
iSeries

CICS for iSeries Intercommunication
Version 5

SC41-5456-00

ERserver
���

iSeries

CICS for iSeries Intercommunication
Version 5

SC41-5456-00

ERserver
���

Note
Before using this information and the product it supports, be sure to read the information in
“Notices” on page 157.

First Edition (September 2002)

This edition applies to version 5, release 2, modification 0 of IBM CICS Transaction Server for iSeries (5722-DFH)
and to all subsequent releases and modifications until otherwise indicated in new editions. This edition applies only
to reduced instruction set computer (RISC) systems.

This edition replaces SC33-1388-01.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About CICS for iSeries
Intercommunication (SC41-5456) . . . vii
Who should read this book vii
Conventions and terminology used in this book . . vii
Prerequisite and related information viii

CICS/400 library. ix
Books from related libraries ix

How to send your comments x

Summary of Changes xi

Part 1. Introduction 1

Chapter 1. Overview 3
Intercommunication functions 3

Distributed program link (DPL) 3
Function shipping 4
Transaction routing 4
Asynchronous processing 5
Distributed transaction processing (DTP) 5

Security 6
Summary of CICS/400 intercommunication 6

Part 2. Setup and Programming . . . 9

Chapter 2. Configuring CICS/400 for
intercommunication 11
Setting up OS/400 communications objects 14

How the commands are described 15
OS/400 controller description (APPC),
CRTCTLAPPC 16
OS/400 mode description, CRTMODD 22
OS/400 device description (APPC),
CRTDEVAPPC 24

Creating an OS/400 subsystem 26
Adding subsystem entries 27
Adding routing entries 28
Adding communications entries 31
Adding prestart job entries 34
Adding configuration list entries 38

Working with the configuration. 39
Setting up the CICS resource definitions 39

Defining remote CICS systems, ADDCICSTCS . . 39
CICS/400 system definition table, ADDCICSSIT 42

Working with the configuration. 42
Summary 43

How the subsystem is associated with CICS
resource definitions and with OS/400 43
The APPC connection 43
How resource definitions are connected 44

Intrasystem communication 46
Line definition 46
Controller definition 46

Device definition 46
Example of intrasystem communication
definitions 46

Chapter 3. CICS/400 server support for
the CICS client family 49
Overview 49

What the CICS client does 49
What the CICS/400 server does 49

Resource definition 50
Client system entry 50
Client terminal entry 52
Data conversion 53
Restrictions 54

Required routing entries 54
Routing entries in default subsystem 55

Automatic configuration of dynamic devices . . . 57
Controlling automatic configuration 57
Automatic-configuration parameters 57

TCP/IP Connectivity for Client 58

Chapter 4. Distributed program link . . 61
Two ways to use DPL 61

Ignoring the location of resources 61
Explicitly specifying the remote system 61

Serial connections 61
Synchronization and data integrity 61

Determining how a program was started . . . 62
BDAM files, and IMS, DL/I, and SQL databases . . 62
Restrictions on programs invoked by DPL 62

Restricting a program to the DPL subset 62
Abends when using DPL 63
Performance optimization for DPL. 63
Why use DPL? 63
Resource definition 63

Program definition, ADDCICSPPT. 63
Transaction definition, ADDCICSPCT. 64

Chapter 5. Function shipping 67
Two ways to use function shipping 67

Ignoring the location of resources 67
Explicitly specifying the remote system 67

Serial connections 67
CICS file control data sets 67
Transient data 68
Local and remote names 68
Synchronization 68
Data security and integrity 68
Resource definition 68

File definition, ADDCICSFCT 68
Transient data queue definition, ADDCICSDCT 69
Temporary storage queue definition,
ADDCICSTST 70

© Copyright IBM Corp. 2002 iii

Chapter 6. Transaction routing 73
Serial connections 74
Resource definition 74

Transaction definitions, ADDCICSPCT 74
Terminal definitions, ADDCICSTCT 74

Inbound transaction routing to the CEMT
transaction. 75

Transaction routing to a pseudoconversation . . 77

Chapter 7. Asynchronous processing 79
Two ways to initiate asynchronous processing . . . 79

Ignoring the location of the transaction 79
Explicitly specifying a remote system 79

Starting and canceling remote transactions 79
Passing information with the EXEC CICS START
command 80
Passing an applid with the EXEC CICS START
command 80
Improving performance of intersystem start
requests 80
Deferred sending of start requests with the
NOCHECK option 81
Local queuing of start requests for remote
transactions 81
Including start request delivery in a logical unit
of work. 82

The started transaction 82
Started transaction satisfying multiple start
requests 83
Terminal acquisition by a remotely initiated CICS
transaction. 83

Resource definition 83
Transaction definition, ADDCICSPCT. 83

Chapter 8. Security 85
Planning for intercommunication security 85

Bind-time security 85
Link security 85
User security 85
Resource security 85

Implementing intercommunication security 86
Bind-time security 86
User security 86
Resource security 87

Chapter 9. Data conversion 89
Which system does the conversion? 89

Function shipping and DPL 90
Serial connection 90
Distributed transaction processing 91
Avoiding data conversion. 91

Types of Conversion 91
Resource definition 91

Conversion Vector Table definition,
ADDCICSCVT 91

Part 3. Distributed transaction
programming 97

Chapter 10. Designing distributed
applications 99
Design objectives 99

Avoiding performance problems 99
Facilitating maintenance 99
Aiming for reliability 99
Protecting sensitive data 99
Maintaining connectivity 99
Safeguarding data integrity. 100

Designing conversations 100
Selecting the APPC programming interface . . . 100

Chapter 11. APPC mapped
conversation flow 103
Starting the conversation 103

Conversation initiation 103
Back-end transaction initiation. 105
Failure of back-end transaction to start 107

Transferring data on the conversation 107
Sending data to the partner transaction. . . . 108
Switching from sending to receiving data . . . 108
Receiving data from the partner transaction . . 110
The EXEC CICS CONVERSE command. . . . 111

Communicating errors across a conversation . . . 111
Requesting INVITE from the partner transaction 111
Demanding INVITE from the partner transaction 111

Safeguarding data integrity (using sync level 1) . . 112
How to synchronize a conversation 112

Ending the conversation 114
Normal termination of a conversation 114
Emergency termination of a conversation . . . 114
Unexpected termination of a conversation . . . 115

Checking the outcome of a DTP command . . . 115
Testing for request failure 115
Testing for indicators 115
Checking EIB fields and the conversation state 118

Summary of CICS commands for APPC mapped
conversations 118

Chapter 12. Syncpointing a distributed
process 121
The EXEC CICS SYNCPOINT command 121
The EXEC CICS ISSUE PREPARE command . . . 122
The EXEC CICS SYNCPOINT ROLLBACK
command 122

Conversation state after SYNCPOINT
ROLLBACK 122

When a backout is required 123
Synchronizing two CICS systems 123

EXEC CICS SYNCPOINT in response to EXEC
CICS SYNCPOINT 123
EXEC CICS SYNCPOINT in response to EXEC
CICS ISSUE PREPARE 125
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT
ROLLBACK 126
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT 127
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS ISSUE PREPARE . . . 128

iv CICS for iSeries Intercommunication V5

EXEC CICS ISSUE ERROR in response to EXEC
CICS SYNCPOINT 129
EXEC CICS ISSUE ERROR in response to EXEC
CICS ISSUE PREPARE 130
EXEC CICS ISSUE ABEND in response to EXEC
CICS SYNCPOINT 131
EXEC CICS ISSUE ABEND in response to EXEC
CICS ISSUE PREPARE 132
Session failure in response to EXEC CICS
SYNCPOINT 133
Session failure in response to EXEC CICS ISSUE
PREPARE 135
Session failure in response to EXEC CICS
SYNCPOINT ROLLBACK 135

Synchronizing three or more CICS systems . . . 136
EXEC CICS SYNCPOINT in response to EXEC
CICS SYNCPOINT 136
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT 138
Session failure and the in-doubt period. . . . 140

What really flows between APPC systems 140

Chapter 13. State transitions in APPC
mapped conversations 145
The state tables for APPC mapped conversations 145

How to use the state tables 145
APPC mapped conversations at sync level 2 . . 150
APPC mapped conversations at sync level 2
(continued) 152
Initial states 154

Testing the conversation state 154

Part 4. Appendixes 155

Notices 157
Programming Interface Information 158
Trademarks 158

Index 161

Contents v

vi CICS for iSeries Intercommunication V5

About CICS for iSeries Intercommunication (SC41-5456)

This book is about setting up a CICS® for iSeries® to communicate with another
CICS for iSeries system, or with any other member of the CICS products:
v CICS on System/390
v CICS on OS/2
v CICS on Open Systems
v CICS Clients

Intercommunication between two different CICS products is called CICS
inter-product communication. For an overview of CICS inter-product
communication, see the CICS Family: Interproduct Communication, SC34-6030-00
manual, which explains the documentation scheme of which this book is a part.
“CICS/400 library” on page ix lists the other books in that scheme.

Who should read this book
This book is for those responsible for planning and implementing the CICS/400
side of an intercommunication link between two CICS systems, including the case
where both sides of the link are CICS/400 systems.

This book assumes some familiarity with CICS resource definition and application
programming, and with the use of iSeries CL commands, iSeries work
management, and configuration of iSeries for communication.

You should have a copy of the companion book CICS Family: Interproduct
Communication, in which Part 1 introduces CICS family intercommunication, and
Part 2 gives help in selecting an intercommunication function, followed by detailed
discussions of each function.

You may need knowledge of or access to information about the remote CICS
system with which you want to communicate.

Conventions and terminology used in this book
The following CICS products run on computers of the S/370™, System/390, or
zSeries™ family and support communications with CICS products that run on
other hardware platforms. (Not all of these products run on all of these computers;
for example, CICS Transaction Server for z/OS™ Version 2 does not run on
System/370™.):
v CICS Transaction Server for z/OS Version 2, program number 5697-E93
v CICS Transaction Server for OS/390® Version 1, program number 5655-147
v CICS/ESA Version 4, program number 5655-018
v CICS Transaction Server for VSE/ESA™, program number 5648-054
v CICS/VSE Version 2, program number 5686-026

The term CICS for OS/2 refers to CICS Transaction Server for OS/2 Warp Version
4.1 (which contains CICS for OS/2 Version 3.1.)

The term CICS on Open Systems is used as a generic name for:

© Copyright IBM Corp. 2002 vii

v TXSeries™ Version 5.0 for Multi-platforms, which contains:
– CICS for AIX
– CICS for HP-UX
– CICS for Sun Solaris
– CICS for Windows NT®

v TXSeries Version 4.3 for AIX (which contains CICS for AIX)
v TXSeries Version 4.3 for Sun Solaris (which contains CICS for Sun Solaris)
v TXSeries Version 4.3 for Windows NT (which contains CICS for Windows NT)
v TXSeries Version 4.2 for HP-UX (which contains CICS for HP-UX)

The terms mainframe or System/390 are used to refer to any System/370,
System/390, or zSeries computer on which one of the above products can run. The
terms nonmainframe or non-System/390 refer to the hardware platforms used by
other CICS products; for example, iSeries (used by CICS/400®), IBM-compatible
personal computers (used by CICS for OS2) and RISC System/6000® or pSeries™

(used by CICS on Open Systems).

In statements that apply to each of the mainframe products, the generic term
CICS/mainframe is used to represent all of them. A particular CICS/mainframe
product is referred to by name only if there is a difference in its interface to
CICS/400 as compared with the interface from other CICS/mainframe products.

The notation CICS/400–CICS OS/2 is used to refer to communication in either
direction between CICS/400 and CICS OS/2. To specify communication in only
one direction, an arrow is added. For example, CICS/mainframe–CICS/400
function shipping refers to function shipping from CICS/mainframe to CICS/400
or from CICS/400 to CICS/mainframe. CICS/400–�CICS/mainframe function
shipping refers only to function shipping from CICS/400 to CICS/mainframe.

To conform with both CICS documentation and OS/400 documentation, the
keywords used in EXEC CICS commands are called options and the keywords
used in CL commands are called parameters.

All OS/400 CL commands can be entered at an OS/400 terminal or issued by a CL
program. Command parameters are documented and indexed by showing the
scren field name followed by the program parameter name in parentheses, for
example:

In the parameter description: Destination (DEST)
In the index: destination (DEST)

VTAM® refers to ACF/VTAM, the Virtual Telecommunications Access Method.

Prerequisite and related information
Use the iSeries Information Center as your starting point for looking up iSeries
technical information.

You can access the Information Center two ways:
v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

v From CD-ROMs that ship with your Operating System/400 order:

viii CICS for iSeries Intercommunication V5

iSeries Information Center, SK3T-4091-02. This package also includes the PDF
versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,
SK3T-4092-01, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as
Java™, TCP/IP, Web serving, secured networks, logical partitions, clustering, CL
commands, and system application programming interfaces (APIs). It also includes
links to related IBM Redbooks™ and Internet links to other IBM Web sites such as
the Technical Studio and the IBM home page.

With every new hardware order, you receive the iSeries Setup and Operations
CD-ROM, SK3T-4098-01. This CD-ROM contains IBM Eserver iSeries Access for
Windows and the EZ-Setup wizard. iSeries Access offers a powerful set of client
and server capabilities for connecting PCs to iSeries™ servers. The EZ-Setup wizard
automates many of the iSeries setup tasks.

CICS/400 library
These books form the CICS/400 library that is delivered with the product:

CICS for iSeries Administration and Operations Guide, SC41-5455-00
This guide gives introductory information about CICS/400. It then provides
information about system and resource definition, setup of a system, and
operator commands.

CICS for iSeries Application Programming Guide, SC41-5454-01
This manual provides programming guidance information, in narrative form
with examples. This is followed by the reference section describing the
syntax and use of each command.

CICS for iSeries Intercommunication, SC41-5456-00
This manual describes the CICS/400 side of communication between CICS
systems running on different platforms. There is a similar manual for each
CICS platform.

CICS for iSeries Problem Determination, SC41-5453-00
This manual provides guidance in problem determination for users of
CICS/400.

CICS Family: Interproduct Communication, SC34-6030-00
This manual, which is also part of the libraries of the other CICS family
members, gives an overview of communication between CICS systems
running on different platforms.

CICS Family: API Structure, SC33-1007-02
This manual, which is also part of the libraries of the other CICS family
members, gives a quick reference to the level of support that each member
of the CICS family gives to the CICS application programming interface. It
is designed for customers and software vendors developing applications
able to run on more than one CICS platform and porting applications from
one platform to another.

Books from related libraries
Some other manuals may be useful to the readers of this book.

CICS intercommunication manuals
CICS on System/390 Intercommunication Guide (refer to the Intercommunication
Guide for your CICS on System/390 product)
CICS for OS/2 Intercommunication

About CICS for iSeries Intercommunication (SC41-5456) ix

CICS on Open System Intercommunications Guide

iSeries manuals
Communications Configuration, SC41-5401-00
ICF Programming, SC41-5442-00
Communications Management, SC41-5406-02
APPC Programming, SC41-5443-00
Work Management, SC41-5306-03
Globalization topic in the iSeries Information Center
Software Installation, SC41-5120-06

Other books
SNA Formats, GA23-3136
SNA LU 6.2 Peer Protocols Reference , SC31-6808
CPI Communications Reference, SC26-4399
AIX SNA Server/6000 V2R1 User’s Guide, SC31-7002

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
iSeries documentation, fill out the readers’ comment form at the back of this book.
v If you prefer to send comments by mail, use the readers’ comment form with the

address that is printed on the back. If you are mailing a readers’ comment form
from a country other than the United States, you can give the form to the local
IBM branch office or IBM representative for postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:
– United States, Canada, and Puerto Rico: 1-800-937-3430
– Other countries: 1-507-253-5192

v If you prefer to send comments electronically, use one of these e-mail addresses:
– Comments on books:

RCHCLERK@us.ibm.com
– Comments on the iSeries Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book or iSeries Information Center topic.
v The publication number of a book.
v The page number or topic of a book to which your comment applies.

x CICS for iSeries Intercommunication V5

Summary of Changes

This section summarizes the major changes made to the CICS for iSeries
Intercommunication book for Version 5 Release 2.

Changes for this release includes support for connectivity of CICS Universal
Clients and the CICS Transaction Gateway to CICS for iSeries using TCP/IP
connectivity.

© Copyright IBM Corp. 2002 xi

xii CICS for iSeries Intercommunication V5

Part 1. Introduction

Chapter 1. Overview 3
Intercommunication functions 3

Distributed program link (DPL) 3
Function shipping 4

APPC protocol. 4
DL/I database access 4
Data conversion 4

Transaction routing 4
Automatic transaction initiation 5

Asynchronous processing 5
Distributed transaction processing (DTP) 5

Security 6
Summary of CICS/400 intercommunication 6

This part introduces CICS intercommunication.

© Copyright IBM Corp. 2002 1

2 CICS for iSeries Intercommunication V5

Chapter 1. Overview

Note
In this chapter, and throughout this book, the generic term CICS/mainframe
or CICS for OS/390 are used to represent products run on System/370,
System/390 or zSeries platforms. See the About CICS® for iSeries
Intercommunications section at the front of this book for a list of specific
products.

This chapter describes the CICS/400* intercommunication facilities under the
following headings:
v “Distributed program link (DPL)”
v “Function shipping” on page 4
v “Transaction routing” on page 4
v “Asynchronous processing” on page 5
v “Distributed transaction processing (DTP)” on page 5
v “Security” on page 6
v “Summary of CICS/400 intercommunication” on page 6

Intercommunication functions
CICS family inter-product communications primarily use Advanced
Program-to-Program Communication (APPC), part of IBM’s Systems Network
Architecture (SNA), as their communications protocol. Support for this protocol is
normally provided by an operating system extension, such as Communications
Manager/2 in OS/2, or directly by the operating system itself, as in OS/400.
CICS/400 relies on the OS/400’s Intersystem Communication Function (ICF) to
provide the APPC interface that it requires, while CICS/400 resource definitions
and programming interfaces offer the user a simple way of defining distributed
resources, and writing distributed transactions.

CICS for iSeries supports all the functions discussed in this chapter links to any of
the following products:
v Another CICS for iSeries or CICS/400 system
v CICS on OS/390
v CICS on Open Systems
v CICS for OS/2

Support is either at synchronization level 1 or 2, and in either direction between
the systems.

Distributed program link (DPL)
Distributed program link (DPL) enables an application program in a local CICS
system to issue an EXEC CICS LINK command to link to a program in a remote
CICS system, which returns control to the calling program. Distributed program
link:
v Provides a way to access data not maintained by CICS but accessed by a remote

CICS system, for example, IMS™, DL/I, and SQL databases on a

© Copyright IBM Corp. 2002 3

CICS/mainframe system. Existing mainframe programs can be used to access
the data. (Another way of accessing this data is to use distributed transaction
processing, see 5.)

v Provides a way to access BDAM files on a mainframe CICS system. Existing
mainframe programs can be used to access the data. (Another way of accessing
this data is to use distributed transaction processing, see 5.)

v Provides improved performance for a distributed system. For example, a single
link can achieve a data set browse that would require multiple flows if function
shipping were used.

v Gives the CICS/400 programmer access to programs that cannot be ported from
the mainframe system.

v Allows a CICS/400 programmer to use an APPC link without needing to know
the protocol.

In CICS, the linked program runs under the mirror transaction (CPMI for
CICS/400), using that transaction’s attributes, for example, task priority, security
attributes, and keys.

Function shipping
Function shipping enables CICS application programs to access CICS resources
owned by a remote CICS system.

A function shipping request takes the form of a normal EXEC CICS command. If
the SYSID parameter is used in the EXEC CICS command or the resource is
defined as remote, the application-owning system recognizes that function
shipping is required and ships the request to the remote resource-owning system.

APPC protocol
The mirror program, running in the resource-owning CICS system, handles
incoming function shipping requests.

CICS/400 supports synchronization level 2. Synchronization of recoverable changes
is achieved using the CICS APPC protocols, described in Chapter 12, “Syncpointing
a distributed process” on page 121.

DL/I database access
CICS/400 cannot ship requests that directly access DL/I databases. To access a
DL/I database owned by CICS/mainframe from CICS/400, use distributed
transaction processing or distributed program link (DPL).

Data conversion
CICS for OS/2 and CICS for Open Systems use ASCII1 data representation;
CICS/400 and CICS/mainframe systems use EBCDIC2. Conversion of user data is
performed as necessary in the resource-owning system. For example, for CICS
OS/2–�CICS/400 function shipping, CICS/400 converts the user data. For
CICS/400–�CICS OS/2 function shipping, CICS OS/2 converts the user data.

Transaction routing
Transaction routing enables a terminal in one CICS system to run a transaction in
another CICS system. The usual way to initiate transaction routing is by entering a
remote transaction ID at a local terminal. Other ways are:

1. American National Standard Code for Information Interchange.

2. Extended Binary-Coded Decimal Interchange Code.

4 CICS for iSeries Intercommunication V5

v Automatic transaction initiation, see CICS Family: Interproduct Communication,
SC34-6030-00.

v CRTE transaction, see the CICS for iSeries Administration and Operations Guide,
SC41-5455-00.

Because CICS inter-product communication uses a 3270 data stream, transactions
can be routed only from terminals on which a 3270 data stream can be displayed.
5250 terminals are 3270-compatible.

Automatic transaction initiation
Automatic transaction initiation (ATI) requests can be issued in either direction
between mainframe and nonmainframe CICS systems. When the request is
received by the terminal-owning system, processing proceeds in exactly the same
manner as if an operator entered the transaction code at the terminal, that is, as for
transaction routing. For a full discussion of ATI, see the CICS Family: Interproduct
Communication manual.

Asynchronous processing
Asynchronous processing is a form of intercommunication in which one
transaction initiates another, and the two transactions then run independently of
each other, that is, asynchronously.

CICS supports asynchronous processing in two ways:
1. Use of the interval control commands EXEC CICS START and EXEC CICS

RETRIEVE. This is a special case of function shipping, in which the shipped
request is an EXEC CICS START command.
You can use the EXEC CICS START command to schedule a transaction in a
remote system in much the same way as you would in a single CICS system.
This type of asynchronous processing is a form of CICS function shipping, and
as such, it is transparent to the application. The systems programmer
determines whether the attached transaction is local or remote.
A CICS transaction that is initiated by a remotely issued START request can use
the EXEC CICS RETRIEVE command to retrieve any data associated with the
request.

2. Use of distributed transaction processing (DTP).
This is a cross-system method with no single-system equivalent.
When you use DTP to attach a remote transaction, you also allocate a session
and start a conversation. This enables you to send data directly and, optionally,
to receive data from the remote transaction. Your transaction design determines
the format and volume of the data you exchange. For example, you can use
repeated EXEC CICS SEND commands to pass multirecord files. In terms of
command sequencing, error recovery, and synchronization, it is full DTP.
When you have exchanged data, you terminate the conversation and quit the
local transaction, leaving the remote transaction to run on asynchronously.

Distributed transaction processing (DTP)
Distributed transaction processing (DTP) enables transactions running in one CICS
system to initiate and communicate synchronously with transactions in another
CICS system 3 The initiating transaction can be in a CICS/400 system or in a
non-CICS/400 system. Synchronization level 2 is supported.

3. CICS/400 also supports DTP with non-CICS systems, and with partners that do not use the CICS API.

Chapter 1. Overview 5

DTP is an alternative to DPL as a way for CICS/400 to access data not maintained
by CICS but accessed by a remote CICS system.

Application programs can issue EXEC CICS commands for APPC conversations
and so control the allocation and use of an APPC session. To do this, a program
must be aware of the state of the conversation over the intersystem link at any
given time.

The EXEC CICS commands used to control an APPC conversation are:
ALLOCATE, CONNECT PROCESS, EXTRACT PROCESS, SEND, RECEIVE, CONVERSE,
ISSUE CONFIRMATION, ISSUE ERROR, ISSUE ABEND, FREE, WAIT CONVID,
EXTRACT ATTRIBUTES, ISSUE SIGNAL, and ISSUE PREPARE

For reference information on these commands, see the CICS for iSeries Application
Programming Guide. For guidance in their use, see Part 3, “Distributed transaction
programming” on page 97 of this book.

Security
CICS/400 is an integral part of the OS/400 operating system, and uses the security
provided by the OS/400 operating system. If a CICS/400 transaction attempts an
intercommunication operation for which it is not authorized, OS/400 returns an
error code. CICS/400 presents the error to the application as a CICS exception
condition—for example, NOTAUTH.

For an overview of CICS/400 security and guidance in its use, see Chapter 8,
“Security” on page 85.

Summary of CICS/400 intercommunication
Table 1 shows the communication functions that a CICS/400 product can support
on all possible CICS inter-product links.

If a function is shown as supported in Table 1, data conversion, where necessary, is
supported at each end of the link.

CICS/400 supports sync levels 0, 1, and 2. Sync levels are described in the CICS
Family: Interproduct Communication manual.

Using distributed transaction programming, CICS/400 can communicate on an
LU6.2 link with any product that supports APPC protocols. This includes
non-CICS and non-IBM* products.

Table 1. Sync levels supported for CICS/400 — CICS communication. In the table, 2,1
means that sync level 2 is supported, unless single sessions are being used.

CICS/400 CICS/400 CICS for OS/390 CICS OS/2
CICS for

Open
Systems

Function shipping
outbound

2,1 2,1 1 2,1

Function shipping
inbound

2,1 2,1 1 2,1

Transaction routing
outbound

1 1 1 1

6 CICS for iSeries Intercommunication V5

Table 1. Sync levels supported for CICS/400 — CICS communication (continued). In the
table, 2,1 means that sync level 2 is supported, unless single sessions are being used.

CICS/400 CICS/400 CICS for OS/390 CICS OS/2
CICS for

Open
Systems

Transaction routing
inbound

2,1 2,1 1 2,1

Distributed program link
outbound with
SYNCONRETURN

1 1 1 1

Distributed program link
outbound with no
SYNCONRETURN

2,1 2,1 1 2,1

Distributed program link
inbound with
SYNCONRETURN

1 1 (see note 1) 1 1

Distributed program link
inbound with no
SYNCONRETURN

2,1 2,1 1 2,1

Distributed transaction
processing initiated by
CICS/400

2,1,0 2,1,0 1,0 2,1,0

Distributed transaction
processing initiated by
partner

2,1,0 2,1,0 1,0 2,1,0

Asynchronous processing
inbound and outbound
(see note 2)

2,1 2,1 2,1 2,1

Notes:

1. CICS/ESA 3.3, CICS/ESA 4.1, and CICS/VSE 2.2 only

2. Sync level depends on the options used with the EXEC CICS command.

Chapter 1. Overview 7

8 CICS for iSeries Intercommunication V5

Part 2. Setup and Programming

Chapter 2. Configuring CICS/400 for
intercommunication 11
Setting up OS/400 communications objects 14

How the commands are described 15
OS/400 controller description (APPC),
CRTCTLAPPC 16
OS/400 mode description, CRTMODD 22
OS/400 device description (APPC),
CRTDEVAPPC 24

Creating an OS/400 subsystem 26
Adding subsystem entries 27
Adding routing entries 28
Adding communications entries 31
Adding prestart job entries 34
Adding configuration list entries 38

Working with the configuration. 39
Setting up the CICS resource definitions 39

Defining remote CICS systems, ADDCICSTCS . . 39
Example 41

CICS/400 system definition table, ADDCICSSIT 42
Working with the configuration. 42
Summary 43

How the subsystem is associated with CICS
resource definitions and with OS/400 43
The APPC connection 43
How resource definitions are connected 44

Intrasystem communication 46
Line definition 46
Controller definition 46
Device definition 46
Example of intrasystem communication
definitions 46

Step 1 46
Step 2 46
Step 3 47
Step 4 47

Chapter 3. CICS/400 server support for the CICS
client family 49
Overview 49

What the CICS client does 49
What the CICS/400 server does 49

Resource definition 50
Client system entry 50
Client terminal entry 52
Data conversion 53
Restrictions 54

Required routing entries 54
Routing entries in default subsystem 55

Automatic configuration of dynamic devices . . . 57
Controlling automatic configuration 57
Automatic-configuration parameters 57

XID exchange. 58
Model controller 58
System defaults 58

TCP/IP Connectivity for Client 58

Chapter 4. Distributed program link 61
Two ways to use DPL 61

Ignoring the location of resources 61
Explicitly specifying the remote system 61

Serial connections 61
Synchronization and data integrity 61

Determining how a program was started . . . 62
BDAM files, and IMS, DL/I, and SQL databases . . 62
Restrictions on programs invoked by DPL 62

Restricting a program to the DPL subset 62
Abends when using DPL 63
Performance optimization for DPL. 63
Why use DPL? 63
Resource definition 63

Program definition, ADDCICSPPT. 63
Example 64

Transaction definition, ADDCICSPCT. 64
Example 65

Chapter 5. Function shipping 67
Two ways to use function shipping 67

Ignoring the location of resources 67
Explicitly specifying the remote system 67

Serial connections 67
CICS file control data sets 67
Transient data 68
Local and remote names 68
Synchronization 68
Data security and integrity 68
Resource definition 68

File definition, ADDCICSFCT 68
Example 69

Transient data queue definition, ADDCICSDCT 69
Example 70

Temporary storage queue definition,
ADDCICSTST 70

Example 71

Chapter 6. Transaction routing 73
Serial connections 74
Resource definition 74

Transaction definitions, ADDCICSPCT 74
Example 74

Terminal definitions, ADDCICSTCT 74
Local definition of shippable terminal . . . 75
Example 75

Inbound transaction routing to the CEMT
transaction. 75

Transaction routing to a pseudoconversation . . 77

Chapter 7. Asynchronous processing 79
Two ways to initiate asynchronous processing . . . 79

Ignoring the location of the transaction 79
Explicitly specifying a remote system 79

Starting and canceling remote transactions 79

© Copyright IBM Corp. 2002 9

Passing information with the EXEC CICS START
command 80
Passing an applid with the EXEC CICS START
command 80
Improving performance of intersystem start
requests 80
Deferred sending of start requests with the
NOCHECK option 81
Local queuing of start requests for remote
transactions 81
Including start request delivery in a logical unit
of work. 82

The started transaction 82
Started transaction satisfying multiple start
requests 83
Terminal acquisition by a remotely initiated CICS
transaction. 83

Resource definition 83
Transaction definition, ADDCICSPCT. 83

Example 84

Chapter 8. Security 85
Planning for intercommunication security 85

Bind-time security 85
Link security 85

User security 85
Resource security 85

Implementing intercommunication security 86
Bind-time security 86

Bind password for intrasystem communication 86
Bind password for CICS/400 intersystem
communication 86

User security 86
Levels of user security 86

Resource security 87

Chapter 9. Data conversion 89
Which system does the conversion? 89

Function shipping and DPL 90
Serial connection 90
Distributed transaction processing 91
Avoiding data conversion. 91

Types of Conversion 91
Resource definition 91

Conversion Vector Table definition,
ADDCICSCVT 91

Required parameters 91
Optional parameters 92
Example 94

This part gives guidance on configuring CICS/400 for intercommunication, and on
the use of the CICS intercommunication functions, which are introduced in the
CICS Family: Interproduct Communication book. For each of these functions, except
distributed transaction processing, this part:
v Gives guidance for the application programmer and the end user
v Describes how to set up CICS/400 to support the function

Additional chapters describe how to set up intercommunication security and data
conversion when it is required.

DTP needs no setup beyond the configuration of CICS/400 for
intercommunication. The programming requirements are considerable and are
described in Part 3, “Distributed transaction programming” on page 97.

The main descriptions of resource definition commands are in the CICS for iSeries
Administration and Operations Guide. This part gives additional guidance on
parameters that are relevant to intercommunication.

10 CICS for iSeries Intercommunication V5

Chapter 2. Configuring CICS/400 for intercommunication

CICS/400 inter-product communication uses LU6.2 connections created and
controlled by the OS/400 intersystem communication function (ICF).

There are three main stages in the configuration of a CICS/400 system to
communicate with another system:
1. Setting up the OS/400 communications entries, described 14
2. Creating an OS/400 subsystem that defines the CICS/400 system to OS/400,

described 26
3. Setting up the CICS resource definitions, described 39

Figure 1 on page 12 shows these three steps. This chapter starts by describing the
OS/400 definitions, shown at the bottom of Figure 1 and works up through the
subsystem definitions shown in the middle of the figure, to the CICS definitions
shown at the top of the figure.

This chapter concludes with a description on 46 of the definitions needed to
configure a system for intrasystem communication, that is communication between
two subsystems on the same OS/400.

© Copyright IBM Corp. 2002 11

Figure 1. CICS/400 intercommunication configuration commands

12 CICS for iSeries Intercommunication V5

Notes on figure:

1. This figure shows, at the bottom, the commands used to set up OS/400
definitions, in the middle, the commands used to set up an OS/400 subsystem,
and at the top, the commands for setting up CICS resource definitions for
intercommunication.

2. The figure represents two CICS/400 systems linked by an APPC connection.
Values flagged with the same number must match. The numbers represent:

�1� LOCL - local CICS system identifier

�2� REMT - remote CICS system identifier

�3� LOCLCICS - local CICS application identifier (APPLID)

�4� REMTCICS - remote CICS application identifier (APPLID)

�5� REMTNET - remote system network identifier

�6� MODEGRP - mode used for intercommunication

�7� LOCLNET - local system network identifier

�8� LOCLCLS - local class

�9� LOCLJOBQ - local job queue

�10� REMTCLS - remote class

�11� REMTJOBQ - remote job queue

The SYSID value in the ADDCICSTCS command is used in each remote resource
definition to specify the location of the resource. This is shown in the definitions in
Chapter 4 through Chapter 7. As Figure 1 on page 12 indicates, the SYSID value in
ADDCICSTCS does not have to match any other value. It can be helpful to make it
match the remote subsystem name, making the entries SYSID=remt and
SYSID=locl respectively.

Parameters shown in examples of CL commands in this chapter are given the
prefix LOCL and REMT to indicate that they belong to the local and remote
systems respectively. (These prefixes are intended for usability, and there are no
system constraints on parameter values except that they should match where
specified in Figure 1 on page 12.)

The commands described in this chapter are summarized in Table 2.

Table 2. Commands described in this chapter

Command Purpose

CRTLINxxxx
CRTCTLxxxx
CRTMODD
CRTDEVxxxx

Commands for setting up OS/400 communication entries. xxxx is
the type of link, for example: SDLC - synchronous data link
control; TRN - token ring; APPC - advanced program-to-program
communication

CRTSBSD
CRTCLS
CRTJOBQ
ADDJOBQE

Commands for creating OS/400 subsystem entries

ADDRTGE
ADDCMNE
ADDPJE
ADDCFGLE

Commands for adding entries to OS/400 subsystems

Chapter 2. Configuring CICS/400 for intercommunication 13

Table 2. Commands described in this chapter (continued)

Command Purpose

ADDCICSTCS
ADDCICSSIT

Commands for setting up CICS resource definitions

Unless otherwise stated, all the commands mentioned in this chapter are fully
described in the Work Management book. This chapter shows how to link the
CICS/400 definitions to the OS/400 definitions. For a full description of the
OS/400 definitions, see the Communications Configuration book.

Setting up OS/400 communications objects
This section describes the commands that create OS/400 resource definitions. Like
all OS/400 CL commands, these commands can be issued from an OS/400
command line4, an HLL application, or a CL program. CICS/400 requires the same
basic OS/400 configuration objects that are used by most OS/400 communication
configurations. Because this book is for CICS/400 users only, the explanations
below relate solely to CICS systems and ignore the existence of non-CICS systems.

The required OS/400 objects are:

Line description
A line description defines a physical communication link between the local
CICS/400 system and one or more remote CICS systems. The description
defines the physical interface and communication protocol used by the
line.

Lines are usually defined as part of the iSeries hardware. There is a
command, CRTLINxxxx, which you could use if necessary.

For each CICS system with which the local CICS/400 system is to
communicate across the line, a separate controller description is required.

Controller description
A controller description is required for each controller on the system, that
is, one for each remote iSeries or VTAM domain that attaches to the system
via communication links. The controller description describes the adjacent
system.

A controller corresponds roughly to an SNA physical unit.

The command used to create a controller definition is described on 16.

Mode description
A mode is a set of attributes to be associated with a connection. These
attributes relate to the number of sessions and conversations, types of
session, pacing values, and the number of request units. Mode descriptions
are referred to in device descriptions, and also in CICS/400 remote system
definitions.

The command used to create a mode definition is described 22.

Device description
A device description is required for each remote CICS system that is to
communicate with the local CICS/400 system. The description includes

4. CICS/400 users can switch to the OS/400 main menu from the CEDA transaction.

14 CICS for iSeries Intercommunication V5

addressing information and detailed data about communication between
the local CICS system and the specific remote system.

Because several CICS systems can be located in a single remote OS/400 or
VTAM domain, several device descriptions can be associated with a single
controller description.

A device corresponds roughly to an SNA logical unit. A device description
is roughly the OS/400 equivalent of the CICS/400 TCS entry.

The command used to create a device definition is described 24.

How the commands are described
The description of each command shows the OS/400 screen for online command
entry, and gives field descriptions related to that screen. Each field description is
headed by its screen name with, in parentheses, the name used to refer to the field
in a program.

CL command defaults
The defaults given in the CL command descriptions are those that are
supplied with the OS/400 system. You should check that your installation has
not made any changes to these command default parameters.

In some cases, fields are displayed only if a specific value is entered in an
associated field. For example, in the CRTCTLAPPC screen, four fields are
displayed until a value is entered in the Link type field. For CICS/400, you might
enter a link type of *SDLC–the screen then displays all the additional fields
required for an SDLC link.

Before a completed definition is available for use, it must be installed into the
OS/400 runtime resource table definitions. You can install a definition with the
INSCICSGRP command from the OS/400 main menu screen shown in Figure 2 on
page 16.

Chapter 2. Configuring CICS/400 for intercommunication 15

OS/400 controller description (APPC), CRTCTLAPPC
Figure 3 shows the OS/400 screens for setting up controller descriptions using the
CRTCTLAPPC command.

MAIN OS/400 Main Menu
System: WINAS5

Select one of the following:

1. User tasks
2. Office tasks
3. General system tasks
4. Files, libraries, and folders
5. Programming
6. Communication
7. Define or change the system
8. Problem handling
9. Display a menu

10. Information Assistant options
11. PC Support tasks

90. Sign off

Selection or command
===> inscicsgrp

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=User support
F23=Set initial menu

Figure 2. The OS/400 main menu

CRTCTLAPPC

16 CICS for iSeries Intercommunication V5

The parameters on the CRTCLTAPPC command screen are as follows:

Controller description (CTLD)
The name of the controller description.

Link type (LINKTYPE)
The type of line to which this controller is attached. For example, you might
enter *SDLC, representing a synchronous data link control (SDLC) line.

Online at IPL (ONLINE)
Specifies whether this object is automatically varied on at initial program load
(IPL). The possible values are:

*YES
The controller is automatically varied on at IPL.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description Name
Link type > *SDLC *IDLC, *LAN, *LOCAL, *SDLC...
Online at IPL *YES *YES, *NO
Switched connection *NO *NO, *YES
Switched network backup *NO *NO, *YES
APPN-capable *YES *YES, *NO
Attached nonswitched line . . . Name
Maximum frame size 265-16393, 256, 265, 512...
Remote network identifier . . . *NETATR Name, *NETATR, *NONE, *ANY
Remote control point Name, *ANY
Exchange identifier 00000000-FFFFFFFF
Data link role *NEG *NEG, *PRI, *SEC
Station address 00-FE
APPN CP session support *YES *YES, *NO
APPN node type *ENDNODE *ENDNODE, *LENNODE...
APPN transmission group number 1 1-20, *CALC

More...
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter CTLD required.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Autodelete device 1440 1-10000, *NO
User-defined 1 *LIND 0-255, *LIND
User-defined 2 *LIND 0-255, *LIND
User-defined 3 *LIND 0-255, *LIND
Text ’description’ *BLANK

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Figure 3. The CRTCTLAPPC command screens

CRTCTLAPPC

Chapter 2. Configuring CICS/400 for intercommunication 17

*NO
The controller is not automatically varied on at IPL.

Switched connection (SWITCHED)
Specifies whether this controller is attached to a switched line. The possible
values are:

*NO
This controller is attached to a nonswitched line. Specify this value for
controllers attaching to an X.25 permanent virtual circuit (PVC).

*YES
This controller is attached to a switched line. Specify this value for
controllers attached to an X.25 switched virtual circuit (SVC). Also specify
this value for controllers attached to a local area network.

Switched network backup (SNBU)
Specifies whether the remote system modem has the switched network backup
(SNBU) feature. The backup feature is used to bypass a broken nonswitched
(leased line) connection by establishing a switched connection. To activate
SNBU, you must change the controller description of the modem from
nonswitched to switched by specifying *YES for the Activate switched network
backup (ACTSNBU) parameter.

Note: If the modem model you are using is an IBM 386x, 586x, or 786x, you
should not change the controller description. Instead, manually switch
the modem to the nonswitched mode, and manually dial the connection.

The possible values are:

*NO
The remote system modem does not have the SNBU feature.

*YES
The remote system modem has the SNBU feature.

APPN-capable (APPN)
Specifies whether this controller is for Advanced Peer-to-Peer Networking®

(APPN®). The possible values are:

*YES
This controller is for APPN.

*NO
This controller is not for APPN.

Attached nonswitched line (LINE)
The name of the nonswitched line to which this controller is attached. A
description of the line must already exist.

Note: Specify this parameter for controllers attaching to an X.25 permanent
virtual circuit (PVC).

Maximum frame size (MAXFRAME)
The maximum frame size the controller can send or receive. For an SDLC link,
specify 265, 521, 1033, or 2057.

Note: These values are valid only if TYPE(*BLANK) is specified when the
controller is created.

CRTCTLAPPC

18 CICS for iSeries Intercommunication V5

Remote network identifier (RMTNETID)
Specifies how to determine the name of the remote network in which the
adjacent control point resides. The possible values are:

*NETATR
The LCLNETID value specified in the system network attributes is used.

*NONE
No remote network identifier (ID) is used.

*ANY
The system determines which remote network identifier is used.

remote-network-identifier
The remote network identifier.

Remote control point (RMTCPNAME)
Specifies the name of the remote control point or indicates that the system is to
determine the name. The possible values are:

*ANY
The system determines the name of the remote control point used.

remote-control-point-name
The remote control point name.

Exchange identifier (EXCHID)
The remote exchange identifier of this controller. The controller sends
(exchanges) its identifier to another location when a connection is established.
The 8-digit hexadecimal identifier contains 3 digits for the block number and 5
digits for the identifier of the specific controller.

The block number must have the following value depending on the remote
system or controller: 5251 = 020; 5294 = 045; 5394 = 05F; 3694 = 02F; 4701 or
4702 = 057; 3651, 3684 or 4684 = 005; 4680 = 04D; 3601 (configured as a 4701) =
016; 3174 or 3274 = between 001 and 0FE; S/36 = 03E; S/38 = 022;
Displaywriter = 03A; OS/400 = 056. In addition, the last 5 digits of the
exchange identifier must begin with 000 for 5251, 5394, and 5294 controllers.

Data link role (ROLE)
Specifies the data link role that the remote controller has on this connection.
The primary station is the controlling station and the secondary station is the
responding station. The primary station controls the data link by sending
commands to the secondary station, and the secondary station responds to the
commands.

The possible values are:

*NEG
The local and remote systems negotiate which is the primary station on
this connection.

*PRI
The remote system is the primary station.

*SEC
The remote system is a secondary station.

Station address (STNADR)
The station address used when communicating with the controller. Valid
values for an APPC SDLC controller are in the hexadecimal range 01 through
FE.

CRTCTLAPPC

Chapter 2. Configuring CICS/400 for intercommunication 19

APPN CP session support (CPSSN)
Specifies whether this controller supports sessions between control points. The
possible values are:

*YES
This controller supports sessions between control points.

*NO
This controller does not support sessions between control points.

APPN node type (NODETYPE)
Specifies the type of APPN node that this controller represents. The possible
values are:

*ENDNODE
This node is an end node in an APPN network.

*NETNODE
This node is a network node in an APPN network.

*LENNODE
This node is a low-entry networking node in an APPN network.

*CALC
The system determines the type of node that this controller represents.

APPN transmission group number (TMSGRPNBR)
Specifies the transmission group number for this controller, or indicates that
the system should specify this number. The possible values are:

*CALC
The system specifies the transmission group number.

transmission-group-number
The transmission-group-number. The value must be a value in the range 1
through 20. The default transmission group number is 1.

Autodelete device (AUTODLTDEV)
Specifies (1) whether the system should vary off and delete an automatically
created device for this controller when its last session is unbound, and (2), if it
should vary off and delete such a device, how long to wait before doing so.
The possible values are:

1440
The system automatically varies off and deletes an automatically-
configured idle device description after 1440 minutes (24 hours).

*NO
The system does not automatically vary off and delete an
automatically-configured idle device description.

wait-time
The number of minutes to wait before deleting an automatically-configured
idle device description. Valid values are in the range 1 through 10 000.

User-defined x (USRDFNx)
Describes unique characteristics of the line that you want to control. These
parameters are valid only if advanced peer-to-peer networking (APPN) is used
on the system. The possible values are:

*LIND
The user-defined value in the line description is used.

CRTCTLAPPC

20 CICS for iSeries Intercommunication V5

user-defined-x
A value ranging from 0 through 255.

Text ‘description’ (TEXT)
Provided for user-documentation purposes. The possible values are:

*BLANK
No text is specified.

description
Text that briefly describes the object. Enter no more than 50 characters of
text, enclosed in apostrophes.

CRTCTLAPPC

Chapter 2. Configuring CICS/400 for intercommunication 21

OS/400 mode description, CRTMODD
Figure 4 shows the screen for setting up OS/400 mode descriptions.

The parameters on the CRTMODD command screen are as follows:

Mode description (MODD)
The name of this mode description.

Maximum sessions (MAXSSN)
The maximum number of active sessions that are established for this mode.
This number must be greater than or equal to the sum of the locally controlled
sessions (LCLCTLSSN) value in this mode description and the number of
locally controlled sessions specified at the remote location.

Valid values are in the range 1 through 512.

Maximum conversations (MAXCNV)
The maximum number of conversations that can be established at the same
time with the remote system. The maximum number of conversations is the
sum of synchronous and asynchronous conversations; this value must be
greater than or equal to the value specified by the maximum sessions
(MAXSSN) parameter.

In this description, a synchronous conversation is a conversation in which the
source and the target programs are communicating with each other (in CICS
terminology, this is called distributed transaction processing). An asynchronous
conversation is a conversation in which the source program has detached itself
from the conversation, but data is still being read by the target program (in
CICS terminology, this is called asynchronous processing).

Valid values are in the range 1 through 512.

Locally controlled sessions (LCLCTLSSN)
The minimum number of locally controlled sessions that must be active to
establish this mode. This value must be less than or equal to the value
specified in the maximum sessions (MAXSSN) parameter.

Create Mode Description (CRTMODD)

Type choices, press Enter.

Mode description Name
Maximum sessions 8 1-512
Maximum conversations 8 1-512
Locally controlled sessions . . 4 0-512
Pre-established sessions 0 0-512
Inbound pacing value 7 0-63
Outbound pacing value 7 0-63
Maximum length of request unit *CALC 241-16384, *CALC
Text ’description’ *BLANK

Class-of-Service #CONNECT Name, #CONNECT, #BATCH

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Figure 4. The CRTMODD command screen

CRTMODD

22 CICS for iSeries Intercommunication V5

Valid values are in the range 0 through 512.

Pre-established sessions (PREESTSSN)
The maximum number of locally controlled concurrent sessions that are
established when the mode is started. Additional sessions are established as
required, up to the maximum number of locally controlled sessions specified in
the maximum sessions (MAXSSN) parameter. This value must be less than or
equal to the value specified in the locally controlled sessions (LCLCTLSSN)
parameter.

Valid values are in the range 0 through 512.

Inbound pacing value (INPACING)
The SNA pacing value used to schedule the incoming request/response units.

Valid values are in the range 0 through 63.

Outbound pacing value (OUTPACING)
The SNA pacing value used for outgoing request/response units.

Valid values are in the range 0 through 63.

Maximum length of request unit (MAXLENRU)
The maximum request unit (RU) length allowed. If you specify *CALC, the
system calculates the value to use.

Valid values are *CALC or a number in the range 241 through 16384. *CALC is
the recommended value. Common values for different types of line are:

SDLC 256, 512, 1024, 2048

Token-Ring Network
256, 512, 1024, 1985

X.25 (QLLC)
247, 503, 1015

X.25 (ELLC)
241, 497, 1009

For further information, see the APPC Programming book.

Text ‘description’ (TEXT)
Provided for user-documentation purposes. The possible values are:

*BLANK
No text is specified.

description
Text that briefly describes the object. Enter no more than 50 characters of
text, enclosed in single quotes.

Class-of-service (COS)
The path control network characteristics used by APPN. The possible values
are:

#CONNECT
A class-of service definition provided by IBM.

#BATCH
A class-of service definition provided by IBM.

name
The name of a class-of service definition that you have created using the
CRTCOSD command.

CRTMODD

Chapter 2. Configuring CICS/400 for intercommunication 23

OS/400 device description (APPC), CRTDEVAPPC
If you are setting up communications with another system you need to specify
only 1 device. For intrasystem communication you need to specify 2 devices; one
for inbound communication, and one for outbound communication. These 2
devices must, of course, be on the same machine.

Figure 5 shows the screen for setting up device descriptions.

The parameters on the CRTDEVAPPC command screen are:

Device description (DEVD)
The name of the device description.

Remote location (RMTLOCNAME)
The name of the remote location with which your program communicates.

Online at IPL (ONLINE)
Specifies whether this object is automatically varied on at initial program load
(IPL). The possible values are:

*YES
This device is varied on automatically at IPL.

*NO
This device is not varied on automatically at IPL.

Local location (LCLLOCNAME)
Specifies the unique location name that identifies the local system to remote
devices. The name cannot be the same as that specified for the Remote location
name (RMTLOCNAME) parameter. If the values specified on the Remote
network ID and Local network ID parameters are the same, the combination of
the names specified for the Local location name (LCLLOCNAME) and the
Remote location name (RMTLOCNAME) parameters must be unique for each
device description attached to the same controller.

The possible values are:

Create Device Desc (APPC) (CRTDEVAPPC)

Type choices, press Enter.

Device description Name
Remote location Name
Online at IPL *YES *YES, *NO
Local location *NETATR Name, *NETATR
Remote network identifier . . . *NETATR Name, *NETATR, *NONE
Attached controller Name
Mode *NETATR Name, *NETATR

+ for more values
Message queue QSYSOPR Name, QSYSOPR

Library *LIBL Name, *LIBL, *CURLIB
APPN-capable *YES *YES, *NO
Single session:

Single session capable *NO *NO, *YES
Number of conversations . . . 1-512

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

F13=How to use this display F24=More keys
+

Figure 5. The CRTDEVAPPC command screen

CRTDEVAPPC

24 CICS for iSeries Intercommunication V5

*NETATR
The remote network identifier specified in the network attributes is used.
Use the Display Network Attributes (DSPNETA) command to determine
the default local location name.

local-location-name
The name (8 characters maximum) by which the local system is known to
the remote device.

Remote network identifier (RMTNETID)
The name of the remote network. The possible values are:

*NETATR
The remote network identifier specified in the network attributes is used.

*NONE
The remote network name is X’40’.

remote-network-ID
The 8-character remote network name.

Attached controller (CTL)
The name of the controller to which this device is attached.

Note: To use this device for communicating with a remote location that resides
on the same system as the local location, specify a controller description
that was created with LINKTYPE (*LOCAL).

Mode (MODE)
The names of the modes that define the sessions on this device.

You can enter up to 14 mode names. If you are on an entry display and you
need additional entry fields to enter these multiple values, type a plus sign (+)
in the entry field on the line labeled “+ for more” and press Enter.

mode-name
Specify the name of mode descriptions used by this device. The mode
name cannot be CPSVCMG or SNASVCMG because these mode names are
reserved for system use.

CRTDEVAPPC

Chapter 2. Configuring CICS/400 for intercommunication 25

Message queue (MSGQ)
The qualified name of the message queue to which operational messages for
this device are sent.

Library
Specifies how to locate the named message queue. The possible values are:

*LIBL
Search the library list to locate the message queue.

*CURLIB
Search the current job library list to locate the message queue. If no
current library entry exists in the library list, the QGPL is used.

library-name
The library in which the message queue is located.

QSYSOPR
Messages are sent to the QSYSOPR message queue.

APPN-capable (APPN)
Specifies whether this device is for Advanced Peer-to-Peer Networking
(APPN). The possible values are:

*YES
This device is for APPN.

*NO
This device is not for APPN.

Single session (SNGSSN)
Specifies whether single or multiple sessions are used with remote locations. If
single sessions are used, the number of conversations must be specified.

Single session capable
The possible values are:

*NO
Multiple sessions are used.

*YES
Single sessions are used.

Number of conversations
A number in the range 1 through 512. The default number of conversations
is 10.

When you send a bind, the device is dynamically allocated for you with a
generated name. You must set up a communications entry on your system that
matches the device name.

Creating an OS/400 subsystem
Having set up your OS/400 communications entries, you need to create an OS/400
subsystem to enable inbound intersystem communication (ISC) requests to be
routed to a local CICS/400 system.

The name of this subsystem must match the 4-character CICS system identifier
of the CICS/400 system, that is, the name of the CICS control region.

The command used to create a subsystem is CRTSBSD. For example:

CRTDEVAPPC

26 CICS for iSeries Intercommunication V5

CRTSBSD SBSD(CICSWORK/LOCL) POOL((1 *BASE))
TEXT(’ISC requests for CICS Control Region LOCL’)

You could specify the subsystem name to be “*” so that it is generic.

To enable the subsystem to process OS/400 batch job requests, an OS/400 class
description, job queue description, and job queue entry are required. The
commands used to set up these descriptions are CRTCLS, CRTJOBQ, and
ADDJOBQE. For example:
CRTCLS CLS(CICSWORK/LOCLCLS) TEXT(’Class for CICS Control Region LOCL’)

CRTJOBQ JOBQ(CICSWORK/LOCLJOBQ)
TEXT(’Job queue for CICS Control Region LOCL’)

ADDJOBQE SBSD(CICSWORK/LOCL) JOBQ(CICSWORK/LOCLJOBQ) MAXACT(5)

The job queue entry defines the queue for jobs allocated to run in this subsystem.
The default value for the MAXACT parameter is 1. Therefore, you must include
this parameter if you want more than one job to run in this job queue.

When you start the subsystem, take care to coordinate its commencement with that
of the OS/400 supplied subsystem QCMN, otherwise QCMN will take in all APPC
requests and your CICS/400 ISC requests will not reach the CICS subsystem and
will fail. There are two ways around this problem; either you can start the
CICS/400 subsystem before the QCMN subsystem on system startup, or after
bringing up the required CICS/400 subsystem, you can vary off and on the *APPC
devices for the CICS/400 connections. Provided that the correct communication
entries have been added to the CICS/400 subsystem, this will cause OS/400 to
allocate the *APPC devices to the CICS/400 subsystem, rather than QCMN.

Adding subsystem entries
To complement the subsystem definition, additions must be made to the following
OS/400 components:
v Routing entries, command ADDRTGE
v Communications entries, command ADDCMNE
v Prestart Job entries, command ADDPJE
v Configuration list entries, command ADDCFGLE

Full details of these components are in the Work Management book. Note that all
the examples in this section include the parameter SBSD(CICSWORK/LOCL) to
link the entry with the correct subsystem.

CRTSBSD

Chapter 2. Configuring CICS/400 for intercommunication 27

Adding routing entries
To enable inbound ISC requests to be processed by CICS/400, a routing entry is
required for the CICS/400 ISC program, AEGISICC. For example:
ADDRTGE SBSD(CICSWORK/LOCL) SEQNBR(100)

CMPVAL(’PGMEVOKE’ 29) PGM(QCICS/AEGISICC)
CLS(CICSWORK/LOCLCLS)

In the above example, the CMPVAL and PGM parameters must be coded exactly
as shown. If the CICS control region also uses this subsystem, a second routing
entry is necessary.
ADDRTGE SBSD(CICSWORK/LOCL) SEQNBR(9999)

CMPVAL(*ANY) PGM(QSYS/QCMD)
CLS(CICSWORK/LOCLCLS)

The ADDRTGE command screen is shown in Figure 6.

Add Routing Entry (ADDRTGE)

Type choices, press Enter.

Subsystem description Name
Library *LIBL Name, *LIBL, *CURLIB

Routing entry sequence number . 1-9999
Comparison data:

Compare value

Starting position 1 1-80
Program to call Name, *RTGDTA

Library *LIBL Name, *LIBL, *CURLIB
Class *SBSD Name, *SBSD

Library Name, *LIBL, *CURLIB
Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required. +

Figure 6. The ADDRTGE command screen

ADDRTGE

28 CICS for iSeries Intercommunication V5

The parameters on the ADDRTGE command screen are as follows:

Subsystem description (SBSD)
Specifies the name and library of the subsystem description to which the
routing entry is added.

The possible library values are:

*LIBL
The library list is used to locate the object.

*CURLIB
The current library for the job is used to locate the object. If no library is
specified as the current library for the job, QGPL is used.

library-name
Specify the name of the library where the object is located.

Routing entry sequence number (SEQNBR)
The sequence number of the routing entry that is added or changed. Routing
data is matched against the routing entry compare values in ascending
sequence number order. Searching ends when a match occurs or the last
routing entry is reached. Therefore, if more than one match possibility exists,
only the first match is processed.

Enter a unique sequence number in the range 1 through 9999 that identifies the
routing entry.

Comparison data (CMPVAL)
Specifies a value that is compared with the routing data to determine whether
this routing entry is used for starting a routing step for the job. If the routing
data matches the routing entry compare value, that routing entry is used. Also,
a starting position in the starting data character string can be used to specify
the starting position in the routing data for comparison against the routing
entry compare value.

The possible values are:

*ANY
Any routing data is considered a match. If you specify *ANY, the routing
entry must have the highest sequence number value of any routing entry
in the subsystem description.

compare-value
Specify a value (any character string not exceeding 80 characters) that is
compared with routing data for a match. When a match occurs, this
routing entry is used to start a routing step.

A starting position in the routing data character string can be specified for
the comparison; if no position is specified, position 1 is assumed. Specify a
value in the range 1 through 80. Between the starting position and the end
of the routing data, there must be at least as many characters as there are
in the comparison value.

Program to call (PGM)
Specifies the name and library of the program called as the (first) program run
in the routing step. No parameters can be passed to the specified program. The
program name can be either explicitly specified in the routing entry, or
extracted from the routing data. If a program name is specified in a routing
entry, selection of that routing entry results in the routing entry program being
called (regardless of the program name passed in an EVOKE function). If the
program specified in the EVOKE function is called, *RTGDTA must be

ADDRTGE

Chapter 2. Configuring CICS/400 for intercommunication 29

specified. If the program does not exist when the routing entry is added or
changed, a library qualifier must be specified because the qualified program
name is kept in the subsystem description.

The possible values are:

*RTGDTA
The program name is taken from the routing data that was supplied and
matched against this entry. A qualified program name is taken from the
routing data in the following manner; the program name is taken from
positions 37 through 46, and the library name is taken from positions 47
through 56. Care should be used to ensure that routing entries that specify
*RTGDTA are selected only for EVOKE functions on jobs that have
specified the program name in the correct position in the routing data.

program-name
Specify the name and library of the program that is run from this routing
entry.

The possible library values are:

*LIBL
The library list is used to locate the named program.

*CURLIB
The current library for the job is used to locate the named program. If
no library is specified as the current library for the job, QGPL is used.

library-name
Specify the library where the named program is located.

Class (CLS)
Specifies the name and library of the class used for the routing steps started
through this routing entry. The class defines the attributes of the routing step’s
running environment. If the class does not exist when the routing entry is
added, a library qualifier must be specified because the qualified class name is
kept in the subsystem description. The possible values are:

*SBSD
The class having the same qualified name as the subsystem description,
specified on the Subsystem description (SBSD) parameter is used for
routing steps started through this entry.

class-name
Specify the name and library of the class that is used for routing steps
started through this routing entry. The possible library values are:

*LIBL
The library list is used to locate the class.

*CURLIB
The current library for the job is used to locate the class. If no library is
specified as the current library for the job, QGPL is used.

library-name
Specify the library in which the class is located.

Maximum active routing steps (MAXACT)
Specifies the maximum number of routing steps (jobs) that can be active at the
same time through this routing entry. In a job, only one routing step is active
at a time. When a subsystem is active and the maximum number of routing
steps is reached, any subsequent attempt to start a routing step through this

ADDRTGE

30 CICS for iSeries Intercommunication V5

routing entry fails. The job that attempted to start the routing step is ended,
and a message is sent by the subsystem to the job log.

The possible values are:

*NOMAX
There is no maximum number of routing steps that can be active at the
same time and processed through this routing entry. This value is normally
used when there is no reason to control the number of routing steps.

maximum-active-jobs
Specify the maximum number of routing steps that can be active at the
same time through this routing entry. If a routing step being started would
exceed this number, the job is implicitly ended.

Storage pool identifier (POOLID)
Specifies the pool identifier of the storage pool in which the program runs. The
pool identifier specified here relates to the storage pools in the subsystem
description. The possible values are:

1 Storage pool 1 of this subsystem is the pool in which the program runs.

pool-identifier
Specify the identifier of the storage pool defined for this subsystem in
which the program runs. Valid values are in the range 1 through 10.

Adding communications entries
A communications entry is needed for each remote location or device with which
this CICS system communicates. This example enables subsystem LOCL to
communicate with remote location REMTLOC. The RMTLOCNAME parameter
must match the NETWORK parameter of the ADDCICSTCS command (see 40).
ADDCMNE SBSD(CICSWORK/LOCL) RMTLOCNAME(REMTLOC) DFTUSR(USERID)

You may wish to add a DFTUSR parameter to the ADDCMNE command. This
parameter defines the user profile under which to run the program START request.
See “User security” on page 85. Note that the DFTUSR parameter defaults to
*NONE. The supplied transaction CRTE does not send a user ID and will not work
without a default user in the communications entry. For details of CRTE, see the
CICS for iSeries Administration and Operations Guide.

The ADDCMNE command screen is shown in Figure 7 on page 32.

ADDRTGE

Chapter 2. Configuring CICS/400 for intercommunication 31

The parameters on the ADDCMNE command screen are as follows:

Subsystem description (SBSD)
Specifies the name and library of the subsystem description to which the
communications entry is being added or in which it is being changed.

The possible library values are:

*LIBL
The library list is used to locate the object.

*CURLIB
The current library for the job is used to locate the object. If no library is
specified as the current library for the job, QGPL is used.

library-name
The name of the library where the object is located.

Device (DEV)
Specifies the name or type of the device used with this communications entry.

Note: You must specify a value on either this option or the Remote location
(RMTLOCNAME) option, but not both.

The possible values are:

device-name
The name of the device description (CRTDEVAPPC) used with this
communications entry.

generic*-device-name
The generic name of the device description used with this communications
entry.

*ALL
All communications device types or names are used with this
communications entry.

Add Communications Entry (ADDCMNE)

Type choices, press Enter.

Subsystem description Name
Library *LIBL Name, *LIBL, *CURLIB

Device Name, generic*, *ALL...
Remote location Name
Job description *USRPRF Name, *USRPRF, *SBSD
Library Name, *LIBL, *CURLIB

Default user profile *NONE Name, *NONE, *SYS
Mode *ANY Name, *ANY
Maximum active jobs *NOMAX 0-1000, *NOMAX

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required.

Figure 7. The ADDCMNE command screen

ADDCMNE

32 CICS for iSeries Intercommunication V5

*APPC
All advanced program-to-program communications devices can be used
with this communications entry. The devices created with the Create
Device Description (APPC) (CRTDEVAPPC) command can be used.

*INTRA
All INTRA communications devices can be used with this communications
entry. The devices created with the Create Device (INTRA) (CRTDEVINTR)
command can be used. This value is valid only when *ANY is specified on
the Modeprompt (MODE) parameter.

*ASYNC, *BSCEL, *FINANCE, *RETAIL, *SNUF
These device types are not supported by CICS/400.

Remote location (RMTLOCNAME)
The name of the remote location used with this communications entry. The
remote location name specified in the associated Create Device Description
(CRTDEVAPPC) command can be used here. No validity checking is done on
the remote location name.

Note: You must specify a value for either this option or the Device (DEV)
option, but not for both.

Job description (JOBD)
Specifies the name and library of the job description used for jobs that are
started as a result of receiving a program START request, and processed
through this communications entry. If the job description does not exist when
the entry is added or changed, a library qualifier must be specified because the
qualified job description name is kept in the subsystem description.

The possible values are:

*USRPRF
The job description name that is specified in the user profile of the user
that made the program START request is used for jobs that are processed
through this communications entry.

*SBSD
The job description having the same name as the subsystem description,
specified on the subsystem description (SBSD) parameter, is used for jobs
processed through this communications entry.

job-description-name
The name of the job description that is used for the jobs processed through
this communications entry.

The possible library values are:

*LIBL
The library list is used to locate the job description.

*CURLIB
The current library for the job is used to locate the job description. If
no library is specified as the current library for the job, QGPL is used.

library-name
The library where the job description is located.

Default user profile (DFTUSR)
Specifies the default user profile used for a program START request that

ADDCMNE

Chapter 2. Configuring CICS/400 for intercommunication 33

contains no security information. This user profile is not used for program
START requests that contain a password or that specify a user profile (whether
valid or invalid).

The possible values are:

*NONE
No user profile is specified as the default.

*SYS
All user program START requests will be treated the same as *NONE. For
program START requests sent by system functions, the request will run
under a predetermined user profile if a user profile is not specified on the
program START request.

user-profile-name
Specify the name of the user profile that is used for all program START
requests that enter the system through this communications entry and
contain no security information.

Note: The names QSECOFR, QSPL, QDOC, QDBSHR, QRJE, and QSYS are
not valid entries for this option.

Mode (MODE)
Specifies the mode name of the communications device or remote location
name whose communications entry is being changed. The possible values are:

*ANY
Any available modes defined to the communications device or remote
location are allocated to the subsystem. If the communications device does
not have defined modes associated with it, the communications device
itself is allocated to the subsystem.

mode-name
The mode name of the communications device or remote location name
that is being changed.

Maximum active jobs (MAXACT)
Specifies the maximum number of jobs (received program START requests)
that can be active at the same time through this communications entry. The
possible values are:

*NOMAX
There is no maximum number of jobs that can be active at the same time
through this communications entry.

maximum-active-jobs
The maximum number of jobs that can be active at the same time through
this communications entry.

Adding prestart job entries
Prestart job entries can be used to accelerate the handling of inbound ISC requests.
A number of inbound ISC jobs can be initiated when the CICS control region is
started and so are ready to run without any delay. To make this happen, use the
ADDPJE command to add a number of prestart jobs to the subsystem. For
example:
ADDPJE SBSD(CICSWORK/LOCL) PGM(QCICS/AEGISICC)

STRJOBS(*NO) MAXJOBS(5) CLS(CICSWORK/LOCLCLS) WAIT(*YES)

ADDCMNE

34 CICS for iSeries Intercommunication V5

Notes:

1. The job class (CLS) parameter defaults to *SBSD. If you use this default, but do
not have a class with that name, the prestart jobs may fail. You should specify
the same class as you would use for interactive jobs, that is, the class defined
with the CRTCLS command when you created the subsystem.

2. The STRJOBS(*NO) parameter must be specified because the prestarted jobs are
started by the CICS control region during initialization.

3. WAIT(*YES) must always be specified otherwise your requests may be lost
from the system before CICS is ready to start them.

4. The MAXJOBS parameter of the ADDPJE command should be equal to the total
number of receive sessions allocated for the control region in the TCS entries
(see “Defining remote CICS systems, ADDCICSTCS” on page 39).

The ADDPJE command screen is shown in Figure 8.

The parameters on the ADDPJE command screen are as follows:

Subsystem description (SBSD)
Specifies the name and library of the subsystem description to which the
prestart job entry is being added. If no library qualifier is given, *LIBL is used
to find the subsystem description.

The possible library values are:

*LIBL
The library list is used to locate the subsystem description.

*CURLIB
The current library for the job is used to locate the subsystem description.
If no library is specified as the current library for the job, QGPL is used.

library-name
The library where the subsystem description is located.

Add Prestart Job Entry (ADDPJE)

Type choices, press Enter.

Subsystem description Name
Library *LIBL Name, *LIBL, *CURLIB

Program Name
Library *LIBL Name, *LIBL, *CURLIB

User profile QUSER Name
Start jobs *YES *YES, *NO
Initial number of jobs 3 1-1000
Threshold 2 1-1000
Additional number of jobs . . . 2 0-999
Maximum number of jobs *NOMAX 1-1000, *NOMAX

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required. +

Figure 8. The ADDPJE command screen

ADDPJE

Chapter 2. Configuring CICS/400 for intercommunication 35

Program (PGM)
Specifies the name and library of the program run by the prestart job. This
program name is used to match an incoming program start request with an
available prestart job. If the program does not exist when the entry is added, a
library qualifier must be specified because the qualified name is kept in the
subsystem description.

Note: Two entries with the same program name can exist in a single
subsystem description, but they must have different library names.

The possible library values are:

*LIBL
The library list is used to locate the program.

*CURLIB
The current library for the job is used to locate the program. If no library is
specified as the current library for the job, QGPL is used.

library-name
The library in which the program is located.

User profile (USER)
Specifies the user profile under which the prestart job runs.

Note: If a user profile is sent on a program START request, OS/400 checks the
password, user profile, and its authority to access the communications
device, library, and program. However, none of the attributes of the
program START request user profile are given to the prestart job. If a
user profile is not sent on a procedure START request, the user profile
from the communications entry is used with the same rules applied. The
Change Prestart Job (CHGPJ) command can be used to adopt the
attributes of the user profile or job description associated with the
program START request.

The possible values are:

QUSER
The supplied QUSER user profile is used.

user-profile-name
The name of the user profile used for the prestart job.

Start jobs (STRJOBS)
Specifies whether the prestart jobs are started at the time the subsystem is
started.

Note: Changing this value when the subsystem is active has no effect until the
subsystem is ended and started again.

The possible values are:

*YES
The prestart jobs are started at the time the subsystem is started.

*NO
The prestart jobs are not started at the time the subsystem is started. The
Start Prestart Jobs (STRPJ) command must be used to start these prestart
jobs.

ADDPJE

36 CICS for iSeries Intercommunication V5

Initial number of jobs (INLJOBS)
Specifies the initial number of prestart jobs that are started when the
subsystem named in the subsystem description (SBSD) parameter is started.

Notes:

1. The value of this parameter must be less than or equal to the value in the
maximum number of jobs (MAXJOBS) parameter.

2. The value of this parameter must be greater than or equal to the value in
the threshold (THRESHOLD) parameter.

The possible values are:

3 Three prestart jobs are started when the subsystem is started.

initial-active-jobs
The number of prestart jobs that are started when the subsystem is started.
Valid values are in the range 1 through 1000.

Threshold (THRESHOLD)
Specifies a minimum number of available jobs, used to determine when
additional prestart jobs are started. When the pool of available jobs (jobs
available to service a program START request) falls below this number, more
jobs, as specified on the additional number of jobs (ADLJOBS) parameter, are
started and added to the available pool.

Note: The value in this option must be less than or equal to the value
specified in the initial number of jobs (INLJOBS) parameter.

The possible values are:

2 When only one prestart job is available, the number of jobs specified on
the additional number of jobs (ADLJOBS) parameter is started.

threshold-value
The minimum number of prestart jobs that must be available before
additional prestart jobs are started. Valid values range from 1 through
1000.

Additional number of jobs (ADLJOBS)
Specifies the additional number of prestart jobs that are started when the
number of prestart jobs falls below the value specified in the threshold
(THRESHOLD) parameter.

Note: The value specified on this option must be less than the value specified
in the maximum number of jobs (MAXJOBS) parameter.

The possible values are:

2 Two additional prestart jobs are started.

additional-active-jobs
Specify the number of additional prestart jobs to start. Valid values are in
the range 0 through 1000.

Maximum number of jobs (MAXJOBS)
Specifies the maximum number of prestart jobs that can be active at the same
time for this prestart job entry. This value includes prestart jobs that are
servicing or waiting to service a procedure START request, and prestart jobs
that are being started as a result of reaching the value specified on the
threshold (THRESHOLD) parameter.

ADDPJE

Chapter 2. Configuring CICS/400 for intercommunication 37

Notes:

1. The value of this parameter must be greater than or equal to the value
specified on the initial number of jobs (INLJOBS) parameter.

2. The value of this parameter must be greater than the value specified on the
additional number of jobs (ADLJOBS) parameter.

The possible values are:

*NOMAX
There is no limit on the number of prestart jobs that can be active at the
same time.

maximum-jobs
Specify the maximum number of prestart jobs that can be active at the
same time. Valid values range from 1 through 1000.

Adding configuration list entries
To allow OS/400 APPN to identify your CICS system as a local LU, you need to
register the CICS/400 APPLID in the APPN local location list. You do this using
the add configuration list entries (ADDCFGLE) command and specifying
TYPE(*APPNLOCL). The ADDCFGLE command screen is shown in Figure 9.

Similarly, to identify the remote CICS/400 system to APPN, you need to register it
in the APPN remote location list, using the ADDCFGLE command and specifying
TYPE(*APPNRMT).

You must tie up the local CICS system with the remote CICS system in the same
way as the APPC device description.

You can also add configuration list entries using the WRKCFGL command and
following the panels.

Add Configuration List Entries (ADDCFGLE)

Type choices, press Enter.

Configuration List Type> *APPNLCL *APPNLCL, *APPNRMT...
APPN Local Location Entry . . ._

Local Location Name ________ Name
Entry ’Description’. *BLANK_________________________

+ For More Values_

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 9. The ADDCFGLE command screen

ADDPJE

38 CICS for iSeries Intercommunication V5

Working with the configuration
You can dynamically control your configuration with the Work with Configuration
Status (WRKCFGSTS) command, which allows you to display and work with
configuration status functions. The WRKCFGSTS display shows status information
for network interfaces, lines, controllers, devices, and jobs associated with devices.
The display can be for a location, or for one or more network interfaces, lines,
controllers, or devices. All attached configuration descriptions are shown for each
network interface, line, controller, or device description selected.

Options available on the Work with Configuration Status display are to vary
status, end or resume recovery, hold or release a device, work with a job, or
display location path.

Typical uses of WRKCFGSTS include:
v As a first action when a communication problem occurs, to check the status of

lines, controllers and devices
v To vary off and on controllers and devices
v To check that a job has attached to a communications device.

For guidance in the use of the WRKCFGSTS command, see Communications
Management, SC41-5406-02. Reference information for the WRKCFGSTS command
is in the Control Language (CL) topic in the iSeries Information Center.

Setting up the CICS resource definitions
A terminal control system (TCS) entry must be defined for each remote CICS
system with which CICS/400 communicates. You do this using the ADDCICSTCS
command. You also need to use the ADDCICSSIT command to define the network
id on the system initialization table.

Defining remote CICS systems, ADDCICSTCS
The ADDCICSTCS command adds an entry to the CICS/400 terminal control
system table (TCS). Each entry defines a connection between the local CICS/400
system and a remote system. For full details, see the CICS for iSeries Administration
and Operations Guide.

TCS entries may also be installed dynamically, using either the INSCICSGRP CL
command or the CICS-supplied resource definition transaction CEDA. See the
CICS for iSeries Administration and Operations Guide for details.

The TCS table is the bridge at the CICS level between the local CICS/400 system
and remote CICS systems. (The TCS also exists on CICS OS/2. CICS/mainframe
users use CONNECTION and SESSION definitions, (or TERMINAL and
TYPETERM definitions for single-session links) to define remote CICS systems.)

The following is guidance information on selected parameters of the ADDCICSTCS
command.

CICS system (SYSID)
Specifies the name of the connection being defined. This name is used in the
SYSID parameter of CL commands that define remote resources (such as
ADDCICSPCT or ADDCICSFCT), and in the SYSID parameter of CICS/400
commands that can specify remote systems (such as EXEC CICS WRITEQ TS
or EXEC CICS START).

ADDCFGLE

Chapter 2. Configuring CICS/400 for intercommunication 39

Network (NETWORK)
Specifies the network name used to identify the remote CICS system. This
name must be the same as the RMTLOCNAME parameter of the
CRTDEVAPPC command that defines the OS/400 communications device, and
as the APPLID in the system initialization table (SIT) of the remote CICS
system.

Mode (MODE)
Specifies the mode group used for intercommunication with the remote system.
For a list of available mode groups, issue the DSPMODSTS command for the
OS/400 device used by the connection5 . The group must be the same as that
in the MODE parameter of the CRTDEVAPPC command that defines the
OS/400 communications device.

Code page (CDEPAGE)
Do not specify this parameter. Allow it to default to CDEPAGE(*SYSVAL).

CICS system status (SYSSTS)
Specifies the status of the connection, which can be *ENABLED or *DISABLED.
For communication to occur, the OS/400 device associated with the connection
must be varied on.

Outbound session prefix (SNDPFX)
Specifies a prefix to be concatenated to the outbound session number. This
prefix must be unique in the local CICS/400 system. For a single-session
connection, this prefix must be the same as the inbound session prefix. If no
outbound sessions are required, specify SNDPFX(*NONE).

Inbound session prefix (RCVPFX)
Specifies a prefix to be concatenated to the inbound session number. This
prefix must be unique in the local CICS/400 system. For a single-session
connection, this prefix must be the same as the outbound session prefix. If no
inbound sessions are required, specify RCVPFX(*NONE).

Indirect CICS system (INDSYS)
Specifies an intermediate CICS system that is used by the connection to relay
communication with the target system. This parameter is used solely to
support transaction routing. If the connection is direct, specify
INDSYS(*NONE).

Figure 10 on page 41 illustrates the need for an indirect system connection.
TERM, a terminal attached to the CICS/400 system TOR, wants to transaction
route to a transaction in AOR2. TOR and AOR2 are not directly connected, but
AOR2 has a connection CONA to AOR1, and AOR1 has a connection CONT to
TOR. Transaction routing is possible if the remote transaction is defined in
TOR with SYSID pointing to AOR1, and in AOR1 with SYSID pointing to
AOR2 (see “Serial connections” on page 74). AOR1 relays the transaction
routing request to AOR2 but the accompanying shipped terminal definition
specifies SYSID(CONT). To be able to communicate with its initiating terminal,
the transaction requires that AOR2 has a TCS entry for TOR with SYSID and
INDSYS specified as below:
ADDCICSTCS LIB(CICSWORK) GROUP(GROUP) SYSID(CONT) INDSYS(CONA)

5. Do not use SNASVCMG and CPSVCMG, which are system mode groups that cannot be used for CICS intercommunication.

ADDCICSTCS

40 CICS for iSeries Intercommunication V5

Send limit (SNDLMT)
Specifies the number of outbound sessions available on the connection.
Numbers in the range 00 through the specified limit are concatenated to the
SNDPFX to create a range of unique session identifiers. For single-session
connections, specify SNDLMT(1).

Receive limit (RCVLMT)
Specifies the number of inbound sessions available on the connection.
Numbers in the range 00 through the specified limit are concatenated to the
SNDPFX to create a range of unique session identifiers.

A task started by an attach sent to a CICS/400 system abends if no inbound
session is available. To avoid this possibility, set the RCVLMT parameter to the
total number of conversations available on the device.

The definitions of conversations in mainframe CICS and CICS/400 differ. With
CICS/400, a conversation is a temporary connection of a program to a session,
and can be either synchronous (both the source and the target programs are
communicating, as with mainframe CICS), or asynchronous (the source
program has completed and detached from the session, leaving the session
available for work, but the target system is still attached and has access to all
the data sent by the source program).

It is recommended that the MAXCNV parameter on the mode definition is set
to a higher value than MAXSSN. For more information about defining sessions
and connections, see the Communications Configuration book. For single-session
connections, specify RCVLMT(0).

Remote network indicator (RMTNETID)
Specifies the network indicator of the remote system. If the remote system is
an OS/400 subsystem (as CICS/400 is), the network indicator is the Local
network ID6 of the remote OS/400 system. This value must be the same as the
RMTNETID parameter of the CRTDEVAPPC command that defines the
OS/400 device to be used.

Example
This command adds a TCS entry, called CONR, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSTCS LIB(CICSWORK) GROUP(GROUP) SYSID(CONR) NETWORK(REMTCICS)

SNDPFX(SP) SNDLMT(5) RCVPFX(RP) RCVLMT(5) RMTNETID(REMTNET)
MODE(MODEGRP)

The SYSID parameter is the name of the connection, and is the local name of the
remote system defined by this TCS entry. The system places no constraints on the

6. To display the local network ID of an OS/400 system, enter the DSPNETA command on the system whose ID is required.

Figure 10. Indirectly connected CICS systems

ADDCICSTCS

Chapter 2. Configuring CICS/400 for intercommunication 41

SYSID value. For a remote CICS/400 system, it is often convenient to use its
OS/400 subsystem name (REMT in Figure 1 on page 12).

The SYSID value in this command is used in remote resource definitions to
identify the resource-owning region, and in DPL and EXEC CICS START
commands to identify the target region. For guidance on defining resources that
are owned by remote CICS systems, see Chapter 4 to Chapter 7.

The NETWORK, RMTNETID, and MODE parameters (together with the APPLID
parameter in the system initialization table) point to a device description
(CRTDEVAPPC command). The device description defines the remote system and
points to the local OS/400 controller and line that control the link. See “The APPC
connection” on page 43.

CICS/400 system definition table, ADDCICSSIT
The system initialization table (SIT) contains information used to start and control
the CICS/400 control region. There is only one system initialization parameter
related to intercommunication. Use the ADDCICSSIT command to create an entry
for this parameter in the CICS/400 SIT. For full details of the ADDCICSSIT
command, see the CICS for iSeries Administration and Operations Guide.

Application network name (APPLID)
The name by which the CICS control region is known in the network. This is
equivalent to an APPLID in CICS for OS/390.

The local SYSID is taken from the name of the control region, as specified on the
STRCICS command.

Working with the configuration
You can dynamically control your configuration with the Work with Configuration
Status (WRKCFGSTS) command, which allows you to display and work with
configuration status functions. The WRKCFGSTS display shows status information
for network interfaces, lines, controllers, devices, and jobs associated with devices.
The display can be for a location, or for one or more network interfaces, lines,
controllers, or devices. All attached configuration descriptions are shown for each
network interface, line, controller, or device description selected.

Options available on the Work with Configuration Status display are to vary
status, end or resume recovery, hold or release a device, work with a job, or
display location path.

Typical uses of WRKCFGSTS include:
v As a first action when a communication problem occurs, to check the status of

lines, controllers and devices
v To vary off and on controllers and devices
v To check that a job has attached to a communications device

For guidance in the use of the WRKCFGSTS coommand, see the Communications
Management book. Reference information for the WRKCFGSTS command is in the
Control Language (CL) topic in the iSeries Information Center.

ADDCICSTCS

42 CICS for iSeries Intercommunication V5

Summary
This section summarizes CICS/400 communication configuration described in this
chapter.

How the subsystem is associated with CICS resource
definitions and with OS/400

Subsystem LOCL is initiated by the command STRSBS LOCL. The CICS control
region is then initiated by the command STRCICS LOCL, which allows the
operator to enter parameters that specify the OS/400 library and CICS/400 group
to be used. The CICS/400 group contains a single system initialization group (SIT).
In the SIT, the GLT parameter specifies the group list table that contains the
resource definitions used by this CICS system. For intercommunication, the central
CICS resource definitions are the terminal control system (TCS) entries that define
remote CICS systems to CICS/400. TCS entries are described under “Defining
remote CICS systems, ADDCICSTCS” on page 39.

The APPC connection
CICS intersystem communication uses an APPC device defined to OS/400 by a
CRTDEVAPPC command. A CICS subsystem requires a device that matches
parameters in the ADDCICSTCS and ADDCICSSIT commands as shown in Table 3.

Table 3. Matching CRTDEVAPPC to ADDCICSTCS and ADDCICSSIT

CRTDEVAPPC ADDCICSTCS ADDCICSSIT

LCLLOCNAME APPL

RMTLOCNAME NETWORK

RMTNETID RMTNETID

MODE MODE

In Figure 1 on page 12, flags 3, 4, 5, and 6 indicate these matching fields. The
CRTDEVAPPC command points on to controller and line definitions that complete
an OS/400 configuration to support CICS/400.

Figure 1 also shows the fields that must match in the remote and local device
definitions (CRTDEVAPPC). Each LCLLOCNAME parameter must match the
remote RMTLOCNAME parameter (in CICS terms, this means that the APPL
parameter in each ADDCICSSIT command must match the NETWORK parameter
in the remote ADDCICSTCS command). The mode parameters in each
CRTDEVAPPC command must have the same value. This means that the mode
definitions at each end have the same name, but not that they necessarily have the
same content.

When CICS/400 communicates with a CICS product other than another CICS/400
system:
v RMTLOCNAME is the application identifier of the remote system (in a

CICS/mainframe system, the APPLID parameter in the SIT).
v LCLLOCNAME matches a field in the remote system’s definition of the

connection (in a CICS/mainframe system, the NETNAME7 parameter in the
CONNECTION definition).

7. NETNAME defaults to the name of the CONNECTION, which in this example is CICS/mainframe’s name for the CICS/400
system.

ADDCICSSIT

Chapter 2. Configuring CICS/400 for intercommunication 43

v The MODE name must match the name of the mode definition associated with
the remote system’s session (in a CICS/mainframe system, the MODENAME
parameter in the SESSIONS definition).

For more information about the definition of devices, controllers, and lines, refer to
the Communications Configuration book.

How resource definitions are connected
Figure 11 on page 45 shows how the different resource definitions are connected,
including the link between CICS/400 and OS/400.

ADDCICSSIT

44 CICS for iSeries Intercommunication V5

Figure 11. How resource definitions are connected

ADDCICSSIT

Chapter 2. Configuring CICS/400 for intercommunication 45

Intrasystem communication
This section highlights some of the different parameter values that are required to
set up intrasystem communication (intercommunication between two subsystems
on the same OS/400 system).

Line definition
As Figure 1 on page 12 indicates, an OS/400 line definition is required for
CICS/400 intersystem communication. For intrasystem communication no line
definition is necessary.

Controller definition
The controllers must be defined with a CRTCTLAPPC command that specifies
LINKTYPE(*LOCAL).
CRTCTLAPPC CTLD(STLCLCTL01) LINKTYPE(*LOCAL) ONLINE(*YES) CMNRCYLMT(2 5)

TEXT(’Local controller for intrasystem communication’)

Device definition
As each APPC device is unidirectional, two devices must be defined for full-duplex
communications between two subsystems. Also, both devices must use the same
*LOCAL controller.

You must specify APPN(*NO) on the CRTDEVAPPC command.

Example of intrasystem communication definitions
The following definitions connect 2 CICS/400 regions, ISC1 and ISC2, for
intrasystem communications.

Step 1
Define the local intrasystem controller for CICS/400 communications.
CRTCTLAPPC CTLD(&CTL) LINKTYPE(*LOCAL) ONLINE(*YES) +

TEXT(’LOCAL CONTROLLER FOR INTRASYSTEM COMMS’)

The parameters used are:

CTLD(&CTL)
Specifies the name of the controller description.

LINKTYPE(*LOCAL)
Specifies that this controller is attached to a local line.

ONLINE(*YES)
Specifies that this controller is to be varied on automatically at initial program
load.

TEXT(’LOCAL CONTROLLER FOR INTRASYSTEM COMMS’)
Describes the controller, for documentation purposes.

Step 2
Create a mode group.
CRTMODD MODD(CICSISC0) MAXSSN(20) MAXCNV(20)

The parameters used are:

MODD(CICSISC0)
Specifies the name of this mode description.

ADDCICSSIT

46 CICS for iSeries Intercommunication V5

MAXSSN(20)
Specifies that 20 is the maximum number of active sessions that can be
established for this mode.

MAXCNV(20)
Specifies that 20 is the maximum number of conversations that can be
established at the same time with the other system.

This mode definition uses the default class-of-service #CONNECT.

Step 3
Define the local intrasystem APPC devices, one in each direction.
CRTDEVAPPC DEVD(ISC1ISC2) RMTLOCNAME(ISC2APPL) +

LCLLOCNAME(ISC1APPL) CTL(&CTL) +
MODE(CICSISC0) APPN(*NO)

CRTDEVAPPC DEVD(ISC2ISC1) RMTLOCNAME(ISC1APPL) +
LCLLOCNAME(ISC2APPL) CTL(&CTL) +
MODE(CICSISC0) APPN(*NO)

The parameters used are:

DEVD(ISC1ISC2)/(ISC2ISC1)
Specifies the name of the device description.

RMTLOCNAME(ISC2APPL)/(ISC1APPL)
Specifies the unique location name that identifies the other CICS/400 region.

LCLLOCNAME(ISC1APPL)/(ISC2APPL)
Specifies the unique location name that identifies the local CICS/400 region.

CTL(&CTL)
Specifies the name of the controller to which this device is attached. This is the
same as specified in the CTLD parameter of the CRTCTLAPPC command.

MODE(CICSISC0)
Specifies the name of the mode that define the sessions characteristics. This is
the same as specified in the MODD parameter of the CRTMODD command.

APPN(*NO)
Specifies that this device is not for Advanced Peer-to-Peer Networking.

Step 4
Add 2 Terminal Control System (TCS) entries, one for each CICS/400 region, to
allow the 2 regions to communicate with each other.

In ISC1:
ADDCICSTCS LIB(ISC1LIB) GROUP(ISC1) SYSID(ISC2) +

NETWORK(ISC2APPL) MODE(CICSISC0) +
SNDPFX(SA) SNDLMT(5) RCVPFX(RA) RCVLMT(5)

In ISC2:
ADDCICSTCS LIB(ISC2LIB) GROUP(ISC2) SYSID(ISC1) +

NETWORK(ISC1APPL) MODE(CICSISC0) +
SNDPFX(ST) SNDLMT(5) RCVPFX(RT) RCVLMT(5)

The parameters used are:

LIB(ISC1LIB)/(ISC2LIB)
Specifies the OS/400 library containing the CICS/400 resource definition
group.

ADDCICSSIT

Chapter 2. Configuring CICS/400 for intercommunication 47

GROUP(ISC1)/(ISC2)
Specifies the CICS/400 resource definition group name.

SYSID(ISC2)/(ISC1)
Specifies the name of this TCS entry.

NETWORK(ISC2APPL)/(ISC1APPL)
Specifies the network name used to identify the other CICS system. This is the
same as specified in the RMTLOCNAME parameter of the CRTDEVAPPC
command.

MODE(CICSISC0)
Specifies the mode group used for intercommunication with the remote system.
This is the same as specified in the MODD parameter of the CRTMODD
command.

SNDPFX(SA)/(ST)
Specifies a prefix to be used to create unique outbound session identifiers.

SNDLMT(5)
Specifies that 5 is the maximum number of outbound sessions available on the
connection.

RCVPFX(RA)/(RT)
Specifies a prefix to be used to create unique inbound session identifiers.

RCVLMT(5)
Specifies that 5 is the maximum number of inbound sessions available on the
connection.

ADDCICSSIT

48 CICS for iSeries Intercommunication V5

Chapter 3. CICS/400 server support for the CICS client family

The CICS client family allows workstations to access CICS resources in a remote
CICS server such as CICS/400, CICS for OS/390, CICS for Open Systems, or CICS
for OS/2, but place only moderate demands on the workstation itself. When
connected to a server, a client has access not only to the resources local to that
server, but also to all the remote resources to which the server has access. The
server can act as the client’s gateway into an entire CICS network.

Overview
CICS Client to CICS/400 communications may use either APPC or TCP/IP
connectivity. CICS clients connect using synchronization level 1. Clients are
available for:
v AIX®

v Microsoft® Windows®

v OS/2
v Solaris
v HP-UX
v Linux 390

See the CICS Clients Administration, SC33-1436 book or CICS Family: Client Server
Programming, SC33-1435 book for details.

What the CICS client does
CICS client applications are written to programming interfaces provided on the
client workstation:
v External Presentation Interface (EPI)
v External Call Interface (ECI)

The EPI allows existing CICS applications to exploit workstation interfaces such as
user-friendly Graphical User Interfaces (GUIs) on CICS clients, without the need
for changes to the CICS application.

The ECI allows the design of new client/server applications. Typically the business
logic is kept on a CICS server, and the presentation logic is implemented on the
workstation and takes full advantage of the GUI.

CICS clients also provide a CICS 3270-terminal emulator that enables existing 3270
CICS transactions to be displayed on the client as they would be on a real 3270
device.

The client support on the workstation converts the EPI and ECI calls into standard
CICS ISC flows.

What the CICS/400 server does
A CICS client appears to its server much like a full-function CICS system sending
CICS intersystem communication requests using the EPI and ECI interfaces.

© Copyright IBM Corp. 2002 49

However, unlike full CICS systems, clients may not initially be known to the
CICS/400 server or OS/400. The following facilities can be enabled with minimal
setup, and permit previously unknown clients to be added to a network and to
have immediate access to CICS/400, without requiring the user to create individual
definitions in either CICS/400 or OS/400.

The OS/400 automatic configuration facility
can be used to create controller and device descriptions for new clients as
they appear. For more information on this facility, see “Automatic
configuration of dynamic devices” on page 57.

OS/400 routing-table entries
ensure that client requests are processed by CICS/400. These can be set up
once and are used by all clients. For a discussion of the routing entries that
are required, see “Required routing entries” on page 54.

CCIN and CTIN
are two CICS server transactions sent by the client to the server by way of
introduction. The CCIN transaction installs a TCS entry for the client and
the CTIN transaction installs a remote terminal entry where necessary. For
more information regarding CCIN and CTIN, see “Resource definition”.

Resource definition
The resource definition requirements for CICS client support are explained below:
v The supplied CICS resource definition group AEGCLI must be installed to

enable the use of transactions CCIN and CTIN.
v To enable usage of the ECI, EPI, and terminal emulator application interfaces at

the client, a system entry must be installed in the CICS/400 control region for
each client. Installation is handled automatically by the CCIN transaction (CICS
Client INstall), which installs a system entry at client startup, and uninstalls it at
client shutdown.

v A remote terminal entry must be installed in the CICS/400 control region for
each client that uses the EPI interface or the 3270 emulator. This is handled
automatically by the CTIN transaction (CICS Terminal INstall), which installs
and uninstalls remote terminal entries as requested by the client application.

v Data conversion definitions may need to be created in the CVT for CICS/400
programs that are called by client ECI applications. Use the ADDCICSCVT
command to create CVT entries.

v All clients must have a valid OS/400 user ID and password, and must be
authorized to all CICS/400 resources to which they require access.
Administration of user IDs and passwords is done using OS/400 commands.

Although the CCIN and CTIN transactions provide automatic setup facilities you
may choose to define client TCS or TCT entries manually using the ADDCICSTCS
or ADDCICSTCT commands. When a CCIN or CTIN install request detects an
installed definition, it is used provided it is not currently in use. When an uninstall
request is received, a manually-defined entry is not deleted, but remains available
for future use.

Client system entry
CCIN is a CICS/400 internal transaction that is invoked at client startup and
shutdown. When the client is started a CCIN system install request is passed to the

50 CICS for iSeries Intercommunication V5

server requesting install of a system entry for this client. When the client is shut
down a CCIN system uninstall request is passed to the server, requesting removal
of the associated system entry.

CCIN install
The install transaction generates a system entry for a client as follows:
v When no entry exists a new entry is created for the client.
v When an entry already exists and is not currently in use, all dependent

sessions and autoinstalled remote terminals are deleted, and the entry is
used for the client.

CCIN uninstall
CCIN uninstalls only those entries that it has installed itself.
v When an entry exists it is checked to determine if it was installed using

CCIN. If so, it is deleted, otherwise it must have been installed from an
ADDCICSTCS definition, and is not deleted, but left for future use.

v When no entry exists, an error message is put on the job and history logs.

Default settings
A new client system entry uses the following default values:

CICS system (SYSID)
Sequentially allocated in the range ″-AAA″ through ″-ZZZ″.

Network (NETWORK)
Set from the OS/400 device description. Although the CICS client may
pass a network name in the CCIN install request, this name is not used to
set this field. As a default, the client does not pass the network name.

Mode (MODE)
Set from the OS/400 device description.

Code page (CDEPAGE)
Set from the CODEPAGE parameter sent by the client. When the code
page is not recognized on the OS/400, a default may be installed as
described in “Data conversion” on page 53.

Status (SYSSTS)
Set to *ENABLED

Outbound session prefix (SNDPFX)
Set to a 2-character value. The characters are binary and not displayable,
and exclude blanks, nulls, alphanumerics, and the 3 special characters $8 ,
@, and #.

Available outbound sessions (SNDLMT)
Set to 1.

Inbound session prefix (RCVPFX)
Set to a 2-character value. The first character is the second character of the
send prefix. The second character is the first character of the send prefix.

Available inbound sessions (RCVLMT)
Set to 10.

Indirect CICS system (INDSYS)
Set to *NONE.

8. National currency symbol.

Chapter 3. CICS/400 server support for the CICS client family 51

Remote network indicator (RMTNETID)
Set from the OS/400 device description.

When an existing definition is used by a client, the only fields that take the
default value are Code page (CDEPAGE) and Status (SYSSTS). The other fields
remain unchanged.

Client terminal entry
CTIN is a CICS/400 internal transaction that is invoked when the client requests a
terminal, for example, through use of the client terminal emulator or from an EPI
application. A request is passed to the server to install a remote terminal entry for
this client. When the application ends, a CTIN terminal uninstall request is passed
to the server, requesting removal of the specified terminal entry.

CTIN install
The transaction uses the parameters from the client to create a remote terminal
entry. The following sequence is used:
v When a netname is passed, the transaction looks for the terminal entry with

that name. When a valid remote terminal entry is found it is used.
v When a modelid is passed the transaction looks for the model terminal

entry with that name. When a valid model entry is found CTIN creates a
new remote terminal entry using the values from the model.

v When neither netname nor modelid is supplied, the transaction builds a
new remote terminal entry using CICS/400 internal values.

When the install is successful, terminal details are returned to the client. When
the install fails, for example, when an unknown netname or modelid was
specified, an installation-failed indicator is returned to the client and error
messages are issued to the job and history logs.

CTIN uninstall
CTIN uninstalls only those entries that it has installed itself. The transaction
uses the terminal identifier passed from the client to locate the remote-terminal
entry, as follows:
v The transaction locates the remote-terminal entry, using the termid

parameter, and deletes it if it is a valid autoinstalled client terminal.

No messages are returned to the client for uninstall requests. When the
transaction fails to uninstall the terminal error messages are issued to the job
and history logs.

Default settings
When a netname (terminal id) is passed from the client, default settings are not
required because the parameters in the terminal definition are used. Defaults
are required only when the netname parameter is not passed. Table 4 describes
the default terminal parameters and how they override parameters in a model
entry. If you wish to define a model terminal for use by clients you must use
the ADDCICSTCT command. You may choose to base the definition on an
existing surrogate terminal.

Table 4. Default terminal control table parameters

Parameter name Default value
Override
model?

CICSDEV
Generated automatically within the range ″?AAA″
through ″?ZZZ″

Yes

52 CICS for iSeries Intercommunication V5

Table 4. Default terminal control table parameters (continued)

Parameter name Default value
Override
model?

SYSID System identifier for the client Yes

RMTDEV As for CICSDEV
If not

defined

DEVTYPE 3270 No

PRTFILE Blank No

DEVD Blanks No

DEVMODEL *TERMINAL Yes

NETWORK SNA LU name Yes

ALTSUFFIX *NONE No

DEVSTS *ENABLED Yes

ATISTS *YES No

TTISTS *YES No

USRARASIZE 0 No

DEVCHRID
From the CTIN code page parameter. If no
parameter is provided it is copied from the client
system’s entry

Yes

TRANSID *ANY No

KATAKANA *NO No

SOSI *NO No

UNATTEND *NO No

UCTRAN *YES No

DSCOMP *NO No

ALTSCN *NONE No

VALIDATION *NO No

LIGHTPEN *NO No

SHIP *YES No

DEVACQ *NO No

Data conversion
ECI applications

When CICS client ECI applications send or receive ASCII data, they expect the
CICS/400 server to handle any ASCII-EBCDIC conversion required. When
CICS/400 receives the inbound transaction, it scans user-defined conversion
table (CVT) entries to determine whether this CICS program requires data
conversion, and to establish which OS/400 conversion table should be used.
Conversion table entries are created using the ADDCICSCVT command.

When a CICS program is used by clients with different ASCII code pages, the
code page in the CVT is temporarily overridden by the value installed in the
client system entry. The transaction uses the client code page while leaving the
CVT entry unchanged. In this way, many different client code pages can be
supported. If the client code page is not recognized by CICS/400, the system
entry defaults as follows:

Chapter 3. CICS/400 server support for the CICS client family 53

v When the client parameters indicate an ASCII workstation the entry is set to
850, the multi-lingual ASCII code page.

v When an EBCDIC client is indicated the entry is set to the OS/400 system
code page.

Note: CVT routines are dependent on the required code page being defined to
OS/400. You must ensure that table entries exist in QSYS and QUSRSYS
for any code page that a client wishes to use.

EPI applications and terminal emulators
CICS client EPI applications transaction-route ASCII data to CICS/400, where
any ASCII-EBCDIC conversions must be handled. The code-page parameter in
the CTIN install is used to indicate the client code page for EPI, and is
installed in the remote-terminal entry.

No additional setup is required to convert EPI data streams, as the value in the
remote-terminal entry is used for inbound and outbound data conversion.
When the remote-terminal entry is created from a model terminal definition,
the code page is set using the following priority:
v If a code page is provided in the CTIN install it is used.
v If no code page is provided then the value in the system entry is used. This

can be the default ASCII multi-lingual code page 850.

Restrictions
v A system restart causes the deletion of all system and terminal definitions

installed by the CCIN and CTIN transactions. The deletion of these definitions
results in the failure of any outstanding ATI requests for client terminals.

v Programs to be run using a CICS client terminal emulator session must use the
CICS API for terminal I/O. Transactions such as CEDA, which use the OS/400
interface, cannot be run from a client terminal.

Required routing entries
The routing table is the part of a subsystem that identifies the program to run
when the subsystem receives work. The number of routing entries required
depends on the number of CICS/400 control regions associated with the subsystem
and on whether the subsystem handles non-CICS requests. The different situations
are summarized in Figure 12 on page 56 and discussed below.

In a subsystem dedicated to a specific CICS/400 control region, a single
routing-table entry can ensure that all communications requests cause the program
AEGISICC to be started. This CICS/400 program can handle all types of CICS ISC
flows, but only for a single, specific control region. This is case �1� in Figure 12.

If a subsystem is not dedicated to a single CICS/400 system, CICS/400 uses a
special program AEGISRTR that can decide at run time which CICS/400 control
region should be given the inbound request. In a subsystem that handles only
CICS/400 work, but possibly for a number of control regions, replacing AEGISICC
with AEGISRTR in the appropriate routing-table entry is all you need to do. This is
case �2� in Figure 12.

In the most common case, the communications entries are such that the clients’
devices are associated with QBASE or QCMN, which handle more than just
CICS/400 requests. Here, several routing-table entries are needed to ensure that

54 CICS for iSeries Intercommunication V5

CICS requests cause AEGISRTR to be evoked, but that non-CICS requests are
handled as normal (and are not directed to AEGISRTR). This is case �3� in
Figure 12.

Routing entries in default subsystem
If clients’ devices are associated with QBASE or QCMN (case �3� in Figure 12 on
page 56), routing-table entries for the following transactions need to be defined as
follows:

CCIN A transaction that installs a CICS client system (TCS) definition.

CPMI The standard CICS function-shipping transaction (for ASCII devices). CPMI
is used to flow the DPL requests generated as a result of ECI calls.

CTIN A transaction that installs a CICS client terminal (TCT) definition.

CRTE The standard CICS transaction-routing transaction. CRTE is used to flow
requests generated as a result of EPI calls.

The routing entries for CCIN, CPMI, CTIN, and CRTE must have a lower sequence
number than any routing-table entry specifying comparison data of “PGMEVOKE”
starting in column 29 of the routing data.

Note: When Client Access/400 for DOS is used to connect clients to CICS/400,
special consideration must be given to the routing entries. Specifically, the
routing entry for mode QPCSUPP must have a higher sequence number
than CICS routing entries, to ensure that CICS requests are properly routed.

Chapter 3. CICS/400 server support for the CICS client family 55

Figure 13 on page 57 shows a sample ADDRTGE command screen for the CCIN
routing definition. The fields of special interest are discussed below. The other
values are installation-dependent and are explained in “Adding routing entries” on
page 28, which also gives the definitive descriptions of the fields mentioned here.

Subsystem description (SBSD)
Specifies the subsystem that handles incoming requests from clients. Typically,
this is QCMN or QBASE.

Routing entry sequence number (SEQNBR)
Specifies the routing sequence number. Sequence numbers determine the order
in which routing-entry compare values are tested against the routing data in an
incoming request. Ensure that the entries you create have a lower sequence
number than any routing table entry specifying comparison data of
“PGMEVOKE” starting in column 29 of the routing data.

Comparison data (CMPVAL)
Specifies the routing data used to identify incoming client requests. For an
inbound communication request, the literal text “PGMEVOKE” starts in
position 29 in the routing data, and the transaction program name starts in
position 37. You need to add entries for “CCIN”, “CTIN”, “CPMI”, and
“CRTE”, starting in position 37.

If the subsystem to which you are adding this entry does not receive non-CICS
communication requests, it is sufficient to have a single RTG entry specifying
“PGMEVOKE” starting in position 29.

Figure 12. Routing entries required by CICS/400 server

56 CICS for iSeries Intercommunication V5

Program to call (PGM)
Specifies the special CICS/400 routing program AEGISRTR, or AEGISICC if
special case �1� in Figure 12 applies.

Automatic configuration of dynamic devices
Automatic configuration enables OS/400 to accept an incoming call from a remote
APPC system (including another iSeries system or a personal computer), even
though no varied-on controller description matches the LAN address of the calling
system. OS/400 automatically creates a controller description for an APPN-capable
APPC controller. You can set up intercommunication for dynamic devices by
providing a model controller definition for each line on which an incoming request
can be received for a CICS/400 system.

Controlling automatic configuration
OS/400 controls automatic configuration on a line-by-line basis. The incoming call
must be on a line defined with AUTOCRTCTL(*YES)9. The operator can change the
AUTOCRTCTL parameter in a token-ring or Ethernet line description at any time,
without varying off any controllers that are attached to the line.

Automatic-configuration parameters
For automatic configuration of controllers, OS/400 derives parameters from three
sources as follows:
v The initial XID exchange between OS/400 and the calling system
v A model controller
v The system-supplied defaults as applied to manually-configured controllers

9. The system QAUTOCFG value does not affect automatic LAN configuration.

Add Routing Entry (ADDRTGE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB

Routing entry sequence number . 1 1-9999
Comparison data:

Compare value CCIN

Starting position 37 1-80
Program to call AEGISRTR Name, *RTGDTA

Library *LIBL Name, *LIBL, *CURLIB
Class QINTER Name, *SBSD

Library Name, *LIBL, *CURLIB
Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 13. The ADDRTGE command screen

Chapter 3. CICS/400 server support for the CICS client family 57

XID exchange
The parameters derived from the XID exchange are:

RMTNETID

RMTCPNAME

ADPTADR

SSAP

DSAP

NODETYPE

TMSGRPNBR
Set to *CALC

CPSSN

SWTLINLST
Set to the line on which the call was received

If the caller supplies a control-point name in its XID, NODETYPE is set to *CALC
and CPSSN is set to *YES. If the caller does not supply a control-point name in its
XID, NODETYPE is set to *LENNODE and CPSSN is set to *NO. In an
automatically created controller description, SWTLINLST contains only one line.

Model controller
If a model controller10 specifies the line on which the call was received in its
SWTLINLST parameter, OS/400 uses the model for parameters not derived from
the XID exchange.

System defaults
System defaults provide any parameters not supplied by the XID exchange or a
model controller description.

TCP/IP Connectivity for Client
TCP/IP connectivity is supported in CICS/400 by providing a TCP/IP listener for
client requests sent over TCP/IP protocols. This listener is automatically started by
the CICS control region based on the setting for the TCPPORT parameter in CICS
system initialization table (SIT). If a TCP/IP port number is specified in the SIT,
CICS will start the listener which will direct CICS client communications into the
CICS control region.

The TCP/IP support for CICS/400 uses APPC communications internally to
communicate with user transactions. Therefore, it is required to configure APPC as
previously described. Specifically, the following are required:
v Ensure that the Application (APPLID) parameter of the SIT table of the Control

Region is the same as the name of the Control Region.
v Define the TCP/IP port number in range between 1 through 65535 in the

TCPPORT parameter. The TCP/IP port number must be the same as the one
used by all clients connecting to this control region. Ensure the port is not
already in use with NETSTAT option 3. A number above 1024 will avoid
conflicts with the well-known ports.

10. A model controller specifies MDLCTL (*YES).

58 CICS for iSeries Intercommunication V5

CHGCICSSIT LIB(control_region_library)
GROUP(control_region_group)
APPLID(control_region_name)
TCPPORT(port_number)

v Add a communication entry for the prestarted jobs in the subsystem description.

ADDCMNE SBSD(subsystem_library/subsystem_description)
DEV(device_name) MODE(CICSTCP)

CICS/400 will automatically create controller descriptions and device
descriptions for its internal communication. This communication entry requires a
device name in Device (DEV) parameter that is of the form of the Control
Region name plus an asterisk character. For example if the Control Region name
is ABC1, the value in Device parameter must be ABC1*.

v Ensure that a prestart job entry exists in the subsystem description for the
Control Region subsystem. You should also specify the number of AEGISICC
jobs that will be used for these transactions (initial, additional and maximum
number of jobs to start).

ADDPJE SBSD(subsystem_library/subsystem_description)
PGM(QCICS/AEGISICC)
INLJOBS(initial_num_jobs)
ADLJOBS(additio_num_jobs)
MAXJOBS(maxium_num_jobs)

v Add a TCS entry in the Control Region (with ADDCICSTCS command). This
ensures that the prestarted jobs are automatically prestarted when the CICS
Control Region is started. If you do not do this, the prestarted jobs must be
started manually. Note that as in APPC connectivity, prestarted jobs cannot be
started when the subsystem is started, they must be started after the CICS
control region is operational.

ADDCICSTCS LIB(control_region_library)
GROUP(control_region_group)
SYSID(XXXX) SNDPFX(S1) SNDLMT(10)
RCVPFX(R1) RCVLMT(10)

v Start the Control Region. CICS/400 will start the TCP/IP listener in the same
subsystem as the other control region jobs and will ensure that APPC Controller
Descriptions and APPC Device Descriptions are created as required.

The TCP/IP listener is implemented with a set of jobs to monitor for TCP/IP
communications. If you observe problems with these communications you can
check the following places for information related to the operations of the TCP/IP
listener function:
v Subsystem joblog
v History lob
v Joblogs in the AEGWPWKR and AEGWPSSN jobs

Chapter 3. CICS/400 server support for the CICS client family 59

60 CICS for iSeries Intercommunication V5

Chapter 4. Distributed program link

Using the EXEC CICS LINK command, a CICS application program can pass
control to a second program, which runs as a called subroutine, returning control
on completion to the point of invocation in the first program. Distributed program
link extends the use of the EXEC CICS LINK command so that the linking and
linked-to programs can be in different CICS systems. From a CICS/400 application
program, you can link to a program running in any CICS family product. In most
CICS family products, an application program can link to a CICS/400 program (see
Table 1 on page 6).

Two ways to use DPL
An application program can use DPL in two ways, either ignoring the location of
the linked-to program or explicitly specifying a remote system name.

Ignoring the location of resources
An application that uses DPL need not know the location of the linked-to program;
it can issue an EXEC CICS LINK command as if the program is owned by the local
system. In a CICS processing program table (PPT) entry, the system programmer
can specify that the named program is owned not by the local system but by a
remote system.

Explicitly specifying the remote system
On an EXEC CICS LINK command, an application program can use the SYSID
option to specify the name of the TCS table entry (SYSID parameter of the
ADDCICSTCS command) that defines the connection to the remote system that
owns the program. The request is routed directly to the system named in the
SYSID option, and the local resource definition tables are not used. Using the
SYSID option in this way destroys the local program’s independence of the
linked-to program’s location. The advantage is that any system, including the local
system, can be named in the SYSID parameter of the TCS. The decision whether to
access a local or remote program can be taken at execution time, based on
parameters passed to the application program.

Serial connections
A PPT definition of the linked-to program is required in the remote CICS system to
which the DPL request is directed. This definition may itself be a remote definition,
causing the request to be relayed to another CICS system. When this occurs, the
linking system and the linked-to system are said to be serially connected.

Synchronization and data integrity
In general, the linking program initiates commitment in both systems at task end.
In CICS/400, CICS for OS/2, and CICS for OS/390, this can be varied by coding
the SYNCONRETURN option in the EXEC CICS LINK command.

If you code SYNCONRETURN in the EXEC CICS LINK command, the linked-to
program commits its resource updates immediately before returning control to the
linking program. There are separate logical units of work (LUWs) in the two

© Copyright IBM Corp. 2002 61

communicating systems. Data integrity considerations govern the decision whether
or not to use the SYNCONRETURN option.

Determining how a program was started
A linked-to program can determine whether it was invoked with the
SYNCONRETURN option. In the EXEC CICS ASSIGN command, use the
STARTCODE option to specify a 2-byte field, in which one of the following values
is returned:

D The program was started by a DPL request without a SYNCONRETURN
option. The program cannot issue I/O requests against its principal facility,
and cannot issue syncpoint requests.

DS The program was started by a DPL request with a SYNCONRETURN
option. The program cannot issue I/O requests against its principal facility,
but can issue syncpoint requests.

BDAM files, and IMS, DL/I, and SQL databases
DPL enables a CICS/400 application program to access BDAM files and IMS,
DL/I, and SQL databases in a CICS/mainframe system. The CICS/400 program
links to a CICS/mainframe application program that reads and updates the
databases or files.

Restrictions on programs invoked by DPL
There are certain restrictions on programs that are invoked by DPL.

Because no terminal is involved, linked-to programs should not issue:
v Terminal control commands to the system in which the linking program is

running
v Commands that inquire on terminal attributes
v BMS commands
v Commands that address the TCTUA

Because of the TCTUA restriction, a linked-to program should use the
COMMAREA to pass data. For guidance in optimizing the use of the
COMMAREA, see “Performance optimization for DPL” on page 63.

Note: When DB2® data (on CICS/ESA or CICS/MVS) or SQL data (on CICS/VSE)
is accessed from a CICS/400 transaction, security access is based on the
transaction identifier that CICS/400 passes to the mirror transaction in
CICS/mainframe. The linked-to program’s EIBTRANID is set to the
transaction identifier passed from CICS/400 and this is used for the
duration of the link. If no transaction identifier is passed, EIBTRANID
specifies the default mirror for the CICS/mainframe product.

Restricting a program to the DPL subset
In the program definition (ADDCICSPPT) command (63), enter
APISET(*DPLSUBSET) to specify that a program, when invoked by an EXEC
CICS LINK command, is restricted to the DPL subset of the API. This enables the
program to be tested by a local EXEC CICS LINK command before it is invoked
remotely. The use of prohibited commands are then detected before the program is
used in a production environment.

62 CICS for iSeries Intercommunication V5

Abends when using DPL
If the linked-to CICS program terminates abnormally and does not handle the
abend itself, the mirror program returns an abend code. The code returned is that
which would have been returned by an EXEC CICS ASSIGN ABCODE command.
Note that the abend code returned to the linking CICS system represents the last
abend to occur in the mirror program, which may have handled other abends
before terminating.

Performance optimization for DPL
The performance of DPL may be affected by the amount of data transmitted,
which includes the optional COMMAREA specified in an EXEC CICS LINK
command. The length of the COMMAREA is in the range 1-32 767 bytes.

CICS/400 and the other CICS products contain algorithms designed to reduce the
number of bytes to be transmitted. The algorithms remove some trailing binary
zeros from the COMMAREA before transmission and restore them after
transmission. The operation of these algorithms is transparent to the application
programs, which always see the full-size COMMAREA.

When transmission time accounts for a significant part of the response time at a
user terminal or workstation, application programs may be able to improve
performance by using the DATALENGTH option in the EXEC CICS LINK
command. This option specifies a contiguous area of storage, at the start of the
COMMAREA, to be passed to the invoked program. For example, if all the data to
be transmitted is grouped in the first 100 bytes of a 30 000-byte COMMAREA, and
DATALENGTH(100) is specified, only the first 100 bytes are transmitted, although
the whole COMMAREA is returned by the invoked program.

Why use DPL?
The following are some reasons why you might use DPL:
v To separate the end-user interface from the application business logic
v To obtain performance benefits from running programs closer to the resources

they access
v To provide a simpler solution than distributed transaction processing (DTP)

Resource definition
The CICS for iSeries Administration and Operations Guide gives a full description of
all CICS/400 resource definition commands. This section contains guidance about
parameters that are important in the definition of resources to support DPL.

A remote program definition entry is required for each remote program that is to
be invoked by DPL. If a DPL command or the definition of the invoked program
names a transaction in the TRANSID parameter, the named transaction must be
defined in the remote system that executes the program and must invoke that
system’s mirror program.

Program definition, ADDCICSPPT
The Add CICS/400 Processing Program Table (ADDCICSPPT) command adds an
entry to the processing program table (PPT). Each entry contains information about
a CICS/400 program. The following is guidance information about parameters that

Chapter 4. Distributed program link 63

are relevant to the definition of a remote program linked-to by DPL. For full
details, see the CICS for iSeries Administration and Operations Guide.

CICS Program (PGMID)
Specifies the local name of the remote program. This is the name used in a
local EXEC CICS LINK command that invokes the program.

API commands (APISET)
Specifies whether the program should execute only commands that are in the
DPL subset of the API (see “Restricting a program to the DPL subset” on
page 62). If APISET(*DPLSUBSET) is specified, the execution of a restricted
command11 raises the INVREQ exception condition (RESP2=200) or causes
program termination with abend code ADPL.

This parameter enables local testing of a program that is to be invoked by
DPL. See “Restrictions on programs invoked by DPL” on page 62.

CICS system (SYSID)
Specifies the CICS system in which the program is located. This is the name of
the TCS table entry (SYSID parameter of the ADDCICSTCS command) that
defines the connection to the remote system.

Remote CICS program (RMTPGMID)
Specifies the name of the program in the remote CICS system in which it is
located. RMTPGMID(*PGMID) means that the local and remote names are
the same.

Transaction (TRANSID)
Specifies a remote transaction under which this program is executed when it is
invoked by a CICS distributed program link request from the local CICS/400
system. The environment in which the program runs is determined by the
attributes of this transaction, which must invoke the same mirror program as
the remote mirror transaction.

TRANSID(*NONE) means that no overriding transaction is used, and that the
program runs under the remote mirror transaction.

Example
This command adds a PPT entry, called LOCLPGM, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSPPT LIB(CICSWORK) GROUP(GROUP) PGMID(LOCLPGM) SYSID(CONR)

RMTPGMID(REMTPGM) TRANSID(RTRN)

When the EXEC CICS LINK PROGRAM(LOCLPGM) command is executed locally,
a link request is shipped on connection CONR to a remote CICS system, in which
program REMTPGM is executed using transaction RTRN. RTRN must invoke the
same mirror program as the remote mirror transaction.

Transaction definition, ADDCICSPCT
If a DPL command or the definition of the invoked program names a transaction in
the TRANSID parameter, the named transaction must be defined in the remote
system that executes the program and must invoke that system’s mirror program.

The Add CICS/400 Program Control Table (ADDCICSPCT) command adds an
entry to the CICS/400 program control table. Each entry contains information
about a CICS transaction. The following is guidance information for defining a

11. See “Restrictions on programs invoked by DPL” on page 62.

64 CICS for iSeries Intercommunication V5

transaction that is named in the TRANSID parameter of an incoming DPL request.
For full details, see the CICS for iSeries Administration and Operations Guide.

Transaction (TRANSID)
Specifies the name of a local transaction. If this name is specified in the
TRANSID parameter of an incoming DPL command, the attributes of this
transaction define the environment in which the linked program is executed.

Program (PGMID)
Specifies the program to be executed under control of the transaction being
defined. If the transaction is to be invoked in the TRANSID parameter of an
incoming DPL request, this parameter must specify the local mirror program.
In a CICS/400 system, specify PGMID(AEGFSMIR).

CICS system (SYSID)
Specifies the CICS system in which the transaction is executed, therefore code
SYSID(*NONE).

Example
This command adds a PCT entry, called RTRN, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSPCT LIB(CICSWORK) GROUP(GROUP) TRANSID(RTRN) PGMID(AEGFSMIR)

SYSID(*NONE)

In terms of the ADDCICSPPT example in “Program definition, ADDCICSPPT” on
page 63, this PCT entry is in the remote system. Transaction RTRN is defined to
support incoming DPL requests that require transaction attributes other than those
of the local mirror transaction. This transaction must invoke the mirror program,
AEGFSMIR. To use this transaction, an incoming DPL request specifies
TRANSID(RTRN), either in the EXEC CICS LINK command, or in the PPT entry
for the invoked program, as in the ADDCICSPPT example.

Chapter 4. Distributed program link 65

66 CICS for iSeries Intercommunication V5

Chapter 5. Function shipping

CICS function shipping enables CICS application programs to:
v Access CICS files owned by other CICS systems.
v Transfer data to or from transient data and temporary storage queues in other

CICS systems.
v Initiate transactions in other CICS systems. (This form of communication is

described in Chapter 7, “Asynchronous processing” on page 79.)

Note: Function-shipped commands cannot access BDAM files, or IMS, DL/I, or
DB2 databases in a CICS/mainframe system. To access this data, use DPL
(see “BDAM files, and IMS, DL/I, and SQL databases” on page 62).

Two ways to use function shipping
An application program can use function shipping in two ways, either ignoring the
location of resources or explicitly specifying a remote system name.

Ignoring the location of resources
An application that uses function shipping need not know the location of the
requested resources; it can issue commands as if all resources are owned by the
local system. Entries in the CICS resource definition tables (see 68) allow the
system programmer to specify that the named resource is owned not by the local
system but by a remote system.

Explicitly specifying the remote system
In a resource-accessing command, an application program can use the SYSID
option of EXEC CICS commands to specify the name of the TCS table entry (SYSID
parameter of the ADDCICSTCS command) that defines the connection to the
remote system that owns the resource. The request is routed directly to the system
named in the SYSID option, and the local resource definition tables are not used.
Using SYSID in this way destroys the program’s independence of the resource’s
location. The advantage is that any system, including the local system, can be
named in the SYSID parameter of the TCS entry.

Serial connections
A definition of the resource being accessed is required in the remote CICS system
to which the function-shipping request is directed. This definition may itself be a
remote definition, causing the request to be relayed to another CICS system. When
this occurs, the linking system and the linked-to system are said to be serially
connected.

CICS file control data sets
Function shipping allows read and update access to files located on a remote CICS
system. The EXEC CICS INQUIRE FILE, INQUIRE DSNAME, SET FILE, and SET
DSNAME commands are not supported.

Note: Care should be taken when designing systems that use remote file requests
containing physical record identifier values (for example, VSAM RBA files,

© Copyright IBM Corp. 2002 67

and files with keys not embedded in the record). Application programs in
remote systems must have access to the correct values following the
updating or reorganization of such files.

Transient data
When an application program accesses intrapartition or extrapartition transient
data queues on a remote system, the queue definition in the remote system
specifies whether the queue is protected, and whether it has a trigger level and
associated terminal.

If a transient data destination has an associated transaction, the named transaction
must be defined to be executed in the system owning the queue; it cannot be
defined as remote. If a terminal is associated with the transaction, it can be
connected to another CICS system, and used through the transaction routing
facility of CICS.

Local and remote names
Any type of remote resource can be defined with a local name that is different
from its name in its owning system (see “Resource definition”). This is useful
when resources in different systems have the same name. For example, a program
can send data to the CICS service destinations, such as the CSMT message log, in
both local and remote systems.

Synchronization
The OS/400 syncpoint services ensure that when the requesting transaction reaches
a syncpoint, any mirror transactions that are updating protected resources also take
a syncpoint, using sync level 2 protocols, so that changes to protected resources in
remote and local systems are consistent.

Data security and integrity
Protection of data accessed by function shipping is the responsibility of the
file-owning system.

A resource update caused by a function shipping request is committed when the
request-issuing program issues a syncpoint request or terminates successfully.

Resource definition
The CICS for iSeries Administration and Operations Guide gives a full description of
all CICS/400 resource definition commands. This section contains guidance about
parameters that are important in the definition of remote data resources (files,
transient data destinations, and temporary storage queues) that are to be accessed
by function shipping.

File definition, ADDCICSFCT
The Add CICS/400 File Control Table (ADDCICSFCT) command adds an entry to
the CICS/400 file control table. The following is guidance about parameters that
are important when defining remote files to be accessed by function shipping. For
full details, see the CICS for iSeries Administration and Operations Guide.

68 CICS for iSeries Intercommunication V5

CICS file (FILEID)
Specifies the local name of the remote file. This is the name used in a local
function shipping request.

CICS system (SYSID)
Specifies the local name of the remote CICS system. This is the name of a local
TCS table entry (SYSID parameter of the ADDCICSTCS command) that defines
the connection to the remote system.

Remote CICS file (RMTFILE)
Specifies the name of the file in the remote CICS system. If the remote system
is a CICS/400 system, this is the name in the FILEID parameter of the
ADDCICSFCT definition in the remote system. RMTFILE(*FILEID) means that
the remote name is the same as the local name specified in the FILEID
parameter of this command.

Remote maximum key length (RMTKEYLEN)
Specifies the length in bytes of the key field. This value must be the same as
that specified in the description of the file in the remote system in which it is
locally defined.

The definition of the file in the system named in the SYSID parameter may
itself be a remote definition; there may be a chain of remote definitions. Find
the system in which the file has a local definition. If this system is a CICS/400
system, examine the FILE and MBR parameters of the local ADDCICSFCT
definition. These parameters contain the name and location of the OS/400
database file. The required key length is in the OS/400 description of the file
or in the data description specification (DDS) from which it was created.

If the file records have no keys, specify 0.

Remote maximum record length (RMTLENGTH)
Specifies the maximum record size in bytes. This value must be the same as
that specified in the description of the file in the remote system in which it is
locally defined.

As described above for RMTKEYLEN, find the system in which the file has a
local definition. If that system is a CICS/400 system, the required record length
is in the OS/400 description of the file or in the data description specification
(DDS) from which it was created.

Example
This command adds an FCT entry, called LOCLFILE, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSFCT LIB(CICSWORK) GROUP(GROUP) FILEID(LOCLFILE) SYSID(CONR)

RMTFILE(REMTFILE) RMTKEYLEN(6) RMTLENGTH(86)

This entry enables the function shipping of an access request for file LOCLFILE
over connection CONR to a remote CICS system, where it accesses a file
REMTFILE, which has key length 6 and record length 86.

Transient data queue definition, ADDCICSDCT
The Add CICS/400 Destination Control Table (ADDCICSDCT) command adds an
entry to the CICS/400 destination control table, which defines transient data (TD)
queues. The following is guidance about parameters that are important when
defining remote TD queues to be accessed by function shipping. For full details,
see the CICS for iSeries Administration and Operations Guide.

Destination (DEST)
Specifies the local name of the remote transient data queue.

Chapter 5. Function shipping 69

Type (TYPE)
Specifies the type of transient data queue. For a remote transient data queue,
code TYPE(*REMOTE).

Remote destination (RMTDEST)
Specifies the name of the transient data queue in the remote CICS system in
which it is locally defined. If the remote system is a CICS/400 system, this is
the name in the DEST parameter of the local ADDCICSDCT definition.
RMTDEST(*DEST) means that the remote name is the same as the local name
specified in the DEST parameter.

CICS system (SYSID)
Specifies the local name of the remote CICS system in which the transient data
queue is located. This is the name of the TCS table entry (SYSID parameter of
the ADDCICSTCS command) that defines the connection to the remote system.

Example
This command adds an DCT entry, called LTDQ, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSDCT LIB(CICSWORK) GROUP(GROUP) DEST(LTDQ) SYSID(CONR)

RMTDEST(RTDQ) TYPE(*REMOTE)

This entry enables the function shipping of an access request for transient data
queue LTDQ over connection CONR to a remote CICS system, where it accesses
TD queue RTDQ.

Temporary storage queue definition, ADDCICSTST
The Add CICS/400 Temporary Storage Table (ADDCICSTST) command adds an
entry to the CICS/400 temporary storage table. Each entry contains information
about temporary storage (TS) queues that need special processing. For example, a
TST entry is required when the queue resides on another CICS system.

CICS/400 application programs use CICS/400 temporary storage queues to store
data for later retrieval. The entry can be defined using the entire queue name or
the prefix of a generic queue name. When processing a remote queue with a name
that begins with the same characters (generic or entire) as the name of a local TST
definition, CICS/400 uses the attributes in that definition. The CICS for iSeries
Administration and Operations Guide contains a full description of all the parameters
of the ADDCICSTST command.

The following is guidance about parameters that are important when defining
remote TS queues to be accessed by function shipping.

Queue (TSQUEUE)
Specifies the local name (generic or entire) of the TS queue.

Type (TYPE)
Specifies the type of the TS queue. For a remote temporary storage queue, code
TYPE(*REMOTE).

CICS system (SYSID)
Specifies the local name of the remote system in which the temporary storage
queues associated with this definition are located. This is the name of the local
TCS table entry (SYSID parameter of the ADDCICSTCS command) that defines
the connection to the remote system.

Remote queue name (RMTQUEUE)
The temporary storage prefix that is used by the remote system in which the
queues are located.

70 CICS for iSeries Intercommunication V5

RMTQUEUE(*TSQUEUE) indicates that the remote prefix is the same as the
local prefix specified in the TSQUEUE parameter of this command.

Example
This command adds a TST entry, called LOCLTSQ, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSTST LIB(CICSWORK) GROUP(GROUP)

TSQUEUE(LOCLTSQ) SYSID(CONR) RMTQUEUE(REMTTSQ)

This entry enables the function shipping of an access request for temporary storage
queue LOCLTSQ over connection CONR to a remote CICS system, where it
accesses TS queue REMTTSQ.

Chapter 5. Function shipping 71

72 CICS for iSeries Intercommunication V5

Chapter 6. Transaction routing

In transaction routing, an end user enters a remote transaction identifier at a
terminal and the transaction runs as though it were owned by the local system.
Transaction routing depends entirely on resource definition; no application
programming is required.

Two resources are involved in transaction routing:
v The initiating terminal
v The initiated transaction

Terminal
The application-owning region (AOR) requires a definition of the remote
terminal. This definition must contain the essential information needed to
implement transaction routing, as follows:
v The local name of the terminal
v The name of the connection to the terminal-owning region (TOR)
v The name of the terminal in the TOR

Additionally, the remote definition of a terminal must have the following
characteristics:
v A subset of the 3270 extended data stream is supported.
v The color, highlight, PS, and outline extended attributes are supported but

only to the extent that they are generated by BMS. (A field may have these
attributes but an individual character within a field cannot have separate
attributes.)

v The USRARASIZE parameter must be the same as the corresponding
parameter in the remote system’s TCT definition for the terminal.

There is an alternative to the creation of a remote definition of a terminal in
any remote system to which it wants to direct a transaction routing request.
This is to make the terminal’s local definition shippable by coding SHIP(*YES).

If a terminal definition is shippable, sufficient data is passed with a transaction
routing request to enable the remote system to dynamically install the
necessary remote terminal definition. For further information about shippable
terminals, refer to the CICS for iSeries Administration and Operations Guide.

Transaction
The terminal-owning region requires a definition of the remote transaction.
This definition specifies only information that is needed to implement
transaction routing, as follows:
v The local name of the transaction
v The name of the connection to the application-owning region (AOR)
v The name of the transaction in the AOR

All other transaction characteristics are defined in its local definition in the
application-owning region (AOR).

© Copyright IBM Corp. 2002 73

Serial connections
A definition of the transaction being accessed is required in the remote CICS
system to which the transaction routing request is directed. This definition may
itself be a remote definition, causing the request to be relayed to another CICS
system. When this occurs, the linking system and the linked-to system are said to
be serially connected.

If terminal definitions are shipped across a serial connection, the
application-owning region (AOR) requires an indirect connection to the
terminal-owning region (TOR). See the INDSYS parameter of the ADDCICSTCS
command 40.

Resource definition
The CICS for iSeries Administration and Operations Guide gives a full description of
all CICS/400 resource definition commands. This section contains guidance about
parameters that are important in the definition of transactions and terminals to
support transaction routing.

Transaction definitions, ADDCICSPCT
The Add CICS/400 Program Control Table (ADDCICSPCT) command adds an
entry to the CICS/400 Program Control Table. Each entry contains information
about a CICS/400 transaction.

The following is guidance about parameters that are important when defining a
remote transaction that is to be invoked by transaction routing. For full details, see
the CICS for iSeries Administration and Operations Guide.

Transaction (TRANSID)
Specifies the local name of the transaction.

CICS system (SYSID)
Specifies the local name of the application-owning region (AOR). This is the
name of the TCS table entry (SYSID parameter of the ADDCICSTCS command)
that defines the connection to the AOR.

Remote transaction (RMTTRANSID)
Specifies the name of the transaction in the remote application-owning region
(AOR). RMTTRANSID(*TRANSID) means that this name is the same as the
local name specified in the TRANSID parameter of this command.

Example
This command adds a PCT entry, called LTRN, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSPCT LIB(CICSWORK) GROUP(GROUP) TRANSID(LTRN) SYSID(CONR)

RMTTRANSID(RTRN)

This entry causes a request for transaction LTRN to be routed over connection
CONR to a remote CICS system, in which transaction RTRN is executed.

Terminal definitions, ADDCICSTCT
The Add CICS/400 Terminal Control Table (ADDCICSTCT) command adds an
entry to the CICS/400 Terminal Control Table (TCT). Each entry contains
information about a CICS/400 terminal (display device, model, or printer).

74 CICS for iSeries Intercommunication V5

To support transaction routing, this command is used in the application-owning
region (AOR) to create a remote definition of the terminal from which the
transaction is invoked. The following is guidance about parameters that are
important when defining a remote terminal. For full details, see the CICS for iSeries
Administration and Operations Guide.

CICS device (CICSDEV)
Specifies the local name of the terminal.

CICS system (SYSID)
Specifies the local name of the terminal-owning region (TOR). This is the name
of the TCS table entry (SYSID parameter of the ADDCICSTCS command) that
defines the connection to the remote system, and can be an indirect
connection12 . This connection is used to route transaction output from this
system (the AOR) back to the terminal in the remote system (the TOR).

Remote CICS device (RMTDEV)
Specifies the name of the terminal in the terminal-owning region (TOR).
RMTDEV(*CICSDEV) means that the remote name is the same as the local
name specified in the CICSDEV parameter of this command.

User area size (USRARASIZE)
Specifies the length of the terminal user area. This value should be the same as
that specified in the USRARASIZE parameter of the terminal’s definition in its
owning region (the TOR).

Local definition of shippable terminal
To avoid the need for a remote definition in the application-owning region, a
terminal can be defined as shippable in its local definition in the terminal-owning
region.

Ship to another CICS system (SHIP)
Specifies whether the terminal definition can be shipped to another CICS
system. If the terminal is to be shipped, code SHIP(*YES).

Example
This command adds a TCT entry, called REMTTERM, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSTCT LIB(CICSWORK) GROUP(GROUP) CICSDEV(REMTTERM) SYSID(CONL)

RMTDEV(LOCLTERM)

This entry is installed in an application-owning system (AOR) that receives
transaction routing requests from a remote terminal LOCLTERM. The entry enables
routing of data from the AOR across connection CONL back to the
terminal-owning region (TOR).

Inbound transaction routing to the CEMT transaction
In CICS/400, invocation of the CEMT transaction leads to a pseudoconversation
with repeated executions of CEMT. This complicates transaction routing to CEMT
in CICS/400. The problem can occur in transaction routing to a
pseudoconversation in any CICS product. Figures 14 and 15 illustrate the problem
and the suggested solution.

In Figure 14, AEMT is entered at a terminal in System A to invoke the CEMT
transaction in System B. CICS/400 in System B runs the first execution of CEMT

12. See INDSYS parameter of ADDCICSTCS command 40.

Chapter 6. Transaction routing 75

and returns the value “CEMT” in TRANSID. The next input at the terminal causes
the invocation of CEMT in System A, rather than in System B as intended.

In Figure 15 on page 77, the remote transaction definition in System A specifies the
same local and remote name AEMT. In System B, transaction AEMT is defined to
invoke the master terminal program, AEGCMDRV, so that transaction AEMT is
equivalent to CEMT. Now, AEMT is entered at a terminal in System A to invoke
the AEMT transaction in System B. CICS/400 in System B runs the first execution
of AEMT and returns the value “AEMT” in TRANSID. The next input at the
terminal causes the invocation of AEMT in System B, as intended.

Figure 14. Transaction routing to the CEMT transaction–the problem

76 CICS for iSeries Intercommunication V5

Transaction routing to a pseudoconversation
The CEMT transaction in CICS/400, just discussed, is one example of a
pseudoconversation–any pseudoconversation can contain a mixture of local and
routed transactions. A problem arises if identical transaction names exist in
different systems. The following procedure applies to all cases, and, where
necessary, forces redefinition of transactions in the application-owning system as in
the CEMT example.

Procedure for routed transactions in a pseudoconversation
In the terminal-owning system, define each routed transaction in a
pseudoconversation with identical local and remote names, and as residing in
the application-owning system in which it is locally defined.

Figure 15. Transaction routing to the CEMT transaction–the solution

Chapter 6. Transaction routing 77

78 CICS for iSeries Intercommunication V5

Chapter 7. Asynchronous processing

Asynchronous processing is a special case of function shipping in which the
shipped command starts a remote transaction. Unlike distributed transaction
processing (DTP), the initiating and initiated transactions do not engage in
synchronous communication. Instead, they are executed and terminated
independently.

The interval control commands that can be used for asynchronous processing are:
v EXEC CICS START
v EXEC CICS CANCEL
v EXEC CICS RETRIEVE

Two ways to initiate asynchronous processing
Asynchronous processing is initiated by the issuing of an EXEC CICS START
command. Like DPL, the application program can ignore the location of the started
transaction or can explicitly specify the system name.

Ignoring the location of the transaction
A program can issue an EXEC CICS START command for a remote transaction as
if the transaction is local. An entry in the program control table (PCT) defines the
transaction to CICS and specifies the owning system, local or remote.

Explicitly specifying a remote system
On an EXEC CICS START command, an application program can use the SYSID
option to specify the name of the TCS table entry (SYSID parameter of the
ADDCICSTCS command) that defines the connection to the remote system that
owns the transaction. The request is routed directly to the system named in the
SYSID option, and the local resource definition tables are not used. Using the
SYSID option in this way destroys the local program’s independence of the started
transaction’s location. The advantage is that any system, including the local
system, can be named in the SYSID parameter of the TCS. The decision whether to
access a local or remote transaction can be taken at execution time, based on
initialization options passed to the application program.

Note: Asynchronous processing can also be initiated by using distributed
transaction processing (DTP), a cross-system method with no single-system
equivalent. This is much more complicated than the use of the EXEC CICS
START command, and it would be wasteful to use DTP simply to start a
transaction. Asynchronous processing started by DTP is likely to be a
by-product of a conversational application.

Starting and canceling remote transactions
The interval control EXEC CICS START command is used to queue a
transaction-initiation request in a remote CICS system, to which the command is
function-shipped. In the remote system, the mirror transaction (CVMI) is invoked
to issue the EXEC CICS START command. You can include time-control
information on the shipped EXEC CICS START command, using either the
INTERVAL or the TIME option. Before a command is shipped, a time specification

© Copyright IBM Corp. 2002 79

is converted by CICS to a time interval relative to the local clock. If the ends of a
link can be in different time zones, use the INTERVAL option to specify an
absolute time interval that is independent of time zones. The time interval,
specified in the INTERVAL or TIME option of an EXEC CICS START command,
determines the time at which the remote transaction is to be initiated, not the
time at which the request is to be shipped to the remote system.

An EXEC CICS START command shipped to a remote CICS system can be
canceled, before the expiry of the time interval, by shipping an EXEC CICS
CANCEL command to the same system. The EXEC CICS START command to be
canceled is uniquely identified by the REQID value specified on the EXEC CICS
START command and on the associated EXEC CICS CANCEL command. Any task
can issue the EXEC CICS CANCEL command.

Passing information with the EXEC CICS START command
The EXEC CICS START command has a number of options that enable information
to be made available to the remote transaction when it is started. If the remote
transaction is in a CICS system, the information is obtained by using the EXEC
CICS RETRIEVE command. The information that can be specified is summarized
in the following list:
v User data specified in the FROM option. This is the principal way in which data

can be passed to the remote transaction.
v Temporary storage queue—named in the QUEUE option. This is an additional

way of passing data. The queue can be in any CICS system that is accessible to
the system on which the remote transaction is executed.

v A terminal name—specified in the TERMID option. This is the name of a
terminal that is to be associated with the remote transaction when it is initiated.
If a terminal is defined in the system that owns the remote transaction but is not
owned by that system, an automatic transaction initiation (ATI) request is sent to
the terminal-owning region (TOR).

v A transaction name and an associated terminal name—specified in the
RTRANSID and RTERMID options. These options enable the local transaction to
specify transaction and terminal names for the remote transaction to use in an
EXEC CICS START command to initiate a transaction in the local system.

Passing an applid with the EXEC CICS START command
If you have a transaction that can be started from several different systems, and
that is required to issue an EXEC CICS START command to the system that
initiated it, you can arrange for each invoking transaction to send its local system
applid as part of the user data in the EXEC CICS START command. A transaction
can obtain its own local applid by using an EXEC CICS ASSIGN APPLID
command.

Improving performance of intersystem start requests
In some inquiry-only applications, sophisticated error-checking and recovery
procedures may not be justified. When the transactions make inquiries only, the
terminal operator can retry an operation if no reply is received within a specific
time. In such a situation, the number of data flows to and from the remote system
can be substantially reduced by using the NOCHECK 13 option of the START
command. When the connection between the two systems is through VTAM, this

13. CICS OS/2 does not support the NOCHECK option.

80 CICS for iSeries Intercommunication V5

can result in considerably improved performance. The trade-off is between
performance and sophisticated recovery procedures.

A typical use for the EXEC CICS START NOCHECK command is in the example
81.

Deferred sending of start requests with the NOCHECK option
For EXEC CICS START commands with the NOCHECK option, CICS defers
transmission of the request until one of the following events occurs:
v The transaction issues a function shipping request for the same system.
v The transaction terminates (implicit syncpoint).

The first, or only, start request transmitted from a transaction to a remote system
carries the begin-bracket indicator; the last, or only, request carries the end-bracket
indicator. Also, if any of the start requests issued by the transaction specifies
PROTECT, syncpoint coordination occurs after the last request. The sequence of
requests is transmitted within a single SNA bracket and all the requests are
handled by the same mirror task.

The NOCHECK option is always required when shipping of the EXEC CICS
START command is queued pending the establishment of links with the remote
system (see “Local queuing of start requests for remote transactions”).

Local queuing of start requests for remote transactions
When a local transaction is ready to ship an EXEC CICS START command, the
intersystem facilities may be unavailable, either because the remote system is not
active or because a connection cannot be established. The normal CICS action in
these circumstances is to raise the SYSIDERR condition. This can be avoided by
using the NOCHECK option, and arranging for CICS to queue the request locally
and forward it when the required link is in service. Local queuing can be
attempted for an EXEC CICS START NOCHECK command if the system name is
valid but the system is not available. A system is defined as not available if the
system is out of service when the request is initiated, or if an attempt to initiate a
session to the remote system fails.

In either of the above situations, CICS queues an EXEC CICS START NOCHECK
command for a remote transaction if two conditions are satisfied:
v The SYSID option is not coded in the EXEC CICS START command, and
v The local definition of the transaction specifies LCLQUEUE(*YES).

Local queuing should be used only for EXEC CICS START NOCHECK commands
that represent time-independent requests. The delay implied by local queuing
affects the time at which the request is actually started.

Chapter 7. Asynchronous processing 81

Example: online inquiry on a remote database
To check credit ratings, a terminal operator uses a local transaction to enter a
succession of inquiries without waiting for replies. For each inquiry, the local
transaction initiates a remote transaction to process the request, so that many
tasks can be executing the remote transaction concurrently. The remote tasks
send their replies by initiating a local transaction (possibly the initiating
transaction) to deliver the output to the operator terminal. The replies may
not arrive in the order in which the inquiries were issued; correlation
between the inquiries and the replies must be made by means of fields in the
user data.

The operator’s request causes the attachment of a transaction that issues an
EXEC CICS START NOCHECK command to start the inquiry transaction in a
remote system. The EXEC CICS START command specifies the operator’s
terminal identifier. The transaction that issued the EXEC CICS START
command now terminates, leaving the terminal available to receive the
answer or initiate another request.

The remote transaction makes the requested inquiry on its local database,
then issues an EXEC CICS START NOCHECK command to start a transaction
on the originating system. This command passes back the requested data,
together with the operator’s terminal identifier. Again, only one message
passes between the systems. The transaction that is now started in the
originating system formats the data and displays it at the operator’s terminal.

If a system or session fails, the terminal operator must reenter the inquiry,
and be prepared to receive duplicate replies. To aid the operator, either a
correlation field must be shipped with each request and returned with the
corresponding reply, or all replies must be self-describing.

“Started transaction satisfying multiple start requests” on page 83 describes a
technique that could be used in the remote transaction and in the local
transaction that receives the replies.

Including start request delivery in a logical unit of work
The delivery of a start request to a remote system can be made part of a logical
unit of work by specifying the PROTECT option on the EXEC CICS START
command. The PROTECT option indicates that the remote transaction must not be
scheduled until the initiating transaction has terminated successfully.

Successful completion of the transaction guarantees that the start request has been
delivered to the remote system. It does not guarantee that the remote transaction
has completed, or even that it has been or will be initiated.

The started transaction
A CICS transaction that is initiated by an EXEC CICS START command can get the
user data and other information associated with the request by using the EXEC
CICS RETRIEVE command.

82 CICS for iSeries Intercommunication V5

Started transaction satisfying multiple start requests
In accordance with the normal rules for interval control, CICS queues a start
request that carries both user data and a terminal identifier if the transaction is
already active and associated with the same terminal. During the waiting period,
the active transaction can issue a further EXEC CICS RETRIEVE command to
access the data associated with the queued request. Such an access automatically
cancels the queued start request.

Thus, it is possible to design a transaction that can handle the data associated with
multiple start requests. A long-running transaction can accept multiple inquiries
from a terminal and ship start requests to a remote system. In the remote system,
the first request causes a transaction to start. From time to time, the started
transaction can issue EXEC CICS RETRIEVE commands to receive the data
associated with further requests, the absence of further requests being indicated by
the ENDDATA condition.

The WAIT option of the EXEC CICS RETRIEVE command can be used to put the
transaction into a WAIT state pending the arrival of the next start request from the
remote system. In the example on 81, EXEC CICS RETRIEVE WAIT could be used
in both the remote transaction and the local transaction that receives the replies.

Overall application design should ensure that a transaction cannot get into a
permanent wait state due to the absence of further start requests—for example, the
transaction can be defined with a time-out interval.

Terminal acquisition by a remotely initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility. It makes no difference whether the start request was issued by a user
transaction in the local CICS system or was received from a remote system and
issued by the mirror transaction.

Resource definition
The CICS for iSeries Administration and Operations Guide gives a full description of
all CICS/400 resource definition commands. This section contains guidance about
parameters that are important in the definition of a remote transaction to support
asynchronous processing.

Transaction definition, ADDCICSPCT
The Add CICS/400 Program Control Table (ADDCICSPCT) command adds an
entry to the CICS/400 Program Control Table. Each entry contains information
about CICS/400 transactions. For full details, see the CICS for iSeries Administration
and Operations Guide.

Transaction (TRANSID)
Specifies the local name of the remote transaction.

CICS system (SYSID)
Specifies the local name of the remote CICS system in which the transaction is
located. This is the name of the TCS table entry (created by an ADDCICSTCS
command) that defines the connection to the remote system.

Remote transaction (RMTTRANSID)
Specifies the name of the transaction in the remote CICS system in which it is

Chapter 7. Asynchronous processing 83

located. RMTTRANSID(*TRANSID) means that the remote name of the
transaction is the same as its local name, which is specified in the TRANSID
parameter of this command.

Local system queuing (LCLQUEUE)
Specifies whether, when a session to the remote system is unavailable, queuing
on the local system is required.

Example
This command adds a PCT entry, called LTRN, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSPCT LIB(CICSWORK) GROUP(GROUP) TRANSID(LTRN)

RMTTRANSID(RTRN) SYSID(CONR) LCLQUEUE(*YES)

This entry enables the function shipping of a start request for transaction LTRN
across connection CONR to a remote CICS system in which transaction RTRN is
initiated. Local queuing is supported for requests for transaction LTRN.

84 CICS for iSeries Intercommunication V5

Chapter 8. Security

This chapter gives an overview of security considerations when CICS/400 systems
are interconnected, connected to other CICS products, or connected to other
compatible systems. It is assumed that the reader is familiar with security in a
single CICS/400 system, as described in the CICS for iSeries Administration and
Operations Guide.

In a single CICS system, security restricts user access to resources required by the
user’s job responsibilities. For interconnected systems, the same principles apply,
but additional definitions are needed for local and remote connections.

Planning for intercommunication security
In a CICS/400 system, intercommunication security relates to incoming requests
for access to CICS resources. The security problem with incoming requests can be
framed as a question—is this resource access authorized, or should it be rejected?

There are four levels of CICS security, all of which are optional:
v Bind-time security
v Link security (not supported by CICS/400)
v User security
v Resource security

Bind-time security
Intercommunication begins with the establishment of a session between two
systems. The connection request can be made by either system. The establishment
of a session gives remote users potential access to a system’s resources and is the
first intercommunication security exposure. The level of security applied at this
stage is called bind-time security, which is also known as SNA session security or
location security.

Link security
Link security applies a single user profile to a remote system as a whole, and is
supported by most other CICS products, but not by CICS/400. All security checks
in CICS/400 are at the user and resource levels.

User security
User security (also known as conversation or attach security) is used to restrict
remote-user access to the local system, and is applied when CICS/400 starts a
transaction initiated from a remote system. User security is based on the user ID
(and, optionally, password) transmitted by the remote system. For an incoming
request to satisfy this level of security, the user ID and password (if present) must
match an OS/400 user profile. User profiles are created by a CRTUSRPRF
command.

Resource security
Resource security protects local resources such as files, databases, programs, and
transactions, from unauthorized access by users, local or remote.

© Copyright IBM Corp. 2002 85

Implementing intercommunication security
This section describes implementation of the three levels of intercommunication
security supported by CICS/400.

Bind-time security
An intercommunication session is bound on acceptance of a request to establish an
APPC session with a remote system14 . Binding a session involves negotiating
session attributes that are compatible with the attributes of both binding partners.
During the bind process, bind-time security is applied to ensure that an
unauthorized system cannot bind a session to a CICS/400 system.

Bind-time security is optional, and can be specified only if it is supported by the
remote system. CICS/400 and other members of the CICS family (except
CICS OS/2) conform to the SNA session security architecture. To be eligible for
bind-time security, a remote non-CICS system must conform to the same
architecture.

The definition of a connection to a remote system assumes that all inbound
requests on the connection are routed from that system and that all outbound
requests on the connection are routed to that system. If a bind request is to
succeed, both ends must hold the same bind password (or location password).

Bind password for intrasystem communication
For intrasystem communication, which is possible only between two CICS/400
systems, each system requires a bind password to be specified in any APPC device
description (CRTDEVAPPC command) that defines a logical device that can be the
source or recipient of a message. For a particular connection, the device
descriptions at both ends must specify the same bind password, else the bind fails.

Bind password for CICS/400 intersystem communication
For intersystem communication, which is possible between CICS/400 and any
CICS system (including another CICS/400 system), the bind password is specified
in the APPN Remote Location Configuration List Entry that lists the APPN remote
locations with which OS/400 can communicate. To set up a configuration list, use
the CRTCFGL command for list type *APPNRMT.

For other CICS products, refer to the intercommunication documentation for
information on where the bind password is defined.

The bind password is a 1-8 byte string (an even number of hexadecimal digits in
the range 2-16).

User security
User security is applied when CICS/400 attaches a transaction that is initiated
from a remote system. User security, subject to a check against the local OS/400
user profile for the remote user, grants the user access to the CICS/400 system.
Access to individual resources is subject to a further check by resource (object)
security.

Levels of user security
One of three levels of user security may apply:

14. The request can originate from either system.

86 CICS for iSeries Intercommunication V5

1. No check is made and each user has the security profile of the default user
specified for the remote location

2. A check is made on the user ID
3. A check is made on the user ID and password

Default user: The default user for a remote location is defined in the
communications entry (ADDCMNE command) for the remote location in the
communications subsystem. For information about the ADDCMNE command, refer
to Communications Management.

Secure locations: A location can specify the amount of security information it
requires from the other location in a remotely initiated CICS conversation. This is
done to remove the need for applications to send passwords with user IDs, and to
simplify network administration because passwords may not be the same on all
systems. A location may be defined as a “secure location” or may default to a
“non-secure location”.

A secure location represents an acknowledgement by the target system that the
security facilities of the source system are acceptable. The source location can then
send an Already Verified Indicator (AVI) with the user ID because the target
system will trust the security arrangements of the source system.

A non-secure location definition indicates that the target system wants the source
system either to send both a user ID and a password or no security information at
all, in which case the target system will use a default user profile for remotely
initiated jobs.

Specifying the level of security: The level of security is defined by different
commands depending on whether intrasystem or intersystem communication is
being used:
v For intrasystem communication, the Secure location parameter in the APPC

device description (CRTDEVAPPC) command.
v For intersystem communication, the Secure location parameter in the create

configuration list (CRTCFGL) command that specifies the remote configuration
list entry for the remote location.

In either case, Secure location can be specified as *YES or *NO.

Secure Location *YES
The user ID is checked against the OS/400 user profile for that user ID. An
Already Verified Indicator is sent to show that the password for that user ID
has been checked at the remote location.

A user profile must exist for the user ID.

Secure Location *NO
The OS/400 does not accept verification by the remote system. The remote
(source) system may send both user ID and password, or neither of these. If
neither is sent, the incoming request adopts the access authority of the default
user (see “Default user”). If a user ID and password are sent, a user profile
must exist for the user ID, and the password must match that of the user
profile.

Resource security
When a transaction has been successfully attached, resource (or object) security
determines which resources it can access. The transaction uses the authority of

Chapter 8. Security 87

either the remote user ID (Secure Location *YES) or the default user (Secure
Location *NO). The OS/400 security officer grants object authority to each remote
user ID in the same way as for a local user ID. For information on specifying
object authority, see the CICS for iSeries Administration and Operations Guide.

88 CICS for iSeries Intercommunication V5

Chapter 9. Data conversion

When communication takes place between a CICS/400 system and a remote
CICS/6000 or CICS OS/2 system, conversion is necessary between the EBCDIC
codes in CICS/400 and the ASCII codes in the remote CICS/6000 or CICS OS/2
system. Specifically, application-data conversion is necessary for function shipping,
DPL, and distributed transaction processing. When transaction routing occurs in
either direction between CICS/400 and CICS OS/2 or CICS/6000, data conversion
is always done by CICS OS/2 or CICS/6000 (except for requests from CICS
common client, see page 55). For further information, see CICS Family: Interproduct
Communication and the Globalization topic in the iSeries Information Center.

Which system does the conversion?
In general, the ASCII system converts resource names and the receiving system
converts application data. Table 5 shows where data conversion is done for
function shipping and DPL. In the table, Receiver is the system that receives the
request, and CVT is the CICS/400 conversion vector table, which contains an entry
for each resource for which conversion is required. The table shows all the
conversion automatically done in the CICS systems. In distributed transaction
processing, the applications must initiate data conversion but can call the OS/400
conversion routine, QDCXLATE.

Table 5. Data conversion for function shipping and DPL

Request type Data Conversion type Where converted

Temporary storage
(*TSQUEUE in CVT,
see “Distributed
program link (DPL)”
on page 3)

Queue name Character ASCII system

IOAREA As specified in CVT Receiver

Transient data
(*TDQUEUE in CVT,
see “Distributed
program link (DPL)”
on page 3)

Queue name Character ASCII system

IOAREA As specified in CVT Receiver

File control
(*FILE in CVT, see
“Distributed program
link (DPL)” on
page 3)

File name Character ASCII system

IOAREA As specified in CVT Receiver

Key As specified in CVT Receiver

Interval control
(*START in CVT, see
“Distributed program
link (DPL)” on
page 3)

Transid Character ASCII system

FROM area As specified in CVT Receiver

RTERMID,
RTRANSID, REQID

Character ASCII system

Program control
(*LINK in CVT, see
“Distributed program
link (DPL)” on
page 3)

Program name Character ASCII system

COMMAREA As specified in CVT Receiver

© Copyright IBM Corp. 2002 89

Function shipping and DPL
For function shipping and DPL from CICS/400 to CICS for Open Systems or CICS
for OS/2, the remote CICS system does all the required conversion.

For function shipping and DPL to CICS/400 from CICS for Open Systems or CICS
for OS/2, the remote system converts resource names and CICS/400 converts user
data areas.

The same rules apply to asynchronous processing initiated by an EXEC CICS
START command, which is a special case of function shipping.

Serial connection
A receiving system recognizes the sending system’s interchange code by the
transmitted mirror-transaction name (CPMI for ASCII and CVMI for EBCDIC).
When a serial connection15 is used, user data is converted when the interchange
code (ASCII or EBCDIC) changes between two systems in the serial path. Because
of this, data conversion definitions may be required for a resource in a system
other than its owning system.

For example, in Figure 16, a CICS OS/2 system A function ships a write request
for a file FILEA to a CICS/400 system C. The request is sent across a serial
connection through a second CICS/400 system B. “Function shipping” on page 4
shows that the data conversion requirements for FILEA are defined to system B,
because that is where conversion takes place.

15. A serial connection was formerly called daisy chaining.

Figure 16. Function shipping. CICS OS/2 to CICS/400 with serial connection through CICS/400.

90 CICS for iSeries Intercommunication V5

Distributed transaction processing
DTP uses application-specific data areas and cannot have a general procedure for
data conversion. It is the application’s responsibility to perform data conversion.
Application design determines whether conversion is in CICS/400 or the remote
CICS system.

Using the QDCXLATE function, a CICS/400 application program can link directly
to the OS/400 conversion program. For details, refer to the CL Programming book.

Avoiding data conversion
Application design can reduce the amount of data conversion. For example, if a
CICS/400 systems acts as a file manager for CICS OS/2 systems, the data in the
file can be coded in ASCII, eliminating the need for data conversion.

If data is held at a CICS OS/2 workstation purely for the purpose of
communicating with a CICS/400 system, the data can be coded in EBCDIC.

Types of Conversion
The possible types of conversion are:

Standard conversion
This applies to normal or single-byte character sets (SBCS), graphic or
double-byte character sets (DBCS), mixed character sets (containing SBCS
and DBCS data), and numeric data in Intell format.

No conversion
This applies to binary and packed decimal data. Treat other data as though
it were binary if you do not want it converted.

Resource definition
The CICS for iSeries Administration and Operations Guide gives a full description of
the CICS/400 resource definition commands for data conversion. This section
contains guidance information for the important parameters of the ADCICSCVT
command, which adds an entry to the CICS/400 conversion vector table (CVT).
This guidance also applies to the same parameters when used to change or work
with an entry (CHGCICSCVT and WRKCICSCVT commands).

Conversion Vector Table definition, ADDCICSCVT
The Add CICS/400 Conversion Vector Table (ADDCICSCVT) command adds an
entry to the CVT. Each entry is associated with a specific resource and defines the
conversion of user data transmitted to and from that resource during
intercommunication between CICS/400 and either CICS OS/2 or CICS/6000. For
full details, see the CICS for iSeries Administration and Operations Guide.

Required parameters
API command type (CMDTYPE)

Specifies the type of command for which this entry is used. Code
CMDTYPE(*FILE), CMDTYPE(*TDQUEUE), CMDTYPE(*TSQUEUE),
CMDTYPE(*START), or CMDTYPE(*LINK) for a file, transient data queue,
temporary storage queue, transaction initiated by a START command, or
program initiated by DPL, respectively.

Resource identifier (RSRCID)
Specifies the name of the resource, file (CMDTYPE(*FILE)), transient data

Chapter 9. Data conversion 91

destination (CMDTYPE(*TDQUEUE)), temporary storage queue
(CMDTYPE(*TSQUEUE)), transaction (CMDTYPE(*START)), or program
(CMDTYPE(*LINK)).

Character identifier (CNVCHRID)
Specifies the code page and graphic character set to which or from which data
is to be converted in transmissions between CICS/400 and a remote CICS
system. This parameter is used in conjunction with the OS/400 system value
QCHRID, which defines the local system code page and character set.

In the OS/400 library QUSRSYS, there are several conversion tables (objects of
type *TBL). Data conversion requires two tables, one to convert from the
remote code page and character set to the local code page and character set,
and one to reverse the procedure.

The names of the tables to be used are derived from the CNVCHRID
parameter and the system QCHRID value, as follows:
v To convert from remote to local code page and character set Qaaadddccc

v To converyt from local to remote code page and character set Qcccbbbaaa

where
aaa is the code page specified in CNVCHRID
bbb is the graphic character set specified in CNVCHRID
ccc is the code page specified in QCHRID
ddd is the graphic character set specified in QCHRID

If either table is not found in library QUSRSYS, message AEG7616 or AEG7617
is issued at startup or during dynamic installation.

If you cannot find tables in QUSRSYS that match your code page and graphic
character set, you may find it useful to use a CNVCHRID of 999 999 and copy the
standard QSYS/QASCII *TBL and QSYS/QEBCDIC *TBL into QUSRSYS and call
them Qccc999999 and Q999dddccc respectively.

Optional parameters
Conversion information (CNVINF)

Specifies default conversion specifications for each user-data field. These
specifications are used to convert data that does not satisfy any of the criteria
specified in the SLTCTL parameter. For each field, this parameter gives:
v Offset from the beginning of the record
v Length
v Type of conversion
v SO/SI indicator

Note: When user data contains multiple record formats, use the SLTCTL
parameter to select each type of record and specify its conversion
specifications. If the SLTCTL parameter is coded, CICS/400 applies
CNVINF specifications only to record types not selected by the SLTCTL
criteria. The CNVINF parameter has 4 elements, which define a field
and its conversion requirements. You can repeat the 4-element sequence
up to 30 times to define up to 30 fields.

Starting location
Specifies the offset from the start of the record of the field to be converted. The
default is 0 (field begins at the start of the record).

92 CICS for iSeries Intercommunication V5

Type of conversion
Specifies the type of conversion. The possible values are:

*CHAR
Character data. CICS/400 converts incoming data form the
CNVCHRID code page to the OS/400 code page specified in the
QCHRID system value.

*PACKED
Packed decimal data. CICS/400 does not convert the data.

*BINARY
Binary data. CICS/400 does not convert the data

*IDEOGRAPHIC
Ideographic-based language. CICS/400 converts incoming data from
the CNVCHRID-specified ideographic code page to the OS/400 code
page specified in the OS/400 QCHRID system value.

*INTEL
INTEL integer data. CICS/400 converts incoming INTEL data by
reversing the bytes. The length of the field must be a 2 or 4.

Length of conversion
Specifies the length of the field. For data in INTEL format, this parameter must
specify 2 or 4.

User-specified DBCS data
Specifies YES or NO to indicate whether or not shift out/shift in (SO/SI)
characters are embedded in the record to indicate the beginning and end of
double-byte character data. If YES is specified, and the language is not
ideographic-based, CICS/400 converts only the data before the SO character
and after the SI character. This parameter is ignored if the type of conversion is
not *CHAR.

Key conversion data (KEYINF)
Specifies conversion specifications for each field in the key. This parameter is
used only for files (RSRCID(*FILE)). The key information is found in the
OS/400 data description specification (DDS) used to create the file. For each
field, this parameter gives:
v Offset from the beginning of the record
v Length
v Type of conversion
v SO/SI indicator

The KEYINF parameter has 4 elements, which define a field and its conversion
requirements. You can repeat the 4-element sequence up to 30 times to define
up to 30 fields. The 4 elements are specified and processed in exactly the same
way as the 4 elements of the CNVINF parameter (see 92).

Selection criteria (SLTCTL)
Selection criteria for selecting different record types within transmitted data,
and conversion specifications for records that meet each set of criteria. If this
parameter is coded, CICS/400 applies CNVINF specifications to any record
types not selected by the SLTCTL criteria.

The SLTCTL parameter has 4 elements, which can be repeated up to 30 times
to specify up to 30 selection criteria:

Chapter 9. Data conversion 93

Starting location
Offset in the record where the comparison starts. The default is 0
(comparison begins at the start of the record).

Character or hex format
Format of selection data, character (*CHAR) or hexadecimal (*HEX).

Value to compare against
The selection data that is to be compared against the defined part of
the data record. The value is specified in a variable called text, which
consists of up to 254 hexadecimal digits or 127 alphanumeric
characters.

Selection information
Conversion specifications for each field in a record that matches the
selection criteria specified in the first 3 elements. For each field, this
parameter gives:
v Starting location
v Type of conversion
v Length of conversion
v User specified DBCS data

The selection information has 4 elements which define a field and its
conversion requirements. These elements have the same meanings and
are specified in the same way as the corresponding elements of the
CNVINF and KEYINF parameters. You can define up to 30 fields.
However, unlike the CNVINF and KEYINF parameters, you do not
repeat the 4-element sequence – instead you repeat each element
separately the required number of times.

For example, to define three files as follows:
Field 1, with elements a1, b1, c1, d1
Field 2, with elements a2, b2, c2, d2
Field 3, with elements a3, b3, c3, d3

For CNVINF and KEYINF, code:
a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3

For selection information, code:
a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

The screen menu enforces these data-entering sequences.

Example
This command adds a CVT entry, called LCVT, to a CICS/400 group, called
GROUP, in an OS/400 library called CICSWORK.
ADDCICSCVT LIB(CICSWORK) GROUP (GROUP) CMDTYPE(*FILE) RSRCID(REMTFILE)

CNVCHRID(850 337) CVNINF(6 *CHAR 80 *NO) KEYINF(0 *CHAR 6 *NO)

Because no selection criteria are specified, all records for file FILEA are processed
using code page 850 and character set 337. The key to be converted consists of
character data and starts at the beginning of the record for a length of 6. The rest
of the record is character data starting after the key for a length of 80.

94 CICS for iSeries Intercommunication V5

This example complements the example on “Example” on page 69, which shows a
remote file definition to support function shipping in an application-owning region
(AOR). This example shows the corresponding definition in the file-owning region
(FOR).

Chapter 9. Data conversion 95

96 CICS for iSeries Intercommunication V5

Part 3. Distributed transaction programming

Chapter 10. Designing distributed applications 99
Design objectives 99

Avoiding performance problems 99
Facilitating maintenance 99
Aiming for reliability 99
Protecting sensitive data 99
Maintaining connectivity 99
Safeguarding data integrity. 100

Designing conversations 100
Selecting the APPC programming interface . . . 100

Chapter 11. APPC mapped conversation flow 103
Starting the conversation 103

Conversation initiation 103
Allocating a session to the conversation . . 103
Connecting the partner transaction 104
Initial data for the back-end transaction . . 104

Back-end transaction initiation. 105
Failure of back-end transaction to start 107

Transferring data on the conversation 107
Sending data to the partner transaction. . . . 108
Switching from sending to receiving data . . . 108
Receiving data from the partner transaction . . 110
The EXEC CICS CONVERSE command. . . . 111

Communicating errors across a conversation . . . 111
Requesting INVITE from the partner transaction 111
Demanding INVITE from the partner transaction 111

Safeguarding data integrity (using sync level 1) . . 112
How to synchronize a conversation 112

Requesting confirmation 112
Receiving and replying to a confirmation
request 113
Checking the response to EXEC CICS SEND
CONFIRM commands 113

Ending the conversation 114
Normal termination of a conversation 114
Emergency termination of a conversation . . . 114
Unexpected termination of a conversation . . . 115

Checking the outcome of a DTP command . . . 115
Testing for request failure 115
Testing for indicators 115
Checking EIB fields and the conversation state 118

Summary of CICS commands for APPC mapped
conversations 118

Chapter 12. Syncpointing a distributed process 121
The EXEC CICS SYNCPOINT command 121
The EXEC CICS ISSUE PREPARE command . . . 122
The EXEC CICS SYNCPOINT ROLLBACK
command 122

Conversation state after SYNCPOINT
ROLLBACK 122

When a backout is required 123
Synchronizing two CICS systems 123

EXEC CICS SYNCPOINT in response to EXEC
CICS SYNCPOINT 123
EXEC CICS SYNCPOINT in response to EXEC
CICS ISSUE PREPARE 125
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT
ROLLBACK 126
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT 127
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS ISSUE PREPARE . . . 128
EXEC CICS ISSUE ERROR in response to EXEC
CICS SYNCPOINT 129
EXEC CICS ISSUE ERROR in response to EXEC
CICS ISSUE PREPARE 130
EXEC CICS ISSUE ABEND in response to EXEC
CICS SYNCPOINT 131
EXEC CICS ISSUE ABEND in response to EXEC
CICS ISSUE PREPARE 132
Session failure in response to EXEC CICS
SYNCPOINT 133
Session failure in response to EXEC CICS ISSUE
PREPARE 135
Session failure in response to EXEC CICS
SYNCPOINT ROLLBACK 135

Synchronizing three or more CICS systems . . . 136
EXEC CICS SYNCPOINT in response to EXEC
CICS SYNCPOINT 136
EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT 138
Session failure and the in-doubt period. . . . 140

What really flows between APPC systems 140

Chapter 13. State transitions in APPC mapped
conversations. 145
The state tables for APPC mapped conversations 145

How to use the state tables 145
APPC mapped conversations at sync level 0 146
APPC mapped conversations at sync level 1 148

APPC mapped conversations at sync level 2 . . 150
APPC mapped conversations at sync level 2
(continued) 152
Initial states 154

Testing the conversation state 154

Unlike the other CICS intercommunication facilities, distributed transaction
processing requires complex programming. For that reason, the subject is treated
here in a separate part, consisting of three chapters of programming guidance.

© Copyright IBM Corp. 2002 97

Apart from the definition of connections to remote systems as described in
Chapter 2, “Configuring CICS/400 for intercommunication” on page 11, distributed
transaction processing has no special resource-definition requirements. All
transactions and programs involved require only local definitions.

98 CICS for iSeries Intercommunication V5

Chapter 10. Designing distributed applications

CICS/400 uses the SNA LU6.2 (APPC) protocols for intercommunication. In the
design of distributed applications to run under APPC, two major areas are the
overall structure of the distributed application and the design of the conversations.
There is also a choice of API between the CICS family API and the CPI
communications interface, which is available on OS/400 and on some CICS
products, but not on CICS/400.

Design objectives
The design of a distributed application involves several conflicting objectives,
including performance, ease of maintenance, reliability, security, connectivity, and
data integrity.

Avoiding performance problems
If performance is the highest priority, design the application so that data is
processed as close to its source as possible. This avoids unnecessary transmission
of data across the network. If processing can be deferred, consider batching data
locally before transmission.

To maintain performance across an intersystem connection, free a conversation as
soon as possible, so that the session can be used by other transactions. In
particular, avoid holding a conversation across a terminal wait.

Facilitating maintenance
To correct errors or to adapt to the evolving needs of an organization, distributed
applications inevitably need to be modified. Whether these changes are made by
the original developers or by others, this task is easier if the distributed design is
relatively simple. To facilitate maintenance, consider minimizing the number of
transactions involved in a distributed process.

Aiming for reliability
As with ease of maintenance, consider reliability as inversely proportional to the
number of transactions in the distributed process—that is, the fewer the
transactions, the more reliable the process is likely to be.

Protecting sensitive data
If a distributed application handles security-sensitive data, one way to protect this
data is to place it all on a single system. This means that only one of the
transactions needs knowledge of how or where the sensitive data is stored.

Maintaining connectivity
If you require connectivity to transactions running in another CICS product, check
the CICS Family: Interproduct Communication manual to ensure that the required
functions are supported between CICS/400 and the remote CICS product.

The following aspects of distributed process design differ from single-system
considerations:

© Copyright IBM Corp. 2002 99

Data conversion
If the remote system is a non-EBCDIC APPC logical unit (for example, CICS
OS/2), some data conversion may be required either on receipt or on sending
of data.

Using multiple conversations
In multiple, serial conversations, different conversation identifiers may be
provided to the transaction by CICS. Therefore, do not use a conversation
identifier for naming resources, for example, temporary storage queues.

Safeguarding data integrity
OS/400 communication across APPC connections supports synchronization level 2;
therefore full synchronization of a distributed unit of work is assured. Confirm
flows are also supported.

Designing conversations
When the overall structure of the distributed process has been decided, you can
start to design individual conversations. Designing a conversation involves
deciding which functions to put into the front-end16 and back-end 17 transactions,
and determining what should be in a distributed unit of work. You must decide
how to subdivide the work.

Because a conversation involves transferring data between two transactions, each
transaction must know what the other intends. You must consider each front-end
and back-end transaction pair as one software unit.

The sequences of commands you can issue on a conversation are governed by a
protocol designed to ensure that commands are not issued in inappropriate
circumstances. The protocol is based on the concept of a number of conversation
states. A conversation state applies only to one side of a conversation and not to
the conversation as a whole. In each state, there are a number of commands that
can validly be issued. A command, together with its outcome, can change the
states on each side of a conversation.

To determine the conversation state, you can use either the STATE parameter on a
command or the EXEC CICS EXTRACT ATTRIBUTES STATE command. When a
conversation changes state, it is said to have undergone a state transition, which
generally makes a different set of commands available. The available commands
and state transitions are shown in a series of state tables. Which state table you use
depends on the sync level and interface chosen. For the state tables for sync levels
0, 1, and 2, see Chapter 13, “State transitions in APPC mapped conversations” on
page 145.

Selecting the APPC programming interface
CICS/400 supports the CICS family application programming interface (API) for
coding DTP conversations on APPC sessions. Some other members of the CICS
family support the Systems Application Architecture* (SAA*) communication
interface, which is supported by OS/400, but not by CICS/400.

16. The front-end transaction initiates the conversation.

17. The back-end transaction is initiated by the front-end transaction.

100 CICS for iSeries Intercommunication V5

v CICS API, is the programming interface of the CICS implementation of the
APPC architecture. It consists of EXEC CICS commands, which can be used in
COBOL or C application programs.

v Common Programming Interface Communications (CPI Communications) is
the communications interface defined by SAA. It consists of a set of defined
verbs in the form of program calls that are adapted for the language being used.

Table 6 compares CICS API and SAA CPI.

Table 6. CICS/400 API compared with CPI Communications interface

CICS/400 API SAA CPI communications interface

Supports portability between different
members of the CICS family.

Supports portability between systems that
support CPI (not CICS/400).

Supports only mapped conversations. Supports basic conversations programmed in
any of the available SAA languages.

Supports outbound PIP data. Does not support PIP data.

Can be used on the principal facility of a
transaction started by automatic transaction
initiation (ATI).

Cannot be used on the principal facility of a
transaction started by ATI.

Provides commands similar to those used to
communicate with IBM 3270 terminals.

Provides commands similar to those used to
define the APPC architecture.

Supports passing of parameters on a
command.

Requires parameter values to be set by
special commands before the issue of the
command to which the parameters refer.

For further information about CPI Communications, see the SAA CPI manual
referenced below.

It is possible to implement a distributed application in which one partner uses CPI
Communications calls and the other uses the CICS API. To do this you must know
how the APIs on both sides map to the APPC architecture. This is described in the
following two books:
v CICS/ESA 3.3 Distributed Transaction Programming Guide, SC33-0783-01
v CPI Communications Reference, SC26-4399-09

Chapter 10. Designing distributed applications 101

102 CICS for iSeries Intercommunication V5

Chapter 11. APPC mapped conversation flow

General-use programming interface

This section introduces some of the DTP commands for APPC mapped
conversations. It introduces each command in the context of a typical conversation
flow and ends with a general discussion on how to test the responses from a DTP
command.

The main headings in the section are:
v “Starting the conversation”
v “Transferring data on the conversation” on page 107
v “Communicating errors across a conversation” on page 111
v “Safeguarding data integrity (using sync level 1)” on page 112
v “Ending the conversation” on page 114
v “Checking the outcome of a DTP command” on page 115
v “Summary of CICS commands for APPC mapped conversations” on page 118

Starting the conversation
This section describes how to get a conversation started. The first two subsections
explain how the front-end transaction and the back-end transaction initiate the
conversation, and the third subsection considers the possibility of failure at the
initiation stage. This section also contains program fragments illustrating the use of
commands and the checking of response codes.

Conversation initiation
The front-end transaction acquires a session, specifies the conversation
characteristics, and requests the startup of the back-end transaction.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state. By issuing
an EXEC CICS ALLOCATE command, the front-end transaction acquires a session
to start a new conversation.

The RESP value returned should be checked to ensure that a session has been
allocated. If the session is successfully allocated, DFHRESP(NORMAL) is returned,
the conversation is in allocated state (state 1), and the session identifier (convid)
in EIBRSRCE must be saved immediately for use in subsequent commands for this
conversation. Figure 17 on page 104 shows an example of an EXEC CICS
ALLOCATE command.

© Copyright IBM Corp. 2002 103

Connecting the partner transaction
When the front-end transaction has acquired a session, the next step is to initiate
the partner transaction. The state tables show that, in the allocated state (state 1),
one of the commands available is EXEC CICS CONNECT PROCESS. This
command allows the conversation characteristics to be specified and attaches the
required back-end transaction. It should be noted that the results of the EXEC
CICS CONNECT PROCESS command are placed in the send buffer and are not
sent immediately to the partner system. Transmission occurs when the send buffer
is cleared, either by sending more data than fits in the send buffer or by issuing an
EXEC CICS WAIT CONVID command.

A successful EXEC CICS CONNECT PROCESS command causes the conversation
to switch to send state (state 2). The program fragment in Figure 17 shows an
example of an EXEC CICS CONNECT PROCESS command.

Initial data for the back-end transaction
Various members of the CICS product family support the sending of initial data by
the front-end transaction to the back-end transaction. This initial data is called
program initialization parameters, abbreviated to PIPs or PIP data.

CICS/400 support for PIP data is restricted to the sending of the data.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONV PIC X(4).
02 WS-RESP PIC S9(8) BINARY.
02 WS-STATE PIC S9(8) BINARY.
02 WS-SYSID PIC X(4) VALUE ’SYSB’.
02 WS-PROC PIC X(4) VALUE ’BBBB’.
02 WS-LEN-PROCN PIC S9(5) BINARY VALUE +4.
02 WS-SYNC-LVL PIC S9(5) BINARY VALUE +1.

* ...

PROCEDURE DIVISION.
* ...

EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP) END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN MOVE EIBRSRCE TO WS-CONVID
ELSE

* ... No session allocated. Examine RESP code.
END-IF.

* ...
EXEC CICS CONNECT PROCESS CONVID(WS-CONV) STATE(WS-STATE)

RESP(WS-RESP) PROCNAME(WS-PROC)
PROCLENGTH(WS-LEN-PROCN)
SYNCLEVEL(WS-SYNC-LVL)

END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... No errors. Check EIB flags.
ELSE

* ... Conversation not started. Examine RESP code.
END-IF.

Figure 17. Starting an APPC mapped conversation

104 CICS for iSeries Intercommunication V5

A CICS/400 back-end transaction cannot receive PIP data. The translator fails if it
detects the PIPLIST or PIPLENGTH options on an EXEC CICS EXTRACT
PROCESS command. In general, CICS/400 ignores incoming PIP data; however, if
the receiving subsystem uses prestarted jobs, and the length of the PIP data is 2000
bytes or more, OS/400 abends the job.

While connecting the back-end transaction, a CICS/400 front-end transaction can
place PIPs in specially formatted structures. The PIPLIST option of the EXEC CICS
CONNECT PROCESS command is used to send PIPs to the back-end transaction.

PIP data is used only by the two connected transactions and not by the CICS
systems. APPC systems other than CICS may not support PIP, or may support it
differently.

The PIP data must be formatted into one or more subfields according to the
SNA-architected rules. The content of each subfield is defined by the application
developer. You should format PIP data as follows:

where Ln is a 2-byte binary integer specifying the length of the subfield, and rr
represents 2 reserved bytes. The length includes the length field itself and the
length of the reserved field; that is, Ln = (length of PIPn + 4).

CICS inserts information into the reserved fields to make the PIP architecturally
correct. The PIPLENGTH option specifies the total length in bytes of the PIP list,
and must be in the range 4 through 32763.

Back-end transaction initiation
The back-end transaction is initiated as a result of the front end transaction’s EXEC
CICS CONNECT PROCESS command. Initially, the back-end transaction should
determine the conversation identifier (CONVID). This is not strictly necessary
because the session is the back-end transaction’s principal facility, making the
CONVID parameter nonmandatory for DTP commands on this conversation.
However, the CONVID is useful for audit trails. Also, if the back-end transaction is
involved in more than one conversation, always specifying the CONVID parameter
improves program readability and problem determination.

Chapter 11. APPC mapped conversation flow 105

Figure 18 shows a fragment of a back-end transaction that does obtain the
conversation identifier. Although the example uses the EXEC CICS ASSIGN
command for this purpose, a simpler way would be to access the information in
the EIBTRMID field in the EXEC interface block (EIB), which is addressable by
CICS application programs.

The back-end transaction can also retrieve its transaction name by issuing the
EXEC CICS EXTRACT PROCESS command. In the example shown in Figure 18,
CICS places the transaction name in WS-PROC and the length of the name in
WS-LEN-PROCN. With the EXEC CICS EXTRACT PROCESS command, the
back-end transaction can also retrieve the sync level at which the conversation was
started. In the example, CICS places the sync level in WS-SYNC-LVL.

Both the EXEC CICS ASSIGN and the EXEC CICS EXTRACT PROCESS commands
are discussed here only to give you some idea of what you can do in the back-end
transaction. They are not essential. The back-end transaction starts in receive state
(state 5), and must issue an EXEC CICS RECEIVE command. By doing this, the
back-end transaction receives whatever data the front-end transaction has sent and
allows CICS to raise EIB flags and change the conversation state to reflect any
request the front-end transaction has issued.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) BINARY.
02 WS-SYSID PIC X(4) VALUE ’SYSB’.
02 WS-PROC PIC X(32).
02 WS-LEN-PROCN PIC S9(5) BINARY VALUE +4.
02 WS-SYNC-LVL PIC S9(5) BINARY VALUE +1.

* ...
01 FILLER.

02 WS-RECORD PIC X(100).
02 WS-MAX-LEN PIC S9(5) BINARY VALUE +100.
02 WS-RCVD-LEN PIC S9(5) BINARY VALUE +0.

* ...

PROCEDURE DIVISION.
* ...

EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.
* ...
* Extract the conversation characteristics.
*

EXEC CICS EXTRACT PROCESS PROCNAME(WS-PROC)
PROCLENGTH(WS-LEN-PROCN)
SYNCLEVEL(WS-SYNC-LVL)

END-EXEC.
* ...
* Receive data from the front-end transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RECORD) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 18. Starting a back-end APPC mapped transaction at sync level 1

106 CICS for iSeries Intercommunication V5

Failure of back-end transaction to start
If the back-end transaction fails to start, CICS raises the TERMERR condition in
response to an EXEC CICS command issued by the front-end transaction. Because
APPC works asynchronously, TERMERR may not be raised until several
commands have been issued. On receipt of a TERMERR condition, EIBERR,
EIBFREE, and EIBERRCD are set. For the possible values of EIBERRCD, see
Table 10 on page 116.

Before sending data, the front-end transaction can find out whether the back-end
transaction has started successfully. One way of doing this is to issue an EXEC
CICS SEND CONFIRM command directly after the EXEC CICS CONNECT
PROCESS command. This causes the front-end transaction to be suspended until
the back-end transaction has responded or has sent the TERMERR condition. The
EXEC CICS SEND CONFIRM command is discussed in “How to synchronize a
conversation” on page 112.

Transferring data on the conversation

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) BINARY.

* ...
01 FILLER.

02 WS-SEND-AREA PIC X(70).
02 WS-SEND-LEN PIC S9(5) BINARY VALUE +70.

* ...
01 FILLER.

02 WS-RCVD-AREA PIC X(100).
02 WS-MAX-LEN PIC S9(5) BINARY VALUE +100.
02 WS-RCVD-LEN PIC S9(5) BINARY VALUE +0.

* ...

PROCEDURE DIVISION.
* ...

EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
FROM(WS-SEND-AREA) LENGTH(WS-SEND-LEN)

END-EXEC.
* ... Check outcome of SEND.
* ...
*

EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
INVITE WAIT

END-EXEC.
* ...
* Receive data from the partner transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RCVD-AREA) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 19. Transferring data on a conversation

Chapter 11. APPC mapped conversation flow 107

This section discusses how to pass data between the front- and back-end
transactions. The first subsection explains how to send data, the second describes
how to switch from sending to receiving data, and the third explains how to
receive data. This section also contains a program fragment illustrating the
commands described below and the suggested response code checking.

Sending data to the partner transaction
The EXEC CICS SEND command is valid only in send state (state 2). Because a
successful simple EXEC CICS SEND command leaves the sender in send state
(state 2), it is possible to issue a number of successive sends. The data from a
simple EXEC CICS SEND command is initially stored in a local CICS buffer that is
cleared either when it is full or when the transaction requests transmission. Data
transmission is deferred to reduce the number of calls to the network. If the
partner transaction requires the data to continue processing, the sending
transaction can request immediate transmission either by using an EXEC CICS
WAIT CONVID command or by using the WAIT option on the EXEC CICS SEND
command.

An example of a simple EXEC CICS SEND command can be seen in Figure 19 on
page 107.

Switching from sending to receiving data
The column for send state (state 2) in the state tables (see 145) shows that there
are several ways of switching from send state (state 2) to receive state (state 5).

One possibility is to use an EXEC CICS RECEIVE command. The state tables show
that CICS supplies the INVITE and WAIT options when an EXEC CICS SEND
command is followed immediately by an EXEC CICS RECEIVE command.

Another possibility is to use an EXEC CICS SEND INVITE command. The state
tables show that after an EXEC CICS SEND INVITE command, the conversation
switches to pendreceive state (state 3). The column for state 3 shows that an
EXEC CICS WAIT CONVID command switches the conversation to receive state
(state 5).

Still another possibility is to specify the INVITE and WAIT parameters on the
EXEC CICS SEND command. The state tables show that after an EXEC CICS SEND
INVITE WAIT command, the conversation switches to receive state (state 5).

An example of an EXEC CICS SEND INVITE WAIT command can be seen in
Figure 19 on page 107. Figure 20 on page 109 illustrates the response-testing
sequence after an EXEC CICS SEND INVITE WAIT command with the STATE
option. For more information about response testing, see “Checking the outcome of
a DTP command” on page 115.

108 CICS for iSeries Intercommunication V5

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-RESP PIC S9(7) BINARY.
02 WS-STATE PIC S9(7) BINARY.

* ...

PROCEDURE DIVISION.
* ...
* Check return code from SEND INVITE WAIT

IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... Request successful
IF EIBERR = LOW-VALUES
THEN

* ... No errors, check state
IF WS-STATE = DFHVALUE(RECEIVE)
THEN

* ... SEND OK, continue processing
ELSE

* ... Logic error, should never happen
END-IF

ELSE
* ... Error indicated

EVALUATE WS-STATE
WHEN DFHVALUE(RECEIVE)

* ... ISSUE ERROR received, reason in EIBERRCD
WHEN OTHER

* ... Logic error, should never happen
END-EVALUATE

END-IF
ELSE

* ... Examine RESP code for source of error.
END-IF.

Figure 20. Checking the outcome of an EXEC CICS SEND INVITE WAIT command

Chapter 11. APPC mapped conversation flow 109

Receiving data from the partner transaction

The EXEC CICS RECEIVE command is used to receive data from the connected
partner. The rows in the state tables for the EXEC CICS RECEIVE command show
the EIB fields that should be tested after issuing an EXEC CICS RECEIVE
command. As well as showing which field should be tested, the state tables also
show the order in which the tests should be made.

As an alternative to testing the EIB fields it is possible to test the resulting
conversation state; this is shown in Figure 21. The conversation state can be

* ...
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-RESP PIC S9(8) BINARY.
02 WS-STATE PIC S9(8) BINARY.

* ...
PROCEDURE DIVISION.
* ...
* Check return code from RECEIVE

IF WS-RESP = DFHRESP(EOC)
OR WS-RESP = DFHRESP(NORMAL)
THEN

* ... Request successful
IF EIBERR = LOW-VALUES
THEN

* ... No errors, check state
EVALUATE WS-STATE

WHEN DFHVALUE(CONFFREE)
* ... Partner issued CONFIRM and LAST

(Sync level 1 only)
WHEN DFHVALUE(CONFRECEIVE)

* ... Partner issued CONFIRM
(Sync level 1 only)

WHEN DFHVALUE(CONFSEND)
* ... Partner issued CONFIRM and INVITE

(Sync level 1 only)
WHEN DFHVALUE(FREE)

* ... Partner issued LAST or FREE
WHEN DFHVALUE(SEND)

* ... Partner issued INVITE
WHEN DFHVALUE(RECEIVE)

* ... No state change. Check EIBCOMPL.
WHEN OTHER

* ... Logic error, should never happen
END-EVALUATE.

ELSE
* ... Error indicated

EVALUATE WS-STATE
WHEN DFHVALUE(RECEIVE)

* ... ISSUE ERROR received, reason in EIBERRCD
WHEN DFHVALUE(FREE)

* ... ISSUE ABEND received, reason in EIBERRCD
WHEN OTHER

* ... Logic error, should never happen
END-EVALUATE

END-IF
ELSE

* ... Examine RESP code for source of error
END-IF.

Figure 21. Checking the outcome of an EXEC CICS RECEIVE command

110 CICS for iSeries Intercommunication V5

meaningfully tested only after issuing a command with the STATE parameter or by
using the EXEC CICS EXTRACT ATTRIBUTES STATE command. Note that the
RESP value returned and EIBERR should always be tested.

If EIBNODAT is set on (X'FF'), no data has been received. For more information
about response testing, see “Checking the outcome of a DTP command” on
page 115. For information about testing the conversation state, see “Testing the
conversation state” on page 154.

An example of an EXEC CICS RECEIVE command with the STATE parameter can
be seen in Figure 19 on page 107. Figure 21 illustrates the response-testing and
state-testing sequence.

The EXEC CICS CONVERSE command
The EXEC CICS CONVERSE command combines the functions of the EXEC CICS
SEND INVITE WAIT and EXEC CICS RECEIVE commands, and is useful when a
transaction needs a response from its partner transaction to continue processing.

Communicating errors across a conversation
The APPC mapped API provides commands to enable transactions to pass error
notification across a conversation. There are three commands depending on the
severity of the error—the most severe, EXEC CICS ISSUE ABEND, causes the
conversation to terminate abnormally and is described in “Emergency termination
of a conversation” on page 114. The other two commands are described below.

Requesting INVITE from the partner transaction
If a transaction is receiving data on a conversation and wants to send, it can use
the EXEC CICS ISSUE SIGNAL command to ask the partner transaction to issue an
EXEC CICS SEND INVITE command. When the EXEC CICS ISSUE SIGNAL
request is received, EIBSIG=X'FF' and the SIGNAL condition is raised. Note that on
receipt of an EXEC CICS ISSUE SIGNAL command, a transaction is not obliged to
issue an EXEC CICS SEND INVITE command.

Demanding INVITE from the partner transaction
If a transaction needs to send an immediate error notification to the partner
transaction, it can use the EXEC CICS ISSUE ERROR command. This command is
also one of the preferred negative responses to an EXEC CICS SEND CONFIRM
command. When the EXEC CICS ISSUE ERROR command is received,
EIBERR=X'FF' and the first two bytes of EIBERRCD are X'0889'. This error
condition cannot be processed by an EXEC CICS HANDLE CONDITION
command and cannot be tested by the RESP parameter that can be coded on any
command. It can be detected only by testing EIBERR and EIBERRCD.

If an EXEC CICS ISSUE ERROR command is used in receive state (state 5), all
incoming data is purged until an EXEC CICS SEND INVITE or EXEC CICS SEND
LAST command is received. If an EXEC CICS SEND LAST command is received,
no error indication is sent to the partner transaction, EIBFREE=X'FF' and the
conversation is switched to free state (state 12).

If an EXEC CICS SEND INVITE command is received, the conversation is switched
to send state (state 2). It is normal programming practice to communicate the

Chapter 11. APPC mapped conversation flow 111

reason for the EXEC CICS ISSUE ERROR command to the partner transaction. The
EXEC CICS CONVERSE command could be used to send an appropriate error
message and receive a reply.

Because an EXEC CICS ISSUE ERROR command is allowed in both send state
(state 2) and receive state (state 5), it is possible for both communicating
transactions to use an EXEC CICS ISSUE ERROR command at the same time.
When this occurs, only one of the EXEC CICS ISSUE ERROR commands is
effective. The other is purged with incoming data. However, both EXEC CICS
ISSUE ERROR commands will appear to have completed successfully and the
transaction whose EXEC CICS ISSUE ERROR command was purged will pick up
EIBERR=X'FF' on a subsequent command.

Safeguarding data integrity (using sync level 1)
CICS/400 supports sync-level 2 protocols (using the SYNCPOINT and
SYNCPOINT ROLLBACK commands) which are described in Chapter 12,
“Syncpointing a distributed process” on page 121. This section describes what you
can do to safeguard data integrity across connected transactions that can use only
sync-level 1 protocols. For sync-level 1 conversations, you have two CICS
synchronization commands available:

EXEC CICS SEND CONFIRM
EXEC CICS ISSUE CONFIRMATION

How to synchronize a conversation
A confirmation exchange affects a single specified conversation and involves only
the two commands mentioned above:
1. The conversation that is in send state (state 2) issues an EXEC CICS SEND

CONFIRM command causing a request for confirmation to be sent to the
partner transaction. The transaction suspends awaiting a response.

2. The partner transaction receives a request for confirmation. It can then respond
positively by issuing an EXEC CICS ISSUE CONFIRMATION command.
Alternatively, it can respond negatively by using the EXEC CICS ISSUE ERROR
or EXEC CICS ISSUE ABEND commands.

The following sections describe these commands in more detail. The descriptions
refer to the state tables.

Requesting confirmation
The CONFIRM parameter of the EXEC CICS SEND command clears the
conversation send buffer; that is, it causes a transmission to occur. When the
conversation is in send state (state 2), you can send data with the EXEC CICS
SEND CONFIRM command. You can also specify either the INVITE or the LAST
parameter.

The send state (state 2) column of the state table for APPC mapped conversations
at sync level 1 148 shows what happens for the possible combinations of the
CONFIRM, INVITE, and LAST parameters. After an EXEC CICS SEND CONFIRM
command, without the INVITE or LAST parameters, the conversation remains in
send state (state 2). If the INVITE parameter is used, the conversation switches to
receive state (state 5). If the LAST parameter is used, the conversation switches to
free state (state 12).

A similar effect to an EXEC CICS SEND LAST CONFIRM command can be
achieved by using the command sequence:

112 CICS for iSeries Intercommunication V5

EXEC CICS SEND LAST
EXEC CICS SEND CONFIRM

Note from the state tables that the EXEC CICS SEND LAST command puts the
conversation into pendfree state (state 4), so data cannot be sent with an EXEC
CICS SEND CONFIRM command used in this way.

The form of command used depends on how the conversation is to continue if the
required confirmation is received. However, the response from an EXEC CICS
SEND CONFIRM command must always be checked. See Checking the response to
EXEC CICS SEND CONFIRM commands.

Receiving and replying to a confirmation request
On receipt of a confirmation request, the EIB and conversation state will be set
depending on the request issued by the partner transaction. These together with
the contents of the EIBCONF, EIBRECV, and EIBFREE fields are shown in Table 7.

Table 7. Indications of a confirmation request

Command issued by partner
transaction

On receipt of request

Conversation
state

EIBCONF EIBRECV EIBFREE

SEND CONFIRM confreceive
(state 6)

X'FF' X'FF' X'00'

SEND INVITE CONFIRM confsend (state 7) X'FF' X'00' X'00'

SEND LAST CONFIRM conffree (state 8) X'FF' X'00' X'FF'

There are three ways of replying:
1. Reply positively with an EXEC CICS ISSUE CONFIRMATION command.
2. Reply negatively with an EXEC CICS ISSUE ERROR command. This reply puts

the conversation into send state (state 2) regardless of the partner transaction
request.

3. Abnormally end the conversation with an EXEC CICS ISSUE ABEND
command. This makes the conversation unusable and an EXEC CICS FREE
command must be issued immediately.

Checking the response to EXEC CICS SEND CONFIRM
commands
After issuing EXEC CICS SEND [INVITE³LAST] CONFIRM, it is important to test
EIBERR to determine the partner’s response. Table 8 shows how the partner’s
response is indicated by EIB flags and the conversation states.

Table 8. Indications of responses to EXEC CICS SEND CONFIRM

Command issued in reply
by partner transaction

On receipt of response

Conversation state EIBERR EIBFREE

ISSUE CONFIRMATION dependent on original SEND
[INVITE|LAST] CONFIRM
request

X'00' X'00'

ISSUE ERROR receive (state 5) X'FF' X'00'

ISSUE ABEND free (state 12) X'FF' X'FF'

If EIBERR=X'00', the partner has replied with an EXEC CICS ISSUE
CONFIRMATION command.

Chapter 11. APPC mapped conversation flow 113

If the partner replies with an EXEC CICS ISSUE ERROR command, this is
indicated by EIBERR=X'FF' and the first two bytes of EIBERRCD = X'0889'. When
the partner sends an EXEC CICS ISSUE ERROR command in response to an EXEC
CICS SEND LAST CONFIRM command, the LAST parameter is ignored and the
conversation is not terminated. The conversation state is switched to receive state
(state 5).

If the partner replies with an EXEC CICS ISSUE ABEND command, the TERMERR
condition is raised. In addition, EIBERR and EIBFREE are set, and the first two
bytes of EIBERRCD=X'0864'. The conversation is switched to free state (state 12).

Ending the conversation
The following sections describe the different ways a conversation can end, either
unexpectedly or under transaction control. To end a transaction, one transaction
issues a request for termination and the other receives this request. When this has
happened the conversation is unusable and both transactions must issue an EXEC
CICS FREE command to release the session.

Normal termination of a conversation
The EXEC CICS SEND LAST command is used to terminate a conversation. It
should be used in conjunction with the WAIT or CONFIRM options, or the EXEC
CICS WAIT CONVID command. This is described in Table 9.

Table 9. Command sequences for ending a conversation

Sync level Command sequence

0 SEND LAST WAIT
FREE

1 SEND LAST CONFIRM
FREE

2 SEND LAST
SYNCPOINT
FREE

Note: CICS/400 does not support the CICS/ESA LU6.2 deviation that allows a
sync-level 2 conversation to be ended by a FREE command when in send
state (state 2), nor does CICS/400 permit the use of SEND LAST WAIT or
SEND LAST CONFIRMATION over sync-level 2 conversations. CICS/400
generates an ATCU abend if any of these are attempted.

Emergency termination of a conversation
The EXEC CICS ISSUE ABEND command provides a means of abnormally ending
the conversation.

The EXEC CICS ISSUE ABEND command can be issued by either transaction,
irrespective of whether it is in send or receive state, at any time after the
conversation has started. For a conversation in send state (state 2), any deferred
data that is waiting for transmission is cleared before the EXEC CICS ISSUE
ABEND command is transmitted.

The transaction that issues the EXEC CICS ISSUE ABEND command is not itself
abended. It must, however, issue an EXEC CICS FREE command for the
conversation unless it is designed to terminate immediately.

114 CICS for iSeries Intercommunication V5

If an EXEC CICS ISSUE ABEND command is issued in receive state (state 5), CICS
purges all incoming data until an INVITE, syncpoint request, or LAST indicator is
received. If LAST is received, no abend indication is sent to the partner transaction.

If an EXEC CICS ISSUE ABEND command is received, CICS raises the TERMERR
condition, sets on EIBERR (=X'FF') and EIBFREE (=X'FF'), and places X'0864' in the
first two bytes of EIBERRCD. The only command that can be subsequently issued
for the conversation is EXEC CICS FREE.

Unexpected termination of a conversation
If any of the following occur during a DTP conversation, the conversation is
terminated abnormally and the TERMERR condition is raised on the next
command that accesses the conversation:

Partner fails.
Partner terminates abnormally under application control.
Session goes out of service.

In addition EIBERR and EIBFREE are set on (X'FF') and EIBERRCD contains a
sense code representing the reason for the error. Possible sense codes include:

X'1008600B' - session has failed due to a protocol error
X'A0000100' - temporary session failure
X'A0010100' - RTIMEOUT triggered

Checking the outcome of a DTP command
Checking the response from a DTP command can be separated into three stages:
1. Testing for request failure
2. Testing for indicators received on the conversation
3. Testing the conversation state

Testing for request failure
Testing for request failure is the same as for other EXEC CICS commands in that
conditions are raised and can be handled using HANDLE CONDITION or RESP.
EIBRCODE will also contain an error code. Note that when an ISSUE ABEND has
been received, and it is to be handled, a HANDLE ABEND should be used rather
than a HANDLE CONDITION.

Testing for indicators
If the request has not failed, it is then possible to test for indicators received on the
conversation. These are returned to the application in the EIB. The following EIB
fields are relevant to all DTP commands:

EIBERR
when set to X'FF' indicates an error has occurred on the conversation. The
reason is in EIBERRCD. This could be as a result of an ISSUE ERROR, ISSUE
ABEND, or SYNCPOINT ROLLBACK command issued by the partner
transaction. EIBERR can be set as a result of any command that can be issued
while the conversation is in receive state (state 5) or following any command
that causes a transmission to the partner system. It is safest to test EIBERR in
conjunction with EIBFREE and EIBSYNRB after every DTP command.

Chapter 11. APPC mapped conversation flow 115

EIBERRCD
contains the error code associated with EIBERR. If EIBERR is not set, this field
is not used.

EIBFREE
when set to X'FF' indicates that the partner transaction had ended the
conversation. It should be tested along with EIBERR and EIBSYNC to find out
exactly how to end the conversation.

EIBSIG
when set to X'FF' indicates the partner transaction or system has issued an
ISSUE SIGNAL command.

EIBSYNRB
when set to X'FF' indicates the partner transaction or system has issued a
SYNCPOINT ROLLBACK command. (This is relevant only for conversations at
sync level 2.)

Table 10 shows how these EIB fields interact.

Table 10. Interaction between some EIB fields—all DTP commands

EIB- ERR EIB- FREE EIB-
SYNRB

EIB- ERRCD Description

X'FF' X'00' X'00' X'08890000'
X'08890001'

The partner transaction has sent ISSUE ERROR

X'FF' X'00' X'00' X'08890100'
X'08890101'

The partner system has sent ISSUE ERROR

X'FF' X'FF' X'00' X'08640000' The partner transaction has sent ISSUE ABEND

X'FF' X'FF' X'00' X'08640001' The partner system has sent ISSUE ABEND

X'FF' X'FF' X'00' X'08640002' A partner resource has timed out

X'FF' X'FF' X'00' X'1008600B' The session has failed due to a protocol error

X'FF' X'FF' X'00' X'A0000100' A temporary session failure

X'FF' X'FF' X'00' X'A0010100' RTIMOUT has been triggered. (The task has timed out
while waiting for terminal input.)

X'FF' X'FF' X'00' X'10086032' The PIP data sent with the CONNECT PROCESS was
incorrectly specified

X'FF' X'FF' X'00' X'10086034' The partner system does not support mapped
conversations

X'FF' X'FF' X'00' X'080F6051' The partner transaction failed security check

X'FF' X'FF' X'00' X'10086041' The partner transaction does not support the sync level
requested on the CONNECT PROCESS

X'FF' X'FF' X'00' X'10086021' The partner transactions name is not recognized by the
partner system

X'FF' X'FF' X'00' X'084C0000' The partner system cannot start the partner transaction

X'FF' X'FF' X'00' X'084B6031' The partner system is temporarily unable to start the
partner transaction

X'FF' X'00' X'FF' X'08240000' The partner transaction or system has issued
SYNCPOINT ROLLBACK

X'00' X'00' — — The command completed successfully

In addition the following EIB fields are relevant only to the RECEIVE and
CONVERSE commands:

116 CICS for iSeries Intercommunication V5

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received.
This field is used in conjunction with the RECEIVE NOTRUNCATE command.

EIBCONF
when set to X'FF' indicates that the partner transaction has issued a SEND
CONFIRM command and requires a response.

EIBEOC
when set to X'FF' indicates that an end-of-chain indicator has been received.
This field is normally associated with a successful RECEIVE command.

EIBNODAT
when set to X'FF' indicates that no application data has been received.

EIBRECV
is only used when EIBERR is not set. When EIBRECV is on (X'FF'), another
RECEIVE is required.

EIBSYNC
when set to X'FF' indicates that the partner transaction or system has requested
a syncpoint. (This is relevant only for conversations at sync level 2.)

Table 11 shows how some of these EIB fields interact for RECEIVE and
CONVERSE commands.

Table 11. Interaction between some EIB fields—RECEIVE and CONVERSE commands only

EIB- ERR EIB- FREE EIB- RECV EIB- SYNC EIB-
CONF

Description

X'00' X'00' X'00' X'00' X'00' The partner transaction or system has issued SEND
INVITE WAIT. The local program is now in send
state.

X'00' X'00' X'00' X'FF' X'00' The partner transaction or system has issued SEND
INVITE, followed by a SYNCPOINT. The local
program is now in syncsend state.

X'00' X'00' X'00' X'00' X'FF' The partner transaction or system has issued SEND
INVITE CONFIRM. The local program is now in
confsend state.

X'00' X'00' X'FF' X'00' X'00' The partner transaction or system has issued SEND
or SEND WAIT. The local program is in receive
state.

X'00' X'00' X'FF' X'FF' X'00' The partner transaction or system has issued a
SYNCPOINT. The local program is in syncreceive
state.

X'00' X'00' X'FF' X'00' X'FF' The partner transaction or system has issued a
SEND CONFIRM. The local program is in
confreceive state.

X'00' X'FF' X'00' X'00' X'00' The partner transaction or system has issued a
SEND LAST WAIT. The local program is in free
state.

X'00' X'FF' X'00' X'FF' X'00' The partner transaction or system has issued a
SEND LAST followed by a SYNCPOINT. The local
program is in syncfree state.

X'00' X'FF' X'00' X'00' X'FF' The partner transaction or system has issued a
SEND LAST CONFIRM. The local program is in
conffree state.

Chapter 11. APPC mapped conversation flow 117

After analyzing the EIB fields, you can test the conversation state to determine
which DTP commands you can issue next. See Chapter 13, “State transitions in
APPC mapped conversations” on page 145.

Checking EIB fields and the conversation state
Most of the information supplied by EIB indicator fields can also be obtained from
the conversation state. Although the conversation state is easier to test, you cannot
ignore EIBERR (and EIBERRCD).

For example, if after a SEND INVITE WAIT or a RECEIVE command has been
issued, the conversation is in receive state (state 5), only EIBERR indicates that the
partner transaction has sent an ISSUE ERROR. This is illustrated in Figure 20 on
page 109 and Figure 21 on page 110.

It should be noted that the state tables provided contain not only states and
commands issued, but also relevant EIB field settings. The order in which these
EIB fields are shown provides a sensible sequence of checks for an application.

Summary of CICS commands for APPC mapped conversations
Table 12 shows the CICS commands used in APPC mapped conversations.

Table 12. Summary of CICS commands used in mapped conversations

Use to ... Sync
levels

CICS Command Page

Acquire a session. 0,1,2 ALLOCATE 103

Initiate a conversation. 0,1,2 CONNECT PROCESS 104

Access session-related information. 0,1,2 EXTRACT PROCESS 105

Send data and control information to the
conversation partner.

0,1,2 SEND 108

Receive data from the conversation partner. 0,1,2 RECEIVE 110

Send and receive data on the conversation. 0,1,2 CONVERSE 111

Transmit any deferred data or control
indicators.

0,1,2 WAIT CONVID 108

Reply positively to SEND CONFIRM. 1,2 ISSUE
CONFIRMATION

113

Prepare for sync point processing. 2 ISSUE PREPARE 122

Inform the conversation partner of a
program-detected error.

0,1,2 ISSUE ERROR 111

Signal an unusual condition to the
conversation partner, usually against the flow
of data.

0,1,2 ISSUE SIGNAL 111

Inform the conversation partner that the
conversation should be abandoned.

0,1,2 ISSUE ABEND 114

Free the session. 0,1,2 FREE 114

Request all changes to recoverable resources be
committed. The failure of any single resource
to commit will result in all of the resources
being backed out.

2 (See
note)

SYNCPOINT 121

118 CICS for iSeries Intercommunication V5

Table 12. Summary of CICS commands used in mapped conversations (continued)

Use to ... Sync
levels

CICS Command Page

Request that any changes to recoverable
resources since the last syncpoint be backed
out.

2 (See
note)

SYNCPOINT
ROLLBACK

122

Note: SYNCPOINT or SYNCPOINT ROLLBACK may be issued by a transaction that has
sync level 0 or sync level 1 conversations. In such cases, nothing is propagated over these
conversations. Only local resources (together with any resources managed over a sync level
2 conversation) will be syncpointed.

For definitive programming interface information about CICS/400 commands, see
the CICS for iSeries Application Programming Guide.

End of General-use programming interface

Chapter 11. APPC mapped conversation flow 119

120 CICS for iSeries Intercommunication V5

Chapter 12. Syncpointing a distributed process

This chapter discusses how to include syncpointing in a distributed process. The
chapter concentrates on the programming aspects of using the EXEC CICS
SYNCPOINT [ROLLBACK]18 command across APPC mapped conversations at
sync level 2. This includes issuing syncpoint requests and receiving them, because
they are transmitted to all partners connected on conversations at sync level 2. The
chapter also describes how these partners are given the opportunity to back out
even though they have been requested to commit.

The EXEC CICS SYNCPOINT command
The EXEC CICS SYNCPOINT command is used to commit recoverable resources.
In a distributed transaction processing (DTP) environment, the effect of the
SYNCPOINT command is propagated across all conversations using sync level 2.
So, no matter how many DTP transactions are connected by conversations at sync
level 2, the distributed process should be designed so that only one of the
transactions initiates syncpoint activity for the distributed unit of work. When
issuing the SYNCPOINT command, this transaction, known as the syncpoint
initiator must be in send state (state 2), pendreceive state (state 3), or pendfree
state (state 4) on all its conversations at sync level 2. Any transaction that receives
the syncpoint request becomes a syncpoint agent.

A syncpoint agent is in receive state on its conversation with the syncpoint
initiator and becomes aware of the syncpoint request by testing EIBSYNC after
issuing an EXEC CICS RECEIVE command. If it decides to respond positively by
issuing SYNCPOINT, it must be in an appropriate state on all the conversations
with its own agents, for which it has become syncpoint initiator. If an agent
transaction responds negatively to a syncpoint request by issuing SYNCPOINT
ROLLBACK, the initiator sees EIBRLDBK set (to X'FF'), and this must be tested for
on return from the SYNCPOINT command.

Your transaction design should ensure that all participating transactions are in the
correct conversation state before a SYNCPOINT command is issued.

When a syncpoint agent receives the syncpoint request, it is given the opportunity
to respond positively (to commit recoverable resources) with a SYNCPOINT
command or negatively (to back out recoverable resources) with a SYNCPOINT
ROLLBACK command. For information on backing out recoverable resources, see
“The EXEC CICS SYNCPOINT ROLLBACK command” on page 122.

Examples of these commands are given in “Synchronizing two CICS systems” on
page 123 and “Synchronizing three or more CICS systems” on page 136.

18. The SAA equivalents for this syncpointing command (SRRCMIT and SRRBACK) are described in the SAA Common Programming
Interface (CPI) Resource Recovery Reference, SC31-6821-01.

© Copyright IBM Corp. 2002 121

The EXEC CICS ISSUE PREPARE command
The EXEC CICS ISSUE PREPARE command is used to send the initial syncpoint
flow to a selected partner on an APPC conversation at sync level 2. Depending on
the partner’s response, this command can then be followed by a SYNCPOINT or
SYNCPOINT ROLLBACK command.

The reasons for using ISSUE PREPARE are as follows:
1. In complex DTP involving several conversing transactions, an ISSUE ERROR

command from one of the transactions may not reach the syncpoint initiator in
time to prevent it from issuing a SYNCPOINT command. This can lead to
complex backout procedures for the distributed unit of work.
Use ISSUE PREPARE as a way of flushing any error responses from the
network.

2. If one or more syncpoint agents are not completely “reliable”, use ISSUE
PREPARE to check the status of these agents before proceeding with a general
distributed syncpoint. Receiving ISSUE PREPARE is exactly the same as
receiving SYNCPOINT. The partner program cannot detect any difference.

The EXEC CICS SYNCPOINT ROLLBACK command
The EXEC CICS SYNCPOINT ROLLBACK command is used to back out changes
to recoverable resources. In a DTP environment, the effect of the SYNCPOINT
command is propagated across all conversations using sync level 2. A SYNCPOINT
ROLLBACK command can be issued in any conversation state. If the command is
issued when a conversation is in receive state (state 5), incoming data on that
conversation is purged as described for the ISSUE ERROR and ISSUE ABEND
commands.

When a transaction receives a SYNCPOINT ROLLBACK in response to a syncpoint
request, the EIBRLDBK indicator is set. If SYNCPOINT ROLLBACK is received in
response to any other request, the EIBERR and EIBSYNRB indicators are set.

Conversation state after SYNCPOINT ROLLBACK
(Note that this section also applies when the ROLLEDBACK condition is returned
from an EXEC CICS SYNCPOINT command.)

Considerations in determining the state after SYNCPOINT ROLLBACK depend on
the CICS family type and release of the partner system:
v In most cases, the conversation state of each partner is restored to the state at

the beginning of the distributed unit of work.
v In CICS/ESA versions before Version 3.2.1, the rollback initiator completes

backout processing in send state (state 2), and the partner completes in receive
state (state 5).

v If a session failure or notification of a deallocate abend occurs during
SYNCPOINT ROLLBACK processing, the command still completes successfully.
If the same thing happens during SYNCPOINT processing, the command may
complete successfully with EIBRLDBK set. In such circumstances, the
conversation on which the failure or abend occurred will be in free state (state
12).

To avoid potential state problems, you should check the conversation state by
using the STATE option on the next APPC command. To avoid potential abends

122 CICS for iSeries Intercommunication V5

altogether, you are recommended to follow all EXEC CICS SYNCPOINT
ROLLBACK commands with an EXEC CICS EXTRACT ATTRIBUTES STATE
command.

When a backout is required
A backout is required in the following circumstances:
v When SYNCPOINT ROLLBACK is received
v After ISSUE ABEND is sent
v After EIBERR and EIBFREE are returned together

The conversation state does not always reflect the requirement to back out.
However, CICS is aware of this requirement and converts the next SYNCPOINT
request to a SYNCPOINT ROLLBACK request. If no SYNCPOINT or SYNCPOINT
ROLLBACK request is issued before the end of the task, the task is abended with
code ASPN, and all recoverable resources are backed out.

Synchronizing two CICS systems
This section gives examples of how to commit and back out changes to recoverable
resources made by two DTP transactions connected on a conversation using sync
level 2.

The examples illustrate the following CICS command sequences and session failure
scenarios:
v SYNCPOINT in response to SYNCPOINT 123
v SYNCPOINT in response to ISSUE PREPARE 125
v SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK 126
v SYNCPOINT ROLLBACK in response to SYNCPOINT 127
v SYNCPOINT ROLLBACK in response to ISSUE PREPARE 128
v ISSUE ERROR in response to SYNCPOINT 129
v ISSUE ERROR in response to ISSUE PREPARE 130
v ISSUE ABEND in response to SYNCPOINT 131
v ISSUE ABEND in response to ISSUE PREPARE 132
v Session failure in response to SYNCPOINT 133
v Session failure in response to ISSUE PREPARE 135
v Session failure in response to SYNCPOINT ROLLBACK 135

EXEC CICS SYNCPOINT in response to EXEC CICS
SYNCPOINT

Figure 22, Figure 23, and Figure 24 on page 125 illustrate the effect of SEND, SEND
INVITE, or SEND LAST preceding SYNCPOINT on an APPC mapped
conversation. The figures also show the conversation state before each command
and the state and EIB fields set after each command.

Chapter 12. Syncpointing a distributed process 123

Figure 22. SYNCPOINT in response to SEND followed by SYNCPOINT on an APPC mapped conversation

Figure 23. SYNCPOINT in response to SEND INVITE followed by SYNCPOINT on an APPC mapped conversation

124 CICS for iSeries Intercommunication V5

EXEC CICS SYNCPOINT in response to EXEC CICS ISSUE
PREPARE

Figure 25 on page 126 illustrates a SYNCPOINT command being used in response
to ISSUE PREPARE on an APPC mapped conversation. The figure also shows the
conversation state before each command and the state and EIB fields set after each
command.

Note that it is also possible to use an ISSUE PREPARE command in pendreceive
state (state 3) and pendfree state (state 4).

Note also that, although the ISSUE PREPARE command in Figure 25 on page 126
returns with the conversation in syncsend state (state 10), the only commands
available for use on that conversation are SYNCPOINT and SYNCPOINT
ROLLBACK. All other commands abend with code ATCV.

Figure 24. SYNCPOINT in response to SEND LAST followed by SYNCPOINT on an APPC mapped conversation

Chapter 12. Syncpointing a distributed process 125

EXEC CICS SYNCPOINT ROLLBACK in response to EXEC
CICS SYNCPOINT ROLLBACK

Figure 26 on page 127 illustrates a SYNCPOINT ROLLBACK command being used
in response to SYNCPOINT ROLLBACK on an APPC mapped conversation. The
figure also shows the conversation state before each command and the state and
EIB fields set after each command.

Figure 25. SYNCPOINT in response to ISSUE PREPARE on an APPC mapped conversation

126 CICS for iSeries Intercommunication V5

EXEC CICS SYNCPOINT ROLLBACK in response to EXEC
CICS SYNCPOINT

Figure 27 on page 128 illustrates a SYNCPOINT ROLLBACK command being used
in response to SYNCPOINT on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields set
after each command.

Figure 26. SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK on an APPC mapped conversation

Chapter 12. Syncpointing a distributed process 127

EXEC CICS SYNCPOINT ROLLBACK in response to EXEC
CICS ISSUE PREPARE

Figure 28 on page 129 illustrates a SYNCPOINT ROLLBACK command being used
in response to ISSUE PREPARE on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields set
after each command.

Figure 27. SYNCPOINT ROLLBACK in response to SYNCPOINT on an APPC mapped conversation

128 CICS for iSeries Intercommunication V5

EXEC CICS ISSUE ERROR in response to EXEC CICS
SYNCPOINT

Figure 29 on page 130 illustrates an ISSUE ERROR command being used in
response to SYNCPOINT on an APPC mapped conversation. The figure also shows
the conversation state before each command and the state and EIB fields set after
each command. You can also send ISSUE ERROR before receiving SYNCPOINT;
but this is not shown, because the results are the same.

It is pointless to use ISSUE ERROR as a response to SYNCPOINT, because this
causes the syncpoint initiator to discard all data transmitted with the ISSUE
ERROR by the syncpoint agent. To safeguard integrity, the syncpoint agent has to
issue a SYNCPOINT ROLLBACK command.

Figure 28. SYNCPOINT ROLLBACK in response to ISSUE PREPARE on an APPC mapped conversation

Chapter 12. Syncpointing a distributed process 129

EXEC CICS ISSUE ERROR in response to EXEC CICS ISSUE
PREPARE

Figure 30 on page 131 illustrates an ISSUE ERROR command being used in
response to ISSUE PREPARE on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields set
after each command. You can also send ISSUE ERROR before receiving ISSUE
PREPARE; but this is not shown, because the results are the same.

Figure 29. ISSUE ERROR in response to SYNCPOINT on an APPC mapped conversation

130 CICS for iSeries Intercommunication V5

EXEC CICS ISSUE ABEND in response to EXEC CICS
SYNCPOINT

Figure 31 on page 132 illustrates an ISSUE ABEND command being used in
response to SYNCPOINT on an APPC mapped conversation. The figure also shows
the conversation state before each command and the state and EIB fields set after
each command. You can also send ISSUE ABEND before receiving SYNCPOINT;
but this is not shown, because the results are the same.

Figure 30. ISSUE ERROR in response to ISSUE PREPARE on an APPC mapped conversation

Chapter 12. Syncpointing a distributed process 131

EXEC CICS ISSUE ABEND in response to EXEC CICS ISSUE
PREPARE

Figure 32 on page 133 illustrates an ISSUE ABEND command being used in
response to ISSUE PREPARE on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields set
after each command. You can also send ISSUE ABEND before receiving ISSUE
PREPARE; but this is not shown, because the results are the same.

Figure 31. ISSUE ABEND in response to SYNCPOINT on an APPC mapped conversation

132 CICS for iSeries Intercommunication V5

Session failure in response to EXEC CICS SYNCPOINT
Figure 33 on page 134 and Figure 34 illustrate what happens if the session fails
before or after a SYNCPOINT command issued in response to SYNCPOINT on an
APPC mapped conversation. The figures also show the conversation state before
each command and the state and EIB fields set after each command.

Figure 32. ISSUE ABEND in response to ISSUE PREPARE on an APPC mapped conversation

Chapter 12. Syncpointing a distributed process 133

Figure 33. Session failure before SYNCPOINT in response to SYNCPOINT on an APPC mapped conversation

Figure 34. Session failure after SYNCPOINT in response to SYNCPOINT on an APPC mapped conversation

134 CICS for iSeries Intercommunication V5

Session failure in response to EXEC CICS ISSUE PREPARE
Figure 35 illustrates what happens if the session fails after ISSUE PREPARE is
received by transaction B and before the SYNCPOINT response is received by
transaction A on an APPC mapped conversation. The figure also shows the
conversation state before each command and the state and EIB fields set after each
command.

Session failure in response to EXEC CICS SYNCPOINT
ROLLBACK

Figure 36 on page 136 illustrates what happens if the session fails after
SYNCPOINT ROLLBACK is received and before the response is issued on an
APPC mapped conversation. The figure also shows the conversation state before
each command and the state and EIB fields set after each command.

Figure 35. Session failure during SYNCPOINT in response to ISSUE PREPARE on an APPC mapped conversation

Chapter 12. Syncpointing a distributed process 135

Synchronizing three or more CICS systems
This section gives examples of how to commit and back out recoverable resources
affected by three or more DTP transactions connected on conversations at sync
level 2.

EXEC CICS SYNCPOINT in response to EXEC CICS
SYNCPOINT

Figure 37 on page 137 shows the sequence of events for a successful syncpoint
involving six conversing transactions. It illustrates the states and actions that occur
when transactions issue SYNCPOINT requests. To write successful distributed
applications you do not need to understand all the data flows that take place
during a distributed syncpoint. In this example, the programmer is concerned only
with issuing SYNCPOINT in response to finding a conversation in syncreceive
state (state 9).

Figure 36. Session failure during SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK on an APPC
mapped conversation

136 CICS for iSeries Intercommunication V5

1. Transaction A, which is in send state (state 2) on its conversations with
transactions B and D, decides to end the distributed unit of work, and therefore
issues a SYNCPOINT command.

2. Transaction B sees that its half of its conversation with transaction A is in
syncreceive state (state 9), so it issues a SYNCPOINT command. Transaction B
is responding to a request from transaction A, but it also becomes the syncpoint

Figure 37. A distributed syncpoint with all partners running on CICS/400 Version 5

Chapter 12. Syncpointing a distributed process 137

initiator for transactions C and E, and must ensure that its conversations with
these transactions are in a valid state for issuing a SYNCPOINT command. In
this example, they are both in send state (state 2).

3. Transaction C sees that its half of its conversation with transaction B is in
syncreceive state (state 9), so it issues a SYNCPOINT command.

4. Transaction E sees that its half of its conversation with transaction B is in
syncreceive state (state 9), so it issues a SYNCPOINT command.

5. Transaction D sees that its half of its conversation with transaction A is in
syncreceive state (state 9), so it issues a SYNCPOINT command. Transaction D
is responding to a request from transaction A, but it also becomes the syncpoint
initiator for transaction F, and must ensure that its conversation with this
transaction is in a valid state for issuing a SYNCPOINT command. In this
example, it is in send state (state 2).

6. Transaction F sees that its half of its conversation with transaction D is in
syncreceive state (state 9), so it issues a SYNCPOINT command.

7. All the transactions have now indicated, by issuing SYNCPOINT commands,
that they are ready to commit their changes. This process begins with
transaction F, which has no agents and has responded to “request commit” by
issuing a SYNCPOINT command.

8. The distributed syncpoint is complete and control returns to transaction A
following the SYNCPOINT command.

The previous discussion of the SYNCPOINT command assumed that all the agent
transactions were ready to take a syncpoint by issuing SYNCPOINT when their
conversation entered syncreceive state (state 9).

If, however, an agent has detected an error, it can reject the syncpoint request with
one of the following commands:
v SYNCPOINT ROLLBACK (preferred response)
v ISSUE ERROR
v ISSUE ABEND

The SYNCPOINT ROLLBACK command enables a transaction to initiate a backout
operation across the entire distributed unit of work. When it is issued in response
to a syncpoint request, it has the following effects:
1. Any changes made to recoverable resources by the transaction that issues the

rollback request are backed out.
2. The syncpoint initiator is also backed out (EIBRLDBK set).

This causes the syncpoint initiator to initiate a backout operation across the
distributed unit of work.

EXEC CICS SYNCPOINT ROLLBACK in response to EXEC
CICS SYNCPOINT

Figure 38 on page 139 shows the same distributed process as Figure 37 on page 137.
Six transactions are engaged in related conversations. Transaction A (the first
initiator) has two conversations: one with transaction B, and the other with
transaction D. Transaction B has three conversations: one on its principal facility
(with transaction A), another with transaction C, and another with transaction E.
Transactions C and E each have one conversation: on their principal facility (with
transaction B). Transaction D has two conversations: one on its principal facility

138 CICS for iSeries Intercommunication V5

(with transaction A), and the other with transaction F. Transaction F has one
conversation: on its principal facility (with transaction D).

As in Figure 37 on page 137, transaction A (while in send state, state 2) issues the
SYNCPOINT command, and CICS initiates a chain of events. Here, however,

Figure 38. Rollback during distributed syncpointing

Chapter 12. Syncpointing a distributed process 139

transaction E has detected an error that makes it unable to commit, and it issues
SYNCPOINT ROLLBACK when it detects that the conversation on its principal
facility is in syncreceive state (state 9, EIBSYNC is also set). This causes any
changes that transaction E has made to be backed out, and initiates a distributed
rollback.

Transactions B, C, and A are rolled back (EIBRLDBK set). Transaction D senses that
the conversation on its principal facility is in rollback state (state 13, EIBSYNRB is
also set), and issues a SYNCPOINT ROLLBACK command. Transaction F too
senses that the conversation on its principal facility is in rollback state, and issues
a SYNCPOINT ROLLBACK command. The distributed rollback is now complete.

Session failure and the in-doubt period
During the period between the sending of the syncpoint request to the partner
system and the receipt of the reply, the local system does not know whether the
partner system has committed the change. This is known as the in-doubt period. If
the intersystem session fails during this period, the local CICS system cannot tell
whether the partner system has committed or backed out its resource changes.

This situation could occur for situations other than DTP and is discussed in the
“Recovery and restart” section of the CICS/ESA Intercommunication Guide.

What really flows between APPC systems
This section describes the commit protocols that flow between APPC systems
during a syncpoint. The arrows in the diagrams show the syncpoint flows in more
detail than in the figures earlier in this chapter.

First, consider a simple distributed process involving only one conversation, as in
Figure 39 on page 141. Here is what happens:
1. The syncpoint initiator sends a “commit” request to the syncpoint agent.
2. The syncpoint agent commits all changes it made to recoverable resources, and

responds with “committed”.
3. The syncpoint initiator then commits its changes, and the LUW is complete.

140 CICS for iSeries Intercommunication V5

When the syncpoint agent has a conversation with a third transaction, Figure 40 on
page 142 shows the flows that occur. Here is what happens:
1. The syncpoint initiator sends a “commit” request to its agent.
2. The agent becomes the initiator on the conversation to its agent, and sends a

“commit” request.
3. The second agent commits first and responds with “committed”.
4. The first agent commits and sends “committed” to the initiator.
5. The initiator commits.

Figure 39. Syncpoint flows in a single conversation

Chapter 12. Syncpointing a distributed process 141

When the syncpoint initiator has two concurrent conversations, the flows involved
are shown in Figure 41 on page 143. Here is what happens:
1. The syncpoint initiator sends a “prepare” request to all its agents except one.
2. The agent receiving “prepare” responds by sending a “commit” request to the

initiator.
3. When all the “prepare” requests have been sent, and the “commit” requests

received, the initiator sends a “commit” request to its last agent.
4. The initiator receives “committed” from the last agent.
5. The initiator sends “committed” to the remaining agents.
6. The agents respond “forget” to indicate that they do not need to be

resynchronized.

Figure 40. Syncpoint flows in concurrent conversations

142 CICS for iSeries Intercommunication V5

If the syncpoint initiator decides to prepare the conversation with system 2
explicitly before issuing a syncpoint, the flows involved are shown in Figure 42 on
page 144. You will notice that, although the application program in system 1 issues
extra commands, the flows across the links are exactly the same as those in the
previous example. Using the ISSUE PREPARE command gives the application the
opportunity to “change its mind” and rollback, depending on the response to
ISSUE PREPARE.

Figure 41. Syncpoint flows in concurrent conversations with one initiator. The initiator uses only SYNCPOINT.

Chapter 12. Syncpointing a distributed process 143

For further information on the flows in a distributed process, see the SNA LU6.2
Reference: Peer Protocols book.

Figure 42. Syncpoint flows in concurrent conversations with one initiator. The initiator uses ISSUE PREPARE before
SYNCPOINT.

144 CICS for iSeries Intercommunication V5

Chapter 13. State transitions in APPC mapped conversations

General-use programming interface

This chapter shows the state transitions that occur when transactions engage in
APPC mapped conversations under the EXEC CICS API. The state transitions are
presented in the form of state tables; and there is one table for each of the three
allowable sync levels. The state tables show which commands a transaction can
issue while the conversation is in any given state. They also show how the
conversation state changes as a result of any command.

The guidance information in this chapter is presented in the following sequence:
v “The state tables for APPC mapped conversations”
v “Testing the conversation state” on page 154

The state tables for APPC mapped conversations
The state tables provide the following information for writing a DTP program.
Firstly, they show which commands can be issued from each conversation state.
Secondly, they show the state transitions that can occur and the EIB fields that can
be set as a result of issuing a command.

How to use the state tables
The commands you can issue, coupled with the EIB flags that can be set after
execution, are shown in column 1 down the left side of each table. Alongside each
command, in column 2, the EIB fields shown are in the order in which the
application should test them. The possible conversation states are shown across the
top of the table. The states correspond to the columns of the table. The intersection
of row (command and EIB flag) and column (state) represents the state transition,
if any, that occurs when that command returning a particular EIB flag is issued in
that state.

A number at an intersection indicates the state number of the next state. Other
symbols represent other conditions, as follows:

Symbol Meaning

N/A Cannot occur.

x The EIB flag is any one that has not been covered in earlier rows, or it is
irrelevant (but see the note on EIBSIG if you want to use ISSUE SIGNAL).

Ab The command is not valid in this state. Issuing a command in a state in
which it is not valid usually causes an ATCV abend.

= Remains in current state.

End End of conversation.

© Copyright IBM Corp. 2002 145

APPC mapped conversations at sync level 0

Command issued
EIB flag
returned19

ALLO-
CATED26

State 1

SEND

State 2

PEND-
RECEIVE

State 3

PEND-
FREE

State 4

RECEIVE

State 5

CONF-
RECEIVE

State 6

CONNECT PROCESS

CONNECT PROCESS28

EXTRACT PROCESS20

EXTRACT ATTRIBUTES

EIBERR
+ EIBFREE
x
x
x

12

2
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

N/A

N/A
N/A
N/A

SEND (any valid form)

SEND (any valid form)

EIBERR
+ EIBFREE
EIBERR

Ab

Ab

12

5

Ab

Ab

Ab

Ab

Ab

Ab

N/A

N/A

SEND INVITE WAIT
SEND INVITE
SEND LAST WAIT
SEND LAST
SEND WAIT
SEND

x
x
x
x
x
x

Ab
Ab
Ab
Ab
Ab
Ab

5
3
12
4
=
=

Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab

N/A
N/A
N/A
N/A
N/A
N/A

RECEIVE

RECEIVE
RECEIVE

EIBERR
+ EIBFREE
EIBERR
EIBREE

Ab

Ab
Ab

1222

522

Ab

1225

525

12

Ab

Ab
N/A

12

=

N/A

N/A

RECEIVE
RECEIVE NOTRUNCATE21

RECEIVE

EIBRECV
EIBCOMPL21

x

Ab
Ab
Ab

522

522

=22

525

525

225

Ab
Ab
Ab

=
=
2

N/A
N/A
N/A

CONVERSE23 EIB flags and states as for RECEIVE

ISSUE ERROR
ISSUE ERROR
ISSUE ERROR
ISSUE ABEND
ISSUE SIGNAL12

EIBFREE
x
x
x

Ab
Ab
Ab
Ab

12
=
12
=

12
2
12
=

Ab
Ab
12
Ab

12
2
12
=

N/A
N/A
N/A
N/A

WAIT CONVID
FREE

x
x

Ab
End

=
End24

5
Ab

12
End

Ab
Ab

N/A
N/A

Note: See 152 for footnotes.

146 CICS for iSeries Intercommunication V5

CONF-
SEND

State 7

CONF-
FREE

State 8

SYNC-
RECEIVE

State 9

SYNC-
SEND

State 10

SYNC-
FREE

State 11

FREE

State 12

ROLL-
BACK

State 13 Command returns

N/A

N/A
N/A
N/A

N/A

N/A
N/A
N/A

N/A

N/A
N/A
N/A

N/A

N/A
N/A
N/A

N/A

N/A
N/A
N/A

Ab

Ab
=
=

N/A

N/A
N/A
N/A

Immediately

Immediately
Immediately
Immediately

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Ab

Ab

N/A

N/A

After error detected

After error detected

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A

Ab
Ab
Ab
Ab
Ab
Ab

N/A
N/A
N/A
N/A
N/A
N/A

After data flows
After data buffered
After data flows
After data buffered
After data flows
After data buffered

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

Ab

Ab
Ab

N/A

N/A
N/A

After error detected

After error detected
After error detected

N/A
N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

Ab
Ab
Ab

N/A
N/A
N/A

When data available
When data available
When data available

States as for RECEIVE When data available

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

Ab
Ab
Ab
Ab

N/A
N/A
N/A
N/A

After response from partner
After response from partner
Immediately
Immediately

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

Ab
End

N/A
N/A

Immediately
Immediately

Chapter 13. State transitions in APPC mapped conversations 147

APPC mapped conversations at sync level 1

Command issued
EIB flag
returned19

ALLO-
CATED26

State 1

SEND

State 2

PEND-
RECEIVE

State 3

PEND-
FREE

State 4

RECEIVE

State 5

CONF-
RECEIVE

State 6

CONNECT PROCESS

CONNECT PROCESS28

EXTRACT PROCESS20

EXTRACT ATTRIBUTES

EIBERR
+ EIBFREE
x
x
x

12

2
Ab
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

SEND (any valid form)

SEND (any valid form)

EIBERR
+ EIBFREE
EIBERR

Ab

Ab

12

5

12

5

12

5

Ab

Ab

Ab

Ab

SEND INVITE WAIT
SEND INVITE CONFIRM
SEND INVITE
SEND LAST WAIT
SEND LAST CONFIRM
SEND LAST
SEND WAIT
SEND CONFIRM
SEND

x
x
x
x
x
x
x
x
x

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

5
5
3
12
12
4
=
=
=

Ab
Ab
Ab
Ab
Ab
Ab
Ab
5
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
1229

Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

RECEIVE

RECEIVE
RECEIVE

RECEIVE

RECEIVE
RECEIVE

EIBERR
+ EIBFREE
EIBERR
EIBCONF
+ EIBREE
EIBCONF
+ EIBRECV
EIBCONF
EIBFREE

Ab

Ab
Ab

Ab

Ab
Ab

1222

522

822

622

722

1222

1225

525

825

625

725

1225

Ab

Ab
Ab

Ab

Ab
Ab

12

=
8

6

7
12

Ab

Ab
Ab

Ab

Ab
Ab

RECEIVE
RECEIVE NOTRUNCATE21

RECEIVE

EIBRECV
EIBCOMPL21

x

Ab
Ab
Ab

522

522

=22

525

525

225

Ab
Ab
Ab

=
=
2

Ab
Ab
Ab

CONVERSE23 EIB flags and states as for RECEIVE

ISSUE CONFIRMATION
ISSUE ERROR
ISSUE ERROR
ISSUE ABEND
ISSUE SIGNAL27

x
EIBFREE
x
x
x

Ab
Ab
Ab
Ab
Ab

Ab
12
=
12
=

Ab
12
2
12
=

Ab
Ab
Ab
12
Ab

Ab
12
2
12
=

5
12
2
12
=

WAIT CONVID
FREE

x
x

Ab
End

=
End24

5
Ab

12
End

Ab
Ab

Ab
Ab

Note: See 152 for footnotes.

148 CICS for iSeries Intercommunication V5

CONF-
SEND

State 7

CONF-
FREE

State 8

SYNC-
RECEIVE

State 9

SYNC-
SEND

State 10

SYNC-
FREE

State 11

FREE

State 12

ROLL-
BACK

State 13 Command returns

Ab
Ab
=
=

Ab
Ab
=
=

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A

Ab
Ab
=
=

N/A
N/A
N/A
N/A

Immediately
Immediately
Immediately
Immediately

Ab

Ab

Ab

Ab

N/A

N/A

N/A

N/A

N/A

N/A

Ab

Ab

N/A

N/A

After error flow detected

After error flow detected

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

After data flows
After response from partner
After data buffered
After data flows
After response from partner
After data buffered
After data flows
After response from partner
After data buffered

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

N/A

N/A
N/A

Ab

Ab
Ab

Ab

Ab
Ab

N/A

N/A
N/A

N/A

N/A
N/A

After error detected

After error detected
After confirm flow detected

After confirm flow detected

After confirm flow detected
After error detected

Ab
Ab
Ab

Ab
Ab
Ab

N/A
N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

Ab
Ab
Ab

N/A
N/A
N/A

When data available
When data available
When data available

States as for RECEIVE When data available

2
12
2
12
=

12
12
2
12
=

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A

Ab
Ab
Ab
Ab
Ab

N/A
N/A
N/A
N/A
N/A

Immediately
After response from partner
After response from partner
Immediately
Immediately

Ab
Ab

Ab
Ab

N/A
N/A

N/A
N/A

N/A
N/A

Ab
End

N/A
N/A

Immediately
Immediately

table continued ...

Chapter 13. State transitions in APPC mapped conversations 149

APPC mapped conversations at sync level 2

Command issued
EIB flag
returned19

ALLO-
CATED26

State 1

SEND

State 2

PEND-
RECEIVE

State 3

PEND-
FREE

State 4

RECEIVE

State 5

CONF-
RECEIVE

State 6

CONNECT PROCESS

CONNECT PROCESS28

EXTRACT PROCESS20

EXTRACT ATTRIBUTES

EIBERR
+ EIBFREE
x
x
x

12

2
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

SEND (any valid form)

SEND (any valid form)

SEND (any valid form)

EIBERR
+ EIBSYNRB
EIBERR
+ EIBFREE
EIBERR

Ab

Ab

Ab

13

12

5

13

12

5

13

12

5

Ab

Ab

Ab

Ab

Ab

Ab

SEND INVITE WAIT
SEND INVITE CONFIRM
SEND INVITE
SEND LAST WAIT30

SEND LAST CONFIRM30

SEND LAST
SEND WAIT
SEND CONFIRM
SEND

x
x
x
x
x
x
x
x
x

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

5
5
3
Ab
Ab
4
=
=
=

Ab
Ab
Ab
Ab
Ab
Ab
Ab
529

Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
1229

Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

RECEIVE

RECEIVE

RECEIVE
RECEIVE

RECEIVE

RECEIVE
RECEIVE

RECEIVE

RECEIVE
RECEIVE

EIBERR
+ EIBSYNRB
EIBERR
+ EIBFREE
EIBERR
EIBSYNC
+ EIBFREE
EIBSYNC
+ EIBRECV
EIBSYNC
EIBCONF
+ EIBREE
EIBCONF
+ EIBRECV
EIBCONF
EIBFREE

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

1322

1222

522

1122

922

1022

822

622

722

1222

1325

1225

525

1125

925

1025

825

625

725

1225

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

13

12

=
11

9

10
8

6

7
12

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

RECEIVE
RECEIVE NOTRUNCATE21

RECEIVE

EIBRECV
EIBCOMPL21

x

Ab
Ab
Ab

522

522

=22

525

525

225

Ab
Ab
Ab

=
=
2

Ab
Ab
Ab

CONVERSE23 EIB flags and states as for RECEIVE

Note: See 152 for footnotes.

150 CICS for iSeries Intercommunication V5

CONF-
SEND

State 7

CONF-
FREE

State 8

SYNC-
RECEIVE

State 9

SYNC-
SEND

State 10

SYNC-
FREE

State 11

FREE

State 12

ROLL-
BACK

State 13 Command returns

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Ab

Ab
=
=

Immediately

Immediately
Immediately
Immediately

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

Ab

After error flow detected

After error flow detected

After error flow detected

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab
Ab

After data flows
After response from partner
After data buffered
After data flows
After response from partner
After data buffered
After data flows
After response from partner
After data buffered

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab
Ab

Ab

Ab
Ab

After rollback flow detected

After error detected

After error detected
After sync flow detected

After sync flow detected

After sync flow detected
After confirm flow detected

After confirm flow detected
After confirm flow detected
After error flow detected

Ab
Ab
Ab

Ab
Ab
Ab

Ab
Ab
Ab

Ab
Ab
Ab

Ab
Ab
Ab

Ab
Ab
Ab

Ab
Ab
Ab

When data available
When data available
When data available

States as for RECEIVE When data available

table continued ...

Chapter 13. State transitions in APPC mapped conversations 151

APPC mapped conversations at sync level 2 (continued)

Command issued
EIB flag
returned19

ALLO-
CATED26

State 1

SEND

State 2

PEND-
RECEIVE

State 3

PEND-
FREE

State 4

RECEIVE

State 5

CONF-
RECEIVE

State 6

ISSUE CONFIRMATION
ISSUE ERROR
ISSUE ERROR
ISSUE ABEND
ISSUE SIGNAL27

x
EIBFREE
x
x
x

Ab
Ab
Ab
Ab
Ab

Ab
12
=
12
=

Ab
12
2
12
=

Ab
Ab
Ab
12
Ab

Ab
12
2
12
=

5
12
2
12
=

ISSUE PREPARE

ISSUE PREPARE

ISSUE PREPARE
ISSUE PREPARE

EIBERR
+ EIBSYNRB
EIBERR
+ EIBFREE
EIBERR
x

Ab34

Ab34

Ab34

Ab34

13

12

5
1036

13

12

5
936

13

12

5
1136

Ab34

Ab34

Ab34

Ab34

Ab34

Ab34

Ab34

Ab34

SYNCPOINT32

SYNCPOINT32
EIBRLDBK
x

=
=

2 or 533

=
2 or 533

5
2 or 533

12
Ab35

Ab35
Ab35

Ab35

SYNCPOINT ROLLBACK32 x = 2 or 533 2 or 533 2 or 533 2 or 533 2 or 533

WAIT CONVID
FREE

x
x

Ab
End

=
End30

5
Ab

12
End

Ab
Ab

Ab
Ab

Note:
19 EIBSIG has been omitted. This is because its use is optional and is entirely a matter of agreement between the

two conversation partners. In the worst case, it can ocur at any time after every command that affects the EIB
flags. However, used for the purpose for which it was intended, it usually occurs after a SEND command. Its
priority in the order of testing depends on the role you give it in the application.

20 You can issue the EXTRACT PROCESS command from the back-end transaction only.
21 RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate that the user buffer was too small to

contain all the data received from the partner transaction. Normally, you would continue to issue RECEIVE
NOTRUNCATE commands until the last section of data is passed to you, which is indicated by EIBCOMPL =
X’FF’. If NOTRUNCATE is not specified, and the data area specified by the RECEIVE command is too smal to
contain all the data received, CICS truncates the data and the sets the LENGERR condition.

22 Equivalend to SEND INVITE WAIT followed by RECEIVE.
23 Equivalent to SEND INVITE WAIT [FROM] followed by RECEIVE.
24 Equivalent to SEND LAST WAIT followed by FREE.
25 Equivalent to WAIT followed by RECEIVE.
26 Before a session is allocated, there is no conversation, and therefore no conversation state. The EXEC CICS

ALLOCATE command does not appear in the tables. This is because each ALLOCATE gets a session to start a
new conversation and does not affect any conversation that is already in progress. After ALLOCATE is
successful, the front-end transaction starts the new conversation in allocated state.

27 ISSUE SIGNAL sets the partner’s EIBSIG flag.

152 CICS for iSeries Intercommunication V5

CONF-
SEND

State 7

CONF-
FREE

State 8

SYNC-
RECEIVE

State 9

SYNC-
SEND

State 10

SYNC-
FREE

State 11

FREE

State 12

ROLL-
BACK

State 13 Command returns

2
12
2
12
=

12
12
2
12
=

Ab
12
2
12
=31

Ab
12
2
12
=31

Ab
12
2
12
=31

Ab
Ab
Ab
Ab
Ab

Ab
Ab
Ab
Ab
Ab

Immediately
After response from partner
After response from partner
Immediately
Immediately

Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

Ab

Ab

Ab
Ab

After response from partner

After error flow detected

After error flow detected
After response from partner

Ab35

Ab35
Ab35

Ab35

2 or 533

5
2 or 533

2
2 or 533

12
=
=

Ab35

Ab35
After response from partner
After response from partner

2 or 533 2 or 533 2 or 533 2 or 533 2 or 533 = 2 or 533 After rollback across LUW

Ab
Ab

Ab
Ab

Ab
Ab

Ab
Ab

Ab
Ab

Ab
End

Ab
Ab

Immediately
Immediately

Note:
28 The back-end transaction starts in receive state after the front-end transaction has issued CONNECT

PROCESS.
29 No data may be included with SEND CONFIRM.
30 CICS/400 does not support the CICS/ESA deviations from the LU6.2 architecture for SEND LAST WAIT,

SEND LAST CONFIRM, and FREE.
31 Where APPC transaction routing is taking place, the ISSUE SIGNAL command is invalid in this state.
32 The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate to any particular conversation. They

are propagated on all the conversations that are currently active for the task.
33 The state of each conversation after rollback depends on several factors:

v The system you are communicating with. CICS handling of rollback varies with the family type and version;
your partner system may handle it differently from CICS/400.

v The conversation state at the beginning of the current distributed unit of work. This state is the one adopted
according to the APPC architecture. CICS/400 follows the architecture.

A conversation may be in free state after rollback if it has been terminated in one of these ways:

v Abnormally due to session failure or deallocate abend being received.

v Because the partner transaction hs issued a SEND LAST WAIT or FREE command.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further
commands against the conversation.

34 This results, not in an ATC abendk but in a INVREQ return code.
35 This causes an ASP2 abend, not an ATCV.
36 Although ISSUE PREPARE can return with the conversation in either syncsend state, syncreceive state, or

syncfree state, the only commands allowed on that conversation following an ISSUE PREPARE are
SYNCPOINT and SYNCPOINT ROLLBACK. All other commands abend ATCV.

Chapter 13. State transitions in APPC mapped conversations 153

Initial states
A front-end transaction in a conversation must issue an ALLOCATE command to
acquire a session. If the session is successfully allocated, the front-end transaction’s
side of the conversation goes into allocated state (state 1).

A back-end transaction is initially in receive state (state 5).

Testing the conversation state
There are two ways for a transaction to inquire on the current state of one of its
conversations.

The first is to use the EXEC CICS EXTRACT ATTRIBUTES STATE command and
the second is to use the STATE parameter on the DTP commands. In both cases the
current state is returned to the application in a CICS value data area (CVDA).
Table 13 shows how the CVDA codes relate to the conversation state. The table also
shows the symbolic names defined for these CVDA values.

Table 13. The conversation states

States used in this book States used in DTP programs

State name State
number

Symbolic name CVDA code

Allocated 1 DFHVALUE(ALLOCATED) 81

Send 2 DFHVALUE(SEND) 90

Pendreceive 3 DFHVALUE(PENDRECEIVE) 87

Pendfree 4 DFHVALUE(PENDFREE) 86

Receive 5 DFHVALUE(RECEIVE) 88

Confreceive 6 DFHVALUE(CONFRECEIVE) 83

Confsend 7 DFHVALUE(CONFSEND) 84

Conffree 8 DFHVALUE(CONFFREE) 82

Synreceive 9 DFHVALUE(SYNCRECEIVE) 92

Syncsend 10 DFHVALUE(SYNCSEND) 93

Syncfree 11 DFHVALUE(SYNCFREE) 91

Free 12 DFHVALUE(FREE) 85

Rollback 13 DFHVALUE(ROLLBACK) 89

End of General-use programming interface

154 CICS for iSeries Intercommunication V5

Part 4. Appendixes

© Copyright IBM Corp. 2002 155

156 CICS for iSeries Intercommunication V5

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N

© Copyright IBM Corp. 2002 157

Rochester, MN 55901-7829
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This publication is intended to help you to set up a CICS/400 system to
communicate with another CICS/400 system or another CICS product.

This publication also documents General-Use Programming Interface and
Associated Guidance Information.

General-Use programming interfaces allow the customer to write programs that
obtain the services of CICS/400.

General-Use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following: General-Use Programming Interface:

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AIX
Application System/400
APPN
AS/400
CICS
CICS/400
DB2
e (Stylized)
IBM
IMS
iSeries
iSeries 400
Operating System/400
OS/2
OS/390
OS/400
pSeries
Redbooks
RISC System/6000
S/370
System/370
System/390
TXSeries
VSE/ESA

158 CICS for iSeries Intercommunication V5

VTAM
Z/OS
zSeries
400

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 159

160 CICS for iSeries Intercommunication V5

Index

A
abend codes

ASP1 135
ASP3 132, 134
ASPN 123

abends
ATCV abend code 145
when using DPL 63

abnormal termination 114, 115
abnormal termination initiated by

transaction
ISSUE command 113

ADDCICSDCT command
function shipping 69

ADDCICSFCT command
function shipping 68

ADDCICSPCT command
asynchronous processing 83
DPL 64
transaction routing 74

ADDCICSPPT command
DPL 63

ADDCICSSIT system definition table
command 42

ADDCICSTCS system definition
command 39

ADDCICSTCT command
transaction routing 74

ADDCICSTST command
function shipping 70

AEGISRTR, router for undefined remote
systems

in ADDRTGE command screen 57
routing entries for CICS/400

server 57
ALLOCATE command

APPC mapped conversations 103,
118

API (application programming
interface) 100, 101

API commands (APISET)
ADDCICSPPT command 64

APPC
supported functions 3

APPC connection 43
APPC mapped conversations 103, 119

abnormal termination 111, 113
allocating a session 103
attaching partner transactions 104
back-end fails to start 107
back-end transaction initiation 105
checking the response to confirmation

request 113
communicating errors 111
connecting the partner 104
CONVERSE command 116
demanding change of state 111
ending the conversation 114
front-end transaction 103
initial data 104
RECEIVE command 116

APPC mapped conversations (continued)
receiving data from partner 110
replying to a confirmation

request 113
requesting change of state 111
requesting confirmation 112
safeguarding data integrity 112
sending data 108
starting the conversation 103
summary of commands used 118
switching from send to receive

state 108
synchronization 112
transferring data 107

Application network name
ADDCICSTCS command 42

application programming interface
(API) 100, 101

APPLID parameter
ADDCICSSIT 42

applid passed with START command 80
APPN CP session support, CRTCTLAPPC

command 20
APPN node type, CRTCTLAPPC

command 20
APPN parameter

CRTCTLAPPC command 18
CRTDEVAPPC command 26

APPN transmission group number,
CRTCTLAPPC command 20

APPN-capable
CRTCTLAPPC command 18
CRTDEVAPPC command 26

ASP1 abend 135
ASP3 abend 132, 134
ASPN abend 123
ASSIGN command

APPC mapped conversations 106
ASSIGN APPLID 80

asynchronous processing 5
data conversion 90
deferred sending of START

request 81
example application 82
including start request in an LUW 82
initiated by DTP 5
initiating asynchronous processing 5,

79
passing information with the START

command 80
resource definition 83
single transaction satisfying multiple

start requests 83
START/RETRIEVE interface 79, 83

canceling remote transactions 80
information passed with START

command 80
local queuing of START

commands 81
NOCHECK option, START

command 80

asynchronous processing (continued)
START/RETRIEVE interface

(continued)
performance improvement 80
PROTECT option, START

command 82
RETRIEVE command 82
retrieving data sent with START

command 82
starting remote transactions 79
terminal acquisition by started

transaction 83
started transaction 82

ATCV abend code
APPC mapped conversations 145

ATI (automatic transaction initiation) 5
in asynchronous processing 80
relationship to CICS API and CPI

communications 101
attached controller, CRTDEVAPPC

command 25
attached nonswitched line, CRTCTLAPPC

command 18
attaching partner transactions

APPC mapped conversations 104
autodelete device, CRTCTLAPPC

command 20
AUTODLTDEV parameter, CRTCTLAPPC

command 20
automatic configuration 58

dynamic devices 57

B
back-end transaction 105
backing out changes 136, 138

to recoverable resources 122
backout 122, 136, 138
BDAM files, accessed by DPL 62
bind password 86
bind-time security 85, 86

C
C language 101
CANCEL command 80
CEMT transaction, inbound transaction

routing 75
CICS clients 49, 57

definition 49
system entry in CICS/400 50
terminal entry in CICS/400 52
what a client does 49

CICS commands
use in APPC mapped

conversations 118
CICS device (CICSDEV)

ADDCICSTCT command 75
CICS file (FILEID)

ADDCICSFCT command 69

© Copyright IBM Corp. 2002 161

CICS system (SYSID)
ADDCICSDCT command 70
ADDCICSFCT command 69
ADDCICSPCT command 65, 74, 83
ADDCICSPPT command 64
ADDCICSTCS command 39
ADDCICSTCT command 75
ADDCICSTST command 70

CICS system status (SYSSTS)
ADDCICSTCS command 40

CICS/400 server 49, 57
required routing entries 54

CL commands
ADDCFGLE 27
ADDCICSDCT 69
ADDCICSFCT 68
ADDCICSPCT 64, 74, 83
ADDCICSSIT 42
ADDCICSTCS 39
ADDCICSTCT 74
ADDCICSTST 70
ADDCMNE 27
ADDJOBQE 26
ADDPJE 27
ADDRTGE 27
CRTCLS 26
CRTCTLAPPC 16
CRTDEVAPPC 24
CRTJOBQ 26
CRTMODD 22
CRTSBSD 26
WRKCFGSTS 39, 42

COBOL language 101
code page (CDEPAGE)

ADDCICSTCS command 40
COMMAREA, used with DPL 62, 63
committing changes

to recoverable resources 121
communications entries, subsystem 31
configuration list entries, subsystem 38
configuring CICS/400 for

intercommunication 11, 46
adding subsystem entries 27
APPC connection 43
creating a subsystem 26
defining remote CICS systems 39
dynamic devices

automatic configuration 57
linking the subsystem to CICS

resource definitions 43
summary 43
working with the configuration 39,

42
CONFIRM parameter

SEND command (APPC
mapped) 112

CONNECT PROCESS command
APPC mapped conversations 104,

118
PIPLENGTH option 105
PIPLIST option 105

controller description 14, 16, 21
CONVERSE command

APPC mapped conversations 111,
112, 116, 118

CONVID parameter
APPC mapped conversations 105,

108
WAIT command 108

CPSSN parameter, CRTCTLAPPC
command 20

CRTCTLAPPC, create controller
description command 16, 21

CRTDEVAPPC, create device description
command 24, 26

CRTMODD, create mode description
command 22, 24

CTL parameter, CRTDEVAPPC
command 25

CTLD parameter, CRTCTLAPPC
command 17

D
data conversion 89

CICS client support 53
function shipping 91
serial connection, function shipping

and DPL 90
where conversion takes place 89

data integrity
APPC mapped conversations 112
function shipping 68

data link role
CRTCTLAPPC command 19

database, remote, online enquiry 82
DATALENGTH option, LINK

command 63
DB2 database access 62
default user 87
deferred data

cleared by ISSUE ABEND 114
deferred when SEND issued 108
transmitted by WAIT command 118

deferred sending, START NOCHECK 81
destination (DEST)

ADDCICSDCT command 69
DEVD parameter, CRTDEVAPPC

command 24
device description 24, 26

overview 14
distributed program link (DPL) 61, 65

COMMAREA 63
determining how a program was

started 62
overview 3
performance optimization 63
resource definition 63
restricting a program to the DPL

subset 62
synchronization 61
SYNCONRETURN option, LINK

command 62
two ways of using DPL 61

distributed transaction processing 5
distributed transaction programming 99

application design 99, 103
API 100
connectivity 99
data integrity 100
Design objectives 99
designing conversations 100

distributed transaction programming
(continued)

data conversion 100
state transitions, APPC mapped

conversations
state tables 145

DL/I database access 4
DTP (distributed transaction

processing) 5
dynamic device configuration 57

E
EIB fields 123, 145

EIBCOMPL
APPC mapped conversations 117

EIBCONF
APPC mapped conversations 117

EIBEOC
APPC mapped conversations 117

EIBERR 122
APPC mapped conversations 115

EIBERRCD
APPC mapped conversations 116

EIBFREE 123
APPC mapped conversations 116

EIBNODAT
APPC mapped conversations 117

EIBRCODE
APPC mapped conversations 115

EIBRECV
APPC mapped conversations 117

EIBRLDBK 122, 138, 140
EIBSIG

APPC mapped conversations 116
EIBSYNC 121, 140

APPC mapped conversations 117
EIBSYNRB 122, 140

APPC mapped conversations 115,
116

EIB flags
EIBCONF 113
EIBERR 107, 110, 111, 113
EIBERRCD 107, 110, 111, 113
EIBFREE 107, 111, 113
EIBNODAT 110
EIBRECV 113
EIBRSRCE 103
EIBSIG 111

EIBCOMPL flag
APPC mapped conversations 117

EIBCONF flag
APPC mapped conversations 117

EIBEOC flag
APPC mapped conversations 117

EIBERR flag 122
EIBERRCD field

APPC mapped conversations 116
EIBFREE flag 123

APPC mapped conversations 116
EIBNODAT flag

APPC mapped conversations 117
EIBRCODE field

APPC mapped conversations 115
EIBRECV flag

APPC mapped conversations 117
EIBRLDBK flag 122, 138, 140

162 CICS for iSeries Intercommunication V5

EIBSIG flag
APPC mapped conversations 116

EIBSYNC flag 121, 140
APPC mapped conversations 117

EIBSYNRB flag 122, 140
APPC mapped conversations 115,

116
enquiry, online, remote database 82
examples

ADDCICSDCT 70
ADDCICSFCT 69
ADDCICSPCT

DPL 65
remote transaction (asynchronous

processing) 84
remote transaction (transaction

routing) 74
ADDCICSPPT 64
ADDCICSTCS

intrasystem communication 47
remote CICS system 41

ADDCICSTCT 75
ADDCICSTST 71
APPC devices 47
creating a mode group 46
CRTCTLAPPC, local intrasystem

controller 46
CRTDEVAPPC, local devices 47
CRTMODD 46
defining a remote CICS system 41
intrasystem communication

definitions
controller 46

local transaction definition to support
incoming DPL request 65

remote database, online enquiry 82
remote resource definition

file (for function shipping) 69
remote resource definitions

program (for DPL) 64
TD queue (for function

shipping) 70
terminal (transaction routing) 75
transaction (asynchronous

processing) 84
transaction (transaction

routing) 74
TS queue (for function

shipping) 71
exchange identifier, CRTCTLAPPC

command 19
EXCHID parameter, CRTCTLAPPC

command 19
EXTRACT PROCESS command

APPC mapped conversations 106,
118

F
file control, function shipping 67

function shipping 68
remote file definition 68

FREE command
APPC mapped conversations 114,

118
front-end transaction 103
function shipping 4, 67, 71

function shipping (continued)
execution-time choice 67
explicit naming of remote system 67
file control 67
local and remote names 68
resource definition 68
synchronization 68
transient data 68
transparent to application 67

G
GDS ISSUE PREPARE command 122

I
ICF (intersystem communication

function) 3
implementing intercommunication

security 86
IMS databases, accessed by DPL 62
in-doubt period 140

state transitions, APPC mapped
conversations 145

inbound session prefix, ADDCICSTCS
command 40

indirect CICS system (INDSYS)
ADDCICSTCS command 40

indirect connection, transaction
routing 40, 74

intersystem communication (ISC) 3
intersystem communication function

(ICF) 3
intrasystem communication

bind password 86
user security, specifying level of 87

intrasystem communication,
configuring 46, 49

INVITE parameter
SEND command (APPC

mapped) 108
ISC (intersystem communication) 3
ISSUE ABEND command

APPC mapped conversations 111
ISSUE CONFIRMATION command

APPC mapped conversations 112
ISSUE ERROR command

APPC mapped conversations 111
ISSUE PREPARE command 122

J
job queue entry, subsystem 27

L
LCLLOCNAME parameter,

CRTDEVAPPC command 24
levels of user security 86
line description 14
LINE parameter, CRTCTLAPPC

command 18
link security not supported by

CICS/400 85
link type, CRTCTLAPPC command 17

LINKTYPE parameter, CRTCTLAPPC
command 17

local and remote names of resources 68
local location, CRTDEVAPPC

command 24
local network ID, OS/400 41
local queuing of START commands 81
local system queuing (LCLQUEUE)

ADDCICSPCT command 84

M
MAXFRAME parameter, CRTCTLAPPC

command 18
maximum frame size, CRTCTLAPPC

command 18
message queue, CRTDEVAPPC

command 26
mirror transaction 90
mode

CRTDEVAPPC command 25
mode (MODE)

ADDCICSTCS command 40
mode description 22, 24
MODE parameter

CRTDEVAPPC command 25
MSGQ parameter, CRTDEVAPPC

command 26

N
network (NETWORK)

ADDCICSTCS command 40
NOCHECK option

START command 81
NOCHECK option, START command

improving performance 80
local queuing 81

NODETYPE parameter, CRTCTLAPPC
command 20

O
online at IPL,

CRTCTLAPPC command 17
CRTDEVAPPC command 24

online enquiry, remote database 82
ONLINE parameter

CRTCTLAPPC command 17
CRTDEVAPPC command 24

OS/400 resource definition 26
outbound session prefix (SNDPFX)

ADDCICSTCS command 40

P
performance optimization, DPL 63
PIPLENGTH option

CONNECT PROCESS command 105
PIPLIST option

CONNECT PROCESS command 105
preparing a partner for syncpoint 122
prestart job entries, subsystem 34
program (PGMID)

ADDCICSPCT command 65

Index 163

program (PGMID) (continued)
ADDCICSPPT command 64

program definition
DPL 63

programming, distributed transaction 99
PROTECT option

START command 82
pseudoconversation, transaction routing

to 75

Q
Queue (TSQUEUE)

ADDCICSTST command 70

R
RCVPFX parameter, ADDCICSTCS

command 40
RECEIVE command

APPC mapped conversations 116
receive limit (RCVLMT)

ADDCICSTCS command 41
recoverable resources

canceling changes to 122
committing changes to 121

remote and local names of resources 68
remote CICS device (RMTDEV)

ADDCICSTCT command 75
remote CICS file (RMTFILE)

ADDCICSFCT command 69
remote CICS program (RMTPGMID)

ADDCICSPPT command 64
remote CICS systems, defining 39
remote control point, CRTCTLAPPC

command 19
remote destination (RMTDEST)

ADDCICSDCT command 70
remote location, CRTDEVAPPC

command 24
remote maximum key length

(RMTKEYLEN)
ADDCICSFCT command 69

remote maximum record length
(RMTLENGTH)

ADDCICSFCT command 69
remote network identifier

CRTCTLAPPC command 19
CRTDEVAPPC command 25

remote network indicator (RMTNETID)
ADDCICSTCS command 41

remote queue name (RMTQUEUE)
ADDCICSTST command 70

remote transaction (RMTTRANSID)
ADDCICSPCT command 74, 83

resource definition
asynchronous processing 83
CICS client support 50, 54
DPL 63
function shipping 68
OS/400 26
transaction routing 74

resource security 85, 87
restrictions 54

DPL 62

RMTCPNAME parameter, CRTCTLAPPC
command 19

RMTLENGTH parameter
ADDCICSFCT 69

RMTLOCNAME parameter,
CRTDEVAPPC command 24

RMTNETID parameter
CRTCTLAPPC command 19
CRTDEVAPPC command 25

ROLE parameter
CRTCTLAPPC command 19

routing entries, CICS/400 server 54
routing entries, subsystem 28
RTIMOUT attribute

PROFILE definition 116

S
secure locations 87
security 85, 87

bind password 86
bind-time security 85, 86
default user 87
levels of user security 86
link security not supported 85
non-secure locations 87
planning 85
resource security 85, 87
secure locations 87
user security 85, 86
user security, specifying level of 87

SEND command
APPC mapped conversations 108
CONFIRM parameter 112

send limit (SNDLMT)
ADDCICSTCS command 41

serial connections
data conversion 90
distributed program link (DPL) 61
function shipping 67
transaction routing 74

Ship to another CICS system (SHIP)
ADDCICSTCT command 75

shippable terminal, transaction
routing 73

local definition 75
single session, CRTDEVAPPC

command 26
SNA (systems network architecture) 3
SNBU parameter

CRTCTLAPPC command 18
SNGSSN parameter, CRTDEVAPPC

command 26
SQL database access 4
SQL databases, accessed by DPL 62
START/RETRIEVE 5, 79, 83

deferred sending 81
improving performance 81
local queuing 81
NOCHECK option

START command 80
passing information with the START

command 80
RETRIEVE command 82
retrieving data sent with START

command 82
TERMID option 83

START/RETRIEVE (continued)
terminal acquisition 83
WAIT option

RETRIEVE command 83
state, conversation

state tables, APPC mapped
conversations

sync level 0 146
sync level 1 148
sync level 2 150, 152

station address, CRTCTLAPPC
command 19

STNADDR parameter, CRTCTLAPPC
command 19

subsystem, OS/400
creating 26
link to CICS resource definitions 43

summary of CICS/400
intercommunication 6

supported functions 9
switched connection, CRTCTLAPPC

command 18
switched network backup

CRTCTLAPPC command 18
SWITCHED parameter, CRTCTLAPPC

command 18
synchronization

APPC mapped conversations 112
DPL 61
function shipping 68
SYNCONRETURN option, LINK

command 61
SYNCONRETURN option, LINK

command 61, 62
syncpoint

preparing a partner for 122
SYNCPOINT command 121
SYNCPOINT ROLLBACK

command 122
SYSID parameter

ADDCICSPCT command 83
SYSIDERR condition, on START

command 81
systems network architecture (SNA) 3

T
TCS entries 39
temporary storage queue definition

function shipping 70
TERMERR exception condition 107
TERMID option, START command 83
terminal control system table entries 39
terminal definition

transaction routing 73, 74
termination, abnormal

APPC mapped conversations 111,
113, 114, 115

text description, CRTCTLAPPC
command 21, 23

TEXT parameter, CRTCTLAPPC
command 21, 23

TMSGRPNBR parameter, CRTCTLAPPC
command 20

transaction (TRANSID)
ADDCICSPCT command 65, 74, 83
ADDCICSPPT command 64

164 CICS for iSeries Intercommunication V5

transaction definition
asynchronous processing 83
DPL 64
transaction routing 73, 74

transaction routing 4, 73, 77
inbound to the CEMT transaction 75
indirect connection 40
resource definition 74
to a pseudoconversation 75

TRANSID parameter, ADDCICSPCT
command 74, 83

transient data, function shipping 68
remote destination definition 69

type (TYPE)
ADDCICSDCT command 70

Type (TYPE)
ADDCICSTST command 70

U
User area size (USRARASIZE)

ADDCICSTCT command 75
user security 85, 86
User-defined fields 1,2,3, CRTCTLAPPC

command 20
USRDFN1-2-3 parameters, CRTCTLAPPC

command 20

W
WAIT

command 104, 108
option

RETRIEVE command 83
parameter

SEND command 108
working with the intercommunication

configuration 39, 42
WRKCFGSTS command 39, 42

Index 165

166 CICS for iSeries Intercommunication V5

Readers’ Comments — We’d Like to Hear from You

iSeries
CICS for iSeries Intercommunication
Version 5

Publication No. SC41-5456-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC41-5456-00

SC41-5456-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
ATTN DEPT 542 IDCLERK
3605 HWY 52 N
ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5456-00

	Contents
	About CICS for iSeries Intercommunication (SC41-5456)
	Who should read this book
	Conventions and terminology used in this book
	Prerequisite and related information
	CICS/400 library
	Books from related libraries
	CICS intercommunication manuals
	iSeries manuals
	Other books

	How to send your comments

	Summary of Changes
	Part 1. Introduction
	Chapter 1. Overview
	Intercommunication functions
	Distributed program link (DPL)
	Function shipping
	APPC protocol
	DL/I database access
	Data conversion

	Transaction routing
	Automatic transaction initiation

	Asynchronous processing
	Distributed transaction processing (DTP)

	Security
	Summary of CICS/400 intercommunication

	Part 2. Setup and Programming
	Chapter 2. Configuring CICS/400 for intercommunication
	Setting up OS/400 communications objects
	How the commands are described
	OS/400 controller description (APPC), CRTCTLAPPC
	OS/400 mode description, CRTMODD
	OS/400 device description (APPC), CRTDEVAPPC

	Creating an OS/400 subsystem
	Adding subsystem entries
	Adding routing entries
	Adding communications entries
	Adding prestart job entries
	Adding configuration list entries

	Working with the configuration
	Setting up the CICS resource definitions
	Defining remote CICS systems, ADDCICSTCS
	Example

	CICS/400 system definition table, ADDCICSSIT

	Working with the configuration
	Summary
	How the subsystem is associated with CICS resource definitions and with OS/400
	The APPC connection
	How resource definitions are connected

	Intrasystem communication
	Line definition
	Controller definition
	Device definition
	Example of intrasystem communication definitions
	Step 1
	Step 2
	Step 3
	Step 4

	Chapter 3. CICS/400 server support for the CICS client family
	Overview
	What the CICS client does
	What the CICS/400 server does

	Resource definition
	Client system entry
	Client terminal entry
	Data conversion
	Restrictions

	Required routing entries
	Routing entries in default subsystem

	Automatic configuration of dynamic devices
	Controlling automatic configuration
	Automatic-configuration parameters
	XID exchange
	Model controller
	System defaults

	TCP/IP Connectivity for Client

	Chapter 4. Distributed program link
	Two ways to use DPL
	Ignoring the location of resources
	Explicitly specifying the remote system

	Serial connections
	Synchronization and data integrity
	Determining how a program was started

	BDAM files, and IMS, DL/I, and SQL databases
	Restrictions on programs invoked by DPL
	Restricting a program to the DPL subset

	Abends when using DPL
	Performance optimization for DPL
	Why use DPL?
	Resource definition
	Program definition, ADDCICSPPT
	Example

	Transaction definition, ADDCICSPCT
	Example

	Chapter 5. Function shipping
	Two ways to use function shipping
	Ignoring the location of resources
	Explicitly specifying the remote system

	Serial connections
	CICS file control data sets
	Transient data
	Local and remote names
	Synchronization
	Data security and integrity
	Resource definition
	File definition, ADDCICSFCT
	Example

	Transient data queue definition, ADDCICSDCT
	Example

	Temporary storage queue definition, ADDCICSTST
	Example

	Chapter 6. Transaction routing
	Serial connections
	Resource definition
	Transaction definitions, ADDCICSPCT
	Example

	Terminal definitions, ADDCICSTCT
	Local definition of shippable terminal
	Example

	Inbound transaction routing to the CEMT transaction
	Transaction routing to a pseudoconversation

	Chapter 7. Asynchronous processing
	Two ways to initiate asynchronous processing
	Ignoring the location of the transaction
	Explicitly specifying a remote system

	Starting and canceling remote transactions
	Passing information with the EXEC CICS START command
	Passing an applid with the EXEC CICS START command
	Improving performance of intersystem start requests
	Deferred sending of start requests with the NOCHECK option
	Local queuing of start requests for remote transactions
	Including start request delivery in a logical unit of work

	The started transaction
	Started transaction satisfying multiple start requests
	Terminal acquisition by a remotely initiated CICS transaction

	Resource definition
	Transaction definition, ADDCICSPCT
	Example

	Chapter 8. Security
	Planning for intercommunication security
	Bind-time security
	Link security
	User security
	Resource security

	Implementing intercommunication security
	Bind-time security
	Bind password for intrasystem communication
	Bind password for CICS/400 intersystem communication

	User security
	Levels of user security

	Resource security

	Chapter 9. Data conversion
	Which system does the conversion?
	Function shipping and DPL
	Serial connection
	Distributed transaction processing
	Avoiding data conversion

	Types of Conversion
	Resource definition
	Conversion Vector Table definition, ADDCICSCVT
	Required parameters
	Optional parameters
	Example

	Part 3. Distributed transaction programming
	Chapter 10. Designing distributed applications
	Design objectives
	Avoiding performance problems
	Facilitating maintenance
	Aiming for reliability
	Protecting sensitive data
	Maintaining connectivity
	Safeguarding data integrity

	Designing conversations
	Selecting the APPC programming interface

	Chapter 11. APPC mapped conversation flow
	Starting the conversation
	Conversation initiation
	Allocating a session to the conversation
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	Failure of back-end transaction to start

	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The EXEC CICS CONVERSE command

	Communicating errors across a conversation
	Requesting INVITE from the partner transaction
	Demanding INVITE from the partner transaction

	Safeguarding data integrity (using sync level 1)
	How to synchronize a conversation
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to EXEC CICS SEND CONFIRM commands

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Testing for request failure
	Testing for indicators
	Checking EIB fields and the conversation state

	Summary of CICS commands for APPC mapped conversations

	Chapter 12. Syncpointing a distributed process
	The EXEC CICS SYNCPOINT command
	The EXEC CICS ISSUE PREPARE command
	The EXEC CICS SYNCPOINT ROLLBACK command
	Conversation state after SYNCPOINT ROLLBACK

	When a backout is required
	Synchronizing two CICS systems
	EXEC CICS SYNCPOINT in response to EXEC CICS SYNCPOINT
	EXEC CICS SYNCPOINT in response to EXEC CICS ISSUE PREPARE
	EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT ROLLBACK
	EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT
	EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS ISSUE PREPARE
	EXEC CICS ISSUE ERROR in response to EXEC CICS SYNCPOINT
	EXEC CICS ISSUE ERROR in response to EXEC CICS ISSUE PREPARE
	EXEC CICS ISSUE ABEND in response to EXEC CICS SYNCPOINT
	EXEC CICS ISSUE ABEND in response to EXEC CICS ISSUE PREPARE
	Session failure in response to EXEC CICS SYNCPOINT
	Session failure in response to EXEC CICS ISSUE PREPARE
	Session failure in response to EXEC CICS SYNCPOINT ROLLBACK

	Synchronizing three or more CICS systems
	EXEC CICS SYNCPOINT in response to EXEC CICS SYNCPOINT
	EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT
	Session failure and the in-doubt period

	What really flows between APPC systems

	Chapter 13. State transitions in APPC mapped conversations
	The state tables for APPC mapped conversations
	How to use the state tables
	APPC mapped conversations at sync level 0
	APPC mapped conversations at sync level 1

	APPC mapped conversations at sync level 2
	APPC mapped conversations at sync level 2 (continued)
	Initial states

	Testing the conversation state

	Part 4. Appendixes
	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

