.itso.ral.ibm.com/wsdl/ManufacturerB_Impl.wsdl

6. The next page displays the available services that are defined in the WSDL 
file. There is only one service to select. Click Next.

7. The next page displays the ports that are defined for the selected service. 
There is only one port in ManufacturerB service. Select ManufacturerB and 
click Next.

8. On the next page, we change the name of the outbound service and 
destinations. Enter the following values then click Next:

– Outbound service name: ManufacturerBOutboundService
– Service destination name: ManufacturerBOutboundServiceDestination
– Port destination name: ManufacturerBOutboundPortDestination

9. On the next page you can select the bus member you want to assign the 
outbound service. Accept the default and click Finish. The outbound service 
is created.

10.Repeat these steps for the ManufacturerC service, using the URL locations 
and name of outbound service and destinations that are specified in 
Table 12-2 and Table 12-3.

Table 12-2   Web services and WSDL Locations

Table 12-3   Outbound service and destinations names

11.Save the configuration.

Web service WSDL location

ManufacturerCService http://appsrv1a.itso.ral.ibm.com/wsdl/ManufacturerC_I
mpl.wsdl

Outbound Service ManufacturerCOutboundService

Service Destination ManufacturerCOutboundServiceDestination

Port Destination ManufacturerCOutboundPortDestination
 Chapter 12. Exposed Broker runtime pattern: generic profile 375



12.4.5  Installing and defining the mediation application
This section describes how to install the necessary enterprise applications into 
the ITSOGoodProfile server, and how to configure the mediation.

Install the mediation, and modified ITSOGood application
This solution requires a modified version of the ITSOGood enterprise application, 
where the Warehouse application no longer contains the logic to determine 
which Manufacturer to invoke for a given product. 

Perform the following in the Network Deployment administrative console:

1. Expand Applications and click Enterprise Applications.

2. If an enterprise application named ITSOGood is already installed, you must 
remove it. Check ITSOGood then click Uninstall. When it is uninstalled, save 
the changes.

3. Select Applications, and click Install New Application. We can now install 
the ITSOGood enterprise application with the modified Warehouse.

4. Enter the location of the ITSOGood.ear file. This EAR file is in the additional 
material, provided with this book, under \BrokerGeneric\ears directory. Click 
Next.

5. On the next page that appears, accept the defaults, and click Next.

6. The next page to open is the first page in the wizard. Click Next until the final 
page, or click the last step that is labelled Summary.

7. Click Finish.

8. Save the changes and start the application.

9. Repeat these steps to install ManufacturerBroker.ear which contains the 
mediation handler code that you exported in 12.3.4, “Assigning and exporting 
the mediation handlers” on page 364. Once installed, save the changes and 
start the application.

The ITSOGood and ManuacturerBroker enterprise applications should now be 
started (Figure 12-15 on page 377).
376 Patterns: Extended Enterprise SOA and Web Services



Figure 12-15   ITSOGood and ManufacturerBroker enterprise applications

Defining mediations
After the mediation application (ManufacturerBroker) has been installed, you 
need to define a mediation to the deployed handler list. Use the administrative 
console to complete the following steps:

1. Navigate to the mediations pane. Click Service integration → Buses → 
BUZLITEAR → Mediations.

2. Click New to add a new mediation.

3. In the new mediation page (Figure 12-16 on page 378), specify the relevant 
properties for the mediation.
 Chapter 12. Exposed Broker runtime pattern: generic profile 377



Figure 12-16   Defining a new destination mediation

a. Set the following properties:

• Mediation name is a name for the mediation that is unique to the 
service integration bus. This name is used to identify the mediation for 
administrative purposes. Set this to RequestMediator.

• Handler list name was determined by the programmer who deployed 
the mediation handler. Set this to RequestMediator.

• Global transaction, if selected, starts a global transaction for each 
message mediated by the mediation. Select this box.

b. Other properties that you can set are:

• Description is a description of the behavior of the mediation.

• Allow concurrent mediation mediates multiple messages at the 
mediated destination.

• Selector controls which messages are mediated.

c. Click OK.

4. Create a second mediation called ResponseMediator, specifying a handler list 
of ResponseMediator, and selecting Global transaction.

5. Click Save to save the changes to the master configuration.
378 Patterns: Extended Enterprise SOA and Web Services



Mediating a destination
Mediating a destination associates a mediation with a selected service 
integration bus destination. At runtime, the mediation applies some message 
processing to the messages handled by the service integration bus destination. 

You need to mediate two destinations, as listed in Table 12-4.

Table 12-4   Mediations and associated destinations

To mediate a destination, use the administrative console to complete the 
following steps: 

1. Click Service integration → Buses → BUZLITEAR. Under Destination 
Resources, click Destinations.

2. Check the bus destination that you want to mediate (in our case, 
ManufacturerGatewayRequestDestination), and click Mediate.

3. In the Select mediation wizard, set the mediation to apply to this destination. 
In our case, select RequestMediator. Click Next.

4. Select the bus member where the mediation is installed (by default there is 
only one), and click Next.

5. Click Finish to mediate the destination.

Repeat these steps to assign the ResponseMediator mediation to the 
ManufacturerGatewayResponseDestination destination. When complete, you 
should see two mediations that are defined in the destinations list, as shown in 
Figure 12-17. Save the changes to the configuration. 

Figure 12-17   Mediations assigned to destinations

Note: You can only mediate a destination with a single mediation at a time. 
You can mediate more than one destination with the same mediation.

Mediation Destination to be mediated

RequestMediator ManufacturerGatewayRequestDestination

ResponseMediator ManufacturerGatewayResponseDestination
 Chapter 12. Exposed Broker runtime pattern: generic profile 379



Configuring context properties for a mediation
The mediation context is used in conjunction with the message header 
information to ensure that messages are processed correctly by a mediation.

This scenario needs context properties for both the mediations. Table 12-5 
shows the properties that are needed for the RequestMediator and 
ResponseMediator mediation. 

Table 12-5   Mediation context properties

To configure context information for a mediation, use the administrative console 
to complete the following steps: 

1. Find the destination you want to mediate. Click Service integration → 
Buses → BUZLITEAR. Then, under Destination resources, click Mediations 
and choose the mediation in which you are interested. We will start with 
RequestMediator.

2. Under Additional Properties, click Context properties.

3. Click New and specify the properties for the context information, the name, 
the context type, and the context value. To start with define the 
logQueueName context property. Click OK.

4. Follow these steps for all of the context properties that are listed in Table 12-5 
on page 380, remember to define these context properties for both 
RequestMediator and ResponseMediator.

5. When complete, save the configuration.

12.4.6  Creating additional destinations
In this section we define additional queue destinations into the BUZLITEAR bus. 
The queues are used by the mediation handler to control the separation and 
aggregation of the messages.

Follow these steps to create the queue destinations:

1. From the administrative console, click Service integration → Buses → 
BUZLITEAR.

2. Under Destination resources, click Destinations.

3. Click New.

Name Context Type Context Value

logQueueName String logQ

tmpStorageQueueName String tmpStorageQ
380 Patterns: Extended Enterprise SOA and Web Services



4. In the page that opens, as shown in Figure 12-18, you can select the type of 
destination to be created. Accept the default of Queue, and click Next. This 
launches the Queue creation wizard.

Figure 12-18   Destination type selection page

5. The first page of the wizard, as shown in Figure 12-19, asks for an identifier 
and description. The identifier is the name by which the destination will be 
exposed to applications. Enter logQ, and click Next.

Figure 12-19   New destination wizard

6. The next page allows you to specify to which bus member to assign the 
destination. There is only one bus member in this scenario, so accept the 
default. Click Next.

7. The final page is the summary. Click Finish, and the destination is created.

8. We need to create an additional queue type destination. Repeat these steps 
to create a queue destination called tmpStorageQ.

9. Save the changes.
 Chapter 12. Exposed Broker runtime pattern: generic profile 381



12.4.7  Changing the Warehouse endpoint URL
By default, the Warehouse module, in ITSOGood application, directly invokes the 
Manufacturer application. We need to change the endpoint URL of the 
Warehouse application to invoke the inbound service 
ManufacturerGatewayService.

To find out what is the endpoint URL of the ManufacturerGatewayService, export 
the WSDL that defines the inbound service for the Manufacturer Web service 
gateway service. From the administrative console, follow these steps:

1. Expand Service Integration and click Buses.

2. Click BUZLITEAR.

3. Under Services, click Inbound Services.

4. Click on ManufacturerGatewayService.

5. Under Additional Properties, click Publish WSDL files to ZIP file.

6. On the next page, click ManufacturerGatewayService.zip. Click Open on 
the file dialog box that opens.

7. A list of WSDL files opens in the program you have associated with ZIP files.

8. Open the WSDL file named 
BUZLITEAR.ManufacturerGatewayServiceService.wsdl. The service 
definition should look similar to Figure 12-7:

Example 12-7   BUZLITEAR.ManufacturerGatewayServiceService.wsdl

<wsdl:service name="ManufacturerGatewayService">
    <wsdl:port name="ITSOGoodNode_server1_SOAPHTTPChannel1_InboundPort" 
binding="sibusbinding:ITSOGoodNode_server1_SOAPHTTPChannel1_InboundPortBinding">
      <soap:address 
location="http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1/soaphttpengine/BUZLITEAR/Manufact
urerGatewayService/ITSOGoodNode_server1_SOAPHTTPChannel1_InboundPort"/>
    </wsdl:port>
  </wsdl:service>

9. Copy the value of the soap:address location element to the clipboard, which 
is:

http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1/soaphttpengine/BUZLITEAR/Ma
nufacturerGatewayService/ITSOGoodNode_server1_SOAPHTTPChannel1_InboundPort

To change the endpoint URL in the client bindings configuration, follow these 
steps:

1. From the console, expand Applications, and click Enterprise Applications.
382 Patterns: Extended Enterprise SOA and Web Services



2. In the list of installed applications, click ITSOGood. The application 
configuration screen opens.

3. Click EJB Modules. The server-module installation binding for an EJB 
module screen opens.

4. In the list of EJB Modules, click WarehouseEJB.jar. The selected EJB 
Module configuration screen opens.

5. Click the link Web Services client bindings and the screen shown in 
Figure 12-20 opens.

Figure 12-20   Web Services client bindings

6. In the row for ManufacturerService, click Edit under the Port Information 
column.

7. The Port Information for Web services screen opens. In the Overridden 
Endpoint URL field paste the endpoint URL:

http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1/soaphttpengine/BUZLITEAR/Ma
nufacturerGatewayService/ITSOGoodNode_server1_SOAPHTTPChannel1_InboundPort

8. Click OK, then save the configuration.

9. Restart the application server for all the changes to take effect.

12.4.8  Testing the scenario
This section describes how to test the scenario using the ITSO Good sample 
application. Full instructions on the ITSO Good sample application can be found 
in 10.4.8, “Testing the scenario” on page 229.

In order to test the Broker capabilities of the mediation, we need to create an 
order than requires two Manufacturers to be contacted. Be sure all of the 
Manufacturers you have implemented are running before continuing. Perform the 
following tasks:

1. Enter the following URL in a Web browser to start the ITSOGood sample 
application:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI/
 Chapter 12. Exposed Broker runtime pattern: generic profile 383



This assumes the unsecured HTTP transport port number is 9080. If this is 
not the case, use the URL above with the appropriate HTTP transport port 
number.

2. Click Place Order.

3. We need to place an order that will require the Warehouse to replenish stock 
from one or more Manufacturers. The mediation you have coded receives 
restock requests from the Warehouse and forwards them on to appropriate 
Manufacturers. It selects the Manufacturer to use for a given product based 
on the product number. This is shown in Table 12-6.

Table 12-6   Relationship between product number and Manufacturers

Let us assume we want to trigger calls to ManufacturerA and ManufacturerB. 
To do this, we need to order sufficient stock to require the Warehouse to 
replenish these products. For example, the stock level for the first three 
products is shown in Table 12-7.

Table 12-7   Warehouse stock level

Order six items of 605001 and six items of 605002. This will reduce both 
products below their minimum stock level, and require stock to be reordered 
from ManufacturerA and ManufacturerB. Click Submit Order.

4. To confirm the successful invocation of the manufacturers, check the 
SystemOut.log of the application server where ITSOGood application is 
running. The message should look as shown in Example 12-8 on page 385.

Product number Manufacturer used

605001
605004
605007

ManufacturerA

605002
605005
605008

ManufacturerB

605003
605006
605009

ManufacturerC

Product number Current level Minimum level Maximum level

605001 10 5 25

605002 7 4 20

605003 15 10 50
384 Patterns: Extended Enterprise SOA and Web Services



Example 12-8   SystemOut.log messages

Warehouse: Calling Manufacturer Broker. Number of Items to order = 2
ManufacturerBroker REQUEST Mediator: Starting...
ManufacturerBroker REQUEST Mediator: Processing product 605001.
ManufacturerBroker REQUEST Mediator: Processing product 605002.
ManufacturerBroker REQUEST Mediator: Finished.
ManufacturerBroker RESPONSE Mediator: Started.
ManufacturerBroker RESPONSE Mediator: Finished.
ManufacturerBroker RESPONSE Mediator: Started.
ManufacturerBroker RESPONSE Mediator: Message from Manufacturer: Manufacturer_A has received 
and processed a request.
ManufacturerBroker RESPONSE Mediator: Message from Manufacturer: Manufacturer_B has received 
and processed a request.
ManufacturerBroker RESPONSE Mediator: Finished.
Warehouse: ManufacturerBroker has submitted Purchase Orders to 2 Manufacturer(s).

12.4.9  Adding WS-Security to the solution
At this stage, the connection between the Warehouse and the Manufacturers is 
using HTTP/S, but not WS-Security. To add WS-Security, follow the instructions 
in 11.4.6, “Adding WS-Security to the Web service gateway” on page 304.
 Chapter 12. Exposed Broker runtime pattern: generic profile 385



386 Patterns: Extended Enterprise SOA and Web Services



Chapter 13. Exposed Router runtime 
pattern: SOA profile

This chapter describes how to configure WebSphere Partner Gateway V6 to 
implement the Exposed ESB Gateway. It describes how to uses the SOAP pass 
through feature of WebSphere Partner Gateway to communicate with the 
Extended Enterprise.

13
© Copyright IBM Corp. 2006. All rights reserved. 387



13.1  Business scenario
The business scenario that is implemented in this chapter is shown in 
Figure 13-1.

Figure 13-1   High-level business context

The expanding product lines of the Manufacturers presents ITSO Good with the 
option of having multiple Manufacturers supplying the same product. And in the 
face of stiff pricing competition within the market, ITSO Good have quickly 
decided to enter into a volume-based agreements with their small, medium, and 
large-scale manufacturing partners. 

As a result, ITSO Good have come up with the following additional business 
requirements:

1. The Warehouse systems should route the customer orders based on the 
product quantity (volume) to different manufacturing partners.

2. ITSO Good also plans to enter into agreements with some more 
manufacturing partners to support their growing order volumes, therefore they 
would like the proposed IT solution to have the flexibility to maintain partner 
profile information such as trade volumes and locations.

ITSO Good

Intranet

SCM
Application WarehouseRetailer

Logging
Facility Manufacturer C

Manufacturer B

Manufacturer A

I
n
t
e
r
n
e
t

388 Patterns: Extended Enterprise SOA and Web Services



13.2  Design guidelines
In this section, we analyze the business requirements and apply Patterns for 
e-business to determine the appropriate runtime pattern for the solution. We then 
discuss the various design options available to us in implementing the solution 
and also look at the product mappings.

13.2.1  Analyze business requirements
The business scenario requires the replenishment order request from the 
Warehouse application to be forwarded to, at most, one of the multiple partner 
Manufacturer applications and services. This requires moving the routing rules 
from the individual applications within the enterprise to the integration 
middleware component. 

The benefits of moving the routing logic out to the integration middleware 
component are:

� It allows the integration of multiple, diverse partner applications.

� It provides routing services, relieving the source application from being aware 
of the target application.

� The use of a central router minimizes the impact of changes in location of the 
target application.

The solution also needs to support the definition of trading partner profiles 
delineating preferences, entitlements and contacts.

13.2.2  Selecting a pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern 
to apply to this scenario. 

Described here is a step-by-step approach used to navigate the Patterns for 
e-business asset catalog:

1. Business pattern

We select the Extended Enterprise business pattern because the given 
scenario requires interactions between the business processes in the 
Warehouse and Manufacturer systems that reside in separate enterprises.

2. Application pattern

Because the source application (Warehouse) initiates an interaction that is 
forwarded to, at most, one of many partner (Manufacturer) applications, we 
choose the Router variation of the Broker application pattern as shown in the 
Figure 13-2 on page 390.
 Chapter 13. Exposed Router runtime pattern: SOA profile 389



Figure 13-2   Exposed Broker application pattern:: Router variation

3. Runtime pattern

The selection of the application pattern provides us with the possible runtime 
patterns for the proposed solution. Because this solution requires building an 
SOA infrastructure, we select the SOA profile to customize the solution to the 
SOA environment.

Figure 13-3 on page 391 shows the level 0 decomposition of the SOA profile of 
the Exposed Router runtime variation, mapped on to the Exposed Router 
application variation.

Partner B

Partner A

Inter-
enterprise 

Zone

Enterprise
Demilitarized 

Zone Enterprise Secure ZonePartner Zones

Source
Application

Router
Rules

Target
Application

Target
Application

Partner C

Target
Application

R/O

Router Rules
390 Patterns: Extended Enterprise SOA and Web Services



Figure 13-3   Exposed Router runtime pattern = SOA profile

13.2.3  Analyze design options
This section discusses the architectural decisions that we made and their 
implementation options for the given business scenario using the Exposed 
Router runtime variation.

Most of the design decisions made in the previous chapters, also apply to the 
Router interactions:

� “Architectural decision: integration options” on page 163 discusses the use of 
Web services to integrate with the external partner services.

� “Architectural decision: implementing an ESB” on page 244 discusses the 
service integration bus component of WebSphere Application Server is used 
to implement the ESB.

� “Architectural decision: Maintaining an audit trail” on page 246 discusses the 
Exposed ESB Gateway component handles the auditing aspects of the 
interactions with the extended enterprise.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Router
Rules

Source
Application

Exposed Broker: Router variation

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

R/O

Router Rules
 Chapter 13. Exposed Router runtime pattern: SOA profile 391



There are also additional design decisions that are specific to this scenario, 
which are discussed in the following sections.

Architectural decision: implementing the Exposed ESB 
Gateway

Table 13-1 summarizes the requirement for the Exposed ESB Gateway 
component and looks at the various alternatives that are available.

Table 13-1   Architectural decision: implementing the Exposed ESB Gateway

Decision title The most suitable operational topology

Issue or Problem statement Product selection for implementing the Exposed 
ESB Gateway component that satisfies the 
following requirement:
1. Provides a controlled and secured access to 
external services.
2. Partner profile management.

Assumptions None.

Motivation Keeping in mind that ITSO Good has plans to 
expand and enter into agreements with some more 
partner Manufacturers. The ability to support 
different business protocols such as EDI, 
RosettaNet, and AS1/AS2 could prove to be a 
differentiating factor. 

Alternatives 1. Web services gateway component of the 
WebSphere Application Server Network 
Deployment V6.0.
2. WebSphere Partner Gateway.

Decision The WebSphere Partner Gateway is used to 
implement the Exposed ESB Gateway component.
392 Patterns: Extended Enterprise SOA and Web Services



Architectural decision: securing the Web service interaction
WebSphere Partner Gateway provides the Exposed ESB Gateway capabilities 
for additional control and monitoring of access to external services using the 
administrative facilities in its Community console. It also provides security 

Justification Web services gateway : 
� Provides extensive support for Web services 

and its related standards such as WS-Security. 
� Provides controlled and secured access to 

external Web services.
� Provides mediation capabilities for 

business-to-business integrations using Web 
services. 

� Lacks the support for traditional EAI integration 
and related business protocols.

WebSphere Partner Gateway: 
� It is fully scalable and designed to support the 

diverse protocol, document-processing, and 
security requirements of large and small 
companies alike. 

� Mediation capabilities to support message 
routing, transformation and validation. It can 
also handle digital signature verification.

� Partner profile management.
� Non-repudiation via authentication and audit.
� Provides only pass-through support for SOAP 

requests.

In conclusion, by delegating the Web services 
message level security to the ESB as discussed in 
the Related Decision, we can use WebSphere 
Partner Gateway to support Web service 
interactions using the SOAP pass-through support 
and be able to leverage on its extended 
business-to-business functions.

Related Decision Refer to the “Architectural decision: securing the 
Web service interaction” on page 393.

Attention: While evaluating the product options for the Exposed ESB 
Gateway component, the business criticality of the various factors (such as 
security, auditing, partner profile management, support for traditional EAI 
integration, and so forth) involved should be weighed against each other 
carefully. This could also be influenced by the business and IT strategy of the 
organization and their long-term plans.
 Chapter 13. Exposed Router runtime pattern: SOA profile 393



features for authentication using either SSL or basic authentication. It additionally 
provides a nonrepudiation repository. 

However, WebSphere Partner Gateway lacks support for the WS-Security 
extensions of Web services and only provides SOAP pass-through support. 
Therefore if they are required, these features must be delegated to another 
product. The WebSphere Application Server service integration bus provides 
support for securing Web service interactions using WS-Security and is used in 
this scenario to provide the Web services security support.

13.2.4  Products
In this section, we examine the products that could be used to implement the 
ESB and Exposed ESB nodes of the Exposed Router runtime variation.

Product implementation options
Product choices for this scenario are based on:

� Design decisions that we made in 13.2.3, “Analyze design options” on 
page 391

� Extended Enterprise capabilities of the products

� Products that are currently available

ESB component
We can use the following currently available products to implement the ESB 
component in the given scenario:

� Service integration bus in WebSphere Application Server Network 
Deployment V6.0.2 or WebSphere Application Server V6.0.2.

� WebSphere Business Integration Message Broker V5

For this scenario, the service integration bus in WebSphere Application Server 
Network Deployment V6.0.2 meets all of the requirements and, as a result, is the 
product of choice. 

Exposed ESB Gateway component
We can use the following currently available products to implement the Exposed 
ESB Gateway component in the given scenario:

� Web services gateway component available in the WebSphere Application 
Server Network Deployment V6.0.2 package.

� WebSphere Partner Gateway V6.
394 Patterns: Extended Enterprise SOA and Web Services



In the given scenario, the requirement for advanced functions such as partner 
management and provisioning makes WebSphere Partner Gateway product an 
ideal choice. 

Product mapping selected
The complete product mapping for this scenario is shown in Figure 13-4.

Figure 13-4   Exposed Router variation: SOA profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone.

The ESB is run in a service integration bus within WebSphere Application Server 
Network Deployment V6.0.2, providing service location transparency between 
service consumers and service providers within the enterprise. With the Network 
Deployment offering, you can implement a scalable clustering of multiple 
WebSphere Application Server servers. 

A local DB2 Universal Database database is used to store the SDO repository.

The WebSphere Partner Gateway acts as the Exposed ESB Gateway node 
providing a standard, consistent interface for the internal processes to access 
external processes. The use of an Exposed ESB Gateway minimizes the 
disruption caused by changes in the external partner infrastructure.

In the Directory and Security services node, the service integration bus within 
WebSphere Application Server Network Deployment V6.0.2 is configured to 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP 
Server V6

Microsoft .NET

WebSphere 
Partner 
Gateway V6.0

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database

WebSphere 
Application 
Server V6.0.2

<Service Provider>
Internet

App Server/
Services

<Service Provider>

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

WebSphere 
Application 
Server V6.0.2

Directory
& Security
Services

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database
 Chapter 13. Exposed Router runtime pattern: SOA profile 395



secure all transactions to the external Partner Zone to use WS-Security integrity 
and confidentiality.

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS thus delivering transport level security between 
the enterprise and the partner organizations.

13.3  Development guidelines
There are no specific development guidelines to build this scenario. In this 
section we simply introduce the scenario used in this chapter.

13.3.1  Scenario implementation: Exposed Router SOA 
profile interaction

Figure 13-5   Scenario implementation using the Exposed Router: SOA profile

LoggingFacility

LoggingFacility

logEvent

getEvents

Manufacturer C (CICS)

Manufacturer B (.NET)

Manufacturer
Manufacturer (Java)

submitPO

Exposed ESB Gateway
(WebSphere Partner Gateway)

SCMSampleUI

SCMSampleUI

ITSO Goods

getEvents

getCatalog

submitOrder

Retailer

Retailer

shipGoods

logEvent

getCatalog

submitOrder

Warehouse

shipGoods
submitPO

logEvent

Warehouse

ESB
(Service Integration Bus)
396 Patterns: Extended Enterprise SOA and Web Services



As shown in Figure 13-5 on page 396, the SOA profile is implemented by 
introducing the ESB and the Exposed ESB Gateway component. The ESB 
integrates all the service calls at an enterprise level and provides the mediation 
logic built on business agreements and terms. Any interaction with an extended 
enterprise is managed through the Exposed ESB Gateway component, which we 
have implemented using WebSphere Partner Gateway V6.

13.4  Runtime guidelines
This section describes how to configure the runtime aspects of this scenario. It 
uses the basic infrastructure of Chapter 11, “Exposed Direct Connection runtime 
pattern: SOA profile” on page 237 as a starting point. In this section, you add a 
WebSphere Partner Gateway configuration to act as the Exposed ESB Gateway, 
and define new outbound services in the ESB to point to WebSphere Partner 
Gateway configuration for each Manufacturer call.

13.4.1  Solution topology
As in the previous chapters, to represent the complete business scenario the 
sample application is divided into four subapplications:

� ITSOGood contains the SCMSampleUI, Retailer, Warehouse, and 
LoggingFacility services.

� Manufacturer, ManufacturerB, ManufacturerC are three individual services, 
each packaged separately, and deployed to three different enterprises.

Calls to the three Manufacturer enterprise applications are sent to WebSphere 
Partner Gateway V6. This application uses a SOAP pass-through to send SOAP 
messages to an HTTP Server, which adds HTTP/S security to the SOAP 
message and forwards the request on to the relevant Manufacturer. This is 
shown in Figure 13-6 on page 398.

Note: The link between the ESB and Exposed ESB Gateway will be 
configured using instructions in the Runtime guidelines section.
 Chapter 13. Exposed Router runtime pattern: SOA profile 397



Figure 13-6   Solution topology

This section describes in detail how to configure WebSphere Partner Gateway to 
communicate with ManufacturerA. Optionally, you can implement the 
ManufacturerB and ManufacturerC applications as well. To do this you need 
access to a Microsoft .NET server and a CICS Transaction Server V3.1 region. 

Instructions for configuring the ManufacturerB and ManufacturerC servers are 
described in:

� Appendix B, “Microsoft .NET Web services” on page 483
� Appendix C, “CICS Transaction Server Web services” on page 513

13.4.2  Creating the basic infrastructure
You need to have built the following infrastructure before you can continue with 
this chapter:

Note: You do not need to configure the ManufacturerB and ManufacturerC 
servers to build a working end-to-end sample application.

WebSphere 
Application Server V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

Manufacturer
Application

WebSphere 
Application Server V6

ManufacturerB
Application

Microsoft .NET

ManufacturerC
Application

CICS Transaction 
Server V3.1

IBM HTTP
Server V6

SSL 
pass-through

rules
SOAP / HTTPS
Message

WebSphere 
Partner Gateway V6

Document
Manager

itsogood.itso.ibm.com

itsogoodPGW.itso.ibm.com

manufacturera.itso.ibm.com

manufacturerb.itso.ibm.com

manufacturerc.itso.ibm.com
398 Patterns: Extended Enterprise SOA and Web Services



� Complete the steps in 11.4.2, “Creating the basic infrastructure” on page 254. 
This describes how to build WebSphere Application Server server profiles 
called ITSOGoodProfile and ManufacturerProfile, how to add a Network 
Deployment manager, an HTTP Server, and install the necessary enterprise 
applications.

� Complete the steps in 11.4.3, “Create and configure a service integration bus” 
on page 257 to create a configure a service integration bus and an SDO 
repository.

� You have installed and started a basic WebSphere Partner Gateway V6 
Advanced or Enterprise Edition configuration. 

13.4.3  Scenario implementation overview
In this scenario, you configure a WebSphere Partner Gateway Community 
Manager and a Community Participant for each manufacturer. You add an HTTP 
target, Gateways, and a Document Flow Definition for each manufacturer.

WebSphere Partner Gateway supports interactions between the Community 
Manager and Community Participants through the use of targets. In the following 
scenario, only the target representing a HTTP URI is setup. The HTTP target is 
used to enable SOAP over HTTP pass through between the Manager and 
Participants.

WebSphere Partner Gateway comprises three major runtime components: 
Receiver, Document Manager, and Community Console. In our scenario the 
service integration bus is configured to send SOAP documents over HTTP to the 
Receiver service. The Receiver stores the documents in a file system for the 
Document Manager to process. The Document Manager then polls the file 
system for documents to process and then routes the document to predefined 
destinations. The interactions in this scenario between the components are 
shown in Figure 13-7 on page 400.
 Chapter 13. Exposed Router runtime pattern: SOA profile 399



Figure 13-7   Use of WebSphere Partner Gateway in the ITSOGood sample application scenario

The Community Console provides a Web-based graphical user interface for 
configuring, administering and monitoring the trading community and their 
activities.

13.4.4  Configuring WebSphere Partner Gateway
You need to complete the following tasks to configure the WebSphere Partner 
Gateway V6 configuration:

� Creating the ITSOGood Community Manager profile
� Creating the Manufacturer Community Participant profile
� Configuring an HTTP target
� Setting up the HTTP gateways for the connection
� Creating document flow definitions
� Creating interactions
� Enabling B2B capabilities
� Activating participant connections
� Extracting the WSDL file for the Partner Gateway Manufacturer
� Configuring the hosts file

When you have completed these steps, you will have configured a synchronous 
SOAP/HTTP pass through configuration using WebSphere Partner Gateway.

Creating the ITSOGood Community Manager profile
The Community Manager is typically the company that owns the WebSphere 
Partner Gateway server and that uses the server to communicate with 
participants. The Community Manager is also considered a participant of the hub 
and has a profile, gateways, and B2B capabilities.

itsogoodPGW.itso.ral.ibm.com manufacturera.itso.ral.ibm.com

Receiver

Document
Manager

Target Destination
LocationInternetSource

Location

HTTP server

Gateway
400 Patterns: Extended Enterprise SOA and Web Services



To create a Community Manager (there is only one Community Manager for each 
WebSphere Partner Gateway configuration), perform the following:

1. Start the Partner Gateway Console service:

<Gateway_installation_directory>/bin/bcgStartServer bcgconsole

2. Start the Partner Gateway Receiver service:

<Gateway_installation_directory>/bin/bcgStartServer bcgreceiver

3. Start the Partner Gateway Document Manager service:

<Gateway_installation_directory>/bin/bcgStartServer bcgdocmgr

4. In a Web browser, access the Community Console (Figure 13-8) using the 
following URL:

http://itsogoodPGW.itso.ral.ibm.com:58080/console

Figure 13-8   WebSphere Partner Gateway Community Console login

5. A default company called Operator is set up. One user ID, hubadmin, belongs 
to this company, and its expired password is Pa55word. Enter this information 
in the login section. Then click Login. If this is the first time you have logged 
in, you are e asked to change the expired password.

6. Click Account Admin → Profiles → Community Participant (Figure 13-9 
on page 402).
 Chapter 13. Exposed Router runtime pattern: SOA profile 401



Figure 13-9   Community Participant screen

7. Click Create.

8. Enter the following information to create a new community manager 
participant).

a. For Company Login Name, enter SIB.

b. For Participant Display Name, enter ITSOGood. This is the name that 
appears on the Participant Search list. 

c. From the Participant Type list, select Community Manager.

d. Set Status to Enabled.

e. Set Vendor Type to Supplier.

f. Click New under Business ID.

g. With DUNS pre-selected as Type, and enter the 555555551 as the 
nine-digit identifier. Based on this identifier, WebSphere Partner Gateway 
routes documents to and from the Community Manager.

h. Enter the host name address for the ITSOGood Community Manager by 
performing the following steps: 

i. Under IP Address, click New. 
ii. Specify Production as the Gateway Type. 
iii. Enter itsogoodPGW as IP address or Host Name of the Community 

Manager

9. Click Save. Note the password assigned to the Community Manager. You will 
need it later for HTTP authentication.
402 Patterns: Extended Enterprise SOA and Web Services



Creating the Manufacturer Community Participant profile
The Community Participant is typically the company that has a trading 
relationship with other participants and has a profile, gateways, and B2B 
capabilities.

In this section, we create a Community Participant to represent the Manufacturer. 
Perform the following tasks:

1. Click Account Admin → Profiles → Community Participant. 

2. Click Create. 

3. For Company Login Name, enter ManufacturerA.

4. For Participant Display Name, enter ManufacturerA. This is the name that 
appears on the Participant Search list.

5. From the Participant Type list, select Community Participant.

6. Set Status to Enabled.

7. Set Vendor Type to Distributor.

8. Click New under Business ID. 

9. Specify an Identifier of 999999992. Based on this identifier, WebSphere 
Partner Gateway will route SOAP messages to and from this Community 
Participant.

10.Enter the IP address for the Manufacturer service by performing the following 
steps: 

a. Under IP Address, click New. 

b. Set Gateway Type to Production.

c. Enter itsogood as the IP address or Host Name.

11.The profile should match the settings shown in Figure 13-10.
 Chapter 13. Exposed Router runtime pattern: SOA profile 403



Figure 13-10   Manufacturer Community Participant profile

12.Click Save.

Optionally, create Community Participant profiles for ManufacturerB and 
ManufacturerC. To do this repeat the steps above, using the relevant 
manufacturer name. Set ManufacturerB an identifier of 888888883 and 
ManufacturerC an identifier of 777777773.

Configuring an HTTP target
A target is an instance of the Receiver configured for a particular deployment. 
Documents received at a target on the hub originate from Community 
Participants or from a Community Manager back-end application. In this 
scenario, the SOAP messages originate from the ITSOGood Community 
Manager.

As we will be sending SOAP messages over HTTP, we need to configure an 
HTTP target. We will be sending a request/response SOAP message through the 
HTTP target, therefore we need to configure the HTTP target to enable 
404 Patterns: Extended Enterprise SOA and Web Services



synchronous HTTP requests. This will ensure our Web service client receives a 
response message from WebSphere Partner Gateway.

Perform the following:

1. Click Hub Admin > Hub Configuration > Targets to display the Targets List 
page. 

2. From the Target List page, click Create Target.

3. In the Target Details section, set the Target Name to Manufacturer HTTP 
Target. The name you enter here will be displayed on the Targets list. 

4. Indicate the status of the target as Enabled. The target is now ready to 
accept documents. A target that is disabled cannot accept documents.

5. Select HTTP/S from the Transport list.

6. In the Target Configuration section, specify the Gateway Type as Production. 
The gateway type defines the nature of the transmission.

7. Enter the URI for the HTTP/S target as /bcgreceiver/sib. Data sent to the 
Gateway server will be received at this target.

8. In the Handlers section, set Configuration Point Handlers to syncCheck. This 
indicates we would like to configure a handler for synchronous messages.

9. In the Handler Selection section, select 
com.ibm.bcg.server.sync.SoapSyncHdler and click Add to move it to the 
Configured List. This is the synchronous handler specifically for SOAP 
messages, and ensures the HTTP target configuration will stay open to allow 
a Web service client to receive a synchronous response.

10.The setting for the HTTP target should match those shown in Figure 13-11.
 Chapter 13. Exposed Router runtime pattern: SOA profile 405



Figure 13-11   HTTP target definition

11.Click Save.

Setting up the HTTP gateways for the connection
Next, set up an HTTP gateway so that documents can be sent to the participant’s 
IP address. Perform the following:

1. Click Account Admin > Profiles > Community Participant. 

2. Click Search without entering any search criteria to display a list of all 
participants. 

3. Click the View details icon to display the ManufacturerA Community 
Participant profile. 

4. Click Gateways. 

5. Click Create.

6. From the Gateway List page, enter a Gateway Name of ManufacturerSOAP. 

7. Enter the Description of the gateway as Gateway to Manufacturer App. 
406 Patterns: Extended Enterprise SOA and Web Services



8. In the Gateway Configuration section of the page, perform the following steps: 

a. Select HTTP/1.1 from the Transport list. 

b. In the Address field, enter the following as the URI where the document 
will be delivered:

http://itsogood.itso.ral.ibm.com/Manufacturer/services/Manufacturer

9. Click Save.

10.Set this gateway as the default:

a. From the Gateway List click View Default Gateways.

b. Set Production to ManufacturerSOAP as shown in Figure 13-12.

Figure 13-12   Setting the default gateway

c. Click Save. 

11.Optionally, you can create Gateways for ManufacturerB and ManufacturerC 
using the values in Table 13-2 on page 408.

Note: This URI points to the HTTP server on the 
itsogood.itso.ral.ibm.com machine. The HTTP server will forward this 
request on to the manufacturera.itso.ral.ibm.com server and encrypt the 
HTTP message using HTTPS. This flow is shown in Figure 13-6 on 
page 398.
 Chapter 13. Exposed Router runtime pattern: SOA profile 407



Table 13-2   Gateway settings for ManufacturerB and ManufacturerC

12.An HTTP gateway is also required for the Community Manager:

a. Click Account Admin → Profiles → Community Participant. Click 
Search and view the ITSOGood Community Manager.

b. Click Gateways → Create and create a gateway with the following values, 
then click Save:

• Gateway Name: ITSOGoodSOAP
• Transport: HTTP/1.1
• Address: http://

c. From the Gateway List click View Default Gateways, set Production to 
ITSOGoodSOAP, and click Save.

Creating document flow definitions
Document flow definitions specify the types of document that will be processed 
by WebSphere Partner Gateway. To set up the document flow definition, you 
either upload the WSDL (Web Service Definition Language) files that define the 
Web service, or you enter the equivalent document flow definitions manually 
through the Community Console. 

Here, we setup a document flow definition by uploading a zipped archive 
containing multiple WSDL and XSD files. The ZIP file contains all of the WSDL 
and XSD file necessary to contact the Manufacturer. Perform the following:

1. Click Hub Admin → Hub Configuration → Document Flow Definition. 

2. Click Upload/Download Packages. 

3. Set the WSDL Package radio button to Yes.

4. In the File field, browse to locate the file manufacturera.zip. You can find this 
file in the \RouterSOA directory in the additional material supplied with this 
redbook. This file contains the Manufacturer_Impl.wsdl file, and all of the 
WSDL and XSD files that Manufacturer_Impl.wsdl directly and indirectly 
imports.

Gateway Name Address

ManufacturerBSOAP http://itsogood.itso.ral.ibm.com/ManufacturerB/
ManufacturerB.asmx

ManufacturerCSOAP http://itsogood.itso.ral.ibm.com/ManufacturerC/
ManufacturerC

Note: The Address field is a required field, but the value will not be used at 
runtime, that is why http:// is specified.
408 Patterns: Extended Enterprise SOA and Web Services



5. Set Web Service Public URL to the public URL to access this Web service 
through WebSphere Partner Gateway. In our case this is:

http://itsogoodPGW.itso.ral.ibm.com:57080/bcgreceiver/sib?to=999999992

6. Set Commit to database to Yes.

7. Click Upload. If the upload was successful, the Messages text box should 
contain text that reads: Upload successful. No committed. Data committed, 
as shown in Figure 13-13.

Figure 13-13   Successful upload of WSDL

8. Optionally, repeat these steps if you wish to configure ManufacturerB and 
ManufacturerC using the settings in Table 13-3.

Table 13-3   Upload packages for ManufacturerB and ManufacturerC

File Web Service Public URL

manufacturerb.java http://itsogoodPGW.itso.ral.ibm.com:
57080/bcgreceiver/sib?to=888888882

manufacturerc.java http://itsogoodPGW.itso.ral.ibm.com:
57080/bcgreceiver/sib?to=777777772
 Chapter 13. Exposed Router runtime pattern: SOA profile 409



Creating interactions
Interactions indicate to WebSphere Partner Gateway the actions to perform on a 
document.

To create an interaction, perform the following steps:

1. Click Hub Admin → Hub Configuration → Document Flow Definition.

2. Click Manage Interactions. 

3. Click Create Interaction.

4. An interaction consists of two parts: a source and a target. You must select a 
document flow definition from both the source and the target to create the 
interaction:

a. Under the Source section, expand Package: None → Protocol: Web 
Service → Document Flow → Activity and select the Action: Purchase 
Order radio button as shown in Figure 13-14.

Figure 13-14   Selecting the source document flow definition interaction

b. Select the same action in the target section (Figure 13-15).

Figure 13-15   Selecting the target document flow definition interaction
410 Patterns: Extended Enterprise SOA and Web Services



5. Set Action to Pass Through. Note that Pass Through is the only valid option 
supported in WebSphere Partner Gateway for a Web service interaction.

6. Click Save.

7. Optionally, repeat this process for ManufacturerB and ManufacturerC.

Enabling B2B capabilities
In order to create a connection, the Web services B2B capabilities for the 
document flow definition must be enabled. Perform the following:

1. Click Account Admin → Profiles → Community Participant.

2. Click Search to display all participants, then View Details for ITSOGood.

3. Click B2B Capabilities.

4. In the B2B Capabilities window, click the icon under Set Source and Set 
Target for Package: None. This should set the Enabled row to Enabled.

5. Expand Package: None, and keep expanding and enabling the source and 
target for the Manufacturer_Impl document flow, as shown in Figure 13-16.

Figure 13-16   Enabling the Web service document flow for the Community Manager

6. Optionally, enable the document flows for ManufacturerB and ManufacturerC.

7. Repeat these steps to enable the Manufacturer_Impl document flow for the 
ManufacturerA participant (and optionally for ManufacturerB and 
ManufacturerC).
 Chapter 13. Exposed Router runtime pattern: SOA profile 411



Activating participant connections
Participant connections contain the information necessary for the proper 
exchange of each document flow. A document cannot be routed unless a 
connection exists between the Community Manager and one of its participants.

The system automatically creates connections between the Community Manager 
and participants based on their B2B capabilities. An administrator will have to 
search for these connections and then activate them.

Use the following procedure to perform a basic search for connections and then 
activate the connections:

1. Click Account Admin → Participant Connections. The Manage 
Connections page is displayed. 

2. Select ITSOGood as the Source and select ManufacturerA as the target.

3. Click Search.

4. A connection should be shown (Figure 13-17).

Figure 13-17   Connection awaiting activation

5. Click Activate to activate this connection. You should see the connection is 
now activated.

6. Select ManufacturerA as the source and ITSOGood as the target. Click 
Search, then Activate this connection as well.
412 Patterns: Extended Enterprise SOA and Web Services



7. Optionally, repeat this process for ManufacturerB and ManufacturerC.

Extracting the WSDL file for the Partner Gateway Manufacturer
The Manufacturer Web service should be invoked using the WebSphere Partner 
Gateway connection. WebSphere Partner Gateway creates a WSDL file which 
describes how to invoke this Web service. You need to locate and save this 
WSDL file so it can be used by the service integration bus when it attempts to 
invoke the manufacturers.

Perform the following tasks:

1. Click Hub Admin → Hub Configuration → Document Flow Definition.

2. Expand Package: None → Protocol: Web Service and click the View 
Document Flow action for the Manufacturer_Impl document flow.

3. In the Update Document Flow Definitions window, you should see the file 
Manufacturer_Impl.public.wsdl, as shown in Figure 13-18.

Figure 13-18   Manufacturer_Impl.public.wsdl

4. Click Manufacturer_Impl.public.wsdl to open it. Ensure the following line 
points to the port on which the Receiver is listening (by default it is port 
57080):
 Chapter 13. Exposed Router runtime pattern: SOA profile 413



<wsdlsoap:address 
location="http://itsogoodPGW.itso.ral.ibm.com:57080/bcgreceiver/sib?to=9999
99992"/> 

5. Save this file to the HTTP Server on the itsogood.itso.ral.ibm.com machine in 
the following directory:

<HTTP_SERVER_HOME>\htdocs\en_US\wsdl

6. Optionally, repeat this process for ManufacturerB and ManufacturerC.

Configuring the hosts file
Finally you need to configure the hosts file on your system. Perform the following 
steps:

1. Open the hosts files in a text editor. On a Windows operating system this will 
be located in the <WINDOWS_HOME>\system32\drivers\etc directory.

2. Add the following entry:

127.0.0.1 itsogoodPGW.itso.ral.ibm.com itsogoodPGW

3. Add a second entry that points to the IP address where the 
itsogood.itso.ibm.com HTTP Server is located. For example, if it were using 
the IP address of 1.2.3.4 you would enter:

1.2.3.4 itsogood.itso.ral.ibm.com itsogood

4. Save and close the hosts file.

13.4.5  Configuring WebSphere Application Server
You need to configure the Manufacturer outbound services on the service 
integration bus to send SOAP over HTTP documents to the WebSphere Partner 
Gateway configuration. You also need to configure the inbound services to uses 
these new outbound services.

Creating the Manufacturer outbound service
In the administrative console of the ITSOGoodProfile server, perform the 
following:

1. Click Service integration → Buses → ESBBus → Outbound Services.

2. Click New to create a new outbound service. Define this outbound service 
using the WSDL exported in “Extracting the WSDL file for the Partner 
Gateway Manufacturer” on page 413. Use the following settings:

– WSDL location:

http://appsrv1a.itso.ral.ibm.com/wsdl/Manufacturer_Impl.public.wsdl

– Outbound service name: ManufacturerPGWService
414 Patterns: Extended Enterprise SOA and Web Services



– Service destination name: ManufacturerPGWServiceDestination

– Port destination name: ManufacturerPGWServiceDestination

3. Optionally, repeat this process to define outbound services for ManufacturerB 
and ManufacturerC.

4. Save your changes.

Reconfiguring the Manufacturer inbound service
We want to configure the ManufacturerService inbound service to point to this 
new outbound destination.

1. Click Service integration → Buses → ESBBus → Inbound Services.

2. Click ManufacturerInboundService.

3. Set the Service destination name to ManufacturerPGWServiceDestination.

4. Click OK.

5. Optionally, repeat this process to define outbound services for ManufacturerB 
and ManuacturerC.

6. Save your changes.

Configuring the hosts file
You need to configure the hosts file on your system to point to the WebSphere 
Partner Gateway machine. Perform the following:

1. Open the hosts files in a text editor. On a Windows operating system this will 
be located in the <WINDOWS_HOME>\system32\drivers\etc directory.

2. Add an entry that points to the IP address of the machine where the 
WebSphere Partner Gateway configuration is running. For example if it were 
using the IP address of 1.2.3.4 you would enter:

1.2.3.4 itsogoodPGW.itso.ral.ibm.com itsogoodPGW

3. Save and close the hosts file.

Defining HTTP basic authentication
When you invoke the WebSphere Partner Gateway Web service, you need to 
pass an HTTP basic authentication token for user SIB. To do this, perform the 
following:

1. In the WebSphere Application Server administrative console click 
Applications → Enterprise Applications → ITSOGood → EJB 
Modules → WarehouseEJB.jar → Web services: Client security 
bindings.
 Chapter 13. Exposed Router runtime pattern: SOA profile 415



2. Click the Edit button in the HTTP basic authentication column for the Web 
service called service/ManufacturerService.

3. Enter a Basic authentication ID of SIB and enter the password assigned to the 
ITSOGood Community Manager in “Creating the ITSOGood Community 
Manager profile” on page 400.

4. Click OK.

5. Optionally, repeat this process for ManufacturerB and ManufacturerC.

13.4.6  Testing the WebSphere Partner Gateway configuration
This section describes how to test the scenario. For more information about the 
sample application, see Chapter 8, “Business scenario used in this book” on 
page 137. Perform the following steps:

1. Enter the following URL in a Web browser to start the ITSOGood sample 
application:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI/

This assumes the unsecured HTTP transport port number is 9080. If this is 
not the case, use the URL above with the appropriate HTTP transport port 
number.

2. Order 6 items of product 605001 to trigger the Warehouse to contact 
ManufacturerA to replenish its stock for this product. As a result, it will invoke 
the WebSphere Partner Gateway configuration.

3. To confirm the successful invocation of the Manufacturer service, check the 
SystemOut.log of the ITSOGoodProfile application server. The Warehouse 
writes a message saying that a Manufacturer was invoked. The message 
should look like this:

Warehouse: Response from Manufacturer --> Manufacturer_A has received 
and processed a request.

You should also see the following message in the SystemOut.log file of the 
ManufacturerProfile application server:

Manufacturer A: Processing Purchase Order

4. To confirm the SOAP/HTTP request and response documents flowed through 
the WebSphere Partner Gateway configuration, perform the following:

a. Log on to the WebSphere Partner Gateway Community Console and click 
Viewers → Document Viewers.

b. Click Search to search for new documents.

c. You should see both the request and response documents used to invoke 
the Manufacturer Web service (Figure 13-19 on page 417).
416 Patterns: Extended Enterprise SOA and Web Services



Figure 13-19   Successful invocation and response from the Manufacturer Web service

5. Optionally test ManufacturerB by ordering 6 items of product 605002, and 
ManufacturerC by ordering 6 items of product 605003.
 Chapter 13. Exposed Router runtime pattern: SOA profile 417



418 Patterns: Extended Enterprise SOA and Web Services



Chapter 14. Exposed Serial Process 
runtime pattern: generic 
profile

In this chapter, we discuss the Exposed Serial Process runtime pattern using the 
generic profile. This chapter describes how to build a WS-BPEL process 
conforming to this pattern using WebSphere Studio Application Developer 
Integration Edition.

The Warehouse service from the ITSO Good sample application is implemented 
as a WS-BPEL process in this chapter. The WS-BPEL process runs in 
WebSphere Business Integration Server Foundation. The business process must 
accept Web service calls from the Retailer, and be able to invoke the 
LoggingFacility and Manufacturer Web services.

14
© Copyright IBM Corp. 2006. All rights reserved. 419



14.1  Business scenario
The business scenario implemented in this chapter builds on the business 
scenario discussed in Chapter 12, “Exposed Broker runtime pattern: generic 
profile” on page 339.

In the generic broker previous scenario, we can see how externalizing the routing 
and distribution rules provided ITSO Good with the flexibility required to scale up 
their application services.

ITSO Good now wants to focus on improving the operational effectiveness of 
their business through continuous improvement. In particular, they require their 
business processes to be flexible and responsive to the changes in the market 
and be able to take advantage of the increased capabilities offered by their 
partners.

To support these new business goals, ITSO Good have the following additional 
business requirements:

� The business processes needs to be flexible and responsive to the changes 
in the market and be able to take advantage of the increased capabilities 
offered by their partners.

� Build the capabilities required to monitor and measure the effectiveness of 
business processes.

14.2  Design guidelines
In this section, we analyze the business requirements and apply the Patterns for 
e-business to determine the appropriate Runtime pattern for the solution. We 
then discuss the various design options available to us for implementing the 
solution and also look at the product mappings.

14.2.1  Analyze business requirements
The given business scenario requires the need to externalize the process 
execution logic from the individual application services. This allows us to use a 
process manager to automate the coordination of business process flow between 
the Warehouse and the Manufacturing partners of ITSO Good.

As the business process in the given scenario goes across organizational 
boundaries, the following additional system requirements need to be addressed:

� Interoperability standards: Standards should be used where possible to 
minimize future changes required to the source and target applications.
420 Patterns: Extended Enterprise SOA and Web Services



� Security: Security is a primary concern when opening business processes to 
external organizations. As a result, the solution should include robust security 
mechanisms to protect enterprise resources.

14.2.2  Selecting a pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern 
to apply to this scenario. 

Described here is a step-by-step approach used to navigate the Patterns for 
e-business asset catalog:

1. Business pattern

We select the Extended Enterprise business pattern because the given 
scenario requires interactions between the business processes in the 
Warehouse and Manufacturer systems that reside in separate enterprises.

2. Application pattern

Because the source application (Warehouse) initiates an interaction that is to 
be distributed to multiple target partner applications in a serial manner, we 
choose the Exposed Serial Process application pattern.

3. Runtime pattern

Selecting the Application pattern provides us with the possible Runtime 
patterns for the proposed solution. Because the business requirement does 
not mandate an ESB infrastructure, we select the generic profile of the 
Exposed Serial Process application pattern.

Figure 14-1 on page 422 shows the level 0 decomposition of the generic profile 
of the Exposed Serial Process runtime pattern, mapped on to the Exposed Serial 
Process application pattern.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 421



Figure 14-1   Exposed Serial Process::Runtime pattern = generic profile

14.2.3  Analyze design options
This section discusses the architectural decisions that we made and their 
implementation options for the given business scenario using the Exposed Serial 
Process runtime pattern.

Most of the design decisions made in the previous chapters, also apply to the 
Exposed Serial Process interactions:

� “Architectural decision: integration options” on page 163 for the use of Web 
services to integrate with the external partner services.

� The design guidelines in the “Securing Web services” on page 165.

� The architectural decision related to securing the Web services in 
“Architectural decision: Securing the Web service interaction” on page 170

There are also additional design decisions that are specific to this scenario, 
which are discussed in the following sections.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l Exposed

Process
Manager

Rules
Directory

App Server/
Services

Directory
& Security 

Services

Serial
Process

Rules Tier

Exposed Serial Process

Source
Application

Target
Application

Target
Application

Target
Application

WIPWIP

Process
Execution

Rules

R/OR/O

Intermediate
Results
422 Patterns: Extended Enterprise SOA and Web Services



Implementing an Exposed Serial Process
Some of the common capabilities that you find in business process engine 
implementations are:

� Service composition: Composing application services to create workflows

� Process State Management: Interruptible (long-running) processes that their 
state and status to be persisted between activities

� Transactional behavior and compensation

� Support for human interaction, business processes that require human or 
other manual intervention to complete

Some of the other aspects of designing business process that need to be 
considered in an extended enterprise scenario are security and interoperability.

Web services are a common standards-based approach to integrate with 
applications and services of partners that reside outside the enterprise. And 
WS-BPEL (Business Process Execution Language for Web Services) is fast 
emerging as an industry standard for choreographing services implemented 
using Web services together to implement a business process.

WS-BPEL
WS-BPEL is a standard that is used to define business process models by 
enabling the description of Web services operations, their relationships, and 
order of execution. By doing so, it extends the Web services interaction model 
and enables it to support business transactions. WS-BPEL defines an 
interoperable integration model that can facilitate the expansion of automated 
process integration in both intra- and interenterprise scenarios.

For the given business scenario, WS-BPEL, in combination with the message 
level security features of WS-security, provides an ideal combination to 
implement the serial order process that is initiated at the Warehouse and which 
involves interaction with external services provided by the partner Manufacturer 
systems.

For more information about process choreography and WS-BPEL (formerly 
BPEL4WS), refer to the following resources:

� IBM Redbook BPEL4WS Business Processes with WebSphere Business 
Integration, SG24-6381.

� IBM Redbook WebSphere Business Integration Server Foundation V5.1 
Handbook, SG24-6318.

� Business Process Execution Language for Web Services V1.1

http://www.ibm.com/developerworks/library/specification/ws-bpel/
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 423

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/


14.2.4  Products
In this section we look at the products available to implement the various 
components in the Exposed Broker runtime pattern. 

Product implementation options
Product choices for this scenario are based on:

� Design decisions that we made in 14.2.3, “Analyze design options” on 
page 422

� Extended Enterprise capabilities of the products

� Products that are currently available

Exposed Process Manager component
We can use the following currently available products to implement the Exposed 
Process Manager component in the given scenario:

� WebSphere MQ Workflow
� WebSphere Business Integration Server Foundation
� WebSphere Process Server

For this scenario, WebSphere Business Integration Server Foundation V5.1 
meets all of the requirements and, therefore, is the product of choice.

The complete product mapping for this scenario is shown in Figure 14-2.

Figure 14-2   Exposed Serial Process: generic profile product mapping

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l Exposed

Process
Manager

Rules
DirectoryApp Server/

Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V6

Internet

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2

• WebSphere Business 
Integration Server 
Foundation V5.1

Directory
& Security 

Services

WebSphere Application 
Server V6.0.2 Network 
Deployment Web 
Services Gateway

• WebSphere Business 
Integration Server 
Foundation V5.1
424 Patterns: Extended Enterprise SOA and Web Services



This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone.

An application service invokes the automated process instance implemented by 
the Process Manager node using the Web Services Invocation Framework 
(WSIF). The Exposed Process Manager implemented using WebSphere 
Business Integration Server Foundation V5.1 invokes the services provided by 
the external partner application service.

The Rules Directory node implemented using WebSphere Business Integration 
Server Foundation V5.1 identifies which external partner organization application 
service to invoke.

In the Directory and Security services node, the service integration bus within 
WebSphere Application Server Network Deployment V6.0.2 is configured secure 
all transactions to the external Partner Zone to use WS-Security integrity and 
confidentiality. 

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS thus delivering transport level security between 
the enterprise and the partner organizations.

14.3  Development guidelines
This section describes how to implement a serial process (WS-BPEL flow) using 
Process Choreographer in WebSphere Studio Application Developer Integration 
Edition.

14.3.1  Scenario implementation: Serial process interaction
We use the sample scenario implemented in Chapter 10, “Exposed Direct 
Connection runtime pattern: generic profile” on page 157 as the starting point for 
this chapter. We replace the Warehouse Web module with a WS-BPEL process. 
None of the other applications or modules require any code change.

We use the Process Choreographer tool in WebSphere Studio Application 
Developer Integration Edition to create and generate deployment code for a 
business process.

Note: This section requires the use of WebSphere Studio Application 
Developer Integration Edition V5.1.1 plus Cumulative Fix 010 or higher 
installed.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 425



As a result of the limitations in the Business Process Engine (BPE) and 
WebSphere Studio Application Developer Integration Edition, the WSDL files 
provided with the WS-I sample application do not work. Therefore, we create 
Web services clients for Manufacturer services using the WS-I sample WSDL 
and this service invokes the business process. Our Warehouse business process 
is not be exposed directly to the Retailer application.

Because there are no WS-Security capabilities in Process Choreographer or 
WebSphere Business Integration Server Foundation, we invoke the Manufacturer 
services through Web services gateway, which is responsible for securing the 
communication to the Manufacturer.

The scenario implementation is shown in Figure 14-3.

Figure 14-3   Scenario implementation for the Exposed Serial Process

The following components are developed in this chapter and are shown in 
Figure 14-3:

� Warehouse Service

This component acts as an endpoint for the Retailer application and other 
clients invoking the Warehouse application. In our scenario, this component is 
implemented as a J2EE Web module and exposed as a HTTP/SOAP Web 
service.

� Warehouse Business Process 

Warehouse

SOAP/HTTP

Java

EJB

Warehouse Business Process

Java

Java Java

Logging Facility
Proxy

Manufacturer
ProxyManufacturer

Manufacturer
Manufacturer

Warehouse
Service Java

SOAP/HTTP

Retailer

Warehouse Business Process
Proxy (WSIF)

SOAP/HTTP

Logging Facility

Manufacturer
Service Client

Logging Facility
Service Client
426 Patterns: Extended Enterprise SOA and Web Services



This WS-BPEL process is a short running process (micro flow) and contains 
the Warehouse application business logic.

� Warehouse Business Process Proxy

This Web Services Invocation Framework (WSIF) Java class is the proxy 
used by the WarehouseService to invoke the Warehouse Business Process.

� Manufacturer Proxy and Logging Facility Proxy

These are Java classes exposed as services and are invoked from the 
Warehouse Business Process when calling the Manufacturer and 
LoggingFacility.

� ManufacturerGW Service Client and Logging Facility Service Client

Web services client code is generated from the WSDLs supplied from the 
three Manufacturer’s and LoggingFacility. In our scenario, these Web services 
clients are created in Java projects.

14.3.2  Creating the basic infrastructure
Before beginning the development guidelines, the basic infrastructure must be 
configured before you can begin building the Warehouse business process.

This scenario is based on the infrastructure built in Chapter 10, “Exposed Direct 
Connection runtime pattern: generic profile” on page 157. If you have already 
built this infrastructure, you can reuse it here.

This section describes how to build a Warehouse business process to fit into the 
topology shown in Figure 14-4 on page 428.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 427



Figure 14-4   Solution topology

Before building the Warehouse business process, complete the following steps to 
create this infrastructure.

1. Configure the WebSphere Application Server Network Deployment and HTTP 
Server infrastructure as described in 11.4.2, “Creating the basic 
infrastructure” on page 254. This creates the following:

– WebSphere Application Server Network Deployment profiles for 
ITSOGoodProfile and ManufacturerProfile

– An HTTP server configured for hosting WSDL and SSL pass-through

– ITSOGoodProfile added to the deployment manager to enable the Web 
services gateway feature

– Non WS-Security versions of the ITSOGood and Manufacturer enterprise 
applications

2. Configure the service integration bus as described in 11.4.3, “Create and 
configure a service integration bus” on page 257. Complete only the following 
steps:

– “Installing the Service Data Objects (SDO) repository” on page 260
– “Configuring the SDO repository” on page 260

WebSphere 
Application Server 

Network Deployment V6

ITSOGoodProfile - server1

ITSOGood
Application

ManufacturerProfile - server1

Manufacturer
Application

WebSphere 
Application Server V6

ManufacturerB
Application

Microsoft .NET

ManufacturerC
Application

CICS Transaction 
Server V3.1

IBM HTTP
Server V6

SSL 
pass-through

rules
SOAP / HTTPS
Message

WebSphere Business Integration 
Server Foundation V5.1

Warehouse
Business
Process

Web
services
gateway
428 Patterns: Extended Enterprise SOA and Web Services



– “Installing the Web services applications” on page 267

3. Configure the Web services gateway infrastructure as described in 11.4.4, 
“Create and configure the Web service gateway” on page 281.

14.3.3  Configuring WebSphere Studio
Perform the following to configure WebSphere Studio Application Developer 
Integration Edition.

1. Start WebSphere Studio Application Developer Integration Edition, and select 
Window → Preferences.

2. Click J2EE. Under Server Targeting Support select Enable server targeting 
support.

3. On the left side pane, expand Java and select Installed JREs. Select 
WebSphere v5.1 EE JRE and click OK.

14.3.4  Creating Manufacturer and LoggingFacility 
Web services clients

This section describes how to create Web services clients for the Logging Facility 
and the three Manufacturers.

Web services clients can be created in Web, EJB or Java projects. In our 
scenario we create the clients in Java projects.

Creating a new Java project
Follow these steps, to create Java projects from the service clients:

1. In WebSphere Studio Application Developer Integration Edition create a Java 
project, select File → New → Project.

2. From the next window, select Java from the left side pane and then select 
Next.

3. Enter the project name LoggingFacilityServiceClient.

4. Click Finish.

5. Repeat the above steps to create another project with the name 
ManufacturerGWServiceClient.

Importing WSDL files
In order to create the service clients, you must import the XSD and WSDL files 
used by the LoggingFacility and Manufacturer into WebSphere Studio.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 429



1. Locate the following WSDL and XSD files hosted on the ITSOGood HTTP 
Server and copy them to the machine where you are running WebSphere 
Studio Application Developer Integration Edition:

– Configuration.wsdl
– LoggingFacility.wsdl
– LoggingFacility_Impl.wsdl
– LoggingFacility.xsd
– Configuration.xsd
– envelope.xsd
– ManufacturerPO.xsd
– ManufacturerSN.xsd
– ExposedESBGatewayBus.ManufacturerGatewayBinding.wsdl
– ExposedESBGatewayBus.ManufacturerGatewayPortType.wsdl
– ExposedESBGatewayBus.ManufacturerGatewayServiceService.wsdl
– ExposedESBGatewayBus.ManufacturerBGatewayBinding.wsdl
– ExposedESBGatewayBus.ManufacturerBGatewayPortType.wsdl
– ExposedESBGatewayBus.ManufacturerBGatewayServiceService.wsdl
– ExposedESBGatewayBus.ManufacturerCGatewayBinding.wsdl
– ExposedESBGatewayBus.ManufacturerCGatewayPortType.wsdl
– ExposedESBGatewayBus.ManufacturerCGatewayServiceService.wsdl

2. In WebSphere Studio Application Developer Integration Edition, switch to 
Package Explorer view in the Business Integration perspective.

3. Right -lick the LoggingFacilityServiceClient project and select Import.

4. Select File System and click Next.

5. In the From Directory field, enter the path where you saved the WSDL and 
XSD files in the previous steps. In the left-side pane below the From Directory 
field you can see the folder. Select the folder and the right-side pane displays 
all the WSDL and XSD files. Select the following files:

– Configuration.wsdl
– Configuration.xsd
– envelope.xsd
– LoggingFacility_Impl.wsdl
– LoggingFacility.wsdl
– LoggingFacility.xsd

6. In the Into Folder field, enter LoggingFacilityServiceClient\wsdl.

7. Click the Finish button.

Tip: <HTTP_Server_home>\htdocs\en_US\wsdl will be the location of directory 
where these WSDL files are hosted.
430 Patterns: Extended Enterprise SOA and Web Services



8. Repeat these steps to import the following files into the folder 
ManufacturerGWServiceClient\wsdl. 

– Configuration.wsdl
– Configuration.xsd
– envelope.xsd
– ExposedESBGatewayBus.ManufacturerGatewayBinding.wsdl
– ExposedESBGatewayBus.ManufacturerGatewayPortType.wsdl
– ExposedESBGatewayBus.ManufacturerGatewayServiceService.wsdl
– ExposedESBGatewayBus.ManufacturerBGatewayBinding.wsdl
– ExposedESBGatewayBus.ManufacturerBGatewayPortType.wsdl
– ExposedESBGatewayBus.ManufacturerBGatewayServiceService.wsdl
– ExposedESBGatewayBus.ManufacturerCGatewayBinding.wsdl
– ExposedESBGatewayBus.ManufacturerCGatewayPortType.wsdl
– ExposedESBGatewayBus.ManufacturerCGatewayServiceService.wsdl
– ManufacturerPO.xsd
– ManufacturerSN.xsd

9. You can see some compilation errors reported in some of the WSDL files. 
This is because the import statements in some of these files refer to the HTTP 
server which cannot be accessed from your WebSphere Studio Application 
Developer Integration Edition workspace at development time. Change these 
WSDL files to import the locally stored WSDL files. 

To fix these compilation errors, open each of the WSDL file reporting errors 
and change import path for WSDL. Change the text:

location = “http://appsrv1a.itso.ral.ibm.com/wsdl/<wsdl file>” 

Replace it with this line:

location="<wsdl file>"

This should fix all the compilation errors in the workspace.

10.The LoggingFacility_Impl.wsdl file needs to point to the LoggingFacility Web 
service running in the ITSOGoodProfile server. To configure this, perform the 
following steps:

a. Open LoggingFacility_Impl.wsdl located in the folder 
LoggingFacilityServiceClient/wsdl in the WSDL editor and switch to the 
Source view.

b. Change the address location to use itsogood.itso.ral.ibm.com, then 
save the change:

location=”http://itsogood.itso.ral.ibm.com:9080/LoggingFacility/servi
ces/LoggingFacility”

c. Add an entry to your hosts file (on a Windows system this is located at 
<WINDOWS_HOME>\system32\drivers\etc\hosts) to point the host name 
itsogood.itso.ral.ibm.com to the IP address where the ITSOGoodProfile 
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 431



server is running. For example if it were running at the IP address 1.2.3.4 
you would enter:

1.2.3.4 itsogood.itso.ral.ibm.com

d. This addition to the hosts file also allows the Manufacturer Web service to 
be found because this Web service contains an address location that also 
points to itsogood.itso.ral.ibm.com.

Generate Web services client
Generate Web service clients for the LoggingFacility and Manufacturers as 
follows:

1. In WebSphere Studio Application Developer Integration Edition, right-click 
LoggingFacility_Impl.wsdl in the LoggingFacilityServiceClient project, and 
select Web Services → Generate Client as shown in Figure 14-5.

Figure 14-5   Generating Web services client 

2. On the WSDL to Java Bean Proxy window, accept all the defaults and click 
Next.

3. The Web services client can be created in a Java, Web, or EJB module. In our 
scenario we create a Java client (Figure 14-6 on page 433).

a. In the Client-Side Environment Selection section, select Choose server 
first.
432 Patterns: Extended Enterprise SOA and Web Services



b. In the Server panel, expand Server Types → WebSphere version 5.1 
and select Integration Server v5.1.

c. In the Web service runtime panel, select IBM WebSphere V5.

d. Select Client Type Java and Client Project as 
LoggingFacilityClientService.

e. Click Next.

Figure 14-6   Web services client environment configuration

4. On Web Service Selection Page, confirm that the WSDL URI is set to 
/LoggingFacilityServiceClient/wsdl/LoggingFacility_Impl.wsdland click 
Next.

5. On Web Service Proxy Page window, accept all defaults and click Finish. 
When the code generation is finished, you can view the generated class 
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 433



LoggingFacilityServiceLocator in package org.ws_i.www. This class invokes 
the LoggingFacility service.

6. Repeat the previous steps to create Web services clients for the Manufacturer 
as shown in Table 14-1, ManufacturerB using Table 14-2, and ManufacturerC 
using Table 14-3. Ignore any compilation errors.

Table 14-1   Web service client setting for Manufacturer

Table 14-2   Web service client setting for ManufacturerB

Table 14-3   Web service client setting for ManufacturerC

Field Value

WSDL file ExposedESBGatewayBus.ManufacturerG
atewayServiceService.wsdl

Client type Java

Client Project ManufacturerGWServiceClient

WSDL URI \ManufacturerGWServiceClient\wsdl\Exp
osedESBGatewayBus.Manufacturer
CGatewayServiceService.wsdl

Field Value

WSDL file ExposedESBGatewayBus.ManufacturerB
GatewayServiceService.wsdl

Client type Java

Client Project ManufacturerGWServiceClient

WSDL URI \ManufacturerGWServiceClient\wsdl\Exp
osedESBGatewayBus.Manufacturer
CGatewayServiceService.wsdl

Field Value

WSDL file ExposedESBGatewayBus.ManufacturerC
GatewayServiceService.wsdl

Client type Java

Client Project ManufacturerGWServiceClient

WSDL URI \ManufacturerGWServiceClient\wsdl\Exp
osedESBGatewayBus.Manufacturer
CGatewayServiceService.wsdl
434 Patterns: Extended Enterprise SOA and Web Services



If a warning message is displayed as shown in Figure 14-7, then select Yes to 
All. This message is displayed because some of the files being generated 
already exist in your workspace.

Figure 14-7   Web services warning

7. You might see some compilation errors in the generated code. To fix these 
errors, delete ManufacturerPortTypeProxy.java in the org.ws_i.www 
package because we do not use this class. There should now be no errors or 
warnings in the Tasks view.

14.3.5  Create Java proxy classes
In this section we create Java proxy classes using modified WSDL files that are 
compatible with the WS-BPEL process. Our business process invokes these 
Java classes which perform data mapping and call the Web service clients 
created in the previous section. These proxy classes are created in the same 
project as our business process.

Create a new service project
1. In WebSphere Studio Application Developer Integration Edition to create a 

service project, switch to Business Integration perspective and select 
File → New → Service Project.

2. Enter the project name WarehouseBusinessProcess and click Finish.

Import WSDL and XSD files
Import the WSDL and XSD files required for the proxy classes.

1. Create a new package com.ibm.itso.wsdl in the 
WarehouseBusinessProcess project.

2. In WebSphere Studio Application Developer Integration Edition, import the 
below listed WSDL and XSD files under package com.ibm.itso.wsdl in the 
WarehouseBusinessProcess project. These files can be found in the 
additional materials supplied with this redbook in the 
SerialGeneric\supportFiles directory:
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 435



– Configuration.wsdl
– Configuration.xsd
– envelope.xsd
– LoggingFacility.wsdl
– LoggingFacility.xsd
– Manufacturer.wsdl
– ManufacturerPO.xsd

Create proxy classes
In this section we generate and modify Java classes from the Manufacturer and 
LoggingFacility WSDL files.

1. Right-click the Manufacturer.wsdl in package com.ibm.itso.wsdl and select 
New → Build from Service.

2. In the Create Service window ensure Java Service Skeleton is selected then 
click Next.

3. In the Service Skeleton window accept the defaults to create a new port and 
binding and click Next.

4. In the next window, change the package name under port location to 
com.ibm.itso.Manufacturer, accept other default entries as shown in 
Figure 14-8 on page 437 and click Next.

Note: The WSDL and XSD files imported in this step have been modified to 
use simple data types which are compatible with WebSphere Studio 
Application Developer Integration Edition.
436 Patterns: Extended Enterprise SOA and Web Services



Figure 14-8   Service skeleton window

5. In the Java Skeleton window, confirm that the class name is 
ManufacturerPortType.java, accept the default entries and click Finish.

6. Review the Java class and WSDL files generated in the 
com.ibm.itso.Manufacturer package.

7. Repeat these steps to create a proxy for LoggingFacility as described in 
Table 14-4, for ManufacturerB as shown in Table 14-5 on page 438, and for 
ManufacturerC as shown in Table 14-6 on page 438.

Table 14-4   Settings for LoggingFacility

Field Value

WSDL file LoggingFacility.wsdl

Port Location - Package com.ibm.itso.LoggingFacility
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 437



Table 14-5   Settings for ManufacturerB

Table 14-6   Settings for ManufacturerC

Port Location - File name LoggingFacilityLogPortTypeJavaService.
wsdl

Port Location - Service name LoggingFacilityLogPortTypeJavaService

Port Location - Port name LoggingFacilityLogPortTypeJavaPort

Binding Location - File name LoggingFacilityLogPortTypeJavaBinding.
wsdl

Binding Location - Binding name LoggingFacilityLogPortTypeJavaBinding

Class name LoggingFacilityLogPortType.java

Field Value

WSDL file Manufacturer.wsdl

Port Location - Package com.ibm.itso.ManufacturerB

Port Location - File name ManufacturerBPortTypeJavaService.wsdl

Port Location - Service name ManufacturerBPortTypeJavaService

Port Location - Port name ManufacturerBPortTypeJavaPort

Binding Location - File name ManufacturerBPortTypeJavaBinding.wsdl

Binding Location - Binding name ManufacturerBPortTypeJavaBinding

Class name ManufacturerBPortType.java

Field Value

WSDL file Manufacturer.wsdl

Port Location - Package com.ibm.itso.ManufacturerC

Port Location - File name ManufacturerCPortTypeJavaService.wsdl

Port Location - Service name ManufacturerCPortTypeJavaService

Port Location - Port name ManufacturerCPortTypeJavaPort

Binding Location - File name ManufacturerCPortTypeJavaBinding.wsdl

Binding Location - Binding name ManufacturerCPortTypeJavaBinding

Field Value
438 Patterns: Extended Enterprise SOA and Web Services



8. To invoke the Web services clients, you have to change the build path for the 
WarehouseBusinessProcess project to include LoggingFacilityServiceClient 
and ManufacturerServiceClient.

a. Right-click WarehouseBusinessProcess project and select Properties.

b. In the Properties for WarehouseBusinessProcess window, select Java 
Build Path from the left hand pane. Click the Projects tab, check the 
LoggingFacilityServiceClient and ManufacturerGWServiceClient 
projects, and click OK.

9. Now we need to add code in these proxy classes to map data and invoke the 
Web services clients created in section “Generate Web services client” on 
page 432.

a. Open LoggingFacilityLogPortType.java in the Java editor and notice 
that the logEvent() method is a stub; it does not contain any code.

b. We have supplied a completed logEvent() method in the additional 
material supplied with this redbook. Open 
SerialGeneric\supportFiles\LoggingFacilityLogPortType.java and 
paste the contents of this file into the LoggingFacilityLogPortType.java file 
open in the Java editor. The logEvent() method is now populated.

c. Save the file.

d. Repeat this process to replace the contents of ManufacturerPortType.java 
with the content from 
SerialGeneric\supportFiles\MaufacturerPortType.java. Complete this 
for ManufacturerB and ManufacturerC as well. Again, ignore the errors.

14.3.6  Create a business process using Process Choreographer
In this section we create a new WS-BPEL business process to perform the 
Warehouse function. The Warehouse process contains the following 
characteristics:

� It is a short running process.

Class name ManufacturerCPortType.java

Note: You can ignore any compilation errors regarding the 
ServiceException class not found. Ignore them for now. We fix these in 
the next section when a business process is created.

Field Value
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 439



� It is initialized when a Web service request is received from the Retailer 
requesting the Web service operation shipGoodss

� The process has decision logic to create requests for different Manufacturers.

� After sending successful requests to the Manufacturers, the process sends a 
request to the Logging Facility.

� The process terminates after successfully replying back to the shipGoods 
request.

This section details a step-by-step procedure for creating a WS-BPEL process 
and links it with different partners. It assumes that you have knowledge of 
WS-BPEL concepts and development guidelines. For more information about 
these topics, see WebSphere Business Integration Server Foundation V5.1 
Handbook, SG24-6318.

Create the Warehouse business process
The following steps describe how to build the Warehouse business process.

1. In the Business Integration perspective, right-click the 
WarehouseBusinessProcess project and select New → Business 
Process.

2. In the Business process window, enter the following information, then click 
Next:

– Package name: com.ibm.itso.Warehouse
– File name: WarehouseBP

3. Select Sequence-based BPEL process and click Finish. At this point, all the 
errors created in the previous section should disappear.

4. Import the Warehouse.wsdl and Warehouse.xsd files into the package 
com.ibm.itso.wsdl in the WarehouseBusinessProcess project. These files 
can be found in the additional materials supplied with this redbook in the 
SerialGeneric\supportFiles directory.

5. Open the WarehouseBP.bpel file in the BPEL editor.

6. Delete the Partner Link called PartnerLink® and Variable called 
InputVariable.

7. Click the + icon next to Partner Links to create a new partner link 
WarehouseLink. 

8. Create a new Partner Link Type called WarehouseLink and select 
Warehouse.wsdl in the com.ibm.itso.wsdl package as the Port Type File. Set 
this partner link type as the process role.
440 Patterns: Extended Enterprise SOA and Web Services



9. Create four more Partner Links using the information in tables Table 14-7, 
Table 14-8, Table 14-9, and Table 14-10, then save the WarehouseBP.bpel 
file.

Table 14-7   Partner Link configuration for Manufacturer

Table 14-8   Partner Link configuration for ManufacturerB

Table 14-9   Partner Link configuration for ManufacturerC

Table 14-10   Partner Link configuration for LoggingFacilityr

10.Link the Receive and Reply activities in the process to the shipGoods 
operation of WarehouseLink partner link as show in Figure 14-9 on 
page 442. Make sure to create new variables for shipGoods operation.

Field Value

Partner Link name ManufacturerLink

Port Type File Manufacturer.wsdl

Role Partner role

Field Value

Partner Link name ManufacturerBLink

Port Type File Manufacturer.wsdl

Role Partner role

Field Value

Partner Link name ManufacturerCLink

Port Type File Manufacturer.wsdl

Role Partner role

Field Value

Partner Link name LoggingFacilityLink

Port Type File LoggingFacility.wsdl

Role Partner role
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 441



Figure 14-9   Receive-Reply activities linked to WarehouseLink

11.The Warehouse only invokes Manufacturers if the stock of an ordered item 
needs to be replenished. We use Switch activities and boolean variables in 
BPEL to make this decision. 

Add three new variables called manAOrderRequired, manBOrderRequired, 
manCOrderRequired and link them to booleanValue message in 
Manufacturer.wsdl file as shown in Figure 14-10 .

Figure 14-10   Variables in the BPEL editor

12.Add a new Flow activity between the Receive and Reply activity.

13.Add three sequences (Manufacturer, ManufacturerB, ManufacturerC) to the 
Flow activity.
442 Patterns: Extended Enterprise SOA and Web Services



14.Add a Switch activity, followed by a Case and Invoke activity in each of the 
three Manufacturer sequences as shown in Figure 14-11.

Figure 14-11   Flow activity in BPEL editor

15.Select Case activity under the Manufacturer sequence. In the Condition tab 
select Value Visual Expression and enter manAOrderRequired.value == 
true in the code panel.

Repeat this for ManufacturerB and ManufacturerC and entering respective 
visual expressions.

16.Link the Invoke activities with the respective Manufacturer Partner Links as 
shown in Figure 14-12 on page 444. Make sure to use the submitPO 
operation, and to create the request/response variables for each invoke 
activity.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 443



Figure 14-12   Invoke activities linked to Manufacturer partner links

17.Add a new Java Snippet between the Receive and Flow activity. Rename it to 
Prepare Manufacturer Requests.

Copy code from PrepareManufacturerRequestsSnippet.txt file into this Java 
snippet. You can find this file in the additional material supplied with this 
redbook in the SerialGeneric\supportFiles\ directory.

18.Add an Invoke activity called Log Msg, after the Flow activity. Link the Invoke 
activity with the LoggingFacility Partner Link as shown in Figure 14-13 on 
page 445 and select the logEvent operation. Make sure to create the request 
variable for the invoke activity called loggingRequest.
444 Patterns: Extended Enterprise SOA and Web Services



Figure 14-13   Log Msg invoke activity

19.Add a Java snippet between the Flow activity and the Log Msg activity. 
Rename it Prepare Log Request.

Copy code from PrepareLogRequestSnippet.txt file into this Java snippet. You 
can find this file in the additional material supplied with this redbook in the 
SerialGeneric\supportFiles\ directory.

20.Add a Java snippet between the Log Msg activity and Reply activity. Rename 
it Prepare Warehouse Response.

Copy code from PrepareWarehouseResponseSnippet.txt file into this Java 
snippet. You can find this file in the additional material supplied with this 
redbook in the SerialGeneric\supportFiles\ directory.

21.Save the Warehouse.bpel file. You should see no errors, and one warning.

You have now finished developing the WS-BPEL flow which communicates 
with Manufacturer (if required) and LoggingFacility services. Figure 14-14 on 
page 446 shows how your final Warehouse business process should look in a 
BPEL editor.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 445



Figure 14-14   Warehouse BPEL flow

Generate deployment code for Warehouse business process
When generating deployment code for a WS-BPEL process, you need to select a 
binding for your process port type. By default all short running processes are 
deployed with an EJB binding and all long running as JMS. Other available 
options for short running process are JMS, SOAP/HTTP and SOAP/JMS. In our 
scenario, we deploy our process with an EJB binding. 

You also need to provide a service WSDL file for each of the partners.

1. In WebSphere Studio Application Developer Integration Edition, under 
Business Integration perspective, right-click the WarehouseBP.bpel file and 
select Enterprise Services → Generate Deploy code.

2. In the Generate BPEL Deploy Code window, on the left side pane select 
Interfaces for Partners → WarehouseShipmentPortType. On the left-hand 
pane, make sure that nothing apart from the EJB (default) option is selected 
as shown in Figure 14-15 on page 447.
446 Patterns: Extended Enterprise SOA and Web Services



Figure 14-15   Selecting binding when generating BPEL deployment code

3. On the left side pane, select Referenced Partners → ManufacturerLink. On 
the right -side pane click Browse and select 
ManufacturerPortTypeJavaService.wsdl file under 
com\ibm\itso\Manufacturer folder in WarehouseBusinessProcess project.

The service and port type fields are defaulted from the service WSDL file, as 
shown in Figure 14-16,

Figure 14-16   Selecting Partner service wsdl files when generating deployment code

4. Repeat the previous step using the settings in Table 14-11 to select the 
service wsdl file for other Partners

Table 14-11   Referenced partners

5. Click OK. The code generation might take a few minutes.

Partner WSDL File

ManufacturerB ManufacturerBPortTypeJavaService.wsdl

ManufacturerC ManufacturerCPortTypeJavaService.wsdl

LoggingFacility LoggingFacilityLogPortTypeJavaService.
wsdl
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 447



When finished you will see that a WarehouseBusinessProcessEJB and 
WarehouseBusinessProcessWeb project has been created. The EJB module 
contains runtime WS-BPEL code. The Web module is currently empty but we 
will later create our HTTP/SOAP Warehouse service in this Web module.

Also note that a WSDL binding file called 
WarehouseBP_WarehouseShipmentPortType_EJB.wsdl has been created in 
the com.ibm.itso.Warehouse package.

6. We create a WSIF proxy class using the WSDL binding file created the 
previous step. This WSIF class is used by clients to invoke the BPEL process.

Right-click Warehouse_WarehouseShipmentPortType_EJB.wsdl in the 
WarehouseBusinessProcess project and select Enterprise Services → 
Generate Service Proxy.

7. On the Proxy Selection window, accept the default proxy type Web Services 
Invocation Framework (WSIF) and click Next.

8. Review and accept the default entries on the Service Proxy window, as shown 
in Figure 14-17, and click Next.

Figure 14-17   Generating WSIF proxy

9. On the next window, accept the default proxy style Client Stub, select 
shipGoods operation and click Finish.

Confirm that WarehouseShipmentsPortTypeProxy.java has been generated in 
the com.ibm.itso.Warehouse package.
448 Patterns: Extended Enterprise SOA and Web Services



14.3.7  Create the Warehouse service
In this section we use the Warehouse.wsdl file provided by the sample 
application to generate a Java bean. When the Retailer invokes the Warehouse 
service, the Web services engine accepts the service request and invokes this 
Java bean. This Java bean is responsible for initializing the BPEL process using 
the WSIF proxy created in the previous section.

We create the Warehouse service in a Web module. In our scenario, we use the 
WarehouseBusinessProcessWeb project for this purpose. You can choose to use 
a different Web project.

Create a new server and server configuration
The wizard that generates the Java bean skeleton from WSDl files requires you 
to select a server in your workspace. Therefore, we create a new server in this 
section.

1. In WebSphere Studio Application Developer Integration Edition, switch to 
Business Integration perspective. Select Window → Show View → Server 
Configuration.

2. Right-click in the Service Configuration window and select New → Server 
and Server Configuration.

3. Enter WarehouseServer as Server name.

4. In the Server type section, expand WebSphere version 5.1 and select 
Integration Test Environment.

5. Click Finish. Look for WarehouseServer in the Server Configuration window.

Importing WSDL files
To import the WSDL files, follow these steps: 

1. In the WarehouseBusinessProcessWeb project, create a package, 
com.ibm.itso.wsdl, under JavaSource.

2. Import the following WSDL and XSD files hosted on the HTTP Server into 
package com.ibm.itso.wsdl:

– Configuration.wsdl
– Configuration.xsd
– envelope.xsd
– Warehouse.xsd
– Warehouse.wsdl
– Wareshouse_Impl.wsdl

Tip: <HTTP_Server_home>\htdocs\en_US\wsdl is the location of directory 
where these WSDL files are hosted on the itsogood.itso.ral.ibm.com machine.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 449



3. Notice some compilation errors reported in some of the WSDL files. This is 
because the import statements in some of these files refer to the HTTP server 
which cannot be accessed from your WebSphere Studio Application 
Developer Integration Edition workspace at development time. Change these 
WSDL files to import the locally stored WSDL files. 

To fix these compilation errors open each of the WSDL file reporting errors 
and change import path for WSDL. Change the text:

location = “http://appsrv1a.itso.ral.ibm.com/wsdl/<wsdl file>” 

Replace it with this line:

location="<wsdl file>"

This should fix all the compilation errors in the workspace.

4. Right-click the Warehouse_Impl.wsdl file and select Web Services → 
Generate Java Bean Skeleton. 

5. In the Service Deployment Configuration window click Edit to select 
Integration Test Environment v5.1. Accept all other defaults as shown in 
Figure 14-18 on page 451 and click Next.
450 Patterns: Extended Enterprise SOA and Web Services



Figure 14-18   Generating web services client

6. Confirm that the Web services URI entered is 
/WarehouseBusinessProcessWeb/JavaSource/com/ibm/itso/wsdl/Warehouse_
Impl.wsdl and click Next.

7. Accept all defaults on the next window and click Finish.

8. Navigate to WarehouseBusinessProcess → JavaSource → 
org.ws_i.www and open the WarehouseSoapBindingImpl.java file.

9. Replace code in the WarehouseSoapBindingImpl.java file with code in the 
additional material supplied with this redbook from 
SerialGeneric\supportFiles\WarehouseSoapBindingImpl.java.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 451



14.3.8  Exporting the Enterprise Application files
The WarehouseBusinessProcess enterprise application must be exported from 
the WebSphere Studio Application Developer Integration Edition workspace to 
an EAR file, so that it can be deployed to WebSphere Business Integration 
Server Foundation.

To export the WarehouseBusinessProcess enterprise application, follow these 
steps:

1. Click File → Export.

2. In the Export wizard, highlight EAR file and click Next.

3. In the EAR project pull-down, select WarehouseBusinessProcessEAR. 
Click Browse and locate a directory to where you want to store the enterprise 
application. Click Save. The enterprise application is called 
WarehouseBusinessProcess.ear by default.

4. Click Finish to generate WarehouseBusinessProcessEAR.ear.

14.4  Runtime guidelines
This section describes how to test and deploy the Warehouse business process 
built in 14.3, “Development guidelines” on page 425.

It contains the following sections:

� Testing with Web Services Explorer
� Testing the business process with ITSO Good
� Deploying the business process

As shown in Figure 14-19 on page 453, the ITSO Good application has been 
split into two applications: 

� One with the Warehouse running as a WS-BPEL business process in 
WebSphere Business Integration Server Foundation V5.1

� The other with Retailer, SCMSampleUI, and LoggingFacility running in 
WebSphere Application Server Network Deployment V6.
452 Patterns: Extended Enterprise SOA and Web Services



Figure 14-19   Runtime deployment topology

14.4.1  Testing with Web Services Explorer

Before testing the business process with the ITSO Good sample application, you 
can give the process a trial run using the Web Services Explorer. Perform the 
following:

1. In WebSphere Studio Application Developer Integration Edition, click the 
Servers tab, then right-click WarehouseServer and select Add and remove 
projects.

2. In the Add and Remove Projects window, select 
WarehouseBusinessProcessEAR and click Add to add it to the list of 
configured projects. Click Finish.

3. Start the server by right-clicking WarehouseServer and clicking Start.

4. When the server has started, you can invoke the Warehouse business 
process using the Web service interface you have defined for it. In the 
Package Explorer view locate 
WarehouseBusinessProcessWeb\WebContent\wsdl\Warehouse_Impl.wsdl. 
This WSDL file is used to invoke the business process. Right-click 
Warehouse_Impl.wsdl and click Web Services → Test with Web Services 
Explorer.

5. The Web Services Explorer starts. In the Navigator section expand 
WarehouseSoapBinding and click ShipGoods.

Manufacturer C

CICS

Manufacturer B

.NET

WebSphere Application Server Network Deployment

WebSphere Application
Server

Manufacturer A

WebSphere Business Integration
Server Foundation

ITSO Good

Web
Services
Gateway

Logging
Facility

Retailer

SCMSampleUI

Warehouse
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 453



6. The Actions section allows you to invoke the shipGoods operation. Enter the 
following information (Figure 14-20).

a. Set ProductNumber to 605001
b. Set Quantity to 1
c. Set Customer to A12345-9876543-xyz

Figure 14-20   Web Services Explorer input

7. Click Go to invoke the business process. When the call is complete, the status 
bar should show the message response. Click Source to see the SOAP 
request and response message. Figure 14-21 on page 455 shows a 
successful invocation, where the response message is set to true.
454 Patterns: Extended Enterprise SOA and Web Services



Figure 14-21   SOAP request and response message

14.4.2  Testing the business process with ITSO Good

We can test that the Warehouse business process works with the ITSO Good 
sample application while the business process is running in the WebSphere 
Studio Application Developer Integration Edition test environment. For detailed 
instructions about using the ITSO Good sample application see 8.2, “ITSO Good 
sample business scenario” on page 138.

1. In WebSphere Studio Application Developer Integration Edition, ensure the 
Warehouse business process is added to a test server, and that test server is 
running, as described in 14.4.1, “Testing with Web Services Explorer” on 
page 453.

2. Start the ITSOGoodProfile and ManufacturerProfile WebSphere Application 
Server instances on the itsogood.itso.ral.ibm.com machine. Also start 
ManufacturerB and ManufacturerC if you have configured them.

3. You need to change the Web services client binding for the Retailer to point to 
the new Warehouse business process. Perform the following tasks:

a. Log in to the ITSOGoodProfile machine where the ITSOGood enterprise 
application is hosted.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 455



b. Click Applications → Enterprise Applications → ITSOGood → Web 
modules → RetailerWeb.war → Web services client bindings.

c. Click Edit for WarehouseService in the Port Information column.

d. In the Overridden Endpoint URL field, enter the URL of the Warehouse 
business process Web service. You need to include the IP address of the 
machine where the Warehouse Web service is running in the test 
environment of WebSphere Studio Application Developer Integration 
Edition. For example if the test server were using IP address 1.2.3.4, you 
would enter:

http://1.2.3.4:9080/WarehouseBusinessProcessWeb/services/Warehouse

e. Click OK then save your changes.

f. Restart the ITSOGood enterprise application.

4. You are now ready to test the ITSO Good sample application. To start, test the 
Warehouse business process without invoking any Manufacturers:

a. Launch the ITSO Good sample application on the machine hosting the 
ITSOGood enterprise application:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI

b. Click Place New Order.

c. Order 1 item of product 605001 and click Submit Order. This makes a 
Web service call from the Retailer to the Warehouse Web service running 
in WebSphere Studio Application Developer Integration Edition.

d. To check if the call was successful, click Track Order. You should see an 
entry stating BPEL Warehouse is able to ship the goods, as shown in 
Figure 14-22 on page 457.
456 Patterns: Extended Enterprise SOA and Web Services



Figure 14-22   Successful invocation of the Warehouse

e. You should also see an entry in the Console view of WebSphere Studio 
Application Developer Integration Edition to indicate the LoggingFacility 
Web service was invoked:

SystemOut O logged

5. Now test the ITSO Good sample application again, this time placing an order 
that requires the Warehouse business process to invoke a Manufacturer:

a. Click Configure to return to the front screen of the ITSO Good sample 
application.

b. Click Place New Order then order 6 items of product 605001. Click 
Submit Order. This requires the Warehouse business process to invoke 
the Manufacturer Web service to replenish the stock for this product.

c. Click Track Order to see if the invocation was successful. You should see 
the same entries as shown in Figure 14-22 again.

d. There are two ways to confirm that the Manufacturer was invoked. Look in 
the Console view of WebSphere Studio Application Developer Integration 
Edition for the following entry:

SystemOut O Manufacturer_A has received and processed a request.

e. You should also see the following entry in the SystemOut.log file of the 
ManufacturerProfile application server:

SystemOut O Manufacturer A: Processing Purchase Order.

6. Try to order 6 items of product 605002 to test ManufacturerB, or 6 items of 
product 605003 to test ManufacturerC.
 Chapter 14. Exposed Serial Process runtime pattern: generic profile 457



14.4.3  Deploying the business process

The Warehouse business process can be deployed to a WebSphere Business 
Integration Server Foundation server instead of using the test environment of 
WebSphere Studio Application Developer Integration Edition. 

For detailed instructions on how to install and configure WebSphere Business 
Integration Server Foundation for WS-BPEL business processes, consult 
WebSphere Business Integration Server Foundation V5.1 Handbook, 
SG24-6318.

At a high level, perform the following:

1. Install WebSphere Business Integration Server Foundation V5.1.1.
2. Install the BPE container.

3. Install and start the WarehouseBusinessProcess.ear file exported from 
14.3.8, “Exporting the Enterprise Application files” on page 452.

Note: The WS-BPEL process developed in our scenario is a short running 
process. Short running processes do not need any database, messaging, or 
staff configurations.
458 Patterns: Extended Enterprise SOA and Web Services



Chapter 15. Exposed Serial Process 
runtime pattern: SOA profile

This chapter extends Chapter 14, “Exposed Serial Process runtime pattern: 
generic profile” on page 419 by describing how to build an Exposed Serial 
Process using an SOA profile.

In this scenario, the Warehouse WS-BPEL business process is modified to use 
an ESB and Exposed ESB Gateway to make calls to the Manufacturers. The 
business process is further modified remove the processing logic which 
determines which Manufacturer is used to replenish which item of stock. This 
logic has been moved to the SOA infrastructure of the ESB and Exposed ESB 
Gateway, where it has been implemented as a mediation.

The Exposed Serial Process runs in WebSphere Business Integration Server 
Foundation, the ESB is implemented using the service integration bus of 
WebSphere Application Server Network Deployment, and the Exposed ESB 
Gateway is implemented using the Web services gateway component of 
WebSphere Application Server Network Deployment.

15
© Copyright IBM Corp. 2006. All rights reserved. 459



15.1  Business scenario
The business scenario that is implemented in this chapter is exactly the same as 
discussed in Chapter 14, “Exposed Serial Process runtime pattern: generic 
profile” on page 419.

But in addition to addressing the business requirement to make the ITSO Good 
business process flexible and responsive, ITSO Good as part of their strategic 
SOA transformation of their IT services would like to build an infrastructure that 
can support these business-aligned services in an enterprise scale.

The decision of which Manufacturer to use to replenish stock is removed from the 
Warehouse business process, and instead placed as a mediation in part of the 
SOA infrastructure.

15.2  Design guidelines
In this section, we analyze the business requirements and apply Patterns for 
e-business to determine the appropriate runtime pattern for the solution. We then 
discuss the various design options available to us in implementing the solution 
and also look at the product mappings.

15.2.1  Analyze the business requirement
The given business scenario requires the need to externalize the process 
execution logic from the individual application services. We are then able to use a 
process manager to automate the coordination of business process flow between 
the Warehouse and the Manufacturing partners of ITSO Good.

Because the business process in the given scenario goes across organization 
boundaries, the following additional system requirements also need to be 
addressed:

� Interoperability standards should be used where possible to minimize future 
changes required to the source and target applications.

� Security is a primary concern when opening business processes to external 
organizations. As a result, the solution should include robust security 
mechanisms to protect enterprise resources.

15.2.2  Selecting a pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern 
to apply to this scenario. 
460 Patterns: Extended Enterprise SOA and Web Services



Described below is a step-by-step approach used to navigate the Patterns for 
e-business asset catalog:

1. Business pattern

We select the Extended Enterprise business pattern because the given 
scenario requires interactions between the business processes in the 
Warehouse and Manufacturer systems that reside in separate enterprises.

2. Application pattern

Because the source application (Warehouse) initiates an interaction that is to 
be distributed to multiple target partner applications in a serial manner, we 
choose the Exposed Serial Process application pattern.

3. Runtime pattern

The selection of the application pattern provides us with the possible runtime 
patterns for the proposed solution. Since the business requirement mandates 
an SOA infrastructure, we select the SOA profile of the Exposed Serial 
Process application pattern. 

Figure 15-1 on page 462 shows the level 0 decomposition of the SOA profile of 
the Exposed Serial Process runtime pattern, mapped on to the Exposed Serial 
Process application pattern.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 461



Figure 15-1   Exposed Serial Process runtime pattern: SOA profile

15.2.3  Analyze design options
The design decisions made in the previous chapters also apply to this scenario, 
specifically:

� “Implementing an Exposed Serial Process” on page 423
� “WS-BPEL” on page 423

In addition, this scenario implements the Exposed Process Manager in the 
generic profile scenario, as the Business Service Choreography node in this 
scenario. The Business Service Choreography node uses an ESB to 
communicate to service providers, and the ESB is also used when service 
consumers initiate a process. When service consumers and providers are in an 
extended enterprise, the Exposed ESB Gateway is responsible for handling 
these requests on behalf of the ESB.

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Provider>

App Server/
Services

ESBESBESB

Business
Service

Choreography

Directory
& Security 
Services

Serial
Process

Rules Tier

Exposed Serial Process

Source
Application

Target
Application

Target
Application

Target
Application

WIPWIP

Process
Execution

Rules

R/OR/O

Intermediate
Results
462 Patterns: Extended Enterprise SOA and Web Services



15.2.4  Products
In this section we look at the products available to implement the various 
components in the Exposed Broker runtime pattern. 

Product implementation options
Product choices for this scenario are based on:

� Design decisions that we made in 15.2.3, “Analyze design options” on 
page 462

� Extended Enterprise capabilities of the products

� Products that are currently available

Exposed Process Manager component
We can use the following currently available products to implement the Exposed 
Process Manager component in the given scenario:

� WebSphere MQ Workflow
� WebSphere Business Integration Server Foundation
� WebSphere Process Server

For this scenario, WebSphere Business Integration Server Foundation V5.1 
meets all of the requirements and, as a result, is the product of choice. 

ESB component
We can use the following currently available products to implement the ESB 
component in the given scenario:

� WebSphere Application Server Network Deployment V6.0.2
� WebSphere Message Integration Message Broker 

For this scenario, the service integration bus in WebSphere Application Server 
Network Deployment V6.0.2 meets all of the requirements and, as a result, is the 
product of choice. 

Exposed ESB Gateway component
We can use the following currently available products to implement the ESB 
component in the given scenario:

� Web services gateway component in WebSphere Application Server Network 
Deployment V6.0.2

� WebSphere Partner Gateway

In the given scenario, there is no requirement for advanced functions such as 
Partner Management and provisioning that are provided by the WebSphere 
Partner Gateway. Therefore, the Web services gateway component in 
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 463



WebSphere Application Server Network Deployment V6.0.2 is used to implement 
the Exposed ESB Gateway.

The complete product mapping for this scenario is shown in Figure 15-2.

Figure 15-2   Exposed Serial Process: SOA profile product mapping

This Product mapping uses WebSphere Application Server V6.0.2 to host the 
Application Services in the Enterprise Secure Zone. 

The ESB is run as a service integration bus within WebSphere Application 
Server Network Deployment V6.0.2, providing service location transparency 
between Service Consumers and Service Providers within the enterprise. With 
the Network Deployment offering, you can implement a scalable clustering of 
multiple WebSphere Application Server servers. 

An application service uses the ESB to invoke the automated process instance 
implemented by the Business Service Choreography node using the Web 
Services Invocation Framework (WSIF). The Business Service Choreography 
node is implemented using WebSphere Business Integration Server Foundation 
V5.1.

A local DB2 Universal Database database is used to store the SDO repository.

The Web services gateway provided with WebSphere Application Server 
Network Deployment V6.0.2 is the Exposed ESB Gateway in our Product 

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

D
om

ai
n 

Fi
re

w
al

l
D

om
ai

n 
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

<Service Provider>

<Service Provider>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP 
Server V6

Microsoft .NET

• Service Integration Bus & 
WebSphere Administration 
(part of WebSphere 
Application Server V6.0.2)

• DB2 Universal Database

WebSphere 
Application 
Server V6.0.2

<Service Provider>
Internet

App Server/
Services

<Service Provider>

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1 WebSphere 

Application 
Server V6.0.2

ESBESBESB

Business
Service

Choreography

• WebSphere Business 
Integration Server 
Foundation V5.1

WebSphere 
Application Server 
V6.0.2 Network 
Deployment Web 
Services Gateway

WebSphere Application 
Server V6.0.2 Network 
Deployment Web 
Services Gateway

Directory
& Security 
Services
464 Patterns: Extended Enterprise SOA and Web Services



mapping. It is used to provide a standard, consistent interface for the internal 
processes to access external processes. The use of an Exposed ESB Gateway 
minimizes the disruption caused by changes in the external partner 
infrastructure. 

In the Directory and Security services node, the service integration bus within 
WebSphere Application Server Network Deployment V6.0.2 is configured secure 
all transactions to the external Partner Zone to use WS-Security integrity and 
confidentiality. 

The IBM HTTP Server V6 acts as an Adapter Connector by providing protocol 
transformation to SOAP/HTTPS thus delivering transport level security between 
the enterprise and the partner organizations.

15.3  Development guidelines
This section describes how to implement the Exposed Serial Process and 
integrate the process with an ESB.

15.3.1  Scenario implementation: Serial process interaction
The WS-I sample scenario implemented in Chapter 15, “Exposed Serial Process 
runtime pattern: SOA profile” on page 459 is the starting point for this chapter. 

The Warehouse business process is modified to invoke an inbound service on 
the ESB implemented as the service integration bus of WebSphere Application 
Server. The ESB forwards the request to the Web services gateway. We create a 
mediation service on the gateway which is responsible for creating and sending 
requests to different manufacturers (if required). When the manufacturers reply, 
the mediation service collates these responses and forwards a single response 
to the Warehouse business process through the ESB.

We use the Process Choreographer tool in WebSphere Studio Application 
Developer Integration Edition to create and generate deployment code for a 
business process.

Note: This section requires WebSphere Studio Application Developer 
Integration Edition V5.1.1 plus Cumulative Fix 010 or higher installed.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 465



15.3.2  Creating the basic infrastructure
This scenario assumes that you have completed the scenario described in 
Chapter 14, “Exposed Serial Process runtime pattern: generic profile” on 
page 419. We build from that infrastructure in this chapter.

If you did not complete building the business process in the previous chapter, you 
can add it by importing the project interchange file CompletedProcess.zip into a 
workspace in WebSphere Studio Application Developer Integration Edition. You 
can find this file in the SerialGeneric directory in the additional material supplied 
with this redbook.

Before you can build the WS-BPEL business process for this scenario, you need 
to make the following changes to the base infrastructure:

� Create a service integration bus.
� Create an HTTP endpoint listener for the bus.
� Define a Manufacturer inbound service on the service integration bus.
� Export the Manufacturer inbound service WSDL.

Creating a service integration bus
Create a new service integration bus on the ITSOGoodProfile server running on 
the itsogood.itso.ral.ibm.com machine as follows:

1. Log in to the ITSOGoodProfile server administration console.

2. Create a new service integration bus called ESBBus:

a. Expand Service integration, click Buses ,and click New to create a new 
bus.

b. Enter a name of ESBBus and click Apply.

3. Click Bus members and click Add. Click Next, then Finish to create the bus 
member.

4. Save your changes.

Creating an HTTP endpoint listener
To enable clients to communicate to ESBBus using SOAP/HTTP, create an HTTP 
endpoint listener as follows:

1. Click Servers → Application Servers → server1 → Endpoint listeners.

2. Create a new Endpoint listener:

a. Click New.

b. Enter a Name of SOAPHTTPChannel1, a URL root of 
http://itsogood.itso.ral.ibm.com:9080/wsgwsoaphttp1 and a WSDL 
serving HTTP URL root of http://appsrv1a.itso.ral.ibm.com/wsdl
466 Patterns: Extended Enterprise SOA and Web Services



c. Click Apply.

3. Assign the endpoint listener to ESBBus:

a. Click Connection Properties.
b. Click New.
c. Set the Bus name to ESBBus and click OK.

4. Save your changes.

Defining a Manufacturer inbound service
Add a Manufacturer inbound service to the ESBBus service integration bus as 
follows.

1. Click Service integration → Buses → ESBBus → Inbound Services.

2. Define an inbound service called ManufacturerService:

a. Click New.

b. Leave the Service destination name to default. We will change it later.

c. In the Template WSDL location field enter 
http://appsrv1a.itso.ral.ibm.com/wsdl/Manufacturer_Impl.wsdl

d. Click Next, and Next.

e. Set the Inbound service name to ManufacturerInboundService, then click 
Next.

f. Click Finish.

3. Change the inbound port name to Manufacturer:

a. In the ManufacturerInboundService properties click Inbound Ports.
b. Click on the existing inbound port name.
c. Set the Name field Manufacturer
d. Click OK.

4. Save your changes.

Exporting the Manufacturer inbound service WSDL
We need to export the WSDL describing how to invoke the Manufacturer inbound 
service so it is available to the business process we build in WebSphere Studio 
Application Developer Integration Edition. Perform the following steps:

1. Click Service integration → Buses → ESBBus → Inbound Services → 
ManufacturerInboundService.

2. Export the Manufacturer inbound service WSDL files to the local file system:

a. Click Publish WSDL files to ZIP file.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 467



b. Click ManufacturerInboundService.zip and then click Open in the 
resulting dialog. The ZIP file opens in the application your operating 
system has associated with .zip files

c. Save the following files to a temporary directory on your local file system:

• ESBBus.ManufacturerInboundServiceBindings.wsdl
• ESBBus.ManufacturerInboundServicePortTypes.wsdl
• ESBBus.ManufacturerInboundServiceService.wsdl

3. Copy each of the three exported files to the machine where WebSphere 
Studio Application Developer Integration Edition is running, so you will have 
access to them when building the Warehouse business process.

15.3.3  Creating a Manufacturer Web service client
In this scenario, the Manufacturers are accessed through a service integration 
bus and Web services gateway. The Warehouse business process invokes each 
Manufacturer by placing a single call to the Manufacturer inbound service 
running in the service integration bus. 

The Manufacturer inbound service uses a mediation to determine which 
manufacturers need to be called, and places calls to the relevant Web services 
gateway services, that, in turn, contact the manufacturers.

This section describes how to create a Web services client that points to the 
Manufacturer inbound service. For detailed steps on creating a Web services 
client see 14.3.4, “Creating Manufacturer and LoggingFacility Web services 
clients” on page 429.

1. In the WebSphere Studio Application Developer Integration Edition 
workspace used for the previous chapter, create a new Java project called 
ManufacturerESBServiceClient.

2. Import the following WSDL files into the folder 
ManufacturerESBServiceClient\wsdl. Find the ESBBus* files in the 
temporary directory you used in the previous step, and you can find others in 
the HTTP server on the itsogood.itso.ral.ibm.com server:

– Configuration.wsdl
– Configuration.xsd
– envelope.xsd
– ESBBus.ManufacturerServiceBindings.wsdl
– ESBBus.ManufacturerServicePortTypes.wsdl
– ESBBus.ManufacturerServiceService.wsdl
– ManufacturerPO.xsd
– ManufacturerSN.xsd
468 Patterns: Extended Enterprise SOA and Web Services



3. The ESBBus* files import with errors. Fix these by removing the references 
to http://appsrv1a.itso.ral.ibm.com/wsdl.

4. Create a Web services client for the Manufacturer inbound service:

a. Right-click ESBBus.ManufacturerServiceService.wsdl and select Web 
Services → Generate Client.

b. Click Next.

c. Select Choose server first, then select Integration Server v5.1. Click 
Finish.

5. Delete ManufacturerPortTypeProxy.java in the org.ws_i.www package of 
ManufacturerESBServiceClient. There should be no errors, only warnings, in 
the Tasks view.

15.3.4  Modify the Manufacturer proxy class
The Manufacturer proxy class created in the previous chapter invokes the 
Manufacturer Web services gateway service. We change this proxy to call the 
Manufacturer inbound service client created in the previous section.

1. Change the build path of WarehouseBusinessProcess to include 
ManufacturerESBServiceClient and exclude the 
ManufacturerGWServiceClient project. You can see some compilation errors 
in the Tasks view. These are fixed in the following steps. 

2. Open ManufacturerPortType.java file under com.ibm.itso.Manufacturer in 
the WarehouseBusinessProcess project. Replace the code for the entire 
class with the code in ManufacturerPortType.java, which you can find in the 
SerialSOA\supportFiles directory of the additional material supplied with this 
redbook.

3. Delete the Java packages com.ibm.itso.ManufacturerB and 
com.ibm.itso.ManufacturerC in the WarehouseBusinessProcess project.

4. All of the compilation errors should now be fixed.

15.3.5  Modify the Warehouse business process
In this section we modify the Warehouse business process to call the 
Manufacturer inbound service on the ESB.

1. Open the WarehouseBP.bpel file in the BPEL editor. You can find this file in 
the com.ibm.itso.Warehouse package of the WarehouseBusinessProcess 
project.

2. Delete the Partner Links called ManufacturerBLink and 
ManufacturerCLink.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 469



3. Delete the following variables:

– manBOrderRequired
– manCOrderRequired
– manufacturerBRequest
– manufacturerBResponse
– manufacturerCRequest
– manufacturerBResponse

4. Rename variable manAOrderRequired to manOrderRequired.

5. Delete the sequences ManufacturerB and ManufacturerC. 

6. Your BPEL process should look like the process shown in Figure 15-3.

Figure 15-3   Warehouse Business Process

7. Replace the code in the Prepare Manufacturer Requests Java snippet with 
PrepareManufacturerRequestsSnippet.txt which you can find in the 
SerialSOA\supportFiles directory of the additional material supplied with this 
redbook.

8. Modify the Case visual expression to be:

manOrderRequired.value == true
470 Patterns: Extended Enterprise SOA and Web Services



9. Save the WarehouseBP.bpel file. There should be no errors in the 
WarehouseBusinessProcess project (although there will be errors in the 
WarehouseBusinessProcessEJB project which we will fix next).

15.3.6  Generate deployment code and export the process
To generate deployment code for the new business process, perform the 
following:

1. Right click WarehouseBP.bpel and select Enterprise Services → Generate 
Deploy Code.

2. In the Generate BPEL Deploy Code window, click OK to generate the 
deployment code.

3. There should be no errors in the Tasks view.

You can optionally export the deployed business process to an EAR file if you 
intend to deploy it to WebSphere Business Integration Server Foundation. To 
export the WarehouseBusinessProcess enterprise application:

1. Click File → Export.

2. In the Export wizard, highlight EAR file and click Next.

3. In the EAR project pull-down menu, select 
WarehouseBusinessProcessEAR. Click Browse and locate a directory to 
where you want to store the enterprise application. Click Save. The enterprise 
application is called WarehouseBusinessProcess.ear by default.

4. Click Finish to generate WarehouseBusinessProcessEAR.ear.

15.4  Runtime guidelines
This section describes how to test and deploy the Warehouse business process 
built in 15.3, “Development guidelines” on page 465.

It contains the following sections:

� Configuring the ESB
� Configuring the Exposed ESB Gateway
� Testing the business process with ITSO Good

As shown in Figure 15-4 on page 472, the ITSO Good application remains split 
into two applications: one with the Warehouse running as a WS-BPEL business 
process in WebSphere Business Integration Server Foundation V5.1, and the 
other with Retailer, SCMSampleUI, and LoggingFacility running in WebSphere 
Application Server Network Deployment V6.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 471



Figure 15-4   Runtime deployment topology

The Warehouse application deployed in WebSphere Business Integration Server 
Foundation V5.1 is invoked by the Retailer application running in WebSphere 
Application Server Network Deployment V6.0.2. The Warehouse application then 
invoke the Manufacturer or Manufacturers if required with the ESB and the Web 
services gateway. The Web services gateway includes a mediation service which 
checks the incoming message from the Warehouse and identifies the relevant 
Manufacturers to be called. It also then aggregates the response messages from 
the various Manufacturers and creates a single message which is returned to the 
Warehouse for logging. 

15.4.1  Configuring the ESB
This section describes how to configure the ESB implemented by the ESBBus 
service integration bus.

You need to perform the following tasks:

� Define an outbound service to point to the Manufacturer Gateway service.
� Reconfigure the Manufacturer inbound service to point to the Manufacturer 

outbound service.

Manufacturer C

CICS

Manufacturer B

.NET

WebSphere Application Server Network Deployment

WebSphere Application
Server

Manufacturer A

WebSphere Business Integration
Server Foundation

ITSO Good

Web
Services
Gateway

Enterprise
Service

Bus

Mediation
Service

Logging
Facility

Warehouse

Retailer

SCMSampleUI
472 Patterns: Extended Enterprise SOA and Web Services



Defining a Manufacturer outbound service
Perform the following in the ITSOGoodProfile server administrative console, 
where the ITSOGood enterprise application is installed:

1. Click Service integration → Buses → ESBBus → Outbound Services.

2. Define a new outbound service called 
ManufacturerGatewayOutboundService as follows:

a. Click New.

b. In the WSDL location field enter the location of the Manufacturer Gateway 
service WSDL file, which should be 
http://appsrv1a.itso.ral.ibm.com/wsdl/ExposedESBGatewayBus.Manufa
cturerGatewayServiceService.wsdl

c. Click Next, Next, and Next.

d. Set the Outbound service name to ManufacturerGatewayOutboundService, 
the Service destination name to 
ManufacturerGatewayOutboundServiceDestination, and the Port 
destination name to ManufacturerGatewayOutboundPort.

e. Click Next, then Finish.

3. Save your changes.

Reconfiguring the Manufacturer inbound service
Reconfigure the Manufacturer inbound service so that it points to the destination 
used by the Manufacturer outbound service. Perform the following:

1. Click Service integration → Buses → ESBBus → Inbound Services.

2. Click ManufacturerInboundService.

3. Set the Service destination name to 
ManufacturerGatewayOutboundServiceDestination and click OK.

4. Save your changes.

15.4.2  Configuring the Exposed ESB Gateway
This section describes how to configure the Exposed ESB Gateway which is 
implemented by the ExposedESBGateway Web services gateway.

You need to perform the following tasks:

� Install the mediation and define the request and response mediations.
� Assign the mediations to the Web services gateway service.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 473



Installing and defining the mediations
The first step is to install the mediation enterprise application, then define the 
request and response mediations to the ExposedESBGatewayBus service 
integration bus. Perform the following steps in the ITSOGoodProfile server 
administrative console, where the ITSOGood enterprise application is installed:

1. Install the ManufacturerBroker.ear mediation as follows:

a. Click Applications → Install New Application.

b. In the Specify path field locate ManufacturerBroker.ear. This EAR file is in 
the additional material, provided with this book, in the 
\BrokerGeneric\ears directory.

c. Click Next then click through the install wizard to install the enterprise 
application.

d. Save your changes.

2. Start the ManufacturerBroker enterprise application.

3. Define the request and response mediations to the ExposedESBGatewayBus 
service integration bus as follows:

a. Click Service integration −> Buses → ExposedESBGatewayBus → 
Mediations.

b. Click New.

c. Define a new mediation with the following properties, then click OK.

• Mediation name: RequestMediator
• Handler list name: RequestMediator
• Select Global transaction

d. Define a second mediation with the following properties, then click OK.

• Mediation name: ResponseMediator
• Handler list name: ResponseMediator
• Select Global transaction

4. This scenario needs context properties for both the mediations. Define these 
as follows:

a. Click Service integration → Buses → ExposedESBGatewayBus → 
Mediations → RequestMediator → Context Properties.

b. Click New and create a context property with the following values, then 
click OK:

• Name: logQueueName
• Context type: String
• Context value: logQ
474 Patterns: Extended Enterprise SOA and Web Services



c. Create a second context property for RequestMediator with the following 
values:

• Name: tmpStorageQueueName
• Context type: String
• Context value: tmpStorageQ

d. Define these two context properties (logQueueName and 
tmpStorageQueueName) for ResponseMediator.

5. You need to create the logQ and tmpStorageQ destinations as follows:

a. Click Service integration → Buses → ExposedESBGatewayBus → 
Destinations.

b. Click New, and define a new queue destination called logQ.

c. Define a second queue destination called tmpStorageQ.

6. Save your changes.

Assigning the mediations to the Gateway service
When a request for a Manufacturer Web service is received by the Manufacturer 
inbound service on ESBBus, it is forwarded to the ManufacturerGatewayService 
on the ExposedESBGatewayBus. We need to assign the request and response 
mediations to the ManufacturerGatewayService as follows:

1. Click Service integration → Buses → ExposedESBGatewayBus → Web 
service gateway instances.

2. Click the ExposedESBGateway Web service gateway instance.

3. Click Gateway services, then click the ManufacturerGatewayService 
Gateway service.

4. Set the following fields, as shown in Figure 15-5, then click OK.

– Request mediation: RequestMediator
– Request mediation bus member: ITSOGoodNode:server1
– Response mediation: ResponseMediator
– Response mediation bus member: ITSOGoodNode:server1
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 475



Figure 15-5   Mediations assigned to the Gateway service

5. Save your changes.

6. For all of the changes to take effect, restart the ITSOGoodProfile application 
server.

15.4.3  Testing the business process with ITSO Good

We can test that the Warehouse business process works with the ITSO Good 
sample application while the business process is running in the WebSphere 
Studio Application Developer Integration Edition test environment. For detailed 
instructions about using the ITSO Good sample application, see 8.2, “ITSO Good 
sample business scenario” on page 138.

1. In WebSphere Studio Application Developer Integration Edition, ensure the 
Warehouse business process is added to a test server, and that this test 
server is running.

2. Start the ITSOGoodProfile and ManufacturerProfile WebSphere Application 
Server instances on the itsogood.itso.ral.ibm.com machine. Also start 
ManufacturerB and ManufacturerC, if you have configured them.
476 Patterns: Extended Enterprise SOA and Web Services



3. You are now ready to test the ITSO Good sample application. To start, test the 
Warehouse business process by placing an order that invokes only 
ManufacturerA:

a. Launch the ITSO Good sample application on the machine hosting the 
ITSOGood enterprise application:

http://itsogood.itso.ral.ibm.com:9080/SCMSampleUI

b. Click Place New Order.

c. Order 6 items of product 605001 and click Submit Order. This makes a 
Web service call from the Retailer to the Warehouse Web service running 
in WebSphere Studio Application Developer Integration Edition, and 
eventually invoke ManufacturerA using the mediation.

d. To check that the call is successful, click Track Order. You should see an 
entry stating BPEL Warehouse is able to ship the goods, as shown in 
Figure 15-6.

Figure 15-6   Successful invocation of the Warehouse

e. To confirm the mediation is invoked, check the SystemOut.log file of the 
machine running the ITSOGoodProfile application server for the 
messages shown in Example 15-1.

Example 15-1   Expected output showing the ManufacturerBroker mediation was invoked

SystemOut     O ManufacturerBroker REQUEST Mediator: Starting ...
SystemOut     O ManufacturerBroker REQUEST Mediator: Processing product 605001.
SystemOut     O ManufacturerBroker REQUEST Mediator: Finished.
SystemOut     O ManufacturerBroker RESPONSE Mediator: Started.
SystemOut     O ManufacturerBroker RESPONSE Mediator: Message from Manufacturer: Manufacturer_A 
has received and processed a request.
 Chapter 15. Exposed Serial Process runtime pattern: SOA profile 477



[12/SystemOut     O ManufacturerBroker RESPONSE Mediator: Finished.

f. There are two ways to confirm the Manufacturer is invoked. Look in the 
Console view of WebSphere Studio Application Developer Integration 
Edition for the following entry:

SystemOut O Manufacturer_A has received and processed a request.

g. You should also see the following entry in the SystemOut.log file of the 
ManufacturerProfile application server:

SystemOut O Manufacturer A: Processing Purchase Order.

4. If you have ManufacturerB running, perform the following to test the 
configuration further:

a. Click Configure to return to the front screen of the ITSO Good sample 
application.

b. Click Place New Order then order 6 items of product 605001 and 6 items 
of product 605002. Click Submit Order. This requires the Warehouse 
business process to invoke the Manufacturer Web service to replenish the 
stock for this product.

c. Click Track Order to see if the invocation is successful. You should see 
the same entries as shown in Figure 15-6 on page 477 again.

d. Check the Console view of WebSphere Studio Application Developer 
Integration Edition for the following entries:

SystemOut O Manufacturer_A has received and processed a request.
SystemOut O Manufacturer_B has received and processed a request.
478 Patterns: Extended Enterprise SOA and Web Services



Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2006. All rights reserved. 479



480 Patterns: Extended Enterprise SOA and Web Services



Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the 
Internet as described below. 

Locating the Web material
The Web material associated with this redbook is available in softcopy on the 
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247135

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with 
the redbook form number, SG247135.

Using the Web material
The additional Web material that accompanies this redbook includes the 
following files:

File name Description
SG247135.zip Zipped code samples

A

© Copyright IBM Corp. 2006. All rights reserved. 481

ftp://www.redbooks.ibm.com/redbooks/SG247135
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10MB for source material
Operating System: Windows operating system
Memory: 1GB to run source material

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the 
Web material zip file into this folder.
482 Patterns: Extended Enterprise SOA and Web Services



Appendix B. Microsoft .NET Web services

This appendix provides a brief overview of Web services on the Microsoft .NET 
platform and how they play a role in our development and runtime scenarios. In 
addition, it describes how to:

� Implement a Web service using Microsoft Visual Studio® .NET 2003 and 
Internet Information Services V5.0. This includes designing, building, 
deploying, and testing the Web service.

� Implement a J2EE Web service consumer client using IBM Rational 
Application Developer V6.0. This also includes designing, building, deploying, 
and testing the J2EE client.

� Enable Microsoft Internet Information Services V5.0 to require transport-layer 
security using SSL for all incoming requests.

The appendix is divided into the following sections:

� B.1, “Overview and context of .NET Web services” 
� B.2, “Implementing a Microsoft .NET Web service” 
� B.2 "Implementing a Microsoft .NET Web service" on page 486
� B.3 "Enabling transport-level security with SSL" on page 500

B

© Copyright IBM Corp. 2006. All rights reserved. 483



B.1  Overview and context of .NET Web services
In today’s world, Web services provide the necessary building blocks in enabling 
organizations to achieve their business process refinement goals. On a 
high-level, Microsoft’s .NET platform provides tools similar to IBM in creating and 
deploying Web services. Table B-1 shows this comparison.

Table B-1   Table comparing development and deployment technologies

B.1.1  How Microsoft .NET is used in the Redbook scenarios
In this Redbook, we developed several sample scenarios based on SOA 
Extended Enterprise patterns. We decided to implement .NET technologies in 
one of the organizations throughout these scenarios in order to simulate 
real-world issues where two unique technologies must share a common 
language in order to share information. 

Throughout this Redbook, we use the ITSO Good supply chain management 
scenario. Figure B-1 shows that the Microsoft .NET Web service plays the role of 
a Web service target in the supply chain sample application. Specifically, it holds 
a role as a manufacturer of supplies (or Manufacturer B, as it is called in the 
scenario).

Figure B-1   How the Microsoft .NET Web service fits into our scenarios

DEVELOPMENT TECHNOLOGIES DEPLOYMENT TECHNOLOGIES

IBM Rational Application Developer V6.0 IBM WebSphere Application Server 

Microsoft Visual Studio .NET 2003 Microsoft Internet Information Services

Inter-enterprise 
Zone

Enterprise
Demilitarized Zone Enterprise Secure Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
ServicesD

om
ai

n 
Fi

re
w

al
l

D
om

ai
n 

Fi
re

w
al

l

Exposed
Connector

Rules
Directory

App Server/
Services

Microsoft .NET

WebSphere 
Application 
Server V6.0.2

CICS 
Transaction 
Server V3.1

IBM HTTP 
Server V2

Internet

WebSphere 
Application 
Server V6.0.2
(SOAP provider)

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2

WebSphere 
Application 
Server V6.0.2
484 Patterns: Extended Enterprise SOA and Web Services



Each manufacturer (Manufacturers A, B, and C) uses a unique technology to 
implement Web services. When completing the scenarios that employ three 
unique manufacturers, we are showing how organizations can bridge their 
technology gaps through the use of a common language, Web services using 
SOAP over HTTP.

B.1.2  Microsoft .NET Web service development overview
The implementation of the Microsoft .NET Web service we developed for our 
scenarios is written in the C# programming language. There are two design 
options developers must choose from when creating their Web service:

� Implementation First development
� WSDL First development

Implementation First development
In this design choice, a C# developer writes the business logic of an application. 
This application is then used to provide the implementation for a Web service. 
Visual Studio is used to generate a WSDL description of the C# code. This 
generated WSDL interface is used by Web service clients to connect to the Web 
service implemented in C#.

This option should be used when you want to expose an existing application as a 
Web service. See Figure B-1 for an illustration of how Implementation First 
development works.

Figure B-2   Implementation First development

WSDL

1. Create

2. Generate

3. Create

WSDL

Web service 
client

C# Web 
service
 Appendix B. Microsoft .NET Web services 485



WSDL First development
In this design choice, a Web service is generated from a pre-existing WSDL 
interface rather than from a pre-existing application. The WSDL interface is used 
to generate a skeleton C# application. The names of the classes, methods, and 
parameters in the skeleton C# application are derived from the equivalent names 
in the WSDL file. A C# developer must then add business logic to the C# 
skeleton application. 

This development technique is preferred in environments where unique systems 
must communicate data with each other through a common medium. By using 
primitive XML types in the WSDL interface and then mapping to platform-specific 
types, the likelihood of platform-interoperability increases dramatically. See 
Figure B-3 on page 486 for an illustration of how WSDL First development works.

Figure B-3   WSDL First development

B.2  Implementing a Microsoft .NET Web service
This section provides the user with a detailed explanation on implementing a 
Web service using Microsoft technologies. It has the following sections:

� B.2.1, “Create a new Web service project” 
� B.2.2, “Generating a C# file using a WSDL file and wsdl.exe” 
� B.2.3, “Modifying the C# file” 
� B.2.4, “Finalizing and deploying the Web service” 
� B.2.5, “Testing the .NET Web service” 

WSDL

2. Generate

1. Create

2. Create

WSDL

Web service 
client

C# Web 
service
486 Patterns: Extended Enterprise SOA and Web Services



B.2.1  Create a new Web service project
Microsoft Visual Studio .NET 2003 provides a project creator that generates 
several important aspects of the Web service being created. For our purposes, 
we will be using this software to create a new ASP .NET Web service project.

1. Start Microsoft Visual Studio .NET 2003 by selecting Start → Programs → 
Microsoft Visual Studio .NET 2003 → Microsoft Visual Studio .NET 2003.

2. Select File → New → Project.

3. Under Project Types, select the Visual C#® Projects folder. Under 
Templates, select ASP.NET Web service.

4. In the Location text box, remove the existing text and replace it with 
http://localhost/ManuacturerB, and then click OK:

5. Now the Web service is open but we must select Click here to switch to 
code view in order to see the service’s C# code. This can also be done by 
right-clicking Service1.asmx in the Solutions Explorer and selecting View 
code.

6. Right-click Service1.asmx in the Solutions Explorer frame and Rename the 
Web service from Service1.asmx from to ManufacturerB.asmx.

7. Close Microsoft Visual Studio .NET 2003.

B.2.2  Generating a C# file using a WSDL file and wsdl.exe
The next step in creating a Microsoft .NET Web service is to generate a template 
Web service source code file based on the XML schemas and operations 
described in a WSDL file. For our scenario, we use the Manufacturer.wsdl file 
found with the additional materials supplied with this redbook. For instructions on 

Important: This implementation was completed using the following software:

� Microsoft Windows 2000 Server Edition
� Microsoft Visual Studio .NET 2003
� Microsoft .NET Framework V1.1
� Microsoft Internet Information Services V5.0
� Microsoft Certificate Services for Windows 2000 Server

Tip: Ensure that you have started the IIS Admin Service and World Wide 
Publishing Service services. The project will not load properly if the Web 
server hosting the Web service is in a stopped or suspended state.
 Appendix B. Microsoft .NET Web services 487



how to obtain this additional material, see Appendix A. "Additional material" on 
page 481.

Microsoft Visual Studio .NET 2003 is packaged with an application called 
wsdl.exe. It parses a WSDL file and other files referenced in the WSDL, and 
generates a C# skeleton based on the WSDL interface.

1. Copy the contents of the \dotNET\resources directory from the additional 
material supplied with this Redbook to a temporary directory on your local 
machine.

2. Click Start → Programs → Microsoft Visual Studio .NET 2003 → Visual 
Studio .NET Tools → Visual Studio .NET 2003 Command Prompt.

3. In the resulting command prompt, navigate to the location of the temporary 
directory where you extracted the additional material.

4. Enter the following command: 

wsdl.exe /server Manufacturer.wsdl Configuration.xsd ManufacturerPO.xsd 
ManufacturerSN.xsd envelope.xsd

The output should look similar to Example B-1:

Example: B-1   wsdl.exe command output

Microsoft (R) Web Services Description Language Utility
[Microsoft (R) .NET Framework, Version 1.1.4322.573]
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Writing file 'C:\Temp\output.cs'.

We now have a template C# source code file to use as the foundation for our 
Web service that is called output.cs. 

B.2.3  Modifying the C# file
The code in output.cs contains an abstract class for the Web service becasue 
we chose to use the /server option when running the wsdl.exe application. 
Therefore, we must edit the C# code directly in order to turn the abstract class 
into a concrete one. We must also make additional modifications to the code so 
that Web service consumers will have information returned to them when they 
call it using SOAP/HTTP.

Note: For more details on the wsdl.exe application and how it functions, 
including a list of all usable attributes, please visit:

http://msdn.microsoft.com/library/en-us/cptools/html/cpgrfWebServ
icesDescriptionLanguageToolWsdlexe.asp
488 Patterns: Extended Enterprise SOA and Web Services



1. Open the output.cs file in a text editor.

2. Make the first necessary modification to the code by removing the two 
abstract statements, which are seen bolded in Example B-2:

Example: B-2   The output.cs abstract class modifications

[System.Web.Services.WebServiceBindingAttribute(Name="ManufacturerSoapBinding", 
Namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10
/Manufacturer.wsdl")]
public abstract class ManufacturerSoapBinding : System.Web.Services.WebService 
{
    
    public ConfigurationType Configuration;
    
    public StartHeaderType StartHeader;
    
    /// <remarks/>
    [System.Web.Services.Protocols.SoapHeaderAttribute("Configuration")]
    [System.Web.Services.Protocols.SoapHeaderAttribute("StartHeader")]
    [System.Web.Services.WebMethodAttribute()]
    [System.Web.Services.Protocols.SoapDocumentMethodAttribute("", 
Use=System.Web.Services.Description.SoapBindingUse.Literal, 
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Bare)]
    [return: System.Xml.Serialization.XmlElementAttribute("ackPO", 
Namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10
/ManufacturerPO.xsd")]
    public abstract string 
submitPO([System.Xml.Serialization.XmlElementAttribute(Namespace="http://www.ws
-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer" +
"PO.xsd")] PurchOrdType PurchaseOrder);
}

3. In addition, remove the semicolon at the end of the ManufacturerSoapBinding 
class (its located in the second to last line shown in Example B-2) and add the 
following C# code:

{
return “Manufacturer_B has received and processed a request.”;

}

This simple return statement is what the Web service will return to the consumer.

4. Finally, we must comment some of the generated source code in order to 
avoid errors when the Web service is targeted by the J2EE consumer. 
Comment out these two lines by adding comment marks (//) in front of them:

[System.Xml.Serialization.XmlAttributeAttribute(Namespace="http://schemas.x
mlsoap.org/soap/envelope/")]

public bool mustUnderstand;
 Appendix B. Microsoft .NET Web services 489



5. Now, with these modifications made, the two main sections of changed code 
should be identical to Example B-3, except where the text returned to the 
Web service consumer is customized to the user’s preference.

Example: B-3   Final code for the output.cs C# source code file

[System.Web.Services.WebServiceBindingAttribute(Name="ManufacturerSoapBinding", 
Namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10
/Manufacturer" +
".wsdl")]
public class ManufacturerSoapBinding : System.Web.Services.WebService {
    
    public ConfigurationType Configuration;
    
    public StartHeaderType StartHeader;
    
    /// <remarks/>
    [System.Web.Services.Protocols.SoapHeaderAttribute("Configuration")]
    [System.Web.Services.Protocols.SoapHeaderAttribute("StartHeader")]
    [System.Web.Services.WebMethodAttribute()]
    [System.Web.Services.Protocols.SoapDocumentMethodAttribute("", 
Use=System.Web.Services.Description.SoapBindingUse.Literal, 
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Bare)]
    [return: System.Xml.Serialization.XmlElementAttribute("ackPO", 
Namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10
/Manufacturer" +
"PO.xsd")]
    public string 
submitPO([System.Xml.Serialization.XmlElementAttribute(Namespace="http://www.ws
-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer" +
"PO.xsd")] PurchOrdType PurchaseOrder) 

{
return “Manufacturer_B has received and processed a request.”;

}
}
... 

//[System.Xml.Serialization.XmlAttributeAttribute(Namespace="http://schemas.xml
soap.org/soap/envelope/")]
//public bool mustUnderstand;

...

Important: The first and second lines of the code displayed here appear 
on one line in the actual source code.
490 Patterns: Extended Enterprise SOA and Web Services



6. Save your changes to this text file.

B.2.4  Finalizing and deploying the Web service
Now we must take our C# file, which was generated with wsdl.exe and 
hand-edited to meet our needs, and import it into the existing Web service we 
created with Microsoft Visual Studio .NET 2003. This means that we must 
replace our file with the one generated by Visual Studio when we first created our 
Web service project.

1. Navigate to the temporary directory where you have saved output.cs using 
Windows Explorer, and rename the file from output.cs to 
ManufacturerB.asmx.cs, as shown in Figure B-4:

Figure B-4   Renaming output.cs to ManufacturerB.asmx.cs

2. Navigate to the location where Microsoft Visual Studio .NET 2003 has saved 
our Web service using another instance of Windows Explorer, (in our 
example, C:\Inetpub\wwwroot\ManufacturerB), then copy the 
ManufacturerB.asmx.cs file from the temporary directory to here as shown in 
Figure B-5 on page 492:
 Appendix B. Microsoft .NET Web services 491



Figure B-5   Replacing Microsoft Visual Studio .NET 2003’s generated C# file with the edited C# file

3. Now, start Microsoft Visual Studio .NET 2003 by selecting Start → 
Programs → Microsoft Visual Studio .NET 2003 → Microsoft Visual 
Studio .NET 2003, and open the ManufacturerB project.

4. Now, with the Web service open, select Click here to switch to code view in 
order to see the service’s C# code. Make sure that the code now appearing in 
this file is identical to the code we just generated and edited.

We have now created and deployed a .NET Web service using Microsoft Visual 
Studio .NET 2003. The next steps explain how to test for operability from within 
Visual Studio. Do not close the ManufacturerB.asmx Web service; we use it for 
testing purposes in the next section.

Important: Microsoft prompts you with a warning about overwriting the 
existing file. Accept the overwrite.
492 Patterns: Extended Enterprise SOA and Web Services



B.2.5  Testing the .NET Web service
Now we have a complete Web service. As the previous instructions suggested, 
return to the opened Web service at this time in order to test for basic operability.

1. With the ManufacturerB.asmx source code still open, select Build → Build 
ManufacturerB from the menu bar. After it has completed its build, a 
message in the output frame (located at the bottom of the interface) should 
state:

Build: 1 succeeded, 0 failed, 0 skipped

2. Now, with the Web service successfully built, we can test for operability by 
pressing F5, which loads a Web service test page based on our 
ManufacturerB.asmx Web service. The Web browser window that appears 
should look similar to the window shown in Figure B-6.

Figure B-6   Testing the Web service

3. By clicking on the submitPO link, it loads another browser instance with the 
following message, followed by a sample SOAP message request and 
response: 

The test form is only available for methods with primitive types or 
arrays of primitive types as parameters.
 Appendix B. Microsoft .NET Web services 493



This response is normal because our Web service does not use primitive types 
as parameter. The test is only to prove operability at a basic level.

We have now implemented a Web service successfully using Microsoft Visual 
Studio .NET 2003. The next section describes how to develop a test J2EE client 
using IBM Rational Application Developer that will consume our .NET Web 
service. 

Implementing a test J2EE Client
This section describes the implementation of a test J2EE client using IBM 
Rational Application Developer V6. We use it to prove interoperability between 
the ManufacturerB .NET Web service (a target) and a Java-based client 
(consumer). This section has the following sub-headings:

� B.2.6 "Creating a new Rational Application Developer project" on page 494
� B.2.7 "Importing the necessary WSDLs and XSDs" on page 495
� B.2.8 "Deploying and testing the J2EEClient" on page 497

B.2.6  Creating a new Rational Application Developer project
To create a new Web project in Rational Application Developer, perform the 
following steps:

1. Start Rational Application Developer V6.

2. From the main application window, select File → New → Project.

3. From the New project window, accept the default selection of Dynamic Web 
Project and click Next. 

4. The application now prompts you to enter a project name. Enter J2EEClient, 
as shown in Figure B-7, and click Finish. The application then begins building 
the dynamic Web project through the use of a creation wizard.
494 Patterns: Extended Enterprise SOA and Web Services



Figure B-7   Naming the Web project

5. When prompted with the Confirm Perspective Switch window, click Yes.

We have now created the template for a J2EE client that will consume a .NET 
Web service. The next step is to examine import ManufacturerB_Impl.wsdl, and 
its related files, into this project.

B.2.7  Importing the necessary WSDLs and XSDs 
To this point, we have created a dynamic project template in IBM Rational 
Application Developer V6.0 that will serve as the J2EE test client consuming a 
.NET Web service. Now the ManufacturerB_Impl.wsdl file. and the other files that 
it calls in its import statements, must be added to the dynamic Web project 
template in order to complete a sample Web service request and response 
scenario.

1. We need to import the following files into the J2EEClient Rational Application 
Developer project. These files can be found in the additional material supplied 
with this redbook in the dotNet\resources directory:

– Manufacturer.wsdl
– ManufacturerB_Impl.wsdl
– Configuration.xsd
– envelope.xsd
– ManufacturerPO.xsd
– ManufacturerSN.xsd

2. In Rational Application Developer, expand the Dynamic Web Projects folder, 
right-click the J2EEClient project and select Import → Import.
 Appendix B. Microsoft .NET Web services 495



3. Inside of the Import window, select File system and click Next.

4. In the From directory field enter the location of the additional material stored 
in the dotNet\resources directory. Then check each of the following files 
(Figure B-8):

– Manufacturer.wsdl
– ManufacturerB_Impl.wsdl
– Configuration.xsd
– envelope.xsd
– ManufacturerPO.xsd
– ManufacturerSN.xsd

Figure B-8   Importing the six files essential to the functioning of J2EEClient.

5. Click Finish. The imported WSDL files contain a number of warnings. These 
can be ignored.

6. Open the newly imported ManufacturerB_Impl.wsdl in a text editor in 
Rational Application Developer. Notice the following line:
496 Patterns: Extended Enterprise SOA and Web Services



<wsdlsoap:address 
location=”http://itsogood.itso.ral.ibm.com/ManufacturerB/ManufacturerB.asmx
”/>

Change this line to point to the address where the .NET Web service is 
running, for example:

<wsdlsoap:address 
location=”http://1.2.3.4/ManufacturerB/ManufacturerB.asmx”/>

7. Save changes to this file.

B.2.8  Deploying and testing the J2EEClient
Before we begin to deploy and test the client, we must first modify preferences in 
Rational Application Developer that allow us to utilize the Web Services Explorer, 
a powerful tool used by the application to test Web service calls. Perform the 
following, tasks:

1. From the menu bar, select WIndow → Preferences.

2. In the Preferences window, expand the Workbench listing and click 
Capabilities. 

3. Inside the Capabilities frame, expand the Web Developer (advanced) listing 
and place a check in the box next to Web Services Development, as seen in 
Figure B-9 on page 498.
 Appendix B. Microsoft .NET Web services 497



Figure B-9   Enabling Web Services development tools.

4. Click OK. Now we can begin to deploy and test the J2EE client properly.

5. In the Project Explorer view, right-click ManufacturerB_Impl.wsdl and select 
Web Services → Test with Web Services Explorer. 

6. After the environment is loaded, you can see a Web browser tab in Rational 
Application Developer. In the action frame, the submitPO operation and a 
properly defined endpoint are shown, as seen in Figure B-10 on page 499.
498 Patterns: Extended Enterprise SOA and Web Services



Figure B-10   Testing with the Web Services Explorer

7. Click submitPO inside of the Actions frame and provide test input for each of 
the following items listed on the screen. This is the information that the .NET 
Web service will receive in a SOAP message.

Important: Obey the input guidelines for each object type that requires 
information (for example, do not write text inside of inputs that require numeric 
values, such as float or nonNegativeInteger).

Also, the customerRef object is of a normalized string type, meaning that it 
has special restrictions that must be considered when choosing a value. We 
recommend using the following value for this object: A12345-9876543-xyz. It 
should be inputted exactly as its written here, paying special attention to the 
two dashes and the upper and lower-case letter specifics contained within it. 
This is illustrated in Figure B-11 on page 500.
 Appendix B. Microsoft .NET Web services 499



Figure B-11   An example of a special needs object type, customerRef.

8. After inputting all of the values, click Go at the bottom of the Actions frame.

9. If everything runs properly, the message that is shown in the Status frame of 
the Web Services Explorer should be identical to the message coded into the 
.NET Web service. This response is shown in Figure B-12.

Figure B-12   Successful response from the .NET Web service

10.Click the Source link to see the SOAP request and response messages used 
during the Web services interaction.

Congratulations! You have implemented J2EE client consumer that has 
successfully sent to and received messages from a .NET Web service. We now 
explain how to enable Microsoft Internet Information Server to require 
transport-level security using SSL for all incoming requests.

B.3  Enabling transport-level security with SSL
In remaining consistent with the Extended Enterprise context, it is common 
security practice to introduce a layer of transport-level security between a Web 
service provider and client. This security takes the form of SSL/HTTP in order to 
500 Patterns: Extended Enterprise SOA and Web Services



encrypt the entire message being sent. We now implement message-level 
security in this scenario for Internet Information Server V5.

B.3.1  Configuring the .NET Web service to require SSL 
The .NET Web service depends on Microsoft Internet Information Services (IIS) 
in order to provide SSL support. Therefore, we must begin by visiting the IIS 
console and the .NET directory previously created there. From here, we request, 
then install, a server certificate for the usage of SSL between the .NET Web 
service and J2EE client.

Requesting a server certificate
Perform the following where the .NET Framework and IIS are installed:

1. Click Start → Programs → Administrative Tools → Internet Services 
Manager to load the IIS console.

2. Navigate to the Web page where the ManufacturerB virtual directory exists. If 
you followed prior instructions, this would be located in the Default Web Site 
virtual root. 

3. Right-click Default Web Site and select Properties.

4. In the properties window, navigate to the Directory Security tab and click the 
Server Certificate button. This loads the Web Server Certificate Wizard.

5. Click Next to bypass the welcome dialog box of the wizard.

6. Select the Create a new certificate radio button and click Next.

7. In the next window, select Prepare the request now, but send it later radio 
button and click Next.

8. Here, input Manufacturer B Web Server in the Name field and select 1024 in 
the bit length drop-down menu (Figure B-13 on page 502) and click Next.

Tip: In our sample scenario, we chose not to request the necessary server 
certificate from an outside Certificate Authority (CA); we chose to use the 
Microsoft Certificate Services to generate our server certificate. Microsoft 
Certificate Services is a Windows 2000 Server component that can be added 
to the operating system from the Windows 2000 Server CD, if it has not been 
installed previously.
 Appendix B. Microsoft .NET Web services 501



Figure B-13   Input a common name and bit length for the server certificate

9. Under Organization, input ManufacturerB and under Organizational Unit, 
input Manufacturing. Click Next.

10.For the Common name field, input the IP address or fully qualified host name 
of the machine running the .NET Web service. We used our web server’s IP 
address. Click Next.

11.Input pertinent geographical information in the following dialog box and click 
Next.

12.The certificate request will be saved in a .txt file for future usage. Here, 
name the .txt file to something easily remembered and save it in a specific 
directory, or leave it as the default name and location as we did 
(C:\certreq.txt). Click Next.

13.The final dialog box is just a summary of all previously-entered information. 
Ensure that it is all correct and click Next.

14.Click Finish to exit the server certificate request wizard.

We have now made a request for a server certificate that will enable the .NET 
Web server to communicate with SSL. 
502 Patterns: Extended Enterprise SOA and Web Services



Processing the Web server certificate request
In this section, we use the Microsoft Certificate Services in order to process the 
Web server certificate request previously generated. 

1. Open a Web browser and navigate to:

http://localhost/CertSrv

Where localhost should be replaced with the domain name or IP address of 
the server running the Microsoft Certificate Services.

The Microsoft Certificate Services Web page should be displayed as shown in 
Figure B-14.

Figure B-14   The Microsoft Certificate Services application

2. Select Request a certificate and click Next.

3. On the next page, select Advanced request and click Next.

4. Select the Submit a certificate request using a base64 encoded PKCS 
#10 file or a renewal request using a base64 encoded PKCS #7 file option 
and click Next.

5. The following window contains a text input box that allows a user to input a 
base64 encoded PKCS #10 certificate request. 
 Appendix B. Microsoft .NET Web services 503



Use a text editor to open the certificate request .txt file that was created 
using the Web server certificate request wizard in the previous section (in our 
case C:\certreq.txt). When the file has been found, copy and paste its 
entire contents into the Saved Request input box as shown in Figure B-15. 
Then, click Submit.

6. The following window is a confirmation window informing the user that the 
certificate request has been received and is waiting to be processed. Exit this 
window.

We now have a certificate request that is waiting to be issued.

Figure B-15   Copying the certificate request to the Saved Request dialog box.

7. Click Submit. The resulting window is a confirmation window informing the 
user that the certificate request has been received and is waiting to be 
processed. Exit this window.
504 Patterns: Extended Enterprise SOA and Web Services



We now have a certificate request that is waiting to be issued.

Issuing the Web server certificate
We now have a Web server certificate request waiting to be issued. To issue the 
Web server certificate, complete the following steps.

1. Click Start → Programs → Administrative Tools → Certification 
Authority.

2. Expand the name of the CA and open the Pending requests folder, as seen 
in Figure B-16.

Figure B-16   Viewing the Pending Requests in the Certification Authority console

3. Right click the request we made in the previous section and select All 
Tasks → Issue. If there is more than one request listed, sort them on the 
Request ID data field and select the highest numbered request.

4. Now, with the pending request issued, select the Issued Certificates folder. 
Inside here, our issued Web server certificate is listed. If there is more than 
one listed, sort them on the Request ID field and locate the highest 
numbered request.

5. Double-click the certificate. Then, click the Details tab and select Copy to file 
to load the Certificate Export Wizard.

6. Bypass the welcome dialog box by selecting Next.

7. In the Expected File Format dialog box, select Base-64 encoded X.509 
(.CER) and click Next.
 Appendix B. Microsoft .NET Web services 505



8. In the File to Export dialog box, enter a filename and directory where you 
want the certificate to be saved (we entered C:\Man_B_server.cer). Click 
Next.

9. In the summary dialog box, double-check all of your settings, then click 
Finish. A prompt stating the export was successful will appear: click OK to 
close it.

Now, we are ready to install the certificate onto the Web server.

Installing the Web server certificate
1. Click Start → Programs → Administrative Tools → Internet Services 

Manager in order to load the IIS console.

2. Navigate to the Web page where the ManufacturerB virtual directory exists. If 
you followed prior instructions, this would be located in the Default Web Site 
virtual root. 

3. Right-click Default Web Site and select Properties.

4. Navigate to the Directory Security tab and click the Server Certificate 
button to load the Web Server Certificate Wizard.

5. Click Next to bypass the welcome dialog box of the wizard.

6. Select Process the pending request and install the certificate and click 
Next.

7. In the following dialog box, enter the directory name and filename of the 
certificate that was just exported (we entered C:\Man_B_server.cer)and click 
Next.

8. The following dialog box shows a summary of the certificate’s information: 
double-check it and then click Next.

9. Now, with the certificate installed, simply close the concluding dialog box by 
clicking Finish. Do not close IIS, however. We use it again in the next set of 
instructions.

A security certificate has now been installed for the Web server. Next, we must 
edit the security settings for the server in order to require SSL connections to the 
.NET Web service.
506 Patterns: Extended Enterprise SOA and Web Services



Configuring the .NET Web service to require SSL connections

1. From the IIS console, expand the Default Web Site (or the name of the Web 
page where your .NET Web service virtual directory is located), right-click 
ManufacturerB and select Properties.

2. Click the Directory Security tab and select Edit in the Secure 
communications area.

3. Inside the Secure communications dialog box, put a check-mark in the box 
labeled Require secure channel (SSL). Accept all other defaults and click 
OK.

4. Finally, click OK to close the Properties window.

We have completed the steps necessary to require SSL communication between 
the Web server running the .NET Web service and any incoming requestors. The 
final steps in completing SSL configuration involve importing the Web server 
certificate into a key database that a client can reference when attempting 
connections to the secure source.

B.3.2  Importing the SSL certificate into a key database 
We must now export the certificate installed onto the Microsoft Web server and 
then import it into a key database that can be utilized by a client when sending 
messages to that Web server. 

Attention: Though, in theory, we could enable the Web server to require SSL 
connections for the entire Web page in which the .NET client virtual directory 
is located, for the sake of this exercise, we configure the server to require SSL 
connections for only the .NET client, and not other resources located inside of 
this Web page. 

In proper business scenarios, however, best practice would most likely 
mandate securing all resources on the Web server. This follows the exact 
instructions described here, with the exception that you select the entire Web 
page in the first step, instead of just one resource inside of it.
 Appendix B. Microsoft .NET Web services 507



Export the Microsoft .NET Web server certificate to a file

First, we must export the certificate from the Web server’s certificate store so that 
it can then be imported into a key database.

1. Click Start → Programs → Administrative Tools → Internet Services 
Manager in order to load the IIS console.

2. Navigate to the Web page where the ManufacturerB virtual directory exists. If 
you followed prior instructions, this would be in the Default Web Site virtual 
root. 

3. Right-click Default Web Site and select Properties.

4. Click the Directory Security tab and click View Certificate.

5. Click the Details tab and click Copy to file.

6. Click Next to bypass the welcome dialog box to the Certificate Export Wizard.

7. Choose Yes, export the private key and click Next.

Attention: Provided with the sample code for this Redbook is a key database 
file that the runtime scenarios reference when sending SSL-secured 
messages to Manufacturer A, B, and C. Therefore, the database (saved as a 
.kdb file) contains the certificates required to connect to ManufacturerA, 
ManufacturerB, and ManufacturerC

If you have implemented the runtime scenarios in this book and followed the 
instructions for creating a .NET Web service in this Appendix, you can use that 
key database to complete SSL-enablement, effectively nullifying your need to 
complete the following steps. 

However, if you are implementing this .NET Web service independent of the 
runtime scenarios in this book, then these instructions must be followed to 
allow clients to access the Web service.

Tip: If your Microsoft .NET Web service is received requests directly from a 
Web browser, then these steps are not necessary because the Web browser 
will automatically prompt you to accept the certificate directly from the Web 
server. However, if this Microsoft .NET Web service is being sent requests 
from a Web service client, then the certificates must be imported into a key 
database that the client can use because the user will never be prompted to 
accept the certificates for the client’s sake.
508 Patterns: Extended Enterprise SOA and Web Services



8. In the Export File Format dialog box, put a check in the box next to Include all 
certificates in the certification path, if possible and Enable strong 
protection (requires IE 5.0, NT 4.0 SP4 or above) and click Next, as shown 
in Figure B-17 on page 509.

Figure B-17   Choosing the correct options for Export File Format

9. In the following window, enter a password into the fields and click Next.

10.In the next window, enter a path and filename where you would like the 
certificate to be exported (we entered C:\Temp\ManBCert.pfx) and click Next.

11.The final dialog box is just a summary of all entered information. 
Double-check your selections and click Finish. Click OK to the message that 
says the export was completed successfully.”

Importing the certificate into the Microsoft Certificate Store
We now have the Microsoft .NET Web service certificate exported from its Web 
server. Next, we must import it into the Microsoft Certificate Store. Then, we 

Tip: Because we chose to export the private key, we have a certificate for 
the Manufacturer B Web Server certificate, as well as one for ITSO Good, 
which is the root certificate of the CA that authorized the creation of the 
ManufacturerB Web Server certificate.
 Appendix B. Microsoft .NET Web services 509



conclude this exercise by taking the certificate from the Microsoft Certificate 
Store and importing it into a key database file.

1. Using Windows Explorer, navigate to the location of the exported certificate 
(C:\Temp\ManBCert.pfx, in our case).

2. Double-click it to open the Certificate Import Wizard. Click Next to bypass the 
opening dialog box.

3. In the next dialog box, the path and filename of the certificate being imported 
should already be entered into the File name field. If not, enter the path and 
filename of ManBCert.pfx and click Next.

4. Enter the password used when exporting the certificate in the next dialog box, 
put a check in the box labeled Mark the private key as exportable, and click 
Next.

5. In the following dialog box, select the Place all certificates in the following 
store radio button, then click Browse and select Trusted Root Certification 
Authorities from the list of stores. Then click OK and select Next.

6. The final dialog box is just a summary of selections. Double-check them and 
click Finish. Click Yes to any warnings about installing certificates then click 
OK.

Now, with the certificate stored in the Microsoft Certificate Store, we use 
iKeyman to create a new key database and place the newly stored certificate into 
the database. 

Extracting and importing into a new key database file
To complete this step you must have the iKeyman utility installed on the same 
machine as the Microsoft Certificate Store. The iKeyman utility is packaged with 
IBM HTTP Server V6.

1. Open the iKeyman utility by clicking Start → Programs → IBM HTTP Server 
6.0 → Start Key Management Utility.

2. Next, select Key Database File → Open. Then, select Microsoft Certificate 
Store from the Key database type dropdown menu and click OK.

3. In the Key database content frame, select Signer Certificates from the 
drop-down menu and locate the {ITSOGood} certificate from the list. 
Single-click it, then click the Extract Certificate button.

Note: We select {ITSOGood} because it was the name we gave to the 
Microsoft Certificate Authority when we installed the Microsoft Certificate 
Services for Windows 2000 Server add-on component to the Web server. If 
you gave the Microsoft CA a different name, choose your name for it, 
instead.
510 Patterns: Extended Enterprise SOA and Web Services



4. In the Extract Certificate to a File window, type in a certificate file name and 
location (we entered ManBCA.arm and C:\keys). Leave the Data type field as 
its default. Click OK.

Now, we must take the extracted certificate and import it into a new key database 
file for use by a Web service client (like the one utilized in the runtime scenarios 
of this Redbook).

Creating a new key database file
To create a new key database file, follow these steps:

1. From the Key Database File menu, select New.

2. In the Key database type drop-down menu, select CMS.  In the File Name 
field, enter a name for the key database (we entered ihs.kdb), and in the 
Location field, enter a directory (we entered c:\keys). Click OK.

3. In the Password Prompt message box, enter a password and confirm it, then 
set an expiration time for the password.  We entered 1000 for the expiration 
time. Finally, put a check mark in the box next to Stash the password to a 
file label and click OK.

4. Now, in the main window, select Add. This begins the process of adding the 
root CA certificate and the Microsoft .NET Web server certificate into the 
newly created key database.

5. In the Add CA's Certificate from a File window, click Browse. In the File 
name field, enter the location of the recently extracted root CA certificate (for 
example, C:\keys\ManBCA.arm). Click OK.

6. Enter a label for the certificate (we entered Root CA Certificate) and click 
OK.

We have now created a key database file that a J2EE client can utilize in making 
Web service requests to the Microsoft .NET Web service. You can copy this key 
database file to the IBM HTTP Server that will be used to redirect Web services 
calls to the .NET Web service.
 Appendix B. Microsoft .NET Web services 511



512 Patterns: Extended Enterprise SOA and Web Services



Appendix C. CICS Transaction Server 
Web services

This chapter provides an overview of the CICS Transaction Server V3.1 support 
for Web services and provides high level steps for creating a ManufacturerC Web 
service for use in the scenario chapters in Part 3 of this redbook. 

It contains the following sections:

� CICS Transaction Server V3.1 Web services support
� Creating Web services for CICS
� Creating and hosting a ManufacturerC Web service

For more detailed information about configuring CICS support for Web services, 
consult the CICS Transaction Server V3.1 InfoCenter at:

http://publib.boulder.ibm.com/infocenter/cicsts31/index.jsp

C

© Copyright IBM Corp. 2006. All rights reserved. 513

http://publib.boulder.ibm.com/infocenter/cicsts31/index.jsp


C.1  CICS Transaction Server V3.1 Web services support
CICS Transaction Server V3.1 introduces formal support for Web services. It 
provides the following features:

� A CICS application can participate in a heterogeneous Web services 
environment as a service requester, as a service provider, or both. 

� It provides support for HTTP and MQ.

� It includes the CICS Web services assistant, a set of utility programs that help 
you map WSDL service descriptions into high-level programming language 
data structures, and vice versa. The utility programs support the following 
programming languages:

– COBOL 
– PL/I 
– C 
– C++ 

� The CICS support for Web services conforms to open standards including:

– SOAP V1.1 and V1.2
– HTTP V1.1 
– WSDL V1.1 

� CICS support for Web services ensures maximum interoperability with other 
Web services implementations by conforming with the Web Services 
Interoperability Organization (WS-I) Basic Profile V1.0. 

C.2  Creating Web services for CICS
There are two basic approaches for building Web services to run in a CICS 
environment:

� Bottom-up

An existing piece of business logic is wrappered as a Web service. WSDL is 
created to describe the Web service interface to this Web service.

� Top-down

An existing WSDL interface document is used to create a skeleton 
application. This skeleton represents the operations and data structures 
defined in the WSDL. The skeleton application is then populated with 
business logic.

Both bottom-up and top-down Web service implementations can be developed 
using the CICS Web services assistant.
514 Patterns: Extended Enterprise SOA and Web Services



C.2.1  CICS Web services assistant
The CICS Web services assistant is a set of batch utilities which can help you to 
transform existing CICS applications into Web services and to enable CICS 
applications to use Web services provided by external providers. When you use 
the Web services assistant for CICS, you do not have to write your own code for 
parsing inbound messages and for constructing outbound messages. CICS 
maps data between the body of a SOAP message and the application program's 
data structure.

The CICS Web services assistant comprises two utility programs:

� DFHLS2WS 

This program generates a Web service binding file from a language structure. 
This utility also generates a Web service description. This is used for 
bottom-up development.

� DFHWS2LS 

This program generates a Web service binding file from a Web service 
description. This utility also generates a language structure that you can use 
in your application programs. This is used for top-down development.

The JCL procedures to run both programs are in the 
<CICS_HIGH_LEVEL_QUALIFIER>.XDFHINST library.

C.2.2  CICS resources for Web services
The following CICS resources support Web services:

� PIPELINE provides information about the message handler programs that act 
on a service request and on the response. Typically, a single PIPELINE 
definition defines an infrastructure that can be used by many applications.

� WEBSERVICE is required only when the mapping between application data 
structures and SOAP messages generated using the CICS Web services 
assistant. It defines aspects of the runtime environment for a CICS application 
program deployed in a Web services setting. 

� URIMAP is required only for a service provider, and contains information that 
maps the URI of an inbound Web service request to the other resources 
(such as the PIPELINE) that will service the request.

� TCPIPSERVICE is required for a service provider that uses the HTTP 
transport, and contains information about the port on which inbound requests 
are received. 
 Appendix C. CICS Transaction Server Web services 515



C.3  Creating and hosting a ManufacturerC Web service
This section provides a high-level overview of how to implement a Web service in 
CICS Transaction Server using the top-down approach. This Web service 
implementation can be used as the ManufacturerC Web service in the scenario 
implementations described in this redbook.

For more detailed information about how to perform the following steps, consult 
the CICS Transaction Server V3.1 InfoCenter at:

http://publib.boulder.ibm.com/infocenter/cicsts31/index.jsp

Perform the following tasks

1. Upload Manufacturer.wsdl into Unix System Services. You will also need to 
upload all of the WSDL and XSD files that Manufacturer.wsdl imports. You 
can find all of these files in the additional material supplied with this redbook 
in the \DirectConnection\wsdl directory.

2. Open Manufacturer.wsdl in a text editor and modify the following line (it is the 
first line in the WSDL file):

<?xml version="1.0" encoding="UTF-8"?>

Remove the encoding attribute, as this attribute is incorrect for a z/OS 
environment. The line should now read:

<?xml version="1.0">

Repeat this for each XSD and WSDL file you upload to z/OS.

3. Run the DFHWS2LS utility, specifying Manufacturer.wsdl as the WSDL 
interface to use. This generate a language structure and Web service binding 
file.

4. Create a CICS application (in a programming language of your choice) that 
uses the language structure. The only requirement of this application is that it 
populates the ackPO Web service response message with the following text 
string:

Manufacturer_C has received and processed a request.

5. Configure a CICS region for Web service support, and add deploy the new 
ManufacturerC application to it.

6. Update the ManufacturerC_Impl.wsdl file to point to the CICS Web service 
you have created.
516 Patterns: Extended Enterprise SOA and Web Services

http://publib.boulder.ibm.com/infocenter/cicsts31/index.jsp


Appendix D. WSAdmin Automation 
Platform

WSAdmin Automation Platform (WAP) is a set of utility functions that sit on the 
top of wsadmin to provide you with an easier interface to manage your 
WebSphere Application Server configuration. WAP provides functional APIs and 
allows an individual to write his/her own automation scripts without worrying 
about complex wsadmin ($AdminConfig, $AdminControl, $AdminApp) syntax. 
With WAP, you get functions to manage the most common WebSphere 
Application Server object types. WSAdmin Automation Platform was developed 
by David Ghazaleh.

D

© Copyright IBM Corp. 2006. All rights reserved. 517



D.1  Employing WSAdmin Automation Platform 
This section provides an overview of WSAdmin Automation Platform, describes 
where you can download it, and provides some examples of use.

D.1.1  Overview of WSAdmin Automation Platform
WebSphere Application Server includes a scripting solution called wsadmin, 
allowing an administrator to configure and control a WebSphere Application 
Server installation. The wsadmin scripting program is a powerful, non-graphical 
command interpreter environment enabling you to execute administrative 
operations interactively in a scripting language. 

This tool is intended for production environments and unattended operations. 
The wsadmin tool supports a full range of product administrative activities.

The wsadmin scripting tool has three modes of operation:

1. Interactive mode lets you enter commands and view the response on a 
command line prompt. 

2. Batch mode lets you supply a set of script commands in a file that the tool 
executes as a program. 

3. Command mode lets you enter a single command from the regular operating 
system command window and executes this one command, returning control 
to the operating system command shell.

The wsadmin tool is most often executed as a client attached to a running server. 
You can also run it in a local execution mode where a running server is not 
required; however, the function is limited to only configuration changes since a 
server runtime is not available to receive operational requests.

WSAdmin Automation Platform is a set of utility functions that sit on the top of 
wsadmin to provide you with an easier interface to manage your WebSphere 
Application Server configuration. WSAdmin Automation Platform provides 
functional APIs and allows you to write your own automation scripts without 
worrying about complex wsadmin syntax such as $AdminConfig, 
$AdminControl, and $AdminApp. 

You will find functions to manage the most common WebSphere Application 
Server object types, including: Application, Application Server, Cell, DataSource, 
JDBCProvider, JMSPovider, JMSServer, WebSphere JMS Connection Factory, 
Generic JMS Connection Factory, MQSeries® JMS Connection Factory, 
WebSphere JMS Destination, Generic JMS Destination, JAASAuthData, 
MQSeries JMS Destination, NameServer, Node, Server, URLProvider, URL, 
Variable, VirtualHost and much more.
518 Patterns: Extended Enterprise SOA and Web Services



WSAdmin Automation Platform can be executed from any host that has 
WebSphere Application Server installed. WSAdmin Automation Platform can 
connect to WebSphere Application Server running on the local or remote host. 
WSAdmin Automation Platform behaves just like wsadmin, in that it accepts input 
from the user and then send the commands to be executed by wsadmin. You can 
also submit scripting language programs for execution.

D.1.2  Downloading WSAdmin Automation Platform
WSAdmin Automation Platform can be downloaded from the IBM Techdocs Web 
site.

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS981

WSAdmin Automation Platform is provided in a zip file called wap.zip. Download 
and unzip wap.zip file into your local directory. To configure the WSAdmin 
Automation Platform runtime environment, follow these steps:

1. Set an environment variable, called WAP_SOURCE. This variable must point 
to the directory where you unzipped WAP. Example D-1 shows how to set the 
environment variable on Unix and Example D-2 on Windows.

Example: D-1   Setting WAP_SOURCE variable on Unix

export WAP_SOURCE=/opt/wap

Example: D-2   Setting WAP_SOURCE variable on Windows

set WAP_SOURCE=c:/wap 

2. Add jWAP.jar file to the CLASSPATH environment variable. See Example D-3 
and Example D-4.

Example: D-3   Setting CLASSPATH variable on Unix

export CLASSPATH=$CLASSPATH:$WAP_SOURCE/jWAP.jar

Example: D-4   Setting CLASSPATH variable on Windows

set CLASSPATH=%CLASSPATH%;%WAP_SOURCE%\jWAP.jar

3. Insert WAP_SOURCE directory into the PATH environment variable. See 
Example D-5 on page 519 or Example D-6 on page 520.

Example: D-5   Setting PATH variable on Unix

Note: Do not use \ (back slash); use / (forward slash) instead.
 Appendix D. WSAdmin Automation Platform 519

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS981
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS981


export PATH=$PATH:$WAP_SOURCE

Example: D-6   Setting PATH variable on Windows

set PATH=%PATH%;%WAP_SOURCE%

4. On the Unix platform, make sure all shell script (*.sh) files have execution 
permission. To change permission, type the following in Example D-7.

Example: D-7   Changing shell script permission

chmod 755 $WAP_SOURCE/*.sh

5. You are now ready to run WSAdmin Automation Platform.

D.1.3  Running WSAdmin Automation Platform
In this section, you can find information about how to run WSAdmin Automation 
Platform. There are three different ways to start WSAdmin Automation Platform:

� jwap : starts a Java command line interface.

� jwap -gui : starts a Java graphical user interface.

� wapStart.sh or wapStart.bat : starts a Unix or Windows command line 
prompt interface.

jWAP syntax
To start WSAdmin Automation Platform from a Java command line interface, use 
the script in Example D-8: 

Example: D-8   Starting from a Java command interface

jwap.sh | jwap.bat [ ? | -(h)elp ]
           [-gui]
           [-wap_path <wap_source_directory>] 
           [-debug] 
           [-noverbose] 
           [-noexec]
           [ -c <command> ] 
           [ -wsadmin_classpath  classpath] 
           [ script parameters ] 
           [ <WSADMIN options> ] 

wapStart syntax
To start from a Unix or Windows command interface, using the script in 
Example D-9 on page 521.
520 Patterns: Extended Enterprise SOA and Web Services



Example: D-9   Starting from Unix or Windows command line

wapStart.sh | wapStart.bat [ -? | -(h)elp ] 
           [-wap_path <wap_source_directory>] 
           [-debug] 
           [-noverbose] 
           [-noexec]
           [ -c <command> ] 
           [ -wsadmin_classpath  classpath] 
           [ script parameters ] 
           [ <WSADMIN options> ] 

Descriptions of the options
The following options are available: 

-? or -help shows the help message.

-gui starts WSAdmin Automation Platform in a graphical interface. This option is 
only available on jWAP syntax.

-noverbose runs WSAdmin Automation Platform in silent mode.

-debug prints debugging information. This options is used to trace the execution.

-noexec runs the commands in the JACL script but does not execute WSAdmin 
Automation Platform commands. This is useful for doing a dry run, or practice 
run, of scripts.

-wap_path is the path where WSAdmin Automation Platform is installed. If this 
option is omitted, the value in WAP_SOURCE environment variable will be used 
instead.

-c is the command to be passed to the script processor. If you need to execute a 
command that contains white spaces, you must surround the command with a \” 
(backslash double quote). For instance:

wapStart.sh -c \"createJDBCProvider j1 -dbtype db2xa\"

-wsadmin_classpath is an additional Java class path to be appended to built-in 
Java class path. 

script parameters is any other additional parameter that you want to pass to 
your script. These are passed to the script in the variable. The number of 
parameters is also available in the argv variable. For instance:

set numberOfParameter [llength $argv]
set parameter0 [lindex $argv 0]
 Appendix D. WSAdmin Automation Platform 521



WSADMIN options is any supported wsadmin options. For more details about 
wsadmin options use -? or -h.

An interpreter shell is created for interactive use. To leave an interactive scripting 
session, use the exit command.

D.1.4  WSAdmin Automation Platform examples
Start WSAdmin Automation Platform by entering jwap or wapStart commands in 
a command line window or shell prompt. Example D-10 shows how to start 
WSAdmin Automation Platform using jwap -profileName AppServer1 -user ADNAG 
-password TheQueen on Windows. The -profileName is a wsadmin option that 
indicates which WebSphere Application Server profile you will use. When 
WSAdmin Automation Platform is started you receive the wap> prompt.

Example: D-10   Starting WAP from a command line

C:\wap> jwap -profileName AppServer1 -user ADNAG -password TheQueen

WAP: Starting WAP for WebSphere Application Server.
WASX7209I: Connected to process "dmgr" on node DAGCellManager01 using SOAP 
connector;  The type of process is: DeploymentManager
WASX7026W: String "WebSphere:type=Server,*" corresponds to 3 different MBeans; 
returning first one.
WASX7026W: String "WebSphere:type=Server,*" corresponds to 3 different MBeans; 
returning first one.

Default scopes values :
-----------------------
  Cell   is set to : DAGCell01
  Node   is set to : DAGCellManager01
  Server is set to : dmgr

Warning :
---------
  Use the commands "setCell" , "setNode" and "setServer"
  to set the name of the default scope that will be used for
  all subsequent WAP commands. You may place a call to these
  functions at the beginning of every block of commands that
  are for a specific scope.

Note: For the complete WSAdmin Automation Platform utility functions syntax, 
refer to WSAdmin Automation Platform documentation. The documentation 
can be found at <WAP_SOURCE>/docs/wap.html.

WSAdmin Automation Platform examples can be found under 
<WAP_SOURCE>/samples directory. 
522 Patterns: Extended Enterprise SOA and Web Services



Need help? Type help.

WASX7411W: Ignoring the following provided option: [-wap_path, c:/wap, 
-verbose]
WAPisReadyToGo
wap>

Setting default scope values
You can specify the default scopes values for the WSAdmin Automation Platform 
commands by using the command setCell, setNode and setServer. In the 
example above the cell scope is set to DAGCell01, the node is set to 
DAGCellManager01 and the server is set to dmgr.

To change the default node scope type setNode <nodeName>. For example:

setNode ITSOGoodNode

To change the default server scope, type setServer <serverName> For example:

setServer server1

To get the default scopes values use getCell, getNode and getServer 
commands.

Creating a JDBC provider
To create a DB2 JDBC provider type the following command:

createJDBCProvider DB2Jdbc_1 -dbtype db2xa -cell [getCell]

To get help on how to use JDBCProvider utility functions type help 
JDBCProvider. Example D-11 shows the output of the help command.

Example: D-11   Help JDBCProvider output

wap> help JDBCProvider
JDBCPROVIDER FUNCTIONS:
createJDBCProvider  [-node <nodename> | -cell <cellname> | -server 
<servername>]
                     -dbtype <dbvendor>
                    [-classpath <classpath>]
                    [-impclass <implementationclass>]
                    [-attr {{attr1 value} {attr2 value}} ...]
                    [-<YouNameIt> <value>]
                    <jdbcprovider_name>
modifyJDBCProvider -dbtype <dbvendor>
                   [-node <nodename> | -cell <cellname> | -server <servername>]
                   [-classpath <classpath>]
 Appendix D. WSAdmin Automation Platform 523



                   [-impclass <implementationclass>]
                   [-attr {{attr1 value} {attr2 value}} ...]
                   [-<YouNameIt> <value>]
                   <jdbcprovider_name>
removeJDBCProvider [-node <nodename> | -cell <cellname> | -server <servername>]
                   <jdbcprovider_name>

Creating a data source
To create a data source for the JDBCProvider DB2Jdbc_1 type the following 
command:

createDataSource DB2DS -jdbcprovider DB2Jdbc_1 -scope cell -dbtype db2 
-jndi jdbc/DB2DS -cmp on -componentAuthAlias compAA -componentUser 
SrIbrahim -componentPassword DonaMarly -containerAuthAlias contAA 
-containerUser MaiteMarianeDawudDahrel -containerPassword goodkids 
-maxConnections 150 -databaseName DoItDB

This command creates the data source JAAS authentication data alias, CMP 
connector and custom properties automatically.

Saving or reseting the configuration
To save the configuration changes, type save. To reset the configuration, type 
reset.

Testing a data source connection
To test a data source connection, type the testDataSource command:

testDataSource -scope cell DB2DS -jdbcprovider DB2Jdbc_1 -user andrea 
-password goodgirl

More examples
Example D-12, Example D-13, Example D-14, and Example D-15 on page 525 
show more uses of the WSAdmin Automation Platform.

Example: D-12   Modifying application server transaction timeout

modifytransactionservice -pot ApplicationServer -totalTranLifetimeTimeout 300

Example: D-13   Setting WebSphere variables

setVar -name DB2_JDBC_DRIVER_PATH -value "/DB2Driver" -scope node

Example: D-14   Modifying log file size

set serverList [$AdminConfig list StreamRedirect]
524 Patterns: Extended Enterprise SOA and Web Services



foreach sl "$serverList" {
  modifyconfigobject -cot StreamRedirect -con $sl -maxNumberOfBackupFiles 10 
-rolloverSize 100
}

Example: D-15   Installing and starting an application

installApplication -appname MarillionMarbles -earfile 
c:/tmp/MarillionMarbles.ear -node [getNode] -server [getServer] -deployejb 
-deployejb.dbtype DB2UDB_V81 -BackendIdSelection "{{GreenCardEJB 
GreenCardEJB.jar,META-INF/ejb-jar.xml DB2UDBNT_V8_1}}" -verbose

WSAdmin Automation Platform graphical user interface
To start WSAdmin Automation Platform in graphical mode, type jwap -gui. The 
graphical mode is only available on jwap command. Figure D-1 shows the 
graphical interface.

Figure D-1   WAP Graphical User Interface
 Appendix D. WSAdmin Automation Platform 525



D.1.5  The You Name It option
In most cases, each WSAdmin Automation Platform function’s option is related to 
one config object attribute. For instance, the option -classpath in 
createJDBCProvider command is related to the JDBCProvider's classpath 
attribute. The You Name It option is used when you cannot find a predefined 
option that corresponds to a config object attribute. Suppose you want to create a 
JDBCProvider. The create JDBCProvider function does not provide the option 
-description, and description is a JDBCProvider attribute. To set a 
JDBCProvider description you use the You Name It capability by typing 
-description <description value>. WSAdmin Automation Platform will try to 
match the option with a config object attribute. If the attribute is not found an error 
is returned.

To list all attributes of a specific config object, type listAttr <ConifgObject>. For 
instance, listAttr JDBCProvider returns the output in Example D-16.

Example: D-16   Config object attribute list

List of attributes for config object JDBCProvider
-------------------------------------------------
1 - classpath String*
2 - description String
3 - implementationClassName String
4 - name String
5 - nativepath String*
6 - propertySet J2EEResourcePropertySet
7 - providerType String
8 - xa boolean
526 Patterns: Extended Enterprise SOA and Web Services



acronyms
ACID Automicity, Consistency, Isolation, 
Durability

API Application Programming Interface

BLOB Binary Large Data Object

CICS Customer Information Control 
System

CORBA Common Business-Oriented 
Language

COTS Commercial Off-The-Shelf

DBMS Database Management System

DMZ Demilitarized Zone

DTD Document Type Definition

DVD Digital Video Disc

EAI Enterprise Application Integration

EAR Enterprise Archive

EJB Enterprise JavaBean

ESB Enterprise Service Bus

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over 
Secure Sockets Layer

IBM International Business Machines

IDE Integrated Development 
Environment

IIS Internet Information Services

ITSO International Technical Support 
Organization

JAAS Java Authentication and 
Authorization Service

JAR Java Archive

JAX-RPC Java API for XML-based Remote 
Procedure Call

JDBC Java Database Connectivity

Abbreviations and 
© Copyright IBM Corp. 2006. All rights reserved.
JNDI Java Naming and Directory 
Interface™

JRE Java Runtime Environment

JSP Java Server Page

JVM Java Virtual Machine

OASIS Organization for the Advancement 
of Structured Information 
Standards

PKI Public Key Infrastructure

RMI Remote Messaging Interface

RPC Remote Procedure Call

SCM Supply Chain Management

SDK Software Development Kit

SDO Service Data Object

SOA Service Oriented Architecture

SSL Secure Socket Layer

TCP/IP Transmission Control Protocol / 
Internet Protocol

TLS Transport Layer Security

UDDI Universal Description, Discovery, 
and Integration

UML Unified Modeling Language

URI Universal Resource Identifier

URL Universal Resource Locator

WAN Wide Area Network

WS-BPEL Web Services Business Process 
Execution Language

WS-I Web Services Interoperability

WSDL Web Services Description 
Language

XML Extensible Markup Language

XSD XML Schema Definition
 527



528 Patterns: Extended Enterprise SOA and Web Services



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 531. Note that some of the documents referenced here may be available 
in softcopy only. 

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Patterns: Implementing an SOA Using an Enterprise Service Bus, 
SG24-6346

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application 
Server V6, SG24-6494

� Patterns: Integrating Enterprise Service Buses in a Service-Oriented 
Architecture, SG24-6773

� WebSphere Application Server V6 System Management and Configuration 
Handbook, SG24-6451

� WebSphere Application Server V6: Security Handbook, SG24-6316

� WebSphere Application Server V6 Scalability and Performance Handbook, 
SG24-6392

� Patterns: Serial Process Flows for Intra- and Inter-enterprise, SG24-6305

� WebSphere Business Integration Server Foundation V5.1 Handbook, 
SG24-6318

Other publications
These publications are also relevant as further information sources:

� Patterns for e-business: A Strategy for Reuse, by Jonathan Adams, Srinivas 
Koushik, Guru Vasudeva, and George Galambos, ISBN 1931182027
© Copyright IBM Corp. 2006. All rights reserved. 529



Online resources
These Web sites and URLs are also relevant as further information sources:

� Patterns for e-business Web site

http://www.ibm.com/developerWorks/patterns/

� Open Grid Services Architecture

http://www-106.ibm.com/developerworks/grid/library/gr-visual/

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

� Security in a Web Services World: a Proposed Architecture and Roadmap

http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

� Updated: Web Services Reliable Messaging: A new protocol for reliable 
delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Implementation Strategies for WS-ReliableMessaging: How 
WS-ReliableMessaging can interact with other middleware communication 
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

� WS-BPEL specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with WS-BPEL, a series of introductory articles and 
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� WS-BPEL support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� WS-BPEL support in WebSphere Studio Application Developer Integration 
Edition

http://www.ibm.com/software/integration/wsadie/features/

� WS-AtomicTransaction specification 

http://www.ibm.com/developerworks/library/ws-atomtran/
530 Patterns: Extended Enterprise SOA and Web Services

http://www.ibm.com/developerWorks/patterns/
http://www-106.ibm.com/developerworks/grid/library/gr-visual/
http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html
http://www.ibm.com/developerworks/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/
http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/
http://www.ibm.com/developerworks/library/ws-atomtran/


� WS-BusinessActivity specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� Transactions in the world of Web Services, part 1 and part 2 

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination specification

http://www.ibm.com/developerworks/library/ws-coor/

� WS-Policy framework specification

http://www.ibm.com/developerworks/library/ws-polfram/

� Web Services Policy Framework: New specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.ht
ml

� WS-ResourceFramework overview

http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpa
per.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, 
draft publications and Additional materials, as well as order hardcopy Redbooks 
or CD-ROMs, at this Web site: 

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 531

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html
http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpaper.html


532 Patterns: Extended Enterprise SOA and Web Services



Index

Numerics
80/20 situation   11

A
Adapter connector   104
Advanced and future Web services standards

Business Process Execution Language for Web 
Services   55
Web services security   54

WS-Policy   54
WS-Privacy   54
WS-Security   54
WS-Trust   54

Web services transactions   56
Web Services Policy Framework   57

WS-Policy   57
Web Services Resource Framework   57

WS-ResourceFramework   57
WS-AtomicTransaction   56
WS-BusinessActivity   56
WS-Coordination   56

WS-ReliableMessaging   55
AMI   93
App server/services   102
Application Access paradigm   28
Application gateways   103
Application patterns   12, 19

Exposed Broker   76
Exposed Direct Connection   71
Exposed Serial Process   80
Extended Enterprise   68

Application Server Toolkit   180
AS1   96
AS2   96
Asymmetric algorithms   168
Atomic business functions   38
Automation   33
Autonomic managers   39

B
B2B See Business-to-Business pattern
Best practices   12, 24
© Copyright IBM Corp. 2006. All rights reserved.
BinarySecureToken   167
Binding   52
BLOB domain   94
Broker Rules tier   77
Broker scenario

Runtime
Defining mediations   377

BSC runtime pattern
Persistence manager   106
Process manager

Branching   108
Correlation   108
Monitoring   107
Non-functional requirements   108
Process abstractions   108
Process definition standards   107

Rules directory   106
Business and IT drivers

Call Connection variation   75
Exposed Broker Application pattern   76
Exposed Direct Connection Application pattern   
72
Exposed Router variation   79
Extended Enterprise Application pattern   69
Extended Enterprise Business pattern   65
Message Connection variation   75
Serial Process Application pattern   81
Serial Workflow variation   83

Business Function Services   46
Business outsourcing   28
Business patterns   12, 15, 63
Business Process Choreographer   94
Business process choreography   39
Business Process Services   46
Business Service Choreography   108
Business Transaction Services   46
Business-to-Business pattern   63

C
Call Connection variation   72, 75

Business and IT drivers   75
Canonicalization method algorithm   194
CICS Transaction Server   102, 513
 533



Web services   513
CICS resources   515

PIPELINE   515
TCPIPSERVICE   515
URIMAP   515
WEBSERVICE   515

CICS Web services assistant   515
DFHLS2WS   515
DFHWS2LS   515

Creating   514
Bottom-up   514
Top-down   514

CICS Transaction Server V3.1   126
CICS Web services assistant   515
Collaboration   33
Commercial Off-The-Shelf   43
Composite patterns   12, 17
confidentiality

dialog   205
encryption information   213
key locator   212
required confidentiality   209
token consumer   210

connection   73
connection rules   71
Connection Rules tier   73
Connector   103
CORBA   48
Coupling business processes   35
Cross-industry communication   50
Cryptographic protocols   170
Customized technologies   58

D
DB2 Connect   92
DB2 Universal Database Enterprise Server Edition 
V8.2   91

Autonomic computing solutions   92
Data warehouse server   92
Performance   92
Satellite administration   92
Scalability   92

Decoupling technology   35
Denial of service   169
Directory and Security Services   106
Distributed transactions   57
Document Manager   96
Domain firewall   103

Dynamic workload distribution   93

E
Early warning missile system   59
e-business on demand

Automation   33
Self-configuring   34
Self-healing   34
Self-optimization   34
Self-protecting   34

Business drivers   29
Focused   29
Resilient   30
Responsive   30
Variable   30, 49

Integration   31
Applications   32
Data   32
People   31
Process   32
Systems   32

Key technological attributes   30
Automation   30
Integration   30
Open standards   30
Virtualization   30

On Demand Operating Environment
Enterprise Service Bus   36
Infrastructure services   39

Resource virtualization services   39
Service level automation and orchestra-
tion   39
Utility business services   39

Integration services   37
Business function services   38
Business process choreography services   
38
Common services   38
Information management services   38
User access services   37
User interaction services   38

Open Grid Services Architecture   33
Open standards   34
Service-oriented architecture

Automation   50
Integration   50
Open standards   50
Virtualization   50
534 Patterns: Extended Enterprise SOA and Web Services



Virtualization   32
Distributed systems   33
Servers   33
Storage   33

Enterprise Application Integration   43–44
Enterprise Service Bus   36
ERP based systems   60
ESB Gateway

Gateway endpoint   106
ESB runtime pattern

App server / services   102
Hub node

Addressing   105
Infrastructure intelligence   106
Integration   105
Message processing   105
Messaging styles   105
Modelling   106
Quality of service   105
Routing   104
Service interface definition   105
Service level   106
Service messaging model   105
Transport protocols   105

Exotic protocols   43
Explicit implementation independent interfaces   47
Exposed Broker   106
Exposed Broker Application pattern   76

Business and IT drivers   76
Router variation   78

Business and IT drivers   79
Exposed Broker product mapping   129

Generic profile   129
DB2 Universal Database   130
IBM HTTP Server   130
WebSphere Application Server   129
WebSphere Application Server Network De-
ployment   130
WS-Security   130

Exposed Broker runtime pattern   112, 339
Business scenario   340
Design guidelines   341

Designing the broker component   344
Generic profile   112

Application Server/Services   113
Broker Rules tier   112
Directory and Security Services   113

SOA profile   113
ESB   113

Exposed ESB Gateway   113
Service Consumers   113
Service Providers   113

Exposed Direct Connection Application pattern   71
Business and IT drivers   72
Call Connection variation   72, 75
Message Connection variation   72, 74

Exposed Direct Connection product mapping   126
Generic profile   127

IBM HTTP Server V6   127
WebSphere Application Server   127

SOA profile   127
DB2 Universal Database   129
IBM HTTP Server   129
Web services gateway   128
WebSphere Application Server   128
WebSphere Application Server Network De-
ployment   128
WS-Security confidentiality   128
WS-Security integrity   128

Exposed Direct Connection runtime pattern   109, 
157, 237

Business scenario   158, 238
Design guidelines   159, 239

Communication   240
Distributed   240
Flexibility   240
Implementing an ESB   244

WebSphere Application Server   246
WebSphere Business Integration Mes-
sage Broker   245

Integration   240
Integration options   163

COTS   164
Custom technology specific adapters   
164
Securing Web services   165
Standard based integration   164

Interoperability   240
Maintaining an audit trail   246
Management   240
Mediation services   240
Quality of service   240
Securing the Web service interaction   246
Wide Area Networks   159

Generic profile   109
Connector   110
Directory   109
Directory and Security Services   109
 Index 535



Path Connectors   110
SOA profile   111

ESB   111
Exposed ESB Gateway   111
Service Consumers   111
Service Providers   111

Exposed ESB Gateway   104
Exposed ESB Gateway runtime pattern

ESB Gateway   104
Exposed ESB Gateway scenario

ESB capabilities
Addressing   243
Communications   243
Integration   243
Restricting service access   243
Security   243
Service interaction   243

Exposed Process Manager   107
Exposed Router   107
Exposed Router product mapping

SOA profile   130
DB2 Universal Database   131, 395
IBM HTTP Server   131, 396
WebSphere Application Server Network De-
ployment   131, 395
WebSphere Partner Gateway   131, 395

Exposed Router variation   115
Generic profile   115

Application Server/Services   116
Directory and Security Services   116
Exposed Router node   115

SOA profile   116
ESB   116
Exposed ESB Gateway   116
Service Consumers   116
Service Providers   116

Exposed Serial Process Application pattern   80
Workflow variation   83

Exposed Serial Process product mapping
Generic profile   132

IBM HTTP Server   133, 425
Web Services Invocation Framework   132, 
425
WebSphere Application Server Network De-
ployment   133, 425
WebSphere Business Integration Server 
Foundation   132

SOA profile   133
DB2 Universal Database   134, 464

IBM HTTP Server   134, 465
Web services gateway   134, 464
Web Services Invocation Framework   134, 
464
WebSphere Application Server   133, 464
WebSphere Business Integration Server 
Foundation   133

Exposed Serial Process runtime pattern   117
Generic profile   117

Application Server/Services   118
Directory and Security Services   118
Exposed Process Manager   117

SOA profile   119
Business Service Choreography   119
ESB   119
Exposed ESB Gatewa   119
Service Consumers   119
Service Providers   119

Exposed Serial Workflow variation   120
Generic profile   120

Directory and Security Services   121
Exposed Process Manager   120
Staff Worklist Adapter   121

SOA profile   121
Business Service Choreography   122
ESB   122
Exposed ESB Gateway   122
Service Consumers   122
Service Providers   122

Extended Enterprise   100
Node types   102

App server/services   102
Business Service Choreography   108
Connector   103
Directory and Security Services   106
Domain firewall   103
ESB   104
Exposed Broker   106
Exposed ESB Gateway   104
Exposed Process Manager   107
Exposed Router   107
Network infrastructure   102
Protocol firewall   102
Rules Directory   106
Staff Worklist Adapter   108

Extended Enterprise Application pattern   68
Business and IT drivers   69

Extended Enterprise Business pattern   63
Business and IT drivers   65
536 Patterns: Extended Enterprise SOA and Web Services



F
File Transfer Protocol   170
Fine-grained services   46
Firewalls   43

G
Global deployment   44
Global Security   223
Globalization   40
Grid computing   33
Guidelines   12, 24

H
Harvard Business Review   28
Heterogeneity   40
Horizontal business processes   45
HTTP   152
HTTP/S   153
Hypervisors   33

I
IBM Cloudscape   92

Administration   92
Java Virtual Machine   92
JDBC   93
Locking   93
Migration path   93
Network server   93
Online transaction processing   92
Open source   92
Performance   93
Rapid application development   92
Resource management   92
SQL-92E   93
Standard Distributed Relational Database Archi-
tecture   93
Stored procedures   93
Triggers   93

IBM Eclipse SDK 3.0   97
IBM Emerging Technologies Toolkit   54
IBM HTTP Server   224

Create a keystore   225
SSL pass-through   224

Implementation independent interfaces   58
IMS   94
IMS Transaction Manager   102
Incremental adoption   43

Infrastructure services   39
Integration   31
Integration approaches   59

Traditional   59
High dependency on real-time communica-
tion   59
Low number of static integration points   59
Technology centric integrations   60

Integration patterns   12, 16
Integration services   37
integrity

key information   194, 200
key locator   193, 200
part reference   195
required integrity   197
signing information   194, 201
token consumer   198
transform   196

Inter-enterprise network infrastructure   102
ITSO Good sample business scenario   138

Applications   139
Logging Facility   140
Manufacturer   140
Retailer   139
SCMSampleUI   139
Warehouse   140

Business context   139
Example usage   140

J
J2EE   150
jaas.config   209
Java Application Programming Interface   150
Java Community Process   151
Java keytool   186

Export a client RSA certificate   186
Export a server RSA certificate   187
Generate a client RSA key   186
Generate a server RSA key   186
Import a client RSA certificate   187
Verify   187

Java Virtual Machine   150
JAX-RPC   152
JMS   151

K
Kerberos tickets   167
Key Information   193
 Index 537



Key Locators   192
KeyLocator   193

L
Large-grained services   46
Lightweight Directory Access Protocol   170
Location transparency   48, 105
Logging Facility   140
Lotus Domino   94

M
Manufacturer   140
MAPE loop   39
Mediations   348

Assigning mediation handlers   364
Configuring context properties for a mediation   
380
Defining mediations   377
Developing a mediation handler   352

Request mediation   356
Response mediation   361

Install   376
Mediating a destination   379
Mediation API   349

MediationHandler   349
MessageContext   350
SIMediationSession   350
SIMessage   350

Routing paths   351
SDO DataGraphs   351

Message Connection variation   72, 74
Business and IT drivers   75

Message flows   94
Message Repository Manager   94
Metering   39
Microsoft .NET   126
Microsoft .NET Web services   483

Development   485
Create a new Web service project   487
Deploying   491
Generating a C# file   487
Implementation First   485
Modifying a C# file   488
WSDL First   486

Testing   493
Transport-level security   500

Installing a Web server certificate   506
Issuing a Web server certificate   505

Processing a Web server certificate request   
503
Requesting a server certificate   501

Microsoft Certificate Services   503
Microsoft Exchange   94
MQI   93
Multi-modality   38
Mutual authentication   167

N
Network bandwidth   43
Network infrastructure   102
Non-repudiation repository   96

O
On Demand Business   28, 49
On Demand Operating Environment   33, 35

Enterprise Service Bus   36
Infrastructure services   39
Integration services   37

on demand Operating Environment   ??–39
Open Grid Services Architecture   33
Open standards   34
Open-standard technologies   58

P
Part References   195
Path connector   104
Patterns for e-business

Application patterns   12, 19
Best practices   12, 24
Business patterns   12, 15
Composite patterns   12, 17
Guidelines   12, 24
Integration patterns   12, 16
Product mappings   12, 23
Runtime patterns   12, 21
Web site   13

Peer-to-peer   38
Personalization   38
Point-to-point   93
Policy declarations   39
Port   52
Portal development   96
Portal user interaction   40
PortType   52
Product mappings   12, 23
538 Patterns: Extended Enterprise SOA and Web Services



Proprietary technologies   58
Protocol firewall   102
Public key cryptography   96
Publish/subscribe   93

Q
Quality of Service

availability   60
Extended Enterprise pattern   71
federation   60
performance   61
security   61
standards compliance   61

R
Rational Application Developer V6   96

Automated deployment   96
Automated test   96
Code analysis   96
Portal development   96
Team tools   96
UML editing   96
Version control   96

Rational Software Development Platform   97
Rational Web Developer   97
Redbooks Web site   531

Contact us   xvii
Reliable messaging   43
Resilient routing   53
Resource tuning   34
Retailer   139
Reusable function   46
Router Rules tier   79
Router variation   78
RSA-V1.5   168
Rules Directory   106
Runtime patterns   12, 21

S
SAP/R3   94
SCMSampleUI   139
Screening routers   103
Secure Sockets Layer   170
Self-configuring   34
Self-healing   34
Self-optimization   34
Self-protecting   34

Serial Process Application pattern
Business and IT drivers   81
Workflow variation

Business and IT drivers   83
Serial Process Rules tier   81
Serial Workflow Rules tier   84
Service granularity   46

Granularity of service operations   47
Granularity of service parameters   47
Level of abstraction of services   47

Service integration bus   257, 298
Adding a bus member   259
Configuring the SDO repository   260
Creating a bus   258
Creating a foreign bus   299
Creating inbound services   273
Creating outbound services   270
Creating the endpoint listener   268
Creating the service integration bus link   300
Installing the SDO repository   260
Installing the Web services applications   267
Overriding Web services client bindings   278
Service integration bus link   298

Service substitution   105
Service-oriented architecture

Component Based Design   44
Customized   43
Drivers

Business processes   42
Business systems   42
Flexible pricing   41
Increasing speed   41
Reducing costs   41
Return on investment   41
Simplifying integration   41

Object Oriented development   44
Proprietary   43
Service

Deployment time   47
Implementation-independent   46
Loosely bound   46
Reusable   46
Runtime   47
Substitution   47

Settlement   39
Signature method algorithm   194
Signing Information   194
Simple Mail Transfer Protocol   170
Simple Object XML   148
 Index 539



SMTP   48
SOAP   148
Source Application tier   73, 77, 79, 81, 84
Speech-based interactions   38
SQL-92E   93
Staff Worklist Adapter   108
Standard Distributed Relational Database Architec-
ture   93
Sun Microsystems   150
Symmetric algorithms   168

T
Target Application tier   73, 77, 80, 82, 84
TCP/IP Monitor   233

Act as Listener   233
Launch   233
PATH environment variable   233
Viewing a SOAP   236

Technical Function Services   46
Token Consumer   197
Token Generator   191
Transaction management   33
Transforms   196
Transport Layer Security   170
Transport protocols   152
Triple DES   168
Trustworthy network   61

U
U.S. government taxonomy of businesses   53
UDDI   53, 149

private directory   53
public directory   53

UDDI Service Directory   51
UML editing   96
UsernameToken   167

V
Virtual Ethernet   33
Virtualization   32

W
Warehouse   140
WC_defaulthost_secure   225
Web service client bindings   227
Web service gateway   281

Applying WS-Security   333

Configuring an inbound port   289
Configuring an outbound service and destination   
287
Configuring request and response destinations   
285
Create a gateway instance   283
Create a gateway service   284
Exporting gateway WSDL   292
Renaming a inbound port   290
Selecting an outbound port and port destination   
288

Web services   50, 146
Basic callback usage scenario   146
One-way usage scenario   146
SOAP   148
Synchronous request/response usage scenar-
io   146
WSDL   148
XSD   148

Web services architecture
Namespaces   53
Service Directories   51
Service Providers   51
Service Requesters   51
SOAP   52
Universal Description, Discovery, Integration   
53
Web Services Description Language   52

Web services for J2EE   151
Web Services Interoperability Organization   138
Web services security   54
WebSphere Application Server   91, 223

Global Security   223
WebSphere Application Server - Express   90
WebSphere Application Server Network Deploy-
ment   91
WebSphere Application Server Network Deploy-
ment V6   91
WebSphere Application Server V6   88

Highlights and benefits   89
Packaging for distributed platforms

WebSphere Application Server - Express V6
WebSphere Application Server - Express 
V6   90

WebSphere Application Server Network De-
ployment V6   91
WebSphere Application Server V6   91

WebSphere Business Integration Message Broker 
V5   94
540 Patterns: Extended Enterprise SOA and Web Services



BLOB domain   94
Message flows   94

Message domains   94
Processing message content   94
Routing   94
Transformation   94

Message Repository Manager   94
Message routing   94
Publish/subscribe   94
Transformation   94
WebSphere MQ   94
XML domain   94

WebSphere Business Integration Server Founda-
tion V5.1

Business Process Choreographer   94
Directed graph   95
Event driven   95
Human resources   95
Interruptible process   95
IT resources   95
Long-running process   95
Short-running process   95
Single transaction   95
Web service   95
WS-BPEL   94
WSDL   95

WebSphere MQ   49
WebSphere MQ V5.3   93

AMI   93
Assured delivery   93
Availability   93
CICS Transaction Server   94
Connectors   94
Dynamic workload distribution   93
Gateways   94
Hot standby capabilities   93
IMS   94
JMS   93
Lotus Domino   94
Microsoft Exchange   94
MQI   93
Point-to-point   93
Publish/subscribe   93
Queue managers   93
SAP/R3   94
Transport layer   93

WebSphere Partner Gateway V6
AS1   96
AS2   96

Authentication   96
Certificate validation   96
Data sharing   95
Digital signature verification   96
Document engine   95
Document Manager   96
Non-repudiation repository   96
Partner profile management   96
Process integration   95
Public key cryptography   96
Security management   96
Small-and-medium business   95
SSL   96
Transformation   95
User exits   96
Validation   95
WebSphere Partner Gateway Advanced   95
WebSphere Partner Gateway Enterprise   96
WebSphere Partner Gateway Express   95

WebSphere Portal   97
WebSphere Studio Application Developer   97
WebSphere Studio Application Developer Integra-
tion Edition V5.1   97

Visual process editor   98
Workflow variation   83
Workload management   33
World Wide Web Consortium   52
WS Binding   183
WS Extension   183
WSAdmin Automation Platform   517
WS-AtomicTransaction   56
WS-Authorization   150
WS-BPEL   150
WS-BusinessActivity   56
WS-Coordination   56
WSDL   148
WS-Federation   150
WS-I Basic Security Profile   169
WS-I sample application   138
WS-I sample business scenario   138
WS-I Supply Chain Management Technical Archi-
tecture   138
WS-I Supply Chain Management Use Cases   138
WS-I Usage Scenarios   138
WS-Policy   54, 57, 106, 150
WS-Privacy   54, 150
WS-ReliableMessaging   55
WS-SecureConversation   150
WS-Security   54, 150, 179, 304
 Index 541



Configuring   180
Configuring WS-Security confidentiality

Rational Application Developer
Confidentiality   205
Encryption Information   213
Encryption information   207
Key Information   207, 212
Key Locators   206, 211
Required Confidentiality   208

Service integration bus
Encryption information   332
Key information   330
Key locator   328
Keys   329
Message parts   327

Configuring WS-Security integrity
Rational Application Developer   188

Configuring the client integrity   189
Key Information   193
Key Locators   192
Part References   195
Signing Information   194
Token Consumer   197
Token Generator   190–191
Transforms   196

Service integration bus
Callback handler   317
Key information   321
Key locator   319
Keys   318
Part references   325
Security token reference   322
Signing information   323
Token generator   314
Transform   326

Generating sample key stores   185
Algorithm   185
Alias   186
Certificate file   186
Distinguished Name   186
Key size   186
Key store file   186
Keypass   186
Storepass   186
Storetype   186

WS Binding   183
WS Extension   183
WS-Authorization   150
WS-Federation   150

WS-Policy   150
WS-Privacy   150
WS-SecureConversation   150
WS-Trust   150

WS-Trust   54, 150

X
X.509 Certificates   167
X509TokenConsumer   198
XML Digital Signatures   54
XML domain   94
XML Encryption   54
XML Transformations   148
XSD   148

Z
z/OS   516
542 Patterns: Extended Enterprise SOA and Web Services



(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Patterns: Extended Enterprise 
SOA and W

eb Services







®

SG24-7135-00 ISBN 0738494038

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

Patterns: Extended 
Enterprise
SOA and Web Services
Design secure 
business-to-business 
solutions using 
WebSphere

Use the Extended 
Enterprise Patterns 
for e-business

Learn by example 
with practical 
scenarios

Service-oriented architecture (SOA) promotes the ability to 
communicate with external enterprises. This IBM Redbook 
addresses issues for Web services implementations of SOA, 
using the Patterns for e-business.

The Patterns for e-business are a group of proven, reusable 
assets that can be used to increase the speed of developing 
and deploying On Demand Business applications. This IBM 
Redbook focuses on building Extended Enterprise SOA 
solutions using WebSphere Application Server V6, 
WebSphere Partner Gateway V6, the Web services gateway 
component of WebSphere Application Server Network 
Deployment V6, and WebSphere Business Integration Server 
Foundation V5.1.

Part 1 introduces the Patterns for e-business, and describes 
the patterns and product mappings for building Extended 
Enterprise solutions.

Part 2 describes the business scenario used throughout this 
book, and the technologies for implementing an SOA 
solution.

Part 3 provides a set of Extended Enterprise scenarios, that 
include simple as well as more complex SOA solutions that 
use an Enterprise Service Bus.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business and Extended Enterprise
	Chapter 1. Welcome to this redbook
	1.1 An introduction to this document
	1.2 Patterns for e-business SOA series of redbooks
	1.3 How to read this redbook

	Chapter 2. Introduction to the Patterns for e-business
	2.1 The Patterns for e-business layered asset model
	2.2 How to use the Patterns for e-business
	2.2.1 Selecting a Business, Integration, Composite pattern, or a Custom design
	2.2.2 Selecting Application patterns
	2.2.3 Review Runtime patterns
	2.2.4 Reviewing Product mappings
	2.2.5 Reviewing guidelines and related links

	2.3 Patterns for e-business naming conventions
	2.4 Summary

	Chapter 3. Beyond the enterprise
	3.1 Overview of Extended Enterprise
	3.2 On Demand Business
	3.2.1 Key business attributes
	3.2.2 Key technology attributes
	3.2.3 Key requirements for integration flexibility
	3.2.4 The on demand Operating Environment

	3.3 Approaches for delivering the Extended Enterprise
	3.3.1 SOA and Web services
	3.3.2 Traditional approaches
	3.3.3 Ensuring quality of service


	Chapter 4. Extended Enterprise pattern
	4.1 Using the Extended Enterprise business pattern
	4.2 General guidelines
	4.2.1 Business and IT drivers
	4.2.2 Context
	4.2.3 Solution
	4.2.4 Employing the pattern
	4.2.5 What is next?

	4.3 Extended Enterprise application patterns
	4.3.1 Exposed Direct Connection application pattern
	4.3.2 Exposed Direct Connection: Message Connection variation
	4.3.3 Exposed Direct Connection: Call Connection variation
	4.3.4 Exposed Broker application pattern
	4.3.5 Exposed Broker: Router variation
	4.3.6 Exposed Serial Process application pattern
	4.3.7 Exposed Serial Process: Workflow variation


	Chapter 5. Product descriptions
	5.1 Runtime product descriptions
	5.1.1 IBM WebSphere Application Server V6
	5.1.2 IBM DB2 Universal Database Enterprise Server Edition V8.2
	5.1.3 IBM Cloudscape
	5.1.4 IBM WebSphere MQ V5.3
	5.1.5 IBM WebSphere Business Integration Message Broker V5.0
	5.1.6 IBM WebSphere Business Integration Server Foundation V5.1
	5.1.7 IBM WebSphere Partner Gateway V6.0

	5.2 Development product descriptions
	5.2.1 IBM Rational Application Developer V6
	5.2.2 IBM WebSphere Studio Application Developer Integration Edition V5.1


	Chapter 6. Extended Enterprise runtime patterns
	6.1 Extended Enterprise runtime patterns
	6.1.1 Generic and SOA profiles

	6.2 Node types
	6.2.1 App server/services
	6.2.2 Network infrastructure
	6.2.3 Protocol firewall
	6.2.4 Domain firewall
	6.2.5 Connector
	6.2.6 Exposed Connector
	6.2.7 Exposed ESB Gateway
	6.2.8 ESB
	6.2.9 Rules Directory
	6.2.10 Directory and Security Services
	6.2.11 Exposed Broker
	6.2.12 Exposed Router
	6.2.13 Exposed Process Manager
	6.2.14 Business Service Choreography
	6.2.15 Staff Worklist Adapter

	6.3 Exposed Direct Connection runtime pattern
	6.3.1 Generic profile
	6.3.2 SOA profile

	6.4 Exposed Broker runtime pattern
	6.4.1 Generic profile
	6.4.2 SOA profile

	6.5 Exposed Router variation
	6.5.1 Generic profile
	6.5.2 SOA profile

	6.6 Exposed Serial Process runtime pattern
	6.6.1 Generic profile
	6.6.2 SOA profile

	6.7 Exposed Serial Workflow variation
	6.7.1 Generic profile
	6.7.2 SOA profile


	Chapter 7. Product mappings
	7.1 Product mappings
	7.2 Exposed Direct Connection product mapping
	7.2.1 Generic profile
	7.2.2 SOA profile

	7.3 Exposed Broker product mapping
	7.3.1 Exposed Broker: Generic profile
	7.3.2 Exposed Router variation: SOA profile

	7.4 Exposed Serial Process product mapping
	7.4.1 Generic profile
	7.4.2 SOA profile


	Part 2 Business scenario and guidelines
	Chapter 8. Business scenario used in this book
	8.1 WS-I sample business scenario
	8.2 ITSO Good sample business scenario
	8.2.1 Business context
	8.2.2 Applications in the supply chain management
	8.2.3 Example of using the ITSO Good sample application


	Chapter 9. Technology options
	9.1 Web services
	9.1.1 XSD
	9.1.2 WSDL
	9.1.3 SOAP
	9.1.4 UDDI
	9.1.5 WS-BPEL
	9.1.6 WS-Security

	9.2 J2EE
	9.2.1 JMS
	9.2.2 Web services for J2EE
	9.2.3 JAX-RPC

	9.3 Transport protocols
	9.3.1 HTTP
	9.3.2 HTTP/S


	Part 3 Scenario implementation
	Chapter 10. Exposed Direct Connection runtime pattern: generic profile
	10.1 Business scenario
	10.2 Design guidelines
	10.2.1 Analyze business requirements
	10.2.2 Selecting a pattern
	10.2.3 Analyze design options
	10.2.4 Products

	10.3 Development guidelines
	10.3.1 Exposed Direct Connection interaction: Generic profile
	10.3.2 Securing applications using WS-Security
	10.3.3 Generating sample key stores
	10.3.4 Configuring WS-Security integrity
	10.3.5 Configuring WS-Security confidentiality
	10.3.6 Exporting EAR files from Rational Application Developer

	10.4 Runtime guidelines
	10.4.1 Solution topology
	10.4.2 Configuring WebSphere Application Server profiles
	10.4.3 Hosting the WSDL files
	10.4.4 Installing the applications
	10.4.5 Securing the application server using Global Security
	10.4.6 Configuring an HTTP server for SSL pass-through
	10.4.7 Changing the Web service client bindings configuration
	10.4.8 Testing the scenario
	10.4.9 Viewing SOAP messages using the TCP/IP Monitor


	Chapter 11. Exposed Direct Connection runtime pattern: SOA profile
	11.1 Business scenario
	11.2 Design guidelines
	11.2.1 Analyze IT infrastructure requirements
	11.2.2 Selecting a pattern
	11.2.3 Analyze design options
	11.2.4 Products

	11.3 Development guidelines
	11.3.1 Exposed Direct Connection interaction: SOA profile

	11.4 Runtime guidelines
	11.4.1 Solution topology
	11.4.2 Creating the basic infrastructure
	11.4.3 Create and configure a service integration bus
	11.4.4 Create and configure the Web service gateway
	11.4.5 Connecting the ESB and the Exposed ESB Gateway
	11.4.6 Adding WS-Security to the Web service gateway


	Chapter 12. Exposed Broker runtime pattern: generic profile
	12.1 Business scenario
	12.2 Design guidelines
	12.2.1 Analyze business requirements
	12.2.2 Selecting a pattern
	12.2.3 Analyze design options
	12.2.4 Products

	12.3 Development guidelines
	12.3.1 Scenario implementation: Exposed Broker runtime pattern
	12.3.2 Mediations
	12.3.3 Developing a mediation handler class
	12.3.4 Assigning and exporting the mediation handlers

	12.4 Runtime guidelines
	12.4.1 Solution topology
	12.4.2 Creating the basic infrastructure
	12.4.3 Configuring the service integration bus
	12.4.4 Creating the gateway service
	12.4.5 Installing and defining the mediation application
	12.4.6 Creating additional destinations
	12.4.7 Changing the Warehouse endpoint URL
	12.4.8 Testing the scenario
	12.4.9 Adding WS-Security to the solution


	Chapter 13. Exposed Router runtime pattern: SOA profile
	13.1 Business scenario
	13.2 Design guidelines
	13.2.1 Analyze business requirements
	13.2.2 Selecting a pattern
	13.2.3 Analyze design options
	13.2.4 Products

	13.3 Development guidelines
	13.3.1 Scenario implementation: Exposed Router SOA profile interaction

	13.4 Runtime guidelines
	13.4.1 Solution topology
	13.4.2 Creating the basic infrastructure
	13.4.3 Scenario implementation overview
	13.4.4 Configuring WebSphere Partner Gateway
	13.4.5 Configuring WebSphere Application Server
	13.4.6 Testing the WebSphere Partner Gateway configuration


	Chapter 14. Exposed Serial Process runtime pattern: generic profile
	14.1 Business scenario
	14.2 Design guidelines
	14.2.1 Analyze business requirements
	14.2.2 Selecting a pattern
	14.2.3 Analyze design options
	14.2.4 Products

	14.3 Development guidelines
	14.3.1 Scenario implementation: Serial process interaction
	14.3.2 Creating the basic infrastructure
	14.3.3 Configuring WebSphere Studio
	14.3.4 Creating Manufacturer and LoggingFacility Web services clients
	14.3.5 Create Java proxy classes
	14.3.6 Create a business process using Process Choreographer
	14.3.7 Create the Warehouse service
	14.3.8 Exporting the Enterprise Application files

	14.4 Runtime guidelines
	14.4.1 Testing with Web Services Explorer
	14.4.2 Testing the business process with ITSO Good
	14.4.3 Deploying the business process


	Chapter 15. Exposed Serial Process runtime pattern: SOA profile
	15.1 Business scenario
	15.2 Design guidelines
	15.2.1 Analyze the business requirement
	15.2.2 Selecting a pattern
	15.2.3 Analyze design options
	15.2.4 Products

	15.3 Development guidelines
	15.3.1 Scenario implementation: Serial process interaction
	15.3.2 Creating the basic infrastructure
	15.3.3 Creating a Manufacturer Web service client
	15.3.4 Modify the Manufacturer proxy class
	15.3.5 Modify the Warehouse business process
	15.3.6 Generate deployment code and export the process

	15.4 Runtime guidelines
	15.4.1 Configuring the ESB
	15.4.2 Configuring the Exposed ESB Gateway
	15.4.3 Testing the business process with ITSO Good


	Part 4 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material


	Appendix B. Microsoft .NET Web services
	B.1 Overview and context of .NET Web services
	B.1.1 How Microsoft .NET is used in the Redbook scenarios
	B.1.2 Microsoft .NET Web service development overview

	B.2 Implementing a Microsoft .NET Web service
	B.2.1 Create a new Web service project
	B.2.2 Generating a C# file using a WSDL file and wsdl.exe
	B.2.3 Modifying the C# file
	B.2.4 Finalizing and deploying the Web service
	B.2.5 Testing the .NET Web service

	Implementing a test J2EE Client
	B.2.6 Creating a new Rational Application Developer project
	B.2.7 Importing the necessary WSDLs and XSDs
	B.2.8 Deploying and testing the J2EEClient

	B.3 Enabling transport-level security with SSL
	B.3.1 Configuring the .NET Web service to require SSL
	B.3.2 Importing the SSL certificate into a key database


	Appendix C. CICS Transaction Server Web services
	C.1 CICS Transaction Server V3.1 Web services support
	C.2 Creating Web services for CICS
	C.2.1 CICS Web services assistant
	C.2.2 CICS resources for Web services

	C.3 Creating and hosting a ManufacturerC Web service

	Appendix D. WSAdmin Automation Platform
	D.1 Employing WSAdmin Automation Platform
	D.1.1 Overview of WSAdmin Automation Platform
	D.1.2 Downloading WSAdmin Automation Platform
	D.1.3 Running WSAdmin Automation Platform
	D.1.4 WSAdmin Automation Platform examples
	D.1.5 The You Name It option


	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

