
Redbooks

Front cover

ABCs of z/OS
System Programming
Volume 1

Lydia Parziale

Luiz Fadel

Stanley Jon

International Technical Support Organization

ABCs of z/OS System Programming Volume 1

November 2017

SG24-6981-04

© Copyright International Business Machines Corporation 2014, 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Fifth Edition (November 2017)

This edition applies to version 2 release 3 of IBM z/OS (product number 5650-ZOS) and to all
subsequent releases and modifications until otherwise indicated in new editions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. .x
Now you can become a published author, too .x
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. The World of IBM Z . 1
1.1 IBM Z hardware configuration . 2
1.2 Parallel Sysplex. 2
1.3 Coupling facility . 3

1.3.1 CF structure encryption. 3
1.4 Cryptographic hardware . 5
1.5 z/OS services . 5
1.6 ICSF . 7
1.7 z/OS security . 10

1.7.1 SAF . 10
1.7.2 RACF . 10

1.8 Data Facility Storage Management Subsystem . 11
1.8.1 z/OS Data Set Encryption . 12

1.9 IBM Health Checker for z/OS . 13
1.9.1 Health Checker for z/OS processing. 14

1.10 IBM z/OS Management Facility. 15

Chapter 2. The z/OS system programmer. 17
2.1 The role of the system programmer . 18
2.2 z/OS system programmer management overview . 18
2.3 The system programmer and z/OS operations . 20

2.3.1 Planning . 21
2.3.2 Daily operations . 22

2.4 Ordering z/OS . 23
2.4.1 z/OS delivery options . 24
2.4.2 SMP/E Internet Service Retrieval . 25

Chapter 3. TSO/E, ISPF, JCL, and SDSF . 27
3.1 TSO/E . 29

3.1.1 TSO/E highlights . 31
3.1.2 TSO/E customization . 33
3.1.3 TSO/E logon procedure . 34
3.1.4 Line mode TSO/E . 36
3.1.5 TSO/E languages . 37

3.2 Interactive System Productivity Facility . 38
3.2.1 Using ISPF . 38
3.2.2 ISPF structure . 39
3.2.3 Data set types supported . 39
3.2.4 ISPF components . 40
3.2.5 ISPF primary option menu . 42
© Copyright IBM Corp. 2014, 2017. All rights reserved. iii

3.3 Job control language. 44
3.3.1 JCL introduction . 44
3.3.2 JCL streams and jobs . 46
3.3.3 Job Entry Subsystems . 46
3.3.4 Job Entry Subsystem 2 . 48
3.3.5 Job Entry Subsystem 3 . 50

3.4 System Display and Search Facility . 55
3.4.1 SDSF: Panels hierarchy . 56
3.4.2 JES2 SDSF Primary Option Menu . 56
3.4.3 SDSF: JES3 panel hierarchy . 58
3.4.4 JES3 SDSF Primary Option Menu . 58

Chapter 4. z/OS maintenance concepts . 61
4.1 Aspects of software management . 62

4.1.1 Why you should manage software . 62
4.1.2 How current your software should be . 62
4.1.3 An approach for keeping your environment current . 62
4.1.4 Installation strategy . 62
4.1.5 Implementation strategy . 63
4.1.6 Concurrent maintenance. 63

4.2 Software management tasks. 63
4.2.1 Environment design . 63
4.2.2 Installation decision. 64
4.2.3 Installation plan . 64
4.2.4 Installation. 64
4.2.5 Testing . 64
4.2.6 Implementation . 64

4.3 The z/OS software management cycle . 65
4.3.1 How current your software should be . 65
4.3.2 The risk of not changing software . 65
4.3.3 The risk of changing software . 66
4.3.4 The minimum risk point . 66
4.3.5 System Modification Program Extended (SMP/E) . 66

Chapter 5. z/OS storage concepts . 67
5.1 Processor storage overview . 68
5.2 The concept of virtual storage. 68

5.2.1 Processor storage concept . 69
5.2.2 How virtual storage works. 70
5.2.3 Dynamic address translation. 70
5.2.4 Address space . 70
5.2.5 Storage initialization . 71
5.2.6 CPC memory . 71
5.2.7 Auxiliary storage . 72
5.2.8 Processing unit . 72

5.3 Virtual storage details . 72
5.3.1 Virtual storage terminology . 74
5.3.2 Page data sets . 74
5.3.3 Pages to auxiliary storage (paging). 75
5.3.4 Storage management . 76
5.3.5 Paging algorithms . 76

5.4 z/Architecture address space . 77
5.4.1 Virtual storage and 64-bit addressability . 77
iv ABCs of z/OS System Programming Volume 1

5.4.2 zSeries mainframes and 64-bit addressing. 77
5.4.3 Region tables and segment tables . 78
5.4.4 The address space concept . 78
5.4.5 Data spaces . 79
5.4.6 Addressing mode and residency mode. 79

5.5 Storage managers. 80
5.5.1 Paging and swapping . 81

5.6 IBM Virtual Flash Memory. 82
5.6.1 Storage-class memory on IBM Z Virtual Flash Memory . 83

5.7 The common virtual storage area . 84
5.7.1 Common area below the 16 MB line . 84
5.7.2 z/OS nucleus. 85
5.7.3 System queue area. 85
5.7.4 Common service area. 86
5.7.5 Link pack area. 86
5.7.6 Address space private area . 87

5.8 64-bit address space map. 87
5.8.1 Region tables . 88
5.8.2 Page and segment tables . 88
5.8.3 User private area . 88

5.9 Segment tables and page tables in 31-bit addressing . 89
5.9.1 Segment tables and page tables . 90

5.10 Virtual address translation. 91
5.10.1 Address size . 91
5.10.2 31-bit virtual addresses. 91
5.10.3 64-bit virtual address. 92
5.10.4 Translating a 64-bit virtual address . 92
5.10.5 1 MB and 2 GB Large Pages . 93

5.11 Multiprogramming and multiprocessing . 94
5.11.1 Multiprogramming . 94
5.11.2 Multiprocessing . 95

5.12 Program compile, link edit, and execution . 95
5.12.1 Program compile, link edit, and execution . 95

5.13 Pervasive Encryption . 96
5.13.1 z/OS Encryption Capabilities. 97
5.13.2 z/OS DFSMS and pervasive encryption . 97
5.13.3 DB2 and IMS and z/OS data set encryption . 98

Related publications . 99
IBM Redbooks . 99
Other publications . 99
Online resources . 100
How to get IBM Redbooks . 100
Help from IBM . 100
 Contents v

vi ABCs of z/OS System Programming Volume 1

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2014, 2017. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

AIX®
BookManager®
CICS®
DB2®
DS8000®
eServer™
FFST™
First Failure Support Technology™
GDPS®
Geographically Dispersed Parallel

Sysplex™
IBM®
IBM z®

IBM z13®
IMS™
IMS/ESA®
Language Environment®
MVS™
NetView®
Parallel Sysplex®
Print Services Facility™
RACF®
Redbooks®
Redbooks (logo) ®
Resource Measurement Facility™
RMF™

ServicePac®
System Storage®
System z®
Tivoli®
VTAM®
WebSphere®
z/Architecture®
z/OS®
z/VM®
z/VSE®
z13®
zEnterprise®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii ABCs of z/OS System Programming Volume 1

http://www.ibm.com/legal/copytrade.shtml

Preface

The ABCs of IBM® z/OS® System Programming is a 13-volume collection that provides an
introduction to the z/OS operating system and the hardware architecture. Whether you are a
beginner or an experienced system programmer, the ABCs collection provides the
information that you need to start your research into z/OS and related subjects.

Whether you want to become more familiar with z/OS in your current environment, or you are
evaluating platforms to consolidate your online business applications, the ABCs collection
serves as a powerful technical tool.

Volume 1 provides an updated understanding of the software and IBM Z architecture, and
explains how it is used together with the z/OS operating system. This includes the main
components of z/OS needed to customize and install the z/OS operating system. This edition
has been significantly updated and revised.

The other volumes contain the following content:

� Volume 2: z/OS implementation and daily maintenance, defining subsystems, IBM Job
Entry Subsystem 2 (JES2) and JES3, link pack area (LPA), LNKLST, authorized libraries,
System Modification Program/Extended (SMP/E), and IBM Language Environment®

� Volume 3: Introduction to Data Facility Storage Management Subsystem (DFSMS), data
set basics, storage management hardware and software, catalogs, and DFSMS
Transactional Virtual Storage Access Method (VSAM), or DFSMStvs

� Volume 4: z/OS Communications Server, Transmission Control Protocol/Internet Protocol
(TCP/IP), and IBM Virtual Telecommunications Access Method (IBM VTAM®)

� Volume 5: Base and IBM Parallel Sysplex®, z/OS System Logger, Resource Recovery
Services (RRS), Global Resource Serialization (GRS), z/OS system operations, z/OS
Automatic Restart Manager (ARM), IBM Geographically Dispersed Parallel Sysplex™
(IBM GDPS®)

� Volume 6: Introduction to security, IBM Resource Access Control Facility (IBM RACF®),
Digital certificates and public key infrastructure (PKI), Kerberos, cryptography and IBM
eServer™ z990 integrated cryptography, zSeries firewall technologies, Lightweight
Directory Access Protocol (LDAP), and Enterprise Identity Mapping (EIM)

� Volume 7: Printing in a z/OS environment, Infoprint Server, and Infoprint Central

� Volume 8: An introduction to z/OS problem diagnosis

� Volume 9: z/OS UNIX System Services

� Volume 10: Introduction to IBM z/Architecture®, zSeries processor design, zSeries
connectivity, LPAR concepts, HCD, and IBM DS8000®

� Volume 11: Capacity planning, IBM Performance Management, z/OS Workload Manager
(WLM), IBM Resource Management Facility (IBM RMF™), and IBM System Management
Facility (SMF)

� Volume 12: WLM

� Volume 13: JES2 and JES3 System Display and Search Facility (SDSF)
© Copyright IBM Corp. 2014, 2017. All rights reserved. ix

Authors

This book was produced by a team of specialists from around the world working at the IBM
International Technical Support Organization (ITSO), Poughkeepsie Center.

Lydia Parziale is a Project Leader for the ITSO team in Poughkeepsie, New York, with
international experience in technology management including software development, project
leadership, and strategic planning. Her areas of expertise include business development and
database management technologies. Lydia is a certified PMP and an IBM Certified IT
Specialist with an MBA in Technology Management. She has been employed by IBM for over
25 years in various technology areas.

Luiz Fadel is a consultant for Maffei Consultoria em Informatica Ltda. He retired from IBM in
2013 as an IBM Distinguished Engineer responsible for supporting IBM System z® for the
Latin America region, part of the Growth Markets Unit. He joined IBM in 1969 and has
supported large systems ever since, including working on two assignments with the
International Technical Support Organization (ITSO). Luiz is a member of the Latin America
Advanced Technical Support team, which is responsible for handling Client Critical Situations
and client claims within IBM Z, Early Support Programs, new product installations, internal
product announcements, and second-level client support, as well as managing complex
proofs of concepts (POCs). He is a member of the zChampions team and the co-author of
several IBM Redbooks® publications.

Stanley Jon is a z/OS IT Specialist in Canada. He has been with IBM Canada and working
on the IBM Z platform for 20 years. He started in the IBM Support Centre supporting z/OS
and ICSF and is now working in the field assigned to a Canadian financial institution. His
areas of expertise include z/OS and cryptography on the mainframe.

Thanks also to the following contributors to this edition:

Robert Haimowitz, William G. White
International Technical Support Organization, Poughkeepsie Center

Rafael Lima, AMS Mainframe IBM MVS™ Software
DXC Technology

Albert P. Franco II, Enterprise IT Services
State of Nevada, Department of Administration

Thanks to the authors of the fourth edition of this book:

Karan Singh, Paul Rogers

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time. Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run 2 - 6 weeks in length, and
you can participate either in person or as a remote resident working from your home base.
x ABCs of z/OS System Programming Volume 1

Obtain more information about the residency program, browse the residency index, and apply
online at the following website:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us.

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments in an email:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii ABCs of z/OS System Programming Volume 1

Chapter 1. The World of IBM Z

IBM Z is a highly secure, connected, and cognitive platform. It is also known for its reliability,
scalability, and availability, so the Z mainframe manages a large percentage of the world’s
mission critical business data and transactions.

Z is a mature environment, and its wide breadth of features and functions can pose a
daunting challenge for new users and system programmers to learn and be productive in their
roles. The ABCs of IBM z/OS System Programming series is intended to educate and act as
a reference to newcomers to the mainframe world. This chapter provides a quick overview of
the core hardware and software components of the Z environment.

This chapter covers the following topics:

� IBM Z hardware configuration
� Parallel Sysplex
� Coupling facility
� Cryptographic hardware
� z/OS services
� ICSF
� z/OS security
� Data Facility Storage Management Subsystem
� IBM Health Checker for z/OS
� IBM z/OS Management Facility

1

© Copyright IBM Corp. 2014, 2017. All rights reserved. 1

1.1 IBM Z hardware configuration
A typical Z hardware configuration consists of the mainframe processor, system consoles,
storage devices (DASD and tape), and network connectivity. Each mainframe processor must
be logically partitioned into smaller systems, called logical partitions (LPARs). An LPAR runs
an operating system, such as z/OS, IBM z/VM®, Linux for System z, or IBM z/VSE®, and has
access to I/O devices. See Figure 1-1. For more information about Z hardware, see ABCs of
z/OS System Programming Volume 10, SG24-6990.

Figure 1-1 Typical IBM Z environment

1.2 Parallel Sysplex
The configuration, known as a system complex or SYSPLEX, is composed of several
mainframe systems clustered together and connected by channel-to-channel (CTC) links for
peer-to-peer communications. When a coupling facility (CF) is part of this configuration, it is
known as a Parallel Sysplex.
2 ABCs of z/OS System Programming Volume 1

As shown in Figure 1-2, a Parallel Sysplex provides higher availability and performance
because the workload can be shared among the systems.

Figure 1-2 Parallel Sysplex

1.3 Coupling facility
A coupling facility (CF) is a processor that runs a specialized operating system known as
Coupling Facility Control Code (CFCC). The CF only contains control blocks known as
structures which are used by mainframe subsystems and applications.

1.3.1 CF structure encryption
To improve protection against potential security breaches that could otherwise expose
sensitive data, IBM z/OS V2.3 supports encryption on all data being transmitted between
z/OS systems and the CFs and when the data is at rest in the CF. The cryptography is
transparent to all CF exploiters, so no changes to subsystem environments or applications
itself are necessary.
Chapter 1. The World of IBM Z 3

How it works
All of the cryptography is done by a z/OS service called Cross-system Extended Services
(XES). XES uses the cryptographic hardware on the mainframe to encrypt and decrypt the
data with Advanced Encryption Standard (AES) protected keys. The encryption of a CF
structure is controlled by the Coupling Facility Resource Management (CFRM) policy with the
new structure parameter ENCRYPT.

XES encrypts the data and sends it along the CF link to the CF (see Figure 1-3). When the
application needs the data, the encrypted data is transferred from the CF to XES to be
decrypted and then passed back to the application (see Figure 1-4). No encryption or
decryption is done by the CF or by the CF links.

Figure 1-3 Write encrypted data to CF

Figure 1-4 Read encrypted data from CF
4 ABCs of z/OS System Programming Volume 1

Requirements
The minimum hardware requirement for this function is Crypto Express3 and CPACF. The
minimum software requirements are z/OS V2.3 and ICSF HCR77C0. Also, the AES Master
Key and the ICSF Cryptographic Key Data Set (CKDS) must be the same in the entire
sysplex.

1.4 Cryptographic hardware
There are two cryptographic hardware features available on all Z mainframe processors. The
two features are the Central Processor Assist for Cryptographic Function (CPACF) and IBM
Crypto Express.

CPACF is a cryptographic feature that performs hashing, random number generation and
symmetric cryptography with clear keys and protected keys. This feature is available on all
general-purpose processors in the mainframe and has been improved on IBM z14 in order to
better support the pervasive encryption objective. CPACF on z14 is six times faster than IBM
z13® when encrypting the same size of data and using the same cryptographic mode of
operation.

The Crypto Express feature performs secure key symmetric and asymmetric cryptography
with Crypto Express6S available on z14 and Crypto Express5S available on z13. Both Crypto
Express features can be configured as a CCA cryptographic coprocessor, as an accelerator,
or as a PKCS #11 cryptographic coprocessor. On Crypto Express6S, the performance of
Public Key Cryptography (asymmetric cryptography) and the secure module tamper detection
has been enhanced.

Keep in mind that the cryptographic hardware available on z13 can be used to implement all
the pervasive encryption initiatives available in z/OS V2.3 (or on z/OS V2.2 with the requisite
APARs). However, z14 is the suggested hardware level, because it provides faster encryption
of data in-flight and at-rest with enhanced on-chip cryptographic performance and a faster
Crypto Express6S.

1.5 z/OS services
z/OS is a 64-bit operating system and provides program management services that enable
you to create, load, modify, list, read, and copy executable programs.

IBM delivers a z/OS release every two years. See Table 1-1 for the general availability dates
of three z/OS releases. New z/OS functions continue to be delivered between releases
through the normal maintenance stream, or as web deliverables. In addition, significant new
functions might be delivered between releases as features of the product.

Table 1-1 General availability dates for z/OS

Product General Availability

z/OS V2R3 September 30, 2017

z/OS V2R2 September 30, 2015

z/OS V2R1 September 30, 2013
Chapter 1. The World of IBM Z 5

The z/OS system provides solutions for the following major areas, as illustrated in Figure 1-5:

� Data management: z/OS provides a set of functions to support the following tasks:

– Manage storage resources on the system.
– Support storage and retrieval of data on disk, optical, and tape devices.
– Offer program management functions.
– Supply device management functions to define and control the operation of input and

output storage devices.

Distributed FileManager (DFM) supports access to remote data and storage resources.

� Softcopy publications services: These services improve productivity in systems
installation and management.

� Security services: Security and Cryptographic Services are a set of products and
features used to control access to resources, and to audit and manage the accesses with
appropriate centralized or decentralized control. These services form the basis for all
security services for traditional applications, UNIX applications, and distributed systems.

Figure 1-5 z/OS services

� System management services: The functions and features provided with z/OS support
robust control and automation of the basic processes of z/OS. This functionality increases
availability, improves productivity of system programmers, and provides a consistent
approach for configuring z/OS components of products.
6 ABCs of z/OS System Programming Volume 1

� Network communication services: z/OS enables world-class Transmission Control
Protocol/Internet Protocol (TCP/IP) and Systems Network Architecture (SNA) networking
support, multivendor and multiplatform connectivity, connectivity to a broad set of users,
and support for multiple protocols.

� Applications enablement services: These services provide a solid infrastructure in
which you can build new applications, extend existing applications, and run online
transaction processing (OLTP) and batch processes.

� z/OS UNIX system services: z/OS contains the UNIX applications services (shell,
utilities, and debugger) and the UNIX System Services (kernel and runtime environment).
The shell and utilities provide the standard command interface familiar to interactive UNIX
users. z/OS includes all the commands and utilities specified in the X/Open Portability
Guide (XPG) 4.2.

With IBM Language Environment, z/OS supports industry standards for C programming,
shell and utilities, client/server applications, and the majority of the standards for thread
management. This functionality enables transparent data exchange and easy portability of
applications in an open environment.

� Distributed computing services: These services are achieved by a set of features and
functions. z/OS Network File System (NFS) acts as a file server to workstations, personal
computers, or other authorized systems in an Internet Protocol network. Remote files are
mounted from the mainframe (z/OS) to appear as local directories and files on the client
system. DCE enables Data Encryption Standard (DES) algorithms and the commercial
data masking facility (CDMF).

Distributed File Services (DFS) system-managed buffering (SMB) enables users to
access data in a distributed environment across a wide range of IBM and non-IBM
platforms. SMB can automatically handle the conversion between American Standard
Code for Information Interchange (ASCII) and Extended Binary Coded Decimal
Interchange Code (EBCDIC).

� Online business services: The IBM Hypertext Transfer Protocol (HTTP) Server provides
for scalable, high-performance web serving for critical online business applications. It is
exclusive to z/OS. Beginning in z/OS V2.2, this element is now IBM HTTP Server Powered
by Apache.

� Print services: Application output can be electronically distributed and printed, or
presented over the web.

1.6 ICSF
Integrated Cryptographic Service Facility (ICSF) is the z/OS cryptographic component that is
the software interface to the Crypto Express hardware on the Z mainframes. You use ICSF to
manage the cryptographic environment and hardware. Access to the cryptographic services
available on the hardware is through a set of ICSF APIs. There are two types of cryptography,
and ICSF supports both types through its APIs. The two types of cryptography are symmetric
and asymmetric cryptography.

Symmetric cryptography is also known as “secret” key cryptography because you use the
same key to encrypt and decrypt the data (see Figure 1-6 on page 8). For the data to be
secure, you need to keep the key secure. Some well-known symmetric algorithms include
Data Encryption Standard (DES) algorithm and Advanced Encryption Standard (AES).
Chapter 1. The World of IBM Z 7

Figure 1-6 shows an example of symmetric cryptography.

Figure 1-6 Symmetric cryptography

Asymmetric cryptography is also known as public key cryptography. In asymmetric
cryptography, a public and private key pair is generated. The public key is used to encrypt
data and the respective private key is used to decrypt the data (see Figure 1-7). The public
key does not have to be kept secret because it cannot be used for decryption, whereas the
private key does need to be protected because it is used to decrypt data. Popular asymmetric
algorithms are the RSA algorithm and Elliptic Curve Cryptography (ECC).

Figure 1-7 Asymmetric cryptography
8 ABCs of z/OS System Programming Volume 1

Keys and tokens used by the ICSF cryptographic services are kept securely in three separate
repositories known as key data sets. The three key data sets are:

Cryptographic Key Data Set (CKDS) Stores DES, AES, and HMAC keys.

PKA Cryptographic Key Data Set (PKDS) Stores RSA and ECC key pairs.

Token Data Set (TKDS) Stores PKCS#11 tokens and objects.

The CKDS and PKDS are both secure repositories because the keys stored in both data sets
are encrypted by the ICSF master keys. There are four different master keys in ICSF and they
are:

DES Master Key Encrypts the DES keys stored in the CKDS.

AES Master Key Encrypts the AES and HMAC keys stored in the CKDS.

RSA Master Key Encrypts the RSA private key stored in the PKDS.

ECC Master Key Encrypts the ECC private key stored in the PKDS.

All the Master Keys are stored in registers in the tamperproof Crypto Express hardware. The
Master Keys are entered using a Trusted Key Entry (TKE) workstation or the ICSF dialogs.

The Z cryptographic environment is illustrated in Figure 1-8.

Figure 1-8 Z cryptographic environment

Types of keys used by ICSF
There are three key types that are used in the Z cryptographic environment.

Clear Key A cryptographic data key unprotected in the environment. For
example, if you perform any type of dump of the data at the
appropriate time, you can find the key in the dump. CPACF uses clear
keys as input for its cryptography.

Secure Key A cryptographic data key that is protected in the environment by the
master key. If you perform any type of dump of the data, you can only
find the encrypted key in the dump. The Crypto Express card uses
secure keys as input for its cryptography.
Chapter 1. The World of IBM Z 9

Protected Key A hybrid of a clear and a secure key. A protected key is a secure key
decrypted within the secure Crypto Express hardware and
re-encrypted or “wrapped” with the LPAR’s wrapping key. The
protected key is passed back to ICSF, which is now eligible for CPACF
operations. The advantage of using a protected key is that it leverages
the speed of the CPACF feature with more security than a clear key.

1.7 z/OS security
As general computer literacy and the number of people using computers has increased, the
need for data security has taken on a new level of importance. The installation can no longer
depend on keeping data “secure” simply because no one knows how to access it. Further,
making data secure does not mean only making confidential information inaccessible to those
without permission to see it; it also means preventing the inadvertent destruction of files by
people who might not even know that they are improperly manipulating data.

1.7.1 SAF
All z/OS components and subsystems use the System Authorization Facility (SAF) interface
to validate access and authorization to resources. SAF is a component within z/OS, and does
not require any other product as a prerequisite. However, it is extremely rare for any
installation not to use an external security manager, because overall system security
functions are greatly enhanced and complemented if it is used concurrently with RACF or
another external security manager.

All of the SAF calls are processed by the z/OS router. To use the z/OS router, the z/OS
component or subsystem issues the RACROUTE macro. When it is started, the z/OS router first
calls an optional installation exit routine and then calls the external security manager (such as
RACF), if one is active and installed on the system. See Figure 1-9.

Figure 1-9 RACROUTE processing

1.7.2 RACF
The z/OS Security Server is the IBM security product. The RACF product is a component of
the z/OS Security Server, and it works together with the existing system features of z/OS to
provide improved data security for an installation. If this product is to be installed in your
environment, then RACF customization must be done.
10 ABCs of z/OS System Programming Volume 1

RACF helps meet the need for security by providing the following functionality:

� Flexible control of access to protected resources
� Protection of installation-defined resources
� Ability to store information for other products
� Choice of centralized or decentralized control of profiles
� An ISPF panel interface
� Transparency to users
� Exits for installation-written routines

RACF security protection
RACF controls access to and protects resources. For a software access control mechanism
to work effectively, it must first identify the person who is trying to gain access to the system,
and then verify that the user is really that person.

RACF uses a user ID in a user profile in the RACF database, and a system-encrypted
password or pass phrase, to perform its user identification and verification. When you define a
user to RACF, you assign a user ID and temporary password. The user ID identifies the
person to the system as a RACF user. The password or pass phrase verifies the user’s
identity. The temporary password permits initial entry to the system, at which time the person
is required to choose a new password.

RACF authorization checks
Having identified a valid user, the software access control mechanism must next control
interaction between the user and the system resources. It must authorize what resources that
user can access, but also in what way the user can access them, such as for reading only, or
for updating and reading. This controlled interaction, or authorization checking, is done by
RACF. However, before this activity can take place, someone with the appropriate authority at
the installation must establish the constraints that govern those interactions.

With RACF, you are responsible for protecting the system resources (data sets, tape and
DASD volumes, IBM IMS™ and IBM CICS® transactions, TSO logon information, and
terminals) and for issuing the authorities by which those resources are made available to
users. RACF records your assignments in profiles stored in the RACF database. RACF then
refers to the information in the profiles to decide whether a user is to be permitted to access a
system resource.

1.8 Data Facility Storage Management Subsystem
The Data Facility Storage Management (DFSMS) subsystem consists of a suite of related
data and storage management products for the z/OS system. DFSMS is an operating
environment that helps automate and centralize the management of storage based on the
policies that your installation defines for availability, performance, space, and security.

DFSMS consists of one z/OS base element and four z/OS features:

� DFSMSdfp is Data Facility Product and is part of the z/OS base elements. Together with
the Base Control Program (BCP), it forms the foundation of the z/OS operating system,
performing the essential data, storage, and device management functions of the system.

� DFSMSdss is Data Set Services (dss) and is a DASD data and space management tool.

� DFSMShsm is Hierachical Storage Manager (hsm) and is a DASD storage management
and productivity tool for managing low-activity and inactive data.
Chapter 1. The World of IBM Z 11

� DFSMSrmm is Removable Media Manager (rmm) and helps you manage your removable
media as one enterprise-wide library across z/OS systems that can either share DASD or
have TCP/IP connectivity.

� DFSMStvs is Transactional VSAM Services (tvs) and enables batch jobs and CICS online
transactions to update shared VSAM data sets concurrently.

Except for DFSMSdfp, which is a base element, all others features are exclusive and optional.
For more information about DFSMS, see ABCs of z/OS System Programming Volume 3,
SG24-6983.

1.8.1 z/OS Data Set Encryption
As part of the pervasive encryption initiative, DFSMS has been enhanced to provide data set
encryption in z/OS V2.3 and z/OS V2.2 with the required APARs. The data set encryption
feature is a simple and transparent approach to enable extensive encryption of data at rest
using DFSMS access methods. As with CF structure encryption, DFSMS uses the existing
cryptographic hardware infrastructure on the Z mainframe to encrypt and decrypt the data
using 256-bit AES data keys.

No changes to application programs are required in order to implement this feature. Currently,
DFSMS encrypts sequential extended format data sets access through queued sequential
access method (QSAM), basic sequential access method (BSAM), and Virtual Storage
Access Method (VSAM) extended format data sets accessed through VSAM and VSAM
record-level sharing (VSAM RLS):

� Key-sequenced data set (KSDS)
� Entry-sequenced data set (ESDS)
� Relative record data set (RRDS)
� Virtual relative record data set (VRRDS)
� Linear data set (LDS)

To create an encrypted data set, a secure AES data key is assigned to it by associating the
AES key’s key label with the data set when it is allocated. For each encrypted data set, its key
label is stored in the catalog.

The cryptographic key is in a secure repository managed by the Integrated Cryptographic
Service Facility (ICSF), known as the Cryptographic Key Data Set (CKDS). The CKDS
contains cryptographic keys used by z/OS components and applications and the only way to
access these keys is by their key labels. Access to each key should be restricted by an
external security manager like RACF. When the data set is to be decrypted, DFSMS gets the
key label from the catalog and passes it to ICSF.
12 ABCs of z/OS System Programming Volume 1

If the user has access to this key, ICSF decrypts the data with the cryptographic hardware as
illustrated in Figure 1-10.

Figure 1-10 Decrypt data set

One of the benefits of data set encryption is that it eliminates the system and storage
administrators from the compliance scope of audits. In order to read the contents of a data
set, a person needs access to the cryptographic key that encrypted it. All the administrator
needs to manage a data set is to have access to it and not the key. Without the key, the
administrator will never be able to access the contents of data set.

Requirements
The minimum hardware requirements are Crypto Express3 and CPACF but the
recommended hardware level is the cryptographic hardware available on the z14. The
operating system requirement is z/OS V2.3 or z/OS 2.2 with the full function support service
maintenance. Also, if the encrypted data set is moved to a different environment, the key used
to encrypt the data needs to be in the CKDS of the new environment.

1.9 IBM Health Checker for z/OS
IBM Health Checker for z/OS is a z/OS base element. Its objective is to identify potential
problems before they affect your availability or, in worst cases, cause outages. It checks the
current active z/OS and sysplex settings and definitions for a system and compares the
values to those suggested by IBM or defined by you. It is not meant to be a diagnostic or
monitoring tool, but rather a continuously running preventive tool that finds potential problems.

IBM Health Checker for z/OS produces output in the form of detailed messages to notify you
of both potential problems and suggested actions to take.
Chapter 1. The World of IBM Z 13

These messages do not mean that IBM Health Checker for z/OS has found problems that you
need to report to IBM. Rather, IBM Health Checker for z/OS output messages inform you of
potential problems so that you can expedite your installation.

Beginning at z/OS V2.3 or with OA49807 on z/OS V2.2, you can conditionally activate health
checker policy statements for specific systems or sysplexes within the HZSPRMxx PARMLIB
member. This feature eliminates the need for multiple, system-specific HZSPRMxx PARMLIB
members. The ability to perform a syntax check on your HZSPRMxx PARMLIB members,
without applying your changes to the existing environment, is also available.

1.9.1 Health Checker for z/OS processing
As illustrated in Figure 1-11, Health Checker for z/OS functions in the following way:

1. Check values provided by components.

Each check includes a set of predefined values:

– Interval, or how often the check runs
– Severity of the check, which influences how check output is issued
– Routing and descriptor codes for the check

You can update or override certain check values using either the Spool Display and
Search Facility (SDSF) or statements in the HZSPRMxx parmlib member, or by using the
MODIFY command. For further information about SDSF, see Chapter 3, “TSO/E, ISPF, JCL,
and SDSF” on page 27.

Figure 1-11 IBM Health Checker for z/OS

2. Check output.

A check issues its output as write to operators (WTOs) and other messages, which you
can view using IBM System Display and Search Facility (SDSF), the HZSPRINT utility, or
a log stream that collects a history of check output.

If a check finds a deviation from leading practices or a potential problem, it issues a WTO
message known as an exception, as previously mentioned. Check exception messages
include a description of the potential problem found, including the severity, but also
information about what to do to fix the potential problem.

Health Checker
for z/OS

Address Space Check
messages

output

Be aware and
manage

exception
suggestion

Change
checks

Change
products or
control to

avoid
exceptions

Rerun checks to
guarantee

changes solved
the potential

problem

Checks
and

Policies

11 22

33

44
14 ABCs of z/OS System Programming Volume 1

3. Resolve check exceptions.

To get the best results from IBM Health Checker for z/OS, let it run continuously on your
system so that you know when your system has changed dynamically from preferred
practice values. When you get an exception, resolve it using the information in the check
exception message, or by overriding check values, so that you do not receive the same
exceptions over and over. You can use either SDSF or the HZSPRMxx parmlib member, or
the IBM Health Checker for z/OS MODIFY (F hzsproc) command to manage checks.

4. If you solve an exception by changing a product setting or system control, it is a good
policy to rerun the checks related to this action to ensure that the exception conditions
have been resolved.

1.10 IBM z/OS Management Facility
The goal of the IBM z/OS Management Facility (z/OSMF) architecture is to provide simplified
systems management functions through a common, easy-to-use GUI. Figure 1-12 shows a
typical architecture and flow, starting with the user’s browser session and continuing through
z/OSMF and IBM WebSphere® Application Server Liberty Profile, with information passed to
various z/OS system components as needed.

z/OSMF is a central system management function for z/OS and is designed to provide better
tools for managing systems and helping system programmers to be more productive. z/OSMF
provides a framework for managing various aspects of z/OS systems through an intuitive web
2.0 browser user interface and new enabling technologies on z/OS.

Figure 1-12 z/OSMF architecture

The z/OSMF application is written in Java so it can run on a specialized mainframe processor
known as an IBM zEnterprise® Application Assist Processor (zAAP). Because the zAAP is
not available on z13 and z14, the zAAP workload runs on a different specialized processor
known as an IBM z® Integrated Information Processor (zIIP). The advantage of running any
workload on a zIIP is that the workload does not incur any software license charges.
Chapter 1. The World of IBM Z 15

z/OSMF is now a required component of z/OS and is expected to be installed and configured
on at least one system in every sysplex. z/OSMF became a base element of the operating
system as of z/OS V2.2. Beginning with z/OS V2.3, z/OSMF starts automatically during an
IPL.

The following is a list of z/OSMF tasks:

� Configuration Assistant
� Capacity Provisioning
� System Status and Resource Monitoring
� Workload Management
� Incident Log
� ISPF
� Workflow
� Software Management
� Sysplex Management
� Operator Consoles

For more information about z/OSMF, see IBM z/OS Management Facility V2R1, SG24-7851.
16 ABCs of z/OS System Programming Volume 1

Chapter 2. The z/OS system programmer

In a mainframe IT installation, system programmers are responsible for installing,
customizing, and maintaining the z/OS operating system (OS). Their responsibilities also
include installing or upgrading all additional products that run on the system, including
middleware products. Middleware is a software layer between the OS and the user, or user
application. Middleware supplies major functions that are not provided by the operating
system.

This chapter covers the following topics:

� The role of the system programmer
� z/OS system programmer management overview
� The system programmer and z/OS operations
� Ordering z/OS

2

© Copyright IBM Corp. 2014, 2017. All rights reserved. 17

2.1 The role of the system programmer
The role of a system programmer is broad, but essentially it is to maintain a stable operating
environment for users and business applications. A system programmer’s responsibility can
be at the operating system level, at the subsystem or middleware level, or at the hardware
level. A system programmer installs, customizes, and maintains that environment by rolling
out regular maintenance or even upgrading the entire environment to keep current and use
new functions.

Another part of the system programmer’s responsibility is to provide technical support to the
users of the environment. This support can be answering questions about a product or
analyzing a potential defect in the product (IBM or third party).

When a problem occurs in an address space, it sometimes abnormally ends or ABENDs. An
address space is a virtual storage construct where code and control blocks are loaded in
order for a started task, a job, or a TSO environment to run (see Chapter 5, “z/OS storage
concepts” on page 67 for more details). Depending on how the recovery code is written, a
data dump of the address space might be produced.

If you think there is a defect in the vendor code, a data dump and other diagnostic data (like
JOBLOG) can be sent to the vendor for further investigation. If no dump is produced, you
need to set a SLIP trap and re-create the problem to gather supporting documentation of the
error. If there is a system-wide problem, then you need to perform a stand-alone data dump.

2.2 z/OS system programmer management overview
As a z/OS system programmer, you need to be involved in the customization of the items
illustrated in Figure 2-1 on page 19. These items are explained in the following list:

� Address spaces. When z/OS is started, z/OS establishes system component address
spaces. During the initial program load (IPL), the first address space started is the master
scheduler address space (*MASTER*). There are other system address spaces for
various subsystems and system components. See Chapter 4 for more details about
address spaces.

� Paging. Page data sets contain the paged-out portions of address spaces, the common
service area (CSA), pageable link pack area (PLPA), and the data written to virtual I/O
(VIO) data sets.

� Dispatching work. The scheduling of address spaces as dispatchable units to run on a
central processor (CP) in the z/OS system is done by the z/OS dispatcher component.
The z/OS dispatcher is responsible for finding and dispatching the highest priority
dispatchable unit in the system (Service Request Blocks or SRBs and tasks).

� Job flow. z/OS uses IBM Job Entry Subsystem (JES) to receive jobs (also called batch,
which is a non-interactive type of transaction) into the OS, to schedule them for processing
by z/OS, and to control their output processing. JES is the component of the OS that
provides supplementary job management and data management.

JES also provides supplementary task management functions, such as scheduling,
control of job flow, and spooling (storing output on direct access storage device (DASD)
spool volumes rather than printing them at the moment they are produced).
18 ABCs of z/OS System Programming Volume 1

Figure 2-1 z/OS system programmer management overview

� z/OS storage. The system programmer must be aware of all storage considerations when
installing and customizing a z/OS environment. The initialization process begins when the
system operator selects the LOAD (IPL) function at the system console. z/OS locates all of
the usable main storage that is online and available to the system, and creates a virtual
environment for the building of various system areas.

This initialization phase allocates the system’s minimum virtual storage for the system
queue area (SQA) and the extended SQA, allocates virtual storage for the extended local
system queue area (extended LSQA) for the master scheduler address space, and
allocates virtual storage for the CSA and the extended CSA. The amount of storage
allocated depends on the values specified on the CSA system parameter read during
the IPL.

� System data sets. Each installation must incorporate required system data sets into the
system by allocating space for them on appropriate DASD during system installation. The
DEFINE function of Access Method Services is used to define both the space
requirements and the volume for each system data set. Some data sets must be allocated
on the system residence volume (the volume that has the kernel of z/OS code). Other data
sets can be placed on other direct access volumes.

� Operator communication. The operation of a z/OS system involves the following elements:

– Console operations, or how operators and system programmers interact
instantaneously with z/OS to monitor or control the hardware and software.

– Message (produced by z/OS) processing and command (produced by an operator)
processing that forms the basis of operator interaction with z/OS, and the basis of z/OS
automation.

– Managing hardware, such as processors and peripheral devices (including the
consoles where operators or system programmers do their work), and software, such
as the z/OS operating control system, JES, subsystems (such as IBM Tivoli®
NetView® for z/OS) that can control automated operations, and all of the applications
that run on z/OS.

Address Spaces

z/OS Storage

Paging and Swapping

CP0 CP0 CP0 CP0

Dispatching Work

Data Set Management
(System Data Sets)

Operator Communication

Security - Availability - Integrity

Job Flow
Chapter 2. The z/OS system programmer 19

� Security. Data security is the protection of data against unauthorized disclosure, transfer,
modification, or destruction, whether accidental or intentional. A security system, such as
IBM Resource Access Control Facility (RACF), must be installed in your OS by a system
programmer to maintain the resources necessary to meet the security objectives. The
system programmer has the overall responsibility, using the technology available, to
transform the objectives of the security policy into a usable plan.

� Availability. The software products supporting system programmers and operators in
managing their systems heavily influence the complexity of their job and their ability to
keep system availability at a high level. Performance management is the system
management discipline that most directly impacts all users of system resources in an
enterprise and can be achieved, for example, by using IBM Resource Measurement
Facility™ (RMF).

� Integrity. An OS is said to have system integrity when it is designed, implemented, and
maintained to protect itself against unauthorized access, and does so to the extent that
security controls specified for that system cannot be compromised. Specifically for z/OS,
there must be no way for any unauthorized program, using any system interface, defined
or undefined, to perform the following actions:

– Bypass store or fetch protection.

– Bypass password use, Virtual Storage Access Method (VSAM) password, or RACF
security checking.

– Obtain control in an authorized state.

For additional reference, see ABCs of z/OS System Programming Volume 2, SG24-6982.

2.3 The system programmer and z/OS operations
A system programmer is involved in the planning of daily system operations in various areas
(see Figure 2-2).

Figure 2-2 The system programmer and z/OS operations

IODF

XXXX.IODFxx

I/O Configuration

WLM
SRM

System Operations

Consoles

DASD

z/OS

Cartridge media
20 ABCs of z/OS System Programming Volume 1

2.3.1 Planning
A system programmer has to plan the following operations areas:

� z/OS Workload Manager

z/OS Workload Manager (WLM) provides a solution for managing workload distribution,
workload balancing, and distributing resources to competing workloads. Managing
workloads is possible due to the combined cooperation of various subsystems (CICS, IBM
IMS/ESA®, JES, Advanced Program-to-Program Communication (APPC), Time Sharing
Option Extensions (TSO/E), z/OS UNIX System Services, distributed data facility (DDF),
IBM DB2®, System Object Model (SOM), LAN Server for MVS (LSFM), and Internet
Connection Server) with the WLM component.

� System performance

The task of tuning a system is an iterative and continuous process. The controls offered by
system resources manager (SRM) are only one aspect of this process. Initial tuning
consists of selecting appropriate parameters for various system components and
subsystems. After the system is operational and criteria have been established for the
selection by job classes and priorities of jobs to run, SRM will control the distribution of
available resources according to the parameters specified by the installation.

However, WLM can only deal with available resources. If these are inadequate to meet the
needs of the installation, even optimal distribution might not be the answer. Other areas of
the system should be examined to determine the possibility of increasing available
resources.

When requirements for the system increase and it becomes necessary to shift priorities or
acquire additional resources, such as a larger processor, more storage, or more terminals,
the WLM goals might have to be adjusted to reflect changed conditions.

� I/O device configuration

As a system programmer, you must define an I/O configuration to the operating system
(software) and the channel subsystem (hardware). The Hardware Configuration Definition
(HCD) component of z/OS consolidates the hardware and software I/O configuration
processes under a single interactive user interface. The validation checking that HCD
does as you enter data helps to eliminate errors before you attempt to use the I/O
configuration.

The output of HCD is an IODF, which contains the server, the logical partitions and the I/O
configuration data. An IODF is used to define multiple hardware (servers) and software
configurations to z/OS. When you activate an IODF, HCD defines the I/O configuration to
the channel subsystem or the operating system.

With the HCD activate function or the z/OS ACTIVATE operator command, you can change
the current configuration without having to restart the software or perform a Power-on
Reset (POR) of the hardware. Making changes while the system is running is known as
dynamic configuration or dynamic reconfiguration.

� Console operations

The operation of a z/OS system involves the following elements:

– Console operations, or how operators interact with z/OS to monitor or control the
hardware and software

– Message and command processing that forms the basis of operator interaction with
z/OS and the basis of z/OS automation

Operating z/OS involves managing hardware, such as processors and peripheral devices
(including the consoles where your operators do their work).
Chapter 2. The z/OS system programmer 21

You also manage software, such as the z/OS operating control system, the job entry
subsystem, subsystems (such as IBM Tivoli NetView for z/OS) that can control automated
operations, and all of the applications that run on z/OS.

Planning z/OS operations for a system must consider how operators use consoles to
accomplish their work and how you want to manage messages and commands. Because
messages are also the basis of automated operations, understanding message
processing in an z/OS system can help you plan z/OS automation.

� z/OS Installation

Plan and optimize the z/OS installation in order to make system upgrades and
maintenance easier to perform.

2.3.2 Daily operations
Also involved are the business goals and policies established to enable the installation to
grow and handle work efficiently. These needs, of course, vary from installation to installation,
but they are important when you plan your z/OS operations.

Managing the complexity of z/OS requires you to think about the particular needs of your
installation. However, installations can consider the following goals when planning z/OS
operations.

� Increasing system availability

Many installations need to ensure that their system and its services are available and
operating to meet service level agreements (SLAs). Installations with 24-hour, 7-day
operations need to plan for minimal disruption of their operation activities. In terms of z/OS
operations, how the installation establishes console recovery or whether an operator must
restart a system to change processing options are important planning considerations.

� Controlling operating activities and functions

As more installations make use of multisystem environments (as in IBM Parallel Sysplex),
the need to coordinate the operating activities of those systems becomes crucial. Even for
single z/OS systems, you must consider controlling communication between functional
areas (such as a tape-pool library and the master console area, for example).

In both single and multisystem environments, the commands that operators can issue
from consoles can be a security concern that requires careful coordination. As a planner,
ensure that the correct people are performing the correct tasks when they interact with
z/OS. If your installation uses remote operations to control target systems, you also need
to consider how to control those activities from the host system.

� Simplifying operator tasks

Because the complexity of operating z/OS has increased, the tasks and skills of operators
also require careful consideration. How operators respond to messages at their consoles
and how you can reduce or simplify their actions are important to operations planning.
Further, planning z/OS operator tasks in relation to any automated operations that help
simplify those tasks is also needed.

� Streamlining message flow and command processing

In thinking about operator tasks, consider how to manage messages and commands.
Operators need to respond to messages. Routing messages to operator consoles,
suppressing messages to help your operators manage increased message traffic, and
selecting messages for automated operations can all help you manage system activity
efficiently.
22 ABCs of z/OS System Programming Volume 1

� Single system image

Single system image enables the operator, for certain tasks, to interact with several
images of a product as though they were one image. For example, the operator can issue
a single command to all z/OS systems in the sysplex rather than repeating the command
for each system.

� Single point of control

Single point of control enables the operator to interact with a suite of products from a
single workstation. An operator can accomplish a set of tasks from a single workstation,
thereby reducing the number of consoles that the operator has to manage.

2.4 Ordering z/OS
z/OS and other IBM zSeries software products are ordered through the IBM internet
application called Shopz at https://www.ibm.com/software/shopzseries (see Figure 2-3).
Using Shopz, you can also order corrective and preventive service.

Figure 2-3 Shopz home page c.2017
Chapter 2. The z/OS system programmer 23

https://www.ibm.com/software/shopzseries

You need to register to get access to Shopz. Product entitlement is based on your customer
number. After you log in, you are in the My Shopz page (see Figure 2-4) where you can order
products, corrective service, and preventive service.

Figure 2-4 My Shopz page c. 2017

You can receive your order on physical media, such as IBM 3590 and 3592 tape or DVD, or
you can download your order from the internet. IBM intends to discontinue delivering products
and maintenance on tape in the future so the preferred delivery method is internet download.1

2.4.1 z/OS delivery options
Several IBM packages are available for installing z/OS. Some packages are entitled with the
product (as part of your z/OS license, at no additional charge). Other packages are available
for an additional fee. This section describes each package:

ServerPac ServerPac is an entitled software delivery package consisting of
products and service for which IBM has performed the SMP/E
(System Modification Program/Extended) installation steps and some
of the post-SMP/E installation steps. To install the package on your
system and complete the installation of the software that it includes,
you use the CustomPac Installation dialog. For ServerPac orders,
service is integrated with product code.

1 Preview: IBM z/OS Version 2 Release 3 - Engine for digital transformation (Software Announcement A17-0134)
24 ABCs of z/OS System Programming Volume 1

CBPDO CBPDO is an entitled software delivery package consisting of
uninstalled products and unintegrated service. There is no dialog
program to help you install it, as there is with ServerPac. You must use
SMP/E to install the individual z/OS elements and features, and their
service, before you can use it. Installation instructions are in the z/OS
Program Directory.

SystemPac SystemPac is a software package, available for an additional fee and
offered worldwide, that helps you install z/OS, subsystems (DB2, IMS,
CICS, NCP, and WebSphere Application Server). SystemPac is
tailored to your specifications; it is manufactured according to
parameters and IODF definitions that you supply during order entry.
The goal is to have the system tailored to your specifications and have
products enabled according to your specified configuration.

2.4.2 SMP/E Internet Service Retrieval
Internet Service Retrieval (ISR) uses the SMP/E RECEIVE ORDER command to order
software service directly from IBM via a secure download (https or ftps). There are two IBM
Automated Delivery Request servers to choose from and their URLs are:

– https://eccgw01.boulder.ibm.com/services/projects/ecc/ws
– https://eccgw02.rochester.ibm.com/services/projects/ecc/ws

The service order will contain the latest program temporary fixes (PTFs) and HOLDDATA for
your system, and you can download it when the order is fulfilled.

With SMP/E ISR, you can request service on demand and even automate the service delivery
process. For example, you can schedule a SMP/E job to run once a week or even every night
to order and download the latest HOLDDATA and critical PTF service. It might not be practical
to run the job every night because the regular maintenance window is the first Sunday of
every month. For reference, see the following website:

http://www14.software.ibm.com/webapp/set2/sas/f/gdbm/home.html#outages
Chapter 2. The z/OS system programmer 25

http://www14.software.ibm.com/webapp/set2/sas/f/gdbm/home.html#outages
https://eccgw02.rochester.ibm.com/services/projects/ecc/ws
https://eccgw01.boulder.ibm.com/services/projects/ecc/ws

26 ABCs of z/OS System Programming Volume 1

Chapter 3. TSO/E, ISPF, JCL, and SDSF

This chapter describes the basic products that a system programmer needs to install and
customize an IBM z/OS operating system:

� Time Sharing Option/Extensions (TSO/E)

TSO/E allows users to create an interactive session with the z/OS. TSO/E provides a
single-user logon capability and a basic command-line interface (CLI) to z/OS.

� Information Center Facility

The Information Center Facility is the foundation for building an z/OS-based information
center (IC). An IC increases user productivity and the computer effectiveness by providing
easy-to-use computing tools, data access, education, and other assistance for users who
have little or no data processing experience.

� Interactive System Productivity Facility (ISPF)

ISPF is a full-panel application navigated by a keyboard. ISPF includes a text editor and
browser, and functions for locating and listing files and performing other utility functions.

After logging on to TSO, users typically access the ISPF menu. In fact, many use ISPF
exclusively for performing work on z/OS. ISPF menus list the functions that are most
frequently needed by online users.

� TSO/E and ISPF are used to perform the following tasks:

– Install and customize z/OS and other products

– Communicate interactively with the operating system

– Define and maintain user definitions

– Create data sets and JCL, and submit jobs

– Communicate with other TSO/E users

– Develop and maintain programs in languages, such as assembler language, Common
Business Oriented Language (COBOL), Fortran, Pascal, C, C++, Java, PL/I,
Restructured Extended Executor (REXX), command list (CLIST), and so on

– Manipulate data

3

© Copyright IBM Corp. 2014, 2017. All rights reserved. 27

� Job control language (JCL)

Job control language (JCL) is a set of statements that you code to tell the z/OS operating
system about the work you want it to perform. JCL statements tell z/OS where to find the
appropriate input, how to process that input (that is, what program or programs to run),
and what to do with the resulting output.

� System Display and Search Facility (SDSF)

SDSF provides a powerful and secure way to monitor and manage your z/OS system, in
both JES2 and JES3 environments. SDSF’s easy-to-use interface lets you control the
following elements:

– Jobs and output

– Devices, such as printers, readers, lines, and spool offloaders

– Checks from IBM Health Checker for z/OS

– System resources, such as WLM scheduling environments, the members of your Multi
Access Spool (MAS), and JES job classes

– System log and action messages

SDSF function is available in IBM z/OS Management Facility (z/OSMF), which lets you
manage aspects of z/OS through a web browser interface. You can see system activity at
a glance with graphic views of CPU use; manage and browse jobs, output, and checks for
IBM Health Checker for z/OS; issue system commands and export SDSF tables for use by
other programs, such as spreadsheet applications.

This chapter covers the following topics:

� TSO/E
� Interactive System Productivity Facility
� Job control language
� System Display and Search Facility
28 ABCs of z/OS System Programming Volume 1

3.1 TSO/E
Time Sharing Option/Extensions (TSO/E) allows users to create an interactive session with
the z/OS system. LOGON is the TSO/E command that tells TSO/E you want to begin a
computer session. TSO/E provides a single-user logon capability and a basic command
prompt interface to z/OS. For more information about TSO/E, see z/OS TSO/E Primer,
SA32-0984 and z/OS TSO/E General Information, SA32-0979 manuals.

Most users work with TSO/E through its menu-driven interface, Interactive System
Productivity Facility (ISPF). This collection of menus and panels offers a wide range of
functions to assist users in working with data files on the system. ISPF users include system
programmers, application programmers, administrators, and others who access z/OS. In
general, TSO/E and ISPF make it easier for people with varying levels of experience to
interact with the z/OS system.

In a z/OS system, each user is granted a user ID and a password authorized for TSO/E logon.
The TSO/E user ID is a group of characters that identifies the user. It is unique to the
installation; it can be no longer than eight (8) characters and can contain numeric (0 - 9) and
alphabetic (A to Z) characters, but must begin with an alphabetic character. Logging on to
TSO/E requires a 3270 display device or, more commonly, a TN3270 emulator running on
a PC.

During TSO/E logon, the system displays the TSO/E logon panel on the user’s 3270 display
device or TN3270 emulator.

Figure 3-1 shows a typical example of a TSO/E logon panel.

Figure 3-1 TSO/E Logon Panel

Many of the panels that are used with ISPF show program function (PF) key settings.
Because it is common practice for z/OS sites to customize the PF key assignments to suit
their needs, the key assignments shown in Figure 3-1 might not match the PF key settings in
use at your site.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 29

TSO/E is a base element of z/OS. TSO/E enables users to interactively share computer time
and resources. TSO/E is the primary user interface to the z/OS operating system.

TSO/E provides programming services that you can use in system or application programs.
These services consist of programs, macros, commands, and command lists (CLISTs). With
TSO/E, it is possible to place a list of commands, CLIST, in a file, and run the list as though it
were one command. When you invoke a CLIST, it issues the TSO/E commands in sequence.
CLISTs are used for performing routine tasks; they enable users to work more efficiently with
TSO/E. TSO/E services support a wide range of functions that are useful in writing both
system programs and application programs that use the full-screen capabilities of TSO/E.

You can use TSO/E in any one of the following three environments:

� The Information Center Facility

The Information Center Facility is the foundation for building an z/OS-based information
center (IC). An IC increases user productivity and the computer effectiveness by providing
easy-to-use computing tools, data access, education, and other assistance for users who
have little or no data processing experience.

The Information Center Facility eases users into the data processing environment by
providing a series of conversational panels. These panels eliminate numerous
command-driven interactions between the user and the system.

In addition to user services, the Information Center Facility provides panels that enable an
administrator to maintain the facility, enroll users, and add, modify, and delete products.
TSO/E provides several new functions that help an administrator to easily install, maintain,
and upgrade products in the Information Center Facility.

TSO/E also provides support for tailoring Information Center Facility panels, functions, and
environments to the needs of different departments or user groups and individual users.
This enhancement eliminates the requirement to make all products in the Information
Center Facility available to all users.

This is easiest way to use TSO/E; it provides a way to display many services, such as:

– Office support – (mail, names directory)
– Decision support – (data analysis)
– Document preparation – (reports, charts, graphs)

� ISPF

The Interactive System Productivity Facility (ISPF) works together with TSO/E to provide
panels with which users can interact. ISPF provides the underlying dialog management
service that displays panels and enables a user to navigate through the panels. Program
Development Facility (PDF) is a dialog of ISPF that helps maintain libraries of information
in TSO/E and enables a user to manage the library through different facilities, such as
browse, edit, and utilities.

� Line mode TSO/E

This is the way programmers originally communicated interactively with the z/OS
operating system; it uses TSO/E commands typed on a terminal, one line at a time. It is a
quick and direct way to use TSO/E.

TSO/E is a powerful tool for both programmers and non-programmers. The introduction of
new products and the use of Information Center Facility and ISPF is moving TSO/E from a
system programmer’s tool to a highly flexible subsystem that delivers computing resources to
the user. Anyone can use TSO/E to do many diverse tasks in several environments.
30 ABCs of z/OS System Programming Volume 1

CLISTs, REXX execs (see “Restructured Extended Executor (REXX) language support” on
page 32), servers, and command processors are specific types of programs that you can
write to run in the TSO/E environment.

TSO/E offers advantages to a wide range of computer users, including system programmers,
application programmers, information center administrators, information center users, TSO/E
administrators, and others who access applications that run under TSO/E.

3.1.1 TSO/E highlights
Highlights of TSO/E are described in this section.

Session Manager
The TSO/E Session Manager is an interface to line mode TSO/E. TSO/E Session Manager
keeps a complete journal of everything that happens during your terminal session while you
are in line mode TSO/E. It records everything you type in and everything the system displays.

Any time during your terminal session, you can look at work you did in the beginning, middle,
or end of your session. TSO/E Session Manager also lets you print a copy of this information.
You can correct or change a command that is displayed on the window without having to
retype the entire command. By enabling you to redisplay, change, and reuse your input, the
Session Manager makes TSO/E easier to use.

Commands
TSO/E provides numerous commands for both end users and programmers that allow them
to interact with TSO/E and the z/OS system. The ALLOCATE, FREE, and EDIT commands are
examples of commands that allow users to manage their data sets. The CONSOLE command
enables users with CONSOLE command authority to perform z/OS operator activities from a
TSO/E session. It is important to notice that the use of these commands must be authorized
by the installation.

Online help
Terminal users can obtain online help for most TSO/E commands. Information Center Facility
users can obtain help for each panel and message. The HELP facility provides installations
greater flexibility in adding help information. Installations can also provide help information in
different languages.

Data and notice handling
TSO/E simplifies how data and notices are sent and received. For example, the TRANSMIT and
RECEIVE commands enable users to send data and messages to other users in a network.
The broadcast data set or individual user logs contain messages that either the system or
another user sends using the SEND command.

Logon processing
TSO/E provides a full-screen logon panel that makes the logon process easier:

� Saving user attributes from one session to the next
� Enabling program function keys to be used during logon
� Enabling users to enter commands during logon
� Explaining the error when incorrect information is specified

Users can request private areas of up to 2 gigabytes for each terminal session. Your
installation can also customize the logon panel and the logon help panel, and customize
logon processing (see “TSO/E logon process in a VTAM environment” on page 34).
Chapter 3. TSO/E, ISPF, JCL, and SDSF 31

Language enablement
TSO/E enables installations to provide TSO/E messages and the TRANSMIT full-screen
panel to users in different languages. The TSO/E CONSOLE command also supports the
display of translated system messages issued during a console session.

Help information can be provided in a language defined by the installation.

Support for logon panels and their help text in different languages is also available.

The TSO/E REXX supports arguments that REXX execs can use to obtain language
information. Execs can use this information together with the SETLANG function to set the
language in which REXX messages are displayed.

Security
Installations installed can use security labels (SECLABELs) to protect system resources.
TSO/E provides support to use security labels. The LOGON command and full-screen logon
panel support the specification of a security label to be associated with a user’s TSO/E
session. The SUBMIT command enables users to submit jobs at a security label that is greater
than the one they are currently logged on with. You can use the OUTDES command
enhancements to print the job’s security label on each page of output.

Installations can also control communication between users to protect the security
classification of information. For example, installations can control and audit the use of the
SEND command. LISTBC command processing enables installations to restrict users from
viewing messages for which they do not have the proper security.

CLIST language
The CLIST language is a high-level programming language that enables programmers to
issue lists of TSO/E commands and JCL statements in combination with logical, arithmetic,
and string-handling functions provided by the language. CLISTs can simplify routine user
tasks, start programs written in other languages, and perform complex programming
functions.

Restructured Extended Executor (REXX) language support
TSO/E provides REXX support to z/OS users. REXX is a high-level procedures language that
enables inexperienced users and experienced programmers to write structured programs
called REXX execs. You can run REXX execs in any z/OS address space (both TSO/E and
non-TSO/E).

REXX language allows programmers to perform logical and arithmetic operations and
communicate with terminal users. REXX built- in functions increase usability by allowing you
to easily perform character manipulation and conversion operations.

TSO/E extends the programming capabilities of REXX by providing TSO/E functions, REXX
commands, and programming and customizing services. These facilities allow you to perform
additional tasks, such as controlling the execution of a REXX exec and customizing how
system services are accessed and used. Some of these facilities are available only to REXX
execs that run in the TSO/E address space.

REXX execs perform functions similar to CLISTs and can call, and be called by, existing
CLISTs and other TSO/E programs. Therefore, REXX is an attractive alternative to the CLIST
language.
32 ABCs of z/OS System Programming Volume 1

TSO/E service facility
The TSO/E service facility enables TSO/E users to run authorized or unauthorized programs,
TSO/E commands, or CLISTs from an unauthorized environment, while maintaining system
integrity.

TSO Command Package
The TSO Command Package provides functions that help to improve productivity:

� Support for running terminal sessions as batch jobs
� Automatic saving of data
� Accounting facility
� Defaults for the user-attribute data set

Enhanced Connectivity Facility
The Enhanced Connectivity Facility (ECF) enables you to customize how host server
programs and personal computer (PC) requester programs communicate. IBM products or
customer-written programs can supply the services.

The user can access z/OS host services from a PC using IBM System/370-to-IBM Personal
Computer ECF. This enables PC users to interact with z/OS or IBM Virtual Machine/System
Product (VM/SP) systems using PC commands.

Support for z/OS UNIX
Installations can use the functions provided by the TSO/E ALLOCATE and FREE commands to
manipulate z/OS UNIX files.

TSO/E Health Checks
TSO/E provides health checks that are registered automatically during system initialization.
These checks run at regular intervals, and they can be disabled at any time. They alert
installations to potentially serious problems so that corrective action can be taken to limit the
impact.

3.1.2 TSO/E customization
TSO/E customization is the process whereby you tailor TSO/E functions to fit the specific
needs of your installation. To tailor a TSO/E function, you might make a change or addition to
TSO/E itself or to some other related IBM product or z/OS element, such as the Advanced
Communications Function for Virtual Telecommunications Access Method (VTAM). For more
information, see z/OS TSO/E Customization, SA32-0976.

Some customization is required before you can use TSO/E, but most is optional. If you elect
not to do optional customization on a specific TSO/E function, that function then works
according to IBM-provided defaults.

Each of the following z/OS elements and products interacts with TSO/E. They provide
interfaces that you can use to customize the way TSO/E and the element work together. The
elements are:

� DFSMSdfp
� ISPF
� Job Entry Subsystems (JES2 and JES3)
� Security Server (RACF)
� VTAM
� IBM Print Services Facility™ (PSF) for z/OS
Chapter 3. TSO/E, ISPF, JCL, and SDSF 33

Before users can use TSO/E, you must do several customization tasks. After you complete
required customization, users will be able to log on and issue commands:

1. Define TSO/E to VTAM
2. Define those users who will be allowed to log on to TSO/E
3. Create at least one TSO/E logon procedure for users (see the following TSO/E logon

procedure). You must define TSO/E address spaces to VTAM in order to use TSO/E; the
VTAM APPL definition statements are used for this definition. You must code one APPL
definition statement to define the primary TSO/E address space called TCAS, and at least
as many APPL definition statements as there will be users logged on to TSO/E at one
time.

For example, if you want to allow 50 users to use TSO/E simultaneously, code 51 APPL
definition statements: one for the primary TSO/E address space and one for each user
address space.

Each user is defined to TSO/E by storing its user ID, logon procedure name, and the TSO/E
resources that it has authority to use. This can be done, for example, by adding a user to one
of the following data repositories:

� User Attribute data set (UADS), or
� IBM Resource Access Control Facility (RACF) database

When RACF is installed, it can be used to control access to the system and store information
about each TSO/E user. The RACF database contains profiles for every entity (user, data set,
or group) defined to RACF. For more information about RACF, see z/OS Security Server
RACF System Programmer’s Guide, SA23-2287.

3.1.3 TSO/E logon procedure
A TSO/E logon procedure contains JCL statements that run the required program and
allocate the required data sets to enable a user to acquire the resources needed to use
TSO/E. To log on to TSO/E, a user must have access to at least one logon procedure. The
logon procedure is usually in a data set called SYS1.PROCLIB. The name of the procedure
provided by TSO/E is IKJACCNT and is intended for system programmers to initially access the
system.

TSO/E logon process in a VTAM environment
In a VTAM environment, when a user enters a LOGON command to TSO the following actions
occur:

1. VTAM receives the command and passes it to the TCAS address space (the primary TSO
address space).

2. If the maximum number of users logged on in the system is reached, the logon is rejected;
if not, and the user ID was not specified, TCAS prompts for the user ID.

3. After the user ID is specified, TCAS verifies that the user has authority to use TSO/E.
Depending on the installation customization, a full-screen logon panel is shown to the
user. Figure 3-1 on page 29 shows the panel displayed when the user is RACF defined.

The values shown in the fields PROCEDURE, ACCT NMBR, SIZE, and COMMAND are
the same the user entered for the previous TSO/E session. If this is the first session, they
are the default values.

4. After the Enter key is pressed, TSO/E verifies the values that were entered, then the user
ID and the logon procedure name is passed to JES. The user address space is created
(Master AS) and the required resources are allocated.
34 ABCs of z/OS System Programming Volume 1

5. The user receives a window with the READY prompt at the left top corner of the window.
This is called line-mode TSO/E. Now TSO/E is ready to accept commands, and user
interfaces, such as ISPF or SDSF, can be called, as shown in Figure 3-2.

Figure 3-2 TSO/E logon process in a VTAM environment

Logon TSO user00

VTAM
AS

USER00
AS

TCAS
AS

JES
AS

MASTER
AS
Chapter 3. TSO/E, ISPF, JCL, and SDSF 35

3.1.4 Line mode TSO/E
When you do not enter a command name in the panel shown in Figure 3-1 on page 29, you
enter line mode TSO/E. When you log on, you see the panel shown in Figure 3-3. The word
READY in the corner indicates that TSO is ready to accept your commands.

Figure 3-3 Line mode TSO/E

In line mode TSO/E, you type TSO/E commands one line at a time. It is a direct way to use
TSO/E, and was the way programmers originally used to communicate interactively with the
z/OS operating system.

You probably will not use line mode TSO/E. The user interface provided by ISPF is a more
friendly way to work with TSO/E. For more information about using TSO/E and ISPF, see
3.2.1, “Using ISPF” on page 38.

For more information, see z/OS TSO/E Primer, SA32-0984, and z/OS TSO/E User’s Guide,
SA32-0971.

Interrupting a TSO/E function
The Attention Interrupt key enables you to interrupt or end a process that is taking place. If
you are in a process and you want to stop, or you see a message requesting information that
you do not have, you can press the Attention Interrupt key to end the process.

The Attention Interrupt key often is labeled PA1. Sometimes it is called an escape key and is
labeled Esc.

You can end a program or a process by pressing the attention interrupt key. For instance, if
you were running a program and the program went into a loop, you can press the attention
interrupt key to stop processing.

Cursor, where you start to issue commands

TSO is ready to accept commands

1
2

3

1 - You enter a command
2 - TSO displays the command output, and...
3 - TSO is ready to accept new commands
36 ABCs of z/OS System Programming Volume 1

3.1.5 TSO/E languages
There are two languages available in the TSO/E environment: REXX and CLIST. REXX and
CLIST can be used to customize and tailor your TSO/E environment specifically for the
applications you want to use. Figure 3-4 shows a REXX exec and a sample CLIST procedure.

Figure 3-4 TSO/E languages

REXX
The REstructured eXtended eXecutor (REXX) language is a high-level procedures language
that enables inexperienced users and experienced programmers to combine REXX
instructions and host commands and services into programs called REXX execs. It is a
versatile programming language, with some aspects, such as common programming
structure, readability, and free format, that make it a useful language for general users. The
REXX language can be intermixed with commands to various host environments, provides
powerful functions, and has extensive mathematical capabilities.

The TSO/E implementation of the REXX language enables REXX execs to run in any z/OS
address space. You can write a REXX exec that includes TSO/E services and run it in a
TSO/E address space, or you can write an application in REXX to run outside of a TSO/E
address space.

Note: There is also a set of z/OS UNIX extensions to the TSO/E REXX language that
enable REXX programs to access z/OS UNIX callable services. The z/OS UNIX
extensions, called syscall commands, have names that correspond to the names of the
callable services that they start, for example, access, chmod, and chown. For more
information about the z/OS UNIX extensions, see z/OS Using REXX and z/OS UNIX
System Services, SA23-2283.

CLISTREXX
Chapter 3. TSO/E, ISPF, JCL, and SDSF 37

CLIST
An easy way to run a series of Session Manager or TSO/E commands is by using command
procedures (CLISTs). A CLIST is an executable sequence of TSO/E and Session Manager
commands, subcommands, or command procedure statements. You can use any TSO/E or
Session Manager command in CLISTs. The same rules for entering Session Manager
commands at your terminal apply when using a CLIST.

When started, CLIST issues the TSO/E commands in sequence. The CLIST language
includes the programming tools that you need to write extensive, structured applications.
CLISTs can perform several complex tasks, from displaying a series of full-screen panels to
managing programs written in other languages.

You can include TSO/E commands and subcommands (and user-written commands and
subcommands) in a CLIST at any point where the specific functions (for example, allocate,
free, and so on) are required. For certain applications, a CLIST might consist entirely of
commands and subcommands.

3.2 Interactive System Productivity Facility
The Interactive System Productivity Facility (ISPF) product assists in program development
and is designed to take advantage of the characteristics of IBM display terminals, to increase
programmer productivity in an interactive environment. It is a set of panels that help you
manage libraries of information of the z/OS system. The libraries are made up of units called
data sets that can be stored and retrieved. You can have various kinds of information in data
sets. Several examples are shown here:

� Source code
� Data, such as inventory records, personnel files, or a series of numbers to be processed
� Load modules

For more information, see z/OS ISPF User’s Guide, GC19-3627.

3.2.1 Using ISPF
ISPF is a multifaceted development tool set for the z/OS operating system. TSO/E users use
ISPF for application development productivity. ISPF forms the basis of many TSO/E
applications and provides extensive programmer-oriented facilities as well.

ISPF can be used in many ways, as these examples illustrate:

� Users can edit, browse, and print data.

� Data processing administrators and system programmers can use ISPF to:

– Monitor and control program libraries.

– Communicate with z/OS through TSO commands, CLISTs, or REXX execs.

� Programmers can use ISPF to develop a batch, interactive, or any other type of program
and its documentation.

� Terminal users can start a wide range of utilities, such as search, compare, compile, and
so on.
38 ABCs of z/OS System Programming Volume 1

3.2.2 ISPF structure
ISPF helps programmers develop interactive applications called dialogs. Dialogs are
interactive because ISPF uses them to communicate with terminal users through a series of
panels while the users perform application development tasks.

ISPF panels provide the following functions:

� Provide access to ISPF functions through menus.
� Request information from users through data entry panels.
� Provide information from users through scrollable data displays.

These are the main components of ISPF:

� Dialog Manager (DM)

DM provides services to dialogs and users. These include display, variable services, input
and output, user and application profiles, table management, system interface services,
dialog testing and debugging aids, and other services.

� Program Development Facility (PDF)

PDF provides services to assist the dialog or application developer. These include the edit
and browse functions, data set and catalog utilities, TSO/E command interfaces, and data
set search and compare functions.

� Software Configuration and Library Manager (SCLM)

The SCLM facility provides library management capabilities, such as versioning, auditing,
and promotion. It also provides configuration management capabilities to track how all of
the pieces of an application fit together, including source code, objects, load modules, test
cases, documentation, and other items.

� Client/server component

The client/server component enables the users of ISPF applications to use a workstation
running Windows or UNIX to display the panels of an ISPF application. It does this using
the graphical user interface (GUI) of the workstation.

3.2.3 Data set types supported
A data set is a collection of logically related data; it can be a source program, a library of
macros, or a file of data records used by a processing program. Data records are the basic
unit of information used by a processing program. ISPF supports the following data set types
for any ISPF options, such as Edit, Browse, and Delete:

� Sequential data set

A sequential data set is a data set whose records are organized based on their successive
physical positions. In a sequential data set, records are stored and retrieved in a
sequential order.

� Partitioned data set and partitioned data set extended

A partitioned data set (PDS) is a data set on disk that is divided into partitions called
members. Each member can contain a program, part of a program, or data.

A partitioned data set is like a collection of sequential data sets, where the individual
members each have a unique name. A directory index is used to locate members in the
partitioned data set. The directory consists of 256-byte records, each one containing
directory entries. There is one directory entry for each member.

ISPF provides partial support for Virtual Storage Access Method (VSAM) data sets and tape
data sets.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 39

� You can create and delete VSAM data sets and obtain VSAM data set information.
� VSAM data sets are supported for Edit, Browse, and View if the ISPF has been

customized to enable such support.
� You can define an interface to an external utility such as DFSMSrmm that the Data Set List

utility can use to process data sets stored on tape or some other removable media.

ISPF supports z/OS UNIX directories and files in the ISPF Edit and Browse options, as well
as in the ISPF services BROWSE, EDIT, and VIEW. It supports processing of directories and
files in a z/OS UNIX directory structure.

ISPF does not support some of the following data set types:

� Record format variable block spanned (VBS) data sets
� Direct access (DA) data sets
� Generation data group (GDG) base data sets

3.2.4 ISPF components
ISPF consists of four major components, DM, PDF, SCLM, and client/server. These
components are considered one element in all releases of z/OS.

ISPF Dialog Manager
DM provides services to dialogs and users. A dialog is the interaction between a person and
a computer. It helps a person who is using an interactive display terminal to exchange
information with a computer. The user starts an interactive application through an interface
that the system provides. The dialog with the user begins with the computer displaying a
panel and asking for user interaction. It ends when the task for which the interactions were
initiated is completed.

ISPF provides facilities to the user to create the parts of a dialog, called dialog elements.
Each dialog application is made up of a command procedure or program, together with dialog
elements that allow an orderly interaction between the computer and the application user.

The elements that make up a dialog application are:

� Functions. A function is a command procedure or a program that performs processing
requested by the user. It can start ISPF dialog services to display panels and messages,
build and maintain tables, generate output data sets, and control operational modes. They
can be written as:

– REXX or CLIST command procedures
– Programs

� Panel definitions. A panel definition is a programmed description of the panel. It defines
both the content and format of a panel. Most panels prompt the user for input. The user’s
response can identify which path is to be taken through the dialog, as on a selection panel.
The response can be interpreted as data, as on a data-entry panel.

� Message definitions. Message definitions specify the format and text of messages to
users. A message can confirm that a user-requested action is in progress or completed, or
it can report an error in the user’s input.

� Table. Tables are two-dimensional arrays that contain data and are created by dialog
processing. They can be created as a temporary data repository, or they can be retained
across sessions. A retained table can also be shared among several applications. The
type and amount of data stored in a table depends on the nature of the application. Not all
dialogs use tables.
40 ABCs of z/OS System Programming Volume 1

� File tailoring skeletons. Skeletons work like a fill-in-the-blank exercise. They take dialog
variables and put them into a data set containing statements that control the output format.
The output data set can be used to drive other processes. File skeletons are frequently
used to produce job data sets for batch execution. Various dialogs can use this resource.

� Dialog variables. ISPF services use variables to communicate information among the
various elements of a dialog application. ISPF provides a group of services for variable
management. Variables can vary in length from 0 - 32,000 bytes.

Program Development Facility
Program Development Facility (PDF) provides View, Browse, Edit, and library access services
that can be combined in a dialog with any of the ISPF services. The library access services
run functions involving members of a programming library. These functions include adding,
finding, and deleting members, and displaying member lists.

Software Configuration Library Manager
Software Configuration Library Manager (SCLM) is a software tool that helps you develop
complex software applications. Throughout the development cycle, SCLM automatically
controls, maintains, and tracks all of the software components of the application. You can lock
the version being edited in a private library and then promote it. Use SCLM to create, control,
maintain, and track software components for a project. For more information about SCLM,
see z/OS ISPF Software Configuration and Library Manager Guide and Reference,
SC19-3625.

ISPF client/server - the Workstation Agent component
The client/server component of ISPF takes the form of an application called the ISPF
Workstation Agent (WSA). The WSA runs on your local workstation and maintains a
connection between the workstation and the ISPF host. The WSA provides:

� The ability to display the ISPF panels using the display function of your workstation
operating system (known as running in GUI mode).

� The ability to edit host data on your workstation and workstation data on the host (known
as distributed editing).

The WSA installation file is supplied with ISPF and must be downloaded from the host to the
local workstation and then installed and initialized before these functions are available. The
WSA component enables you to run ISPF on a programmable workstation and display the
panels using the display function of your workstation operating system. Manuals in the ISPF
library refer to this as running in GUI mode. The ISPF WSA is supported on the following
platforms:

� Microsoft Windows
� IBM AIX®
� HP-UX
� Solaris

Connecting to a workstation for data access has a direct effect on your installation’s processor
processing time. One reason for using the ISPF client/server function is to offload processor
cycles from the host to a less expensive workstation. But even if that is not your goal, an
added benefit is that your users can use the connection for distributed editing.

Therefore, they can use their favorite editor to work with your data, whether that means using
a host editor on host and workstation files, or using a workstation editor on the same files. By
making the connection to the workstation, a user can edit workstation files on ISPF, or host
files on his workstation. The distributed edit function can be used in standard 3270 mode, or
in ISPF GUI mode.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 41

3.2.5 ISPF primary option menu
ISPF is started in a TSO/E environment through an ISPF, or PDF, or ISPSTART command.
The ISPF Primary Option Menu contains the options that you can use to create your own
applications online. If your installation has a customized ISPF Primary Option Menu, the
menu might not contain all of options shown in Figure 3-5, or it might contain certain
installation-specific options. Most ISPF panels have action bars at the top; many panels also
have point-and-shoot text fields.

Figure 3-5 ISPF primary option menu

The following list describes the panel options:

0 Settings displays and changes selected ISPF parameters, such as terminal
characteristics and function keys.

1 View displays data using the View or Browse function. You can use View or Browse to
look at (but not change) large data sets, such as compiler listings. You can scroll the
data up, down, left, or right. If you are using Browse, a FIND command, entered on the
command line, enables you to search the data for a character string. If you are using
View, you can use all the commands and macros available to you in the Edit function.

2 Edit enables you to create or change source data, such as program code and
documentation, using the ISPF full-screen editor. You can scroll the data up, down, left,
or right. You can change the data by using Edit line commands, which are entered
directly on a line number, and primary commands, which are entered on the command
line.

3 Utilities perform library and data set maintenance tasks, such as moving or copying
library or data set members, displaying or printing data set names and volume table of
contents (VTOC) information, comparing data sets, and searching for strings of data.

4 Foreground calls IBM language processing programs in the foreground.

5 Batch calls IBM language processing programs as batch jobs. ISPF generates JCL
based on information that you enter and submits the job for processing.

6 Command calls TSO commands, CLISTs, or REXX execs under ISPF.

7 Dialog Test tests individual ISPF dialog components, such as panels, messages, and
dialog functions (programs, commands, menus).
42 ABCs of z/OS System Programming Volume 1

9 IBM Products enable you to select other installed IBM program development products
on your system.

The following products are supported:

� Tivoli Information Management
� COBOL Structuring Facility foreground dialog (COBOL/SF)
� Screen Definition Facility II (SDF II) licensed program
� Screen Definition Facility II-P (SDF II-P) licensed program

10 SCLM controls, maintains, and tracks all of the software components of an application.

11 Workplace gives you access to the ISPF Workplace, which combines many of the ISPF
functions onto one object-action panel.

12 z/OS System gives you access to the z/OS System Programmer Primary Option Menu.
It contains options for z/OS elements that are used by system programmers and
administrators as tailored by the installation:

� Graphical Data Display Manager (GDDM) Print Queue Manager
� Hardware Configuration Definition (HCD) I/O configuration
� DCE configuration
� APPC Administration
� z/OS Workload Manager (WLM)
� IBM First Failure Support Technology™ (FFST™)
� Infoprint Server
� z/OS Resource Management Facility (RMF)
� System Modification Program/Extended (SMP/E)
� Transmission Control Protocol/Internet Protocol (TCP/IP) Network Print Facility

(NPF)

13 z/OS User gives you access to the z/OS Applications panel. It contains options for z/OS
elements that are used by most ISPF users:

� IBM BookManager® Build
� BookManager Read
� BookManager Index Creation
� DFSMS Data Facility Product (DFSMSdfp)/ISMF
� Data Facility Sort (DFSORT)
� Bulk Data Transfer (BDT) File-to-File
� Interactive Problem Control System (IPCS)
� z/OS UNIX Browse
� z/OS UNIX Edit
� z/OS UNIX Shell
� Security Server
� TSO/E Information Center Facility
� SDSF
� Data Facility Storage Management Subsystem (DFSMS) Removable Media

Manager (DFSMSrmm)/Interactive Storage Management Facility (ISMF)

X EXIT leaves ISPF using the log and list defaults. You can change these defaults from
the Log/List pull-down on the ISPF Settings panel action bar.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 43

3.3 Job control language
For your program to run on the computer and perform the work that you designed it to do,
your program must be processed by your operating system.

Your operating system consists of a z/OS Base Control Program (BCP) with a job entry
subsystem (JES2 or JES3) and DFSMSdfp installed with it.

For the operating system to process a program, programmers must perform certain job
control tasks. These tasks are performed through the job control statements:

� JCL statements
� JES2 control statements
� JES3 control statements

The JES2 and JES3 statements are called Job Entry Control Language (JECL) statements.

3.3.1 JCL introduction
To get your z/OS system to accomplish work for you, you must describe to the system the
work you want done and the resources your work needs. You use JCL to provide this
information to z/OS.

One way of thinking about JCL is to compare it to a menu in a restaurant. If you are a
customer at a restaurant, you and the other customers do not walk into the kitchen and start
cooking your own dinners; that defeats the purpose of going to a restaurant. Rather, you
select items from a menu describing all that the restaurant has to offer. These items make up
an order, specifying which entrées you want, which salad dressing you prefer, and any other
special requests you have. You then ask the waiter to take your order to the kitchen.

In the kitchen, a team of chefs divides up the work and the appropriate ingredients to prepare
each dish as quickly and efficiently as possible. While the meals are being prepared, you and
your friends can ignore what is going on in the kitchen, engaging instead in dinner
conversation and catching up on the latest news. When the waiter brings out your meal, you
concentrate on your enjoyment of the meal.

Now imagine yourself back at the office using your z/OS system, and think of JCL as the
menu. In the same way that you and the other diners select items from the menu and place
orders for the waiter to take to the team of chefs, you and other z/OS users use JCL to define
work requests (called jobs), and use a JES to submit those jobs to z/OS.

Using the information that you and the other users provide with JCL statements, z/OS
allocates the resources needed to complete all of your jobs just as the kitchen chefs divided
up the work to prepare the orders of all the customers.

In addition, just as the chefs worked in the kitchen while you and the other diners devoted
your attention to what was going on at your tables, z/OS completes the submitted jobs in the
background of the system, enabling you and the other users to continue working on other
activities in the foreground. Also, just as the waiter conveys the results of the chefs’ work to
you, JES presents the output of the jobs to you.

For a complete description of this process, see z/OS JCL User’s Guide, SA23-1386.
44 ABCs of z/OS System Programming Volume 1

Job submission process
Figure 3-6 shows an overview of the job submission process. The user performs the activities
on the left side of the figure, and the system performs those on the right side. In this example,
z/OS and JES make up the system.

Figure 3-6 Job Submission Process

For every job that you submit, you need to tell z/OS where to find the appropriate input, how
to process that input (that is, what program or programs to run), and what to do with the
resulting output.

Job control statements
You use JCL to convey this information to z/OS through a set of statements known as job
control statements. JCL’s set of job control statements is quite large, enabling you to provide a
great deal of information to z/OS.

Most jobs, however, can be run using a small subset of these control statements. After you
become familiar with the characteristics of the jobs you typically run, you might find that you
need to know the details of only some of the control statements.

In each job, the control statements are grouped into job steps. A job step consists of all the
control statements needed to run one process, for example a sort, a copy, or an application
program. If a job needs to run more than one process, the job contains another job step for
each of those programs. A job can have 1 - 255 steps.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 45

Required control statements
Every job must contain, at minimum, the following two types of control statements:

� A JOB statement

This statement marks the beginning of a job and assigns a name to the job. The JOB
statement is also used to provide certain administrative information, including security,
accounting, and identification information. Every job has one and only one JOB statement.

� An EXEC (run) statement

This statement marks the beginning of a job step, to assign a name to the step and identify
the program or procedure to be run in the step. You can add various parameters to the
EXEC statement to customize the way the program runs. Every job has at least one EXEC
statement.

In addition to the JOB and EXEC statements, most jobs also contain one or more data
definition (DD) statements. These statements identify and describe the input and output data
to be used in the step. The DD statement can be used to request a previously created data
set, to define a new data set, to define a temporary data set, or to define and specify the
characteristics of the output.

3.3.2 JCL streams and jobs
For the operating system to process a program, system programmers or application
programmers must perform certain job control tasks. These tasks are performed through the
job control statements:

� JCL statements, as mentioned previously
� JES2 control statements or JES3 control statements

3.3.3 Job Entry Subsystems
z/OS uses a job entry subsystem or JES to receive jobs into the operating system, to
schedule them for processing by z/OS, and to control their output processing.

JES is the component of the operating system that provides supplementary job management,
data management, and task management functions such as scheduling, control of job flow,
and the reading and writing of input and output streams on auxiliary storage devices,
concurrently with job execution.

z/OS manages work as tasks and subtasks. Both transactions and batch jobs are associated
with an internal task queue that is managed on a priority basis. JES is a component of z/OS
that works on the front end of program execution to prepare work to be run. JES is also active
on the back end of program execution to help clean up after work is performed. This activity
includes managing the printing of output generated by active programs.

More specifically, JES manages the input and output job queues and data.

For example, JES handles the following aspects of batch processing for z/OS:

� Receiving jobs into the operating system
� Scheduling them for processing by z/OS
� Controlling their output processing

z/OS has two versions of job entry systems: JES2 and JES3. Of these, JES2 is the most
common by far.
46 ABCs of z/OS System Programming Volume 1

JES2 and JES3 have many functions and features, but their most basic functions are as
follows:

� Accept jobs submitted in various ways:

– From ISPF through the SUBMIT command
– Over a network
– From a running program, which can submit other jobs through the JES internal reader
– From a card reader (very rare!)

� Queue jobs waiting to be run. Multiple queues can be defined for various purposes.

� Queue jobs for an initiator, which is a system program that requests the next job in the
appropriate queue.

� Accept printed output from a job while it is running and queue the output.

� Optionally, send output to a printer, or save it on spool for PSF, InfoPrint, or another output
manager to retrieve.

The basic elements of batch processing are shown in Figure 3-7.

Figure 3-7 Batch Job Flow

JES uses one or more disk data sets for spooling, which is the process of reading and writing
input and output streams on auxiliary storage devices, concurrently with job execution, in a
format convenient for later processing or output operations. Spool is an acronym that stands
for simultaneous peripheral operations online.

JES combines multiple spool data sets (if present) into a single conceptual data set. The
internal format is not in a standard access-method format, and is not written or read directly
by applications. Input jobs and printed output from many jobs are stored in the single
(conceptual) spool data set. In a small z/OS system, the spool data sets might be a few
hundred cylinders of disk space; in a large installation, they might be many complete volumes
of disk space.

There are two versions of JES: JES2 and JES3.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 47

3.3.4 Job Entry Subsystem 2
JES2 is a component of z/OS that provides the necessary functions to get jobs into, and
output out of, the z/OS system. It is designed to provide efficient spooling, scheduling, and
management facilities for the z/OS operating system.

During the life of a job, JES2 and z/OS control different phases of the overall processing.

The job queues contain jobs that are waiting to run, currently running, waiting for their output
to be produced, having their output produced, and waiting to be purged from the system.

Generally speaking, a job goes through the following phases, as shown in Figure 3-8:

1. Input
2. Conversion
3. Processing
4. Output
5. Print/punch (hardcopy)
6. Purge

Figure 3-8 Job phases through JES2

Input phase
JES2 accepts jobs, in the form of an input stream, from input devices, from other programs
through internal readers, and from other nodes in a job entry network.

The internal reader is a program that other programs can use to submit jobs, control
statements, and commands to JES2. Any job running in z/OS can use an internal reader to
pass an input stream to JES2. JES2 can receive multiple jobs simultaneously through
multiple internal readers. The system programmer defines internal readers to be used to
process all batch jobs other than started tasks (STCs) and TSO requests.
48 ABCs of z/OS System Programming Volume 1

JES2 reads the input stream and assigns a job identifier to each JOB JCL statement. JES2
places the job’s JCL, optional JES2 control statements, and SYSIN data onto DASD data sets
called spool data sets. JES2 then selects jobs from the spool data sets for processing and
subsequent running.

Conversion phase
JES2 uses a converter program to analyze a job’s JCL statements. The converter takes the
job’s JCL and merges it with JCL from a procedure library. The procedure library can be
defined in the JCLLIB JCL statement, or system/user procedure libraries can be defined in
the PROCxx DD statement of the JES2 startup procedure.

Then, JES2 converts the composite JCL into converter/interpreter text that both JES2 and the
initiator can recognize. Next, JES2 stores the converter/interpreter text on the spool data set.
If JES2 detects any JCL errors, it issues messages, and the job is queued for output
processing rather than execution. If there are no errors, JES2 queues the job for execution.

Processing phase
In the processing phase, JES2 responds to requests for jobs from the initiators. JES2 selects
jobs that are waiting to run from a job queue and sends them to initiators.

An initiator is a system program belonging to z/OS, but controlled by JES or by the workload
management (WLM) component of z/OS, which starts a job allocating the required resources
to allow it to compete with other jobs that are already running.

JES2 initiators are initiators that are started by the operator or by JES2 automatically when
the system initializes. They are defined to JES2 through JES2 initialization statements. To
obtain an efficient use of available system resources, the installation associates each initiator
with one or more job classes. Initiators select jobs whose classes match the initiator-assigned
class, obeying the priority of the queued jobs.

WLM initiators are started by the system automatically based on performance goals, relative
importance of the batch workload, and the capacity of the system to do more work. The
initiators select jobs based on their service class and the order in which they were made
available for execution. Jobs are routed to WLM initiators through a JOBCLASS JES2
initialization statement.

Output phase
JES2 controls all SYSOUT processing. SYSOUT is system-produced output; that is, all
output produced by, or for, a job. This output includes system messages that must be printed,
and data sets requested by the user that must be printed or punched. After a job finishes,
JES2 analyzes the characteristics of the job’s output in terms of its output class and device
setup requirements. Then, JES2 groups data sets with similar characteristics. JES2 queues
the output for print or punch processing.

Print/punch (hardcopy) phase
JES2 selects output for processing from the output queues by output class, route code,
priority, and other criteria. The output queue can have output that is to be processed locally or
at a remote location. After processing all the output for a particular job, JES2 puts the job on
the purge queue.

Purge phase
When all processing for a job completes, JES2 releases the spool space assigned to the job,
making the space available for allocation to subsequent jobs. JES2 then issues a message to
the operator indicating that the job has been purged from the system.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 49

3.3.5 Job Entry Subsystem 3
A major goal of operating systems is to process jobs while making the best use of system
resources. Thus, one way of viewing operating systems is as resource managers. Before job
processing, operating systems reserve input and output resources for jobs. During job
processing, operating systems manage resources such as processors and storage. After job
processing, operating systems free all resources used by the completed jobs, making the
resources available to other jobs. This process is called resource management.

There is more to the processing of jobs than the managing of resources needed by the jobs.
At any instant, a number of jobs can be in various stages of preparation, processing, and
post-processing activity. To use resources efficiently, operating systems divide jobs into parts.
They distribute the parts of jobs to queues to wait for needed resources. Keeping track of
where things are and routing work from queue to queue is called workflow management, and
is a major function of any operating system.

With the z/OS JES3 system, resource management and workflow management are shared
between z/OS and its Job Entry Subsystem 3 (JES3) component. Generally speaking, JES3
does resource management and workflow management before and after job execution, while
z/OS does resource and workflow management during job execution.

JES3 considers job priorities, device and processor alternatives, and installation-specified
preferences in preparing jobs for processing job output. Features of the JES3 design include:

� Single-system image
� Workload balancing
� Availability
� Control flexibility

Physical planning flexibility In contrast, JES3 exercises centralized control over its processing
functions through a single global JES3 processor. This global processor provides all job
selection, scheduling, and device allocation functions for all the other JES3 systems. The
centralized control that JES3 exercises provides increased job scheduling control, deadline
scheduling capabilities, and increased control by providing its own device allocation.

JES3 runs on either 1 processor or up to 32 processors in a sysplex. A sysplex is a set of
z/OS systems communicating and cooperating with each other through certain multisystem
hardware components and software services to process customer workloads.

In a sysplex, your installation must designate one processor as the focal point for the entry
and distribution of jobs, and for the control of resources needed by the jobs. That processor,
called the global processor, distributes work to the processors, called local processors.

It is from the global processor that JES3 manages jobs and resources for the entire complex,
matching jobs with available resources. JES3 manages processors, I/O devices, volumes,
and data. To avoid delays that result when these resources are not available, JES3 ensures
that they are available before selecting the job for processing.

JES3 keeps track of I/O resources, and manages workflow in conjunction with the workload
management component of z/OS by scheduling jobs for processing on the processors where
the jobs can run most efficiently. At the same time, JES3 maintains data integrity. JES3 does
not schedule two jobs to run simultaneously anywhere in the complex if they are going to
update the same data.

If you want to share input/output (I/O) devices among processors, JES3 manages the
sharing. Operators do not have to manually switch devices to keep up with changing
processor needs for the devices.
50 ABCs of z/OS System Programming Volume 1

The JES3 architecture of a global processor, centralized resource and workflow
management, and centralized operator control is meant to convey a single-system image,
rather than one of separate and independently operated computers.

The work environment for JES3 consists of processors and I/O devices. JES3 covers a range
of data processing needs, partly because it can accommodate various combinations of
processors and devices. JES3 is a manager of its environment.

Single-Processor JES3 Environment
Figure 3-9 shows JES3 in a single-processor environment, also known as a single-system
sysplex. In addition to the processor, two categories of I/O devices are shown: JES3 devices
(those used by JES3); and JES3-managed and z/OS-managed devices (those used by jobs).
The spool device is a direct access storage device (DASD) that is treated in a special way by
JES3, so it is shown and explained separately.

Figure 3-9 JES3 in a Single Processor Environment

Multiprocessor JES3 environment
Multiprocessing is a way of doing work with two or more connected processors. In a
multiprocessing environment, also known as a multisystem sysplex, JES3 allows up to 32
processors, also known as mains, to be configured into the complex. JES3 uses one
processor (called the global) to do work and also to distribute work to up to 31 other
processors (called locals). Running JES3 in this environment provides the following
advantages:

� Eliminating much of the resources required by scheduling work for and operating separate
processors

� Sharing devices by processors, which means that the devices can be used more efficiently

� Moving work to other processors, should one processor become overworked, need
maintenance, or need to be removed from the complex for any reason
Chapter 3. TSO/E, ISPF, JCL, and SDSF 51

Figure 3-10 shows a multiprocessor environment managed by JES3:

� Global processor: The processor that controls job scheduling and device allocation for a
complex of processors.

� Local processor: In a complex of processors under control of JES3, a processor
connected to the global main, for which JES3 performs centralized job input, job
scheduling and job output services by the global main.

� Global Main: The global main controls job scheduling and device allocation for a complex
of JES3 processors. Each local main in the complex exists under control of the JES3
global main and is connected to the global main. The JES3 on the global main can
perform centralized job input, job scheduling, and job output services. Only the global
main performs scheduling functions, although scheduled work runs on the local mains.

� Local Main: In a complex of processors under control of JES3, a processor connected to
the global main, for which JES3 performs centralized job input, job scheduling, and job
output services by the global main.

Figure 3-10 JES3 Multiprocessor environment

JES3 job flow
This section describes the JES3 job flow.

Input service
Whatever the source of the input, JES3 is signaled that an input stream is to be read, as
shown in Figure 3-11 on page 53. This begins a chain of events that includes:

� Creating and scheduling a card reader DSP: a JES3 job.

� Reading the input stream by a DSP.
52 ABCs of z/OS System Programming Volume 1

� Building the JES3 control blocks describing the z/OS job to JES3. JCT entries for each job
in the input stream are added to the JES3 JCT data set.

� Running DSPs represented by scheduler elements in the JCT entries for each job.

Figure 3-11 JES3 Job Flow

The DSPs that provide the JES3 input service control the processing of a typical z/OS job at
the beginning. Input service routines create scheduler elements that represent a job’s flow
through the various JES3 processing phases. Input service, active on the global processor,
accepts and queues all jobs entering the JES3 complex. The global processor accepts z/OS
jobs into the system from:

� TSO SUBMIT command
� Local card reader (CR DSP)
� Local tape reader (TR DSP)
� Disk reader (DR DSP)
� Remote work station (RJP/SNARJP DSPs)
� Another node in a job entry network (NJE DSPs)
� The internal reader (INTRDR DSP)

After a z/OS job is registered into the JES3, the JES3 job segment scheduler DSP (JSS)
becomes responsible for the flow of the job through the JES3 processing phases.

Converter interpreter processing
The converter/interpreter (C/I) is the first scheduler element for every standard job. After a job
passes through this phase of processing, JES3 knows what resources the job will require
during execution. C/I routines provide input to the main device scheduling (MDS) routines by
determining jobs’ devices, volumes, and data sets requirements. The C/I routines, that run
after the z/OS converter/interpreter invocation, extract from the jobs’ scheduler work area
(SWA) the jobs’ resource requirements and create control blocks for MDS. Jobs with JCL
errors are flushed. Main device scheduling provides for the effective use of system resources.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 53

Main device scheduling (MDS)
JES3 MDS, commonly referred to as “setup”, ensures the operative use of non-sharable
mountable volumes, eliminates operator intervention during job execution, and performs
JES3 data set serialization. It oversees specific types of pre-execution job setup and
generally prepares all necessary resources required to run the job. The resource tables and
allocation algorithms to satisfy a job’s requirements through the MDS allocation of volumes
and devices are established at JES3 initialization.

Generalized main scheduling (GMS)
JES3 generalized main scheduling (GMS) is the group of routines that govern where and
when z/OS execution of a job occurs. Job scheduling controls the order and execution of jobs
running within the JES3 complex.

Job execution
Job execution is under the control of JES3 main service, which selects jobs to be processed
by z/OS initiators. Main service selects a job for execution using the job selection algorithms
established at JES3 initialization. MAINPROC, SELECT, CLASS, and GROUP initialization
statements control the key variables in the job scheduling and job execution process.

Output service
Output service routines operate in various phases to process sysout data sets destined for
local or remote print or punch devices, TSO users, external writers, and writer functional
subsystems.

Job purge
Purge processing represents the last scheduler element for all JES3 job. That is, the last
processing phases for the jobs. It releases the JES3 resources allocated for the job and cuts
the System Management Facility (SMF) to records.

JES control statements in JCL
Job Entry Control Language or JECL is the set of command language control statements that
provide information for JES2 or JES3. JECL statements can specify which z/OS to run the
job, when to run the job, and where to send the resulting output.

JECL is distinct from job control language (JCL), which instructs the operating system how to
run the job. JES2 and JES3 are different. JES2 can process JES3 JECL control statements.
JES2 provides a new set of commands to control how JES2 treats JES3 JECL. You can
ignore all JES3 JECL statements, or selectively decide which commands are processed,
ignored, or failed.

For JES2 JECL statements start with /*, for JES3 they start with //*, except for remote
/*SIGNON and /*SIGNOFF commands.
54 ABCs of z/OS System Programming Volume 1

3.4 System Display and Search Facility
System Display and Search Facility (SDSF) is a licensed utility that allows you to monitor,
control, and view the output of jobs in the system.

After submitting a job, it is common to use System Display and Search Facility (SDSF) to
review the output for successful completion or to review and correct JCL errors. SDSF allows
you to display printed output held in the JES spool area. Much of the printed output sent to
JES by batch jobs (and other jobs) is never actually printed. Rather, it is inspected using
SDSF and deleted or used as needed.

With SDSF you can perform the following tasks:

� Viewing the system log and searching for any literal string
� Entering system commands
� Control job processing (hold, release, cancel, and purge jobs)
� Monitor jobs while they are being processed
� Display job output before deciding to print it
� Manage the system’s workflow
� Control the order in which jobs are processed
� Determine the number of output jobs and the total number of records to be printed
� Control the order in which output is printed
� Control printers and initiators
� Dynamically change job data set output descriptors
� Issue JES and z/OS commands that affect their jobs
� Print selected lines of the JES output data set
� Edit JCL direct from spool

SDSF function is available in IBM z/OS Management Facility (z/OSMF), which enables you to
manage aspects of z/OS through a web browser interface. You can see system activity at a
glance with graphic views of CPU use; manage and browse jobs, output, and checks for IBM
Health Checker for z/OS; and issue system commands and export SDSF tables for use by
other programs, such as spreadsheet applications.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 55

3.4.1 SDSF: Panels hierarchy
SDSF consists of panels that provide immediate information about jobs, printers, queues, and
resources in a JES2 system. The SDSF panel hierarchy is illustrated in Figure 3-12. From
these panels, authorized users can enter SDSF commands to control the processing of jobs
and the operation of system resources. Authorized users also can issue z/OS and JES2
system commands from the SDSF panels.

Figure 3-12 SDSF: JES2 Panel hierarchy

SDSF provides an easy way to manage JES2 jobs, which can help you work more efficiently.
It gives immediate, current, sysplex-wide information about jobs waiting to be processed or in
execution, such as the following items:

� The status, class, priority, date, and time of a specific job
� All jobs on a specific queue, such as the input or held output queue
� Detail for a job no matter where it is in the sysplex
� Reasons why a job might be delayed
� Output from a job as it is created

By using the SDSF panels, SDSF commands, and action characters, and by typing over
panel fields, you can hold or release jobs, cancel jobs, filter the jobs displayed to show just the
jobs that interest you, or change a job’s priority, class, or destination.

3.4.2 JES2 SDSF Primary Option Menu
SDSF can be started from ISPF menus, but the setting of the options is often customized by
each site differently. You must review your site’s ISPF menus to find the SDSF option.
Alternatively, issuing the TSO SDSF command from the command line starts SDSF. After
choosing this option, the panel you receive will be similar to the one in Figure 3-13 on
page 57.
56 ABCs of z/OS System Programming Volume 1

Figure 3-13 JES2 SDSF Primary Option Menu

However, it might not have all the same options shown in the figure; the options can vary
according to the security level of the user. The authority to perform functions in these options
also varies according to the security level of the user. It is possible to control most system
functions by using the SDSF facility. The scope of the functions includes reviewing job output,
controlling the processing of jobs (both their input and output), printer control, operator
functions, and system administration.
Chapter 3. TSO/E, ISPF, JCL, and SDSF 57

3.4.3 SDSF: JES3 panel hierarchy
SDSF consists of panels that provide immediate information about jobs, printers, queues, and
resources in a JES3 system. The SDSF panel hierarchy is illustrated in Figure 3-14. From
these panels, authorized users can enter SDSF commands to control the processing of jobs
and the operation of system resources. Authorized users also can issue z/OS and JES3
system commands from the SDSF panels.

Figure 3-14 SDSF: JES3 panel hierarchy

SDSF provides an easy way to manage JES3 jobs, which can help you work more efficiently.
It gives immediate, current, sysplex-wide information about jobs waiting to be processed or in
execution, such as the following items:

� The status, class, priority, date and time of a specific job
� All jobs on a specific queue, such as the input or held output queue
� Detail for a job no matter where it is in the sysplex
� Reasons a job might be delayed
� Output from a job as it is created

By using the SDSF panels, SDSF commands and action characters, and by typing over panel
fields, you can hold or release jobs, cancel jobs, filter the jobs displayed to show just the jobs
that interest you, or change a job’s priority, class, or destination.

3.4.4 JES3 SDSF Primary Option Menu
SDSF can be started from ISPF menus, but the setting of the options is often customized by
each site differently. You must review your site’s ISPF menus to find the SDSF option.
Alternatively, issuing the TSO SDSF command from the command line starts SDSF. After
choosing this option, the panel you receive will be similar to the one in Figure 3-15 on
page 59.

OPERLOG

 SYSLOG

 (LOG)

 ACTIVE

 USERS

 (DA)

 INPUT

QUEUE
 (I)

 JOB

CLASS

 (JC)

STATUS

 (ST)

 SCHEDULING

 ENVIRONMENT

(SE)

 WLM
RESOURCES

 (RES)

ENCLAVES

 (ENC)

PROCESSES

 (PS)

JESPlex

 (JP)

 SPOOL

VOLUMES

 (SP)

 HEALTH

CHECKER

 (CK)

 SYSTEM

REQUESTS

 (SR)

 JOB

DATA SET

 (?)

 OUTPUT

DATA SET

 (S)

 OUTPUT

DESCRIPTOR

(Q)

 USER

SESSION

 LOG

(ULOG)

 SDSF

PRIMARY

 OPTION

 MENU

 HOLD

QUEUE
 (H)

OUTPUT

QUEUE
 (O)

 JES3

JOB 0
 (J0)

 JES3

(RDR PR PU)

 DEVICES

 NJE
LINES

 (LINE)

 NJE
NODES

(NODE)

NETWORK
SERVERS

 (NS)

CONNECTION

 (NC)

NETWORK

INITIATORS

 (INIT)

 JOB

 (JC)

CLASSES
58 ABCs of z/OS System Programming Volume 1

Figure 3-15 JES3 SDSF Primary Option Menu

However, it might not have all of the same options shown in the figure; the options vary
according to the security level of the user. The authority to perform functions in these options
also varies according to the security level of the user. It is possible to control most system
functions by using the SDSF facility. The scope of the functions includes reviewing job output,
controlling the processing of jobs (both their input and output), printer control, operator
functions, and system administrator.

For more information, see IBM z/OS V2R2: JES2, JES3, and SDSF, SG24-8287.

 Display Filter View Print Options Search Help

HQX7780 ----------------- SDSF PRIMARY OPTION MENU --------------------------
COMMAND INPUT ===> SCROLL ===> HALF

DA Active users INIT Initiators
I Input queue PR Printers
O Output queue PUN Punches
H Held output queue RDR Readers
ST Status of jobs LINE Lines
J0 Job zero NODE Nodes
 SP Spool volumes
LOG System log NS Network servers
SR System requests NC Network connections
JP Members in the JESPlex
JC Job classes CK Health checker
SE Scheduling environments
RES WLM resources ULOG User session log
ENC Enclaves
PS Processes
Chapter 3. TSO/E, ISPF, JCL, and SDSF 59

60 ABCs of z/OS System Programming Volume 1

Chapter 4. z/OS maintenance concepts

Software management is a key discipline that can help you to achieve high availability (HA)
and continuous operation in your IBM z/OS environment. It can also help lower the cost of
installing, testing, operating, and maintaining your systems.

This chapter provides information about the following topics:

� Aspects of software management
� Software management tasks
� z/OS software management cycle
� How current your software should be

4

© Copyright IBM Corp. 2014, 2017. All rights reserved. 61

4.1 Aspects of software management
There are different aspects of software management. Although this book is focused on the
z/OS platform, many of the software management concepts presented here are generally
valid for other platforms, as well.

4.1.1 Why you should manage software
Managing software is important because it concerns which techniques you use to implement
changes in your operating system software environment. In a typical information technology
(IT) environment, it is likely that there is a continuous need for changes based on, for
example, the following factors:

� Implementation of new functions
� Support for new hardware
� Software maintenance
� Implementation of new software releases

4.1.2 How current your software should be
This aspect of software management involves deciding how up-to-date you need your
software to be.

4.1.3 An approach for keeping your environment current
There are different approaches and techniques for keeping your z/OS environment current.
Although you can keep your system as it was when installed and only update it when errors
occur, this is not a recommended approach.

Instead, you can use common tools, such as the following tools to keep your environment
current:

� ServerPac and SystemPac
� Custom-Built Product Delivery Option (CBPDO)
� IBM ServicePac®

The tools are described in more detail in 2.4, “Ordering z/OS” on page 23.

4.1.4 Installation strategy
Before making a change, you must decide which upgrade method to use:

� System replacement
� System upgrade

The method you choose also depends on different considerations:

� Complexity of your environment

� Current service level

� Maturity of your system management processes (change management and problem
management)

� Number of products (z/OS and vendor products)
62 ABCs of z/OS System Programming Volume 1

4.1.5 Implementation strategy
Although installation is one important task, implementation is another. For example, for
effective implementation, you must decide where to put data sets and how to handle IBM and
vendor products, or how to prepare your system for cloning processes.

4.1.6 Concurrent maintenance
Under normal circumstances, you perform maintenance non-concurrently. Therefore, you
install fixes and test them, then clone the environment and bring the actual version of the
operating system or other software products into production. However, there could be
situations in which it is necessary to install fixes concurrently and activate the new modules
using a z/OS console command. Be aware that this method should only be used in critical
situations.

4.2 Software management tasks
A maintenance philosophy involves numerous software management tasks, and it is an
ongoing, cyclical process, as shown in Figure 4-1. For example, after finishing the
implementation of a z/OS release, you might be asked to evaluate new functions that require
program temporary fixes (PTFs).

Figure 4-1 Cycle of software management tasks

4.2.1 Environment design
The environment design phase is the starting point for the cycle that follows. During this
phase, you decide how to design and set up your environment for system maintenance. This
phase includes the following tasks:

� Definition of installation-wide naming standards
� Logical design of the environment
� Use of shared system residences (SYSRES)
� Design of the catalog environment
� Physical design of the environment (for example, input/output (I/O) configuration)
� Cloning techniques

Environment
 Design

Implementation

Testing Installation

Installation
Plan

Installation
Decision
Chapter 4. z/OS maintenance concepts 63

4.2.2 Installation decision
An installation decision is primarily a business decision, rather than a technical decision. It
can involve, for example, the need for new function implementation, or the withdrawal of a
z/OS release from service.

4.2.3 Installation plan
After the installation decision is made, you are responsible for the planning phase. Planning is
important, because the resources you need for the subsequent installation, testing, and
implementation will cost your organization money (perhaps in several areas):

� Hardware (CPC resources, DASD space)
� Software (for example, new licenses)
� Project support personnel

Planning is required for good project management. Therefore, you need to develop a plan that
includes the following items:

� Key activities
� Responsibilities
� Timetable

4.2.4 Installation
In this case, installation is the process of bringing a new z/OS release to your direct access
storage device (DASD) environment. As previously mentioned, you normally perform an
installation by using the ServerPac dialog technique, or by using CBPDO. The ServerPac
installation technique is described in 2.4, “Ordering z/OS” on page 23.

4.2.5 Testing
It is important to test new software components before introducing them into your production
environment. Testing is necessary for quality assurance (QA). There are different test
categories for verification and validation of a new environment. These categories can be:

� Unit tests
� Integration tests
� Function tests
� System tests
� Acceptance tests
� Regression tests
� Capacity tests
� Stress tests

4.2.6 Implementation
After completing the basic installation (for example, by using ServerPac), you still must
perform many other implementation activities on your z/OS environment before you can
propagate it to a test or production system.
64 ABCs of z/OS System Programming Volume 1

4.3 The z/OS software management cycle
Figure 4-2 shows the software management cycle, which illustrates how software
management works in a z/OS environment. From a software management perspective, it
involves two major factors:

� The last software management activity you performed
� The software management strategy of your enterprise that is the base for your future

activities

Figure 4-2 The software management cycle

4.3.1 How current your software should be
One challenge that is common to all enterprises, independent of IT infrastructure, is the risk
raised by change. You might encounter a philosophy, such as “never change a running
system.” However, when it comes to software maintenance, an IT organization must consider
the following questions:

� How current should our z/OS environment be?
� What are our guidelines and procedures for z/OS maintenance levels?
� Should we install preventive maintenance, or fix problems as they occur?

4.3.2 The risk of not changing software
There are several issues that might occur if you do not keep your z/OS software stack
up-to-date:

� You might not be able to implement new software functions.

� You cannot easily implement new hardware.

New version /
system

Corrective
service

Preventive
service

New products

z/OSz/OS
Chapter 4. z/OS maintenance concepts 65

� New releases of software might not interact with other software due to incompatibilities or
synchronization problems.

� Problems that are already resolved by IBM might be rediscovered in your environment and
might result in unnecessary outages.

4.3.3 The risk of changing software
An important part of any change is risk assessment, in which the change is considered and
evaluated from the point of view of risk to the system. Low risk changes might be permitted
during the day, while higher risk changes would be scheduled for an outage slot.

4.3.4 The minimum risk point
The point of minimum risk for installing new fixes to an already installed operating system
(OS) release, or even to a new release, might be somewhere between being too far behind
and too current.

Defining a point of minimum risk can be a challenge, so it might be helpful to first determine
the requirements for your enterprise, and then compare these requirements to the level of
software release that you are able to install and implement.

4.3.5 System Modification Program Extended (SMP/E)
SMP/E is the z/OS tool for managing the installation of software products on a z/OS system,
and for tracking modifications to those products. SMP/E controls these changes at the
component level by performing the following tasks:

� Selecting the proper levels of code to be installed from many potential changes
� Calling system utility programs to install the changes
� Keeping records of the installed changes by providing a facility to enable you to inquire on

the status of your software, and to reverse the change if necessary

All code and its modifications are located in the SMP/E database called the consolidated
software inventory (CSI), which consists of one or more VSAM data sets.
66 ABCs of z/OS System Programming Volume 1

Chapter 5. z/OS storage concepts

This chapter describes the following basic IBM z/OS storage concepts:

� Virtual storage and address spaces
� How CPC memory is managed by z/OS
� How virtual storage in managed by z/OS
� Address space map for 31-bit and 64-bit
� Dynamic address translation
� Residence Mode and Addressing Mode
� IBM Virtual Flash Memory
� Multiprogramming and multitask
� Module object and load module

For more detailed information about virtual storage concepts and IBM z/Architecture, see
ABCs of z/OS System Programming Volume 10, SG24-6990, and Introduction to the New
Mainframe: z/OS Basics, SG24-6366.

5

© Copyright IBM Corp. 2014, 2017. All rights reserved. 67

5.1 Processor storage overview
z/OS is known for its ability to serve thousands of users concurrently, and for processing very
large workloads in a secure, reliable, and expedient manner. Its use of multiprogramming and
multiprocessing, and its ability to access and manage enormous amounts of virtual and
physical storage, as well as I/O operations, makes it ideally suited for running mainframe
workloads.

Figure 5-1 Processor storage concept

5.2 The concept of virtual storage
Virtual storage is an illusion created by the architecture, in that the system seems to have
more storage than it really has. Virtual storage is created by using tables to map virtual
storage pages to frames in CPC memory or slots in auxiliary storage. Only those portions of a
program that are needed are actually loaded into CPC memory. z/OS keeps the inactive
pieces of address spaces in auxiliary storage.

z/OS is structured around address spaces, which are ranges of addresses in virtual storage.
Each user of z/OS gets an address space containing the same range of storage addresses.
The use of address spaces in z/OS enables isolation of private areas in different address
spaces for system security, yet also enables inter-address space sharing of programs and
data through a common area accessible to every address space.

Usually the terms CPC memory, processor storage, central storage, real storage, real
memory, and main storage are used interchangeably. Likewise, virtual memory and virtual
storage are synonymous. The amount of CPC memory needed to support the virtual storage
in an address space depends on the working set of the application being used, and this varies
over time.
68 ABCs of z/OS System Programming Volume 1

A user does not automatically have access to all of the virtual storage in the address space.
Requests to use a range of virtual storage are checked for size limitations, and then the
necessary paging table entries are constructed to create the requested virtual storage.
Programs running on z/OS and IBM Z mainframes can run with 24-bit, 31-bit, or 64-bit
addressing (and can switch between these modes if needed). Programs can use a mixture of
instructions with 16-bit, 32-bit, or 64-bit operands, and can switch between these if needed.

5.2.1 Processor storage concept
Conceptually, mainframes and all other computers have two types of physical storage, both
internal and external (see Figure 5-1 on page 68):

� Physical storage on the mainframe processor itself. This is called CPC memory, main
storage, main memory, real storage, or central storage.

� Physical storage external to the mainframe, including storage on direct-access devices,
such as disk drives. This storage is called paging storage or auxiliary storage.

The primary difference between the two kinds of storage relates to how they are accessed:

� CPC memory is accessed synchronously by the processor. That is, the processor must
wait while data is retrieved from memory.

� Auxiliary storage is accessed asynchronously. The processor accesses auxiliary storage
through an input/output (I/O) request, which is scheduled to run amid other work requests
in the system. During an I/O request, the processor is free to run other, unrelated work.

CPC memory is tightly coupled with the processor itself, whereas mainframe auxiliary storage
is on a (comparatively) slower, external disk. Because CPC memory is more closely
integrated with the processor, it takes the processor much less time to access data from
CPC memory than from auxiliary storage. However, auxiliary storage is less expensive than
CPC memory.

z/OS uses both types of CPC memory and auxiliary storage to enable another kind of storage
called virtual storage. In z/OS, each user has access to virtual storage, rather than physical
memory. This use of virtual storage is central to the unique ability of z/OS to interact with
large numbers of users concurrently, while processing the largest workloads.

Virtual storage means that each running program can assume it has access to all of the
storage defined by the architecture’s addressing scheme. The only limit is the number of bits
in a storage address. This ability to use many storage locations is important because a
program might be long and complex, and both the program’s code and the data it requires
must be in processor storage for the processor to access them.

z/OS supports 64-bit long addresses, which enables a program to address up to
18,446,744,073,709,600,000 bytes (16 exabytes) of storage locations. In reality, the
mainframe has much less CPC memory installed.

To enable each user to act as though this much storage really exists in the computer system,
z/OS keeps only the active portions of each program in CPC memory. It keeps the rest of the
code and data in files called page data sets on auxiliary storage, which usually consists of a
number of high-speed direct access storage devices (DASD). In general, when you refer to a
file in z/OS, you refer to a data set.

Virtual storage, then, is this combination of real and auxiliary storage. z/OS uses a series of
tables and indexes to relate locations on auxiliary storage to locations in CPC memory. z/OS
uses various storage manager components to manage virtual storage.
Chapter 5. z/OS storage concepts 69

Mainframe users use the terms CPC memory, processor storage, central storage, real
memory, real storage, and main storage interchangeably. Likewise, they use the terms virtual
memory and virtual storage synonymously.

5.2.2 How virtual storage works
By bringing pieces of the program into CPC memory only when the processor is ready to run
them, z/OS can run more and larger programs concurrently.

For a processor to run a program instruction, both the instruction and the data it references
must be in CPC memory. The entire program does not really need to be in CPC memory
when an instruction runs. Rather, by bringing pieces of the program into CPC memory only
when the processor is ready to run them, moving them out to auxiliary storage when it doesn’t
need them, an operating system can run more and larger programs concurrently.

How does it work? Physical storage is divided into areas, each the same size, and accessible
by a unique address. In CPC memory, these areas are called frames; in auxiliary storage,
they are called slots. Similarly, the operating system can divide a program into pieces the size
of frames or slots, and assign each piece a unique address. This arrangement allows the
operating system to track these pieces. In z/OS, the program pieces are called pages.

Pages are referenced by their virtual addresses and not by their real addresses. From the
time that a program enters the system until it completes, the virtual address of the page
remains the same, regardless of whether the page is in CPC memory or auxiliary storage.
Each page consists of individual locations called bytes, each of which has a unique virtual
address.

Within z/Architecture, you can define three page sizes: 4 KB (the most common one), 1 MB,
and 2 GB.

5.2.3 Dynamic address translation
Dynamic address translation (DAT) is the process of translating a virtual address during a
storage reference into the corresponding real address.

If the virtual address is already in CPC memory, the DAT process can be accelerated by using
a translation lookaside buffer. If the virtual address is not in CPC memory, a page fault
interrupt occurs, z/OS is notified and brings the page in from auxiliary storage.

DAT is implemented by both hardware and software by using page tables, segment tables,
region tables, and translation lookaside buffers. DAT allows different address spaces to share
program or other data that is for read only. This is because virtual addresses in different
address spaces can be made to translate to the same frame of CPC memory. Otherwise,
there would have to be many copies of the program or data, one for each address space.

5.2.4 Address space
The range of virtual addresses that the operating system assigns to a user or separately
running program is called an address space (see “The address space concept” on page 78).
This is the area of contiguous virtual addresses available for running instructions and storing
data. The range of virtual addresses in an address space starts at zero and can extend to the
highest address permitted by the operating system architecture.
70 ABCs of z/OS System Programming Volume 1

z/OS provides each user with a unique address space and maintains the distinction between
the programs and data belonging to each address space. In some ways, a z/OS address
space is like a UNIX process, and the address space identifier (ASID) is like a process ID
(PID).

However, the use of multiple virtual address spaces in z/OS holds some special advantages.
Virtual addressing permits an addressing range that is greater than the CPC memory
capabilities of the system. The use of multiple virtual address spaces provides this virtual
addressing capability to each job in the system by assigning each job its own separate virtual
address space. The potentially large number of address spaces provides the system with a
large virtual addressing capacity.

With multiple virtual address spaces, errors are confined to one address space, except for
errors in commonly addressable storage, thus improving system reliability and making error
recovery easier. Programs in separate address spaces are protected from each other.
Isolating data in its own address space also protects the data.

z/OS uses many address spaces. There is at least one address space for each job in
progress and one address space for each user logged on through TSO/E. There are many
address spaces for operating system functions, such as operator communication, automation,
networking, security, and so on.

The use of address spaces allows z/OS to maintain the distinction between the programs and
data belonging to each address space. The private areas in one user’s address space are
isolated from the private areas in other address spaces, and this address space isolation
provides much of the operating system’s security.

Yet, each address space also contains a common area that is accessible to every other
address space. Because it maps all of the available addresses, an address space includes
both system code and data, and user code and data. Therefore, not all of the mapped
addresses are available for user code and data.

The ability of many users to share the same resources implies the need to protect users from
one another, and to protect the operating system itself. Along with such methods as “keys” for
protecting CPC memory and code words for protecting data files and programs, separate
address spaces ensure that users’ programs and data do not overlap.

5.2.5 Storage initialization
The largest CPC memory available is 32 terabytes (32 TB) for the IBM z14.

The system initialization process begins when the system operator selects the LOAD function
at the system console. This causes an initial program load (IPL), which is equivalent to a boot
in other platforms. z/OS locates all of the usable CPC memory that is online and available in
the logical partition (LPAR) that has undergone IPL, creating a virtual storage environment for
the building of various system areas. z/OS uses CPC memory to map the virtual storage,
which implies allocating and using auxiliary storage.

5.2.6 CPC memory
CPC memory (sometimes referred to as main storage), provides the system with a volatile
processor that is directly addressable, with fast access for the electronic storage of data.

A portion of the CPC memory can be defined as Virtual Flash Memory (VFM) used by z/OS to
handle picks of paging process (see 5.6, “IBM Virtual Flash Memory” on page 82).
Chapter 5. z/OS storage concepts 71

Both data and programs must be loaded into CPC memory from DASD devices (or moved
from VFM) before they can be processed by the processors. The maximum CPC memory
size per LPAR is restricted by hardware, and the z/OS and system architecture. For the IBM
z14, the maximum LPAR size is 16 TB; z/OS V2.3 supports up to 4 TB.

5.2.7 Auxiliary storage
Auxiliary storage DASD hard disk drives are required on z/OS systems for storing z/OS page
data sets. For additional paging flexibility and efficiency, you can add optional storage-class
memory (SCM) on Virtual Flash Memory as a second type of auxiliary storage (see 5.6, “IBM
Virtual Flash Memory” on page 82).

You must have enough auxiliary storage available to store the programs and data that
comprise your z/OS system.

Page data sets are used to implement virtual storage, which contains the paged-out portions
of all virtual storage address spaces.

5.2.8 Processing unit
Figure 5-1 on page 68 depicts a processing unit (PU). The PU is the hardware in charge of
running instructions located in CPC memory. The PU contains the sequencing and
processing facilities for instruction execution, interruption action, timing functions, IPLs, and
other machine-related functions. PUs and CPC memory are packed in units known as CPC
drawers in the A-Frame of the IBM z14.

5.3 Virtual storage details
As mentioned before, virtual storage is an illusion created by the architecture, in that the
system seems to have more storage than it really has. Each user or program gets an address
space, and each address space contains the same range of storage addresses. Only those
portions of the address space that are needed at any point in time are actually loaded into
CPC memory. z/OS keeps the inactive pieces of address spaces in auxiliary storage.
72 ABCs of z/OS System Programming Volume 1

Figure 5-2 depicts virtual storage used as auxiliary storage.

Figure 5-2 Virtual storage, auxiliary storage

z/OS manages address spaces in units of various sizes:

� Four kilobyte (4 KB) units of virtual storage (pages). z/OS also supports 1 MB and 2 GB
pages called large pages. These instances are special cases; for more information, see “1
MB and 2 GB Large Pages” on page 93.

� One megabyte (1 MB) units called segments. A segment is a block of sequential virtual
addresses spanning megabytes, beginning at a 1 MB boundary. A 2-gigabyte (GB)
address space, for example, consists of 2048 segments.

� A virtual address, accordingly, is divided into four principal fields:

– Bits 0-32 are called the region index (RX).
– Bits 33-43 are called the segment index (SX).
– Bits 44-51 are called the page index (PX).
– Bits 52-63 are called the byte index (BX).

� An address (called virtual) as referred to by a program is an identifier of a required piece of
information in CPC memory. This enables the size of an address space (all virtual
addresses available to a program) to exceed the CPC memory size.

� All CPC memory references are made in terms of virtual storage address.

� DAT is used to perform a mapping between the virtual storage address and its physical
location in CPC memory.

Central Storage

4 KB

User A address space

User X address space

10254000
Virtual address

10254000
Virtual address

abc

xyx
00971000
Real address

0014A000
Real address

Page data sets
Chapter 5. z/OS storage concepts 73

5.3.1 Virtual storage terminology
Putting all the pieces together we can say that in z/OS, virtual storage is implemented
(transparently to the program) using the following concepts:

Segment Program address space is divided into segments of 1 MB addresses in size.

Page A segment is divided into pages, which are blocks of 4 KB addresses in size.

Frame CPC memory is divided into frames, which are blocks of 4 KB in size.

Slots Auxiliary storage page data sets are formatted in slots, which are blocks of 4 KB
in size.

DAT DAT is implemented by hardware and by software throughout the use of tables
defined by z/Architecture.

A z/OS program accesses addresses located in virtual storage. Only pages of the program
currently active need to be in a CPC memory frame at processing time. The inactive pages
are held in auxiliary storage.

Temporary data sets (work files) can be handled by a function called virtual I/O (VIO). Data
sets for which VIO is specified are located in external page storage. However, to the program,
the data sets appear to be on real direct access storage devices.

5.3.2 Page data sets
Page data sets contain the paged-out portions of all virtual storage address spaces. In
addition, output to VIO data sets can be stored in the page data sets. The installation must
allocate sufficient space on page data sets to back up all of the virtual address spaces being
run concurrently by the processor, plus the space required for VIO data sets.

Frames, slots, and pages
When a program is selected, z/OS brings it into virtual storage (enabling it to use a range of
virtual addresses) and divides it into pages of 4000 addresses. Then, z/OS transfers the
pages of the program into CPC memory for execution, and out to auxiliary storage when CPC
memory is under contention.

Not all pages of a program are necessarily in CPC memory at one time. To the programmer,
the entire program appears to occupy a contiguous space of addresses in CPC memory at all
times.
74 ABCs of z/OS System Programming Volume 1

However, the pages that are in CPC memory do not necessarily occupy contiguous space.
Figure 5-3 shows this.

Figure 5-3 Storage frames, slots, and pages

5.3.3 Pages to auxiliary storage (paging)
To understand how paging works, assume that DAT encounters an invalid page table entry
during address translation, indicating that a page is required that is not in a CPC memory
frame. To resolve this page fault, the system must bring the page in from auxiliary storage.

However, it must first locate an available CPC memory frame. If none is available, the request
must be saved and an assigned frame freed. To free a frame, the system copies its contents
to auxiliary storage, and marks its corresponding page table entry as invalid. This operation is
called a page-out.

The parts of a program running in virtual storage must be moved between real and auxiliary
storage. To enable this, z/OS breaks the storage into blocks of 4096 bytes (4 KB):

� A block of 4 KB of CPC memory is a frame.

� A block of 4 KB addresses in virtual storage is a page. A virtual storage page is backed by:

– CPC memory
– Auxiliary storage

� A block of storage on an auxiliary device is a slot.

Frames, pages, and slots are all the same size (4 KB). An active virtual storage page resides
in a CPC memory frame. A virtual storage page that becomes inactive resides in an auxiliary
storage slot (in a page data set). Figure 5-3 shows the relationship of pages, frames, and
slots.

VIRTUAL

PAGES

E F G H

A B C D

CENTRAL

A

FRAMES

F

H E

AUXILIARY

SLOTS

B C

D G

Page data set
Chapter 5. z/OS storage concepts 75

In Figure 5-3 on page 75, z/OS is performing paging for a program running in virtual storage.
The lettered boxes represent parts of the program. In this simplified view, program parts A, E,
F, and H are active and located in CPC memory frames. Program parts B, C, D, and G are
inactive and have been moved to auxiliary storage slots. However, all of the program parts
reside in virtual storage and have virtual storage addresses.

5.3.4 Storage management
z/OS tries to keep an adequate supply of available CPC memory frames on hand. When a
program refers to a page that is not in CPC memory, z/OS uses a CPC memory frame from a
supply of available frames and reads in the program page from the corresponding page data
set. See section 5.2.7, “Auxiliary storage” on page 72.

When this supply becomes low, z/OS uses a page stealing algorithm to replenish it. It takes a
frame assigned to an active user and makes it available for other work. The decision to “steal”
a particular page is based on the activity history of each page currently residing in a CPC
memory frame. Pages that have not been active for a relatively long time are good candidates
for page stealing.

When the program running in the address space is not doing any productive work (for
example, a TSO/E user is inputting a command), z/OS removes the address space from the
CPC memory and place it into auxiliary storage. This is called swapping. Swapping is the
process of transferring all of the pages of an address space between central storage and
auxiliary storage.

A swapped-in address space is active, having pages in CPC memory frames and pages in
auxiliary storage slots. A swapped-out address space is inactive; the address space resides
on auxiliary storage and cannot run until it is swapped in.

5.3.5 Paging algorithms
z/OS uses a sophisticated paging algorithm to efficiently manage virtual storage based on
which pages were most recently used. An unreferenced interval count indicates how long it
has been since a program referenced the page. For real storage management purposes,
each frame in the CPC memory has two bits associated: one is called the reference bit and
the other is called the change bit.

At regular intervals, the system checks the reference bit for each page frame. If the reference
bit is off (the frame has not been referenced), the system adds to the frame’s unreferenced
interval count. It adds the number of seconds since this address space last had the reference
count checked.

If the reference bit is on, the frame has been referenced, and the system turns it off and sets
the unreferenced interval count for the frame to zero. Frames with the highest unreferenced
interval counts are the ones most likely to be stolen.

If the frame is stolen, z/OS checks the change bit; the change bit is turned on by the
processor if and area in the page has been altered. If that is the case, the page is sent to the
page data set. If the page was not changed, there is no need to send it to the page data set
because there is a valid copy of the page there.
76 ABCs of z/OS System Programming Volume 1

5.4 z/Architecture address space
As shown in Figure 5-4, the 2 GB address in the address space is marked by a virtual line
called the bar. The bar separates storage below the 2 GB address, called below the bar from
storage above the 2 GB address, called above the bar. The area above the bar can be used
for data and for running programs.

Your installation can set a limit on the use of the address space above the bar for a single
address space.

Figure 5-4 z/Architecture address space

5.4.1 Virtual storage and 64-bit addressability
A program running in an address space can reference all of the storage associated with that
address space. A program’s ability to reference all of the storage associated with an address
space is called addressability.

5.4.2 zSeries mainframes and 64-bit addressing
With 64-bit addressing, the potential size of a z/OS address space expands to a size so vast
that you need new terms to describe it, as shown in Figure 5-5 on page 78.

Each address space, called a 64-bit address space, is 16 EB. An exabyte is slightly more than
one billion gigabytes. The 64-bit address space is 8 billion times the size of the former 2 GB
address space, or 18,446,744,073,709,600,000 bytes.

A program running on z/OS can run with 24-bit, 31-bit, or 64-bit addressing mode (and can
switch if needed). To address the high virtual storage available with the 64-bit architecture, the
program uses 64-bit-specific instructions. Although the architecture introduces unique 64-bit
exploitation instructions, the program can use both 31-bit and 64-bit instructions, as needed.
Chapter 5. z/OS storage concepts 77

5.4.3 Region tables and segment tables
In a 16 EB address space with 64-bit virtual storage addressing, the following levels of
translation tables are defined by the architecture:

� Region third table (R3T)
� Region second table (R2T)
� Region first table (R1T)
� Segment table
� Page table

The region tables are 16 KB in length, and there are 2048 entries per table. Each entry in the
R3T table points to a segment table. The segment tables also have 2048 entries; the size of a
segment table is also 16 KB. See “64-bit virtual address” on page 92 for details about how the
translation process is performed.

5.4.4 The address space concept
As defined in “Address space” on page 70, the range of virtual addresses that the operating
system assigns to a user or separately running program is called an address space. This is the
area of contiguous virtual addresses available for running instructions and storing data. The
range of virtual addresses in an address space starts at zero and can extend to the highest
address permitted by the architecture.

As shown in Figure 5-5, the area above the 2 GB address is called the bar. The addresses
above the bar can also be used for programs and data.

Figure 5-5 Address space concept

16 M (line)

16 Exabyte 2

64-bit
addressability

0

user &
z/OS

programs

user &
z/OS data

user &
z/OS data

user &
z/OS

programs
locate mode

2
31

2 G (bar)

64

user &
z/OS

programs

user &
z/OS data
78 ABCs of z/OS System Programming Volume 1

5.4.5 Data spaces
A data space is a type of virtual storage space with a range up to 2 GB of contiguous virtual
storage. The virtual storage map of a data space is quite different from an address space.
The entire 2 GB is available for user data, and does not contain specific areas.

A data space can hold only data; it does not contain z/OS control blocks or programs in
execution. Program code does not run in a data space, although a program can reside in a
data space as data (however, to be run it needs to be copied to an address space). A program
can refer to data in a data space at bit level, as it does in a work file.

5.4.6 Addressing mode and residency mode
Every program that runs in z/OS is assigned two attributes, an AMODE (addressing mode)
and an RMODE (residency mode). Figure 5-6 depicts the AMODE and RMODE attributes.

AMODE is a program attribute to indicate which hardware addressing mode should be active
to solve an address; that is, how many bits are to be used for solving and dealing with
addresses:

� AMODE=24 indicates that the program can address up to 16 M virtual addresses.
� AMODE=31 indicates that the program can address up to 2 G virtual addresses.
� AMODE=64 indicates that the program can address up to 16 EB virtual addresses (only in

z/Architecture).

Figure 5-6 Addressing mode and residency mode

The concept of residency mode (RMODE) is used to indicate where a program is to be placed
in the virtual storage (by z/OS program management) when the system loads it from DASD:

� RMODE=24 indicates that the module must reside below the 16 MB virtual storage line.
Among the reasons for RMODE24 are that the program is AMODE24, the program has
control blocks that must reside below the line.

2
2 GB bar

Program B: 000C3850

16 MB line

16 EB

64
 b

its

0

program
A data

 data

program
A

AMODE 31

RMODE 24

RMODE ANY

program
B 24 bitsAMODE 24

address
150C3850

Program A: 150C3850
Chapter 5. z/OS storage concepts 79

� RMODE=ANY indicates that the module can reside anywhere in virtual storage, but
preferentially above the 16 MB virtual storage line. Because of this, such an RMODE is also
called RMODE 31.

� RMODE=64 Indicates that the module might reside in virtual storage either above or below
the 2 GB virtual storage bar.

5.5 Storage managers
In a z/OS system, storage is managed by the z/OS components virtual, real, and auxiliary
storage managers, shown in Figure 5-7.

Figure 5-7 The storage component managers

The following list describes the various managers:

� Virtual storage manager (VSM): The z/OS component that manages virtual storage. Its
main function is to control the use of virtual storage addresses. Each installation can use
virtual storage parameters to specify how certain virtual storage areas are to be allocated
to programs. These parameters have an effect on CPC memory use and overall system
performance. VSM keeps track of the map of virtual storage for each address space.

� Real storage manager (RSM): The z/OS component that controls the usage of CPC
memory frames. RSM acts together with ASM to support the virtual storage concept, and
with VSM to ensure that a page is backed up in a CPC memory frame. Furthermore, RSM
establishes many services to other components and application programs to manipulate
the status of pages and frames.

RSM keeps track of the contents of CPC memory. It manages the paging activities, such
as page-in, page-out, page stealing, and helps with swapping an address space in or out.
RSM also performs page fixing, which is marking pages as unavailable for stealing.

VSMVSM

RSMRSM

ASMASM

Virtual
storage
manager

Real
storage
manager

Auxiliary
storage
manager
80 ABCs of z/OS System Programming Volume 1

� Auxiliary storage manager (ASM): ASM is a z/OS component responsible for transferring
virtual pages between processor frames and auxiliary storage slots (page data sets). This
is done as either a paging operation (one page at time), or as a physical swapping
operation (an address space, all pages at a time). ASM manages the transfer by initiating
the I/O and by maintaining tables to reflect the current status of the slots. This status
includes the location of each page in each slots.

ASM controls the use of page data sets and the implicit paging I/O operation. As a system
programmer, you are responsible for the size and the performance of the page data sets.
The ASM uses the system’s page data sets to keep track of auxiliary storage slots:

– Slots for virtual storage pages that are not in CPC memory frames
– Slots for pages that do not occupy frames but, because the frame’s contents have not

been changed, the slots are still valid

When a page-in or page-out is required, ASM works with RSM to locate the proper CPC
memory frames and auxiliary storage slots. It builds segment and page tables that are
used to translate a virtual address to a real address.

ASM attempts to maximize page I/O efficiency by incorporating a set of algorithms to
distribute the I/O load evenly (through the local page data sets). In addition, every effort is
made to keep the system operable in situations where a shortage of a specific type of slots
exists. ASM selects a local page data set for page-out from its available page data sets.
ASM selects these data sets in a circular order in each type of data set, subject to the
availability of free space and the device response time.

5.5.1 Paging and swapping
Paging is the movement of pages between CPC memory frames and auxiliary storage slots.
There are two types of paging operations:

� Page-in, which flows from a slot to a frame. It is caused by a page fault. A page fault is an
interrupt caused by the hardware in charge of translating a virtual address into a real
address. The page fault happens because the page is not currently mapped to a frame.
RSM gains control and, through ASM, provides a page-in operation to retrieve the page
from auxiliary storage.

� Page-out, which flows from a frame to a slot. It is caused when a changed page needs to
be stolen from CPC memory because this memory is under contention. RSM calls ASM to
schedule the paging I/O necessary to send these pages to auxiliary storage.

As mentioned, swapping is the process of transferring all of the pages of an address space
between CPC memory and auxiliary storage. A swapped-in address space is active, having
pages in CPC memory frames and pages in auxiliary storage slots. A swapped-out address
space is inactive. The address space resides on auxiliary storage and cannot run until it is
swapped in. z/OS implements the concept of a logical swap. When z/OS decides to swap an
address space it is removed from the processor execution queues but the recently referenced
frames are kept in CPC memory.

Auxiliary page data sets are formatted in slots. They should contain pages that for various
reasons are not to stay in CPC memory frames. Contention is reduced when these classes of
pages are placed on different physical devices. Multiple page data sets are preferable.
Chapter 5. z/OS storage concepts 81

5.6 IBM Virtual Flash Memory
The IBM Virtual Flash Memory (VFM) is the next generation of storage class memory
designed to help improve availability and performance during workload transitions for
improved quality of service. Virtual Flash Memory can help reduce latency for critical paging
that might otherwise impact the availability and performance of your key workloads.

Figure 5-8 shows IBM z14 memory, consisting of addressable memory (VFM, customer
ordered memory, and the hardware system area or HSA) and installed physical memory,
which includes the redundant array of independent memory (RAIM) with DIMM capacity.

Figure 5-8 IBM Virtual Flash Memory

Virtual Flash Memory is designed to offer exceptional performance for paging spikes by
reducing paging latency. Virtual Flash Memory can be especially helpful during transitional
workload processing shifts where paging might surge, such as during the start of the day,
changes in loads, or diagnostic data collection.

VFM is designed to help improve availability and handling of paging workload spikes when
running z/OS V2.1, V2.2, or V2.3. With this support, z/OS is designed to help improve
processor performance by supporting middleware exploitation of pageable large (1 MB)
pages. VFM can also be used in coupling facility images to provide extended capacity and
availability for workloads that use WebSphere MQ Shared Queues structures.

Using VFM can help availability by reducing latency from paging delays that can occur at the
start of the workday or during other transitional periods. It is also designed to eliminate delays
that can occur when collecting diagnostic data during failures. Therefore, VFM can help meet
most demanding service level agreements and compete more effectively. VFM is easy to
configure and provides rapid time-to-value.
82 ABCs of z/OS System Programming Volume 1

No application changes are required to migrate from IBM Flash Express to VFM to help
improve system availability and responsiveness by using VFM across transitional workload
events such as market openings.

5.6.1 Storage-class memory on IBM Z Virtual Flash Memory
The storage provided by VFM is called storage-class memory (SCM), as shown in Figure 5-9.
When enabled, SCM is used by z/OS for paging (4K and larger pages), and for staging of IBM
System Storage® SAN Volume Controller (SVC) dumps.

Figure 5-9 Paging to Storage Class Memory

You can define the initial and maximum amount of Virtual Flash Memory processor partition,
called LPAR, that z/OS will be running on (for more details about LPARs, see ABCs of z/OS
System Programming Volume 10, SG24-6990). The maximum memory that is allocated to an
LPAR can be dynamically changed. On z/OS, this process can also be done by using an
operator command.

Virtual Flash Express is used by the ASM with paging data sets to satisfy page-out and
page-in requests received from the RSM. It supports 4 KB and 1 MB page sizes. ASM
determines where to write a page based on space availability, data characteristics, and
performance metrics.

z/OS z/OS

Main
Memory

SCM
SPACE

Data transfer between
Main Memory and

Storage Class Memory is
via EADMF (4KB or 1MB

blocks)

Main
Memory

Storage Class
Memory (SCM)

Partition
Maximum

Partition
Initial
Value

Partition
Initial
Value

Partition
Maximum

LP2LP1

Storage Class
Memory (SCM)

SCM
SPACE
Chapter 5. z/OS storage concepts 83

5.7 The common virtual storage area
The z/OS implementation of virtual storage is to have one address space per set of related
programs. The advantage of this design is isolation; any error is contained in one address
space and cannot be propagated to another address space. Also, because the number of
address spaces can be large, the number of virtual addresses to be used by programs is
enormous.

However, such a design poses a problem: The need for communication between programs
from different address spaces. To solve that problem, the common area was introduced. All
address spaces in a z/OS system image share a virtual storage area known as the common
area (see Figure 5-10). That means that all address spaces programs in this z/OS access the
same common data and the same common programs, with the same virtual address.

Figure 5-10 Common storage area

5.7.1 Common area below the 16 MB line
Each storage area in the common area (below 16 MB) has a counterpart in the extended
common area (above 16 MB), except the prefixed save area (PSA). The common area
contains system control programs and control blocks.

The following storage areas are located in the common area:

� Prefixed storage area

This area is often referred to as low core. The PSA is a common area of virtual storage
from address zero through 8191 in every address space. There is one unique PSA for
every processor installed in a system.

COMMON

PRIVATE

PRIVATE

COMMON

PRIVATE

PRIVATE

COMMON

PRIVATE

PRIVATE

COMMON

PRIVATE

PRIVATE

COMMON

PRIVATE

PRIVATE

16 MB

2 GB

0
PRIVATE

COMMON

EXTENDED
PRIVATE

EXTENDED COMMON
84 ABCs of z/OS System Programming Volume 1

The PSA maps architecturally fixed hardware and software storage locations for the
processor. Because there is a unique PSA for each processor, from the view of a program
running on z/OS, the contents of the PSA can change any time that the program is
dispatched on a different processor. This feature is unique to the PSA area, and is
accomplished through a unique DAT manipulation technique called prefixing.

� Common service area

This portion of common area storage (addressable by all address spaces) is available to
all applications. The CSA is often used to contain data frequently accessed by multiple
address spaces. The size of the CSA area is established at system initialization time (IPL),
and cannot change when the operating system is active.

� Pageable link pack area, fixed link pack area, and modified link pack area

This area contains the link pack areas, which are the PLPA, fixed link pack area (FLPA),
and modified link pack area (MLPA), contain system-level programs that are often run by
multiple address spaces. For this reason, the link pack areas reside in the common area,
which is addressable by every address space, eliminating the need for each address
space to have its own copy of the program. This storage area is below the 16 MB
boundary.

� System queue area

This area contains system-level data accessed by multiple address spaces. The SQA area
is not pageable (fixed), which means that it resides in CPC memory until it is freed by the
requesting program. The size of the SQA area is predefined by the installation, and cannot
change when the OS is active. Yet it has the unique ability to “overflow” into the CSA area
if there is unused CSA storage that can be converted to SQA.

� Nucleus, which is fixed and non-swappable

This is a read-only area of common storage that contains z/OS control programs.

5.7.2 z/OS nucleus
The nucleus in the common area contains the z/OS nucleus programs (kernel) and
extensions to the nucleus that are initialized during IPL processing. The nucleus contains the
most important z/OS programs. The nucleus RMODE24 programs reside below the 16 MB
line. The nucleus RMODE31 programs reside above the 16 MB line.

5.7.3 System queue area
The system queue area (SQA) is a common area containing control blocks used by z/OS to
manage transaction workloads and the use of system resources. The number of active
address spaces (which depends on the workload run in the system) affects the system’s use
of SQA.
Chapter 5. z/OS storage concepts 85

SQA is allocated directly below the nucleus, as shown in Figure 5-11. Extended SQA (ESQA)
is allocated directly above the extended nucleus. Both allocations occur at IPL time. The size
of SQA is defined by the installation.

Figure 5-11 z/OS Address Space layout

5.7.4 Common service area
The CSA is a common area containing control blocks used by subsystem programs, such as
JES2, Data Facility Storage Management Subsystem (DFSMS), and IBM Resource Access
Control Facility (RACF), and access methods, such as Virtual Storage Access Method
(VSAM).

CSA/ECSA normally contains data referenced by several system address spaces, enabling
address spaces to communicate by referencing the same piece of CSA data. In a sense,
CSA/ECSA looks like SQA/ESQA.

CSA is allocated directly below the MLPA. ECSA is allocated directly above the extended
MLPA, as shown in Figure 5-11. If the virtual SQA/ESQA space is full, z/OS allocates more
SQA/ESQA space from the CSA/ECSA.

5.7.5 Link pack area
The LPA and ELPA contain programs that are preinstalled at IPL time in the common area,
from the z/OS program data sets. These programs are z/OS and installation defined
read-only programs (the ones not modified during its execution).

Because such code is in the common area, all of these single-copy programs can be run in
any address space. Their copy is not self-modifying (reentrant), so the same copy of the
program can be used by any number of address spaces at the same time. This reduces the
demand for CPC memory. The RMODE attribute of the program decides its location (LPA or
ELPA). The ELPA is built above 16 MB.
86 ABCs of z/OS System Programming Volume 1

5.7.6 Address space private area
The portion of the user’s private area in each virtual address space that is available to the
user’s programs is called the user region. The use of CPC memory address spaces enables
z/OS to maintain the distinction between the programs and data belonging to each address
space. The private areas in one user’s address space are isolated from the private areas in
other address spaces, and this address space isolation provides much of the z/OS’s security.

There are two private areas: below the 16 MB line is the private (PVT), and above the
16 MB line is the extended private (EPVT). Their size is the complement of the common
area’s size. The virtual addresses in the private area are unique to the programs running in
such areas.

5.8 64-bit address space map
As previously mentioned, z/Architecture broke the 2 GB (31-bit) main storage limit and the
2 GB (31-bit) address limit, and moved the limit to 16 EB (64-bit). The maximum of a z/OS
address space is 16 EB addresses, which makes the new address space 8 billion times the
size of the former 2 GB address space. However, any new created address space in z/OS is
initialized with 2 GB addresses with the potential to go beyond.

For compatibility, the layout of the virtual storage areas for an address space is the same
under 2 GB. The area that separates the virtual storage area below the 2 GB address from
the user private area is called the bar, as shown in Figure 5-12, and is 2 GB addresses thick.
In a 64-bit virtual storage environment, the terms are used to identify the areas above the bar
(2**32 - 2**64-1) and below the bar (0 - 2**31-1).

Figure 5-12 64-bit address space map

Data spaces

0

312

92x

 HVCOMMON

322

Below 2 GB
0

The bar
16 MB - Line

312 Segment table
Page table

 2 GB

User Private area

Shared Memory
(V1R5)

User Private area

(High Non-shared)
Region 1st table (R1T)

Region 2nd table (R2T)

Region 3rd table (R3T)

642

532

502

422
412

512 TB

2 TB
 64-bit Common (V1R10)

2 TB - 66 GB

System area (V1R12)
2

35
32 GB

288 GB
Chapter 5. z/OS storage concepts 87

For example, an address in the range 0 - 7FFFFFFF is below the bar. An address in the range
FFFFFFFF - 7FFFFFFF_FFFFFFFF is above the bar. This is basically an alteration to the
2 GB 31-bit terminology that related “below the line” to 24-bit storage, and “above the line” to
31-bit addresses.

The 64-bit address space map differs from the 31-bit address space map in the following
ways:

0 - 2**31 The layout is the same; see Figure 5-11 on page 86.

2**31 - 2**32 2 - 4 GB is considered the bar. Below the bar can be addressed with a
31-bit address. Above the bar requires a 64-bit address.

2**32 - 2**35 Reserved area addressable by the Java virtual machine (JVM) using
32-bit pointer compression.

2**35 - 2**41 The low non-shared area starts at 4 GB and goes to 2**41. A portion
of this storage is designed to be used for system storage as an
equivalent to LSQA below the 2 GB bar.

Memory objects are allocated in the system area that starts at
X’8_00000000’ - 32 GB and ends at X’28_00000000’ - 288 GB using
the IARV64 macro with REQUEST=GETSTOR,LOCALSYSARES=YES.

2**41 - 2**50 The Shared Area starts at 2**41 and goes to 2**50 or higher if
requested (up to 2**53).

2**50 - 2**64 The high non-shared area starts at 2**50 or wherever the shared area
ends and goes to 2**64.

The area above the bar, as shown in Figure 5-12 on page 87, is designed to keep data and
programs. There are several restrictions for programs loaded above the bar. The programs
running below the bar can request virtual storage above the bar and access it. To access
such an address, the program must be AMODE64.

5.8.1 Region tables
In a 16 EB address space with 64-bit virtual storage addressing, there are three additional
levels of translation tables, called region tables:

� Region third table (R3T)
� Region second table (R2T)
� Region first table (R1T)

The region tables are 16 KB, and there are 2048 entries per table. Each region has 2 GB.

5.8.2 Page and segment tables
Segment tables and page table formats remain the same as for virtual addresses below the
bar. When translating a 64-bit virtual address, after the system has identified the
corresponding 2 GB region entry that points to the segment table, the process is the same as
that described previously.

5.8.3 User private area
This area above the bar is intended for application data; no programs run above the bar. No
system information or system control blocks exist above the bar, either.
88 ABCs of z/OS System Programming Volume 1

The user private area, as shown in Figure 5-12 on page 87, includes:

� Low private. The private area below the line.
� Extended private. The private area above the line.
� Low non-shared. The private area just above the bar.
� High non-shared. The private area above the Shared Area.

As users allocate private storage above the bar, it is first allocated from the low non-shared
area. Similarly, as the shared area is allocated, it is allocated from the bottom up. This is done
to enable applications to have both private and shared memory above the bar, and avoid extra
machine cycles to perform dynamic address translation (DAT).

5.9 Segment tables and page tables in 31-bit addressing
Figure 5-13 shows 31-bit virtual address and dynamic address translation. These concepts
described in this section.

Figure 5-13 31-bit virtual address and dynamic address translation

Main storage is viewed as a long sequence of bits. The sequence of bits is subdivided into
units of 8 bits, called a byte. Each byte location in storage is identified by a unique integer
starting with zero (0), called an address. Addresses are either 31-bit or 64-bit integer values.

An address space is a sequence of virtual addresses that is associated with virtual storage. A
page is 4096 bytes, and is the minimum size of an address space. A program of fewer than
4096 bytes fits into a single page. All of the addresses used in a program are set up assuming
that the program is loaded into CPC memory starting at location 0. In reality, it is not, but this
assumption makes decoding the virtual address somewhat easier.

0
1

2
3

7FD

7FE
7FF

Real address

0
1
2
3

 FD

 FE
 FF

Real addr 0
1

2

3

FD

FE
FFSegment table

Page table
 Segment 3

Page table
 Segment 7FD
Chapter 5. z/OS storage concepts 89

5.9.1 Segment tables and page tables
DAT is the hardware in charge of translating a virtual address during a storage reference into
the corresponding real address, using translation tables (segment tables and page tables)
prepared by the z/OS component RSM.

Each address space has its own segment tables and page tables. Each segment table entry
has a pointer to the correlated page table. A page table is allocated when the first page on
that segment is allocated. There is a maximum of 2048 page tables.

To make this translation easier, the virtual address space is partitioned into segments, each
one of 1 MB addresses. Therefore, each 2 GB address space has 2048 segments. Each
segment has 256 4 KB pages. Given a virtual address, DAT finds the following information
contained in the virtual address:

� Segment index (number of the segment) in the first 11 bits of the address, up to 2047 =
b'111 1111 1111'= X'7FF'.

� Page index (number of the page in that segment) in the next 8 bits, up to 255 = b'1111
1111'= X'FF'.

� Byte index (displacement in the page) in the last 12 bits, up to 4095 = b'111111111111' =
X'FFF'.

Segment number
The segment number is mapped with an entry into a segment table (one entry per segment),
with 2048 entries. Each entry is identified in the range 0 - 2047. The entry 0 refers to segment
0, the entry 1 refers to segment 1, and so on.

Each address space has one segment table. Each entry in a segment table points to a page
table that maps each page of a segment in into an entry table. The system uses a page table
with 256 entries.

Because each page is 4 KB, each address space segment has 256 pages. Each entry
identifies each page in that segment. Therefore, entry 0 refers to the first page of the
segment, entry 1 refers to the second page in the same segment, and so on. The page table
entry has the real address of the frame mapping the page, or an invalid bit, when this
mapping does not happen. This invalid bit causes a program interrupt known as a page fault.
When a page fault occurs, the contents of the page are in an auxiliary storage slot.
90 ABCs of z/OS System Programming Volume 1

5.10 Virtual address translation
A virtual address identifies a location in virtual storage. When a virtual address is used for
access to main storage, it is translated by DAT to a real address in processor memory, as
shown in Figure 5-14.

Figure 5-14 Translating 31-bit vIrtual addresses

5.10.1 Address size
An address size refers to the maximum number of significant bits that can represent an
address. Three sizes of addresses are provided: 24 bit, 31 bit, and 64 bit:

� A 24-bit address can accommodate a maximum of 16,777,216 bytes (16 MB).
� A 31-bit address can address 2,147,483,648 bytes (2 GB).
� A 64-bit address can address 18,446,744,073,709,551,616 bytes (16 EB).

5.10.2 31-bit virtual addresses
A virtual address contains the following sections (see Figure 5-14):

� Bits 33 - 43 identify the segment number (segment index).
� Bits 44 - 51 identify the page number in that segment (page index).
� Bits 52 - 63 identify the displacement of the data in that page (byte index).

To translate a 31-bit virtual address (2 GB) into a real address, DAT uses the following bits:

� Bits 33 - 43 as an index in the segment table to find the entry that points to the page table
address of that segment

24-bit Address

31-bit Address

64-bit Address
0

0

0

33

40

63

63

63

Segment
 Index

 Page Index Byte Index

31-bit Virtual Address example
11 bits 8 bits 12 bits

9BFCD6F8

1BF CD 6F8

Information: A 24-bit or 31-bit virtual address is expanded to 64 bits by appending 40
zeros (24 bit) or 33 zeros (31 bit) on the left before it is translated by DAT process.
Chapter 5. z/OS storage concepts 91

� Bits 44 - 51 as an index in the page table entry that has the frame real address, or that has
the invalid bit turned on

� Bits 52 - 63 as the displacement of the data from the beginning of the frame, to be added
to the frame real address to get the real address

5.10.3 64-bit virtual address
In a 16 EB address space with 64-bit virtual storage addressing, there are three additional
levels of translation tables, called region tables. They are known as the region third table
(R3T), the region second table (R2T), and the region first table (R1T). The region tables are
16 KB, and there are 2048 entries per table. Figure 5-15 illustrates the table hierarchy and
sizes.

Figure 5-15 64-bit dynamic address translation

Segment table (SGT) and page table (PGT) formats remain the same as for 31-bit virtual
address. When translating a 64-bit virtual address, and after you have identified the
corresponding 2 GB region entry that points to SGT, the process is the same as described
previously.

RSM only creates the additional levels of region tables when it is necessary to back virtual
storage that is mapped.

Up to five lookup tables can be needed by DAT to accomplish translation, but the translation
only starts from the table that provides translation for the highest usable virtual address in the
address space.

5.10.4 Translating a 64-bit virtual address
Up to three additional levels of DAT tables, called region tables, are used for translating 64-bit
virtual addresses. With 64-bit virtual addressing, there are now three more 11-bit region
indexes to the three region tables, as illustrated in Figure 5-16 on page 93.

R1T
R2T

R2T

R3T

R3T

SGT

SGT

PGT

PGT

PAGE

PAGE

4 KB
Kilobytes
 212

2 GB
Gigabytes

8 PB
Petabytes

253 231 1 MB
Megabytes

4 TB
Terabytes

16 EB
Exabytes

2 64

242
220
92 ABCs of z/OS System Programming Volume 1

Figure 5-16 Translating a virtual address

To translate a 64-bit virtual address into a real address, DAT uses the following values:

� Bits 0 - 10 are the first region index into the R1T table.
� Bits 11 - 21 are the second region index into the R2T table.
� Bits 22 - 32 are the third region index into the R3T table.
� Bits 33 - 43 are the segment index into the SGT.
� Bits 44 - 51 are the page index into the PGT.
� Bits 52 - 63 indicate the data displacement into the page itself.

5.10.5 1 MB and 2 GB Large Pages
If you have storage-class memory (SCM) in your system, z/OS supports pageable 1 MB
pages. With SCM, 1 MB pageable large pages are paged out and back in as 1 MB pageable
large pages when requested, or when a storage constraint occurs. If SCM is not available, 1
MB pageable large pages are paged out and back in as 4 KB pageable pages.

2 GB large page-backed memory objects are also supported, but are fixed and not pageable.
See MVS Initialization and Tuning Reference, SA23-1380.

0 11 22 33 44 52 63

| 11 bits | 11 bits | 11 bits | 11 bits | 8 bits | 12 bits |

R1 Index R2 Index R3 Index Segment
Index

Page
Index Byte Index

Same as 31-bit virtual address translation
000000019BFCD6F8

1BF CD 6F83
Chapter 5. z/OS storage concepts 93

5.11 Multiprogramming and multiprocessing
The control program creates one task in the address space as a result of initiating execution
of the job step (the job step task), as shown in Figure 5-17. You can create additional tasks in
your program. However, if you do not, the job step task is the only task in the address space
being run. The benefits of a multiprogramming environment are still available even with only
one task in the job step. Work is still being performed for other address spaces when your
task is waiting for an event, such as an input operation, to occur.

Figure 5-17 Multiprogramming and multiprocessing

The benefit of creating additional tasks in the job step is that more tasks are competing for
control. When a wait state occurs in one of your tasks, it is not necessarily a task from another
address space that gets control; instead, it can be one of your tasks, a portion of your job.

Only one processor at a time can run the same task. However, several processors running
different tasks can run the same program (just as people driving different cars going to
different places can share the same street).

5.11.1 Multiprogramming
Multiprogramming means that many tasks can be in a system at the same time, with each
task running programs in its own address space (or sometimes in the same address space).
In a CPC with only one processor (such as a city with only one car), only one of these tasks
can be active at a time.

However, the active task can lose control of the processor at any time (for example, because
of I/O requests that place the task in a wait state, meaning it is not a candidate to get the
processor). z/OS then selects which task gets control next, based on a number called
dispatching priority.

ADDRESS SPACE

ADDRESS SPACE

ADDRESS SPACE

TASKTASK TASKSTASKS

TASKSTASKS

Processors

TASKTASKTASKSTASKS
94 ABCs of z/OS System Programming Volume 1

5.11.2 Multiprocessing
Multiprocessing is a logical expansion of multiprogramming. Multiprocessing refers to the
execution of more than one task simultaneously on more than one processor (which is like a
city with several cars). All processors operate under a single copy of z/OS, and share the
same memory, as shown in Figure 5-18.

5.12 Program compile, link edit, and execution

Figure 5-18 Running a program after compiling and link-editing

5.12.1 Program compile, link edit, and execution
A z/OS system can appear to be one big block of code that drives your processor, but z/OS is
a complex system composed of many different smaller blocks of code. Each of those smaller
blocks of code performs a specific (specialized) function in the system.

Each module of symbolic language code is first assembled or compiled by one of the
language translators or the assembler. The input to a language translator is a source module.
The output from a language translator is an object module, made of control sections
(CSECTs).

The Binder is a z/OS program that accepts object modules, control statements, and options
as input. It combines these object modules, according to the requirements defined by the
control statements and options, into a single output load module (executable code). This
module is stored in a program library, and loaded into storage for execution by the z/OS
component program management loader. A load module can also be an input to the Binder.

Each system function comprises one or more load modules.This is also true for an installation
application. In a z/OS environment, a load module represents the basic unit of
machine-readable executable code. Load modules are created by combining one or more
object modules and processing them with a link-edit utility (Binder).

After Link-edit

PROGRAM
LIBRARY

PROGRAM B

PROGRAM A

0

140 KB

80 KB

After compilation

PROGRAM A
(CSECT)

0
80 KB

PROGRAM B
(CSECT)

60 KB
 0

16 MB

2 GB

0

20 KB

Common

MYPROG

2-GB Virtual
Storage
Address Space

MYPROG
Object Modules

Load Module
Chapter 5. z/OS storage concepts 95

The link-editing of modules is a process that resolves external references and addresses.
Therefore, the functions on your system are one or more object modules that have been
combined and link-edited.

5.13 Pervasive Encryption
Pervasive encryption provides a transparent and consumable approach to enable extensive
encryption of data in flight and at rest to simplify and reduce the costs associated with
protecting data and achieving compliance mandates.

To achieve this standard for encryption, IBM Z delivered several capabilities integrated
throughout the z14 stack in the hardware, OS, and middleware, as shown in Figure 5-19.

The on-chip cryptography engine, used for the compression and cryptography feature
(CPACF), which offers a set of symmetric cryptographic functions for encrypting and
decrypting of clear key. The CPACF has both the cryptographic suite and performance
characteristics that can enable bulk encryption of sensitive business data that makes it
possible to fortify, intrinsically protecting business data using encryption technology.

Figure 5-19 Pervasive Encryption

Bulk file and data set encryption were placed at a point in z/OS where the encryption would
be transparent to applications and highly optimized for performance.

In addition to helping organizations protect all of their digital assets, pervasive encryption can
decouple identification and classification from the process of encryption and reduce the risk
of unidentified or misclassified data. It also makes sensitive data within the enterprise more
difficult for attackers to identify because it’s all encrypted.
96 ABCs of z/OS System Programming Volume 1

5.13.1 z/OS Encryption Capabilities
z/OS is designed to provide policy-based encryption options that take full advantage of the
encryption capabilities in the z14 platform, and can help clients protect their critical business
data. The following new capabilities are included:

� Enhanced data protection for many z/OS data sets, zFS file systems, and Coupling Facility
structures gives users the ability to encrypt data without needing to change applications to
embed encryption APIs within applications.

� z/OS policy controls make it possible to use pervasive encryption to help protect user data
and simplify the task of compliance.

� z/OS Communications Server includes encryption-readiness technology to enable z/OS
administrators to determine which TCP and Enterprise Extender traffic patterns to and
from their z/OS systems meet approved encryption criteria and help simplify the task of
compliance.

Some of the following design advantages are built into z/OS data set encryption:

� Uses CPACF and protected key, which means that key material is not visible in clear text
format, offering a higher level of protection and the high throughput of encryption using
CPACF

� Is designed to protect data in a way that is aligned with customers’ current access control
mechanisms offering a more straightforward configuration experiences

� Is designed to perform efficiently at speed

� Can enable encryption without requiring application or database changes

� Allows data to remain encrypted throughout its journey. For instance, with z/OS data set
encryption, any data replicated, or backed up or migrated, remains encrypted

� In-memory buffer content is not encrypted, so every data access does not require an
encrypt or a decrypt operation; this design helps reduce the overall cost of encryption

� Can be configured such that encryption keys are owned and managed by logical
organizational environment (for example, production versus test) providing cryptographic
separation from other environments

� Can help simplify clients’ compliance efforts

Data set encryption enables encryption of files in bulk through the access method. z/OS data
set encryption is designed to offer high throughput, low-cost encryption. It is intended to be
more accessible to the organization than many other forms of encryption. It is designed to be
transparent to the application, requiring no changes to application code. z/OS data set
encryption enables customers to encrypt data at course scale without the need to perform
data identification and classification first.

z/OS data set encryption is designed to use AES 256.

5.13.2 z/OS DFSMS and pervasive encryption
z/OS DFSMS introduces pervasive encryption of data at rest for extended format data sets
accessed through access methods without requiring application changes. z/OS data set
encryption through RACF command and SMS policies can be used to identify the data sets or
groups of data sets that require encryption.
Chapter 5. z/OS storage concepts 97

You can protect viewing the data in the clear based on authorization access to the key label
that is associated with the data set used by the access methods to encrypt and decrypt the
data. The data set owner specifies an encryption key label, which refers to an AES 256-bit
encryption key that exists in the ICSF key repository.

z/OS DFSMS data set encryption can be used to encrypt the following types of data sets:

� Sequential extended format data sets that are accessed through BSAM and QSAM
� VSAM extended format data sets (KSDS, ESDS, RRDS, VRRDS, LDS) that are accessed

through base VSAM and VSAM/RLS

To create an encrypted data set, you must assign a key label to the data set when it is created
(first allocated). A key label can be specified through any of the following methods:

� RACF data set profile
� JCL, dynamic allocation, TSO ALLOCATE, IDCAMS DEFINE
� SMS data class

Encrypted data sets must be SMS-managed extended format; they can be in compressed
format, also.

DFSMSdss and DFSMShsm support backup and migration of encrypted data sets while
preserving the data in encrypted form.

Encrypted data sets must be SMS-managed extended format.

5.13.3 DB2 and IMS and z/OS data set encryption
DB2 is designed to transparently encrypt data at rest without database downtime or requiring
the administrator to redefine objects, which could cause disruption to operations. This
includes the ability to transparently encrypt its logs, catalog, directory, tables, and indexes,
including all data types such as large binary objects transparently. In addition, for maximum
availability, rekeying of data keys can be performed non-disruptively without taking DB2
databases offline.

IMS V14 supports z/OS data set encryption for select data sets. The IMS 15 Quality
Partnership Program (QPP) offering also supports these capabilities. Also, z/OS data set
encryption allows customers to take advantage of transparent encryption of select IMS data
sets.
98 ABCs of z/OS System Programming Volume 1

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get IBM Redbooks” on
page 100. Note that some of the documents referenced here might be available in
softcopy only.

� ABCs of z/OS System Programming Volume 2, SG24-6982

� ABCs of z/OS System Programming Volume 3, SG24-6983

� ABCs of z/OS System Programming: Volume 4, SG24-6984

� ABCs of z/OS System Programming: Volume 5, SG24-6985

� ABCs of z/OS System Programming Volume 6, SG24-6986

� ABCs of z/OS System Programming Volume 7, SG24-6987

� ABCs of z/OS System Programming Volume 8, SG24-6988

� ABCs of z/OS System Programming: Volume 9, SG24-6989

� ABCs of z/OS System Programming Volume 10, SG24-6990

� ABCs of z/OS System Programming Volume 11, SG24-6327

� ABCs of z/OS System Programming Volume 12, SG24-7621

� ABCs of z/OS System Programming Volume 13, SG24-7717

Other publications

These publications are also relevant as further information sources:

� z/OS Planning for Installation, GA32-0890

� z/OS MVS Initialization and Tuning Reference, SA23-1380

� z/OS MVS JCL Reference, SA23-1385

� z/OS MVS JCL User’s Guide, SA23-1386

� z/OS Security Server RACF System Programmer’s Guide, SA23-2287

� z/OS TSO/E Command Reference, SA32-0975

� z/OS TSO/E Customization, SA32-0976

� z/OS TSO/E Primer, SA32-0984

� z/OS TSO/E REXX User's Guide, SA32-0982

� z/OS TSO/E User's Guide, SA32-0971

� z/OS Using REXX and z/OS UNIX System Services, SA23-2283

� IBM ServerPac Using the Installation Dialog, SA23-2278
© Copyright IBM Corp. 2014, 2017. All rights reserved. 99

� OSA-Express Customer's Guide and Reference, SA22-7935

� Interactive System Productivity Facility Getting Started, SC34-4440

� z/OS ISPF Planning and Customizing, GC19-3623

� z/OS ISPF Dialog Developer's Guide, SC19-3619

� z/OS ISPF SCLM Project Manager’s and Developer’s Guide, SC19-3625

� z/OS Distributed File Services zFS Administration, SC23-6887

� z/OS DFSMS Managing Catalogs, SC23-6853

� z/OS ISPF Edit and Edit Macros, SC19-3621

� z/OS ISPF User's Guide Volume I, SC19-3627

� z/OS ISPF User's Guide Volume II, SC19-3628

Online resources

These websites are also relevant as further information sources:

� The ShopzSeries web address:

https://www14.software.ibm.com/webapp/ShopzSeries/ShopzSeries.jsp

� The PMA website:

http://www-03.ibm.com/systems/z/os/zos/features/smpe/pma/index.html

How to get IBM Redbooks

You can search for, view, or download IBM Redbooks, IBM Redpapers, Technotes, draft
publications, and Additional materials, and order hardcopy Redbooks, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
100 ABCs of z/OS System Programming Volume 1

https://www14.software.ibm.com/webapp/ShopzSeries/ShopzSeries.jsp
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www-03.ibm.com/systems/z/os/zos/features/smpe/pma/index.html
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

ABCs of z/OS System
 Program

m
ing Volum

e 1

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442763

SG24-6981-04

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. The World of IBM Z
	1.1 IBM Z hardware configuration
	1.2 Parallel Sysplex
	1.3 Coupling facility
	1.3.1 CF structure encryption

	1.4 Cryptographic hardware
	1.5 z/OS services
	1.6 ICSF
	1.7 z/OS security
	1.7.1 SAF
	1.7.2 RACF

	1.8 Data Facility Storage Management Subsystem
	1.8.1 z/OS Data Set Encryption

	1.9 IBM Health Checker for z/OS
	1.9.1 Health Checker for z/OS processing

	1.10 IBM z/OS Management Facility

	Chapter 2. The z/OS system programmer
	2.1 The role of the system programmer
	2.2 z/OS system programmer management overview
	2.3 The system programmer and z/OS operations
	2.3.1 Planning
	2.3.2 Daily operations

	2.4 Ordering z/OS
	2.4.1 z/OS delivery options
	2.4.2 SMP/E Internet Service Retrieval

	Chapter 3. TSO/E, ISPF, JCL, and SDSF
	3.1 TSO/E
	3.1.1 TSO/E highlights
	3.1.2 TSO/E customization
	3.1.3 TSO/E logon procedure
	3.1.4 Line mode TSO/E
	3.1.5 TSO/E languages

	3.2 Interactive System Productivity Facility
	3.2.1 Using ISPF
	3.2.2 ISPF structure
	3.2.3 Data set types supported
	3.2.4 ISPF components
	3.2.5 ISPF primary option menu

	3.3 Job control language
	3.3.1 JCL introduction
	3.3.2 JCL streams and jobs
	3.3.3 Job Entry Subsystems
	3.3.4 Job Entry Subsystem 2
	3.3.5 Job Entry Subsystem 3

	3.4 System Display and Search Facility
	3.4.1 SDSF: Panels hierarchy
	3.4.2 JES2 SDSF Primary Option Menu
	3.4.3 SDSF: JES3 panel hierarchy
	3.4.4 JES3 SDSF Primary Option Menu

	Chapter 4. z/OS maintenance concepts
	4.1 Aspects of software management
	4.1.1 Why you should manage software
	4.1.2 How current your software should be
	4.1.3 An approach for keeping your environment current
	4.1.4 Installation strategy
	4.1.5 Implementation strategy
	4.1.6 Concurrent maintenance

	4.2 Software management tasks
	4.2.1 Environment design
	4.2.2 Installation decision
	4.2.3 Installation plan
	4.2.4 Installation
	4.2.5 Testing
	4.2.6 Implementation

	4.3 The z/OS software management cycle
	4.3.1 How current your software should be
	4.3.2 The risk of not changing software
	4.3.3 The risk of changing software
	4.3.4 The minimum risk point
	4.3.5 System Modification Program Extended (SMP/E)

	Chapter 5. z/OS storage concepts
	5.1 Processor storage overview
	5.2 The concept of virtual storage
	5.2.1 Processor storage concept
	5.2.2 How virtual storage works
	5.2.3 Dynamic address translation
	5.2.4 Address space
	5.2.5 Storage initialization
	5.2.6 CPC memory
	5.2.7 Auxiliary storage
	5.2.8 Processing unit

	5.3 Virtual storage details
	5.3.1 Virtual storage terminology
	5.3.2 Page data sets
	5.3.3 Pages to auxiliary storage (paging)
	5.3.4 Storage management
	5.3.5 Paging algorithms

	5.4 z/Architecture address space
	5.4.1 Virtual storage and 64-bit addressability
	5.4.2 zSeries mainframes and 64-bit addressing
	5.4.3 Region tables and segment tables
	5.4.4 The address space concept
	5.4.5 Data spaces
	5.4.6 Addressing mode and residency mode

	5.5 Storage managers
	5.5.1 Paging and swapping

	5.6 IBM Virtual Flash Memory
	5.6.1 Storage-class memory on IBM Z Virtual Flash Memory

	5.7 The common virtual storage area
	5.7.1 Common area below the 16 MB line
	5.7.2 z/OS nucleus
	5.7.3 System queue area
	5.7.4 Common service area
	5.7.5 Link pack area
	5.7.6 Address space private area

	5.8 64-bit address space map
	5.8.1 Region tables
	5.8.2 Page and segment tables
	5.8.3 User private area

	5.9 Segment tables and page tables in 31-bit addressing
	5.9.1 Segment tables and page tables

	5.10 Virtual address translation
	5.10.1 Address size
	5.10.2 31-bit virtual addresses
	5.10.3 64-bit virtual address
	5.10.4 Translating a 64-bit virtual address
	5.10.5 1 MB and 2 GB Large Pages

	5.11 Multiprogramming and multiprocessing
	5.11.1 Multiprogramming
	5.11.2 Multiprocessing

	5.12 Program compile, link edit, and execution
	5.12.1 Program compile, link edit, and execution

	5.13 Pervasive Encryption
	5.13.1 z/OS Encryption Capabilities
	5.13.2 z/OS DFSMS and pervasive encryption
	5.13.3 DB2 and IMS and z/OS data set encryption

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

